JAM/Presentation
interface
for
OSF/Motif,
OPEN LOOK

and

MS Windows

Release 1.4

This is the manual for the JAM/Presentation interface for Microsoft Windows, OSF/
Motif, and OPEN LOOK. It is as accurate as possible at this time; however, both this
manual and JAM/Presentation interface itself are subject to revision.

JAM is a registered trademark and JAM/Presentation interface is a trademark of
JYACC, Inc.

IBM, PC/XT, IBM AT, PS/2, and IBM PC are registered trademarks of International
Business Machines Corporation.

Windows is a trademark and Microsoft, MS, and MS-DOS are registered trademarks
of Microsoft Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.
OSF/Motif is a trademark of the Open Software Foundation.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
Helvetica and Times are registered trademarks of Linotype Company.

Times Roman is a registered trademark of Monotype Corporation.

Other product names mentioned in this manual may be trademarks of their respective
proprietors, and they are used for identification purposes only.

Please send suggestions and comments regarding this document to:

Technical Publications Manager
JYACC, Inc.

116 John Street

New York, NY 10038

(212) 267-1722

© 1992 JYACC, Inc.
All rights reserved.
Printed in USA.

TABLE OF CONTENTS

Chapter 1
Introductioncciivvieiennnnnncecnesoecsensas 1
1.1 AboutThisDocumentcoviiiiiiiiiiiiiiiiieeninannn, 1
- 11T Conventionsiiiiiiii i i 1
1.2 What is the JAM/Presentation interface? 2
1.3 Using JAM/PiEffectively oo, 2
1.4 Overviewof Featuresin JAM/Pi, 4
1.4.1 Portability Across Environments 4
142 Compatibility with Character JAM 5
143 SupportforGUIfeaturescoviiiiin. 5
: Transformation of Objectsand Text 5
Extended Functionalitycoiiiiinnan... 5
Extended FontsandColorscoiiiniin.. 5
ApplicationDefaultso i 7
Extended Library Routines 8

Chapter 2
JAM Objects into GUI Widgetscovvvnneeee. 11
2.1 Introduction i i 11
2.2 Widget Attributes i e e 12
2.2.1 Widget Attribute Hierarchyoooe, 12
2.2.2 Application-Wide Attributes oL 13
2.23 Screen—Wide Attributeso i 15
2.24 Widget-Specific Attributes oo 16
2.3 Transformationinto Widgets it 17
2.3.1 Display Text and Protected Fields 17
232 DataEntryFields i 17
2.33 AITAYS ..t e 18
234 MeNUS ..ot e e i 19
235 GrOUDPS .t ottt e 20

JAM/PiRelease 1.4 1 December 92 Page i

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Chapter 3
Arranging Screensin JAM/Pic0vvivenvieenees 23
31 Overview of Positioningttt e 23
32 ANChOMING .. ov ittt e e 26
3.2.1 - Anchoring by Field Justification 26
322 Horizontal Anchoring: the halign Field Extension 26
3.2.3 Vertical Anchoring: the valign Field Extension 27
324 AnchoringDisplay Text i, 28
33 WHRItESPACE . . v ittt ittt e et e e 29
34 Proportional vs. Fixed WidthFonts 30
35 WidgetSize ..o e 32
3.6 Fine Tuning Screen AIrangementcovuiiniineenenneonn. 33
36.1 ThespaceFieldExtension 33
3.6.2 ThenoadjField Extension 33
3.6.3 The hoff and voff Field Extensions 34
37 RefreshingtheScreen........ o il 35
3.8 Separator RowsandColumns oL, 36
38.1 Separatorsand the ElasticGrid 37
Chapter 4
JAM Behavior in a GUI Environment 39
4.1 JAM Screensot 39
411 TitleBars ... e 39
4.1.2 Multiple Document Interface in MS Windows 40
413 FOCUS .« e 41
414 JAMBorders L 42
4.1.5 Iconmification il i 43
Preventing Iconification 43
4.1.6 Toggling Between Menu Mode and Data Entry Mode. 44
42 Errorand Status Messagesttt 44
421 DialogBoxIcons il 46
422 Locationofthe StatusLine 47
StatusLineKeytops i, 47
Keytop Functions in the Authoring Tool 47

Page ii JAM/PiRelease 1.4 1 December 92

Table of Contents

43 Shiftingand Scrolling i i 47
4.3.1 Shifting Fields and Proportional Fonts 48
. 4.3.2 User Interface to Shifting and Scrolling 49
43.3 Shifting and Scrolling Indicators 49
Turning Off JAM Shift/Scroll Indicators 49
Changing the Characters Used as Indicators 50
4.4 Cutting, Copying & Pasting Text e - 50
4.5 SOftKeys ...t e e e 51
451 Locationof SoftKeyso i 52
452 SoftKeysvs.MenuBars.................. 52
Thekset2mnu Utilityoooviiiiiiiiint, 52
Chapter 5
Entering Screen and Field Extensions 53
‘5.1 Introduction e e i 53
5.2 The Screen Extensions Windowcooueririenenernennenns. 54
5.2.1 The Details Window for Lines and Boxes 58
5.3 TheField Extensions Window, 61
5.3.1 Synchronizing JAM andthe GUI 61
5.32 Forcingthe Widget Type 61
5.3.3 Entering Data in the Field Extensions Window 62
534 TheFrameWindow............ ..o, 66
5.3.5 WidgetDetails Windows 68
5.3.6 The Size and AlignmentWindow 71
Chapter 6
Extension Referencecccovvvvieviineeieneeness 75
6.1 Introductioniiiiii i e e 75
6.2 Extension Syntaxiiiiiiiiiii e 76
6.2.1 Colon Expansion of Extension Arguments 76
6.3 Propagating Extensions i 77
6.4 ExtensionReference i 77
bg
fg specify background or foreground color for a screen or widget . 81
box drawabox 84
checkbox create a checklist styletogglebutton 87
dialog create a dialog box fromascreen 88
font specify the font forascreenorwidget 89

JAM/PiRelease 1.4 1 December 92 Page iii

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

frame create a frame aroundawidget 92
halign

- valign specify alternative horizontal or vertical alignment for a widget 94
height

-+ width specify the width or height of awidget 96
hline
vline " create a vertical or horizontal line 98
hoff
voff specify a horizontal or vertical offset fora widget 102
icon enable iconification and associate an icon withascreen 104
iconify start thisscreenasaniconcovviiiuneneen ... 106
label createalabelwidget, 107
list create alistbox fromanarray 108
maximize invoke a window maximized 110

. multiline create a multiline label for a menu or group button 111
multitext create a multiline text widget fromanarray 113
noadj disable vertical or horizontal grid adjustment for a widget 115
noborder suppress the GUI border for thisscreen 116
noclose suppress the close option on the GUI window menu 118
nomaximize prevent the user from maximizing a window 119
nomenu suppress the GUl windowmenu 120
-nominimize prevent the user from minimizing a GUIl window 122
nomove suppress the move option on the GUI windowmenu 123
noresize prevent the user from resizing a GUI window 124
notitle suppress title bar e e e 125
nowidget don’t create a GUI widget forthisfield 126
optionmenu create an option menu widget, 127
pixmap associate a bitmap or pixmap withalabel 130
pointer specify the pointershape 134
pushbutton create a pushbutton widget 136
radiobutton create a radio style togglebutton 138
scale createascalewidget i, 139
space equally space the elements of anarray 140
text createatextwidget i, 141
title change the title baronascreen 142
togglebutton create an infout style toggle button 143

Page iv

JAM/PiRelease 1.4 1 December 92

Table of Contents

Chapter 7
Setting Application Defaultscc000een... 145
7.1 Resource and Initialization Files, 145
7.1.1 Resource and Initialization File Names 145
7.1.2 Structure of Resource and Initialization Files 146
7.1.3 Location of Resource and Initialization Files 148
I O+) (o ¢ 149
7.2.1 Setting JAM Palette Colorsoiiiieinnnn, 149
7.22 Colors Beyondthe JAM Palette 151
Motif Color Resourcesc.cciviiiennnnennnnnn 151
OPEN LOOK Color Resourcesocvvevvvnnnnnnnn.n. 151
Motif/OPEN LOOK Background and Foreground Resources 152
28 N) o €O 153
7.3.1 Where Fonts are Specified 153
' The Application Default Font 153
The Default ScreenFont 154
AWidget'sFont i i 154
732 NamingFonts 155
Windows fontnaming i i, 155
Motif and OPEN LOOK fontnaming 155
7.4 Aliasing: GUI Independent Fonts and Colors 158
Restrictionson Aliasingciiiiiiiannn.. 159
7.5 Windows Initialization Optionsccviiinao... 160
7.5.1 The [Jam Options] Section of the Initialization File 160
GrayOutBackgroundForms 160
FrameTitle i i, 160
StartupSize e e 160
StatusLineColorttt 161
SMTERM ... i e e 161
7.5.2 The Windows Control Panel and win.iniFile 161
7.5.3 Highlighted Background Colors in Windows 161
7.54 SamplejaminiFile L, 162
7.6 Motif and OPEN LOOK Common Resource Options 163
7.6.1 Motif and OPEN LOOK Behavioral Resources 163
The baseWindow Resource 163
The formStatus Resource 163
The formMenusResource 164

Combinations of baseWindow, formMenus and formStatus ... 164

JAM/PiRelease 1.4 1 December 92 Page v

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

7.6.2 RestrictedResourcescociiiiiii ... 165

7.6.3 Suggested Resource Settings 165

7.64 The rgb.txt File in Motifand OPENLOOK 166

7.7 Motif Resource Optionscoiiniii i, 167

7.7.1 Motif Global Resource and Command Line Options 167

7.72 Widget Hierarchy in Pi/Motif 168

BaseScreen ...t e 168

Dialog BOXES . .. ovvt e e 169

JAMScreensttt i 169

Fieldso 171

Display Text, Linesand Boxes 173

MenuBarscoo i 173

7.7.3 Sample Motif Resource Filefor JAM 175

7.8 OPENLOOKResource Optionsccoviuiiiuinnnnnnn.. 179

7.8.1 OPEN LOOK Global Resource and Command Line Options .. 179

7.8.2 The OPEN LOOK keepOnScreen Resource 180

7.8.3 Widget Hierarchy in PWOPENLOOK 180

BaseScreen i i 181

JAM SCreensovvniiie i e e e 182

Dialog Boxesooiiiiiii it e 183

Fieldso 183

Display Text, Linesand Boxes 185

MenuBars 185

7.84 Sample OPEN LOOK Resource File for JAM 188
Chapter 8

MenuBars.....ooviiieriiiieiisnnrnsssnscassananasss 191

8.1 Introductioniiiiiii i e 191

82 LocationofMenuBars i i 191

8.2.1 Pop-Up Menu Bar in Motif and OPENLOOK 192

83 MenuBarScope 192

84 TheMenusScriptttt 194

84.1 MenuScriptStructure e 194

84.2 MenuScriptComponentscoiuiei..... 194

843 SampleMenuScript i 198

8.5 Testing Menu Bars in The Authoring Utility 200

8.6 MenuBarLibraryRoutines, 201

Prototyping Menu Bar Library Routines 202

Page vi JAM/PiRelease 1.4 1 December 92

Table of Contents

8.7 InstallingMenuBarst 202
8.7.1 EnablingMenuBarso il 202
8.7.2 Installing Menu Bars of Various Scopes 202
Installing an Application-Level MenuBar................. 202
Installing a Screen-Level MenuBar...................... 202
Installing Override-Level MenuBars 203
Installing Memory—Resident MenuBars 203
Installing the System-Level MenuBar 203
873 StoringaMenuBarinMemory 203
8.8 Using MenuBars Effectively i it 203
89 MenuBarsvs.SoftKeysco i e 204
8.9.1 Using Libraries to Store Menu Bars and Keysets 204
8.9.2 Converting KeysetsintoMenuBars 205
Chapter 9
Usingthe Mousec.oiviviiiinenecnesensescnnnsass 207
9.1 Introductionottt 207
9.1.1 MouseCursorDisplay oo, 207
9.12 MouseButtons e 208
9.13 MouseFunctions i 208
MenuBars 209
Focus 209
Move, OffsetandResizeccoi ... 210
Moving the Cursor and Making Selections 210
Scrolling and Shifting 211
Editing Textot i ii i e e 212
SelectMode e 212
Miscellaneous oo 212
Chapter 10
GUI Specific Featuresccicvvviencececnceceeesss 213
10.1 Overstrike Mode in Pi/Motif and PYOPENLOOK 213
10.2 Interfacing withthe GUILibrarycooiu... 213
10.3 System Commands in Pi/Windows 214
Chapter 11
ConversionIssuesc00iiiiiiiiineeneneenneee.. 215
11.1 BackgroundHighlights, 215

JAM/PiRelease 1.4 1 Dacember 92 Page vil

JAM/P; for OSF/Motif,_Microsoft Windows and OPEN LOOK

11.2 LineDrawingttt ittt 215
11.3 JAM Version 4 Applicationsc.ooiiiivniiiniiiiennnnn. 216
11.4 "JAM Version S Applicationsoviiiiininnnnnenn... 216
Chapter 12
Library and Utility Reference00, 217
12.1 JAM/PiLibrary Routinescoo i iiaennn. 217
GUI Library Interface Routines 217
MenuBarRoutines il 217
File Selection Box Routines 218
Miscellaneous Routinescoovuieiinaneen.., 218
sm_adjust_area refresh the currentscreen 219
sm_c_menu closeamenubarccoiiiiiiii.. 220
sm_d_menu display a menu bar stored inmemory 222
sm_drawingarea get the widget id of the current JAM screen 224
sm_filebox open a file selection dialogbox 226
sm_filetypes set up a list of file types for a file selection dialog box . 231
sm_menuinit initialize menu barsupport 233
sm_mn_forms install menu bars inmemory 234
sm_mnadd add an item to theendofamenubar 235
sm_mnchange alteramenubaritem 238
sm_mndelete deleteamenubaritem 240
sm_mnget get menu bar item information 242
sm_mninsert insertanewmenubaritem....................... 244
sm_mnitems get the number of items onamenubar 246
sm_mnnew create anew menu barbyname 248
sm_r_menu read & display a menu bar from memory, library or disk 250
sm_translatecoords translate screen coordinates to display coordinates 252
sm_widget get the widgetid ofawidget 255
sm_win_shrink trimthecurrentscreenc.oovviinevnnn. 257
122 UGHHES . . .e it ittt e e e 258
menu2bin © convert ASCII menu scripts to binary format 259
kset2Zmnu convert keysets into ASCII menuscripts 261
Appendix A
Terminologycoiivviiiiiienecencsesersssnnnnses. 263
General Termst 263
Terms Relatingto Screensvviiinnn e, 264
Terms Relating to Items on Screens 264

INdeX ..viennieeniieeeneteneocnneensesennenonnnnanness 267

Page viii JAM/PiRelease 1.4 1 December 92

Chapter 1:_Introduction

Chapter 1
Introduction

1.1

ABOUT THIS DOCUMENT

This document is intended to introduce the JAM/Presentation interface Lo developers
who are already familiar with JAM®. It is nor intended as a substitute for any part of
Volumes I and II of the JAM manual. If you are new to JAM, please read the JAM
manual first.

Conceptually, this manual is separated into two parts. The first part describes what the
JAM/Presentation interface is and explains how to use it. Chapters 1 through 5 com-
prise this part. The balance of the manual is a reference, giving the details of the various
features and functions in the product. An appendix at the end of the manual contains a
glossary of terms associated with Graphical User Interfaces (GUI's) and JAM. These
terms are used throughout the manual. Please refer to Appendix A if you are confused
about the meaning of any terms used.

1.1.1
Conventions

- All conventions in the JAM manual are adopted for this manual. In addition, the fol-
lowing icons indicate that a particular section applies to one presentation interface only.

JAM/PiRelease 1.4 1 December 92 Page 1

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

ext m the. shaded area after an O icon.t
5ice for OPEN LOOK. R

‘AM/Presentation

1.2
’WHAT IS THE JAM/Presentation interface?

The JAM/Presentation interface (JAM/Pi) product line provides a layer between the
user and the application that enables JAM to support a variety of textual and graphical
environments. JAM/Pi products include:

® JAM)/Presentation interface for Microsoft Windows (Pi/Windows)

® JAM/Presentation interface for Motif (Pi/Motif)

® JAM/Presentation interface for OPEN LOOK (Pi{/OPEN LOOK)

® JAM/Presentation interface for Graphics (Pi/Graphics)
Presentation interfaces for other environments, such as Macintosh, are in development.
Traditional, character—based JAM, is referred to in this document as “character JAM”.

This document covers the JAM/Presentation interface for three Graphical User Inter-
faces (or GUTI's): Microsoft Windows, Motif and OPEN LOOK. Pi/Graphics is covered
in a separate document. The abbreviation JAM/Pi, when used here, encompasses Pi/
Windows, Pi/Motif and Pi/OPEN LOOK, but not Pi/Graphics.

The JAM/P: layer transforms JAM into a GUI compliant product. JYACC’s phllOSO-
phy is that JAM should be a flexible tool for creating device independent software
applications. Figure 1 illustrates this layered concept.

JAMV/Pi retains JAM functionality but adopts the look and feel of the presentation de-
vice. Preserving the look and feel of the GUI was the overriding concern in the develop-
ment of JAM/P:.

The previous paragraph should not be taken to imply that JAM/Pi applications only
look like GUI applications. In fact, applications developed with JAM/Pi are GUI com-
pliant applications.

1.3

USING JAM/P; EFFECTIVELY

In order to effectively use JAM/PI, you must have an understanding of JAM. JAM
screens are built from JAM objects: fields, groups, menus and display text. JAM ap-

Page 2 JAM/P/Release 1.4 1 December 92

Chapter 1: Introduction

Character JAM

JAM/Pi

2
G

Handles user
interaction and

Terminal
Output

Terminal
Output

Keyboard
. and Mouse
i Input

Figure 1: Schematic models of character JAM and JAM/Pi. User input, termi-
nal output, and screen appearance are handled by the Presentation
interface layer instead of the Screen Manager.

JAM/PiRelease 1.4

1 December 92 Page 3

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

plications are built from JAM screens. The Screen Manager handles processing within
a screen, and the JAM Executive provides interscreen links and data flow control.

JAM/Pi provides a link to the GUI world by converting JAM objects into GUI widgets.
But JAM/Pi provides a higher level interface than that available from most products.
- For example, with JAM/Pi the developer has no need to worry about callbacks for each
‘widget on a screen. The JAM Screen Manager deals with these issues. Similarly, inter-
screen links are easily specified in JAM/Pi, and the developer does not need to define
what happens, for example, when the close button on a screen is pressed by the user.
These events are handled by the JAM Executive, and may be defined on an applica-
tion—-wide basis.

The best way to use this product is to develop screens from a functional viewpoint, and
worry about their appearance as an implementation detail. Don’t take the approach that
you want a certain six widgets on a screen and then go about placing them there. The
best approach is to design screens with JAM objects and JAM interactions in mind.
Once a screen has been created, you can worry about changing the type of widget used
in a particular case. JAM provides a default transformation of each type of JAM object
into a GUI widget, but the developer is free to override the default choices

1.4
OVERVIEW OF FEATURES IN JAM/Pj

141
Portability Across Environments

Applications developed in character JAM can be run without modification under
PifWindows, Pi/Motif or PifOPEN LOOK. JAM screens adopt the look and feel of the
GUI, but JAM functionality remains constant. JAM screen binaries are identical
" among environments. Each environment simply interprets them in its own way. . _ .. .,

In many real world applications the developer will wish to make certain cosmetic modi-
fications to screens in order to take maximum advantage of GUI features. Most of these
modifications are portable back to character JAM, as well as to other Presentation in-
terfaces.

-Certain features in JAM/Pi are extensions to JAM, and are not currently portable back
to character-based environments. These features are implemented so they translate to
parallels in character JAM. For example, menu bars translate to keysets. Planned en-
hancements to character JAM will eliminate many of these limitations.

Page 4 JAM/PiRelease 1.4 1 December 92

Chapter 1: Introduction

1.4.2
Compatibility with Character JAM

From the developer’s point of view, the functionality of JAM/Pi is virtually identical to
character JAM. The Screen Editor, Data Dictionary Editor, and Keyset Editors retain
their functionality, as does Application Mode within the Authoring tool. Navigational
- techniques and mouse behavior differ slightly among interfaces, but conceptually the
JAM authoring tools work as they always have.

From the end—user’s point of view on the other hand, JAM/Pi applications are purely
GUI based.

1.4.3
Support for GUI features

In order to create real GUI applications, JAM/Pi provides support for a wide range of
GUI features.

Transformation of Objects and Text

Each type of object on a JAM screen is transformed into an equivalent GUI object. For
example, in Figures 2 and 3 we see a JAM menu, a data entry field, a checklist group,
and display text in character JAM and in Pi/Motif respectively.

Each JAM window comes up as its own GUI window, with appropriate decorations as
prescribed by the window manager. These windows can be moved, resized, scrolled,
and in some cases, iconified.

Extended Functionality

Another example of GUI feature support is the implementation of menu bars, which are
often the primary tool for user interaction in GUI applications. The keyset hook in char-
acter JAM may be used in JAM/Pi to enable menu bars. Like keysets,"menu bars are
created as external components to an application, and accessed from disk files, li-
braries, or as memory resident ‘files’. This architecture minimizes the steps required to
convert applications from one environment to another. For applications that are already
using keysets, a utility is provided for converting keysets into menu bars.

Figures 4 and 5 compare two applications. In the first, keysets are used to navigate. In
the second, the keysets have been converted into menu bars.

Extended Fonts and Colors

GUTI’s offer a host of extended font and color choices that are unavailable on most char-
acter—based platforms. In order to support these enhancements and maintain portability,

JAM/PiRelease 1.4 1 December 92 Page 5

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

EMPLOYEE BENEFITS

oSS secessoonoasgeaatessos, £33
Bt

401K Plan

TP RTS H

Childcare
Exit

i fCindi_Phonenail

TR L bR HEETS

OPTIONS:

B Principal Only
| Dependents Only
Principal/Dependents

Select a benefit category

Figure 2: Screen in character JAM.

cosmetic screen alterations taking advantage of these extended display options are indi-
cated by special comments in the JPL modules associated with each field and screen.
These comments are called extensions. The following can all be specified as exten-
sions: font, widget size, widget position and alignment, specialized widgets, extended
colors, title bars, bitmaps, border decorations, and graphics. Formatted screens are pro-
vided to aid the developer in entering extensions.

Since extensions are stored in JPL comments, they are portable. In environments such
as character mode, where extensions are unavailable, the comments are simply ignored.

Page 6 JAM/PiRelease 1.4 1 December 92

__Chapter 1:_Introduction

- jxform fali

Edit Options Keys _V_indows Help

[Sel ect a benefit category i

) 3 L

B EMPLOYEE BENEFITS
401K Plan

nsurance

Exit

IWPY0ER| Cindi Phonemail

4 Principal Only
< Dependents Only

Figure 3: Same screen.in Pi/Motif. ,

Application Defaults

Resource files and initialization files provide for customization on a screen-wide and
application—wide basis. These are external to JAM, and therefore may be changed by
the end-user. Resource files determine the display characteristics and user interface be-
havior of an application. Items such as default colors, default fonts, border and shadow
characteristics, and keyboard focus policy can all be included if the GUI supports them.

JAM/PiRelease 1.4 1 December 92 Page 7

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

401K PLAN OPTIONS
Percentage of weekly
gpaycheck contributed : A

{ Money Market _17«

Growth Fund __~
- Income Fund _43~
i Bond Fund _40~.

Total Pct. :pQLYA

pdate ieu Empg
File istory

Figure 4: Character-based screen with keysets

The structure and contents of resource and initialization files are specific to the GUI
being employed.

Extended Library Routines

JAM/Pi also provides extended library routines for functionality specific to GUI’s. For
example, routines are available to modify menu bars at runtime and interact with the
GUI directly. While some of these extensions are not portable among environments,
they provide additional features in situations where portability is not an issue.

Page 8 JAM/PiRelease 1.4 1 December 92

Chapter 1:_Introduction

01K Plan Options

Edit Windows | Employee| Keys
Update Data File
View Employee History

Percentage of weekly
paycheck contributed

Instrument

B Money Market| 17

{1 Growth Fund

| Incorﬁe Fund

B BondFund

Figure 5: PiMotif Screen with menu bars

JAM/PiRelease 1.4 1 December 92 Page 9

Chapter 2: JAM Objects into GU| Widgets

Chapter 2
JAM Objects into GUI Widgets

This chapter examines how JAM screen objects are transformed into GUI widgets un-
der JAM/Pi. An illustration of each widget is provided, along with a brief description
of how the user interacts with it.

2.1

INTRODUCTION

GUI screens are composed of widgets (also called controls in MS Windows). When a
JAM screen is brought up under JAM/Pi, JAM screen objects become widgets. Each
type of JAM object is transformed into a particular type of widget. Each JAM object
has a default transformation, but you may choose to use a different widget than the de-
fault. The table below lists the default transformations using Motif terminology. Names
for all the widgets in the various interfaces are listed in Chapter 7.

JAM Object Default Widget
Display Text Label Widget
Data Entry Field Text Widget
Protected Field Label Widget
Menu . Push Button

Radio Button Group Radio Toggle Buttons

Checklist Group Checklist Toggle Buttons
Border —~ none —
Line Drawings -~ none -

JAM/PjRelease 1.4 1 December 92 Page 11

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

Additional widgets that a developer can specify are listed below. The specifics of how
to create each widget are detailed in Chapters 5 and 6.

® Listbox

Optionmenu (or combo box)

® Multiline text widget
® Multiline button

® Scale widget

® Pixmap

There are three additional widgets used for screen decoration. They are:
® Separator (horizontal or vertical line)
® Frame

® Box

2.2
WIDGET ATTRIBUTES

Before going into the specifics of how JAM objects are transformed into widgets, it is
important to understand where widgets get their attributes from.

2.2.1

Widget Attribute Hierarchy

The design of each widget is determined by the GUI, but various attributes may be set
" by the developer. Certain-attributes, such as foreground-and background colors, are in-.
hereted from JAM. JAM/Pi extensions may be used to override these inhereted attrib- -
utes. Other attributes, such as font, may be set on an application-wide, screen—wide, or
individual widget basis.

JAM/Pi provides a hierarchical system for determining attributes. It goes from GUI
defaults files for application—wide settings, to screen extensions for screen—wide set-
tings, to JAM field attributes and field extensions for widget—specific settings. Figure
6 illustrates the hierarchy that determines which attributes are effective for a widget.
The various ways of setting attributes are summarized below.

Page 12 JAM/PiRelease 1.4 1 December 92

Chapter 2: JAM Objects into GUI Widgets

Field-Wide -

(Field Extensions)
|

@M Field Attributes)
I

Screen—-Wide - (Screen Extensions)

Application— __

Wide

Figure 6: Hierarchy fo

I

@ommand Lln) C]am ini)
C Xdefaults) C win.ini)
L Gam or OLJa)

Motif & OPEN LOOK Windows

r widget attributes. Field extensions override screen

extensions, which override the command line, etc.

222

Application—-Wide Attrlbutes

Application—wide attributes are set in GUI defaults files. These are external to a JAM

application. Their structu

re is determined by the GUIL Note that the end user may edit -

these files, thereby changing the default values. Application—wide attributes may be set
in the following locations:

JAM/?iRelease1.4 1 December 92 Page 13

JAM/Pi for OSF/Motif, Miérosoft Windows and OPEN LOOK

Page 14 JAM/PjRelease 1.4 1 December 92

Chapter 2: JAM Objects into GU! Widgets

plication.

223

Screen—-Wide Attributes

Screen—wide attributes may be set via the:

@ screen extensions
These are used to specify a default background color, foreground color and
font for widgets on the screen. Screen extensions are stored in the screen—
level JPL comments and may entered through special formatted screens ac-
cessed via SPF11. Screen extensions are detailed in Chapters S and 6.

05

JAM/PiRelease 1.4 1 December 92 Page 15

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

224
Widget-Specific Attributes
Widget—specific attributes may be set through the: -

® JAM display attributes window
Here you may specify attributes for mdlvndual fields or groups. Certain set-
tings, such as blinking, may not be implemented in certain interfaces. This
window is accessed via PF4 in the Screen Editor.

® field extensions
Attributes set here override all other settings. Attributes that may be set in-
clude: widget size, font, extended foreground and background colors, in-
cremental positioning, and specialized widgets. Field extensions are stored
in the field—level JPL comments and may be entered through special for-
matted screens accessed via SPF12. For details see Chapters 5 and 6.

Page 16 JAM/PiRelease 1.4 1 December 92

Chapter 2: JAM Obijects into GUI Widgets

2.3
TRANSFORMATION INTO WIDGETS

The following sections detail the transformation of each JAM object into its GUI coun-
terpart.

2.3.1

Display Text and Protected Fields

Regions of display text become label widgets in JAM/Pi. Regions of display text are
not fields, and therefore cannnot have field extensions. They do however have JAM
display attributes, and can inheret other attributes from the screen.

Fields protected from data entry and tabbing also become label widgets. They have an
advantage over display text in that they can have field extensions, making them more
flexible. For example, if you wish to change the font of a single region of display text,
convert it into a protected field and change the font with a field extension. Using pro-
tected fields also allows label widgets to be right justified. Right justified label widgets
are discussed further in section 3.2.1, in relation to positioning.

Figure 7 illustrates how label widgets appear in Motif and Windows.

(2] Label widgets |

4 Displey Textand M | .

H Protected Fields |f I Diselay Text and ||| Display Textand
H {ecome fi | Protected Fields i || Pmotected Figkds

, 1 1 ! || become

Label Widgets ; i /I Label widgets

Figure 7: Label widgets in PiMotif, Pi/lWindows and P/OPEN LOOK.

23.2

Data Entry Fields

Data entry fields become text widgets in JAM/Pi. The look and feel of the text widget
is determined by the GUI, but the JAM field edits control its behavior.

JAM/PiRelease 1.4 1 December 92 Page 17

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

S A AN OO RO

A Text Widgets nu
Widget
Widget 2:

FE Text Widgets h

Widget 1: wwwwwww_T_'

Widget 2: (iliiiiliiitiiii

Figure 8: Text widgets in PiMotif, P/Windows and P/OPEN LOOK.

2.3.3
Arrays

By defauit, each array element is a separate text widget. Field extensions provide ways
to change arrays into multiline text widgets (for data entry fields) or list boxes (for
selection fields). There is also a field extension to assure that individual array elements
are spaced evenly on the screen. Refer to Chapters 5 and 6 for details.

Arrays protected from data entry and tabbing become label widgets.

An array may be scrolled by dragging the mouse cursor beyond the edge of the array in
the direction you wish to scroll, or by using the keyboard or scrolling indicators (if pres-
ent). List boxes and multiline text widgets may be scrolled and shifted from optional
scroll bars.

FE Arrays b
: Multiline =
! L———: text widget First Multiline
’ lSecond “for e..nte:ing Second text widget @
p | conunuous .| for entering “H.
: |Thixd l linesof -~ ‘Third * - | continuous -~ ‘W
Fourth lines of é
Fifth

Figure 9: An array and multiline text widget in Pi/Motif, PiilWindows and PJ#/
OPEN LOOK.

Page 18 JAM/PiReleass 1.4 1 -December 92

Chapter 2: JAM Objects into GUI Widgets

2.3.4
Menus

Menu fields appear as push buttons in JAM/Pi. Push buttons perform an action when
activated with the mouse or keyboard. Label text is centered within the push button
widget, and drop shadows make the widget appear to protrude from the screen. -

As in character JAM, menu fields must have the menu edit and be protected from data
entry and tabbing in order to look and act as menus in both data entry and menu modes.

& Menu |

Benefits | (Benefits)

: =B BRI Personnel
Personnel W E

Newsletter | [Newseter | (Newsletter)

Recruiting Recriting (Recruitingj
Sigs OF |Cswor]| | (Senort)

Figure 10: A set of menu fields in Pi/Motif, P/Windows and P/OPEN LOOK.
The “Personnel” option is selected.

JAM/PiRelease 1.4 1 December 92 Page 19

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

Menu bars are also available in JAM/Pi. Refer to Chapter 8.

2.3.5
Groups

Groups become sets of toggle button widgets in JAM/Pi. Radio buttons have one style
and checklists another. The details are set by the GUIL The checkbox on a toggle button
is filled in when the entry is selected, and empty when it is unselected.

A group can be converted into a list box widget via the field extensions. List boxes are
appropriate for groups since groups are selection criteria, rather than data entry fields.

Page 20 JAM/PiRelease 1.4 1 December 92

Chapter 2: JAM Obijects into GUI Widgets

& Choice1 £ Choice 1
{ Choice 2 ME Choice 2
@ Choice3 W Choice3 Loroice8

QO choice1 [Choice 1
O cChoice 2 X Choice 2
' ® Choice 3 [X Choice 3

Choice 7 &3

Choice § [¥f

F—'_—_- 4——_q
I:i Groups
« H -
O choice 1 O choice 1 | choice 6 =
O choice 2 W choice 2
M choice 3 W Choice 3 Choice 8 |3

Figure 11: A radio button, checklist, and list box in Pi/Motif, PiiWindows and
Pi/OPEN LOOK.

JAM/PiRelease 1.4 1 December 92 Page 21

Chapter 3: Arranging Screens in JAM/P/

Chapter 3

Arranging Screens in JAM/Pi

When JAM screens are displayed in JAM/Pi, JAM objects are transformed into wid-
gets. The size of a widget may be different than the size of the JAM object that it re-
places. In fact, most widgets are slightly larger than their character based counterparts.

- ‘In order to convert JAM screens into GUI screens without enlarging them excessively,

-

JAM/Pi uses a positioning algorithm that attempts to fit widgets onto screens with as
little disturbance as possible to the relative alignment of the objects.

3.1
OVERVIEW OF POSITIONING

Each JAM screen has a grid of rectangular cells whose default size is determined by the
font in use. The display text and fields that are the basic building blocks of JAM
screens are created in draw mode by typing text or underscores. Each character or un-
derscore in character JAM occupies one grid cell, and every grid cell is the same size.
This is true in character JAM and in draw mode of JAM/Pi. '

In test and application modes of JAM/Pi though, fields and display text are converted
into widgets. For example, data entry fields become text widgets; menu fields become

* push button-widgets; and display text and protected fields become label widgets. GUI

widgets may or may not fit into the cells that they were created in, in draw mode.

When a realized widget is larger than the cells it was drawn in, JAM/Pi stretches some
of the rows or columns of the grid to accommodate the widget. This means that grid
cells in test and application modes of JAM/Pi are not all the same size.

