JAM Release 5.04
Upgrade Guide

TABLE OF CONTENTS

Chapter 1
MenuBars......oooiiiiiiiiiiintoneenrcnnccssnannnns 3
LI Menu Bar System c.on ittt iiiieiere it ieniner s 3
L2 MenU SCHPLS . outii it iiee ittt e itniaestrerenenanrarananenns 5
I20MenuNameoiiiiniiiiii ittt ittt 6
O I = 7
R U T 7
124 TextOplOnS ...ttt eeiiiiieeenrernnananenennnannns 9
1.2.5 Separator Typescooieiiiniiniiiiriiiinnaeerrannnnnns 10
1.2.6 Global Menu Settingscoviiiiieeirnnnenrennnnnns 12
127 COMmMeEntScovtie it it a et e et e 12
1.3 Sample Menu Script cooitii ittt it it et 12
1.4 Converting and StoringMenu Barscoiiiiiiiiiiiiiiiee., 14
1.5 Attaching Menu Bars to an Applicationcccvvinvnnn.. 15
l.6ManagingMenuBarscoi i it e 16
1.7 Setting Menu Display and Behaviorcciiiiiiiiiieann. 16
1.8 Enabling Menu Bar Supportcciiiiiiiiiiii i 18
1.8.1 Modifying the KeyFilecccieiviiiiiiinnn... 18
1.8.2 Modifying the VideoFileccooviiiiiaa... 20
1.8.3 Rebuilding the Executablecccivviiivnnnnnn.. 20
1.9 Testing Menu Barscciiieinieiiiiineinreianereeenennnns 21
1.10 UsingMenuBarsand Pulldownsc.coiiiiinvnnnnnnnnn. 21
1.11 MenuBarsand SoftKeyscccieiiiiiiiiiiiiniiiiiiiiianan 22
Chapter 2
Menu Bar Reference Cetsecitisirenaes R X,)
20MenuBarData e i i e iie e, 23
22MenuBarROUHNESvoveeiininenneernneneneeenenennnannneennnns 26
CMEMU . .nivierenrinnrrraannens et eear e 27
4 0 11 1 29
11011163 #1111 31
1)1 T (07 3 1L 32
mnadd ... i i et et et e 33
monchange il e e e e 35
1) 114 0 1 37

JAM 5.04 Upgrade Guide

IMIZEL ittt i eiareannsseneciasersnnsennneannnnns 39

10111 1T 41

INNEEIMS ..ttt ittt at e aeneanrotnaaasenananonnecnnnns 43

INOEW .ttt vt o raeansaenaannseenenenosesanonsnsassenees 45

10T 111 48
Chapter 3

Menu Bar Utilitiesciciiiiiieiienrnnnnnen 51

MENUZDID L4ttt itiens e eaen ettt e 52

74 11111 54
Chapter 4

Display Emphasis Cetececestecena ceresnen oo 57

4.1 Specifying Emphasis Stylec.c ittt 57

4.2 Setting Gray AHDUIESovtiiint ittt 58
Chapter 5

Remote Scrollingccccvvune... R TR 59

IndeXviiiiiiiiiiiieieneeceneneecaececesannanananss 61

ii JAM Release 5.04 May 1993

This addendum describes several new features available in JAM 5.04:

Menu bars are now available for character—mode applications, including JAM’s au-
thoring tools. You can use menu bars developed for graphics environments in char-
acter-mode applications, and vice-versa,

Drop shadows and graying out underlying windows emphasize the active window’s
appearance.

The setup variable SCR_KEY_OPT is now available for general usage. You can use
this variable to enable or disable “remote” scrolling of scrolling arrays.

This addendum contains five chapters:

1-

Menu Bars shows how to define menu bars and attach them to your application.
It also shows how to manage menu bars at runtime.

Menu Bar Reference shows how JAM defines menu bar data and describes the
menu bar routines that you can use in your applications.

Menu Bar Utilities describes utilities that JAM provides to create and install
menu bars.

Window Display Emphasis shows how to give drop shadows to windows and gray
out their contents.

Remote Scrolling shows how to enable scrolling for arrays when the cursor is
located outside an arrayed field.

Page 1

Menu Bars

A menu bar is a horizontal menu at the top of the screen that has one or more items.
Each item can invoke a pulldown menu—that is, a vertical menu that appears directly
below its parent item. Pulldown menu items can themselves invoke submenus. You can
nest pulldown menus and their submenus multiple levels deep.

You define menu bars and their pulldowns in ASCII scripts. The script describes the
content of the menu bar, the action associated with each item on the menu bar, and its
initial status. When you finish defining the menu, you convert the menu script to binary
format through the utility menu2bin.

After you define a menu bar, you attach it to your application through either JAM’s
screen editor or JAM library routines. When you attach a menu, you specify whether it
is available to the entire program, to other menus, or only to a specific screen or con-
text.

JAM also provides library routines that let you change the content and selection of
menu bars at runtime. These are described in Chapter 2 of this addendum.

1.1

MENU BAR SYSTEM

JAM’s menu bar subsystem manages the display and behavior of menu bars and their
pulldowns. In graphical environments such as Windows and Motif, menu bars use the
environments windowing system. In character-mode applications, JAM uses its own re-
sources to display the menus.

If you have menu bars enabled, JAM initializes the menu bar subsystem at startup. It
then reads, or loads, menu bars as they are called by the application, either through their
associated screens, or through explicit calls to sm_mn_r_menu or sm_mn_d_menu.

When JAM loads a menu bar, it examines its scope value to decide whether to display
it, and when. A menu bar gets its scope value when you attach it to the application. For
example, this statement:

sm_r_menu (warning, KS_OVERRIDE);)
specifies to load the menu warning at a scope of KS_OVERRIDE.
JAM menu bars can have one of these five scopes:

m KS_FORM associates a menu bar with a screen. This menu bar is displayed with the
screen, and with sibling and child windows that lack their own menu bars. JAM can

Page 3

JAM 5.04 Upgrade Guide

load only one screen-level menu bar at a time. Thus, if two screens with their own
menu bars open in succession, JAM unloads the first screen’s menu bar before it
loads the second.

You can attach a menu bar to a screen through the screen’s keyset field, found on
the Screen Characteristics screen. When JAM displays the screen, it automatically
loads its menu bar at KS_FORM scope. Alternatively, you can load a screen-level
menu bar through a call to sm_r_menu or sm_dJ_menu in the screen’s entry proce-
dure.

m KS_APPLIC associates a menu bar with the application. Application menu bars are
accessible to the application and to screens that lack their own menu bar. You load
an application-level menu bar through a call to sm_r_menu or sm_d_menu in the ap-
plication’s main routine (jmain.c or jxmain.c), in the area reserved for code to
execute before the first screen appears.

m KS_OVERRIDE specifies a menu bar that is independent of any stage of program
execution. An override menu has precedence over any other menu bars that are
loaded at the same time.

You can load and unload override menus at any stage of program execution, While
multiple override menus can be loaded simultaneously, only one override menu
can be active at a time. The active override menu is the most recently loaded one.

JAM reads all override menus into a save stack, where the program can access
them in last-in/first-out order. The save stack can hold up to 10 override menus.
JAM sometimes uses the save stack for its own override menus. Consequently,
JAM might temporarily push its own override menus on top of user-defined menus
loaded earlier.

m KS_MEMRES specifies a menu bar script that is memory-resident and available to
other menus at runtime. JAM can maintain as many of these scripts as your system’s
resources allow. You typically load these scripts at startup, in the application’s main
routine.

A memory-resident menu bar is available to other menu bars only as an external
menu—that is, a menu that is defined outside the menu that references it. You
should install at this scope any menu that is used repetitively by more than one
menu.

® KS_SYSTEM specifies the menu bar that JAM uses in its authoring environment.
The system menu is loaded by default at startup in the application’s main routine,
jmain.cor jxmain.c. Users can then toggle between display of the system menu
and the application-level or screen-level menu through the SFTS key or the Switch
Scope menu item. When JAM switches to the system menu, it closes any screen-lev-
el or application-level menu bars that might be loaded, and vice-versa.

Page 4 JAM Release 5.04 May 1993

Chapter 1: Menu Bars

Although multiple menus can be loaded simultaneously, only one menu can be dis-
played at a time. One exception applies: Motif allows simultaneous display of the ap-
plication-level and screen-level menus.

Within each of the following groups, JAM can simultaneously load menus of these

For example, an application can have one or more override menu bars loaded along
with one system-level menu. Or, the application can have one screen-level and one ap-
plication-level menu bar loaded along with several override menu bars. Note that menu
bars of KS_SYSTEM scope are loaded to the exclusion of KS_FORM and KS_APPLIC
menu bars, and vice-versa.

The previous groups of menu scopes also show their order of precedence. JAM uses this
order to determine which of the loaded menus to display. Thus, if an override menu and
a screen menu are loaded, JAM displays the override menu. When the override menu
closes, JAM displays the screen menu.

If a window without a screen-level menu bar opens, the previously active menu bar re-
mains displayed. This can be the screen-level menu bar from the previous screen, or the
application-level menu bar if no screen-level menu bar is loaded.

Motif and OPEN LOOK treat menu bars of different scopes as follows:

® Menu bars can appear on individual screens or on the base screen, depending on their
scope and the value of the formMenus resource. If formMenus is true, the applica-
tion-level menu bar appears on the base screen while the screen-level menu bar ap-
pears local to the screen. Therefore, both can be active at the same time. If a screen
without a screen-level menu bar opens, then no menu bar appears local to the screen.
Screen-level and override-level menu bars can appear either local to the screen or
on the base screen.

B Application-level and system-level menu bars are restricted to the base screen.
However, users can always access them as pop up menus by pressing the third mouse
button.

1.2

MENU SCRIPTS

When you create a menu bar, you first define it in an ASCII script. You then convert the
script to binary with the menu2bin utility. A menu script specifies a menu bar and its

JAM Release 5.04 May 1993 Page 5

JAM 5.04 Upgrade Guide

pulldowns. The first menu that you specify in a script defines the the top level menu, or
menu bar; subsequent menu definitions define pulldown menus and their submenus.
You can can nest multiple menus any number of levels deep.

You define a menu with this syntax:

menuname(separator [typel] [display-option)...
{
~ label” action| display-option]...

Each menu definition begins with a unique identifier, menuname. The contents of the
menu consist of menu items and separators, enclosed by curly braces {}. Except for
title items, you can specify items and separators in any order.

Alternatively, a menu script can reference an external menu—that is, a menu that is
defined outside the current script. JAM searches for an external menu among currently
open menus, then among those menus loaded at the scope KS_MEMRES. You specify an
external menu as follows:

menuname external

The external keyword lets you build menu bars in a modular fashion and helps ensure
consistency across different menu bars. For example, you can write a script for a pull-
down that is repeatedly used by different menu bars. The menu bar scripts can then ref-
erence the pulldown as an external menu.

Menu scripts can also include lines of commented text. Prefix each comment line with
a pound sign #.

The menu bar compiler ignores all white space characters—spaces, tabs, and line re-
turns—except when they separate key words. You can use white space to improve the
menu definition’s legibility.

The following sections describe individual components of a menu definition.

1.2.1
Menu Name

A menu definition begins with a unique identifier. Each identifier can take one or more
display option arguments which JAM applies uniformly to the entire menu. For more
information about display options, see “Text Options” on page 9, and “Separator
Types” on page 10. .

Page 6 JAM Release 5.04 May 1993

Chapter 1: Menu Bars

1.2.2

Label

Labels specify the displayed text of menu items. Each label is enclosed in double quote
marks (“). The menu bar compiler accepts labels with up to 255 characters. The la-
bel can include backslash escape characters—for example, \n and \ t—to specify new-
lines, tabs, and quotes. JAM uses these formats only if the environment supports them;
otherwise, their actual display is terminal-dependent.

To specify a keyboard mnemonic for a menu item, place an ampersand (&) in front of
the desired character. Users can select the menu item from the keyboard by typing this
character. JAM sets off the mnemonic character according to the display emphasis style
that you choose—for example, by underlining or highlighting it. For example, given
the following pulldown menu definition:

FormMenu

{
“&New"” key PF1
" &Open” control “~jm_filebox file /usr/home * File”
"&Close” key PF3 inactive

"&Save” key PF3
"Save &As” key PF4
}

JAM might display the menu like this:

New
Open
Close
Save
Save As

For more information on setting off the display of mnemonic characters in character-
mode applications, see “Setting Menu Display and Behavior” on page 16.

1.2.3
Action

The action that you assign to a menu item specifies its behavior. You can use one of the
following keywords:

JAM Release 5.04 May 1993 Page 7

JAM 5.04 Upgrade Guide

control control-string

edit

key keystroke

menu menuname

separator [fype]

Associates the JAM control string control-string with this
menu item.

Specifies that this menu item invokes the edit pulldown. The
edit pulldown typically contains these items: Cut, Copy,
Paste, Delete, Select All.Character-mode applications
ignore this action.

Specifies to return keystroke when users select this item.
Selection of this menu item is equivalent to pressing the key.
The value of keystroke can be a JAM logical key. You can
also specify a hex, binary or octal number through one of
these leading characters:

Ox hex
Ob binary
0 octal

Specifies that this menu item invokes the submenu menu-
name.

Inserts a separator of the specified type between menu items.
If you omit the type, JAM draws a single-line separator. See
“Separator Types” later in this chapter for information on
different separator display options.

Page 8 JAM Release 5.04 May 1993

Chapter 1: Menu Bars

title

windows

1.2.4

Text Options

Specifies that label is the title of this menu. The title must be
the first entry in the menu. PifWindows applications ignore
the title keyword.

Specifies that this menu item invokes the Windows menu.
This menu lists the names of the open screens. When you se-
lect a screen from this menu, JAM brings it to the top of the
display. If the selected screen is a sibling of the screen at the
top of the window stack, it becomes the top JAM window.

In Windows, the Win-dows menu also contains these items:
Cascade, Tileand Arrange Icons. These let you arrange
screens and icons within the frame.

In Motif and OPEN LOOK, the Windows menu contains a
raise all option that raises all JAM screens to the top of
the display, and layers them according to the window stack.

In character-based applications, the Windows menu lists
only sibling windows, with the last-opened window listed
first.

You can tell JAM how you want menu items to appear. The following display options

are available:
grayed/greyed

help

inactive

indicator

Mutes, or grays out, the menu item text and prevents users
from selecting it.

Makes a menu item the rightmost item on a menu bar. You
can specify this display option for only one menu item, and
only if it appears on a menu bar—that is, the script’s first, or
main, menu definition. If this item is not the last-specified
item in the menu definition, JAM rearranges the menu item
order so that it appears last.

Inactivates the menu item. When users click on this item,
nothing happens.

Indents all menu items to the right and reserves the indented
space for the indicator symbol.

JAM Release 5.04 May 1993 Page 9

JAM 5.04 Upgrade Guide

indicator_on Turns on the indicator symbol for this item. The indicator—
typically an X or check mark J—indicates the state of amenu
item that serves as a toggle switch.

To change the mark character for character mode applica-
tions, assign a new value to MARKCHAR in the video file.

Use this option only if you have also specified the display op-
tion indicator.

showkey If the menu item’s action is key, shows the keytop label from
the key file to the right of the item’s text. If the key file has
no keytop, then the key mnemonic is shown.

Some options are valid only for certain actions. The following table shows which dis-
play options are valid for each action:

Display Options

Action grayed help inactive indicacor indicator_on showkey

control ° °

edit

key

menu

title

windows

1.2.5
Separator Types

JAM offers several ways to separate menu items. An unqualified separator action in-
serts a single or blank line, depending on your system, between the previous and next
menu items. You can specify one of the following separator types:

double Inserts a double line.
double_dashed Inserts a double-dashed line.
etchedin In Motif, draws a single line that appears to be etched into the

menu. In character-based applications, draws a dotted line.

Page 10 JAM Release 5.04 May 1993

Chapter 1: Menu Bars

etchedout

menubreak

noline
single

single_dashed

In Motif, draws a single line that appears to protrude from the
menu. In character-based applications, draws underscores.

Starts a new line in a horizontal menu, or a new column in
a vertical menu.

Inserts extra space between the menu items.
Draws a single line.

Draws a single dashed line.

In character-based applications, single and double can use characters defined in the
video file. If no definition exists in the video file, JAM uses its own default values: _,

=, | and Il.

You must enter separator types in lower case.

Some separator options are valid only within certain environments. If you specify a
separator that your environment does not recognize, JAM uses a blank line (noline).
The following table shows which separator types are valid for each environment.