The grid in JAM/Pi is elastic; its size depends upon the objects on the screen. JAM/P:
stretches the grid only as much as is necessary. In fact, if whitespace is available to the
right of a left justified widget or to the left of a right justified widget, JAM/P: uses up
that space before it stretches the grid. When the grid stretches, cells don’t stretch indi-

JAM/PiRelease 1.4 1 December 92 Page 23

. ._~":-,:.*:

(AN

JAM/P; for OSF/Molif, Microsoft Windows and OPEN LOOK

vidually. Rather, entire rows or columns of cells stretch, assuring that other objects on
the screen remain properly aligned. Figure 12 illustrates the elastic grid.

A|B|C

Figure 12: A schematic illustrating the elastic grid. The second and third col-
umns have stretched, as have the first and third rows.

Although the grid stretches to accommodate large widgets, it does not shrink to accom-
modate small widgets. When a widget is smaller than the cells that it was drawn in, it
anchors to a particular cell, and occupies only part of the available space. A widget an-
chors based on its justification: right justified widgets anchor by default on their right;
left justified widgets anchor by default on their left.

For example, the widget in row 3 of Figure 12 is left justified. It anchors on its left.

The positioning algorithm is designed to allow maximum portability between character
mode and GUIs. It maintains widget alignment even when the font or size of a widget
changes. The following rule of thumb applies to positioning:

® Left justified fields that begin in the same column result in left aligned
widgets.

® Right justified fields that end in the same column result in right
aligned widgets.

Figures 13 and 14 compare a screen in draw mode and test mode of Pi/Motif.

Note that JAM objects appear as widgets only in test and application modes, not in
draw mode.

W

Page 24 JAM/PiRelease 1.4 1 December 92

- Chapter 3: Arranging Screens in JAM/Pi

Employee Information Screen

ID#

SSN
Salary

Exemptions

Figure 13: A JAM screen in draw mode of Pi/Motif.

Rddress

City Salary

State i Exemptions

Figure 14: The same JAM screen in test mode. Draw mode looks like
character JAM, while test mode looks like a GUI screen.

Notice how the Name, Address and City text widgets in Figure 14 stretch the grid hori-
zontally, pushing the other objects on the screen to the right. Vertically, the last four
rows stretch to accommodate the text widgets in them. As the grid stretches, the GUI
window containing the JAM screen expands to accommodate it.

JAM/PjRelease 1.4 1 December 92 Page 25

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

3.2

ANCHORING

In Figure 14, the ID# and SSN fields align on their left side in test mode, because they
are left justified fields. The Salary and Exemptions fields align instead on their right
side, because they are right justified. The alignment differences are due to where the
widgets are anchored. Anchoring comes into play when a widget is not the same size as
the cells aliotted to it.

3.2.1

Anchoring by Field Justification

Each widget is anchored to a specific cell in the grid. The default anchor point of a
widget is based on its justification. Right justified widgets anchor by defauit on their
right: to the last (or rightmost) cell in which they are drawn. All other widgets anchor
by default on their left: to the first (or leftmost) cell in which they are drawn. When the
grid expands, widgets maintain their anchor points, and move along with the expanded
grid. Widgets don’t expand to fit the grid, rather the grid expands, if necessary, to fit the
widgets.

Using field justification to determine alignment ensures compatibility with character
JAM. For example, a column of numbers in right justified fields that line up on their
right in character JAM will also line up on their right in JAM/Pi. A set of left justified
data entry fields that start in the same column in JAM will maintain their left alignment
in JAM/Pi, regardless of how the grid expands.

Alignment follows justification by default. If you wish to change the anchor point of a
widget, use the halign or valign field extensions. These are described below.

3.22
Horizontal Anchoring: the halign Field. - =
Extension

The default positioning behavior specifies the anchor points of objects based on their
field justification. The halign field extension (pronounced “aitch — align”) overrides
the default anchoring. Field extensions are documented in Chapters 5 and 6.

halign takes one argument, which is a number between zero and one. An halign of
zero means that the left edge of the widget should anchor in its first (or leftmost) cell.

Page 26 JAM/PiRelease 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/P/

Zero is the default halign for left justified fields. An halign of one means that the
right edge of the widget should anchor in its last (or rightmost) cell. This is the default
for right justified fields. An halign between zero and one means that the widget
should anchor proportionally between its first and last cells. Thus, an halign of .5
means that the center of the widget should anchor in the center of the available cells.

The schematic diagram below represents a screen containing three text widgets of
length 3 which span columns.-that have been stretched by a large label widget.

i 2 3 4 5 6 7 8 9 10 11 12 13

Figure 15: A screen containing a large heading and three data entry fields of
length 3. The fields start in columns 2, 6 and 10, respectively. The halign of
each field is shown as the field’s contents.

In Figure 15, the large heading that runs the length of the screen stretches the grid. Each
widget below is thus smaller than the celis available for it (3 columns worth of cells).
halign determines where within its allotted cells a widget anchors.

Note that halign only has an effect when a widget is larger or smaller than its avail-
able cells.

3.2.3
Vertical Anchoring: the valign Field
Extension

By default, all objects align vertically in the center of their row or rows. The valign
field extension (pronounced ‘“Vee — align™) specifies some other alignment. Like hal-
ign, valign takes one argument, a number between zero and one. Zero indicates that
the top of the widget should align with the top of the top cell. One indicates that the
bottom of the widget should align with the bottom of the bottom cell. Decimal values

JAM/PiRelease 1.4 1 December 92 Page 27

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

in between indicate proportional alignment between the top and bottom cells. The de-
fault valign for all objects is . 5, indicating center alignment.

3.24

Anchoring Display Text

Regions of display text become left justified label widgets in JAM/Pi. Left justified
widgets have a default halign of 0, and thus anchor on their left. Regions of display
text are not fields, and therefore cannot be right justified or have field extensions. To
change the alignment of a region of display text, you must convert the text into a pro-
tected field. Fields protected from data entry and tabbing also become label widgets in
JAM/Pi, but they have an advantage over display text in that they can be right justified
and have field extensions. This means that their alignment can be adjusted. It also al-
lows a label widget to have a font other than the default screen font.

A case where you might wish to anchor text on the right is in a field label. Field labels
should retain their relationship to a field, regardless of the font used or how the grid
stretches. By converting field labels from display text into right justified, protected
fields, you can assure that they will always be right next to their associated field. This
is illustrated in Figure 16 below.

ank No., Acct No, Bank No. Acct No.

Last?

Last:

First: First:

Initial:

Initials

Figure 16: The screen on the left uses display text for the First, Last and Initial
iabels. The screen on the right uses right justified, protected fields.

Page 28 JAM/PiRelease 1.4 1 December 92

Chapter 3:_Arranging Screens in JAM/P/

The Bank No. field in Figure 16 stretches the grid. The first eight columns, which con-
tain the field labels, stretch. In the screen on the left, the labels anchor in their starting
cell, and consequently are no longer next to the fields that they correspond with. In
-addition, the colons at the end of each label don’t line up. In the screen on the right, the
labels have been converted into right justified, protected fields. They still look like dis-
play text, but they now anchor on the right in their ending cell, next to their correspond-
ing fields.

3.3

WHITESPACE

If a widget does not horizontally fit in the cells it was drawn in, it expands into any
unused celis (whitespace) around it before stretching the grid. Since a widget with an
halign of 0 anchors on its left side, it can only expand into empty cells on its right.
Similarly, a widget with an halign of 1 anchors on its right, and thus can only expand
to'its left.

Available whitespace is used up in proportion to halign. A widget with an halign
of . 5 fills whitespace evenly on both sides. Expansion into whitespace based on hal-
ign assures that by default, left justified fields align on their left and right justified
fields align on their right.

12345678901234567 12343678301234567

Left Right

Left Right

Figure 17: A screen with two fields of length six, shown in draw mode (left)
and test mode (right). Left justified widgets expand into whitespace on their
right. Right justified widgets expand into whitespace on their left.

Figure 17 illustrates how widgets appropriate whitespace. The screen contains two data
entry fields of length six. The first field is left justified; it begins in column 1 and ends
in column 6. The widget containing the field expands into the unoccupied space in col-
umns 7 and 8. The second field is right justified. This field begins in column 12 and
ends in column 17. Its widget expands leftward into columns 10 and 11.

JAM/PiRelease 1.4 1 December 92 Page 29

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

The screen in Figure 18 below is the same as in Figure 17, except that there is a region
of display text between the two data entry fields. Since there is no longer whitespace
available, columns 1 —6 and 12 — 17 stretch.

'1234567890123'_4 967

Left iText.| Right

Figure 18: A screen with two fields of length six, and a region of display text.
Since there is no room for the widgets to expand into, the grid stretches to
accommodate them.

The numbers in individual protected fields at the top of the screen in Figure 18 indicate
how the columns stretch. Notice that the extra space required for a widget is amortized
evenly over the entire length of the widget.

3.4
PROPORTIONAL VS. FIXED WIDTH
FONTS

The size of the grid in JAM/Pi is based on the average character width of the default
screen font. There are two categories of fonts, proportional fonts and fixed width. fonts.

In a fixed width font (like the Courier. you are reading now) each
character occupies the same amount-of horizontal -space.

~ In a proportional font (like the Times -Roman-you:are reading now).wider .characters,
like “w”, and capital letters occupy more space than narrow characters like “i” or “I”.

In a fixed width font, the average character width is the width of each character. In a
proportional font, the average character width is the mean width of all the characters in
the font. The average character width of a proportional font is usually less than that of
a comparably sized fixed width font, so the grid in a proportional font is smaller.

If a fixed width font is used throughout a screen, then text occupies the same amount of
space as the cells available for it, provided that the grid has not stretched. This may be

Page 30 " JAM/PiRelease 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

desirable for applications converted from character JAM, since it tends to minimize the
need to adjust alignment.

On the other hand, since proportional fonts take up less room than fixed width fonts,
screen space can be economized without shrinking the font size by using a proportional
font. Proportional fonts also enhance readability in large blocks of text.

EMPLOYEE TIME OFF

Name?

Days Availablet

sick personal vacation

roportionals:

ENMPLOYEE TIME CFF

Name:

Days Awvallable:

sick vacaton

Figure 19: The same JAM screen in a 12 point fixed width font (top) and a
12 point proportional font (bottom).

JAM/PiRelease 1.4 1 December 92 Page 31

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

The screens in Figure 19 demonstrate the size and alignment differences between pro-
portional and fixed fonts. Notice that the proportional font makes for a smaller screen,
but the spacing between items is inconsistent. For example, the horizontal white space
between the first two fields at the bottom of the proportional screen is smaller than the
white space between the second and third fields. These spaces can be adjusted with. the
hoff and vof£ £ field extensions (see section 3.6.3).

-~Screens may use-a combination of proportional and fixed fonts. There is a default font
for the application, and there may also be a default screen font and a font for an individ-
ual widget. Since the grid stretches but does not shrink, it is usually best to define the
smallest font that you will use on a screen to be the default screen font. This strategy
tends to make screens more compact by eliminating unnecessary whitespace.

3.5

WIDGET SIZE

The default size of a widget is based on the size of the field or region of display text, but
is also influenced by other factors, including the font of the widget, and the border or
other decorations around the widget. The font used in a widget is the default screen
font, unless another font is specified as a field extension. The border and decorations
around a widget depend upon the type of widget. The following sizing rule applies:

width = (Avg_char_size_of_font x JAM_length) + Borders

Height = Max_char_height_of_font + Borders
Since most widgets have a border, they are often wider than the grid cells allotted to
them, and tend to stretch the grid horizontally unless there is at least one blank .space

available for them to expand into. Since vertical whitespace is not acquired by widgets,
most widgets stretch the grid vertically as well.

If the text entered into a widget is wider than the widget, then the GUI shifts the text.
For display—type widgets that cannot shift, if the above sizing rule does not leave
- enough room for the initial data, then the following rule is used instead:

wWidth = Total_length_of_text + borders
Height = Max_char_height_of_font + borders

The default size of a widget may be overridden via the height and width field ex-
tensions. For details, refer to Chapters 5 and 6.

]
M
o

fdecora

Page 32 JAM/PiRelease 1.4 1 December 92 -

Chapter 3: Arranging Screens in JAM/P{

3.6
FINE TUNING SCREEN ARRANGEMENT

Several additional field extensions are available for fine tuning the arrangement of
JAM/Pi screens. These are space, for equally spacing array elements regardless of
grid stretching; noadj, for turning off adjustment; and hof f and vof £, for moving a
widget horizontally and vertically.

3.6.1
The space Field Extension

Array elements are created as separate text widgets by default. These widgets are sub-
ject to the elastic grid. This means that there may be differences in the amount of space
between the elements of an array, depending on how the grid has stretched. The space
field extension guarantees that each element of an array has the same space between
itself and the next element. The extension takes one argument, namely the space be-
tween each element.

For calculating its effect on the elastic grid, the total height of an equally spaced verti-
cal array is the height of each element plus the space between elements. The row height
of each element is then the total height of the array divided by the number of rows it
occupies. The same is true for the total width and column width of a horizontal array.
space is detailed in Chapters 5 and 6. An example screen is shown in Figure 20.

3.6.2
The noad;j Field Extension

To override the elastic grid, use the noadj (called noadjust) field extension. Noadjust
specifies that no grid stretching should be performed to account for a particular widget.
Noadjust should be used with care, as it can cause widgets to overlap.

noadj takes a single string argument, either the word rows or the word columns.
noadj (rows) turns off vertical grid stretching for the widget. noadj (columns)
turns off horizontal grid stretching.

noadj (rows) is particularly useful to turn off vertical grid adjustment for very large
widgets that have ample whitespace above or below them. It prevents a widget from
upsetting the spacing between other objects on the screen and insures smooth screen
scrolling for very large objects. noadj (rows) is often used in conjunction with val-~
ign, as shown in Figure 21.

JAM/P/Release 1.4 1 December 92 Page 33

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

Figure 20: Two screens with a four element array and a radio button. The
array is double spaced. The second group item in the radio button falls in the
first blank row of the array. Its widget stretches this row. In the left hand
screen, the result is an unequally spaced array. The array in the right hand
screen has the space field extension, causing each element of the array to
have the same space between itself and its neighbor. In this case, 10 pixels.

In the left screen of Figure 21, the BOOK push button stretches its row, causing uneven
spacing between the Class, Rate and Avail. fields. In the right screen, BOOK has a ver-
tical noadjust field extension that prevents it from stretching the grid. It also has a val-
ign of 0, anchoring it at the top, rather than at the center of its row. Withouta valign
of 0, the push button would overlap the screen title bar.

Noadjust is less useful horizontally, since JAM/Pi uses up available horizontal white-
- space+before-stretching “the grid. Since noadj (columns) disallows grid.stretching.;
for a widget, it almost always results in widgets overlapping.

3.6.3

The hoff and vof f Field Extensions

To adjust a widget’s position on the screen, use the hof f and vof £ (for horizontal and
vertical offset) field extensions. hof £ specifies the horizontal offset of a widget from
its default placement. voff specifies the vertical offset. hoff and voff are applied

Page 34 JAM/PiRelease 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

Reservation Screen Reservation Screen

Figure 21: A screen where the noadj (rows) field extension is used to pre-
vent a large button from stretching its row.

after any alignment or noadjust extensions. Therefore a widget with an hoff or voff
still affects the grid as if it were in its default location, even though it is drawn else-
where. These extensions should be used with care. They can cause widgets to overlap,
and excessive use makes applications hard to maintain.

hoff and voff take a single argument, namely, a value indicating the amount to
move. A signed value indicates movement relative to the widget’s default position. An
unsigned value indicates movement relative to the left side or top of the screen. The
default unit of measurement is pixels. Alternatives such as inches, millimeters, charac-
ters, and grid units may also be specified.

For more information on space, noadj, hof £, and vof £, refer to Chapters 5 and 6.

3.7

REFRESHING THE SCREEN

JAM calculates the positioning of objects only when a screen is first displayed. If a
widget changes size or type while a screen is displayed, it may be necessary to recalcu-
late the relative positioning of objects. This may be done via the sm_adjust_area
library routine. For example, if the protections on a field change, a label widget can
become a text widget. By not recalculating the screen, JAM avoids costly processing if
the change is only temporary. Refer to Chapter 12 for details on sm_adjust_area

JAM/PiRelease 1.4 1 December 92 Page 35

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

3.8
SEPARATOR ROWS AND COLUMNS

JAM/Pi provides screen extensions that create GUI lines and boxes to enhance screen
appearance. Lines and box edges take up space, but the existence of a line or box should
" not affect the alignment of screen objects. Therefore, lines and-boxes are not drawn
within the regular grid cells. Instead, they are drawn in special separator rows and sepa-
rator columns that appear between the rows and columns of the grid.

Separator rows and columns are created just wide enough to accommodate their con-
tents, the edges of boxes and lines. Figure 22 illustrates how separator rows and col-
umns relate to the elastic grid.

2
3 H
separator ~\:
column -

Figure 22: Screen containing two lines and a box. Lines and boxes are

drawn in separator rows and columns that are just wide encugh to contain
the objects and their margins.

Page 36 JAM/PiRelease 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pj

3.8.1
Separators and the Elastic Grid

The positioning algorithm considers lines and box edges to be non whitespace when
calculating whether there is room for widgets to expand. Widgets can overlap lines or
box edges, but only ‘if they cross the row or column boundary containing the edge in
draw mode. If the widget does not cross the boundary in draw mode, then the grid ex-
pands to prevent the widget from crossing the line or box edge. This strategy insures,
for example, that a box intended to surround a set of fields surrounds those fields re-
gardless of how large the widgets containing the fields become.

For information on how to create lines and boxes refer to Chapters 5 and 6.

JAM/P/Release 1.4 1 December 92 Page 37

Chapter 4: JAM Behavior in a GU! Environment

Chapter 4
JAM Behavior in a GUI
Environment

This chapter examines how the user interface in JAM/Pi behaves, and describes some
of the screen level features available in JAM/P:.

4.1

JAM SCREENS

JAM screens each come up in their own GUI window. By default, the GUI window has
a border and is fully decorated with resize and move handles, a minimize and maximize
button, and a GUI window menu button. Scroll bars appear in the border only if they are
necessary—ie., when the GUI window is too small to contain the JAM screen.

Screen extensions can be used to control various aspects of screen appearance and be-

havior. These include suppressing certain border decorations, starting the window as an
icon, and specifying the title bar text.

4.1.1
Title Bars

-The title bar on each screen contains the name of the file that the screen binary is stored
in by default. For a title other than the file name, use the title screen extension. You
may also suppress the title bar altogether with the notitle screen extension. See
Chapters 5 and 6 for more on screen extensions.

% In PilMoiif id

JAM/PiRelease 1.4 1 December 92 Page 39

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

41.2
Multiple Document Interface in MS Windows

Page 40 JAM/PiRelease 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

File Options Window Help

[Benefts

Benefits

3elect an option

A AT A A VAL AR A VAN A A AN AT AR AR A WARAAAA A AN S AR AAAN YRS SRS VAN

Figure 23: PiWindows runs in an MDI frame with a single menu bar at the top
and a single status line at the bottom. JAM screens are constrained to move
only within the frame.

10

4.1.3
Focus

Just as in character JAM, control flow is specified by the developer, using any combi-
nation of forms, windows and sibling windows. Although several screens may appear
on the display at any given time, only the screen at the top of the window stack or one
of its siblings may be made active.

A user may select a sibling window with a mouse click, or choose it by name from the
optional Window heading on the menu bar. The names of all open screens appear under
this heading, but only those that are siblings of the active screen may be selected.

JAM/PiRelease 1.4 1 December 92 Page 41

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

An option in the resource or initialization file greys out text on inactive screens. Refer
to Chapter 7.

Certain aspects of focus behavior are dictated by the GUI. These are detailed below.

41.4

JAM Borders

JAM borders, specified in the Screen Attributes window, are ignored in JAM/Pi since
the interface provides a border for each GUI window. The appearance of the GUI win-
dow border is controlled by the screen extensions.

Page 42 JAM/PjRelease 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

41.5
lconification

- As a general rule, if you wish.the user to iconify screens in your application, use sibling
windows. The specifics of when the user may iconify screens are GUI dependent:

Preventing Iconification

The nominimize screen extension removes the minimize button and the minimize
entry from the GUI window menu.

JAM/PiRelease 1.4 1 December 92 Page 43

JAM/Pi for OQSF/Motif, Microsoft Windows and OPEN LOOK

4.1.6
Toggling Between Menu Mode and Data Entry
Mode

JAM/Pi allows the user to switch between menu mode and data entry mode on mixed
. use screens simply by clicking the mouse. Clicking on a push button toggles JAM into
menu mode before processing the selection. Clicking on a text widget toggles JAM
into data entry mode. This makes it very convenient to incorporate push buttons into
your data entry screens. This behavior has been incorporated into character JAM.

4.2

ERROR AND STATUS MESSAGES

In JAM/Pi, status messages appear on the status line and messages requiring acknowl-
edgement appear in dialog boxes. A dialog box is an application modal window: a user
must deal with it before doing anything else in the application. The table below indi-
cates where each type of message appears. Figure 24 illustrates the various dialogs.

Mode in JPL Equivalent C Function Message Location

setbkstat sm_setbkstat status line

d_msg sm_d_msg_line status line

emsg sm_emsg dialog box

err_reset sm_err_reset dialog box

qui_msg sm_qui_msg dialog box

quiet - . |sm_quiet_err dialog box

query Sm_query_msg “OK / Cancel” or “Yes/No”
dialog box.

Page 44 JAM/PiReleass 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

Query Message

Figure 24: A Motif OK/Cancel dialog (left) and a Windows OK dialog (right).

To acknowledge an OK dialog box, click on the OK button or press the space bar (or

- other ER_ACK_KEY as specified in the setup file). In an “OK / Cancel” dialog box,
click on either button or press SM_YES or SM_NO. The OK button returns SM_YES and
the Cancel button returns SM_NO.

W

JAM/PiRelease 1.4 1 December 92 Page 45

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

4.2.1

Dialog Box Icons

A dialog box may have one of several icons on it. Specify. the icon by prefacing the
message with $T. The character immediately following the $T specifies the icon. The
table below illustrates the icons.

Character Meaning Motif Icon Windows Icon
e Error @ Error Error
. . “ - -
i Information 1 Information Information
t Wait ~ Not available —
w Warning Warning

If there is no %T in the message string, then no icon appears. In OK/Cancel or Yes/No

dialogs, a question mark icon appears by default. JAM/Pi cannot change this icon. -

W

Page 46

JAM/P/Release 1.4

1 December 92

Chapter 4: JAM Behavior in a GUI Environment

4.2.2
- Location of the Status Line

Status Line Keytops

Status line keytops work as they do in character JAM. For a more GUI compliant navi-
gation tool, you may wish to use menu bars instead of keytops. See Chapter 8.

Keytop Functions in the Authoring Tool

Functions that appear on the status line in the authoring tool in character JAM appear
in the menu bar or as keysets (depending upon which is enabled) in JAM/P:.

4.3

SHIFTING AND SCROLLING

JAM’s user interface exhibits certain shifting and scrolling behavior. In addition, GUIs
have their own shifting and scrolling behavior. This section explains how JAM/Pi rec-
onciles both these behaviors.

JAM/PiRelease 1.4 1 December 92 Page 47

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

4.3.1

Shifting Fields and Propoftional Fonts

. In JAM/Pi, the distinction between shifting. and non—shifting-fields' becomes clouded,
particularly when proportional fonts are used.

- In character JAM, a field that has a maximum shifting length that is greater than its
on-screen length is defined to be a shifting field. When the number of on—screen char-
acters is reached, the field shifts to accommodate additional data, up to the shifting
length.

In JAM/Pi, the length of the actual data determines whether a widget shifts. Since the
length of a text widget is determined by the average character size of the font, it is pos-
sible that a non—shifting field (in the JAM sense) may actually shift, if it happens to
contain wide characters in a proportional font. It is also possible that a shifting field
does not shift, even though it is full, because it happens to contain narrow characters.

These two cases are illustrated in Figure 25. Widget 1 is a “non—shifting” field of length
ten. It shifts to accommodate the ten “W”’s inside it. Widget 2 is a “shifting” field of
length ten with a maximum shifting length of fifteen. It contains fifteen “i’’s, but still
has space left over, and therefore does not need to shift. Widget 3 is a field of length ten.
Because it uses a fixed width font, it is sized to contain exactly ten characters regardless
of which characters they are.

| widget 1. W WW
Widget 2

1111111111

Figure 25: Text widgets in PiMotif and PiWindows.

Page 48 JAM/PiRelease 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

432
‘User Interface to Shifting and Scrolling

A field may be shifted and scrolled in several ways. With the mouse, a user may shift or
scroll a field by dragging the mouse cursor beyond the edge of the widget in the desired
direction. If shifting or scrolling indicators are active, the user may click on these to
shift or scroll a field. The following JAM logical keys shift fields via the keyboard:
LSHF, RSHF, LARR and RARR. The following JAM logical keys scroll fields via the
keyboard: SPGU, SPGD, UARR, DARR and NL.

Shifting or scrolling fields in multiline text widgets or list boxes may be shifted or
scrolled via optional scroll bars.

433
Shifting and Scrolling Indicators

JAM scrolling indicators appear whenever an array may be scrolled. JAM shifting in-
dicators appear only when a field requires shifting from JAM’s perspective—ie., when
there are more characters in the field than the field’s on—screen length.

Turning Off JAM Shift/Scroll Indicators

In JAM/Pi, you may wish to turn the JAM shifting and scrolling indicators off, as they
don’t conform to GUI style guides and may confuse end users. Use the IND_OPTIONS
keyword in the Setup File to select the level of shift/scroll indication that you wish.
There are four possible settings for this keyword, as described below:

® IND_NONE No indicators

® IND_SHIFT Shift indicators only

@ IND_SCROLL Scroll indicators only

@ IND_BOTH Shift and scroll indicators

The setup file is fully documented in the JAM Configuration Guide. Note that the
value of IND_OPTIONS may also be changed at runtime, via the sm_option library
routine.

W

JAM/PiRelease 1.4 1 December 92 Page 49

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

Changing the Characters Used as Indicators

If you choose to use JAM shifting and scrolling indicators, you may wish change the
characters that represent them. Depending on the character set of the font you are using,
the default values may or may not appear to your liking. To change the shift/scroll indi-
cator characters, you must alter the Video File. The ARROWS keyword controls these
characters. Refer to the Video File chapter of the JAM Configuration Guide for details.

4.4

CUTTING, COPYING & PASTING TEXT

Within a text widget, the user may take advantage of the text cut, copy and paste fea-
tures offered by the GUI These features provide access to the clipboard maintained by
the GUI, allowing inter—application text manipulation. For example, you can copy text
from a JAM application and paste it into a word processor that also supports the GUI
clipboard. Only text in text widgets may be manipulated in this way.

Wi

Page 50 JAM/PjRelease 1.4 1 December 92

Chapter 4. JAM Behavior in a GUI Environment

When pasting text into a widget, JAM enforces the field’s character edits. JAM does
not overflow the text into the next field if there is more text in the paste buffer than fits
in the designated field. Overflow text is truncated.

When an area of text is selected, typing from the keyboard deletes the selected text. The
first character typed replaces the highlighted text; subsequent characters are inserted in
or overwrite the line, depending on whether you are in insert or overstrike mode.

Text that is not in a text widget cannot be edited via the GUI-provided cut and paste,
although it can be manipulated via the JAM select mode feature in the screen editor.
Select mode includes a clipboard for convenient cutting and pasting.

4.5

SOFT KEYS

Soft keys work as they do in character JAM. Soft key labels are converted into button
widgets which can be clicked on with the mouse. Just as in character JAM, you must
make the appropriate entries in the ma in routine (jmain or jxmain) and in the video
file to activate soft keys. Refer to the JAM Author'’s Guide or Configuration Guide for
more information. Soft keys should not be implemented using the “simulated” keyword

JAM/PiRelease 1.4 1 December 92 Page 51

JAM/P for OSF/Motif, Microsoft Windows and OPEN LOOK

in the video file. This keyword is reserved for machines that don’t provide support for
either soft keys or push buttons.

W

451
Location of Soft Keys

45.2
Soft Keys vs. Menu Bars

Soft keys and menu bars are mutually exclusive, because they share the same program-
matic hooks. The developer must choose whether to use one or the other. The selection
of soft keys versus menu bars is made in the main routine, either jmain.c or
jxmain.c, by initializing either soft key support or menu bar support. If an applica-
tion is to use keysets in character JAM and menu bars in JAM/Pi, then the main rou-
tine should call the soft key initialization routine before it calls the menu bar initializa-
tion routine. The second llbrary call will override the first in JAM/Pi, but will be
ignored in character JAM.

If you are using menu bars on some platforms and keysets on others, you may wish to
use libraries to store the keyset and menu bar files. This strategy is explained in section
8.9.

The kset2mnu Utility

The kset2mnu utility converts keysets into menu bars. This is useful for porting char-
acter JAM applications developed with soft keys into JAM/Pi applications that use
menu bars. For an explanation of how to implement menu bars and convert keysets into
menus, refer to section 8.9. For a description of the kset 2mnu utility, see section 12.2.

Page 52 JAM/PiRelease 1.4 1 December 92

Chapter 5: Entering Screen and Field Extensions

Chapter 5
Entering Screen and Field
Extensions

Field and screen extensions provide access to the multitude of features available under
GUTI’s. Here the developer may specify fonts, colors, window decorations, positioning,
and specialized widgets. This chapter discusses how to enter screen and field exten-
sions into the formatted screens provided by JAM/Pi. Chapter 6 is a reference for the
extensions.

5.1

INTRODUCTION

Screen and field extensions are stored in the JPL module comments associated with
screens and fields. Extensions may be entered directly into the JPL module, or they may
be entered into special screens provided with JAM/Pi. Entering extensions into the for-
matted screens is more convenient than entering them directly into the JPL comments.

® The SPF11 key opens the screen extensions window. The scope of a
screen extension is the current screen.

® The SPF12 key opens the field extensions window. The scope of a
field extension is the current field.

When either of these screens is opened, the extensions stored in the JPL comments are
read, and the screen is filled in with any relevant data. When the screen is closed with
the transmit key or OK button, changes to the extensions are written back into the JPL
comments.

For field extensions, any changes made to a widget type that are inconsistent with the
edits on the underlying JAM field cause the JAM field edits to be updated when the
extensions screen closes.

JAM/PiRelease 1.4 1 December 92 , Page 53

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

This chapter describes the formatted screens, and briefly discusses each extension.
Chapter 6 is a reference chapter for screen and field extensions, with a man page for
each extension. Refer to Chapter 6 for any details not covered in this chapter.

The values entered as arguments to the various extensions may be colon expanded vari-
ables. This is discussed in section 6.2.1.

NOTE: The name of each extension as it appears in the JPL is noted alongside each
entry in this chapter. This way it may be easily referenced in Chapter 6.

5.2
THE SCREEN EXTENSIONS WINDOW

To open the screen extensions window, press SPF11. The window that appears is shown
in Figure 26. The following options are available:

@ title? (title)
Select yes or no. If you select no, the screen name (with the extension
stripped off) is used as the title. If you select yes, a data entry field appears
for you to fill in with the title text. For a blank title, leave this data entry
field blank.

@ icon (icon)
Enter the name of the icon to use when this screen is minimized. Specify
the full path if the icon is not on the icon search path used by the GUIL If
no entry is made, then the screen cannot be iconified. If the specified icon
is not found, the default icon is used.

® font (font) :
Enter the name of the default screen font: This font is used for display text
and widgets that don’t have a font of their own. The font name may be either
a GUI font specification or a GUI independent font alias. Press the JAM
HELP key, or choose Help from the menu bar to bring up an item selection
screen containing a list of font aliases defined in. the resource file. Select
a font alias from this list or choose “custom fonts” to bring up a font selec-
" tion screen to search for a GUI dependent font. See Figure 27.

® foreground (£g)

Specify the default foreground color for this screen. The default foreground
color overrides any unhighlighted white foregrounds on the screen. Enter
the name of a GUI color or a GUI independent alias. Press the JAM HELP
key, or choose Help from the menu bar to bring up an item selection screen
containing a list of color aliases defined in the resource file. Select a color
alias from this list or choose “custom colors” to bring up a color selection
screen to search for a GUI dependent color. See Figure 28.

Page 54 JAM/PiRelease 1.4 1 December 92

Chapter 5: Entering Screen and Field Extensions

Form-level GUI Extension

title?

title:

icon DECORATIONS:

font {1 noborder
1 noclose
1 dialog
0 iconify

1 maximize

foreground

background

pointer

{1 nomaximize
BOXES/LINES:]

start
type row col

nomenu

{1 nominimize

5 1 nomove

{1 noresize

1 notitle

lShow Details... | .

CANCEL

Figure 26: The Screen Extensions window.

@ background (bg)
Specify the default background color for this screen. The default back-
ground color overrides the screen’s background color, and any background
on the screen whose display attributes match the screen background. Enter
the name of a color, or press the HELP key for a list of aliases.

JAM/PiRelease 1.4 1 December 92 Page 55

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

FonSlecu

Cptiens Keys Windows Help

—

élarge, l
‘medium I

{small B

Figure 27: An item selection screen with a list of user—defined font aliases.

Color Selectiol
g Edit Optons Keys Windows Help

;Champagne '
lJY_ACC Blue l

| pumpkin |

custom colors

Figure 28: An item selection screen with a list of user—defined color aliases.

® pointer (pointer)
Enter the name of the pointer shape to use on this screen. The default point-
er is an arrow.

@ Decorations
The following options may be set regarding the decorations on the GUI
window border:

Page 56 JAM/PiRelease 1.4 1 December 92

Chapter 5:_Entering Screen and Field Extensions

® noborder (noborder)
Eliminate the GUI border, removing the resize handles, title bar, and
maximize and minimize buttons, leaving only a thin bounding box.

B noclose (noclose)
Suppress the close option on the GUI window menu.

® dialog (dialog)
Make this screen into a dialog box. A dialog box is an application
modal window that cannot be resized, maximized or minimized.
This is not supported in Pi/Motif.

& jconify (iconify)
Start screen as an icon.

® maximize (maximize)
Start screen maximized.

® nomaximize (nomaximize)
Prevent screen from being maximized by removing the maximize
button and the maximize option on the GUI window menu.

® nomenu (nomenu)
Eliminate the GUI window menu.

® nominimize (nominimize)
Prevent screen from being minimized by removing the minimize
button and the minimize option on the GUI window menu.

® nomove (nomove)
Suppress the move option on the GUI window menu. This option
does not prevent the user from moving the window with the mouse.

_Bporesize (noresize) .
Prevent this screen from being resized by removing the resize han-
dles and the size option on the GUI window menu.

® notitle (notitle)
Eliminate the title bar, including the minimize, maximize and GUI
window buttons. To eliminate only the title text, use title ().