Environment

Separator type Character Motif ~ OPENLOOK Windows
double ®)

double_dashed [°

etchedin . .

etchedout ° .

menubreak]
noline ° °

single ° ° ° °
single_dashed ® °®

JAM Release 5.04 May 1993 Page 11

JAM 5.04 Upgrade Guide

1.2.6
Global Menu Settings

Set the separator type and other display options for the entire menu by specifying them
after the menu name. For example, if you specify global options noline and showkey,
all separators in the menu default to nol ine and all keys in the menu have showkey.

If you specify a global separator type, you can override it for individual separators in
the menu.

1.2.7
Comments

You can insert one or more comment lines anywhere in the script. Each comment line
must begin with the pound sign #.

1.3

SAMPLE MENU SCRIPT

This section contains a sample menu script. The figure after it shows how this menu
appears in Motif.

The first menu definition specifies the menu bar items

Main
{
"Bdit” edit
"Form” menu FormMenu
"Text” menu TextMenu
*Help” menu HelpMenu help
"&Quit” key 0x103
}
FormMenu
{
"Form” title,
" &New” key PF1l
" &Open* control "~jm_filebox file /usr/home * File”
"&Close” key PF3 inactive
"gSave” key PF3

“Save &As” key PF4

Page 12 - JAM Release 5.04 May 1993

Chapter 1: Menu Bars

i _separator etchedin
"O&ther” menu OtherMenu
}

OtherMenu grayed showkey
{
"Other” title
"Other&l” key PF1
"Other&2” key PF2
"E&xit” KEY EXIT
}

TextMenu
{
"&Cut” KEY PF1
"C&opy” key PF2
"&Paste” Key PF3
“u SEpArAtOR double menubreak
"&Undo” Key SPF1

}

An external menu is one that is defined elsewhere, either
in an open menu or at the scope KS_MEMRES.

HelpMenu external

This script produces the following output in Motif:

JAM Release 5.04 May 1993 Page 13

JAM 5.04 Upgrade Guide

; Edit] Form Text Quit Help
edit_cut
edit copy k&
edit_paste Form iText Help
edt_delete Form | [Cat | [ScreenHelp
edit_selekt New Copy Field Help
Open Paste
Qere |y
Save
Save As
Other P

Menu bar and pulldown menus produced by the sample menu script.

1.4

CONVERTING AND STORING MENU
BARS

After you write a menu script, use the menu2bin utility to convert the script file to
binary format. You can store the binary file to a disk file or to a library. This done, you
can attach the converted file to an application, as described later.

You can also store menu bar data in memory. To do this, convert the binary file to a C
structure with the bin2c utility, then register it to JAM with sm_formlist. When you
store a menu bar’s data in memory, JAM compiles it with the application. You can then
read these files with sm_d_menu.

Page 14 JAM Releasse 5.04 May 1993

Chapter 1: Menu Bars

For information on menu2bin, see “Menu Bar Utilities” later in this addendum. For
information on bin2c and registration of C structures, see the JAM Programmer’s
Guide.

1.5

ATTACHING MENU BARS TO AN
APPLICATION

An application that uses menu bars must call each menu bar at the appropriate execu-
tion stage. Through JAM’s screen editor, you can attach a menu bar to a screen by sim-
ply entering the menu name in the Screen Attributes keyset field. At runtime, JAM
loads the menu bar when the screen opens either as a form or as a window, or when it
becomes the topmost window. JAM unloads the menu bar when the screen closes or is
superseded by a window with its own menu bar.

Alternatively, you can explicitly load and unload menu bars through calls to one of
these routines:

Sm_r_menu Reads menu bar data from memory, a library or disk.

sm_d_menu Reads menu bar data from memory. Call this routine only for
menu bar scripts that are compiled with the application, as
described on page 14, “Converting and Storing Menu Bars.”

SM_c_menu Unloads menu bar data and frees the memory associated with
it. If the menu bar is still displayed, JAM removes it at the
next screen write.

Both sm_r_menu and sm_d_menu require you to supply a scope value. Menu bars that
you attach to a screen through JAM’s screen editor automatically get a scope of
KS_FORM.

If you attach a menu bar to a screen through JAM routines, you load and unload it in the
screen’s entry and exit functions, respectively. Override menus (KS_OVERRIDE) can
be read at any stage of program execution. Menu bars of all other scopes—KS_AP-
PLIC, KS_SYSTEM, and KS_MEMRES—are typically read in the program’s main
routine.

JAM Release 5.04 May 1993 Page 15

JAM 5.04 Upgrade Guide

1.6

MANAGING MENU BARS

JAM provides library routines to manipulate menu bars and their pulldowns at runtime.
For example, you can use sm_mnchange to gray out or activate items according to
changes in the screen’s context. These library routines are summarized in the following
table. See detailed descriptions of each routine in Chapter 2, “Menu Bar Reference.”

Runtime routine Description

sm_mnadd* Adds an item to the end of a menu.

sm_mnchange” Alters a menu item (for example, grays out an item).
sm_mndelete Deletes a menu item.

sm_mnget* Gets menu item information.

sm_mninserc” Inserts a new menu item.

sm_mnitems Gets the number of items on a menu.

sm_mnnew Creates a menu by name.

* .
Cannot be prototyped because the routine uses an external data structure.

Because changes to a shared menu bar are passed on to all other screens that use it after-
ward, be sure that menu bar changes for one screen are correct for all later screens. If
you want to omit a menu bar for a specific screen, create a dummy menu bar for it

You can also refresh the menu to its original state by closing it with sm_c_menu, then
reopening it with sm_d_menu or sm_r_menu.

You must prototype any menu bar functions that you call directly from control strings
and JPL procedures. The Programmer’s Guide shows how to prototype and install func-
tions. See also JPL Guide for more information on how JPL uses prototyped functions.

1.7

SETTING MENU DISPLAY AND
BEHAVIOR

You can control the way menu bars appear and behave in character-based applications
by setting various options. You can set these options through sm_option or by editing
SMSETUP or SMVARS.

Page 16 JAM Rolease 5.04 May 1993

Chapter 1: Menu Bars

You can specify different display attributes for menu items and their keyboard mne-

monic characters so that users can easily distinguish between available and unavailable

items. Unavailable items typically appear to be grayed out.

JAM uses the following algorithm for graying menu items and keyboard mnemonic

characters:

I. The original display attributes are AND’d with the set of display attributes that you
specify to retain.

2. The remaining attributes are OR’d with the attributes that you specify for graying.

3. The result of steps 1 and 2 is exclusive-OR’d with a mask of switch attributes.

You can set different display attributes for a menu item string and its keyboard mne-
monic character, If you specify display attributes only for the menu item string, the
mnemonic character inherits its attributes.

The following tables show the variables that control display attributes and their default
values.

Table 1. Graying attributes.

Variable Description Default Attributes
FE_KEEPATTRS Display attributes that are kept for All attributes
grayed items.
FE_SETATTRS Display attributes that are set for grayed None
items.
FE_SWATTRS Display attributes that are toggled when HILIGHT

graying is turned on and off,

Table 2. Keyboard mnemonic character emphasis attributes.

Variable Description Default Attributes

AC_KEEPATTRS Display attributes that are kept for a All Adtributes
keyboard mnemonic character

AC_SETATTRS Display attributes that are turned on for None
a keyboard mnemonic character.

AC_SWATTRS Display attributes that are switched fora HILIGHTIWHITE
keyboard mnemonic character.

The following table describes options for controlling user interaction and setting menu
styles:

JAM Release 5.04 May 1993 Page 17

JAM 5.04 Upgrade Guide

Table 3. Settings for menu styles and user interaction.

Variable Description Default Attributes
MB_BORDSTYLE Border style to use in menus (0-9). 1

NOBORDER specifies no border.
MB_BORDATT Menu border attributes. B_WHITE | BLACK
MB_DISPATT Display text attributes. B_WHITE |BLACK
MB_FLDATT Menu field attributes B_WHITE | BLACK
MB_HBUTDIST Distance between two buttons in a 2

horizontal windows-style menu.
MB_LINES_PROT Number of top lines reserved for a 1

menu bar.
MB_SYSTEM Determines whether the System item OK_SYSTEM

(==) appears on the menu bar or not.

Two options are available:

OK_SYSTEM specifies to display Sys-

tem.

NO_SYSTEM specifies to omit System.

2.8

ENABLING MENU BAR SUPPORT

An application that uses menu bars must be enabled to handle them:

m Create a key file or modify an existing one that defines the keys used to access menu
items,

® Optionally, edit your video file and change the default settings for the menu marker
character MARKCHAR and submenu indicator SUBMNSTRING.