® Boxes and Lines (box,hline,vline)
Boxes and lines may be drawn on the screen by filling in the appropriate
information in the fields described below:

8 type Enter B for a box, H for a horizontal line, or V for a vertical line.
yp
® start row Enter the starting row for the line or box.

® start column Enter the starting column for the line or box.

JAM/PiRelease 1.4 1 December 92 Page 57

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

® end row Enter the ending row for the line or box. If type is a horizontal line,
then this field is protected from data entry.

® end column Enter the ending column for the line or box. If type is a vertical line,
then this field is protected from data entry.

8 Show details Click on this button to set the display details for the line or box. A
different screen appears depending on which type of object is se-
lected. The details window is described below.

5.2.1
The Details Window for Lines and Boxes

Specify the appearance of a line or box by popping up the details window, described
below. A sample details window is shown in Figure 29. The items on this screen pro-
vide the arguments to the hline, vline, and box screen extensions.

® Row/Column
The row and column fields are the same as the row and column fields on
the main screen extensions window. On this screen, though, only those
fields that are appropriate for the type of object appear.

@ Style Choose a style from the option menu. Styles are GUI dependent. If the spe-
cified style is not supported, the default style is used instead.

Page 58 JAM/PiRelease 1.4 1 December 92

Chapter 5:_Entering Screen and Field Extensions

HORIZONTAL LINE:

Row

Starting column

Ending column

soe

Color

Width [pixels]

Margin | pixels]

OK CANCEL

Figure 29: The details window for a horizontal line. There are similar win-
dows for vertical lines and boxes.

0]

@ Color Enter a color for the line or box. Color may be a GUI color or a GUI inde-
pendent color alias. Press HELP for a list of color aliases.

\ad

JAM/PiRelease 1.4 1 December 92 Page 59

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

default
etched in
etched out
single
dash

dot
dashdot
dashdotdot
in

out

Figure 30: The styles option menu.

® Width Enter the width of the line or the matte width of the box. For certain line
styles the width is ignored. Refer to Chapter 6 for details.

Choose the units for the value you’ve entered from the option menu to the
field’s right. The list is shown in Figure 31. Available units are:

pixels
characters
grid units
inches
millimeters

Figure 31: The units option menu.

B pixels The value is in screen pixels.

®characters The value is in character units. One character unit is the average
.- character width of the default screen font. . -

® grid units ~ The value is in grid units. Grid units are based on the average charac-
ter width of the default screen font. For screen extensions, grid units
and characters are the same.

®inches The value is in inches. In order to use inches, the X server must know
the dimensions of your physical display.

® millimeters The value is in millimeters. In order to use millimeters, the X server
must know the dimensions of your physical display.

Page 60 JAM/PiRelease 1.4 1 December 92

Chapter 5:_Entering Screen and Field Extensions

@ Margin This defines a blank margin around the outside of the line or box. Choose
the units for the value you’ve entered from the option menu to the field’s
right. '

5.3
THE FIELD EXTENSIONS WINDOW

The field extensions window allows you to set the details for a widget. Each type of
JAM field has a default widget type associated with it. Use this screen to change the
widget type of a field or set the font, colors, frame, size and alignment of a widget.

Each widget type has a Details screen associated with it, where you can set options spe-
cific to that widget, like scroll bars on a list box, or a pixmap on a push button. A sample
field at the bottom of the extensions screen illustrates the extensions you've chosen.

5.3.1

Synchronizing JAM and the GUI

JAM/Pi attempts to keep JAM synchronized and consistent with the GUI options
you’ve chosen. If you change the widget type for a field, and that widget type is incon-
sistent with the JAM field edits, JAM/P: forces you to adjust the JAM field edits when
you transmit out of the extensions screen. This prevents you from creating undesirable
effects, like having a push button represent a field that is not a selection field.

If the option, “prompt for JAM field adjustments,” is selected, JAM/Pi asks you
whether you want to adjust each relevant edit upon transmitting out of the screen. If this
option is not selected, JAM/Pi makes the adjustments without consulting you.

5.3.2

Forcing the Widget Type

If the option “force widget type” is selected, JAM/Pi creates a field extension associat-
ing the widget type with the field, even if the widget type selected is the default widget
type for that field. So, for example, an unprotected data entry field would get a text
field extension, even though text is the default widget type for data entry fields. If this
option is not selected, the widget type of the field can change depending on the JAM
field edits, so subsequently protecting a data entry field would make it a label widget.

Be careful to satisfy JAM’s requirements for field behavior if you force a widget type.
For example group items and menus must have text in them in order to be selectable.

JAM/PiRelease 1.4 1 December 92 Page 61

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

e ————————————————— e ———

Widget type

Font

Foreground color

Background color

B prompt for jam field adjustments
{J force widget type

iWidget Details... I
!Size and Alignment...

sample field

CANCEL

Figure 32: The Field Extensions window.

5.3.3
Entering Data in the Field Extensions Window

To open the field extensions window, move the cursor to a field and press SPF12. The
window that appears is shown in Figure 32. The following options are available:
@ Widget type
Each type of JAM object has a default GUI widget that it transforms into.
The default widget appears as the initial value in this field. Pop up the op-

Page 62 JAM/PiRelease 1.4 1 December 92

Chapter 5: Entering Screen and Field Extensions

tion menu to specify a widget other than the default. The list of widgets ap-
pears in Figure 33. Available widget types are:

+ { checkbox
label

list
multitext

optionmenu

pushbutton
radiobutton
scale

text
togglebutton
no widget

Figure 33: The widget type option menu.

® checkbox (checkbox)
Create a checklist style toggle button widget from this field. This
widget is the default for JAM checklist groups with boxes. This ex-
tension can be applied only to a group. A radio button group with this
extension still acts like a radio button, it only appears as a checklist.
Use the widget details window to replace the label text on the toggle
button with a pixmap or to create a multiline label for the widget.

8 Jabel (label) :
Create a label widget from this field. Label widgets should be used
for display text and protected fields. They do not support data entry
or tabbing. Use the widget details window to replace the label with
a pixmap or to create a multiline label.

Blist (1ist)
Create alist box widget from this field. List boxes are most appropri-
ate for selection criteria like checklists, radio buttons, or menus on
item selection screens. Use the widget details window to turn scroll
bars on or off for the widget.

® multitext (multitext)
Create a multiline text widget from this field. Multiline text widgets
are most appropriate for arrays. The number of lines in the multiline

JAM/PjRelease 1.4 1 December 92 Page 63

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

text widget is determined by the number of on-screen elements in
the array. If the array is scrolling, the widget will scroll as well. Use
the widget details window to turn scroll bars on or off for the widget.

® optionmenu (optionmenu)

Create an option menu widget from this field. An option menu pres-
ents the user with a list of options from which to fill a field. The field
should be either a cycle field (a scrolling array with one element) or
a simple non-scrolling field. The off-screen occurrences of a cycle
field can be used as the list of options. Alternatively, the list of op-
tions for the widget may be pulled from some other screen, much like
an item selection screen. Set this behavior in the widget details win-
dow.

® pushbutton (pushbutton))
Create a push button widget from this field. Push buttons are normal-
ly associated with protected menu fields since they are used as selec-
tion criteria. Use the widget details window to replace the label text
on the push button with a pixmap or to create a multiline label.

® radiobutton (radiobutton)
Create a radio style toggle button widget from this field. This widget
is the default for JAM radio button groups with boxes. This exten-
sion can be applied only to a group. A checklist group with this ex-
tension still acts like a checklist, it only appears as a radio button. Use
“ the widget details window to replace the label text on the toggle but--
ton with a pixmap or to create a multiline label for the widget.

Bgscale (scale) :
Create a scale widget from this field. Scales are appropriate for nu-
meric fields whose contents are chosen from a range of values. Use
the widget details window to input the range and number of decimal
places.
Bext (text)
»* - Create a text widget from this field. Text widgets are the default wid:
get for unprotected fields. This extension allows you to turn a pro-
tected field into a text widget, but the widget’s tabbing and data entry
behavior is still dictated by the field’s protections.

® togglebutton (togglebutton)
Create a toggle button widget without checkboxes from this field.
This widget is the default for JAM radio button or checklist groups
without boxes. Use the widget details window to replace the label
text on the toggle button with a pixmap or to create a multiline label.

Page 64 JAM/PiRelease 1.4 1 Decamber 92

Chapter 5: Entering Screen and Field Extensions

® no widget (nowidget)
Do not create a widget for this field. This is the default for fully pro-
tected non—display fields like menu control fields. :

@ Font (font)
Specify the font name for the widget. If no font is specified, the default
screen font is used. The font name may be either a GUI font specification
* or a GUI independent font alias. Press the JAM HELP key, or choose Help
from the menu bar to bring up an item selection screen containing a list of
font aliases defined in the resource file. From the item selection screen,
choose an alias or choose “custom fonts” to bring up a file selection box
to search for a GUI dependent font. See Figure 27 in the previous section.

@ Foreground color/Background color (f£g, bg)

Specify the foreground and background colors for the widget. If no colors
are specified, the default screen foreground and background colors are
used. The colors may be either GUI color names or GUI independent color
aliases. Press the JAM HELP key, or choose Help from the menu bar to
bring up an item selection screen containing a list of color aliases defined
in the resource file. From the item selection screen, choose an alias or
choose “custom colors” to bring up a file selection box to search for a GUI
dependent color. See Figure 28 in the previous section for an illustration.

@ Prompt for JAM field adjustments
This item is important only if you’ve changed the widget type of the field
from its default value.

If this toggle is set and there is an inconsistency between the JAM field
edits and the widget type you’ve selected, JAM/Pi prompts you with a dia-
log box asking whether you wish to alter the JAM edits on the field to
match the widget type. The dialog box appears when you attempt to trans-
mit out of the screen. Some inconsistencies may be ignored, while others
must be changed. The buttons in the dialog box indicate whether a change
is necessary or may be ignored. Figure 34 illustrates a sample field adjust-

-ment dialog box. If you choose not to make a required change, you are re-
turned to the field extensions screen.

If the “prompt...”" toggle is not set, JAM/Pi makes the changes to the JAM
field edits upon transmitting out of the screen without consulting you.

@ Force widget type
This item is important when you have not changed the widget type from
its default. If this toggle button is set, JAM/Pi creates a field extension that
forces this widget type on the field. If the protections or edits on the field
subsequently change, the widget type does not change. If this option is not

JAM/PiRelease 1.4 1 December 92 Page 65

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

AM Field Adjustment;

This widget type should be applied only to protected
fields;
protect this field?

IGNORE CANCEL

0OX.

set, no extension is written to the JPL, and the field changes its widget type
depending upon its edits.

If you have changed the widget type from its default, JAM/P: forces this
option to be set.

5.3.4
The Frame Window

You can create a frame around a widget by pressing the frame push button to pop up the
field frame specifications window shown in Figure 35..This creates a frame field ex-
tension. The following options set the arguments to the extension:

@ Style Choose a style from the option menu. Styles are GUI dependent. If the spe-
cified style is not supported, the default style is used instead. See Figure 30
in the previous section for an illustration.

Page 66 JAM/PiRelease 1.4 1 December 92

Chapter 5: _Entering Screen and Field Extensions

ield Frame Specifications

Frame Specifications

Style i none o '
Color |

Margin width

Border width

Figure 35: The field frame specifications window.

o)

® Color Enter a color for the frame. Color may be a GUI color or a GUI independent
color alias. Press HELP for a list of color aliases.

W

RiWindows;if

specifya color

® Margin This is the width of a blank margin area around the outside of the frame.
.See Chapter 6 for details. Choose the units for the value you’ve entered
- «from the option menu to the field’s right. The list is shown in Figure 31 in

the previous section. Available units are:

® pixels The value is in screen pixels.

B characters The value is in character units. One character unit is the average
character width of the widget's font.

®grid units The value is in grid units. Grid units are based on the average charac-
ter width of the default screen font.

B inches The value is in inches. In order to use inches, the X server must know
the dimensions of your physical display.

JAM/PiRelease 1.4 1 December 92 Page 67

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

® millimeters The value is in millimeters. In order to use millimeters, the X server
must know the dimensions of your physical display.

® Border Enter the matte width of the frame. The matte is the area between the edge
of the widget and the edge of the frame. Frames are drawn within the grid,
so a frame with a wide matte or margin stretches the grid.

56.3.5

Widget Details Windows

Each widget type (except text) has an associated widget details screen with settings ap-
propriate for the particular widget. The various screens are described below.

® Default Details screen
The widget details screen for checklists, labels, push buttons, radio buttons
and toggle buttons is illustrated in Figure 36.

Default Options

Pixmap

Multi-line?

OK

Figure 36: The widget details screen for: checklists, Iabels push buttons,
radio buttons and toggle buttons.’

8 pixmap (pixmap)
Enter the name of a pixmap or bitmap file to display in the widget
instead of the field’s contents. See pixmap in Chapter 6 for details.

® multiline (multiline)
Specify whether the widget should have multiple lines of text. The

additional lines are held in the off-screen shifting length of the field.
See multiline in Chapter 6 for details.

Page 68 JAM/PjRelease 1.4 1 December 92

Chapter 5. Entering Screen and Field Extensions

® List and Multitext Details screen
These widgets can have scroll bars as an option. The level of scrolling is
set in the arguments to the 1ist or multitext extension. The details
screen, shown in Figure 37, sets these arguments, controlling when scroll
bars appear.

List Widget Details

List Box

Horizontal bar default &3

Vertical bar default |
always

never

Figure 37: The widget details screen for list boxes and multiline text widgets.
Notice that the option menu for vertical bar is posted.

® Horizontal bar
There are three options: default, always, and never: .. .

—default posts the scroll bar only when the field is a shifting field.
— always posts the scroll bar regardless of need.
— never posts no scroll bar,

® Vertical bar
There are three options: default, always, and never:

—default posts the scroll bar only for a scrolling field.
— always posts the scroll bar regardless of need.
—never posts no scroll bar.

@ Scale Widget Details screen
Use the details screen to enter the arguments to the scale extension.
These are the lower limit, upper limit, and number of decimal places in the
scale’s range. The screen is shown in Figure 38.

® Lower limit Enter the lower bound of the range. The default is 0.

B Upper limit Enter the upper bound of the range. The default is 100.

JAM/PiRelease 1.4 1 December 92 Page 69

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Scale Widget

Lower limit

Upper limit

Decimal places

OK

Figure 38: The details screen for a scale widget.

® Decimal places
Enter the number of decimal places to use in the value. The default
is 0 (whole numbers).

©® Optionmenu Widget Details Screen
Depending upon the arguments to the opt i onmenu extension, an option-.
menu may be populated in one of two ways:

With no arguments, an optionmenu is populated from the offscreen occur-
rences of the field. In this case the details screen is not needed. The field
containing the optionmenu should be a scrolling array with one element

If the field is not an array, the option menu is populated from menu fields
on another screen, similar to an item selection screen. The arguments indi-
cate the screen name and when the screen should be initialized. The option-
‘menu details screen sets these arguments. It is shown in Figure 39.

® Form name To populate the option menu from another screen, enter the screen’s
name here. Menu fields on the specified screen become items on the
option menu.

®Initialize? The screen containing the options must be initialized before the op-
tion menu pops up. Initialization consists of opening and closing the
screen and writing the values to the option menu widget. Initializa-
tion may be done at screen entry or each time the option menu pops
up (or both).

Page 70 JAM/PiRelease 1.4 1 December 92

Chapter 5: Entering Screen and Fisld Extensions

Option Menu

Form name

Initialize?
Initialize on popup?

Figure 39: The option menu widget detail screen.

Set this to yes if you wish to initialize the optionmenu at screen entry.

® [nitialize on popup?
Set this to yes if you wish to initialize the option menu each time the
option menu field is entered.

5.3.6
The Size and Alignment Window

JAM/Pi gives each widget a default size, and places each widget on the screen in accor-
dance with an algorithm based on the concept of an elastic grid. This algorithm is ex-
plained in detail in Chapter 3. The size and alignment window is for fine tuning the size
and placement of widgets. Adjusting the placement of widgets is best done after all the
widgets on a screen have been created and sized, since new widgets can affect the align-
ment of existing widgets. It is usually best to keep alignment settings to a minimum, as
they can make a screen inflexible and hard to maintain. The size and alignment window
is shown in Figure 40. The following options are available:

® height (height)
Enter the height of the widget in this field and select the units for the height
from the option menu to the field’s right. Units are listed on page 67.

JAM/PiRelease 1.4 1 December 92 Page 71

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

Alignment Options

Height l [pixels o]

Width pixels £

X offset { pixels |

Y offset {ikds o | l

Array spacing [pixels :ll

Horizontal alignment

Vertical alignment

Adjustrows
yes)

Adjust columns yes

0K

Figure 40: Screen for entering field size and alignment options.

® width (width)
" Enter the width of the widget in this field and select the units for the width
- from the option'menu to the field’s right. Units are listed on page 67. .

® H offset (hoff)

Enter the horizontal placement of the widget. An unsigned value indicates
placement relative to the left margin. A signed value indicates a distance
to move the widget relative to its default position. A positive signed value
moves the widget the specified distance to the right of its default position,
a negative value moves it to the left. The offset is calculated after the posi-
tioning algorithm has done its work, so this extension can cause widgets to
overlap or run off the edge of the screen.

4

Page 72 JAM/PiRelease 1.4 1 December 92

Chapter 5: Entering Screen and Field Extensions

® V offset (voff)

Enter the vertical placement of the widget. An unsigned value indicates
-placement relative to the top margin. A signed value indicates a distance
to move the widget relative to it default position. A positive signed value
moves the widget the specified distance down from its default position, a
negative value moves it up. The offset is calculated after the positioning
algorithm has done its work, so this extension can cause widgets to overlap
or run off the edge of the screen.

© Array Spacing (space)
Enter the amount of space to leave between array elements that appear as
separate text widgets. Sometimes array elements are spaced unevenly due
to grid stretching. Entering a value here assures that each element in the
array is evenly spaced.

@ Horizontal alignment (halign) ,
~Specify where this widget should anchor if it is narrower or wider than its
grid cells. A widget will be narrower than its grid cells if another widget
caused the grid to stretch horizontally. It will be wider than its grid cells if
the option “Adjust columns” is set to no. See Chapter 3 for details.

Enter a value between 0 and 1. 0 means that the left edge of the widget an-
chors in its starting cell (left alignment). 1 means that the right edge of the
widget anchors in its ending cell (right alignment). Decimal values be-
tween 0 and 1 mean that the widget should align proportionally between
its starting and ending cells. For example, .5 indicates center alignment.
The default is O for left justified widgets, and 1 for right justified widgets.

@ Vertical alignment (valign)
Specify where this widget should anchor if it is shorter or taller than its grid
cells. A widget will be shorter than its grid cells if another widget caused
the grid to stretch vertically. It will be taller than its grid cells if the option
“Adjust rows” is set to no. See Chapter 3 for details.

Enter a value between O and 1. O indicates that the top of the widget should
anchor at the top of the widget’s uppermost cell. 1 indicates that the bottom,
of the widget should anchor at the bottom of its lowermost cell. Decimal
values between 0 and 1 indicate that the widget should align proportionally
between its top and bottom cells. The default is .5, or center alignment.

©® Adjust rows (noadj)
Set this option to no if you wish the positioning algorithm to ignore this
widget in its vertical calculations. This is useful for tall widgets that have
ample whitespace above or below them, since it prevents them from
stretching the grid. It is often used in conjunction with the vertical align-

JAM/PiRelease 1.4 1 December 92 Page 73

JAM/Pi for OSF/Motif_Microsoft Windows and OPEN LOOK

ment option, which controls where a non-adjusted widget anchors (see
valign above). This option defaults to yes.

® Adjust columns (noadj)
Set this option to no if you wish the positioning algorithm to ignore this
widget in its horizontal calculations. Since the positioning algorithm uses
up horizontal whitespace before stretching the grid, this option is of limited
- use, since it tends to cause widgets to overlap. This option defaults to yes. -

Page 74 JAM/P/Release 1.4 1 December 92

Chapter 6: Extension Reference

Chapter 6
Extension Reference

Field and screen extensions provide access to the multitude of features available under
GUTI'’s. Here the developer may specify fonts, colors, window decorations, positioning,
and specialized widgets. This chapter is a reference for the extensions, Chapter 5 ex-
plains how to enter them into the formatted screens provided with JAM/Pi.

6.1

INTRODUCTION

Extensions are stored in the JPL. modules associated with fields and screens:

‘@ Field extensions are stored in the field level JPL module. Their scope
is the widget that represents the field.

® Screen extensions are stored in the screen level JPL module. Their
scope is the screen on which they appear.

Extensions may be entered directly ‘into the JPL comments, or they may be entered
through a set of formatted screens described in Chapter 5.

Certain options that may be set via the extensions may also be specified as application
defaults in the resource or initialization file. These are discussed in Chapter 7. Hierar-
chically, field extensions override screen extensions, which in turn override the re-
source or initialization file.

M,

changes the fi
.a:screenor 10 a class of

JAM/PiRelease 1.4 1 December 92 Page 75

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

6.2
EXTENSION SYNTAX

Field and screen extensions are specified in the JPL module comments. Comments in
JPL begin with the # character. Extensions are set off from other comments by double
angle brackets (pairs of “less than” and “greater than” signs), as in:

comment text
<<extension(arguments) >> comment text

Since extensions are in the comments, they are not part of the executed JPL. This makes
applications that use extensions portable to environments that don’t support the exten-
sions: a special parser interprets the extensions in JAM/Pi, but they are simply ignored
in character JAM.

The parser looks only as far as the first non—comment line in each JPL module, so ex-
tensions must appear at the top of the module, before any blank lines or JPL code. Com-
ments may appear on the same line as extensions, and more than one extension may
appear on a line. Text lines in JPL are limited to 254 characters Extensions that are
specified incorrectly are ignored by the parser.

NOTE: Currently, no syntactic error checking is performed on the extensions. Rather
than entering extensions directly into the JPL module, it is easier and more convenient
to enter extensions into the formatted screens that are accessed via the SPF11 and
SPF12 keys. When these screens are processed, the extensions are written into the JPL,
and the developer is guaranteed that the syntax is correct.

6.2.1
Colon Expansion of Extension Arguments

Arguments to screen and field extensions are colon expanded before they are processed.
Colon expansion occurs when JAM/Pi is about to open the GUI window to display the
screen. At this point, the screen entry function has already been called, so variables for
colon expansion can be set in screen entry function. Care must be taken, though, that
" the fields or variables upon which the expansion is based remain unchanged for the life--
time of the screen. Since rescanning may occur at arbitrary times, these variables
should be left in a stable condition.

Form variables, LDB variables, and screen—local JPL variables can be used for expan-
sion. Arguments are expanded individually, so replacement text containing commas
does not create more arguments. Two examples are shown below:

#<<title(:mytitle)>>)
#<<scale(:min, :max, :places)>>

Page 76 JAM/PjRelease 1.4 1 December 92

Chapter 6: Extension Reference

6.3

'PROPAGATING EXTENSIONS

Since field and screen extensions are located in JPL modules, you may use the save
to fileand retrieve from file functions of JPL screens, or the GUI cut and
paste operations to copy extensions from one field or screen to another. The file func-
tions are accessed via the PF4 key from a JPL module screen. You may also use the
template feature when creating a new screen to propagate extensions from one screen
to another.

Propagating Fonts and Colors

The font and color screen extensions affect widgets that don’t have font or color field
extensions of their own. For a standardized format, you can use the font and color
screen extensions once on each screen instead of using the field extensions for each
field.

O

6.4
EXTENSION REFERENCE

The following pages constitute the field and screen extension reference section. List-
ings appear alphabetically, but some related extensions are grouped together, specifi-
cally: foreground and background color; height and width; horizontal and vertical off-
set; and horizontal and vertical alignment. The two tables below indicate the page that
each extension appears on, and provide a quick reference to the syntax of each exten-
sion. The first table covers field extensions, and the second covers screen extensions.
The tables are organized by extension type.

NOTE: The iconification and window decoration screen extensions are implemented
as hints to the window manager. This means the window manager may ignore any of
these requests that it deems problematic. It can ignore any or all of them, partially or
completely, although usually it does not.

JAM/P/Release 1.4 1 December 92 Page 77

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Field Extensions
Type Syntax Page
Incremental Positioning
Height height (value [units]) 96
Width width (value [units]) 96
Horizontal Offset ho£f (distance [units]) 102
Vertical Offset voff (distance [units)) 102
Horizontal Alignment halign (value) 94
Vertical Alignment valign (value) 94
Disable Adjustment noadj (direction) 115
Equally Space an Array space (distance [units]) 140
Fonts, Colors and Decorations
Foreground Color £g (color) 81
Background Color bg (color) 81
Font font (fontname) 89
Bitmapped Image pixmap (name) 130
Frame frame ([style, color, matte, margin]) 92
Specialized Widgets
Checklist Toggle Button | checkbox 87
In/Out Toggle Button togglebutton 143
Label Widget label 107
List Box list [{no hbar, no vbar)] 108
List of Options optionmenu [(selectscreen, init, popup)]} 127

Multiline Text Widget

multitext [(no hbar, no vbar)]

113

Page 78

JAM/P/Release 1.4

1 December. 92

Chapter 6: Extension Reference

Field Extensions
Type Syntax Page
Mutltiline Button multiline 111
No Widget nowidget 126
Push Button pushbutton 136
Radio Toggle Button radiobutton 138
Scale Widget scale (min, max) 139
Text Widget text 141

JAM/PiRelease 1.4 1 December 92 - Page 79

JAM/Pi for OSF/Motit, Micraosoft Windows and OPEN LOOK

Screen Extensions

Type Syntax Page
Fonts and Colors
Font font (fontname) 89
Foreground Color fg (color) 81
Background Color bg (color) 81
Lines and Boxes
Horizontal Line hline(r, ¢, c2], style, color, width, margin)) 98
Vertical Line vline(e, r1, r2|(, style, color, width, margin}) 98
Box box (11, e1, I2, c2{, style, color, matte, margin]) 84
Screen Behavior
Associate Icon with Screen icon (name) 104
and Allow Iconification
Start the Screen as an Icon iconify 106
Specify the Pointer Shape pointer (cursor) 134
Window Decorations and Features
Suppress GUI Border noborder 116
Suppress GUI Window Menu | nomenu 120
Disable Resize noresize 124
Disable Maximize nomaximize 119
Disable Iconification nominimize 122
Disable Move (from menu) nomove 123
Disable Close (from menu) noclose 118
Invoke Maximized maximize 110
Create Dialog Box dialog 88
Title Bar Text ticle(string) 142
Suppress Title Bar notitle 125

Page 80 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

«bg»
fg-

specify the background or foreground color for a screen
or widget

33 2238

SYNOPSIS

<<fg/{(color)>>

<<bg (color)>>

TYPE

Field Extension
Screen Extension

DESCRIPTION

JAMY/Pi supports a palette of sixteen colors that are specified in the resource or initial-
ization file. Sixteen colors are usually enough for an application, as too many colors
make screens hard to read. If you require more than sixteen colors, the £g and bg
screen and field extensions set the foreground and background colors of screens and
widgets to any color that the GUI supports.

fg and bg as Field Extensions

The fg field extension sets the foreground color of a widget. The bg field extension
sets the background color of a widget. These field extensions override any other color
specifications that may be applicable to the widget.

fg and bg as Screen Extensions

The f£g screen extension sets the color of any foreground on the screen whose attributes
are white unhighlighted to the color specified. white unhighlighted is
the default foreground color in the Screen Editor display attributes screen. fg affects
both display text and fields. £g is provided for convenience, as it allows you to change
the foreground color of many objects at once.

JAM/PiRelease 1.4 1 December 92 -Page 81

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

M,

'LOO

O

The bg screen extension sets the color of the screen background, as well as any other
background on the screen that has the exact same display attributes as the screen back-

- ground, to the color specified. For example, if the screen background according to the
display attributes is red highlighted, and the screen extension says
<<bg (goldenrod>>, then any background on the screen that is red high-
lighted becomes goldenrod. This extension is designed so that any object whose
background matches the screen background continues to match the screen background,
even when it is changed.

Mjjo

Specitying the Color

color may be either a GUI dependent color specification or a GUI independent alias.

GUI Dependent Colors

Page 82 JAM/PiRelease 1.4 1. December 92

Chapter 6: Extension Reference

GUI Independent Color Aliases

- To simplify color specification, use the color aliasing feature. Color aliasing allows you
to make up your own names for color, like “champagne”, “gun metal grey” or “Taupe”,
and then specify their equivalent GUI dependent values in an alias list in the resource
or initialization file. For example, you might specify <<fg (pink) >> as a field exten-

- sion. The Motif and OPEN LOOK resource files would then have an alias pair like: .
pink = salmon \n\
and the Windows initialization file would have an alias pair like:
pink = 247/138/115
For instructions on creating the alias list, refer to section 7.4.

Color aliasing enhances development flexibility, since you can change color choices in
one place (the initialization or resource file) and affect changes throughout the applica-
tion. It also enhances portability among GUT’s, since GUI independent color names are
- resolved externally to your application.

JAM/PiRelease 1.4 1 December 92 Page 83

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

<box-

draw a box

SYNOPSIS
“# <<box(I1, c1, 12, ¢2 [, style, color, matte, margin])>>

TYPE
Screen Extension

DESCRIPTION

This screen extension draws a box in the rectangle described by the specified coordi-
nates. Box style, fill color, matte width and margin size can be optionally specified. A

- comma must be inserted as a placeholder for any item not specified. Boxes lay behind
other widgets on the screen.

11, c1, 12, and ¢2 are one-based JAM lines and columns. For example,
<<box(1,1,1,1,,,,)>> draws a box around the single cell at line one, column
one.

style describes the appearance of the box. It may be any one of the following keywords:

color is the background color of the box. It may be either a GUI dependent or GUI inde-
pendent color specification. For more on colors, see page 149.

Page 84 - : JAM/P/Release 1.4 1 December 92

Chapter 6: Extension Reference

matte is the width of the area between the edge of the cells and the edge of the box. It
increases the size of the box beyond the edge of its cells. If you put a box around a group
of fields, it looks better if there is a matte of at least 3 pixels between the fields and the
box edge.

margin is the blank margin around the outside of the box. It provides a blank area be-
tween the box and any adjoining cells. It insures that other objects outside of the box
don’t get too close.

The value of matte or margin may be in pixels, characters, grid units, inches, or milli-
meters. Refer to the chart on page 96 for a list of unit suffixes.

Figure 41 illustrates two screens with the boxes. The first has no matte or margin, and
the second has both a matte and a margin.

Figure 41: Two screens with black boxes. The box around fields 1 and 2 on
the left hand screen has no matte or margins. The box on the right hand
screen has a 5 pixel matte and a 5 pixel margin.

JAM/PiRelease 1.4 1 December 92 Page 85

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

Figure 42, below, illustrates the parts of boxes, and how boxes affect the elastic grid.
Lines and box edges are drawn in special “separator rows” and “separator columns”
that appear between regular rows and columns. Separator rows and columns are just
wide enough to accommodate their contents.

1 2 3 4

separator
column

Figure 42: Two one—cell boxes that have different margins. The edges of
the boxes are drawn in separator rows and columns that are just wide
enough to accommodate the matte, lines and margins.

In locations.where lines and boxes cross each other or overlap, the order that they ap- ..
pear in the screen level JPL module determines how they are layered. The first exten-

sion encountered in the module is the top—most object. The next object defined in the
module is layered beneath the first object, and so on.

RELATED EXTENSIONS

<<framel (style, color, matte, margin)]>>
<<hline(r, c1, ¢2 [, style, color, width, margin])>>
<<vline(e, r1, r2 [, style, color, width, margin])>>

Page 86 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

~checkbox--

create a checklist style toggle button

SYNOPSIS

<<checkbox>>
TYPE
Field Extension
DESCRIPTION

This extension creates a checklist style toggle button from a field. Members of check-
list groups default to this widget type. To function properly the field must be a member
of a checklist group. If it is not, the developer must add callbacks to handle selection
processing. This is not recommended.

M

! i:i Toggle 2
B First
X First — % First
I:I £1 Second O second
Second .
W Third % Third

Figure 43: Checklist style toggle buttons in Windows, Motif and OPEN
LOOK.

JAM/PiRelease 1.4 1 December 92 Page 87

JAM/Pi for OSF/Motif_Microsoft Windows and OPEN LOOK

~dialog-

SYNOPSIS
<<dialog>>

TYPE
Screen Extension
DESCRIPTION

This extension makes a screen into a dialog box. A dialog box is an application modal
window that cannot be resized, maximized or minimized.

Since it is modal, the user is forced to deal with a dialog box before continuing with the
application. A screen with the dialog extension may not be sibling, it will always be
application modal. Only another dialog box can be opened on top of a displayed dialog
box. If a window without the dialog extension opens on top of a dialog box, JAM/Pi
forces that window to be a dialog box too.

The noborder, and iconify screen extensions are ineffective in a dialog box, and
any viewport size specifications are ignored when a dialog box opens.

NOTE: The developer must not use wselect to give focus to a window below a dia-
log box that is not itself a dialog box. Doing so is undefined.

Mi| O

Page 88 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

<>

specify the font for a screen or widget -
b oo oo e TR
SYNOPSIS

<>

TYPE

Field Extension
Screen Extension

DESCRIPTION

"+ The font screen extension specifies the default font for a screen. The font field ex-

tension specifies the font for a particular widget.
Fonts may be specified at several levels:

1. The application default font is specified in the resource or initializa-
tion file, or on the Motif command line. If a font is specified on the
command line, it overrides the one specified in the resource file. In
the absence of any other font specification, the application default
font will be the font used for the entire application.

2. The default screen font is either the application default font or a font
specified with the font screen extension. A font screen extension
overrides the application default font. In the absence of any other
specification, this font is used by all display text and widgets on the
screen.

3. 'The widget’s font is either the default screen font or a font specified
with the font field extension. A font field extension overrides the
default screen font. A region of display text can be made to have a
widget’s font by converting the display text into a protected field. See
section 3.2.4.

Specifying the Font

The fontname argument to this extension can be either a GUI dependent font name or
a GUI independent font alias. These are described below.

JAM/PiRelease 1.4 1 December 92 Page 89

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

GUI Dependent Font Names

W

app
on and:

GUI Independent Font Aliases

To simplify font naming, use the aliasing feature. Font aliasing allows you to make up
your own designations for fontname, like “small”, “medium” and “large”, and then
specify their equivalent GUI dependent names in an alias list in the resource or initial-
ization file. For example, you might specify <> as a field extension.
The Motif or OPEN LOOK resource files would then have an alias pair like:

bold = *times-bold-r*14* \n\

Page 90 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

and the Windows initialization file would have an alias pair like:
bold = Tms Rmn-14-bold
For instructions on creating the alias list, refer to section 7.4.

Font aliasing enhances development flexibility, since you can change font choices in

~ one place (the initialization or resource file) and affect changes throughout the applica-
tion. It also enhances portability among GUI’s, since GUI independent font names are
resolved externally to your application.

JAM/PiRelease 1.4 1 December 92 Page 91

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

~frame--

create a frame around a widget

SYNOPSIS
<<frame ([style, color, matte, margin]) >>

TYPE
Field Extension
DESCRIPTION

This field extension creates a frame around a widget, or if the widget is an array, around
all the elements of the array. Edge style, color, matte width and margin size can be op-
tionally specified. A comma must be inserted as a placeholder for any item not speci-
fied.

NOTE: Frames are different than boxes and lines in that they are drawn in the same
grid cells as their associated widgets. A frame increases the size of a widget, and there-
fore can cause the grid to stretch. Boxes and lines, on the other hand, are drawn in spe-
cial “separator” rows and columns. See page 84 for more on boxes, and page 98 for
more on lines.

style describes the appearance of the frame. It can be any one of the following:

Page 92 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

color is the background color. It may be either a GUI dependent or GUI independent
color specification. For more on colors, see page 149.

matte is the width of the area between the edge of the widget and the edge of the frame.
It increases the size of the frame. beyond the edge of the widget. A frame looks better if
there is a matte of at least 3 pixels between the widget and the frame border edge.

margin is the blank margin around the outside of the frame. It provides a blank area
between the frame and the edge of the cell. It insures that other adjoining objects don’t
get too close to the frame.

The value of matte or margin may be in pixels, characters, grid units, inches, or milli-
meters. Refer to the chart on page 96 for a list of unit suffixes.

" Figure 44 - Two screens with a framed field. The frame around field 1 onthe .~ -
left hand screen has no matte or margin. The frame on the right hand screen
has a 5 pixel matte and a 5 pixel margin.

RELATED EXTENSIONS

<<box(Il1, ¢1, I12, ¢2 [, style, color, matte, margin])>>
<<hline(r, c1, c2 [, style, color, width, margin])>>
<<vline{e, r1, r2 [, style, color, width, margin])>>

JAM/PiRelease 1.4 1 December 92 - Page 93

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

«halign--
~valign--

specify an alternative horizontal or vertical alignment for
this widget

i e S

SYNOPSIS

<<halign (value)>>
<<valign (value)>>

TYPE
Field Extension

DESCRIPTION

JAM/P; calculates the default placement for widgets on a screen using a positioning
algorithm described in Chapter 3. This algorithm takes into account many factors, in-
cluding field justification, the white space available on the screen, and the size of wid-
gets. Each widget has a certain number of rows or columns that it is supposed to occupy.
These are referred to as grid cells. At times, the algorithm stretches rows or columns in
order to fit large widgets onto a screen. Other widgets that span these stretched rows or
columns may now be smaller than the grid cells allotted to them. JAM/Pi must decide
where to align these objects within their allotted cells.

By default, left justified fields and display text align on their left, in their starting cell.
Right justified fields align on their right, in their ending cell. The halign field exten-
sion enables the developer to specify any alignment for a widget, regardless of its justi-
fication.

Vertically, all widgets align by default in the center of their allotted cells. The valign
field extension enables the developer to specify any vertical alignment for a widget.

" Note that these extensions come into play only when a widget is larger or smaller than.:

the space available in its allotted cells.

value is a number between 0 and 1. Horizontally, 0 means that the left edge of the wid-
get should anchor in its starting cell. 0 is the default alignment for left justified fields
and display text. 1 means that the right edge of the widget should anchor in its ending
(or rightmost) cell. This is the default for right justified fields. A value between 0 and
1 means that the widget should align proportionally between its starting and ending
cells. Thus, .5 means that the center of the widget should anchor in the center of the
available space.

Page 94 JAM/PiReloase 1.4 - 1 December 92

i

Chapter 6: Extension Reference

Vertically, a value of 0 means that the top of the widget should align with the top of its
uppermost cell. 1 indicates that the bottom of the widget should align with the bottom
of its lowermost cell. Decimal values in between indicate proportional alignment be-.
tween the top and bottom cells. The default vertical alignment is . 5, or centered.

Values for halign or valign that are less than O or greater than 1 result in alignment
outside of the allotted cells. Alignment outside of the allotted cells may result in wid-
gets: overlapping -one another. Values less than O or greater than 1 are not recom-
mended.

Chapter 3 discusses the positioning algorithm. Read this chapter to get a full under-
standing of how positioning works. Figure 15 in Chapter 3 has a diagram that illustrates
halign.

RELATED EXTENSIONS

<<hoff (distance [units])>>
<<voff (distance [units]) >>
<<noadj (direction) >>

JAM/P/Release 1.4 1 December 92 - - Page 95

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

<height--
~width--

specif width or height of a widget
SYNOPSIS

<<width (value (units)]) >>
<<height (value [units]) >>

TYPE
Field Extension

DESCRIPTION

Each widget has a default size based on several factors, including the size of its font, the
length or contents of its associated JAM object, and any widget decorations. The
JAM/P: positioning algorithm allocates enough screen space for a widget based on its
size. ’

The height and width field extensions enable the developer to override the default
~ size of a widget. Any size may be specified. The positioning algorithm uses the new
‘size of the widget, rather than its default size, in making its calculations.

value represents the -height or width of the widget. value may be either an integer, in
which case it represents the height or width in pixels, or it may be any floating point
number followed by the units suffix, indicating which units to used. units are listed
below:

Suffix Units Description
p Pixels If no suffix is used, then the value is assumed to be in pix-
(or none) | - © | els. value must be an integer if it is in pixels. These mea--

surements depend upon screen resolution.

c Characters | A character is the average character width of the widget’s
font. 5c means 5 average characters in the widget’s font.
Contrast with grid units, which refer to the default screen
font. Characters and grid units are the most portable units
of measure, since they are sensitive to the font in use. (In
screen extensions, characters are the same as grid units.)

Page 96 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

Suffix Units Description

g : Grid Units | A grid unit is the average character width of the default
screen font. 5g means 5 standard (unstretched) grid cells.
Grid units and characters are the most portable units of
measure, since they are sensitive to the font in use.

mm Millimeters | The value is in millimeters. The X server must know the
correct physical screen dimensions in order for these mea-
surements to be accurate. How the server is configured,
though, is machine dependent.

in Inches The value is in inches. The X server must know the correct
physical screen dimensions in order for these measure-
ments to be accurate. How the server is configured,
though, is machine dependent.

. For example, you might want to make a text widget.wider if its input will be all capital
letters, like a field for a state abbreviation. The default width of a widget is based on the
average character width of the font times the length of the field. If the widget is using
a proportional font, then an entry of all capital letters most likely won’t fit, since most
capital letters are wider than the average character. The user will be able to enter the
correct number of characters, but they won’t all display at the same time; the widget
will have to scroll. If a two character field is given a width field extension like

. <<width(3c} >>, then any two characters are likely to display without scrolling.

Another example of when you might wish to use a width and a height field exten-
sion is to make a large (1 inch square) push button. To do this, you would simply specify
the following in the field level JPL module for a menu field:

<<height(lin)>> <<width(lin)>>

In an array with a height or width extension, each widget in the array takes on the
height and width specified. So a vertical array with three elements that has a
<<height (1in) >> extension occupies at least three inches, since it contains three
widgets. Arrays with the multitext, optionmenu or 1ist extensions should not
have the height extension.

Fields with pixmaps or bitmaps respect height and width extensions.

JAM/PiRelease 1.4 1 December 92 Page 97

R

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

<hline-
<vline-

create a vertical or horizontal line

SYNOPSIS

<<hline(r, ¢1, ¢2 [, style, color, width, margin])>>
<<vlinel(e, r1, r2 [, style, color, width, margin])>>

TYPE
Screen Extension

DESCRIPTION

These screen extensions draw vertical and horizontal lines between the specified coor-
dinates. Style, color, width and margin for lines can be optionally specified. A comma
must be inserted as a placeholder for any item not specified.

Figure 45 illustrates horizontal and vertical lines in Windows and Motif.

Feal] | Fedz]

Fed3] | [Fieldd]
| Fes] | Feios]

Figure 45: Screens broken into quadrants by horizontal and vertical lines.

For a horizontal line, specify a row, r, and a starting and ending column, ¢7 and ¢2. For
a vertical line, specify a column, ¢, and a starting and ending row, r? and r2. Horizontal
lines are drawn at the top of the row specified, from the left side of column ¢7 to the
right side of column c2. Vertical lines are drawn at the left of the column specified,
from the top of row r1 to the bottom of row r2.

Page 98 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

To draw a line to the right of the last column on the screen or below the last row, specify
a row or column that is one greater than the last row or column. For example, on a
23x80 screen, <<vline (81, . .) >> draws a vertical line to the right of column 80.

style describes the appearance of the line. It can be any one of the following:

The single and dash styles happen to be portable between Windows, Motif and
OPEN LOOK. If the specified style is not supported under the GUI, a closely matching
style, or the default, single, is used.

color is the color of the line. It may be either a GUI dependent or GUI independent
color specification. For more on colors, refer to page 149.

Wi

JAM/PiRelease 1.4 1 December 92 Page 99

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

margin specifies the size of a blank margin area on either side of the line. The value of
width or margin may be in pixels, characters, grid units, inches, or millimeters. Refer
to the chart on page 96 for a list of unit suffixes. width defaults to one pixel. margin
defaults to zero.

Lines are drawn in *‘separator rows” and “separator columns” that run between grid
cells. Separator rows and columns are just wide enough to hold their contents. There-
fore, the width of a separator row is determined by the width of the widest line in the
row and its margins, plus the matte width and margins of any box edges in the row. The
same rule is true for columns. For more on boxes, see page 84.

Figure 46 illustrates where lines are drawn, and how they affect the grid.

A widget that in Draw Mode crosses a row or column containing a line, will overlap the
line in Test and Application Modes. A widget that in Draw Mode does not cross the row
or column boundary containing a line, will not overlap the line. Instead, the grid will
stretch if necessary. For example, in the above diagram, imagine a widget in row 3 that
spans columns 1 and 2. Regardless of how wide the two column widget becomes, it will
not cross the vertical line in column 3. On the other hand, a widget spanning columns
1, 2, and 3 will overlap the line, and the line will be drawn behind the widget. The de-
termining factor as to whether a widget overlaps a line is whether the widget crosses the
row or column containing the line-in Draw Mode. The same rule applies for the edges
of boxes.

Page 100 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

separato box
2 row

separator
column

P ONTLENem
LL L LLLL

Figure 46: Screen containing two lines and a box. The vertical line is speci-
fied for column 3, the horizontal line for column 4. Lines and boxes are drawn
in separator rows and columns that are sized just wide enough for them.

In locations where lines and boxes cross each other or overlap, the order that they ap-
pear in the screen level JPL module determines how they are layered. The first exten-
sion encountered in the module is the top—most object. The next object defined in the
module is layered beneath the first object, and so on.

RELATED EXTENSIONS

<<box(/1, c1, 12, c2 [, style, color, matte, margin])>>
<<frame (([style, color, matte, margin]) >>

JAM/PiRelease 1.4 1 December 92 Page 101

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

-<hoff--

<Voff..

specify a horizontal or vertical offset for a widget

oo e A B S R

R

SYNOPSIS
<<hoff (distance [units])>>
<<voff (distance [units])>>

TYPE
Field Extension
DESCRIPTION

JAMV/Pi calculates the default placement for widgets on a screen using a positioning
algorithm described in Chapter 3. This algorithm takes into account many factors, in-
cluding field justification, the white space available on the screen, and the size of wid-
gets.

The hoff and voff field extensions move a widget a specified distance from its de-
fault position. hoff moves a widget horizontally. voff moves it vertically. These
field extensions are applied after the positioning algorithm makes its calculations, so
there is no guarantee that widgets with an hoff or vof£ will not overlap other wid-
gets. Use these extensions sparingly, as too many hoff and voff extensions make a
screen hard to maintain.

distance indicates the distance to move. A signed distance indicates movement rela-
tive to the widget’s default position. An unsigned distance indicates an absolute loca-
tion relative to the top or left margin.

A positive distance for hof £ moves the widget to the right. A negative distance
moves it to the left. An unsigned distance places the widget relative to the left margin.

A positive-distance for vof £ moves the widget down. A negative distance moves it.
up. An unsigned distance places the widget relative to the top margin.

distance may be either an integer, in which case it represents the distance in pixels, or
it may be any floating point number followed by a units suffix. units may be charac-
ters, grid units, inches, or millimeters. Refer to the chart on page 96 for details.

A common use of hoff is to obtain equal horizontal spacing between a set of objects
when some large object above them on the screen has stretched the grid. Figure 47 illus-
trates such a screen.

Page 102 JAM/PjRelease 1.4 1 December 92

Chapter 6: Extension Refarence

Figure 47. Screens with two scale widgets and three multiline text widgets.
In the left hand screen, an oversized scale widget at top left has stretched
the grid, causing unequal spacing between the widgets below it. In the right
hand screen, an hoff screen extension on the middie multiline widget takes
care of the problem.

Figure 47 illustrates a use of relative offset. An alternative solution to the unequal spac-
ing of the widgets is absolute hof £ extensions on each of the three multiline widgets.
For example, <<hoff (1g)>> for the leftmost widget, <<hoff (6g)>> for the
middle widget, and <<hof £ {11g) >> for the rightmost widget. This places each wid-
get in a specific location relative to the left edge of the screen. With this model, you can
control exactly where each item on a screen is located.

RELATED EXTENSIONS

<<halign(value)>>
<<valign(value)>>

JAM/PjRelease 1.4 1 December 92 Page 103

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

<<|Con>>
-enable iconification and associate an icon with a screen -

SYNOPSIS
<<icon(name)>>

TYPE
Screen Extension
DESCRIPTION

This extension associates the icon specified by name with a screen. A screen with the
icon screen extension may be iconified (minimized) individually. A minimize push
button appears in the screen border, and the minimize option is enabled on the GUI
window menu. If the specified icon bitmap is not found, the default bitmap is used
instead.

W

Page 104 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

RELATED EXTENSIONS

<<iconify>>

<<nominimize>>

JAM/PiRelease 1.4 1 December 92 Page 105

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

~iconify:

start this screen as an icon

SYNOPSIS

<<iconify>>

TYPE
Screen Extension
DESCRIPTION

This screen extension specifies that the screen should initially display in an iconified
state. If the screen does not have an icon screen extension specified, then the default
" icon is used.

RELATED EXTENSIONS

<<icon (name) >>

Page 106 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

-label-

SYNOPSIS
<<label>>

TYPE
Field Extension
DESCRIPTION

This extension creates a label widget from a field. Fields protected from data entry and
tabbing default to this widget type. If you use this extension for a field that is not pro-
tected from data entry or tabbing, JAM allows tabbing and data entry in the widget, but
the user does not see the cursor in the widget. This is very confusing to the user. We
strongly recommend against using this extension on unprotected fields.

Label widgets for left justified fields anchor by default on their left. Label widgets for
right justified fields anchor by default on their right. The halign extension can be
used to change the default alignment. See Chapter 3 for details on the positioning algo-
rithm used in JAM/Pi.

Display

D|Sp|a}" TEX’[and ;ext andd
Protected Fields F';g}ggte

become

JAM/PiRelease 1.4 1 December 92 Page 107

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

<list-

-create a list box from an array

SYNOPSIS

<<list [{(no hbar, no vbar)}] >>

TYPE
Field Extension
DESCRIPTION

An array in JAM/Pi normally consists of one widget for each element in the array. This
extension transforms an array into a single widget called a list box. Items in a list box
can be selected, so they are appropriate only for checklists, radio buttons and menus on
item selection screens.

NOTE: Fields that are not selection criteria may be made into list boxes, but the devel-
oper must add callbacks to handle the selection event. Otherwise, the widget will look
like a list box, but no selection can take place because data entry fields have no selec-
tion semantics.

Normally, items in a list box are protected from data entry and clearing, as they are
selection criteria, rather than data entry fields. A radio button converted to a list box
allows only one item to be selected. A checklist converted to a list box allows multiple
items to be selected. Selected items appear in reverse video. Item selection screens that
contain list boxes copy the selection to the underlying screen.

List boxes can be tailored to your preference for scroll bars. If no parentheses appear
after the 1ist keyword, then the list box has scroll bars only when appropriate. A
scrolling array has a vertical scroll bar. A shifting array has a honzontal scroll bar. A
shifting and scrolling array has both scroll bars.

If parentheses appear after the 1ist keyword, then the list box has the specified level
of scroll bar turned off, regardless of need. For example, a List (no hbar) widget
has no horizontal scroll bar, but it always has a vertical scroll bar. A 1ist () widget
has both scroll bars, whether they are needed or not. If scroll bars are turned off, the
widget may still be shifted or scrolled by dragging the mouse cursor beyond the edge of
the widget in the desired direction, or with the JAM shift, scroll, or zoom keys.

NOTE: The settings regarding horizontal and vertical scroll bars are implemented as
hints to the window manager. Therefore they may be ignored under certain conditions.
For example in Windows 3.1, no vbar is ignored unless you also specify no hbar.

Page 108 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

A list box anchors vertically in the center of the area available for the array it replaces.
To make it anchor at the top of that area, give ita valign of 0.

Single widgets that represent JAM arrays can have only one foreground and one back-

-ground color. This means that the library routines that alter display attributes for ele-
ments or occurrences of arrays (the _e_, _i_ and _o_ variants of sm_achg and
sm_chg_attr) have no effect on list boxes.

Figure 49 illustrates list boxes in Windows and Motif.

@ List 2

o p —

Choice 1 | ¢ Choice 1 [
- 1 - . ~
Choice 3 |- Choice 3 =)

Figure 49: List boxes with vertical scroli bars in Windows, Motif and OPEN
LOOK. :

RELATED EXTENSIONS

<<multitext [((no hbar, no vbar)] >>
<<<optionmenu [(selectscreen, init, popup)] >>

JAM/PiRelease 1.4 1 December 92 Page 109

JAM/P/ for OSF/Motit, Microsoft Windows and OPEN LOOK

<maximize-

invoke a window maximized

SYNOPSIS
<<maximize>>

TYPE
Screen Extension
DESCRIPTION

This extension causes a JAM screen to appear in a maximized GUI window when the
screen is first displayed.

W + In"PifWindows, d"thaximized window occupies the entire MDI frame. To

brmg up your apphcauQn ina mammxzed MDI frame use Lhe Startupslze opuon

n is’ not supported.in Pi/Motif or Pi/OPEN.

RELATED EXTENSIONS

<<nomaximize>>

<<iconify>>

Page 110 ~ JAM/Pj Release 1.4 1 December 92

Chapter 6:_Extension Reference

~multiline--

create a multiline label for a menu or group button .

i3 SR Y

SYNOPSIS
<<multiline>>

TYPE
Field Extension
DESCRIPTION

Certain widgets in JAM/Pi have a label associated with them. These are: toggle buttons
(for checklists and radio buttons), push buttons and label widgets. Normally the label
has only one line of text. This extension enables the label to have multiple lines of text.

The first line of text is stored in the field’s on—screen data. The subsequent lines are
stored in the field’s off-screen data, so if you wish to have more than one line of text,
use a shifting field. The length of each text line in a multiline widget is equal to the
on-screen length of the field, and the number of lines is determined by the field’s shift-
ing length. For example, a field whose on—screen length is 5 and total length is 14 will
have 3 lines of text. The first five characters in the field will appear on line 1, the next
five characters on line 2, and the last four on line 3.

Use the ZOOM key in draw mode to enter text into the shifting field, remembering to
include sufficient spaces to make the text lines break properly.

A multiline widget occupies only one row of the grid, so it stretches the grid vertically
if it contains more than one line. You may use the noadj (rows) field extension to
prevent grid stretching for a multiline widget, as long as there is whitespace available
above or below the widget. Use valign to align the widget vertically.

JAM/PiRelease 1.4 1 December 92 Page 111

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

O

Figure 50 illustrates a multiline button in Motif and Windows. Follow the following to
steps create this button:

Create a field of length 8
Give the field a shifting length of 24
Protect the field from data entry and tabbing.

Give the field the menu edit.

Give the field the multiline extension.

AR

Enter the following text into the field:
A Buttonwith 3 lines

with 3
li

Figure 50: A multiline button in Windows (left) and Motif (right).

Page 112 JAM/P/Release 1.4 1 December 92

Chapter 6: Extension Reference

~multitext--

create a multiline text widget from an array

SYNOPSIS
- # <<multitext [{(no hbar, no vbar})] >>

TYPE
Field Extension
DESCRIPTION

An array in JAM/Pi normally consists of one text widget for each element in the array.
This extension transforms an array into a multi-line text widget. A multi-line text wid-
get is like a regular text widget, except that it has as many text lines as the array has
on-screen elements, all enclosed in the same border. Multi-line text widgets are appro-
priate for both word wrap arrays and arrays containing discrete data elements. They are
not appropriate for groups or menus.

Multiline text widgets can be tailored to your preference for scroll bars. If no paren-
theses appear after the multitext keyword, then the array has scroll bars only when
it is appropriate. A scrolling array has a vertical scroll bar. A shifting array has a hori-
zontal scroll bar. A shifting and scrolling array has both scroll bars.

If parentheses appear aftér the multitext keyword, then the widget has the specified
level of scroll bar turned off, regardless of need. For example, a multitext (no
hbar) widget has no horizontal scroll bar, but always has a vertical scroll bar. A
multitext () widget has both scroll bars, whether they are needed or not.

If scroll bars are turned off, the widget may still be shifted or scrolled by dragging the
mouse cursor beyond the edge of the widget in the desired direction, or with the shift,
scroll or zoom keys.

NOTE: The settings regarding horizontal and vertical scroll bars are implemented as
hints to the window manager. Therefore they may be ignored under certain conditions.
For example, all multitext widgets in OPEN LOOK have scroll bars.

Figure 51 illustrates how a multiline text widget appears, as opposed to a regular array,
in Windows and Motif.

Single widgets that represent JAM arrays can have only one foreground and one back-
ground color. This means that the library routines that alter display attributes for ele-
ments or occurrences of arrays (the _e i_ and _o_ variants of sm_achg and

— ey —

sm_chg_attr) have no effect on list boxes.

JAM/PiRelease 1.4 1 December 92 Page 113

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Figure 51: Multiline text widgets versus regular arrays in Windows and Motif.

RELATED EXTENSIONS

<<list {(no hbar, no vbar)] >>

Page 114 JAM/PiRelease 1.4 -~ 1 December 92

Chapter 6: Extension Reference

<noadj-

disable vertical or horizontal grid adjustment for a widget

SYNOPSI
<<noadj (direction) >>
TYPE

Field Extension

DESCRIPTION

JAM/Pi calculates the default placement for widgets on a screen using a positioning
algorithm described in Chapter 3. This algorithm takes into account many factors, in-
cluding field justification, the white space available on the screen, and the size of wid-
gets. Each widget occupies a certain number of rows or columns, referred to as grid
cells. At times, the algorithm stretches rows or columns in order to fit large widgets
onto a screen.

The noadj field extension indicates that a widget should not be considered by the po-
sitioning algorithm in its calculations. As a result, the elastic grid does not stretch to
accommodate the widget. This means that if the widget is large, it may run over into
cells that it would not normally occupy, whether those cells are occupied by another
widget or not. Thus, noadj can result in widgets overlapping each other or clipping the
edge of the screen.

direction may be either the literal word rows or columns. noadj (rows) turns off
vertical grid adjustment, and noadj (columns) turns off horizontal grid adjustment.

This extension is mostly used in the vertical direction for tall widgets that have space
available above or below them. noadj (rows) prevents the tall widget from distort-
ing the vertical alignment of other widgets that happen to lie in the same rows. You may
wish to use valign in combination with noadj, to control where a widget aligns ver-
tically. See page 94 for more on valign.

noadj is less useful horizontally, since the default behavior of the .positioning algo-
rithm is to use up available whitespace around a widget before stretching the grid.
noadj (columns) simply tends to make widgets overlap.

See Figure 21 on page 35 for an example of noadj. Refer to Chapter 3 for more on the
positioning algorithm.

RELATED EXTENSIONS

<<halign/(value)>>
<<valign(value)>>

JAM/PiRelease 1.4 1 December 92 Page 115

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

-noborder:-

suppress the GUI border for this screen

i R e

SYNOPSIS

<<noborder>>

TYPE
Screen Extension
DESCRIPTION

The GUI windows that contain JAM screens are normally drawn with a GUI border and
resize handles. The noborder screen extension suppresses the border and resize han-
dles, leaving only a bounding box.

e 2

Page 116 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

. Reservation Screen

Class
ﬁ&{ﬁ' Rage
Rate Avail
Ayan

Figure 52: noborder screens in PiWindows and PiMotif.

RELATED EXTENSIONS

<<notitle>>

JAM/PiRelease 1.4 1 December 92 Page 117

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

<noclose-

suppress the close option on the GUI window menu

AN A

SYNOPSIS
<<noclose>>

TYPE
Screen Extension
DESCRIPTION

This screen extension suppresses the close option on the GUI window menu. This pre-
vents the user from closing the window via the mouse.

RELATED EXTENSIONS

<<nomenu>>

o s A

extensioniismotisupported:

Page 118 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

-nomaximize-

prevent the user from maximizing a window

SYNOPSIS

<<nomaximize>>

TYPE
Screen Extension
DESCRIPTION

GUI windows usually have a maximize button in their border. This screen extension
removes the maximize button from the title bar and the maximize entry from the GUI
window menu. This prevents the user from maximizing the window.

RELATED EXTENSIONS

<<nomenu>>

JAM/PiRelease 1.4 1 December 92 Page 119

JAM/P| for OSFMotif, Microsoft Windows and OPEN LOOK

~<nomenu--

suppress the GUI window menu

S A R R i R A

SYNOPSIS

<<nomenu>>

TYPE
Screen Extension

DESCRIPTION

Each GUI window has a “window menu” with options on it for controlling various as-
pects of the window. This menu is accessed by a button that appears in the upper left
hand corner of the GUI window’s border. Items on the window menu depend upon the
GUI, but usually include: Restore, Move, Size, Minimize, Maximize and Close. Most
features on this menu also have other means of access, such as resize handles, the maxi-
mize button, or keyboard shortcuts. The nomenu screen extension suppresses the win-
dow menu button, and prevents the user from accessing the menu. It does not inhibit the
features listed on the menu if they are accessible through another means.

Page 120 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

shelltool - fusrbin/cs
| Bestore ARFS
| Move AltsF7
Size Alt+F8
| Minimize Alt+F9
| Maximize Alt+F10
Lower Alt+F3

Close Alt+F4

Figure 53: The GUI window menu in Motif.

JAM/PjRelease 1.4 1 December 92 - Page 121

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

~<nominimize-

prevent the user from minimizing a GUI window

SR SR S e R

SYNOPSIS

<<nominimize>>

TYPE
Screen Extension
DESCRIPTION

This screen extension prevents the user from minimizing a screen by removing the
minimize button from the border, and removing the minimize entry from the GUI win-
dow menu.

RELATED EXTENSIONS

<<icon{(name)>>

<<nomenu>>

Page 122 JAM/PiRelease 1.4 - 1 December 92

Chapter 6: Extension Reference

<nomove--

suppress the move option on the GUI window menu

O OO o RS e R g 4

R SRRy

SYNOPSIS

<<nomove>>

TYPE
Screen Extension

DESCRIPTION

This screen extension suppresses the move option on the GUI window menu. It does not
however suppress the move handle on the GUI window, so the window may still be re-
positioned by the user, unless the noborder or notitle extension is used as well.

O

RELATED EXTENSIONS

<<noborder>>

<<nomenu>>
<<notitle>>

JAM/PiRelease 1.4 1 December 92 Page 123

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

~noresize--

prevent the user from resizing a GUI window

S

SYNOPSIS

<<noresize>>

TYPE
Screen Extension

DESCRIPTION

GUI windows containing JAM screens are normally drawn with resize handles in the
window border. The noresize screen extension suppresses these handles, and re-
moves the “size” option from the GUI window menu. The user will no longer be able to
shrink or expand such a window. Since the window has no resize handies, the border
will be slightly narrower than normal. Figure 54 compares a window with resize han-
dles to one without resize handles.

Figure 54: A Motif screen with and without resize handles.

RELATED EXTENSIONS

<<noborder>>

Page 124 JAM/P/Release 1.4 1 December 92

Chapter 6: Extension Refersnce

~notitle--
suppress title bar
SYNOPSIS

<<notitle>>

TYPE
Screen Extension
DESCRIPTION

GUI windows normally have a title bar. This extension suppresses the title bar and the
decorations on it: the minimize, maximize and GUI window menu buttons. This is il-
lustrated in Figure 55.

Reservation Screen

Figure 55: A screen with the not it le extension. It has no title bar, mini-
mize button, maximize button or GUI window menu button.

If you wish to suppress only the text in the title bar, use the extension title (). See
page 142 for details.

RELATED EXTENSIONS

<<title(string) >>
<<noborder>>

JAM/PiRelease 1.4 1 December 92 Page 125

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

~nowidget-
don’t create a GUI widget for this field

SYNOPSIS

<<nowidget>>

TYPE
Field Extension
DESCRIPTION

This extension prevents a widget from being created for this field. Protected fields that
are non—display (such as menu control fields) default to this widget type.

In terms of positioning, a nowidget field occupies the number of columns that the
field was drawn in. These columns are not considered whitespace, even though they
contain no GUI objects. This means that other widgets on the screen are not free to ex-
pand into the area that a nowidget field occupies.

Page 126 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

~optionmenu-

create an option menu widget

SYNOPSIS
<<optionmenu [(selectscreen, init, popup)] >>

TYPE

Field Extension

DESCRIPTION

An option menu widget allows the user to pull up a list of options and choose one. The
user clicks on an indicator in the widget to pop up the list of options, or uses the arrow
keys to scroll through them. There are two variations of optionmenus. In the first varia-
tion, the list of options is contained in the off-screen occurrences of the field. In the
second, the list of options comes from another screen, much like item selection screen.

e e

In the first variation, the opt ionmenu extension is specified without arguments. This
converts a scrolling array into an option menu widget. The underlying array should:

® have one element.

@ have as many occurrences as there are options in the list.
@ be protected from data entry and clearing.

® not be protected from tabbing.

® be circular.

The initial data in the occurrences of the array make up the items in the option menu. In
the character world, this is sometimes called a cycle field, because the user can tab to
the field and cycle through the choices with the arrow keys. Use the library routine
sm_e_getfield to determine the user’s selection.

The first occurrence in the array is the default value in the field. If you want the field to
default to blank, add an extra occurrence to the array, and make the first occurrence
blank.

Single widgets that represent JAM arrays can have only one foreground and one back-
ground color. This means that the library routines that alter display attributes for occur-
rences of an array (sm_i_achg and sm_o_achg) have no effect on option menus
made from cycle fields.

In the second variation, the opt ionmenu extension is specified with a selectscreen
argument. This indicates that the values in the pop—up should be retrieved from another
screen, much like an item selection screen.

JAM/PiRelease 1.4 1 December 92 : Page 127

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

A JAM field with this variation of optionmenu should be a non—scrolling field or
array. Each array element gets its own optionmenu widget. If you wish the user to select
only from the list of choices on an optionmenu, protect the field from data entry and
clearing. If the field is not protected from data entry, the.user may type directly into the
optionmenu widget. This allows the widget to function like a Windows combo box.

The selectscreen contains the values for the optionmenu. The value fields on the se-
lectscreen must have the menu edit. The selectscreen is never actually displayed, but
all menu fields on it appear as entries in the optionmenu. The values on the selects-
creen may come from a database or other outside source. Since this screen is never
displayed, two additional arguments, /nit and popup specify when JAM should open
and close (but not display) the selectscreen. Opening and closing the selectscreen
initializes the opt ionmenu widget and performs any screen entry or exit processing
on the selectscreen. This allows the selectscreen populate the menu fields from a da-
tabase call at screen entry.

The init argument may have the value 1 or no_i. A value of i indicates that the se-
lectscreen should be opened and closed when the screen containing the opt ionmenu
widget is initialized. A value of no_ 1 indicates that it should not. fnit defaults to i.

The popup argument may have the value p or no_p. A value of p indicates that the
selectscreen should be opened and closed when the pop-up is activated by the user. A
value of no_p indicates that it should not. popup defaults to no_p.

Opening and closing the selectscreen may take a certain amount of time, particularly
if a database query is involved. Therefore, you will probably wish to open and close the
selectscreen as few times as possible. The default behavior, (1, no_p), is appropni-
ate if the values on the selectscreen do not change while the parent screen is displayed
or if several fields on the screen use the same-selectscreen. Other combinations are -
appropriate in other circumstances.

NOTE: A combination of (no_1i,no_p) is invalid, and causes the opt ionmenu
pop—up to come up blank. The selectscreen must be opened and closed at least once,
either upon initialization or pop—up.

Unless there is initial data in the JAM field, optionmenus with a selectscreen do not
contain any value until the user posts the pop—up.

If you wish to pass a value from an optionmenu on one screen to another screen via the
LDB, use the selectscreen flavor of optionmenu. The cycle field flavor of optionmenu
cannot effectively pass a value. It simply passes the first occurrence of the array.

Page 128 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

To convert a JAM field with an item selection screen (0 an opt ionmenu, specify the
item selection screen as the selectscreen. The user may then pop—up the optionmenu
to make a selection or press the HELP key and open the item selection screen and make
a selection that way.

WARNING: Do not attempt to post error messages from the field entry function of an
optionmenu widget. If the field entry function causes a message dialog box to ap-
pear, the list of options closes immediately, before the user has a chance to make a
selection.

Figure 56 illustrates optionmenus in Windows and Motif.

=0ptiunmenu

cyan
white

Figure 56: Option menus in Windows (left) and Motif (right). The right hand
widget on each screen has its pop—up posted.

RELATED EXTENSIONS

<<list>>

JAM/PiRelease 1.4 1 December 92 Page 129

JAM/P| for OSF/Motif, Microsoft Windows and OPEN LOOK

«pixmap»_

associate a bitmap or pixmap with a label

S s

S

SYNOPSIS

<<pixmap (name) >>

TYPE
Field Extension
DESCRIPTION

Normally, a label displays a text string. This extension replaces that text string with the
bitmapped image specified in name. It may be used wherever a label widget appears.
Specifically, in a protected field, or the label on a push button or toggle button. If you
plan to use a bitmap on a push button, remember to place some text in the menu field;
a blank menu field does not act as a menu.

Bitmaps display by default at the size they were created. If the field containing the bit-
map has a height or width extension, this is respected.