® Recompile jmain.c and, optionally, jxmain. c, and rebuild the executable.

2.8.1
Modifying the Key File

You can give users keyboard access to menu items by defining two new types of keys
in your key file:

Page 18 JAM Release 5.04 May 1993

Chapter 1. Menu Bars

B MNBR lets users access the menu bar. If you are enabling system menu bars, you can
also define ALSYS. This gives users keyboard access to the System menu, repre-
sented by two equals signs ==.

® ALT keys give users direct access to menu bar items from the screen.

You perform both tasks by modifying an existing key file. You can do this directly, or
use JAM’s MODKEY utility. Start MODKEY and edit the desired key file. Select Define
Cursor Control and Editing Keys. JAM displays this screen:

%g-’-:c—:—'-:-'{h e

e ! L i 3 i

The bottom of the screen contains two entries, MENU BAR and SYSTEM MENU. Define
the desired key sequences for MENU BAR and, optionally, SYSTEM MENU—for example,
ALT-X and ALT-=. The key sequence for SYSTEM MENU is optional because users can
access it indirectly through the MENU BAR key.

After you define the key sequences, exit the screen and retumn to the menu. Select De-
fine Alt Keys. MODKEY displays this screen:

JAM Release 5.04 May 1993 Page 19

JAM 5.04 Upgrade Guide

You can now define key sequences that give direct access to menu bar items. For exam-
ple, you might specify ALT-F to access the menu item File.

After you define ALT keys, save the definitions to a file. Then convert this file to binary
format with key2bin. If the key file is new, add it to the SMVARS file.

2.8.2
Modifying the Video File

You can edit the video file as follows:

® Change the value of MARKCHAR, which specifies the character used to check menu
items. For example, under MS-DOS and JTERM, the following statement specifies
the square root symbol (V) as the mark character:

MARKCHAR = OxFB

8 Change the value of SUBMNSTRING, which defines the string that menus use to indi-
cate that a menu item invokes a submenu.

After you edit the video file, convert it to binary format with vid2bin.

2.8.3

Rebuilding the Executable

After you modify your key and video files, you can build an executable that uses menu
bars:

Page 20 JAM Release 5.04 May 1993

.

Chapter 1: Menu Bars

1.9

Recompile jmain.c with MENUS defined to 1. If you want JAM'’s authoring environ-
ment to include menu bars, recompile jxform.c with the same change. Edit the
section that specifies optional subsystems to include this statement:

#define MENUS 1
This tells JAM to initialize the menu bar subsystem at startup.

Alternatively, add a definition on the compile command line. On UNIX systems,
be sure that CFLAGS is set to this value:

-DMENUS=1
For example:

CFLAGS = ~-I$(HPATH) -O -Aa -DSM_SCCSID -D$ (MACHINE_NAME)\
-DMENUS=1

Relink with the new 5.04 libraries.

TESTING MENU BARS

You can test menu bars in application mode of JAM if the following conditions are true:

m The SFTS key is defined in the key translation file. This key lets you toggle between
the menu bars in your application and JAM’s own menu bar.

® If you are testing character-mode applications, you must edit jxmain.c to enable
menu bars, and rebuild jxform. Section 1.8.3 shows how to do this.

1.10

USING MENU BARS AND PULLDOWNS

You can use either the mouse or the keyboard to access menu bars and their pulldowns.

Use the mouse with menus as follows:

1.

Click on the menu bar. If you click on a menu item, its pulldown menu appears. If
the menu item has no pulldown menu, JAM executes the action associated with the
menu item. If you click outside a menu item, JAM selects the menu bar’s first item,
but does not open its pulldown menu.

2. Exit the menu bar by clicking on the previously active screen.

JAM Release 5.04 May 1993 Page 21

JAM 5.04 Upgrade Guide

Access the menu bar from the keyboard through one of keys listed below. Recall that
you must first define these keys in the key file.

® MNER selects the menu bar’s first item and leaves its pulldown menu closed.
B ALSYS selects System (==) and opens its menu.

B ALT-char selects the menu bar item with the keyboard mnemonic chur.

You can exit the menu bar by pressing either MNBR or EXIT.

When you switch between screens and menus, JAM maintains the following controls
over your work space:

® When you activate a menu bar, JAM saves the state of the screen and keeps all sub-
menus already open.

® When you exit a menu bar and return to its screen, JAM closes all of the menu bar’s
pulldowns and submenus. Only the menu bar remains visible.

® When the menu bar is active, you cannot manipulate any windows—for example,
move or resize them.

= [famessage requires user action, JAM prevents you from switching to a menu until
you perform the required action.

1.1

MENU BARS AND SOFT KEYS

Soft keys and menu bars are mutually exclusive, because they share the same program-
matic hooks. You must choose one or the other. The selection of soft keys versus menu
bars is made in the main routine, either jmain.c or jxmain.c, by initializing either
soft key support or menu bar support.

JAM provides the kset2mnu utility to help you convert keysets to menu bars. This util-
ity converts the keyset to an ASCII menu script. Because the organization of menu bars
and keysets can differ greatly, you will probably want to edit kset 2mnu’s initial output.
You can then convert the script to binary format and install it as described earlier.

The kset2mnu utility is described in “Menu Bar Utilities™ later in this addendum.

Page 22 JAM Release 5.04 May 1993

2 Menu Bar Reference

This section shows the data structure that JAM uses to modfy or examine menu bar
data. It also describes the routines that you can use to create, install, change, and dis-
play menu bars. These descriptions appear in alphabetical order.

2.1

MENU BAR DATA

JAM’s item_data structure lets you change the display or behavior of menu bar items,
or to examine a menu item’s current state. Some of the runtime routines described in
this chapter use item_data as a parameter. This structure has the following definition
in smmenu . h:

struct item_data

(
short *type
char *label
short accel
short key
char *submenu
short option

}

Each of the structure’s members is described below.
short *type
Specifies this menu item’s type through one of the following defines:

Constant Value Description

MT_SEPARATOR 0 Inserts a separator of the specified type between menu
items.

MT_TITLE 1 Uses the item’s label as the menu title.

MT_KEY 2 Specifies to return a keystroke when users select this
item.

MT_SUBMENU 3 Invokes a submenu.

MT_EDIT 4 Specifies that this menu item invokes the Edit pulldown
menu.

Page 23

JAM 5.04 Upgrade Guide

Constant Value Description

MT_WINDOWS 5 Specifies that this menu item invokes the Windows pull-
down menu.

MT_CTRLSTRNG 6 Associates a JAM control string with this menu item.

char *label

The text of this menu item, ignored if type has a value of MT_SEPARATOR. Text beyond
255 characters is truncated. The default value is 0.

short accel

The offset of the character in 1abel that is used as to select this menu item from the
keyboard. The default value is -1.

short key

The logical key number of the key that is retuned on selection of this menu item, valid
only if type has a value of MT_KEY. See smkey s . h for a listing of valid key mnemonics.
The default value is 0.

char *submenu

If type is MT_SUBMENU, specifies the menu invoked from this menu item. If type is
MT_CTRLSTRNG, specifies the control string to execute when this item is selected.
short option

Display options for this menu item. If the menu item displays the text of 1abel—that
is, type has any value except MT_SEPARATOR—Yyou can bitwise OR together the fol-
lowing text display options:

Constant Value Description

MO_INDICATOR_ON 0x0200 Turns on the indicator symbol for this item. The
indicator—typically a check mark V—indicates
the state of a menu item that serves as a toggle
switch.

MO_INDICATOR 0x0800 Indents all menu items to the right and reserves
the indented space for the indicator symbol.

MO_GRAYED 0x1000 Grays out the menu item text and prevents users
from selecting this item.

MO_INACTIVE 0x2000 Makes the entry inactive. When users click on
this item, nothing happens.

Page 24 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

Constant Value Description

MO_SHOWKEY 0x4000 Shows the keytop label from the key file to the
right of the item’s texc. If the key file has no
keytop, then the key mnemonic is shown

MO_HELP 0x8000 Makes a menu item the rightmost item on the

menu bar. Valid only for one item, and only if it
appears on the menu bar.

If the menu item has type set to MT_SEPARATOR, you can set one of the following op-

tions:

Constant Value Description

MO_SINGLE 0x0000 Draws a single line.

MO_DOUBLE 0x0001 Inserts a double line.

MO_NOLINE 0x0002 Inserts extra space between the menu items.

MO_SINGLE_DASHED 0x0003 Inserts a single—dashed line.