Page 130 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

JAM/PiRelease 1.4 1 December 92 Page 131

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Page 132 JAM/PjRelease 1.4 1 December 92

Chapter 6: Extenslion Reference

RELATED EXTENSIONS

<<icon (name) >>

JAM/PiRelease 1.4 1 December 92 Page 133

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

~pointer--

specify the pointer shape

B

SYNOPSIS

<<pointer (shape)>>

TYPE
Screen Extension
DESCRIPTION

This screen extension specifies the shape of the mouse pointer on this screen. Some
pointer shapes are listed below:

num_glyphs dot ll_angle sb_v_double_arrow
X_cursor dotbox Ir_angle shuttle

arrow double_arrow man sizing
based_arrow_down draft_large middlebutton spider
based_arrow_up draft_small mouse spraycan

boat draped_box pencil star

bogosity exchange pirate target
bottom_lt_zft_corner fleur plus ' _ {CrOSS

bottom_n' ght_corner gobbler question_arrow “top_left_arrow
bottom_side right_ptr

bottom_tee gumby right_side top _lf:ft_corner
box_spiral hand1 right_tee top_n. ght_corner
center_ptr hand2 rightbutton top_side

circle heart rtl_logo top_tee

clock lcon sailboat trek
coffee_mug .. Iron_cross . sb_down_arrow ul_angle -

cross left_ptr sb_h_double_arrow umbrella
Cross_reverse left_side sb_left_arrow ur_angle
crosshair left_tee sb_right_arrow watch
diamond_cross leftbutton sb_up_arrow xterm

Strip off the XC__ prefix when specifying the shape argument. The pointer shape may
also be controlled with the pointerShape resource. The pointerForeground
and pointerBackground resources control its color.

Page 134 JAM/PiRelease 1.4 - 1 December 92

Chapter 6: Extension Reference

JAM/PiRelease 1.4 1 December 92 Page 135

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

~pushbutton.-

create a pushbutton widget .

SYNOPSIS
<<pushbutton>>

TYPE
Field Extension

DESCRIPTION

This extension creates a pushbutton widget from a field. Menu fields default to this
widget type. For proper functionality a field with this extension should be a menu field,
and it should be protected from data entry and tabbing. If it is not, the developer must
add callbacks to handle selection processing. This is not recommended.

A push button widget performs an action when activated by the mouse or keyboard. It
appears on the display as a button with a centered label and a drop shadow that causes
it to protrude from the screen. Push buttons may be navigated via the keyboard or
mouse just like character JAM menus.

You may wish to protect push buttons from clearing, as you would not want the user to
inadvertently clear the label text in the button.

Page 136 JAM/PjRelease 1.4 1 December 92

Chapter 6: Extension Reference

Second

Figure 57: Push Buttons in Windows and Motif

JAM/PiRelease 1.4 1 December 92 Page 137

JAM/Pi for OSF/Maotif, Microsoft Windows and OPEN LOOK

~radiobutton.-

- create a radio style toggle button

SYNOPSIS
<<radiobutton>>

TYPE

Field Extension

DESCRIPTION

This extension creates a radio style toggle button from a field. Members of radio button
groups default to this widget type. To function properly the field must be a member of
a group. If it is not, the developer must add callbacks to handle selection processing.
This is not recommended.

MO

One potential use for this extension is for a field that allows zero or one selection. In
JAM, such a field must be created as a checklist group, since a radio button forces one
and only one selection. The enforcement of only one selection in the checklist-would be
handled by the developer via a validation function. If the developer wished such a field
to appear on the display as a radio style toggle button this extension would be necessary.

EEI-_ToggTE

@ First ™ First

O Second
O Third

© Second
O Third

] second
O Third

Page 138 JAM/PiRelease 1.4- 1 December 92

Chapter 6: Extension Reference

-scale-

create a scale wndget

Erets i

SYNOPSIS
<<scale(minimum-value, maximum-value, decimal-places)>>

TYPE
Field Extension
DESCRIPTION

This extension transforms a field into a scale widget. A scale is a combination widget
consisting of a slider that runs between minimum-value and maximum-value, and a
label that changes to reflect the current value. decimal-places mdlcates the number of
decimal places to be used in the value.

The contents of the underlying JAM field will be the value shown in the label, so you
may use sm_getfield and sm_putfield to retrieve and set the value. The field
should be long enough to hold the value and a sign, if necessary. A scale widget defaults
to the size of the underlying JAM field. You may wish to give a scale a width field
extension in order to widen it. The greater the range of values, the wider you should
make the widget. You may also wish to give the field a no autotab edit.

For compatibility with character JAM, make a scale field digits only.or numeric, and
add a range check.

Figure 59 illustrates scale widgets in Windows and Motif.

e r' Scale

Figure 59: Scale widgets in Windows, Motif and OPEN LOOK.

JAM/P/Release 1.4 1 December 92 Page 139

JAM/P; for OSF/Motit, Microsoft Windows and OPEN LOOK

~space-

equally space the elements of an array

SYNOPSIS

<<space (distance [unitg]) >>

TYPE
Field Extension
DESCRIPTION

Array elements are created by default as separate text widgets. These widgets are sub-
ject to the elastic grid. This means that there may not always be the same amount of
space between array elements depending on how the grid has stretched. The space
field extension guarantees equal spacing between each array element.

distance specifies the amount of space between each element. distance may be either
an integer, in which case it represents the distance in pixels, or it may be any floating
point number followed by a units suffix. units may be characters, grid units, inches, or
millimeters. Refer to the chart on page 96 for an explanation.

The total height of an equally spaced vertical array is the sum of the heights of each
element plus the space between the elements. The row height for the purposes of the
elastic grid is the total height of the array divided by the number of rows it occupies.
The same is true for the width and column size of a horizontal array.

The space field extension has no effect on multi—element arrays that are contained in
single widgets, like those with the multitext or 1ist extensions.

Page 140 JAM/P/Release 1.4 1 December 92

Chapter 6: Extansion Reference

~<text-

create a text widget -

SYNOPSIS

<<text>>

TYPE
Field Extension
DESCRIPTION

This extension creates a text widget from a field. Unprotected data entry fields default
to this widget type. Protected fields can become text widgets with this extension. Their
behavior depends on the specific protections. For example, the cursor will not stop at a
field protected from tabbing.

If you use this extension on a selection field (ie.—a group member or menu field), the
selection event will occur, but the user may have no way to tell, because the widget has
no armed or selected state. Such use is not recommended.

Text widgets for left justified fields anchor by default on their left. Text widgets for
right justified fields anchor by default on their right. The halign extension can be
used to change the default alignment. See Chapter 3 for details on the positioning and
widget sizing algorithms used in JAMV/Pi.

Figure 60 illustrates text widgets in Windows and Motif.

Figure 60: A Text widget in Windows and in Motif.

JAM/PiRelease 1.4 1 December 92 . Page 141 .

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

~title--

-change the title bar on a screen : o

SYNOPSIS

<<title(string)>>

TYPE

Screen Extension
DESCRIPTION

By default, each screen has a title bar. The contents of the title bar default to the name
of the file that contains the screen binary, for example, mainscrn. jam (in Pi/Motif,
the extension is dropped in the title bar).

The title screen extension places string in the title bar of the screen, instead of the
screen’s file name. To blank out the text in the title bar, specify title (). To remove
the title bar altogether, use the not it le extension.

RELATED EXTENSIONS

<<notitle>>

Page 142 JAM/PiRelease 1.4 1 December 92

Chapter 6: Extension Reference

-togglebutton.

create an in/out style toggle button

e e rm——

SYNOPSIS
<<togglebutton>>

TYPE
Field Extension
DESCRIPTION

This extension creates an infout style toggle button from a field. Members of radio but-
ton and checklist groups without boxes default to this widget type. To function properly
the field must be a member of a group. If it is not, the developer must add callbacks to
handle selection processing. This is not recommended.

Figure 61: A set of Motif infout style toggle buttons. The first item is selected.

JAM/PiRelease 1.4 1 December 92 ~-Page 143

Chapter 7: Setting Application Defaults

Chapter 7
Setting Application Defaults

Each GUI provides its own method for setting defaults. Pi/Motif uses resource files, and
Pi/Windows uses initialization files. Resource and initialization files are integral to the
GUL They control how the GUI and applications running under the GUI appear and act.
The developer sets up the initial state of these files, but the user is free to change these
settings. Allowing users to set their own preferences is fundamental to GUI philosophy.

7.1

RESOURCE AND INITIALIZATION FILES

The structure of resource and initialization files is determined by the GUI. Preferences
are indicated by setting attribute/value pairs. JAM/Pi applications use resource and ini-
tialization files to determine values for a variety of attributes including:

® Default fonts and colors

® Mapping between JAM colors and GUI colors
® GUI independent font and color names

® Application behavior

7.1.1
Resource and Initialization File Names

Each application may have an application specific resource or initialization file. The
name of this application specific resource or initialization file is determined by the first
argument to the JAM initialization routine, sm_X11init. This routine is called from
the main routine of your application (usually either jmain.c or jxmain.c). If the

JAM/PjRelease 1.4 1 December 92 Page 145

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

first argument to sm_X11init is, for example, the string “myapp”, then the applica-
tion specific resource file in Pi/Motif and P{/OPEN LOOK is named myapp, and the
application specific initialization file in Pi/Windows is named myapp.ini. The de-
fault value for this argument in the distributed software is “XJam”. in Pi/Motif,.
“OLJam” in Pi/OPEN LOOK and “Jam” in Pi/Windows.

7.1.2
Structure of Resource and Initialization Files

Resource files and initialization files have a similar structure. Each is arranged as a list
of attributes to be set along with a value for each attribute.

Page 146 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

SOUrces an

JAM/PiRelease 1.4 1 December 92 : Page 147

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

7.1.3
‘Location of Resource and Initialization Files

Page 148 JAM/PiRelease 1.4 1 December 92

Chapter 7. Setting Application Defaults

7.2

COLORS

JAM/Pi offers access to many more color choices than character JAM. Resource and
initialization files provide a mapping between JAM colors and GUI colors. JAM/Pi
also provides a way to set up a GUI independent color naming scheme in the resource
and initialization files. These colors can be used in the field and screen extensions.

7.21
Setting JAM Palette Colors

Character JAM provides sixteen colors to choose from, eight highlighted and eight un-
highlighted. In the resource or initialization file, you can map these sixteen JAM colors
to any of the colors supported by the GUIL This mapping between JAM colors and GUI
colors defines your JAM/Pi palette. Keep in mind that since end users have access to
resource and initialization files, they are free to change the palette. The sixteen JAM
colors that may be defined in the palette are:

black red hi_black hi_red
blue magenta hi_blue hi_magenta
green yellow hi_green hi_yellow
cyan white hi_cyan hi_white

JAM/PiRelease 1.4 1 December 92 Page 149

JAM/Pj for OSF/Motif. Microsoft Windows and OPEN LOOK

Page 150 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

722

Colors Beyond the JAM Palette

For most applications, sixteen colors are sufficient. It is stylistically undesirable to
flood screens with a multitude of hues, as they tend to distract the user. If additional
colors beyond the sixteen defined in the the palette are needed though, they may be
specified in the field or screen extensions.

The £g and bg extensions allow the developer to specify foreground and background
colors for screens and widgets. These extensions can use either GUI specific colors or
GUI independent color aliases. g and bg are explained in Chapters 5 and 6. GUI inde-
pendent color aliases are explained in section 7.4 of this chapter.

JAM/P/Release 1.4 1 December 92 Page 151

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

o:_s.. Th : {cfofe;: the ap

Page 152 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

7.3

FONTS

- JAM/Pi uses the standard GUI conventions for specifying fonts by name. For portabili-
ty, font names can be aliased. Each application has a default font specified in the re-
source or initialization file. In addition, fonts may be specified for individual fields and
screens.

7.3.1
Where Fonts are Specified

There are several places to set fonts in JAM/Pi. Each type of specification has its own
scope.

The Application Default Font

The application default font is specified in the resource or initialization file. In the ab-
sence of any other font specification, the application default font will be the font used
for the entire application.

JAM/PiRelease 1.4 1 December 92 .Page 153

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

M

The Default Screen Font

The default screen font is either the application default font or a font specified via the
font screen extension. A font screen extension overrides the application default font
for a particular screen. In the absence of any other specification, this font will be used
by all display text and widgets on the screen. The font screen extension takes either a
GUI specific font name or a GUI independent alias. See page 89 for more on the font
screen extension. See section 7.3.2 for an explanation of font naming, and section 7.4
for an explanation of font aliasing.

A Widget’s Font

A widget’s font is either the default screen font or a font specified via the font field
extension. A font field extension overrides the default screen font for a particular
widget. The font field extension takes either a GUI specific font name or a GUI inde-
pendent alias. See page 89 for more on the font field extension. See section 7.3.2 for
an explanation of font naming, and section 7.4 for an explanation of font aliasing.

Page 154 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

7.3.2
Naming Fonts

Each GUI has its own font naming convention. JAM/Pi can use either a GUI specific
font name or a GUI independent font alias. This section describes the Windows, and
Motif and OPEN LOOK font naming conventions. Section 7.4 describes aliasing.

Windows font naming

Pi/Windows uses the following font naming convention:
fontname—pointsize{-bold] [-italic)] [-underline]

fontname and pointsize are required values. bold, italic and underline are op-
tional. For example:

Tms Rmn-24-bold

means Times Roman 24 point bold. Use the MS Windows Control Panel to find out
what fonts are installed on your system. An additional font not listed in the Control Pan-
el is terminal. This font is the same as the OEM_FIXED_FONT that can be specified
in the initialization file as an application default font.

If the specified font is not found, it is either synthesized or replaced by a closely match-
ing font according to the MS Windows GDI font mapping scheme. This scheme assigns
weighted values to the various properties of a font, and then selects a font that is close
to the one specified. Character set is given the greatest weight, followed by pitch, fami-
ly, and face, then comes height and width, followed by weight, slant, underline and
strikeout characteristics. Refer to Reference Volume 1 of the MS Windows SDK docu-
mentation for a full description of the GDI and the various font characteristics.

Motif and OPEN LOOK font naming!

In Motif and OPEN LOOK, the simplest way to find out what fonts are available on
your system is to run the x1sfonts program provided with the GUI. There are two
common ways of specifying font names. The first is a simple font name, like “courier”

1. This section on Motif and OPEN LOOK font names is adapted from Logical Font Description Conven-
tions, Version 1.3, MIT X Consortium Standard.

Copyright © 1988 by the Massachusetts Institute of Technology.

Copyright © 1988, 1989 by Digital Equipment Corporation. All rights reserved.

Permission to use, copy, modify, and distribute this appendix for any purpose and without fee is hereby
granted, provided that the above copyright notice and this permission notice appear in all copies. MIT and Dig-
ital Equipment Corporation make no representations about the suitability for any purpose of the information
in this document. This document is provided “as is” without express or implied warranty.

JAM/PiRelease 1.4 1 December 92 Page 155

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

or “fixed”. The second is for forit names that conform to the XLFD font specification.
These may be identified by the prefix “—". XLFD fonts use the following naming con-
vention:

—foundry-family—-weight- slant- width— style—pixel size—point size—x resolution—
y resolution-spacing- average width— charset registry—-charset encoding

Abbreviated definitions for the above values appear below. See the X Protocol Refer-
ence Manual for detailed explanations.

foundry Identifies the company that designed the typeface.

family Identifies the font family, for example, courier. Spaces are allowed in
family names.
weight Nominal blackness of the font. Examples are: medium, demi-bold, bold..
slant A code that indicates the slant of the font. Options are:
R roman, I italic, O oblique, RI reverse italic, RO reverse oblique, OT other.
width Nominal width of characters. Examples are: normal, condensed, narrow.
style General style description, such as: serif, sans serif, informal, decorated.

pixel size The body size of the font in pixels at a particular point size and y resolution.

point size Device independent point size. Expressed in deci—points, eg.—120 means
12 point type.

x resolution Horizontal resolution of the font in pixels per inch (dpi).
y resolution Vertical resolution of the font in pixels per inch (dpi).

spacing A code that indicates the spacing of the font. Options are:
P proportional, M monospaced, C character cell.

average width Average width of the characters in the font in deci-pixels (1/10th pixels).
For the default screen font, this value determines the grid size. For a text
widget, it determines the width of the widget.

charset registryThe registration authority that owns the font’s character set encoding.
charset encodingThe registered name that identifies the coded character set.

Case is ignored in the font name specification. Wildcards may be used for any of the
“ values, but the more exact a specification is, the more likely that the correct font is se--
lected.

Example Font Specifications
-adobe-helvetica-bold-r-normal--24-240-75-75-p-130-1s08859-1

helvetica-bold-r-normal--24-240%

~*helvetica*24*

Page 156 JAM/PiRelease 1.4 1 -December 92 .

Chapter 7: Setting Application Defaults

The xfontsel Program

There is a program in some implementations of Motif and OPEN LOOK called
xfontsel that provides a convenient. interface for selecting fonts. It consists of a se-
ries of pull-down menus for selecting the various attributes of a font. Use this program
to specify a font, and then “select” and paste the font specification into JAM/Pi.

The xfontsel screen is shown below.

quit || select 1 font matches

fndry-fmly-wght-slant-sWdth-adstyl-pxlsz-ptSz

*

resx-resy-spc-avgWdth-rgstry-encdng|
0
-*-times-bold-r-*-*-14-*-*-*-%1,,

ABCDEFGHIJKLMNOPQRSTUV| ..
abcdefghijklmnopgrstovwxyz ,
0123456789

Figure 62: The xfontsel program. 24

To use xfontsel, select values from the pull-down menus associated with the vari-
ous attributes to narrow down the list of fonts. A specification using the selected values
appears in the center of the screen, and a sample of the first font that matches it appears
beneath. The number of fonts that match the specification is listed at the upper right. On
pull down menus, only those values that result in a valid font name based on the specifi-
cation so far are available; all other values appear greyed out. If too many choices on
menu appear greyed out, go to another selection and enter an asterisk.

When you are happy with the specification, click on the select button to copy it into
the paste buffer. You may then paste this specification into the appropriate location in
JAM/Pi by clicking the middle mouse button or selecting paste from the menu bar.

JAM/PiRelease 1.4 1 December 92 Page 157

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

7.4
ALIASING: GUI INDEPENDENT FONTS

AND COLORS

Font and color aliasing allows the developer to specify GUI independent font and color
names in the field and screen extensions. This enhances the portability of JAM/Pi and
simplifies the extensions, by moving the sometimes complex font and color specifica-
tions to the resource or initialization file, where they need be set only once.

Font and color aliases are made up by the developer, and their identities are resolved in
an alias list in the resource or initialization file.

If you wish to use the JAM palette color names, like hi_red, in foreground or back-
ground extensions, you must add them to the list of color aliases.

W

Page 158 JAM/P/Release 1.4 - 1 December 92

Chapter 7: Setting Application Defauits

Restrictions on Aliasing

Font and color aliases may be used in the field extensions, the screen extensions, and in
the specification of the JAM/P: palette.

W

JAM/PiRelease 1.4 1 December 92 ‘Page 159

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

7.5

WINDOWS INITIALIZATION OPTIONS

The following sections describe options that are particular to Pi/Windows.

7.5.1
The [Jam Options] Section of the
Initialization File

The following behavior and appearance options may be set in the [Jam Options]
section of the application specific initialization file.

GrayOutBackgroundForms

This setting controls whether text on inactive screens is grayed out. While this behavior
is usually desirable, there is a performance tradeoff associated with this functionality,
since the background forms must be redrawn. GrayOutBackgroundForms defaults
to of £. To enable graying out, set this option to on.

FrameTitle

This setting controls the title text in the MDI frame around a JAM application. The
default title string is the value of the first argument to sm_X11init in jmain.c or
jxmain.c (see section 7.1.1).

StartupSize

This option, if set to maximized, brings up a JAM application in a maximized MDI
frame. If it is set to minimized, then the application comes up in an iconified frame.
Any other value brings up the application in a standard size frame. The default is to use
a standard size frame.

Page 160 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

StatuslLineColor

- This option sets the default background color for the JAM status line. For compatibility
with other windows applications, it defaults to grey. Specify either an RGB value or a
GUI independent color alias to change the default status line background. Messages
with embedded display attributes can override the default background color.

SMTERM

This option overrides the SMTERM environment variable for Pi/Windows applications.
It allows both DOS and Windows to use JAM without the need to change the environ-
ment. To take advantage of this feature, set SMTERM to mswin in the initialization file,
and to a DOS terminal type in the environment or SMVARS file. Example DOS terminal
types are: cga, ega, mono, softcol and softbw.

7.5.2 _
The Windows Control Panel and win. ini File

Default attributes for Windows may be set from the “Windows Control Panel”, usually
found in the “Main” folder. From the Control Panel, you can setup the color scheme for
Windows, as well as other defaults. The Control Panel alters the win.ini file,
supplied by Microsoft. Refer to the MS Windows documentation for details of how to
use the control panel

Some settings, such as the default color for buttons in Windows 1.2, can only be made
by editing the win. ini file directly. A supporting document, the winini . txt file,
is distributed with Windows. Read this file for instructions on altering win . ini.

7.6.3

Highlighted Background Colors in Windows

Note that in Pi/Windows, highlighted background colors are different from unhigh-
lighted background colors. In character JAM on a PC under DOS, there is normally no
difference between highlighted and unhighlighted background colors.

JAM/PiRelease 1.4 1 December 92 Page 161

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

7.5.4
Sample jam. ini File

[Jam Colors]

Black=0/0/128
Blue=JYACC Blue
Green=0/255/0
Cyan=0/255/255
Red=255/0/0
Magenta=255/0/255
Yellow=128/128/0
White=255/255/255
HBlack=0/0/0
HBlue=0/128/128
HGreen=0/128/0
HCyan=128/128/128
HRed=128/0/0
HMagenta=128/0/128
HYellow=255/255/0
HWhite=255/255/255

[Jam Fonts])

éy stemFont=0EM_FIXED_FONT
[Jam Options]
érayOutBackgroundForms:Off
;rameTitle=JAM
;Startupsize=Maximized
éMTERM:mswin
gtatusLineColor:lZB/128/128
[Jam ColorTable]

&YACC Blue=0/0/128

[Jam FontTable])

i

Big Script=script-24-bold

Page 162 - JAM/PjRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

7.6

MOTIF AND OPEN LOOK COMMON
RESOURCE OPTIONS

This section describes resources that are common to Pi/Motif and Pi/OPEN LOOK.

7.6.1

Motif and OPEN LOOK Behavioral Resources

Three resources control the behavior of JAM/Pi on an application-wide basis.

The baseWindow Resource

This resource controls whether a base window appears on the display. The base window
is a special window that contains only a menu bar, a keyset, and a status line. If base-
Window is:

® true (default) A base window appears on the display.

® false No base window appears on the display. Any menu bar, keyset or status line
that would have appeared in this window will be lost. See formStatus
and formMenus to determine which status line and menu bars appear in
the base window.

The formStatus Resource

This resource controls where status messages appear. Note that there is a difference be-
tween status and error messages. Error messages appear in dialog boxes in JAM/P..
Status messages appear on the status line. This resource controls whether status mes-
sages appear on the base window’s status line (the default), or on the active form’s (or
window’s) status line. The existence of the base window is controlled by the base-
Window resource (see above).

There are five levels of status messages:
1. d_msg_line-

2. wait

3. field

4. ready

5. background’

JAM/PiRelease 1.4 1 December 92 Page 163

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

Background status messages can only appear in the base window. If formstatus is:

® false

® true

(Default) All status messages appear in the base window. Individual
screens have no status line of their own. If there is no base window
(ie—baseWindow: false), then there is no status line at all.

Background status messages appear in the base window. All other status
messages appear in a status line on the active screen. The status line on indi-
vidual screens appears at the bottom of the screen. Only the active screen’s
status line is updated. If a screen is not active, then its status line is not up-
dated.

The formMenus Resource

This resource controls whether individual forms (or windows) have their own menu
bars. If formMenus is:

® false

@ true

(Default) Only the base window displays a menu bar. Individual screens
display no menu bar. Menu bars of all scopes, including screen-level, ap-
pear in the base window. If baseWindow is also false, then no menu bars
appear at all.

Individual screens display their own menu bar. Screens display menu bars
of the scope KS_FORM (screen~level) and KS_OVERRIDE (override-le-
vel). Only the active screen’s menu bar is updated and active. Menu bars
on inactive screens are inactive.

The base window, if there is one, displays menu bars of the scope
KS_APPLIC (application—level) and KS_SYSTEM (system-level).
Whether the application-level or system—level menu bar is displayed in the
base window may be toggled via the SFTS logical key. If there is no base
window, then no system or application level menu bars are displayed.

Suggested Combinations of basewindow,
formMenus and formStatus
1. For compatibility with Pi/Windows and backward compatibility with

controlled release versions of Pi/Motif, the default settings should be
used:

XJam*baseWindow: true
XJam*formStatus: false
XJam*formMenus: false

2. For full functionality with menu bars and status lines local to screens:

Page 164

JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

XJam*baseWindow: true
XJam* formStatus: true
XJam* formMenus: true

3. If you wish to have no base window:

XJam*baseWindow: false
XJam*formStatus: true
XJam*formMenus: true

Be sure not to use application level menu bars or background status
messages with this third combination, as they will not appear.

o)

YO0K., replacethé

7.6.2
Restricted Resources

The following items in the distributed XJam file must not be changed:

XJam*...*translations
XJam*keyboardFocusPolicy
XJam*...*traversalOn

All other items (including: Mwm*XJam*keyboardFocusPolicy) may be changed
at the developer’s or user’s discretion.

7.6.3
Suggested Resource Settings

We strongly suggest the following resource setting.
XJam*focusAutoRaise:true

This setting will bring a JAM screen to the top of the display when it gets the focus. It
is slightly different than the MWM resource of the same name.

o)

JAM/PiRelease 1.4 1 December 92 Page 165

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

7.6.4

The rgb. txt File in Motif and OPEN LOOK

Motif and OPEN LOOK colors are listed in the rgb. txt file, often found in the direc-
tory /usr/lib/X11 in Motif and in SOPENWINHOME/11ib in OPEN LOOK. The
rgb. txt file lists color names along with their red, green, and blue components. The
colors appearing in this file are system dependent. Some common color names are:

alice blue
antique white
aquamarine
azure

beige

bisque

black
blanched almond
blue

blue violet
brown
burlywood
cadet blue
chartreuse
chocolate
coral
cornflower blue
comnsilk

cyan

dark goldenrod
dark green
dark khaki
dark olive green
dark orange
dark orchid
dark salmon
dark sea green
dark slate blue
dark slate gray
dark slate grey
dark turquoise
dark violet
deep pink

Page 166

deep sky blue
dim gray

dim grey
dodger blue
firebrick
floral white
forest green
gainsboro
ghost white
gold
goldenrod
gray

green

green yellow
grey
honeydew
hot pink
indian red
ivory

khaki
lavender
lavender blush
lawn green
lemon chiffon
light blue
light coral
light cyan
light goldenrod
light gray
light grey
light pink
light salmon
light sea green

JAM/P/Release 1.4

light sky blue
light slate blue
light slate gray
light slate grey
light steel blue
light yellow

lime green

linen

magenta

maroon

medium blue
medium orchid
medium purple
medium sea green
medium slate blue
medium turquoise
medium violet red
midnight blue
mint cream

misty rose
moccasin

navajo white
navy

navy blue

old lace

olive drab

orange

orange red

orchid

pale goldenrod
pale green

pale turquoise
pale violet red

1 December 92

papaya whip
peach puff
peru

pink

plum
powder blue
purple

red

rosy brown
royal blue
saddle brown
salmon
sandy brown
sea greenseashell
sienna

sky blue
slate blue
slate gray
slate grey
snow

spring green
steel blue
tan

thistle
tomato
turquoise
violet

violet red
wheat

white

white smoke
yellow
yellow green

Chapter 7: Setting Application Defaults

7.7

MOTIF RESOURCE OPTIONS

The following sections describe resources and options that are particular to Pi/Motif.

7.7.1

Motif Global Resource and Command Line

Options

The resources in the table below are global settings for an application. They may also
be specified on the command line, as may the standard X Toolkit command line op-
tions. Refer to the X Toolkit manual for a full list of command line switches.

NOTE: D indicates the default.

Resource Type Command Line Description
fontList string -fn font Sets the application default font.
foreground string -bg color Sets unhighlighted white

foregrounds to color.
background string -fg color Sets unhighlighted black
backgrounds to color.
setSensitive |boolean | -setSensitive |Controls whether screens that
(on) are not at the top of the window
stack appear grayed out. You
+setSensitive | may wish to turn this off, since
(off) D it slows down the application,
and may cause other problems.
ownColormap |boolean | -cmap (on) Tells JAM whether to use its
+cmap (off) D own color map. Turning JAM's
color map on is useful only on
systems with limited colors.
cascadeBug boolean | ~cascadeBug Fixes a bug that appears in
(on) some versions of Motif 1.1.
+cascadeBug The bug causes popup menus to
(off) D appear as small, empty boxes.

JAM/PiRelease 1.4

1 December 92

Page 167

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Resource Type Command Line Description

indicators boolean |-ind (on) Controls whether the Motif
+ind (off) D shift/scroll indicators are used.
NOTE: There are also JAM

shift/scroll indicators. To turn
these off, use the IND_OP-
TIONS keyword in the Setup
File. To change the characters
used for the JAM indicators
use the ARROWS keyword in
the Video File. See the JAM
Configuration Guide for more
information.

The following illustrates a sample command line in Pi/Motif:

xjxform -fn ’‘-*courier*r*12’' myscreen.jam

7.7.2

Widget Hierarchy in Pi/Motif

Widgets are arranged in a parent—child hierarchy. The following tables describe the
widget hierarchy in Pi/Motif. This is useful to know if you wish to set resources for
particular widgets or classes of widgets in an application. Refer to the OSF/Motif Pro-
grammer’s Guide for more information on widgets, widget classes, and the resources
associated with them.

Base Screen

The base screen in a JAM application is an ApplicationShell widget. Its class is
given by the first argument to the sm_X11init initialization routine, and its name is
the name of the application program (the value of argv [0] inmain). IfthebaseWin-
dow resource is set to f£alse, then this shell is created but never displayed.

NOTE: Avoid application program names that contain periods or asterisks, as the re-
source parser interprets these as special characters. Screen name extensions, though,
are removed when they are used as widget names.

By default, JAM has class name XJam and application name xjxform.

Page 168 JAM/PiRelease 1.4 1 December 92

Chapter 7; Sefting Appiication Defaults

The widget hierarchy for the base Screen is:

Widget Class Name
ApplicationShell... (class given by sm_X11linit) |[application-name
XmMainWindow main
XmDrawingArea status
XmRowColumn menubar
XmForm workarea
XmPushButton softkey
XmPushButton softkey

The workarea gets softkeys only when softkeys are enabled, and the main screen
gets a menu bar only when menu bars are enabled (these are mutually exclusive). The
status area is used for the JAM status line in the base screen.

Dialog Boxes

File selection dialog boxes are created by the sm_f i1lebox library routine.

Message dialog boxes are created when a message needs to be posted. Error message
dialogs are created by XmCreateExrrorDialog and query message dialogs are
created by XmCreateQuestionDialog. JAM specifies the message string, which
buttons appear, and which button is the default. The JAM message call can specify the
icon to appear. Other options, like the title bar text, can be set in the resource file.

The children of dialog boxes are handled by Motif. Refer to your Motif manual for de-
tails.

JAM Screens

The widgets used for JAM screens are all subclasses of the Motif shell widget. The
shell’s parent is the ApplicationShell.

JAM/PiRelease 1.4 1 December 92 Page 169

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

————————————————————— ettt

The widget hierarchy for JAM Screens is:

Widget Class Name
...TopLevelShell screen-name
XmDialogShell message_popup
XmMessageBox... message
XmDialogShell filebox_popup
XmFileSelectionBox. .. fileBox
XmMainWindow scroll
XmDrawingArea clip
XmDrawingArea. .. area
XmDrawingArea status
XmScrollBar scrollbar
XmScrollBar ' scrollbar
XmRowColumn menubar

JAM screens have a status line only if the value of the formStatus resource is
true. They have a menu bar only if formMenus is true.

New screens created in draw mode are named shell before they have been saved.

Since the name of the shell used for JAM screens is the screen name, resources may be
restricted to a specific screen by beginning the specification with class* screen_name.
For example, XJam*empscrn... begins a specification for a screen named
empscrn in an application of class XJam. Resources restricted to a named screen are
equivalent to screen extensions. For example,

XJam*empscrn.background: gold

is the same as specifying a <<bg (gold) >> as a screen extension on empscreen. The
resource setting overrides the extension.

area is the parent widget for all the widgets on a JAM screen. If you place your own
widgets on a JAM screen, you'll need the widget id of area. The library function
sm_drawingarea returns the widget ID of area. A related function,

Page 170 JAM/PiRelease 1.4 1. December 92

Chapter 7: Setting Aggilcation Defaults

sm_translatecoords, translates JAM screen coordinates into pixel coordinates
relative to the upper left hand corner of area.

Fields

JAM fields are created as child widgets of area. If a field has a name, its widget is
given that name. If a field doesn’t have a name, its widget is named _£1d#, where #is
the field number (this is analogous to the JAM f2struct utility). In a named array
consisting of multiple widgets, each widget has the same name. Widgets that represent
multiple fields take the name of their first field.

The library routine sm_widget returns the widget ID of a widget. Asterisks in the
table below indicate which widget is returned by sm_widget in cases where there is
more than one possibility. If the widget returned by sm_widget is not the one you are
looking for, use XtParent to obtain the widget id of its parent. This is particularly
useful when working with scale widgets and scrolling multiline and list box widgets.

Some entries in the table have prefixes or suffixes with their names. For example,
field—nameSW indicates that the widget has name of the field followed by the literal
characters SW.

The widget hierarchy for JAM fields is as follows:

Object Widget Class Name

Data Entry Field | .. .XmText field—name
.XmDrawingArea field—-name
XmText* field-name

B?tt:;l Egﬁiﬁld XmArrowButton indicator

XmArrowButton indicator
Protected Field .. .XmLabel field-name
Menu Field . . .XmPushButton field-name
Group Member | . ..XmToggleButton field-name
Multiline Text .. .XmText field-name

JAM/PiRelease 1.4 1 December 92 Pagse 171

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Object Widget Class Name

.XmScrolledText field-namesw

Multiline Text

with Scrollbars XmText™* field-name

List Box ...XmList field-name
.XmScrolledList field-namesw

List Box with

Scroll Bars XmList™ field-name
. XmRowColumn® field-name
.XmMenuShell popup_field-name_pane

XmRowColumn field-name_pane
1t Optionmenu XmPushBut ton | label—text

XmPushButton | label-text

...XmScale field—-name

Scale

XmScrollBar™ scale_scrollbar

To refer to a whole class of widgets, use the widget class. For example, XJam*XmText
refers to all text widgets. To refer to a class of widgets on a screen, use the screen name
followed by the widget class. For example, XJam* empscreen*XmText refers only
to text widgets on the screen empscreen. To refer to an individual widget, use the screen
name followed by the widget’s name. For example, XJam*empscreen*empname
refers only to the empname widget on the screen empscrn.

If the indicators resource is on (section 7.7.1), shifting and scrolling text widgets
have indicator arrows. There can be up to four indicators, one for each direction.

In the optionmenu widget, the text field and the popup pane are linked through the
subMenuID field of the RowColumn widget. Since the push buttons in the option-
menu are named by their contents, it is easier to set a resource for all the push buttons
in an optionmenu than it is to set a resource for an individual button.

Page 172 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

Display Text, Lines and Boxes

Display text, lines and boxes are child widgets of area. The hierarchy for display text
and screen decoration widgets is as follows: :

Object Widget Class Name
Display text .. .XmLabel display
Line . ..XmSeparator line
Box . . . XmFrame box
Frame . . . XmFrame frame
Menu Bars

Menu bars, submenus and pop—-up menus are created within RowCo lumn widgets. Menu
bars are children of either the base form’s or an individual screen’s Ma inWindow. Sub-
menus are children of MenuShells, but the name of the shell is unclear, since Motif
reuses these shells. If a new shell is created, its name will be popup_ submenu—-name.
The best way to specify resources for a submenu is to use the form:
XJam*XmMenuShell . submenu—name.

The hierarchy for menus and pop—up menus is as follows:

Object Widget Class Name
Menu Bar | .. .XmRowColumn. .. menu-name
. . .XmMenuShell (name varies)
Submenu
XmRowColumn. . . submenu—name
ApplicationShell application—-name
Pop—up TransientShell dummy
Menu Bar XmMenuShell pPopup_popupmenu
XmRowColumn. . . popupmenu

Submenus pop up through the auspices of a CascadeButton widget. A submenu is
tied to its CascadeButton via the XmNsubMenuID field of the button.

JAM/P/Release 1.4 1 December 92 Page 173

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Items on menus and submenus are children of the menu’s RowColumn widget. The

hierarchy for items on menus and submenus is identical. It is as follows:

Menu Script Keyword Widget Class Name
separator .XmSeparator separator.
title .XmLabel label-text
key or control .XmCascadeButton label-text
(in top—level bar)
key or controel . XmToggleButton label-text
(with indicator)
key or control .XmPushButton label-text
(without indicator)
menu .XmCascadeButton... label-text
edit .XmPushButton. .. label-text
windows .XmPushButton. .. label-text

The edit and windows submenus provide access to special JAM functions. Their
contents are controlled by JAM, as opposed to being user designed with a menu script.

The hierarchy is shown below:

Object Widgets Class - Name
. . . XmRowColumn windows
XmPushButton window--name
Windows Menu
XmPushButton window-name
XmSeparator sepl
XmPushButton windows_raise

Page 174

JAM/PiRelease 1.4

1 December 92

Chapter 7:_Setting Application Defaults

Object Widgets Class Name
. . . XmRowColumn edit
XmPushButton edit_cut
Edit Menu XmPushButton edit_copy
XmPushButton edit_paste
XmPushButton edit_delete
XmPushButton edit_select

7.7.3

Sample Motif Resource File for JAM

Rz Es I TE ST T ET LI LR EEE LTS R S
THi# Resource Specifications for XJam ##4
RS s E s LRSS IR IR RIS EEEEEEE R Y

! Initial screen size:
XJam.geometry: 600x75+0+0
! Application-wide foreground and background:

!XJam* foreground: white

!XJam*background: dark slate gray

! Application default font:

'XJam*fontList: fixed

! GUI focus policy:

XJam*keyboardFocusPolicy: explicit
XJam*focusAutoRaise: true

" JAM/PiRelease 1.4 1 December 92 Page 175

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

! GUI widget highlight and selection behavior:

XJam*highlightOnEnter: ' true
'XJam*highlightColor: dark orange
XJam*highlightThickness: 2
'XJam*allowOverlap: false
XJam*area.XmToggleButton.fillOnSelect: true
XJam*area.XmPushButton.fillOnSelect: true

! Label widget preferences:

XJam*area.XmLabel .marginWidth: 0
XJam*area.XmLabel .marginHeight: 0
XJam*area.XmLabel .highlightThickness: 0
XJam*area.XmLabel .highlightOnEnter: f

! GUI indicator preferences:

XJam*indicator.width: 15
XJam*indicator.height: 15
XJam*indicator.highlightOnEnter: false
XJam*indicator.shadowThickness: 0
XJam*indicator.traversalOn: false
XJam*indicators: false

! Disable greying out of inactive screens:
XJam*setSensitive: false

! On some versions of Motif, a bug prevents the

! XmNcascadingCallback on a cascade button from

! being called, and therefore popup menus do not

! pop up. If this is so, set the following to true:

XJam*cascadeBug: false

! Under VMS, text widgets seem to grab the
! selection unless the following is set:

XJam*area*navigationType: NONE

Page 176 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

! Keyboard traversal activation:

XJam*area.XmPushButton.traversalOn: true
XJam*area.XmToggleButton.traversalOn: true
XJam*area.XmScale.traversalOn: true
XJam*area*scale_scrollbar*traversalOn: true
XJam*area.XmText.traversalOn: true

! Label text alignment:

XJam*area.XmLabel.alignment: ALIGNMENT__BEGINNING
XJam*area.XmToggleButton.alignment: ALIGNMENT_BEGINNING

! JAM palette colors:

XJam.black: #000000
XJam.blue: #0000a8
XJam.green: #00a800
XJam.cyan: #00aB8a8
XJam.red: #a80000
XJam.magenta: #a800a8
XJam.yellow: #a85400
XJam.white: #aBa8al8
XJam.hi_black: #545454
XJam.hi_blue: #5454 ff
XJam.hi_green: #54££54
XJam.hi_cyan: #54ffff
XJam.hi_red: #££5454
XJam.hi_magenta: #ff54ff
XJam.hi_yellow: #f£££54
XJam.hi_white: #fff£f££

! Labels and keyboard mnemonics for the edit and windows

! menu bars:

XJam*XmMenuShell.windows.windows_raise.labelString: Raise All
XJam*XmMenuShell .windows.windows_raise.mnemonic: R
XJam*XmMenuShell.edit.edit_cut.labelString: Cut
XJam*XmMenuShell.edit.edit_cut.mnemonic: t
XJam*XmMenuShell.edit.edit_copy.labelString: Copy
XJam*XmMenuShell.edit.edit_copy .mnemonic: C
XJam*XmMenuShell.edit.edit_paste.labelString: Paste

JAM/PiRelease 1.4

1 December 92

Page 177

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

XJam*XmMenuShell .edit.edit_paste.mnemonic: P
XJam*XmMenuShell.edit.edit_delete.labelString: Delete
XJam*XmMenuShell.edit.edit_delete.mnemonic: D
XJam*XmMenuShell.edit.edit_select.labelString: Select All
XJam*XmMenuShell.edit.edit_select.mnemonic: S

! Name of the RGB.TXT file to search for GUI color names:
XJam.rgbFileName: /usr/lib/X1l/rgb.txt

! The standard JAM key file for X, "xwinkeys”, maps

! unmodified, shifted, and control function keys 1-12

! into the JAM logical keys PF1-12, SPF1-12, and SFT1-12.
! This conforms to the standard key conventions used

! for JAM on character terminals.

1

! Unfortunately, these may conflict with the fallback or
! vendor-specific default bindings which Motif uses for
its virtual keysyms. The following line disables all of
the virtual keysyms within a JAM application.

(Actually, the default binding for osfMenuBar is
remapped to F25. If we were to unmap it, the Motif
library would reset it to F1.0.)

If you prefer the standard Motif usage for the function
keys, you can change the JAM key file to avoid the keys
which conflict with Motif. The following line can then
be commented-out:

XJam*defaultVirtualBindings: \n\
osfMenuBar: <Key>F25 \n\
osfActivate: <Key>KP_Enter \n\
osfCancel: <Key>Escape \n\
osfDown: <Key>Down \n\
osflLeft: <Key>Left \n\
osfRight: <Key>Right \n\
osfUp: <Key>Up

Page 178 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

! GUI independent color and font aliases for use in screen
! and field extensions:

XJam*colors: dark blue navy blue \n\
champagne #00eedd \n\
pumpkin = orange

XJam*fonts: small. = *-gchumacher-*-6-* \n\
medium = *-helvetica-medium-r-*-10-* \n\
large = *-new century *-bold-i-*-20-*

7.8

OPEN LOOK RESOURCE OPTIONS

The following sections describe resources and options in Pi/OPEN LOOK.

7.8.1

OPEN LOOK Global Resource and Command
Line Options

The resources in the table below are global settings for an application. They may also
be specified on the command line, as may the standard X Toolkit command line op-
tions. Refer to the X Toolkit manual for a full list of command line switches.

NOTE: D indicates the default.

Resource Type Command Line Description
font string -fn font Sets the application default font.
foreground string ~bg color Sets unhighlighted white

foregrounds to color.

background string -fg color Sets unhighlighted black
backgrounds to color.

JAM/PiRelease 1.4 1 December 92 Page 179

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Resource Type Command Line Description

setSensitive |boolean |-setSensitive |Controls whether screens that

' (on) " | are not at the top of the window

stack appear grayed out. You

+setSensitive |may wish to turn this off, since
(off) D it stows down the application,

and may cause other problems.

ownColormap |[boolean |-cmap (on) Tells JAM whether to use its
+cmap (off) D own color map. Turning JAM’s
color map on is useful only on
systems with limited colors.

The following illustrates a sample command line in Pi/OPEN LOOK:

oljxform -fn ’‘-*courier*r*12’' myscreen.jam

7.8.2

The OPEN LOOK keepOnScreen Resource

The keepOnScreen resource controls whether newly opened JAM screens are al-
lowed to extend beyond the edge of the display. Normally, the OPEN LOOK window
manager (olwm), allows this behavior. Setting this resource to true causes JAM to re-
size and move screens that the window manager initially places partially or totally off
the display.

Once a screen has been opened, the user may move it off the edge of the display regard-
less of this resource setting.

783

Widget Hierarchy in Pi/OPEN LOOK

Widgets are arranged in a parent—child hierarchy. The following tables describe the
widget hierarchy in Pi/OPEN LOOK. This is useful to know if you wish to set resources
for particular widgets or classes of widgets in an application. Refer to the OPEN LOOK
Programmer’s Guide for more information on widgets, widget classes, and the re-
sources associated with them.

Page 180 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

Base Screen

The base screen in a JAM application is an ApplicationShell widget. Its class is
given by the first argument to the sm_X11init initialization routine, and its name is
the name of the application program (the value of argv (0] inmain). If the baseWin-
dow resource is set to false, then this shell is created but never displayed.

NOTE: Avoid application program names that contain periods or asterisks, as the re-
source parser interprets these as special characters. Screen name extensions, though,
are removed when they are used as widget names.

By default, JAM has class name OLJam and application name oljxform.

The widget hierarchy for the base Screen is:

Widget Class Name
ApplicationShell... (class givenby sm_X1llinit) |application—-name
Form main
Form workarea
Control softkeys
OblongButton softkey
OblongButton softkey
StaticText status
Control menubar
MenuButton Edit
MenuButton Windows
MenuButton menu-name
MenuButton menu-name

JAM/PiRelease 1.4

1 December 92

Page 181

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

JAM Screens

The widgets used for JAM screens are all subclasses of the OPEN LOOK shell wid-
get. The shell’s parent is the ApplicationShell.

The widget hierarchy for JAM Screens is:

Widget Class Name
...TopLevelShell screen—-name
Form scroll
StaticText status
Control menubar
MenuButton Action
MenuButton menu-~name
MenuButton menu—-name
ScrolledWindow clip
Scrollbar Hscrollbar
Scrollbar Vscrollbar
Bulletin BulletinBoard
Bulletin area

JAM screens have a status line only if the value of the formStatus resource is
true. They have a menu bar only if formMenus is true.

New screens created in draw mode are named shell before they have been saved.

Since the name of the shell used for JAM screens is the screen name, resources may be
restricted to a specific screen by beginning the specification with class* screen_name.
For example, OLJam*empscrn. .. begins a specification for a screen named
empscrrn in an application of class OLJam. Resources restricted to a named screen are
equivalent to screen extensions. For example,

OLJam*empscrn.background: gold

Page 182 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

is the same as specifying a <<bg (gold) >> as a screen extension on empscreen. The
resource setting overrides the extension.

area is the parent widget for all the widgets on a JAM screen. If you place your own
widgets on a JAM screen, you'll need the widget id of area. The library function
sm_drawingarea returns the widget ID of area. A related function,
sm_translatecoords, translates JAM screen coordinates -into pixel coordinates
relative to the upper left hand corner of area.

Dialog Boxes

Message dialog boxes are created when a message needs to be posted. Error and query
message dialogs are created by XtCreatePopupShell with a widget type of
noticeShell. JAM specifies the message string, which buttons appear, and which
button is the default. Other options, like the title bar text, can be set in the resource file.

The children of dialog boxes are handled by OPEN LLOOK. Refer to your OPEN LOOK
manual for details.

Fields

JAM fields are created as child widgets of area. If a field has a name, its widget is
given that name. If a field doesn’t have a name, its widget is named _f1d3#, where #is
the field number (this is analogous to the JAM f2struct utility). In a named array
consisting of multiple widgets, each widget has the same name. Widgets that represent
multiple fields take the name of their first field.

The library routine sm_widget returns the widget ID of a widget. Asterisks in the
table below indicate which widget is returned by sm_widget in cases where there is
more than one possibility. If the widget returned by sm_widget is not the one you are
looking for, use XtParent to obtain the widget id of its parent. This is particularly
useful when working with scale widgets and scrolling multiline and list box widgets.

Some entries in the table have prefixes or suffixes with their names. For example,
field—-nameSW indicates that the widget has the name of the field followed by the literal
characters SW.

The widget hierarchy for JAM fields is as follows:

JAM/P/Release 1.4 1 December 92 Page 183

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Object Widget Class Name
Data Entry Field .TextField field-name
Protected Field .StaticText field-name
Menu Field .OblongButton field-name
Checklist .CheckBox field-name
Radio Button .RectButton field-name
Multiline Text .TextEdit field-name
List Box ..8crollingList field-name
.Control field-namec
StaticText* field~name
AbbrevMenuButton field-nameB
.MenuShell menu
Optionmenu Form menu_form
Control pane
CblongButton [/abel-text
OblongButton |/abel-text
...Control field-namec
Scale StaticText field-nameT
Slider* field-name

To refer to a whole class of widgets, use the widget class. For example,
OLJam*TextField refers to all text widgets. To refer to a class of widgets on a
screen, use the screen name followed by the widget class. For example, OL-
Jam*empscreen*StaticText refers only to text widgets on the screen emps-
creen. To refer to an individual widget, use the screen name followed by the widget’s

Page 184 JAM/PjRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

name. For example, OLJam*empscreen*empname refers only to the empname
widget on the screen empscreen. :

In the optionmenu widget, the text field and the popup pane are linked through the
subMenuID field of the RowColumn widget. Since the push buttons in the option-
menu are named by their contents, it is easier to set a resource for all the push buttons
in an optionmenu than it is to set a resource for an individual button.

Display Text, Lines and Boxes

Display text, lines and boxes are child widgets of area. The hierarchy for display text
and screen decoration widgets is as follows:

Object Widget Class Name
Display text ...StaticText display
Line ...Stub line
Box ...BulletinBoard |box
Frame ...BulletinBoard |frame
Menu Bars

Menu bars, submenus and pop—up menus are created within Control widgets. Menu
bars are children of either the base form’s or an individual screen’s Form. Submenus are
children of MenuShel 1s, but the name of the shell is unclear, since OPEN LOOK reuses
these shells. If a new shell is created, its name will be menu. The best way to specify re-
sources for a submenu is to use the form: OLJam*MenuShell * button-name.

The hierarchy for menus and pop—up menus is as follows:

JAM/PiRelease 1.4 1 December 92 Page 185

JAM/Pi for OSF/Motif, Microsoft WIndvas and OPEN LOOK

Object Widget Class Name
MenuBar |...Control... _ menubar
.MenuShell menu
Form menu_ form
Submenu Control pane
OblongButton button—-name
OblongButton button—name

Submenus pop up through the auspices of a MenuButton widget. A submenu is tied
to its MenuButton via the XtNmenuPane resource of the button. This is the Con-
trol widget that the buttons are children of.

Iterns on menus and submenus are children of the menu’s Control widget, except the
title, which is a child of the menus £orm. The hierarchy for items on menus and subme-
nus is identical. It is as follows:

Menu Script Keyword Widget Class Name
title ...Button title
key or control . . .MenuButton label-text
(in top—level bar)
key or control ...0OblongButton label-text
menu .. .MenuButton. .. label-text
edit ...0OblongButton... label-text
windows ...0OblongButton. .. label-text

The edit and windows submenus provide access to special JAM functions. Their
contents are controlled by JAM, as opposed to being user designed with a menu script.

The hierarchy is shown below:

Page 186 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

Object Widgets Class Name
.MenuButton windows
.MenuShell menu
Form menu-form
Control pane
Windows Menu OblcngButton | window-name
OblongButton | window—name
Stub sepl
OblongButton |windows_raise
.MenuButton edit
.MenuShell menu
Form menu-form
Control pane
Edit Menu OblongButton |edit_cut
OblongButton |edit_copy
OblongButton |edit_paste
OblongButton [edit_delete
OblongButton |edit_select

JAM/PiRelease 1.4 1 December 92

Page 187

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

7.8.4

Sample OPEN LOOK Resource File for JAM

TRERHAFHAHBHAHAHHA BB HHABHBHR B HH B GRS H S B SRR B H A H R4 48
l### Resource Specifications for OLJam ###
IEEEEEEEEEEEET SRS BT EREELTEELET T YL S

! Set the position with the geometry.

! Set the width of the Base Window by setting the width of the

! status line. Set the text alignment in the status bar with the
! gravity resource.

OLJam.geometry: +0+0
OLJam.main.status.width: 600
OLJam.main.status.recomputeSize: false
OLJam.main.status.gravity: west
OLJam*scroll.status.gravity: west

! Set the look of the softkey area if they are used.

OLJam.main.workarea.softkeys.layoutType: fixedcols
OLJam.main.workarea.softkeys.measure: 4
OLJam.main.workarea.softkeys.sameSize: all

! Keep JAM screens completely on the display.
OLJam. keepOnScreen: true

! Turning on/off of indicators are not supported in OLJam. They
! must be off.
OLJam*indicators: false

! Disable greying out of inactive screens.
OLJam*setSensitive: false

! GUI focus policy.
OLJam*keyboardFocusPolicy: explicit
!'OLJam*allowOverlap: false

! Set the positioning of text on windows and in buttons.

OLJam*area.StaticText.gravity: west
OLJam*area.RectButton.labelJustify: center
OLJam*area.OblongButton.labelJustify: center
OLJam*area.CheckBox.labelJustify: left
OLJam*area.CheckBox.position: right

Page 188 JAM/PiRelease 1.4 1 December 92

Chapter 7: Setting Application Defaults

! Turn off Copy/Paste operations on scrolling lists.
OLJam*selectable: false

! Set application-wide foreground and background -
OLJam* foreground: white
OLJam*background: grey50

! Set color aliases.
OLJam*colors: JAMfg = white /n/
JAMbg = grey50

! Set JAM palette colors

OLJam.black: #000000
OLJam.blue: #0000a8
OLJam.green: #00a800
OLJam.cyan: #00a8a8
OLJam.red: #a80000
OLJam.magenta: #aB800a8
!'OLJam.yellow: #aB85400
OLJam.yellow: #e8e800
OLJam.white: #aB8aBa8
OLJam.hi_black: #545454
OLJam. hi_blue: #5454 ff
OLJam.hi_green: #54f£54
OLJam.hi_cyan: #54ffEf
OLJam.hi_red: #f£5454
OLJam.hi_magenta: #E£54£ff
OLJam.hi_yellow: #££f££54
OLJam.hi_white: HEEEFESE

! Set application default font.
OLJam* font: —-*-lucida sans-bold-r-*-*-14-*

! Set font aliases.
OLJam*fonts: \n\

small = -*-lucida sans-bold-r-*-*-12-* \n\

medium = -*-lucida sans-bold-r-*-*-18-* \n\

large = -*-lucida sans-bold-r-*-*-24-* \n\

editorfont = -*-lucida sans typewriter-bold-r-*-*-18-%n\
JAMfont = -*-lucida sans typewriter-bold-r—-*-*-18-*

! Set the labels for OK and Cancel buttons on Notices.
OLJam*NoticeShell*Control.okbutton.label: OK
OLJam*NoticeShell*Control.cancelbutton.label: Cancel

JAM/PiReloase 1.4 1 December 92 Page 189

JAM/Pj for OSF/Motit, Microsoft Windows and OPEN LOOK

! Labels and keyboard mnemonics for the edit and windows menu bars

OLJam*MenuShell*windows_raise.label: Raise All
OLJam*MenuShell*windows_raise.mnemonic: .. R
OLJam*MenuShell*edit_cut.label: Cut
OLJam*MenuShell*edit_cut.mnemonic: t
OLJam*MenuShell*edit_copy.label: Copy
OLJam*MenuShell*edit_copy.mnemonic: c
OLJam*MenuShell*edit_paste.label: Paste
OLJam*MenuShell*edit_paste.mnemonic: P
OLJam*MenuShell*edit_delete.label: Delete
OLJam*MenuShell*edit_delete.mnemonic: D
OLJam*MenuShell*edit_select.label: Select All
OLJam*MenuShell*edit_select.mnemonic: S

! Set no pointer warping when Notices are displayed to work around
a warping bug in olit patch T100451-39.
OLJam*NoticeShell.pointerWarping: False
! Location of rgb.txt file to search for GUI color names.
OLJam.rgbFileName: /usr/openwin/lib/rgb.txt

The standard JAM key file for X,
shifted, and control function keys 1-12 into the JAM logical
keys PF1-12, SPFl-12, and SFT1-12. This conforms to the

standard key conventions used for JAM on character terminals.

*xwinkeys”, maps unmodified,

Unfortunately, these may conflict with the fallback or vendor-
specific default bindings which Motif uses for its virtual
keysyms. The following line disables all of the virtual keysyms
within a JAM application. (Actually, the default binding for
osfMenuBar is remapped to F25. If we were to unmap it, the
Motif library would reset it to F10.)

If you prefer the standard Motif usage for the function keys,
you can change the JAM key file to avoid the keys which conflict
with Motif. The following line can then be commented-out.

OLJam*defaultVirtualBindings: \n\
osfMenuBar: <Key>F25 \n\
osfActivate: <Key>KP_Enter \n\
osfCancel: <Key>Escape \n\
osfDown: <Key>Down \n\
osfLeft: <Key>Left \n\
osfRight: <Key>Right \n\
osfUp: <Key>Up

Page 190

JAM/PjRelease 1.4

1 December 92

Chapter 8: Menu Bars

Chapter 8
Menu Bars

This chapter describes how to create and implement menu bars in JAM/Pi. Manual
pages describing the menu bar library routines, which allow you to create, display and
alter menu bars dynamically at runtime, are located in Chapter 12.

8.1

INTRODUCTION

Menu bars provide a convenient, permanently displayed area from which the user can
select functions. A menu bar appears as a horizontal bar containing one or more menu
bar headings. The contents of a menu bar can be changed according to the context. A
menu bar can have several levels of submenus, which appear as vertical menus.

Menu bars are created as ASCII scripts. The script describes the content of the menu
bar, the actions associated with each choice on the menu bar, and the display attributes
of the items. Display attributes include grayed out choices, keyboard mnemonics, sepa-
rators, and checked items. The menu bar utility, menu2bin, converts ASCII.menu
scripts into a binary format for inclusion in an application. menu2bin is described in
section 12.2,

The content and selection of menu bars may be changed at runtime by library routines.

8.2

LOCATION OF MENU BARS
W

JAM/PiRelease 1.4 1 December 92 Page 191

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

8.2.1

8.3

MENU BAR SCOPE

Just as with keysets, each menu bar has a scope. The scope is specified when the menu
bar is installed. There may be an application—level menu bar, a screen—level menu bar,
an override-level menu bar, a system—level menu bar, and any number of memory—
resident menu bars. The table below describes the various menu bar scopes, and where
they appear.

Page 192 JAM/PiRelease 1.4 1 December 92

Chapter 8: Menu Bars_

Scope Description

KS_APPLIC Application—level menu bar.

KS_FORM Screen—level menu bar.

KS_OVERRIDE | Override-level menu bar for
help screens, zoom windows
etc. Not used for error messages.

KS_MEMRES Scope for storing memory-vesi-
dent menus that can be accessed
by menu bars at other scopes.
Menus at this scope are stacked.

KS_SYSTEM System-level menu bar in the
authoring utility jxform. A de-
veloper does not normally
install a menu bar at this scope.

If a window without a screen-level menu bar opens, the previously active menu bar
remains displayed. This may be the screen—level menu bar from the previous screen, or
the application—level menu bar, if the previous screen had no screen-level menu bar. If
a form without a screen—level menu bar opens, then the application menu bar is active.

When an override-level menu bar opens, the currently active menu bar is saved in a
special stack (o_stack). When the override-level menu bar closes, this saved menu
bar is restored. This stack may be 10 deep.

JAM/PiRelease 1.4 1 December 92 Page 193

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

8.4

THE MENU SCRIPT

Menu bars are created as ASCII scripts and converted to binary with the menu2bin
utility. A menu script may contain specifications for one menu and one or more subme-
nus. The first menu specification in a script file is the top level (horizontal) menu bar;
subsequent menu definitions are for submenus.

8.4.1
Menu Script Structure

The general structure for specifying a menu is as follows:

menuname [global display options]

{
"Label” action [modiflers] [display options]

comments

}

An alternative structure references an external menu, which is a menu that is already
open or one that is stacked at the scope KS_MEMRES. This structure is as follows:

menuname external

The external keyword allows the developer to build menu bars in a modular fashion
and reuse parts of menu scripts. Open menus are searched first for an external menu,
then the KS_MEMRES stack is searched in a last opened, first searched order.

84.2
Menu Script Components

The various components of the general menu script structure are described below.

® menuname
identifies the menu. Any display options specified directly after the me-
nuname are “global options” that apply to all relevant items in the menu.
See display options below for an explanation. The curly braces are literal;
they enclose the body of the menu.

Page 194 JAM/PiRelease 1.4 1 December 92

Chapter 8: Menu Bars_

® "label " is the text that appears in the menu entry. The label must appear in quotes.
The menu bar compiler accepts labels up to 255 characters long, but in
practice a menu bar displays only as many characters as will appear in the
viewport. Backslash escapes may be used within the label for tabs, new-
lines and quotes if they are supported in your environment.

An ampersand (&) is used as the keyboard mnemonic indicator in a label.
Place the ampersand before the character in the label to be typed to select
the entry from the keyboard. This character appears underlined in the menu
entry. For example,

E&xit
" produces the entry
Exit
where x is the keyboard mnemonic.

® action specifies the type of menu entry this is. Available keywords are:

title specifies that /abel is the title of this menu. No modifier
is allowed. The title must be the first entry in the menu.

W

menu specifies that modifier is the menuname of a submenu.

key specifies that modifier is a key to return when the entry
is selected. Selecting the menu choice is equivalent to
pressing the key. modifier can be a JAM logical key or
a hex, binary or octal number. Specify hex with a lead-
ing 0x. Specify binary with a leading 0b. Specify octal
with a leading 0.

control specifies that modifier is a JAM control string. Colon
expansion is supported for menu bar control strings.

separator produces a blank line. Jabel is ignored. A separator can
take a special separator display option. Separators have
no effect in horizontal menus.

edit specifies that the edit submenu should appear. No modi-
fier is allowed. The edit submenu contains the options:
Cut, Copy, Paste, Delete, and Select 2All.
These are useful for manipulating text in widgets.

JAM/PiRelease 1.4 1 December 92 Page 195

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

windows

specifies that the windows submenu should appear. No

modifier is allowed. The windows submenu lists the ten
topmost open screens by name. Selecting a screen from
the list raises it to the top of the display. If the selected
screen is a sibling of the screen at the top of the window
stack, it becomes the top JAM screen.

® Text display options
specify how an entry should appear. The display options for text entries are
listed in the table below. Certain options are restricted to certain actions.
A display option that is inappropriate for an action produces an error. More
than one display option may be selected for an entry.

Display Option Actions Description
inactive menu, key, Makes the entry inactive. The user may still
control, edit, |click on the entry, but the entry has no ef-
windows fect.
grayed all actions Grays out the entry’s label and makes the
greyed entry non—selectable.
indicator key, control | Shift all menu items to the right to leave

room on the left for an indicator.

indicator_on

key, control

Turns an indicator on for this item. The indi-
cator, often a check mark, denotes the state
of a menu entry that serves as a toggle
switch. If the indicatox option is not also
specified, this option shifts the menu. Indica-
tors are ignored on horizontal menu bars.

Page 196

JAM/P/ Release 1.4

1 December 92

Chapter 8: Menu Bars_

Display Option Actions Description

showkey key Shows the keytop label from the key file to
the right of the entry’s label. If there is no
keytop in the key file, then the key mnemon-

ic is shown.
help menu, key, Shifts an entry to the extreme right on a hor-
control, edit, |izontal menu bar. Only one item may appear
windows on the right. If the help item is not the last

item in the menu bar specification, the com-
piler rearranges the items so it appears last.

@ Separator display options
specify how a separator should appear. If no display option is specified, the
separator is a single line. Only one separator display option may be se-
lected. Separator display option keywords are GUI dependent. They are
shown in the table below.

Display Option Interface Description

JAM/PiRelease 1.4 1 December 92 Page 197

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

® Global display options
are global to the menu. They are specified directly after the menuname.
Global options affect all applicable menu entries. For example, if the glob-
. al options are showkey and noline, all separators in the menu default
to noline and all keys and control strings in the menu have showkey.
Submenus and titles do not have showkey however, since it is not applica-
ble to them.

You cannot turn off a global option for an entry, but you can override a glob-
al separator option by specifying a new option for a particular separator.

® Comments
begin with the # sign. Comments may appear on a line of their own any-
where within the script.

Keywords for action and display option are not case sensitive. labels and modifiers
are case sensitive. White space characters in a script (space, tab, CR) are ignored by the
menu bar compiler except when they separate keywords, so each menu specification
can be quite compact.

843

Sample Menu Script

The following is an example of a menu script. Scripts must be compiled with
menu2bin before they can be used. Figure 63 illustrates the menu that the sample
script produces after it has been compiled.

Page 198 JAM/PjRelease 1.4 1 December 92

Chapter 8: Menu Bars

The first menu definition becomes the top level menu bar.

Main

{
"BEdit” edit
"Form” menu FormMenu
"Text” menu TextMenu
"Help” menu HelpMenu help
"&Quit® key 0x103

}

FormMenu
{
"Form” title
7&New"” key PF1l
"&Open” control ”~jm_filebox file /usr/home * File~”
"&Close” key PF3 inactive
“&Save” key PF3
"Save &As” key PF4
il separator etchedin
"O&ther” menu OtherMenu
}

White space is ignored.

OtherMenu grayed showkey { *Other” title "Other&l” key PF1l
"Other&2” key PF2 "E&xit” KEY EXIT }

Keywords are not case sensitive.

TextMenu
{
*&Cut” KEY PF1l
"C&opy” key PF2
"&Paste” Key PF3
i SsEpArAtOR double menubreak
*&Undo” Key SPF1l
}

An external menu is one that is defined elsewhere, either
in an open menu or at the scope KS_MEMRES.

HelpMenu external

JAM/PjRelease 1.4 1 December 92 Page 199

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

Editl Form Text Quit Help
edit_cut
L edit copy
edit paste ‘ '
edit:§61fzte E iﬂ' i
edit select Form st Seveen fielp
New Copy Field Help
Open Paste
Close ‘W
Save
Save As

Figure 63: The menu bars produced by the sample menu script.

8.5
TESTING MENU BARS IN THE
AUTHORING UTILITY

Menu bars can be tested in Application Mode of the authoring utility, but you must de-
fine a SFTS (soft key select) key in your keyboard translation file in order to do so. The

Page 200 JAM/PjRelease 1.4 1 December 92

Chapter 8: Menu Bars

SFTS key toggles between user—defined menu bars and the system-level menu bar. In
Application Mode, the default menu bar is the system—level menu bar. Use the SFTS
key to toggle to your user—defined menu bars. Refer to the JAM Ultilities Guide for
details on using the modkey utility to edit a key translation file. Refer to the JAM Con-
figuration Guide for an explanation of the key file.

8.6
MENU BAR LIBRARY ROUTINES

Library routines equivalent to those for keysets are provided to manipulate menus bars
at runtime. Routines are available to create, display, close, and change the contents of
menus bars. The table below summarizes these routines. For a detailed listing, see
Chapter 12.

Routine Description
Sm_c_menu close a menu bar
sm_d_menu display a menu bar stored in memory

sm_menuinit |initialize menu bar support

sm_mn_forms |install menu bars in memory (in a custom executive)

sm_mnadd” add an item to the end of a menu bar

sm_mnchange” |alter a menu bar item (eg— grey out an item)

sm_mndelete |delete a menu baritem

sm_mnget” get menu bar item information

*

sm_mninsert” [inserta new menu bar item

sm_mnitems get the number of items on a menu bar
sm_mnnew create a new menu bar by name
sm_r_menu read and display a menu bar from memory, a library or disk

NOTE: Library routines with an asterisk in the above table cannot be prototyped be-
cause they access an external data structure.

JAM/PiRelease 1.4 1 December 92 Page 201

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Prototyping Menu Bar Library Routines

You may wish to prototype the menu bar related library routines in order to use menu
bars more flexibly. Prototyped library routines can be called directly from control
strings and JPL procedures. Refer to the “Hook Functions” chapter in the JAM Pro-
grammer’s Guide for an explanation of prototyped functions, and instructions on using
and installing them. Refer to the JPL Guide for an explanation of how to use prototyped
functions from JPL.

8.7

INSTALLING MENU BARS

Menu bars must be enabled and installed before they can be used in an application.

8.7.1
Enabling Menu Bars

In order to incorporate menu bars into your application, set MENUS to 1 in the appropri-
ate #define inthemain routine (jmain.c or jxmain. c). This causes the program
to call the menu bar initialization routine, sm_menuinit. Alternatively, set the fol-
lowing flag in the makefile for your application: —~DMENUS.