MO_DOUBLE_DASHED 0x0004 Inserts a double—dashed line.

MO_ETCHEDIN 0x0005 Draws a single line that appears to be etched into
the menu.

MO_ETCHEDOUT 0x0006 Draws a single line that appears to protrude from
the menu.

MO_MENUBREAK 0x0400 Starts a new line in a horizontal menu, or a new

column in a vertical menu.

JAM Release 5.04 May 1993 Page 25

JAM 5.04 Upgrade Guide

2.2

MENU BAR ROUTINES -

The following routines create, alter, install and display menu bars;

sm_c_menu Closes a menu bar.

sm_d_menu Displays a menu bar stored in memory.

sm_mncrinit Initializes menu bar support.

sm_ran_forms Installs menu bars in memory.

sm_mnadd Adds an item to the end of a menu.

sm_mnchange Changes an item,

sm_mndelete Deletes an item.

sm_mnget Gets information about a menu item.

sm_mninsert Inserts a new item in a menu.

sm_mnitemns Gets the number of items in a menu.

sm_mnnew Creates a menu bar.

sm_r_menu Reads and displays a menu bar from memory, a library or
disk.

Like other JAM library routines, menu bar routines require the header file smdefs.h.
Some routines also require you to include other header files, as indicated in the descrip-
tions that follow.

You must prototype any menu bar functions that you call directly from control strings
and JPL procedures. JAM's Programmer’s Guide shows how to prototype and install
functions.

The following sections describe menu bar routines in greater detail. The routines are
listed alphabetically.

Page 26 JAM Release 5.04 May 1993

Chaptler 2: Menu Bar Reference

c_menu

close a menu bar

SYNOPSIS

#include "smgoftk.h”

int sm_c_menu{int scope);

PARAMETERS

int scope
Specifies when this menu is available to the application with one of these arguments:

KE_FORM
KS_APPLIC
KS_OVERRIDE
KS_MEMRES
KS_SYSTEM

DESCRIPTION

This routine closes the menu bar at the specified scope level and frees all memory allo-
cated for it. If the menu bar is displayed, JAM removes it at the next delayed write.

When a menu bar with a scope of KS_OVERRIDE closes, JAM pops the next menu, if
any, off the override stack.

If the closed menu’s scope is KS_MEMRES, JAM closes the last menu bar loaded at that
scope.

To refresh a menu bar, close it with c_menu, then reload it with r_menu or d_menu.

RETURNS

0 Success.
—2 Menu bar does not exist at this scope.
-3 Menu bars are unsupported or scope is out of range.

RELATED FUNCTIONS

sm_d_menu, sm_r_menu

JAM Release 5.04 May 1993 Page 27

JAM 5.04 Upgrade Guide

EXAMPLE

#include “smdefs.h”
#include “smsoftk.h”

/* Close the current JAM window’s menu.

sm_c_menu(KS_FORM) ;

Page 28 JAM Release 5.04 May 1993

*/

Chapter 2: Menu Bar Reference

d _menu

load a menu bar that is stored in memory

SYNOPSIS

#include “smsoftk.h”

int sm_d_menu(char *menu, int scope);

PARAMETERS

char *menu
The address of a menu bar stored in memory.

int scope
Specifies when this menu is available to the application with one of these arguments:

KS_FORM
KS_APPLIC
KS_OVERRIDE
KS_MEMRES
KS_SYSTEM

DESCRIPTION

This function can load any menu bar that exists as a C data structure. Use the bin2c
utility to create program data structures from disk—based menus. You can then compile
these into your application and add them to the memory-resident screen list, as de-
scribed in Chapter 9 of the JAM Programmer’s Guide.

If a menu bar is already active at the specified scope, JAM compares its name to the
value of menu and takes one of the following actions:

® If the menu names are the same, the routine returns immediately. Note that you can
use this function to refresh the current menu bar display only if you first close it by
calling c_menu.

m If the menu names are different and scope is KS_OVERRIDE, JAM pushes the cur-
rently active menu bar into the override stack and makes the newly read menu bar
the current menu bar.

m If the menu names are different and scope is KS_MEMRES, JAM loads the menu
bar along with other memory-resident menus that are loaded and available for use
as external menus.

JAM Release 5.04 May 1993 Page 29

JAM 5.04 Upgrade Guide

w If the menu names are different and scope is KS_SYSTEM, KS_APPLIC, or
KS_FORM, JAM closes the previously loaded menu bar and frees the memory allo-
cated for it, then loads the newly read menu bar. If the previous menu bar is dis-
played, JAM removes it at the next screen refresh.

RETURNS

0 Success.
—1 Nota menu bar.
-3 Menu bars are unsupported or scope is out of range.
-5 A malloc error occurred.

If the routine returns with an error, JAM retains the previous menu bar loaded at scope,
if any.

For all errors except -3, a message is posted to the operator.

RELATED FUNCTIONS

Sm_c_menu, Sm_r_menu

EXAMPLE

#include “smdefs.h”
#include ”"smsoftk.h”

extern char customer_menul(];

/* Display the customer menu as the application-level menu.
* Customer_menu was created using bin2c.
*/

sm_d_menu (customer_menu, KS_APPLIC);

Page 30 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mncrinit

initialize menu bar support

SYNOPSIS

void sm_menuinitc();

DESCRIPTION

This routine is typically called automatically when you enable menu bars in your ap-
plication. You enable menu bar support by setting MENUS t0 1 in the main routine.

sm_mmcrinit sets a global variable to point to a control function. All screen manager
functions that need menu bar support check the variable and, if it is non—zero, call indi-
rectly with the request.

You should call this routine explicitly only if you are writing your own executive rou-
tine. You call sm_mncrinit in the main routine before the call to sm_initcre.

RELATED FUNCTIONS

sm_mn_forms, sm_mncrinit

JAM Release 5.04 May 1993 Page 31

JAM 5.04 Upgrade Guide

mn_forms

install menu bars in memory

SYNOPSIS

void sm_mn_forms () ;

DESCRIPTION

This routine is typically called automatically by JAM’s executive. You should call this
routine explicitly only if you write your own executive routine and want to load menu
bars from memory. You must compile these menu bars into the application and add
them to the memory-resident list, as described in Chapter 9 of the JAM Programmer’s
Guide. You can then load these menu bars by calling either sm_d_menu or sm_r_menu.

You call sm_mn_forms in the application’s main routine. If you write your own custom
executive, you must also call sm_menuinit to initialize menu bar support.

RELATED FUNCTIONS

sm_menuinit, sm_d_menu, sm_r_menu

Page 32 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mnadd

add an item to the end of a menu bar

SYNOPSIS

#include "smsoftk.h”
#include ”"smkeys.h”
#include “smmach.h”
#include ”smmenu.h”

int sm_mnadd(int scope, char *menu_name, struct item_data
*menu_data);

PARAMETERS

int scope

Specifies when this menu is available to the application with one of these arguments:
KS_FORM

KS_APPLIC

KS_OVERRIDE

KS_MEMRES

KS_SYSTEM

char *menu_name

The name of the menu bar.

struct item_data *menu_data

A user-allocated structure that describes the appearance and function of a menu bar
item. The description of item_data in Section 2.1 shows the values you can assign to
this structure, and its default values.

DESCRIPTION

This routine adds an item at the end of the menu specified by scope and menu_name.
The item gets the attributes that you supply to the item_data parameter. You assign
attributes through identifiers that are defined in smmenu . h.

RETURNS

0 Success.
-2 No menu bar exists at this scope.

JAM Release 5.04 May 1993 Page 33

JAM 5.04 Upgrade Guide

-3 Menu bars are unsupported or scope is out of range.
-4 menu_name is not found.

-6 Datain item_data is bad.

-7 A malloc error occurred.

RELATED FUNCTIONS

sm_mnchange, sm_mndelete, sm_mhget, sm_mninsert, sm_mnitems,
sm_mnnew

EXAMPLE

#include "smdefs.h”
#include “smsoftk.h”
#include “smmach.h”
#include “smmenu.h”
#include "smkeys.h”

struct item_data *data;
data = (struct item_data *) malloc(sizeof(struct item_data)
)i

/* Call sm_d_menu w/ a disk resident menu and KS_FORM.
* Call sm_mnadd to add a title for submenu.
*/

sm_r_menu (“mymenu.bin”, KS_FORM);
data->type = MT_TITLE;

data->label = “Submenu”;

data->»accel = -1;

data->key = 0;

data->submenu = 0;

data->option = MO_INDICATOR_ON;
sm_mnadd (KS_FORM, “Submenu0”, data);
free(data);

Page 34 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mnchange

change the text or display attributes of a menu item

SYNOPSIS

#include "smsoftk.h”
#include "smkeys.h”
#include "smmach.h”
#include ”“smmenu.h”

int sm_mnchange(int scope, char *menu_name, int item_no, struct
item_data *menu_data);

PARAMETERS

int scope

Specifies when this menu is available to the application with one of these arguments:
KS_FORM

KS_APPLIC

KS_OVERRIDE

KS_MEMRES

KS_SYSTEM

char *menu_name

The name of the menu bar.

int item_no

A positive integer that specifies the menu item to change, where the first menu item has
a value of 0.

struct item_data *menu_data

A user-allocated structure that describes the appearance and function of a menu bar

item. See “Menu Bar Data” on page 23 for more information on this structure and its
values.

DESCRIPTION

Use this function to change a menu item’s textual representation or display attributes.
JAM modifies the contents of the menu item’s data structure through the values that
you supply for parameter data. For example, you can use this routine to gray out or
check an item.

JAM Release 5.04 May 1993 Page 35

JAM 5.04 Upgrade Guide

RETURNS

0 Success.

—2 No menu bar exists at this scope.

-3 Menu bars are unsupported or scope is out of range.
—4 menu_name is not found.

—6 Datain item_data is bad.

—7 A malloc error occurred.

RELATED FUNCTIONS

mnadd, mndelete, mnget, mninsert, mnitems, mnnew

EXAMPLE

#include “smdefs.h”
#include “smsoftk.h”
#include “smmach.h”
#include “smmenu.h”
#include ”“smkeys.h”

/* menu file stored in memory */
extern char mymenul(l;

struct item_data *data;
data = (struct item_data *) malloc(sizeof(struct item_data)
)

/* Call sm_r_menu w/ a disk resident menu and KS_APPLIC.
* Call sm_mnchange to gray out a menu item in the submenu.
*/

sm_r_menu (“mymenu.bin”, KS_APPLIC);

data->type = MT_KEY;

data->label = “Newltem”;

data->accel = 3;

data->key = PF1l;

data->submenu = 0;

data->option = MO_GRAYED|MO_SHOWKEY;

sm_mnchange (KS_APPLIC, ”Submenu0”, 0, data);

free(data);

Page 36 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mndelete

delete a menu bar item

SYNOPSIS

#include ”smsoftk.h”
#include ”“smmach.h”
#include “smmenu.h”

int sm_mndelete(int scope, char *menu_name, int item_no);

PARAMETERS

int scope

Specifies when this menu is available to the application with one of these arguments:
KS_FORM

KS_APPLIC

KS_OVERRIDE

KS_MEMRES

KS_SYSTEM

char *menu_name

The name of the menu bar.

int item_no

A positive integer that specifies the menu item to delete, where the first menu item has
a value of 0.

DESCRIPTION

This routine deletes the item specified by item_no, menu_name, and scope from the
menu bar. The first item on a menu has an i tem_no value of zero.

RETURNS

0 Success.
—2 No menu bar exists at this scope.
-3 Menu bars are unsupported or scope is out of range.
-4 menu_name is not found.
-5 item_no is not found.

RELATED FUNCTIONS

sm_mnadd, sm_mnchange, sm_mnget, sm_mninsert, sm_mnitems, sm_mnnew

JAM Release 5.04 May 1993 Page 37

JAM 5.04 Upgrade Guide

EXAMPLE

#include ”“smdefs.h”
#include “smsoftk.h”
#include "smmach.h”
#1nclude “smmenu.h”

int count;

/*
Delete the last item from the application menu
called "customer”

*/

if ((count = mnitems({ KS_APPLIC, “customer”)) > 0)
sm_mndelete(KS_APPLIC, ”customer”, count);

Page 38 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mnget

get information about a menu bar item

SYNOPSIS

#include "smsoftk.h”
#include ”smkeys.h”
#include “smmach.h”
#include “smmenu.h”

int sm_mnget (int scope, char *menu_name, int item_no, struct
item_data *menu_data);

PARAMETERS

int scope

Specifies when this menu is available to the application with one of these arguments:
KS_FORM

KS_APPLIC

KS_OVERRIDE

KS_MEMRES

KS_SYSTEM

char *menu_name

The name of the menu bar.

int item_no

A positive integer that specifies the menu item to get information on, where the first
menu item has a value of 0.

struct item_data *menu_data

A user-allocated structure that describes the appearance and function of a menu item.
See “Menu Bar Data” on page 23 for more information on this structure and its values.

DESCRIPTION

This function fills the fields in the item_data structure with the corresponding data of
the menu item. Note that you must create buffers for the label and submenu elements of
the structure that are large enough to hold the label and submenu names, as in the exam-
ple shown later. The maximum length is 255 characters.

RETURNS

0 Success.
-2 No menu bar exists at this scope.

JAM Release 5.04 May 1993 Page 39

JAM 5.04 Upgrade Guide

-3 Menu bars are unsupported or scope is out of range.
-4 menu_name is not found.
=5 item_no is not found.

RELATED FUNCTIONS

mnadd, mnchange, mndelete, mninsert, mnitems, mnnew

EXAMPLE

#include ”"smdefs.h”
#include “smmach.h”
#include “smmenu.h”
#include “smsoftk.h”

/* menu file gtored in memory */
extern char mymenuf];

char bufl{100]), buf2([100};
struct item_data *data;
data = (struct item_data *) malloc(sizeof(struct item_data));

data->label = bufi;
data->submenu = buf2;

/* Call r_menu with a disk resident menu.
* Call mnget to get an override-level menu bar item.
*/

sm_r_menu (“mymenu.bin”, KS_OVERRIDE);

sm_mnget (KS_OVERRIDE, ”"Main”, 0, data);
free(data);

Page 40 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mninsert

insert a new menu item

SYNOPSIS

#include "smsoftk.h”
#include "“smkeys.h”
#include “smmach.h”
#include ”"smmenu.h”

int sm_mninsert (int scope, char *menu_name, int item_no, struct
item_data *menu_data);

PARAMETERS

int scope
Specifies when this menu is available to the application with one of these arguments:

KS_FORM
KS_APPLIC
KS_OVERRIDE
KS_MEMRES
KS_SYSTEM

char *menu_name

The name of the menu bar.
int item_no

A positive integer that specifies the menu item to follow the inserted item, where the
first menu item has a value of 0.

struct item_data *menu_data

A user-allocated structure that describes the appearance and behavior of the menu item
to insert. See “Menu Bar Data” on page 23 for more information on this structure and
its values.

DESCRIPTION

This routine inserts a new menu bar item before the menu item specified by item_no,
menu_name, and scope, using the data in the menu bar structure item_data.

RETURNS

0 Success.
—2 No menu bar exists at this scope.

JAM Release 5.04 May 1993 Page 41

JAM 5.04 Upgrade Guide

-3 Menu bars are unsupported or scope is out of range.
—4 menu_name is not found.

~6 Datain item_data is bad.

-7 A malloc error occurred.

RELATED FUNCTIONS

mnadd, mnchange, mndelete, mnget, mnitems), mnnew

EXAMPLE

#include "smdefs.h”
#include "smsoftk.h”
#include “smmach.h”
#include “smmenu.h”
#include ”smkeys.h”

struct item_data *data;

data = (struct item_data *) malloc(sizeof(struct item_data)
)i

/* Call sm_r menu w/ a disk resident menu and KS_FORM.
* Call sm_mninsert to insert a submenu.
*/

sm_r_menu (“mymenu.bin”, KS_FORM);
data->type = MT_SUBMENU;

data->label = “Newltem”;

data->accel = 3;

data->key = 0;

data->submenu = “Submenul”;
data->option = MO_INDICATOR;
sm_mninsert (KS_FORM, "Main”, 1, data);
free(data);

Page 42 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mnitems

get the number of items on a menu bar

SYNOPSIS

#include “smsoftk.h”
#include “smmach.h”
#include “smmenu.h”

int sm_mnitems(int scope, char *menu_name);

PARAMETERS

int scope
Specifies when this menu is available to the application with one of these arguments:

KS_FORM
KS_APPLIC
KS_OVERRIDE
KS_MEMRES
KS_SYSTEM

char *menu_name
* The name of the menu bar.

DESCRIPTION
This routine returns the number of items on the menu bar specified by menu_name and

scope.