8.7.2
Installing Menu Bars of Various Scopes

The methods of installing menu bars depend on their scope.

Installing an Application—-Level Menu Bar

Install an application—level menu bar with the library routine sm_r_menu or
sm_d_menu using the scope KS_APPLIC. This is usually done in the main routine,
jmain.c or jxmain.c, in the area reserved for code to be executed before the first
screen is brought up.

Installing a Screen-Level Menu Bar

Menu bars are associated with screens in place of keysets; so to install a menu bar for
a screen, insert the name of the menu bar file into the field for “Screen Level Keyset”

Page 202 JAM/PiRelease 1.4 1 December 92

Chapter 8: Menu Bars

in the screen attributes window of the Screen Editor. A screen—level keyset may also be
installed with the library routine sm_r_menu or sm_d_menu with a scope KS_FORM.

Installing Override-Level Menu Bars

Install an override-level menu bar with the sm_x_menu or sm_d_menu routine using
the scope KS_OVERRIDE.

Installing Memory-Resident Menu Bars

Install memory—resident menu bars with the sm_r_menu or sm_d_menu routine us-
ing the scope KS_MEMRES. More than one menu bar can be loaded at this scope, and all
are available simultaneously for use as an external menu by menu bars at other scopes.
Installing a menu bar at this scope does not cause it to be displayed.

Installing the System-Level Menu Bar

The system~level menu bar is used only in the authoring utility. It is installed automati-
cally by JAM.

8.7.3
Storing a Menu Bar in Memory

Binary menu bar files may be stored as disk files, as members of a library or in memory.
A menu bar is stored in memory by converting it to a C structure with the bin2c utility,
and then registering it to JAM with sm_formlist. For more information on this pro-
cedure, see the JAM Programmer’s Guide.

NOTE: Do not confuse the memory—resident menu bar scope with the idea of storing
menu bars in memory. The memory-resident menu bar scope, KS_MEMRES serves the
purpose of keeping menu descriptions available for use as external menus. Storing a
menu bar in memory means that it is compiled with your application, as opposed to
being stored in a separate file.

8.8

USING MENU BARS EFFECTIVELY

Since menu bars are often the primary navigation tool in a GUI application, we suggest
that you carefully consider which menu bar (or menu bars) appears in your application
at any given point.

JAM/PjRelease 1.4 1 December 92 Page 203

JAM/Pi for OSF/Motit, Microsoft Windows and OPEN LOOK

Use the sm_mnchange library routine to grey out or activate menu bar items in re-
sponse to a change in context in the screen. Once you’ve altered a displayed menu bar,
you must call sm_c_menu before calling sm_r_menu if you want to refresh the menu
bar to its original state. This is because sm_xr_menu does not reopen a menu bar if one
with the same name is already open at a particular scope.

We suggest that you install a menu bar on each screen, rather than relying on the inheri-
tance of menu bars from one screen to another. If you wish a screen to have no menu
bar, install a dummy menu bar. If choose to rely on menu bar inheritance from screen to
screen, be aware that altering an inherited screen—level menu bar changes the menu bar
for the screen it was inherited from as well.

Instead of using the screen-level keyset field, you may wish to explicitly call
sm_r_menu in the screen entry function and sm_c_menu in the screen exit function
on each screen to open and close menu bars. This way you are always sure of which
menu bar is displayed at any given time. '

For greater efficiency, use the scope KS_MEMRES to store menus that are used by more
than one menu bar.

8.9

MENU BARS VS. SOFT KEYS

Soft keys and menu bars are mutually exclusive, because they share the same program-
matic hooks. The developer must choose whether to use one or the other. The selection
of soft keys versus menu bars is made in the main routine, either jmain.c or
jxmain.c, by initializing either soft key support or menu bar support. If an applica-
tion is to use keysets in character JAM and menu bars in JAM/Pi, then the main rou-
tine should call the soft key initialization routine before it calls the menu bar initializa-
tion routine. The second library call will override the first in JAM/Pi, but will be
ignored in character JAM.

8.9.1
Using Libraries to Store Menu Bars and
Keysets

If an application uses menu bars on some platforms and soft keys on others, use li-
braries to store the keyset and menu bar files. Libraries provide a convenient method
for switching between soft keys and menu bars on different platforms. If you name your
keysets the same as your menu bars, but place the keysets in one library and the menu

Page 204 JAM/PiRelease 1.4 1 December 92

Chapter 8: Menu Bars

bars in another, you may then specify which library to use on a particular platform with
the SMFLIBS variable in the setup file. Use the formlib utility to create a library.

Refer to the JAM Configuration Guide for details on the setup file, and the JAM Utili-
ties Guide for details on formlib.

8.9.2
Converting Keysets into Menu Bars

Since soft keys and menu bars are mutually exclusive, the kset2mnu utility is pro-
vided to convert a keyset into an ASCII menu script.

Use the script output by this utility as a starting point for your menu bar. Since keysets
are often organized differently than menu bars, you may wish to edit this script with a
text editor before converting it to binary format. Menu bars usually have few direct ac-
tions listed on the top level menu; most headings are for submenus. Keysets, on the
other hand, usually have direct actions in their first row, and then one or two additional
rows of keys.

Menu bar are more versatile than keysets, so no direct conversion from keysets to menu
bars is sufficient.

The kset2mnu utility is described in Chapter 12.

JAM/PiRelease 1.4 1 December 92 Page 205

Chapter 9: Using the Mouse

Chapter 9
Using the Mouse

9.1
Introduction

The mouse is generally the primary method for navigating through a GUI application.
Mouse functionality in JAM/Pi is similar to that in Jterm or JAM under DOS or OS2
character mode, although there are exceptions in cases where GUI dictated functional-
ity differs from standard JAM functionality. In those cases, the GUI method is usually
implemented.

9.1.1
Mouse Cursor Display

The mouse cursor is distinct from the JAM cursor. If a mouse is active, a mouse cursor
will appear on the display.

JAM/P/Release 1.4 1 December 92 Page 207

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

O

9.1.2
Mouse Buttons

The left mouse button positions the cursor, makes selections and operates widgets.

9.1.3
Mouse Functions

You may substitute a mouse click or drag for many keypresses, such as a PF1, NL, or
the arrow keys. Below is a summary of how the mouse is used in JAMV/Pi. For a com-
plete description of editing features, or directions on creating fields, menus, groups,
etc., please see the JAM Author’s Guide.

Page 208 JAM/PiRelease 1.4 1 December 92

Chapter 9: Using the Mouse

Menu Bars

® To select a menu bar function, click on its menu bar heading to display
its pull-down menu, and then click again on your selection; or press
and hold the mouse button on its menu bar heading, and then drag the
cursor down to your selection and release the mouse button,

Menu bars may have several levels, called submenus. When the cursor
is on a submenu heading, drag to the right to post the submenu. A sub-
menu appears to the right of its heading in the parent menu.

@ Click on a sibling of the active screen to change the focus to the sib-
ling. If the click is on a field, then the JAM cursor moves to that field.
If the click is on a display or protected area, then the JAM cursor is
restored to the same location inside the sibling window that it was in
when the window was last visited, or to the first unprotected field if
the screen was never visited.

NOTE: Windows that are not siblings of the active screen cannot be
made active. A click within one of these stacked windows does not
change JAM’s focus.

Pi/]

o=

JAM/P/Release 1.4 1 December 92 Page 209

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

® A sibling window may also be activated by selecting its name from the
optional “Window” heading on the menu bar. The names of all open
screens appear under this heading, but only those that are siblings of
the active screen can be selected.

® A screen that cannot be activated may still be moved and resized by
dragging on its border (see below).

d Resiz
® In JAM/Pi, the JAM viewport (VWPT) key is not available. JAM’s
viewport functions are replaced by the GUI's screen manipulation pro-
tocols. These are described in detail in the Microsoft Windows User's

Guide or the X Window System User’s Guide, and briefly here as well.
To manipulate screens, do the following:

MOVE Drag on the title bar of the screen.

RESIZE Move the mouse cursor to the border or corner of the
screen. The cursor changes shape. Drag the corner or
border to the desired size.

When a viewport is smaller than its underlying screen,
scroll bars appear.

NOTE: Unlike character JAM, a viewport may be
larger than its underlying screen. When the viewport is
as large as or larger than the underlying screen, the
scroll bars disappear.

OFFSET Drag the scroll bar at the bottom or right hand border of
the screen, or click on a scrolling arrow.

The move and resize functions can be suppressed with the nomove
and noresize screen extensions.

Moving the Cursor and Making Selections

® In Draw Mode, clicking anywhere on a screen moves the JAM cursor
to the mouse cursor’s position.

® Clicking on a regular data entry field moves the JAM cursor to the
field. The JAM cursor moves to the character position of the mouse

Page 210 JAM/PjRelease 1.4 1 December 92

Chapter 9: Using the Mouse

cursor within the field. If you click on display text or a tab—protected
field in Test or Application Modes, JAM ignores the click.

® Clicking on a checklist item moves the JAM cursor to that item and
either selects or deselects it, depending on its current state. If a check-
list group has the autotab edit, the JAM cursor goes to the next item in
the group when the user selects an item.

® Clicking on a radio button item moves the JAM cursor to that item
and selects it. Radio button items may only be deselected by selecting
another item. If a radio button group has the autotab edit, the JAM
cursor automatically leaves the group when a selection is made.

@ Clicking twice in a yes/no field toggles its value. The first click moves
the cursor to the field, and the second click executes the toggle. The
click is translated as if the opposite value was typed (i.e., via unget -
key). If the field has an autotab edit, the second click toggles the
value and then moves the JAM cursor to the next field.

BEWARE: Do not click twice when choosing to edit JPL text from the
screen attributes window of the screen editor.

If there is already text in the JPL window, the toggle field contains a y.
A double click toggles the value to to n, and the existing JPL text is
permanently lost. Instead of double clicking, click once (or tab to the
field) and press y on the keyboard.

® Clicking once on the “OK” or “Cancel” button in a dialog box ac-
knowledges the message. Dialog boxes replace character JAM error
and acknowledgement messages. Pressing the space bar (or other
ERR_ACK_KEY) also clears these messages. See section 4.2.

® Dragging and releasing (or clicking once) on an onscreen application
menu makes a selection. The selection is made on the “click up”.

® When using soft keys, clicking on a key label is the same as pressing
that key.

® Clicking on a status line keytop is the same as pressing the logical key.

Scrolling and Shifting

® Scroll or shift a field by dragging the cursor beyond its edge in the di-
rection you wish to scroll or shift. Note that this method has the effect
of selecting the text that you drag through, so be sure not to type a
character while the text is highlighted, or the text will be deleted.

JAM/PiRelease 1.4 1 Dscember 92 Page 211

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

Drag the scroll bar or click on the scroll arrows to shift or scroll wid-
gets with scroll bars.

Editing Text

[]
W [J
M ®
O ®
]
]

When an area of text is selected, typing from the keyboard deletes the
selected text. The first typed character replaces the text. In overstrike
mode, as you continue to type, subsequent characters type over exist-
ing characters. In insert mode, subsequent characters are inserted

M\ﬁﬁﬁ%’"ﬁh‘cunenae ‘may be copled and pasted’ from*one array- to
another. If you attempt to paste data into more occurrences than are
available, the overflow is truncated.

Select Mode

In select mode, click on a field or area of display text to select or dese-
lect the text, depending on its current state. Selected items may be cut,
copied, moved, or altered, using JAM select mode functionality.

In select mode, click the mouse to mark the corners of a selection box.
First click on the position where the box is to begin. Then choose the
“box” option. Finally, click on the opposite corner of the box. All
fields and display text inside the box are surrounded by selection
brackets.

When using the move or copy functions in select mode, either click
once at the new position to move or copy the selection or use the cur-
sor keys. The cursor keys are more exact in this case.

Miscellaneous

Page 212

Click on a character in the Special characters window to
move the cursor to the character and select it. Note that not all charac-
ters are available in all fonts.

JAM/PjRelease 1.4 1 December 92

Chapter 10._GU! Specific Features

Chapter 10
GUI Specific Features

This chapter deals with issues that are specific to a particular GUI.

10.1

OVERSTRIKE MODE IN Pi//MOTIF AND
PJ/OPEN LOOK

10.2

INTERFACING WITH THE GUI LIBRARY

JAM/Pi provides three library routines that enable the developer to refer to JAM win-
dows and screen objects as GUI objects. They provide an interface between JAM/Pi
and GUI-provided library functions.

The first routine, sm_widget, returns the widget id of (or handle to) a widget on a
screen. The second routine, sm_drawingarea, returns the widget id of (or handle to)
the GUI window that contains the current JAM screen. The widget id is necessary in
order to manipulate a GUI object or refer to it from a GUI library function.

The third routine, sm_translatecoords converts JAM screen coordinates (line
and column) into pixel coordinates relative to the upper left hand corner of the drawing
area, which is the container widget used to hold a JAM screen. The pixel coordinates
are required if you wish to place external objects on JAM screens.

JAM/PiRelease 1.4 1 December 92 Page 213

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

———————————— ettt e ————tee e ———

sm_widget, sm_drawingarea and sm_translatecoords are fully docu-
mented in Chapter 12. Included on the manual page for sm_translatecoords is an

example illustrating how to use these functions to place a bitmap on a JAM screen in
Pi/Windows.

A demonstration program that uses external graphics is provided in source form with
JAMV/Pi. 1t is called winpie in Pi/Windows, xpie in Pi/Motif. This program also il-
lustrates how to use sm_drawingarea and sm_translatecoords. Refer to this
code, and your GUI toolkit documentation, for detailed information on how to proceed.

10.3

SYSTEM COMMANDS IN P/WINDOWS

Page 214 ' JAM/P/Release 1.4 1 December 92

Chapter 11: Conversion Issues

Chapter 11
Conversion Issues

This chapter deals with issues relevant to applications that are being converted from
character JAM into JAM/Pi.

11.1

BACKGROUND HIGHLIGHTS

On certain terminals (such as the PC), there is normally no such thing as a highlighted
background color, so setting the highlight attribute for a background has no effect. In
JAM/Pi though, highlighted background colors are supported, giving you much more
flexibility in color selection. If you normally set the background highlight on, then
when you convert your applications, be sure to check the color to make sure it is to your
liking.

11.2

LINE DRAWING

Line drawings do not convert well into JAM/Pi screens. Use the hline, vline, box,
and frame extensions instead. See Chapters 5 and 6 for more information.

JAM/PiRelease 1.4 1 December 92 Page 215

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

11.3
JAM VERSION 4 APPLICATIONS

JAM version 4 applications must first be converted into version 5 applications before
being transferred to JAM/P:.

11.4

JAM VERSION 5 APPLICATIONS

Screens from JAM version 5.0 or later can be opened under JAM/Pi.You will probably
wish to embellish these screens with extended colors and fonts, and to reposition-and
resize some of the screen objects. As mentioned in previous chapters, display text
should be converted into protected fields to take advantage of positioning and extended
features.

If you have used menu fields and submenus to simulate pull down menus in character
JAM, you will want to convert these into menu bars, and then eliminate the menu fields
from the screen. Since menu bars are often the primary navigational tool in GUI appli-
cations, you may wish to take advantage of them.

Page 216 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

Chapter 12
Library and Utility Reference

This chapter is divided into two sections, Library Routines and Utilities.

12.1

JAM/PiLIBRARY ROUTINES

JAMV/Pi library routines are available for each GUI interface as noted in the “Supported
Interfaces” section on each man page. These routines are not portable to character
JAM.

GUI Library Interface Routines

The following routines give the developer access to the widgets created by JAM/Pi so
that they may interact with them directly.

sm_drawingarea get the widget id (or handle) of the current JAM screen
sm_translatecoords translate screen coordinates to display coordinates
sm_widget get the widget id (or handle) of a particular widget

Menu Bar Routines

The menu bar routines are analogous to the equivalent keyset routines. Keysets are doc-
umented in the JAM Author’s Guide, and the keyset routines are documented in the
JAM Programmer’s Guide. Menu bars are described in detail in Chapter 8.

You may wish to prototype some of these routines, in order to increase your flexibility
in dealing with menu bars. Prototyping library routines allows them to be called direct-
ly from control strings and JPL procedures. Refer to the “Hook Function” chapter in the
JAM Programmer’s Guide for an explanation of prototyped functions, and instructions

JAM/PjRelease 1.4 1 December 92 Page 217

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

on their installation and use. Refer to the JPL Guide for an explanation of how proto-
typed functions may be used from JPL.

The following routines create, alter, install and display menu bars.

sm_c_menu close a menu bar

sm_d_menu display a menu bar stored in memory

sm_menuinit initialize menu bar support

sm_mn_forms install menu bars in memory

sm_mnadd add an item to the end of a menu bar

sm_mnchange alter a menu bar item

sm_mndelete delete a menu bar item

sm_mnget get menu bar item information

sm_mninsert insert a new menu bar item

sm_mnitems get the number of items on a menu bar

sm_mnnew create a new menu bar by name

SmM_Y_menu read and display a menu bar from memory, a library or
disk

File Selection Box Routines

The following routines initialize and open a file selection dialog box.

sm_filebox open a file selection dialog box
sm_filetypes set up a list of file types for a file selection dialog box

Miscellaneous Routines

sm_adjust_area refresh the current screen
sm_win_shrink trim the current screen

NOTE: The header file smdefs.h must be included to run any JAM library routine.
Other header files required by specific routines are noted on each routine’s manual

page.

Page 218 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

sm_adjust_area
refresh the current screen

SYNOPSIS

#include ”“smpi.h”

void sm_adjust_areal)
DESCRIPTION

This routine redisplays the current screen, recalculting the positioning and sizing. It is
useful if a widget has changed size, due to its protection changing, or the screen being
toggled in or out of menu mode.

If a widget is changed to or from a label widget as a result of its protection being
changed, it will most likely shrink or stretch. Similarly, fields that have the menu edit
but are not protected from data entry will change their nature depending on whether the
screen is in menu mode or data entry mode. This may change the size of their widgets.
JAM does not automatically refresh the screen under these conditions, which may
cause widgets to overlap. Use sm_area_adjust to refresh the screen and recalculate
the relative positioning of objects.

SUPPORTED INTERFACES
Pi/Windows

Pi/Motif

Pi/OPEN LOOK

JAM/PiRelease 1.4 1 December 92 Page 219

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

SmM_C_menu

close a menu bar

SYNOPSIS

#include "smsoftk.h~

int sm_c_menu{scope)
int scope;

DESCRIPTION

This routine closes the menu bar ‘at the given scope. It frees all memory associated
with the menu bar. If the menu bar is currently displayed, it is removed at the next
delayed write.

Scope Description
KS_FORM Screen—level menu bar.
KS_APPLIC Application-level menu bar.

KS_OVERRIDE Override-level menu bar.

KS_MEMRES Memory-resident menu bar.

KS_SYSTEM System-level menu bar.

When a menu bar with a scope of KS_OVERRIDE closes, the previously displayed
menu bar is restored from the override stack

If scope is KS_MEMRES, the last menu bar opened at that scope is closed.

To refresh a menu bar with a new copy from disk (or memory), first call sm_c_menu,
and then call sm_r_menu or sm_d_menu.

RETURNS

0 if there is no error.
-2 if there is no menu bar currently at scope.
-3 if menu bars are not supported or scope is out of range.

RELATED FUNCTIONS

sm_d_menu (menu, scope);
sm_r_menu (name, scope);

Page 220 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

SUPPORTED INTERFACES

Pi/Windows
PiMotif
Pi/OPEN LOOK

EXAMPLE

#include “smdefs.h*
#include *smsoftk.h”

/* Close the current JAM window’s menu. */

sm_c_menu(KS_FORM);

JAM/PiRelease 1.4 1 December 92 Page 221

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

'sm_d_menu

display a menu bar stored in memory

SYNOPSIS

#include “smsoftk.h*

int sm_d_menu(menu, scope)
char *menu;
int scope;

DESCRIPTION

The parameter menu is the address of a menu bar stored in memory. The utility bin2c¢
is used to create program data structures from disk based menus. These structures are
then compiled into your application and added to the memory-resident screen list, de-
scribed in Chapter 9 of the JAM Programmer’s Guide.

scope is one of the mnemonics listed in smsoftk.h and shown in the table below.

Scope Description
KS_FORM Screen—level menu bar.
KS_APPLIC Application-level menu bar.

KS_OVERRIDE Override-level menu bar.

KS_MEMRES Memory-resident menu bar.

KS_SYSTEM System-level menu bar.

If there is currently a menu bar with the specified scope, the name of that menu bar is
compared with menu. If they are the same, the routine returns immediately. Thus to
refresh a menu bar with a new copy from memory, call sm_c_menu first.

If scope is KS_OVERRIDE, the currently displayed menu bar is saved in a stack
(o_stack). When the override menu bar closes, the saved menu bar is restored. This
stacking is performed only for a scope of KS_OVERRIDE. This scope is used for help
screens, zoom windows, etc. The stack is fixed at 10 deep.

If scope is KS_MEMRES, the menu bar is read from memory and added to the stack of
memory-resident menu bars for use as external menus.

Page 222 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

For all other scopes, the menu bar is read from memory and installed. The old menu bar
at this scope, if any, is freed. If the menu bar at this scope is currently displayed, it must
be refreshed. This fact is marked and the actual refresh is performed at the next delayed
write.

RETURNS

0 if no error occurred during display of the menu bar.

-1 if the format is incorrect (ie, not a menu bar).

-3 if menu bars are not supported or the scope is out of range.
-5 if there is a malloc failure.

In the case of an error, the previously displayed menu bar remains displayed.

For all errors except —3 a message is posted to the operator.

RELATED FUNCTIONS

SK_c_menu (scope) ;
sm_r_menu (name, scope);

SUPPORTED INTERFACES
Pi/Windows

PifMotif

Pi{/OPEN LOOK

EXAMPLE

#include “smdefs.h~
#include ”smsoftk.h”

extern char customer_menul];

/* Display the customer menu as the application-level menu.
* Customer_menu was created using bin2c.
*/

sm_d_menu(customer_menu, KS_APPLIC };

JAM/PiRelease 1.4 1 December 92 Page 223

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_drawingarea

get the widget id of the current JAM screen

oorio 3% 2R

SYNOPSIS
W

M| |0

DESCRIPTION

Provides the widget id of the current JAM screen. This function in conjunction with
sm_translatecoords is useful when placing objects such as bitmapped graphics
or custom widgets on a JAM screen. Refer to the source listing for the pie chart demon-
stration provided with JAM/Pi for a detailed example of how to import graphics and
use these functions. An example is also provided on the manual page for
sm_translatecoords.

RETURNS

Returns NULL if there is no current screen.
Otherwise:

WG S A WG AR

RELATED FUNCTIONS

sm_translatecoords(column, line, column_ptr, line_ptr);

sm_widget{};
SUPPORTED INTERFACES
Pi/Windows
Pi/Motif
Pi/OPEN LOOK

Page 224 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

EXAMPLE

/* This is a Pi/Windows example */

#include ~smdefs.h”
#include <windows.h>

int current_window_maximize(void)
{
/* This is a JAM prototype-able function which maximizes the current
* JAM window. It is the egquivalent of having the user click the
* window’s maximize button. The function sm_drawingarea returns
the window handle for the currently active JAM window.

PostMessage(sm_drawingarea(), WM_SYSCOMMAND, SC_MAXIMIZE, O);
return(0);

JAM/PiRelease 1.4 1 December 92 Page 225

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_filebox

SYNOPSIS
#include “smpi.h”

int sm_filebox(buffer, length, path, file_mask, title, flag)
char *buffer

int length

char *path

char *file_mask

char *title

int flag

Built-in control function variant:

~jm_£filebox fieldname path file_mask title flag
DESCRIPTION

This function opens a file selection dialog box. A file selection box allows the user to
browse through a directory tree and select a file by name. The implementation details
of the dialog are GUI dependent, but the function’s parameters are the same across
GUTI’s.

buffer is used to contain the full pathname of the user’s selection. length is the
length of buf fer. It is up to the developer to provide a buffer large enough to hold the
pathname.

path is the initial path for the directory tree. £ile_mask is a filter for narrowing
down the files in path. It should contain at least one wildcard character.

title specifies the title text of the dialog.

flag is used only in Pi/Windows. It may either have the value FB_SAVE or
FB_OPEN, depending on whether the file selection box is being used to save or open a
file. It controls the title next if none is supplied, and the label on one of the fields in the
dialog. This argument is ignored in Pi/Motif.

The variant jm_filebox is a built-in control function. Its first argument is a field
name or the name of a JPL variable. The selected file name is copied to this field or
variable instead of to the buffer. The path, file_mask, title and f1lag arguments
are the same as for sm_filebox. To leave an argument out, use “ * in its place. Built—
in control functions may be used in control strings and in JPL call statements. A
menu bar can open a file selection box by calling jm_filebox from a control string.

Page 226 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

Filter

/develop/home/%

Directories Files

>/home/rleff/, 2 [fourth, jam {4
>/home/rleff/debbiexif f |giblin
>/home/rleff/doc . | |halign, jam
B |humie
icontest, jam
Jamp,txt
Jampi,txt
Jjxform
keyscrn, jam

Selection

/develop/home/rleff/frame. jam,

Filter Cancel

Figure 64: A Motif File Selection Box

JAM/PiRelease 1.4 1 December 92 Page 227

JAM/Pi for OSF/Motit, Microsoft Windows and OPEN LOOK

Page 228 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

e.to buffer, and rei

has the labe

JAM/PiRelease 1.4 1 Dacember 92 Page 229

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

File Name: Directories:
@] c:ldos
assign.com (2 et
backup.com
chkdsk.com 8% dos
command. com
comp. COm
debug.com
diskcomp.com
dishcopy. com

Save File as Type: Drives:

i - dos400

| 4

I

Figure 65: A Windows File Selection Box

RETURNS

1 if the user presses OK. The full pathname of the selected file is copied to the buffer.

0 if the user presses Cancel.

-1 if there is a memory allocation error or buf fer is too small.

RELATED FUNCTIONS
sm_filetypes(description,

SUPPORTED INTERFACES

Pi/Windows

Pi/Motif

EXAMPLE

#include *smdefs.h”
#include “*smpi.h*

filters);

#define LENGTH 256
char buf [LENGTH]:;

sm_filebox(buf, LENGTH, ®/usr/home/bill~®, *=*.txt”,

Page 230 JAM/PiRelease 1.4 1 December 92

*Bill’s Files”,

0);

Chapter 12: Library and Utility Reference

sm_filetypes

set up a list of file types for a file selection dialog box

R s 25 p

o

SYNOPSIS
#include “"smpi.h*

int sm_filetypes(description, filters)
char *description;
char *filters;

DESCRIPTION

This function sets up a list of filters for display in the “file type” field of a file selection
dialog box under Windows. A file selection dialog is brought up by the routine
sm__filebox. The file type field contains a list of file types, or masks, that can be set
up by the developer. It provides a convenient way for the user to narrow down a directo-
ry listing.

description is a text string describing a file type. It appears in the list of file types.
filters is a semicolon separated list of file masks that are included in the particular
file type. Each time this function is called, a new description and setof filters
is added to the end of the existing file type list.

To erase the file types list, call sm_£filetypes with null pointers (or null strings).

This function must be added to the prototyped function list if it is to be called from JPL.
In Motif, sm_filetypes isignored.

RETURNS

0 if the description is successfully added to the list.
-1 if there is a memory allocation error.

RELATED FUNCTIONS
sm_filebox{(buffer, length, path, file_mask, title, flag);

SUPPORTED INTERFACES
Pi/Windows
EXAMPLE

#include “smdefs.h*
#include “smpi.h*

/* Clear the file types list, set up two file type filters, and call
* the filebox routine. */

JAM/PiRelease 1.4 1 December 92 Page 231

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

#define LENGTH 256
char buf [LENGTH];

sm_filetypes(NULL, NULL);

sm_filetypes("Text files*, ”*.doc; *.txt");
sm_filetypes(“Executables”, “*.com; *.exe; *.bat”);
sm_filebox(buf, LENGTH, "c:*, **.*~, *", FB_OPEN});

Page 232 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

sm_menuinit

initialize menu bar support

R RN 8T R

SYNOPSIS
void sm_menuinit();

DESCRIPTION

This routine should be called explicitly only if you are writing a Custom Executive. If
you are using the JAM Executive, then you simply have to enable support for menu
bars in the main routine (either jmain.c or jxmain.c) by setting the appropriate
#define to 1. This will cause the main routine to call this routine automatically.

If you are writing a Custom Executive and you wish to include menu bar support, you
must call this routine. It should be done in the main routine before the call to initcrt.

The routine simply sets a global variable to point to a control function. All screen man-
ager functions that need menu bar support check the variable and, if it is non-zero, call
indirectly with the request.

If an application is to use keysets in character JAM and menu bars in JAM/Pi, then the
main routine should call sm_skeyinit before it calls sm_menuinit. The second
library call will override the first in JAM/P:, but will be ignored in character JAM.

If you wish to store menu bars in memory, you must also call sm_mn_forms, or set the
appropriate #define in the main routine.

NOTE: Since menu bars and keysets share the same hooks, they may not be used to-
gether.

RELATED FUNCTIONS

sm_mn_forms () ;

SUPPORTED INTERFACES
Pi/Windows

Pi/Motif

Pi/OPEN LOOK

JAM/PiRelease 1.4 1 December 92 Page 233

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_mn_forms

install menu bars in memory

SYNOPSIS
void sm_mn_forms();

DESCRIPTION

This routine should be called explicitly only if you are writing a Custom Executive. If
you are using the JAM Executive, then you simply have to enable support for menu
bars in the main routine (either jmain.c or jxmain.c) by setting the appropriate
#define to 1. This will cause the main routine to call this routine automatically.

If you are writing a Custom Executive and storing menu bars in memory, this routine
should be called by the main application program to install the menu bars in memory
for use by the screen manager. You must compile menu bars stored in memory into your
application and add them to the memory-resident screen list, described in Chapter 9 of
the JAM Programmer’s Guide. An alternative to storing menu bars in memory is to
open a library of menu bars or to open the menu bars as individual files on disk

A related function, sm_menuinit, must also be called in order to initialize menu bar
support. To open a menu bar stored in memory, call sm_d_menu or sm_r_menu.

RELATED FUNCTIONS

sm_menuinit ();
sm_d_menu{menu, scope);
sm_r_menu{menu_name, scope);

SUPPORTED INTERFACES
Pi/Windows

Pi/Motif

Pi{/OPEN LOOK

Page 234 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

sm_mnadd

add an item to the end of a menu bar

SYNOPSIS

#include ~“smsoftk.h”
#include "smkeys.h”
#include "smmach.h”
#include *smmenu.h”

int sm_mnadd(scope, menu_name, data)
int scope;

char *menu_name;

struct item_data *data;

DESCRIPTION
Adds an item at the end of the menu bar specified by scope and menu_name.
scope is one of the mnemonics listed in smsoftk.h, and shown in the table below.

Scope Description
KS_FORM Screen-level menu bar.
KS_APPLIC Application—level menu bar.

KS_OVERRIDE Override—level menu bar.

KS_MEMRES Memory-resident menu bar.

KS_SYSTEM System-level menu bar.

menu_name is the name of the menu as specified in the menu script.

item_data is a user—allocated structure that describes the appearance and function of
a menu bar item. Its contents are shown in the table below:

Member Description

type Specifies the type of item. Possible values are:
MT__SEPARATOR, MT_TITLE, MT _SUBMENU, MT_KEY,
MT_CTRLSTRNG, MT_EDIT, MT_WINDOWS

label Label text for the item. Text beyond 255 characters is truncated. The
label is ignored if type is MT_SEPARATOR. Default is 0.

JAM/PiRelease 1.4 1 December 92 Page 235

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Member

Description

accel

Offset of the keyboard shortcut character in the label text string. Default
is =1,

key Logical key mnemonic. This is used only if type is MT_KEY. See
smkeys . h for a listing of valid key mnemonics. Default is 0.
submenu | A text string containing the submenu name. This is used only if type
is MT_SUBMENU. Default is 0.
option |Display options. There are separate display options for separators and text

type items. See the table below.

Any structure members that are not relevant to the item should have the default value,
namely: 0 for label, key, and submenu; and -1 for accel.

The mnemonics for display options shown in the following table are defined in
smmenu . h. They are described in detail in the menu bar chapter in section 8.4. Text
options may be bitwise or’ed together; separator options may not.

Text Item Options Value Separator Options Value
MO_INDICATOR_ON 0x0200 [|MO_SINGLE 0x0000
MO_MENUBREAK 0x0400 || MO_DOUBLE 0x0001
MO_INDICATOR 0x0800 || MO_NOLINE 0x0002
MO_GRAYED 0x1000 [fMO_SINGLE_DASHED | 0x0003
MO_INACTIVE 0x2000 [|[MO_DOUBLE_DASHED | 0x0004
MO_SHOWKEY 0x4000 [|MO_ETCHEDIN 0x0005
MO_HELP 0x8000 || MO_ETCHEDOUT 0x0006

RETURNS

0 if there is no error.

—2 if there is no menu bar at this scope.

-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is not found.

-6 if datain item_data is bad.

=17 if there is a malloc error.

Page 236

JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

RELATED FUNCTIONS

sm_mnchange (scope, menu_name, item_no, data);
sm_mndelete(scope, menu_name, item_no);
sm_mnget {(scope, menu_name, item_no, data);
sm_mninsert (scope, menu_name, item_no, data);
sm_mnitems (scope, menu_name});

sm_mnnew (scope, menu_name) ;

SUPPORTED INTERFACES

Pi/Windows
Pi/Motif
Pi/OPEN LOOK

EXAMPLE

#include "smdefs.h”
#include ~smsoftk.h”
#include ~"smmach.h”
#include “"smmenu.h”
#include “"smkeys.h”

struct item_data *data;

data = (struct item_data *) malloc(sizeof(struct item_data) });

/* Call sm_d_menu w/ a disk resident menu and KS_FORM.

* Call sm_mnadd to add a title for submenu.
*/

sm_r_menu ("mymenu.bin”, KS_FORM);
data->type = MT_TITLE;

data->label = ~Submenu”;
data-»accel = -1;

data->key = 0;

data->submenu = 0;

data->option = MO_INDICATOR_ON;
sm_mnadd (KS_FORM, ~Submenu0®, data);

JAM/P/Release 1.4 1 December 92

Page 237

JAM/P| for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_mnchange

alter a menu bar item

SYNOPSIS

#include "smsoftk.h”
#include *smkeys.h”
#include “smmach.h”
#include “smmenu.h”

int sm_mnchange (scope, menu_name, item_no, data)
int scope;

char *menu_name;

int item_no;

struct item_data *data;

DESCRIPTION

Change the data associated with the menu bar item specified by item_no,
menu_name and scope, to the data contained in the item_data structure.
item_data is a user—allocated structure that describes the appearance and function of
a menu bar item. See sm_mnadd for details on the item_data structure and a listing
of the various scopes. The first item on a menu is item_no zero.