RETURNS

If successful, the function returns the number of items in the menu; otherwise, it returns
one of these values:

—2 No menu bar exists at this scope.
-3 Menu bars are unsupported or scope is out of range.
—4 menu_name is not found.

RELATED FUNCTIONS

sm_mnadd, sm_mnchange, sm_mndelete, sm_mnget, sm_mninsert,
sm_mnnew

JAM Release 5.04 May 1993 Page 43

JAM 5.04 Upgrade Guide

EXAMPLE

#¢include “smdefs.h”
#include “smmach.h”

int ret;

/* Call sm_r_menu w/ a disk resident menu and KS_OVERRIDE.
* Call sm_mnitems to get the number of items on the menu bar, and

* place the number in the current field.
*/

sm_r_menu (“mymenu.bin”, KS_OVERRIDE);

ret = mnitems(KS_OVERRIDE, “Main”);
sm_n_itofield("number”, ret });

Page 44 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

mnnew

create a menu

SYNOPSIS

#include "smsoftk.h”
#include “smmach.h”
#include “smmenu.h”

int sm_mnnew(int scope, char *menu_name);

PARAMETERS

int scope

The scope of the menu bar to create. Supply one of these values:
KS_FORM

KS_APPLIC

KS_OVERRIDE

KS_MEMRES

KS_SYSTEM

char *menu_name
The name of the menu bar.

DESCRIPTION

This routine creates a submenu in the menu bar structure at the specified scope level.
After you call this routine, specify its contents by calls to sm_mnadd and sm_mninsert.
After you create the menu and its contents, attach it to an existing menu by creating an
item that invokes it, through a call to sm_mnadd or sm_mninsert

RETURNS

0 Success.
-2 No menu bar exists at this scope.
-3 Menu bars are unsupported or scope is out of range.
-4 menu_name is not found.
-7 A malloc error occurred.

RELATED FUNCTIONS

sm_mnadd, sm_mnchange, sm_mndelete, sm_mnget, sm_mninsert,
sm_mnitems;

JAM Release 5.04 May 1993 Page 45

JAM 5.04 Upgrade Guide

EXAMPLE

#include “smdefs.h”
#include “smsoftk.h”
#include “smmach.h”
#include “smmenu.h”
#include “smkeys.h”

int ret;
struct item_data *data;

data = (struct item_data *) malloc(sizeof(struct item_data)
);

/* Call sm_r_menu w/ a disk resident menu and KS_OVERRIDE.

* Call sm_mnnew to create a new menu bar .

* Call sm_mnadd to add itemg to it and finally add this new menu
* to the menu displayed as a submenu.

*/

sm_r_menu({“main.bin”, KS_OVERRIDE);
ret = sm_mnnew(KS_OVERRIDE, “NewItem”);
if (ret == 0)
{
data->type = MT_TITLE;
data->label = “Submenu”;
data-»accel = -1;
data->key = 0;
data->submenu = 0;
data->option = MO_INDICATOR_ON;

sm_mnadd (KS_OVERRIDE, “Newltem”, data);

data->type = MT_SUBMENU;
data->label = “1I”";
data->accel = 0;

data->key = 0;

data->submenu = “Submenul”;
data->option = MO_INDICATOR;

sm_mnadd (KS_OVERRIDE, “NewlItem”, data);
data->type = MT_SUBMENU;

data->label = “Newltem”;
data->accel = 3;

Page 46 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

data->key = 0;
data->submenu = “NewlItem”;
data->option = MO_INDICATOR;

sm_mnadd (KS_OVERRIDE, ”“Main”, data);

}
free(data);

JAM Release 5.04 May 1993 Page 47

JAM 5.04 Upgrade Guide

r_menu

read a menu bar from memory, a library or disk

SYNOPSIS

#include “smsoftk.h”
#include ”“smmach.h”
#include “smmenu.h”

int sm_r_menu(char *menu_name, int scope);

PARAMETERS

char *menu_name

The name of the menu bar to read.

int scope

Specifies when this menu is available to the application with one of these arguments:
KS_FORM

KS_APPLIC

KS_OVERRIDE

KS_MEMRES
KS_SYSTEM

DESCRIPTION

When you call this routine, JAM first looks for the specified menu bar in the memory—
resident screen list, next in any open libraries, and finally on disk in the directories spe-
cified by the argument t0 sm_initcrt and by SMPATH,

If a menu bar is already active at the specified scope, JAM compares its name to the

value of menu_name and takes one of the following actions:

m If the menu names are the same, the routine returns immediately. Note that you can
‘use this function to refresh the current menu bar display only if you first close it by
calling sm_c_menu.

B If the menu names are different and scope is KS_OVERRIDE, JAM pushes the cur-

rendy active menu bar into the override stack and makes the newly read menu bar
the current menu bar.

® If the menu names are different and scope is KS_MEMRES, JAM loads the menu
bar along with other memory-resident menus that are loaded and available for use
as external menus.

Page 48 JAM Release 5.04 May 1993

Chapter 2: Menu Bar Reference

m If the menu names are different and scope is KS_SYSTEM, KS_APPLIC, or
KS_FORM, JAM closes the previously loaded menu bar and frees the memory allo-
cated for it, then loads the newly read menu bar. If the previous menu bar is dis-
played, JAM removes it at the next screen refresh.

RETURNS

0 Success.
-1 Notamenu bar.
-2 No menu bar exists at this scope.
-3 Menu bars are unsupported or scope is out of range.
—4 menu_name is not found.
-5 A malloc error occurred,
In the case of an error the previously displayed menu bar remains displayed.

For all errors except —3 a message is posted to the operator.

RELATED FUNCTIONS

sm_c_menu, sm_d_menu

EXAMPLE

#include “smdefs.h”
#include "smsoftk.h”
#include “smmach.h”
#include “smmenu.h”

/* Read in the company menu and display it at the form level. */

sm_r_menu(“company.bin”, KS_FORM);

JAM Release 5.04 May 1993 Page 49

3 Menu Bar Utilities

JAM has two utilities for creating menu bars:
® menu2bin converts an ASCII menu script into a binary menu file.

B kset2mnu converts a JAM keyset into an ASCII menu script. For detailed instruc-
tions on creating menu bar scripts, see “Menu Bars” earlier in this addendum.

The following sections describe these utilities in detail.

Page 51

JAM 5.04 Upgrade Guide

menu2bin

convert ASCII menu scripts to binary format

SYNOPSIS

menu2bin [-pv] [-e ext] menufile. . .

OPTIONS

-p Places the binary files in the same directories as the input files.

-v Lists the name of each input file as it is processed.

-e Appends ext to the output file name. The default extension is bin,
DESCRIPTION

The menu2bin utility converts ASCII menu scripts into binary format. Menu scripts are
created as text files. Chapter 1, “Menu Bars”, shows how to write a menu script.

Menu binary files can be placed in libraries with the forml ib utility. Refer to the JAM
Utilities Guide for more information.

ERRORS

Too many menu definitions. Max is 128.
Only 128 menu definitions may be included in one menu script.

Too many item definitions. Max is 128.
Only 128 item specifications may be included in one menu definition.

Cannot create ’‘%s’

Error writing ’'%s’

An output file could not be created, due to lack of permission or perhaps lack of disk
space. Correct the file system problem and retry the operation.

Neither ’'%s’ nor ’‘%s’ found.

An input file was missing or unreadable. Check the spelling, presence and permissions
of the file in question.

Error in ‘%s’ line '%d’ error-type

The syntax of your script on the specified line is incorrect. The value of error-type spec-
ifies one of these errors:

Expected left brace ’{’ after menu name.

No right brace ’}’ found before EOF.

No menu name specified.

Expected guoted item label.

Missing action.

Page 52 JAM Release 5.04 May 1993

Chapter 3: Menu Bar Utilities

Unknown action ‘%s’.

Unknown option ’'%s’.

No key specified.

Bad key ‘%s’.

Bad escape sequence ‘$s’.

Undefined submenu ’'%s’.

More than one option of this type (%s).

More than one accelerator character assigned.
Accelerator character at end of string - Ignored.
Menu ‘%s’ is on menu bar so cannot be used as submenu.

JAM Release 5.04 May 1993 Page 53

JAM 5.04 Upgrade Guide

kset2mnu

convert keysets into ASCII menu scripts.

SYNOPSIS

kset2mnu [-pv] [-e ext] keysel...

OPTIONS

-p Places the binary files in the same directories as the input files.

-v Lists the name of each input file as it is processed.

-e Appends ext to the output file name. The default extension is mnu.
DESCRIPTION

The kset2mnu utility converts keysets into menu scripts and stores it in an ASCII text
file. The utility converts a keyset according to these rules:

® The first row in the keyset becomes the menu bar.

® Subsequent rows become submenus. Submenus are named “Rowx’”’, where x is the
row number.

® The sFTxkey (goto row x) becomes an entry for the submenu named Rowx.

® The SFTN (nextrow) and SFTP (previous row) keys become entries for the submenus
named Row({i+ 7} or Row{i-1), where iis the current row.

Because menu bars and keysets are often organized according to different principles,
the converted menu bar often requires manual editing. For example, keyset items in the
first row typically invoke actions, while menu bar items usually invoke pulldowns
whose items invoke actions.

When you finish editing the menu bar script, convert it to binary format with menu2bin
and attach it to the application.

ERRORS

Soft key ’'%s’ designates a nonexistent submenu.
The keyset contains a SFTn key for a row that does not exist. Remove the offending key
from the keyset and reconvert it.

Neither ‘%s’ nor ’%s’ found.
An input file was missing or unreadable. Check the spelling, presence, and permissions
of the input file.

Page 54 JAM Release 5.04 May 1993

Chapter 3; Menu Bar Utilities

Cannot create ’%s’

Error writing ’%s’

An output file could not be created, due to lack of permission or disk space. Correct the
file system problem and retry the operation.

JAM Release 5.04 May 1993 Page 55

4 Display Emphasis

JAM now has two display options that let you emphasize the current, or active, screen:

® Drop shadows appear to cast a shadow from the active screen shade over underlying
screens.

®m Gruying changes the display attributes of all screens except the active one according
to a predefined algorithm—for example, highlights turn off and colors change to
monochrome.

An application can use both methods singly or together.

Drop shadows and graying change only the display attributes of the background
screens; the actual contents are unaffected. You can specify which display attributes to
preserve and which new attributes to use for the grayed data.

To use display emphasis, set JAM as follows:

m Specify the emphasis style to use—drop shadows or graying.
® Specify the display attributes of a grayed object.

The following sections show how to perform both tasks.

4.1

SPECIFYING EMPHASIS STYLE

You specify which emphasis style to use by setting the value of the configuration vari-
able EMPHASIS. You can set this value in the configuration file as follows:

EMPHASIS=gstyle

You can also reset the emphasis style at runtime through the library function sm_op-
tion:

sm_option{EMPHASIS, style);

Note that after sm_opt ion changes the emphasis style, you must call sm_rescreen to
repaint the display.

You can specify one of the following values for style:
® NONE disables display emphasis.

Page 57

JAM 5.04 Upgrade Guide

4.2

GRAYBKGD grays background screens. Only the active screen retains its original dis-
play attributes.

DROPSHADOW draws a shadow at the topmost screen’s right and bottom edges. The
drop shadow is two columns wide and one line deep. The right shadow starts one
space below the screen’s top edge, while the bottom shadow starts two columns from
the screen’s left edge. The bottom shadow is indented two spaces from the left edge
of the screen. The shadow is formed by graying the underlying text.

SETTING GRAY ATTRIBUTES

Whether you use graying or drop shadows, you must set the display attributes that JAM
uses for the underlying objects. You set these through two video file variables:

EMPHASIS_KEEPATT specifies the attributes that a grayed object retains. This vari-
able intially has all attributes enabled except HILIGHT.

EMPHASIS_SETATT specifies the attributes that the grayed object acquires. This
variable intially has two attributes enabled: REVERSE and DIM.

You can reset EMPHASIS_KEEPATT and EMPHASIS_SETATT either in the video file, or
through the runtime function sm_pset. For example, the following statement sets gray-
ing with attributes DIM and WHITE:

sm_pset (V_EMPHASIS_SETATT, “DIM WHITE”);

After you call sm_pset, call sm_rescreen to update the display.

See section 4.6 in the JAM Configuration Guide for display attribute names.

Page 58 JAM Release 5.04 May 1993

5 Remote Scrolling

You can now configure JAM applications to allow or disallow scrolling data inside an
array when the cursor is positioned outside that array. This is particularly useful for
character-mode applications in which users need to view off-screen data in arrays
that are tab-protected.

You enable or disable remote scrolling by assigning one of these values to the setup
variable SCR_KEY_OPT:

® SCR_NEAREST, the default, enables remote scrolling. This causes the nearest scrol-
lable array to scroll when the user presses a scrolling key.

B SCR_CURRENT allows users to scroll array data only when the cursor is in that array.
Scrolling keys are inactive when the cursor is outside a scrollable array.

Page 59

INDEX

A

Application menu bars, 4

Array, scroll contents from remote location,

59

bin2c utility, 14

C

Control string, assign to menu item, 8

D

Drop shadows, 57
enable, 57
set attributes, 58

E

Edit menu, 8
EMPHASIS variable, set, 57

External menus
assign scope (0, 4
specify in script, 6

G

Global menu bar settings. 16

Gray menu item, 9

Graying, 57
enable, 57
set attributes, 58

Indicator symbol
change character, 20
reserve space for, 9
turn on for menu item, 10

item_data data structure, 23

K

Key file, modify to support menu bars, 18
Keyset, convert to menu bar, 22, 54
Keystroke returned by menu item, 8
Keytop label, show for menu item, 10
KS_APPLIC, 4

KS_FORM, 3

KS_MEMRES, 4

KS_OVERRIDE, 4

KS_SYSTEM, 4

kset2mnu utility, 22, 54

L

Library routines
sm_c_menu, 15, 27
sm_d_menu, 15, 29
sm_menuinit, 31
sm_mn_forms, 32
sm_mnadd, 16, 33
sm_mnchange, 16, 35

Page 61

JAM 5.04 Upgrade Guide

Library routines (continued) Menu bars (continued)
sm_mndelete, 16, 37 scope. 3
sm_mnget, 16, 39 separator types, 10
sm_mninsert, 16, 41 set display, 16
sm_mnitems, 16, 43 specify external script, 4
sm_mnnew, 16, 45 store in memory, 14
sm_f_menu, 15, 48 subsystem, 3
use, 21
Menu item
action, 7
M add to menu at runtime, 16, 33

assign control string to, 8
Memory-resident menu bars, 4 change at runtime, 16, 35
delete at runtime, 16, 37

Memory-resident menu script, 4 display options, 9

Menu bar routines get information, 16, 39
manage menus at runtime, 16 gray out, 9, 17
prototype, 16 inactivate, 9
insert at runtime, 16, 41
Menu bars, 3 invoke Edit menu, 8
access from keyboard, 22 invoke submenu, 8
access with mouse, 21 invoke Windows menu, 9
associate with application, 4 keyboard mnemonic, 7
associate with screen, 3 reserve space for indicator symbol, 9
attach to application, 15 return keystroke, 8
close, 15, 27 right justify on menu bar, 9
compare to soft keys, 22 show keytop label, 10
create menu at runtime, 16, 45 textual representation, 7
data structure, 23 turn on indicator symbol, 10

display precedence, 5
enable keyboard access to, 18
enable subsystem, 18

Menu script, 5
comments, 6, 12
convert to binary format, 14, 52

get number of items, 16, 43 example, 12

global display options, 12 label, 7

initialize subsystem, 3, 31 menu name, 6
install in memory, 32 syntax, 6

item action, 7

item text, 7 Menu separator, 8
keyboard mnemonics, 7 mepu2bin utility, 14, 52
load, 5

load from memory, 29

manage, 16 (9]
prototype routines, 16

read, 15 Override menu bars, 4
read from memory, 15, 48 save stack, 4

Page 62 JAM Release 5.04 May 1993

Index

P

Pulldown menu, assign title, 9

R

Remote scrolling, 59

S

Scope values, 3
KS_APPLIC, 4
KS_FORM, 3
KS_OVERRIDE, 4
KS_SYSTEM, 4

SCR_KEY_OPT, 59
SCR_CURRENT, 59
SCR_NEAREST, 59
Screen menu bars, 3

Scrolling array, remote scrolling enabled, 59

JAM Release 5.04 May 1993

Separator, format, 10
sm_ routines. See Library routines
Soft keys, compare to menu bars, 22

Submenu
attach to menu item, 8
change indicator symbol, 20

System menu bars, 4

V'

Video file, modify to support menu bars, 20

w

Windows
drop shadow, 57
gray underlying, 57

Windows menu, 9

Page 63