Use this routine, for example, to grey out or check an item.
RETURNS

0 if there is no error.
-2 if there is no menu bar at this scope.
-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is not found.
-5 if item_no is not found.
—6if data in item_data is bad.
~17 if there is a malloc error.

RELATED FUNCTIONS

sm_mnadd (scope, menu_name, data);
sm_mndelete(scope, menu_name, item_no);
sm_mnget {scope, menu_name, item_no, data);
sm_mninsert (scope, menu_name, item_no, data);
sm_mnitems (scope, menu_name};

sm_mnnew (scope, menu_name) ;

Page 238 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

SUPPORTED INTERFACES

Pi/Windows
PiMotif
Pi/OPEN LOOK

EXAMPLE

#include “smdefs.h”
#include ~smsoftk.h*
#include “smmach.h”
#include “smmenu.h”
#include ”smkeys.h”

/* menu file stored in memory */
extern char mymenul[];

struct item_data *data;
data = {(struct item_data *) malloc(sizeof(struct item_data));

/* Call sm_r_menu w/ a disk resident menu and KS_APPLIC.
* Call sm_mnchange to grey out a menu item in the submenu.
*/

sm_r_menu (“mymenu.bin”, KS_APPLIC);
data->type = MT_KEY;

data->label = "NewItem”;

data->accel = 3;

data->key = PFl;

data->submenu = 0;

data->option = MO_GRAYEDI|MO_SHCWKEY;
sm_mnchange (KS_APPLIC, *Submenu0”, 0, data);

JAM/PiRelease 1.4 1 December 92 Page 239

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_mndelete

delete a menu bar item

SYNOPSIS

#include "smsoftk.h*
#include ~“smmach.h*
#include “smmenu.h”

int sm_mndelete(scope, menu_name, item_no)
int scope;

char *menu_name;

int item_no;

DESCRIPTION

Delete the item specified by item_no, menu_name, and scope from the menu bar.
The first item on a menu is i tem_no zero.

RETURNS

0 if there is no error.

-2 if there is no menu bar at this scope.

-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is not found.

=5 if item_no is not found.

RELATED FUNCTIONS

sm_mnadd (scope, menu_name, data);

sm_mnchange (scope, menu_name, item_no, data);
sm_mnget (scope, menu_name, item_no, data);
sm_mninsert (scope, menu_name, item_no, data);
sm_mnitems (scope, menu_name) ;

sm_mnnew {scope, menu_name);

SUPPORTED INTERFACES
Pi/Windows

Pi/Motif

Pi/OPEN LOOK

EXAMPLE

#include ”"smdefs.h”
#include "smsoftk.h”
#include *smmach.h”
#include *smmenu.h*

Page 240 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

int count;
/* Delete the last item from the application menu called “customer* */

if {((count = sm_mnitems{ KS_APPLIC, "customer” }) > 0)
sm_mndelete(KS_APPLIC, ~customer”, count);

JAM/P/Release 1.4 1 December 92 Page 241

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_mnget

get menu bar item information

SYNOPSIS

#include "smsoftk.h”
#include ~smkeys.h”
#include “smmach.h”
#include “smmenu.h”

int sm_mnget (scope, menu_name, item_no, data)
int scope;

char *menu_name;

int item_no;

struct item_data *data;

DESCRIPTION

Get the specified menu bar item’s data. Given the menu_name (as given in the menu
script) and an item_no, this function fills the fields in the item_data structure with
the associated data for that item. The first item on a menu is item_no zero. Note that
you must create buffers for the label and submenu elements of the structure that are
large enough to hold the label and submenu names (see the example below). The maxi-
mum length is 255 characters. See sm_mnadd for details on the it em_data structure
and a listing of the various scopes.

RETURNS

0 if there is no error.

-2 if there is no menu bar at this scope.

-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is not found.

-5 if item_no is not found.

RELATED FUNCTIONS

sm_mnadd {scope, menu_name, data);

sm_mnchange (scope, menu_name, item_no, data);
sm_mndelete(scope, menu_name, item_no};
sm_mninsert (scope, menu_name, item_no, data);
sm_mnitems (scope, menu_name);

sm_mnnew (scope, menu_name) ;

Page 242 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

SUPPORTED INTERFACES
Pi/Windows
Pi/Motif
Pi/OPEN LOOK
EXAMPLE
#include ”smdefs.h”
#include *smmach.h”

#include ~“smmenu.h”
#include "smsoftk.h”

/* menu file stored in memory */
extern char mymenul(];

char bufl (100}, buf2[100];
struct item_data *data;
data = (struct item_data *) malloc(sizeof(struct item_data));

data->label = bufl;
data->submenu = buf2;

/* Call sm_r_menu with a disk resident menu.
* Call sm_mnget to get an override-level menu bar item.
*/

sm_r_menu (*mymenu.bin*, KS_OVERRIDE);
sm_mnget (KS_OVERRIDE, ”Main*, 0, data);

JAM/PiRelease 1.4 1 December 92 Page 243

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_mninsert

insert a new menu bar item

SYNOPSIS

#include “"smsoftk.h”
#include *smkeys.h”
#include *smmach.h”
#include *smmenu.h”

int sm_mninsert (scope, menu_name, item_no, data)
int scope;

char *menu_name;

int item_no;

struct item_data *data;

DESCRIPTION

Insert a new menu bar item before the menu item specified by item_no,
menu_name, and scope, using the data in the menu bar structure item_data.
item_data is a user-allocated structure that describes the appearance and function of
a menu bar item. See sm_mnadd for details of the item_data structure and a listing
of the various scopes. The first item on a menu is item_no zero.

RETURNS

0 if there is no error.

-2 if there is no menu bar at this scope.

-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is not found.

=5 if item_no is not found.

—6 if datain item_data is bad.

=7 if there is a malloc error.

RELATED FUNCTIONS

sm_mnadd (scope, menu_name, data);

sm_mnchange (scope, menu_name, item_no, data);
sm_mndelete(scope, menu_name, item_no);
sm_mnget (scope, menu_name, item_no, data);
sm_mnitems(scope, menu_name);

sm_mnnew (Sscope, menu_name);

Page 244 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

SUPPORTED INTERFACES

Pi/Windows
Pi/Motif
Pi/OPEN LOOK

EXAMPLE

#include ~"smdefs.h”
¥include ”"smsoftk.h”
#include *smmach.h”
#include ”"smmenu.h”
#include ~smkeys.h”

struct item_data *data;
data = (struct item_data *) malloc{ sizeof(struct item_data) };

/* Call sm_r_menu w/ a disk resident menu and KS_FORM.
* Call sm_mninsert to insert a submenu.
*/

sm_r_menu{“mymenu.bin*, KS_FORM);
data->type = MT_SUBMENU;

data->label = "NewlItem”;

data->accel = 3;

data->key = 0;

data->submenu = "Submenul~;
data-»option = MO_INDICATOR;
sm_mninsert (KS_FORM, "Main”, 1, data);

JAM/PiRelease 1.4 1 December 92 Page 245

JAM/Pi for OSF/Motit, Microsoft Windows and OPEN LOOK

sm_mnitems

get the number of items on a menu bar

e

SYNOPSIS

#include *"smsoftk.h”
#include “smmach.h”
#include ”smmenu.h”

int sm_mnitems(scope, menu_name)
int scope;
char *menu_name;

DESCRIPTION

Returns the number of items on the menu bar specified by menu_name and scope.
Refer to sm_mnadd for a list of values for scope. When referring to items in related
functions, the first item on a menu is item number zero.

RETURNS

-2 if there is no menu at this scope.

-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is not found.

otherwise the number of items on the menu bar is returned.

RELATED FUNCTIONS

sm_mnadd (scope, menu_name, data);

sm_mnchange (scope, menu_name, item_no, data);
sm_mndelete(scope, menu_name, item_no);
sm_mnget (scope, menu_name, item_no, data);
sm_mninsert (scope, menu_name, item_no, data);
sm_mnnew (scope, menu_name);

SUPPORTED INTERFACES

Pi/Windows
Pi/Motif
Pi/OPEN LOOK

EXAMPLE

#include “smdefs.h”
#include *smmach.h”

Page 246 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

int ret;

/* Call sm_r_menu w/ a disk resident menu and KS_OVERRIDE.

* Call sm_mnitems to get the number of items on the menu bar, and
* place the number in the current field.
*/

sm_r_menu (*mymenu.bin”, KS_OVERRIDE);

ret = sm_mnitems(KS_OVERRIDE, "Main”};
sm_n_itofield("number~”, ret);

JAM/PiRelease 1.4 1 December 92 Page 247

JAM/P; for OSF/Motif, Microsoft Windows and OPEN LOOK

sSm_mnnew

create a new menu bar by name

SYNOPSIS

#include “smsoftk.h”
#include *smmach.h*
#include “smmenu.h”

int sm_mnnew(scope, menu_name)
int scope;
char *menu_name;

DESCRIPTION

This routine creates a new submenu in the menubar structure at the specified scope.
Refer to sm_mnadd for a list of values for scope. This routine does not add an item
for the submenu to the top-level menu bar, it simply makes the new submenu available
for adding items to, via sm_mnadd or sm_mninsert. After the new submenu is
fleshed out, an entry for it can added to an existing menu or submenu, also via
sm_mnadd or sm_mninsert.

RETURNS

0 if there is no error.

—2 if there is no menu bar at the specified scope.

-3 if menu bars are not supported or scope is out of range.
—4 if menu_name is invalid or already exists.

-7 if there is a malloc error.

RELATED FUNCTIONS

sm_mnadd {(scope, menu_name, data);
sm_mnchange(scope, menu_name, item_no, data);
sm_mndelete({scope, menu_name, item_no);
sm_mnget (scope, menu_name, item_no, data):
sm_mninsert (scope, menu_name, item_no, data);
sm_mnitems (scope, menu_name);

SUPPORTED INTERFACES
Pi/Windows

Pi/Motif

Pi//OPEN LOOK

Page 248 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

EXAMPLE

#include *"smdefs.h”
#include “smsoftk.h”
#include "smmach.h”
#include “smmenu.h”
#include “"smkeys.h”

int ret;
struct item_data *data;

data = { struct item_data *) malloc(sizeof{ struct item _data)});

/* call sm_r_menu w/ a disk resident menu and KS_OVERRIDE.
* Call sm_mnnew to create a new menu bar
* Call sm_mnadd to add items to it and finally add this new menu
* to the menu displayed as a submenu.
*/

sm_r_menu{”main.bin®, KS_OVERRIDE};
ret = sm_mnnew(KS_OVERRIDE, “Newltem”);
if (ret == 0)
{
data->type = MT_TITLE;
data->label = ”"Submenu”;
data->accel = -1;
data->key = 0;
data->submenu = 0;
data->»option = MO_INDICATOR_ON;

sm_mnadd (KS_OVERRIDE, *Newltem”, data);

data->type = MT_SUBMENU;
data->label = “I”;
data->accel = 0;

data->key = 0;
data~->submenu = *Submenul~;
data->»option = MO_INDICATOR;

sm_mnadd (KS_OVERRIDE, “Newltem”, data);

data->type = MT_SUBMENU;
data—->label = "Newltem”;
data->accel = 3;

data->key = 0;

data->submenu = “Newltem*;
data->option = MO_INDICATOR;

sm_mnadd (KS_OVERRIDE, “Main”’, data);

JAM/PiRelease 1.4 1 December 92 Page 249

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Sin_r_menu
read and display a menu bar from memory, a library or
disk

B

SYNOPSIS

#include "smsoftk.h”
#include "smmach.h”
#include “smmenu.h”

int sm_r_menu(menu_name, scope)
char *menu_name;
int scope;

DESCRIPTION

The parameter menu_name is the name of the menu bar. This name is sought first in
the memory-resident screen list, next in any open libraries and finally on disk in the
directories specified by the argument to sm_initcrt and by SMPATH. Screens and
menu bars may be mixed in the screen list and in libraries.

scope is one of the mnemonics listed in smsoftk.h and shown in the table below.

Scope Description
KS_FORM Screen—level menu bar.
KS_APPLIC Application-level menu bar.

KS_OVERRIDE Override-level menu bar.

KS_MEMRES Memory-resident menu bar.

KS_SYSTEM System-level menu bar.

If there is currently a menu bar with the specified scope the name of that menu bar is
compared with menu_name. If they are the same, the routine returns immediately.
Thus to refresh a menu bar with a new copy from disk, call sm_c_menu first.

If scope is KS_OVERRIDE, the currently displayed menu bar is saved in a stack
(o_stack). When the override menu bar closes, the saved menu bar is restored. This
stacking is performed only for a scope of KS_OVERRIDE. This scope is used for help
screens, zoom windows, etc. The stack is fixed at 10 deep.

Page 250 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

If scope is KS_MEMRES, the menu bar is read and added to the stack of memory-resi-
dent menu bars for use as external menus.

For all other scopes, the menu bar is read and installed. The old menu bar at this scope,
if any, is freed. If the menu bar at this scope is currently displayed, it must be refreshed.
This fact is marked and the actual refresh is performed at the next delayed write.

RETURNS

0 if no error occurred during display of the menu bar.

~1 if the format is incorrect (not a menu bar).

-2 if menu_name is not found.

-3 if menu bars are not supported or the scope is out of range.
—4 if there is a read error.

-5 if there is a malloc failure.

In the case of an error the previously displayed menu bar remains displayed.

For all errors except —3 a message is posted to the operator.

RELATED FUNCTIONS

sm_c_menu (scope} ;
sm_d_menu (menu, scope);

SUPPORTED INTERFACES
Pi/Windows
Pi/Motif
Pi/OPEN LOOK
EXAMPLE
#include "smdefs.h”
#include *smsoftk.h”

#include "smmach.h”
#include "smmenu.h”

/* Read in the company menu and display it at the form level. */

sm_r_menu{ “company.bin*, KS_FORM);

JAM/PiRelease 1.4 1 December 92 Page 251

JAM/PI for OSF/Motif, Microsoft Windows and OPEN LOOK

sm_translatecoords

translate screen coordinates to display coordinates

SYNOPSIS

#include “smpi.h*

int sm_translatecoords(column, line, column_ptr, line_ptr)
int column;

int line;

int *column_ptr;

int *line_ptr;

DESCRIPTION

Translates the JAM line and column relative to a screen, into pixel line and column
relative to the upper left hand corner of the drawing area. 1ine and column are zero
based. This function in conjunction with sm_drawingarea is useful when placing
objects such as bitmapped graphics or custom widgets on a JAM screen. Refer to the
source listing for the pie chart demonstration provided with JAM/Pi for a detailed ex-
ample of how to import graphics and use these functions.

RETURNS

The pixel coordinates are placed in the integers referenced by *column_ptr and
*line_ptr.
The function also returns:

-1 if the 1ine or column is out of range;
0 otherwise.

RELATED FUNCTIONS

sm_drawingarea();

SUPPORTED INTERFACES
Pi/Windows

Pi/Motif

Pi/OPEN LOOK

EXAMPLE

/* The following program illustrates how to use sm_drawingarea and

* sm_translatecoords to display a bitmap on the current JAM screen in
* Pi/Windows.

*/

Page 252 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

#include <windows.h>
#include <smdefs.h>

void DrawBitmap(HDC hdc, HBITMAP hBitmap, short xStart, short yStart);

int
JAM_display_bitmap(char *bitmap_name, int line, int col)
{

HWND hwnd;

HDC hdc;

HBITMAP hBitmap;

int pixel_line;

int pixel_col;

hwnd = sm_drawingarea();
hdc = GetDC(hwnd);

hBitmap = LoadBitmap(GetWindowWord(hwnd, GWW_HINSTANCE),
bitmap_name };
if (hBitmap == NULL)
{
char buf(100];

sprintf(buf, *JAM_display_bitmap: no such bitmap ‘%s’”,
bitmap_name };

sm_emsg(buf);

return(-1);

}

if (sm_translatecoords(col, line, &pixel_col, &pixel_line) < 0)
{
char buf[100];

sprintf(buf, ~"JAM_display_bitmap: invalid line/column: %d/%4~",
line, col):

sm_emsg(buf };

return(-1);

}

DrawBitmap{(hdc,
hBitmap,
(short) pixel_col,
(short) pixel_line);

DeleteObject{ hBitmap);
ReleaseDC{ hwnd, hdc);
return(0);

}

void
DrawBitmap(HDC hdc, HBITMAP hBitmap, short xStart, short yStart)

JAM/PiRelease 1.4 1 December 92 Page 253

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

BITMAP bm;

HDC hdcMem;

DWORD dwSize;

POINT ptSize, ptOrg;

hdcMem = CreateCompatibleDC{ hdc);
SelectObject(hdcMem, hBitmap);
SetMapMode(hdcMem, GetMapMode(hdc));

GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bm);
ptSize.x = bm.bmwWwidth;

ptSize.y = bm.bmHeight;

DPtoLP(hdc, &ptSize, 1 };

ptOrg.x = 0;
ptOrg.y = 0;
DPtoLP({ hdcMem, &ptOrg, 1 };

BitBlt(hdc, xStart, yStart, ptSize.x, ptSize.y, hdcMem, ptOrg.x,
ptOrg.y, SRCCOPY });

DeleteDC(hdcMem);

}

Page 254 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Ufilitv Reference

sm_widget
get the widget id of a widget

SYNOPSIS

DESCRIPTION

Provides the widget id of (or handle to) a widget, given a field number, field name, or
field name and element number. The widget id is necessary for GUI function calls
where you wish to interact directly with a particular widget.

RETURNS

Returns NULL if there is no such widget.
Otherwise:

JAM/P/Release 1.4 1 December 92 Page 255

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

RELATED FUNCTIONS

sm_drawingarea();

SUPPORTED INTERFACES

Pi/Windows
Pi/Motif
Pi/OPEN LOOK

Page 256 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

sm_win_shrink

trim the current screen

SYNOPSIS

#include “smpi.h”

int sm_win_shrink(void)

DESCRIPTION

This routine trims all space on a screen to the right of the rightmost widget and below
the bottommost widget. It does not change the number of JAM lines and columns. It is
primarily useful when hoff or vof £ extensions are heavily used to reposition fields.
Call sm_adjust_area() to restore a screen to its original size.

SUPPORTED INTERFACES

Pi/Motif
Pi/OPEN LOOK

JAM/PiRelease 1.4 1 December 92 Page 257

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LLOOK

12.2

UTILITIES

Two utilities are provided for creating menu bars. The first, menu2bin, converts an
ASCII menu script into a binary menu file. The second, kset 2mnu, converts a JAM
keyset into an ASCII menu script. For detailed instructions on creating menu bar scripts

refer to Chapter 8.

Page 258 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

menu2bin

convert ASCIlI menu scripts to binary format

RSB EME Y

U e R

SYNOPSIS

menu2bin {-pv] [-e ext] menufile. ..
OPTIONS
-p Places the binary files in the same directories as the input files.
-v Lists the name of each input file as it is processed.
-e Appends ext to the output file name. The default extension is bin.
DESCRIPTION

The menu2bin utility converts ASCII menu scripts into binary format for use by
JAM/Pi applications in place of keysets. Menu scripts are created as text files. Refer to
section 8.4 for instructions on creating a menu script.

To store 2 menu file in memory, first run the binary file produced by this utility through
the bin2c utility to produce a program source file; then compile that file and link it
with your program and add it to the memory-resident screen list (see Chapter 9 of the
JAM Programmer's Guide). The extended library routines sm_d_menu and
sm_r_menu can display menu bars stored in memory.

Menu binary files can be placed in libraries with the formlib utility. Refer to the
JAM Utilities Guide for more information.

ERRORS

Too many menu definitions. Max is 128.
Cause: Only 128 menu definitions may be included in one menu script.

Too many item definitions. Max is 128.
‘Cause: Only 128 item specifications may be included in one menu definition.

Cannot create ’%s’

Error writing ’%s’

Cause: An output file could not be created, due to lack of permission or perhaps lack
of disk space.

Corrective action: Correct the file system problem and retry the operation.

Neither ‘%s’ nor ‘%s’ found.
Cause: An input file was missing or unreadable.
Corrective action: Check the spelling, presence and permissions of the file in question.

JAM/P/Release 1.4 1 December 92 Page 259

JAM/P/ for OSF/Motif_Microsoft Windows and OPEN LOOK

Error in ‘%s’ line ‘%4’
followed by one of the following:

Expected left brace ‘'{’ after menu name.

No right brace '}’ found before EOF.

No menu name specified.

Expected quoted item label.

Missing action.

Unknown action ’‘%s’.

Unknown option ‘%s’.

No key specified.

Bad key ’%s’.

Bad escape sequence ‘%s’.

Undefined submenu ‘%s’.

More than one option of this type (%s).

More than one accelerator character assigned.
Accelerator character at end of string - Ignored.
Menu ‘%s’ is on menu bar so cannot be used as submenu.

Cause: The syntax of your script on the specified line is incorrect.

Corrective action: Find the error on the line specified and correct it. Refer to section
8.4 for a description of the proper syntax, and a sample menu script.

Page 260 JAM/PiRelease 1.4 1 December 92

Chapter 12: Library and Utility Reference

kset2mnu

convert keysets into ASCIl menu scripts

SYNOPSIS
kset2mnu [-pv] (-e ext] keyset. ..

OPTIONS

-p Places the binary files in the same directories as the input files.

-v Lists the name of each input file as it is processed.

-e Appends ext to the output file name. The default extension is mnu.

DESCRIPTION

The kset 2mnu utility converts keysets into menu scripts. The file is converted accord-
ing to the following rules:

@® The first row in the keyset becomes the top—level menu.

® Subsequent rows become submenus. Submenus are named “Rowx”,
where x is the row number.

® The SFTx key (goto row x) becomes an entry for the submenu named
Rowx.

® The SFTN (next row) and SFTP (previous row) keys become entries
for the submenus named Row{l+1} or Row{/-1}, where /is the current
row.

The menu script created by the utility is an ASCII text file. Refer to section 8.4 for an
explanation of the structure of a menu script. You may wish to edit the script produced
by the conversion utility to make your converted menu bars more like standard menu
bars. While keysets often have direct actions in their first row, menu bars usually have
no direct actions on the top level menu, only entries for submenus.

Once you are happy with the contents and display options of your script, run the script
through the menu2bin utility and install it in your application.

ERRORS

Soft key ‘%$s’ designates a nonexistent submenu.
Cause: The keyset contains a SFTn key for a row that does not exist.
Corrective action: Remove the offending key from the keyset and reconvert it.

JAM/PiRelease 1.4 1 December 92 Page 261

JAM/P/ for OSF/Motif, Microsoft Windows and OPEN LOOK

Neither ‘%s’ nor ‘%s’ found.
Cause: An input file was missing or unreadable.
Corrective action: Check the spelling, presence, and permissions of the input file.

Cannot create ‘%s’

Error writing ’%s’

Cause: An output file could not be created, due to lack of permission or disk space.
Corrective action: Correct the file system problem and retry the operation.

Page 262 JAM/PiRelease 1.4 1 December 92

Appendix A: Terminology

Appendix A
Terminology

The following terms are used throughout the manual. Some of these terms are defined
more rigorously in the Glossary Appendix to Volume 1 of the JAM Manual.

General Terms

character JAM The JAM product for character-based terminals.

initialization file A text file containing default specifications for the appear-
ance and behavior of Microsoft Windows applications. The
jam.ini and win. ini files are examples of initialization
files. Contrast with resource file in Motif.

JAM/Pi The JAM/Presentation interfaces for Windows and Motif.

Motif An X widget set created by the Open Software Foundation.
Motif also includes an Application Program Interface (API),
and a window manager.

OPEN LOOK An X widget set created by UNIX System Laboratories.
OPEN LOOK also includes an Application Program Inter-
face (API), and a window manager.

Pi/Motif The JAM/Presentation interface for Motif.

Pi/OPEN LOOK - The JAM/Presentation interface for OPEN LOOK.
Pi/Windows The JAM/Presentation interface for Microsoft Windows.
resource file A text file containing default specifications for the appear-

ance and behavior of Motif applications. The . Xdefaults
file, and the XJam file are examples of resource files. Individ-
ual items in the file are called resources. Contrast with initial-
ization file in Windows.

Windows The Microsoft Windows Graphical User Interface.

JAM/PiRelease 1.4 1 December 92 Page 263

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Terms Relating to Screens

active screen The JAM screen that is currently accepting input.

base window An optional window in Pi/Motif that contains only a status
line, keyset and menu bar.

display The physical screen of the terminal or monitor.

focus The GUI window that the GUI is sending keyboard input to
has focus. This may or may not be the active screen.

form A JAM form.

frame The area on the display within which JAM operates under the
Microsoft Windows Multiple Document Interface.

GUI window A region on the display that may be created by an application.
JAM screens appear within GUI windows.

screen General term for a JAM form or JAM window.

window A JAM window. Windows may be stacked or sibling.

Terms Relating to Items on Screens

bounce bar A highlighted bar that indicates a selection on a menu.

control The Windows equivalent of a widget. This document uses the
term widget in favor of the term control.

fixed width font A font in which each character has the same width, deter-
mined by the point size of the font. Most standard terminals
use fixed width fonts. This sentence is set in a
fixed width font.

menu A JAM on-screen menu, consisting of a field or set of fields
with the menu edit.

menu bar The list of pull-down headings that appears on certain
screens, directly below the title bar. Some menu bars appear
in the base window or frame, while others may be local to a
JAM screen.

proportional font A font in which the widths of the characters vary. Proportion-
al fonts are more readable than fixed width fonts, and they
look more elegant. The sentence you are reading is set in a
proportional font.

Page 264 JAM/PiRelease 1.4 1 December 92

Appendix A: Terminology

scroll bar

widget

A widget that is used to scroll the information in a screen or
widget. Scroll bars may be horizontal or vertical. A scroll bar
usually has an outward pointing arrow at either end and an
elevator (also called a thumb, or scroll box) that moves along
within the bar, indicating which portion of the screen 1s vis-
ible. Under Motif, the size of the thumb also indicates how
much of the screen is visible. The appearance and functional-
ity of scroll bars are determined by the GUI.

A GUI object. GUI applications are built from widgets. Some
widgets are used as to interact with an application, while oth-
ers are for display only. Widgets are created in a hierarchical
(parent/child) fashion.. JAM fields and groups and display
text become widgets in JAM/Pi. Widgets are called controls
in MS Windows. This document uses the term widget in favor
of the term control.

JAM/PiRelease 1.4 1 December 92 Page 265

NOTE:

A

Alias, 158-160
in bg extension, 83
in fg extension, 83
in font extension, 90
sample
Motif, 179
OPEN LOOK, 189
Windows, 162

Alignment, 23-37
Anchoring, 26-29
app—defaults directory, 148
Application mode, 23
Arranging screens, 23-37

Array, 18, 18
list box, 108-109
scrolling
behavior, 47-50
optionmenu, 127

INDEX

spacing between elements, 33, 73, 140

text editing in, 212

Attributes, 12-16
application-wide, 13
defaults, 145-190
hierarchy, 13
JAM, 16
lines and boxes, 58-61
screen—wide, 15
widget specific, 1617

JAM/PiRelease 1.4

Italicized page references (eg.— Array, /7) indicate figures.

Background color
resource in Motif/OPEN LOOK, 151
screen, 55, 81-83
widget, 65, 81-83

Base window, 163

bg, 55, 65, 81-83
command line option in Motif/OPEN
LOOK, 152

Bitmap, 68, 130
compiling in Windows, 131
height, 97
icon, 104-106
width, 97
Border, 42
eliminating, 57, 116-117
Box, 84-86, 85
color, 84
creating, 57-61
grid stretching and, 86
layering, 86
positioning, 36, 36-37
style, 58, 84
box, 57-61, 84-86

Button. See Pushbutton; Togglebutton

C

Callbacks, 4

Character JAM
converting applications, 216
line drawing, 215
portability to JAM/Pi, 4
vs. JAM/Pi, 3

1 December 92

Page 267

JAM/Pj for OSF/Motit, Microsoft Windows and OPEN LOOK

Characters, 96
checkbox, 63, 87

Checklist, 20-21, 21, 63, 87
checkbox widget, 87
converting to list box, 108-109
togglebutton widget, 64, 143

Class
application, 147, 168, 181
widget, 168, 180
widgets for JAM fields, 171-172, 183-185

Colon expansion, 76

Color, 149-152
alias, 83, 158-160
background highlight on a PC, 215
box, 59, 84
frame, 67, 93
JAM colors, 149-150
line, 59, 99
ownColorMap resource in Motif and
OPEN LOOK, 167, 180
palette, 81, 149-150
sample in Motif, 177
sample in OPEN LOOK, 189
sample in Windows, 162
push button, in Windows, 111
resources, 151
screen
background, 55, 81-83
foreground, 54, 81-83
widget
background, 65, 81-83
foreground, 65, 81-83

Combo box, 128

Command line, 14, 15, 148, 179-180
Motif, 167-168
bg switch, 152, 167
cascadeBug switch, 167
fg switch, 152, 167
fn switch, 154, 167
ind switch, 50

Page 268

JAM/Pj Release 1.4

Command line (continued)
indicators switch, 168
name switch, 147
ownColormap switch, 167
setSensitive switch, 167

OPEN LLOOK
bg switch, 152, 179
fg switch, 152, 179
fn switch, 154, 179
name switch, 147
ownColormap switch, 180
setSensitive switch, 180

Control. See Widget
Copy, 50-51, 212

Cursor
moving, 210-211
shape, 207-208

Cut, 50-51, 212
Cycle field, 64, 127

D

Data entry field, 17-18
multiline text widget, 113
text widget, 64, 141

Data entry mode, 44

Defaults, 7, 14, 15, 145-190
attributes, 12-16

dialog, 57, 88

Dialog box
for error messages, 44-47
icons, 46
screen extension, 57, 88

Display attributes. See Attributes

Display text, 17
placement, 28-29

Draw mode, 23, 25
Drawing area, 169, 182

1 December 92

Index

E

Edit, 50-51
Elastic grid. See Grid
Error Message. See Message

Extensions, 53-74, 75-143

See also individual extensions by name

colon expansion of arguments, 76

field, 16, 61-74, 62, 78
array spacing, 33, 73, 140
background color, 65, 81-83
bitmap, 68, 130-133
checklist style togglebutton, 63, 87
disable grid adjustment, 33-34, 73, 115
font, 65, 89-91
foreground color, 65, 81-83
frame, 66, 92-93
horizontal anchor, 26-27, 73, 94-95
horizontal position, 34-35, 72, 102-103
in/out style togglebutton, 64, 143
label widget, 63, 107
list box, 63, 108-109
multiline button, 68, 111-112
multiline text widget, 63-64, 113-114
optionmenu, 64, 127-129
push button, 64, 136-137
radio style togglebutton, 64, 138
scale widget, 64, 139
suppress widget, 65-67, 126
text widget, 64, 141
vertical anchor, 27-28, 73, 94
vertical position, 34-35, 73, 102-103
widget height, 71, 96-97
widget type, 62—65
widget width, 72, 96-97

portability, 76

screen, 15, 54-61, 55, 80
background color, 55, 81-83
dialog box, 57, 88
draw a box, 57, 84-86
draw a line, 57, 98-101
eliminate title bar, 57, 125

JAM/P/Release 1.4

Extensions, screen (continued)

font, 54, 89-91
foreground color, 54, 81-83
mouse pointer, 56, 134-135
pointer shape, 56, 134-135
prevent iconification, 43, 57, 122

- prevent maximization, 57, 119
prevent resizing, 57, 124
specify icon, 43, 54, 104-105
start as icon (minimized), 43, 57, 106
start maximized, 57, 110
suppress border, 57, 116-117
suppress close, 57, 118
suppress move option, 57, 123
suppress window menu, 57, 120121
title, 54, 142

summary tables, 78-81

syntax, 76

vs. resources, 75

F

fg, 54, 65, 81-83

command line option in Motif/OPEN
LOOK, 152

Field

See also Array; Group
cycle, 127
data entry, 17-18

multiline text widget, 113
justification and positioning, 24, 94
menu, 19-20, 136-137
non-display, 126
protected, 17, 107

label widget, 107

non-display, 126
scrolling behavior, 47-50
shifting behavior, 47-50

Field extensions. See Extensions
File selection box, 226-230

file types list, 231-232

Focus, 4142

mouse, 209-210

1 December 92 Page 269

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Font, 153-157 Grid (continued)
alias, 90, 158-160 font and grid size, 30-32
application default, 153-154 lines and, 100
field extension, 89-91 separators, 37
fixed width, 30-32, 31 units, 97
fn colr?énoajl'l(d' 11122 option in Motif/OPEN Group, 20-21

creating a checkbox widget, 87
creating a list box, 63, 108

creating a radiobutton widget, 138
creating a togglebutton widget, 143

font resource in OPEN LOOK, 179
fontList resource in Motif, 167
location, 153-154

naming, 155-160

proportional, 30-32, 31 GUI independent fonts and colors. See Alias

and shifting fields, 48 GUI interface routines, 217, 224-225
screen, 154 .
tension. 89-91 sm_drawingarea, 224-225
sc_n: en ex f ginon, o sm_translatecoords, 252~-254
widget's, sm_widget, 255-256

xfontsel, 157
GUI library, 213-214
font, 54, 65, 89-91

font resource in OPEN LOOK, 179

fontList resource in Motif, 167 H

Foreground color halign, 26-27, 27, 73, 94-95
resource in Motif/OPEN LOOK, 151 and whitespace, 20-30
screen, 54
widget, 65 height, 71, 96-97

formMenus, 164 hline, 57-61, 98-101

Frame, 66—68, 92-93, 93 hoff, 34-35, 72, 102-103
color, 67, 93 Horizontal alignment. See halign
MDI, 40 _ o
style, 66, 92 Horizontal positioning. See hoff
vs. box, 92

frame, 66-68, 92-93 I

icon, 43, 54, 104-105

G Iconification, 43, 54, 57, 104-105, 106
preventing, 122

Greyed text, 167, 180 iconi
reyed tex iconify, 57, 106

Grid, 23-25, 24

boxes and, 86 Inches, 37
disabling stretching, 33, 73, 115 Indicators, 49-50, 168
equally spacing array elements, 73, 140 name, Motif, 171

Page 270 JAM/PiRelease 1.4 1 December 92

Index

Initialization file, 7, 14, 160-162
aliases, 158-160
color aliases, 158-160
colors, 149-152
font, 153-157
FrameTitle, 160
GrayOutBackgroundForms, 160
JAM Colors, 149
JAM ColorTable, 158
JAM Fonts, 153
JAM FontTable, 158
JAM Options, 160-161
location, 148
name, 145
sample, 162
SMTERM, 161
StartupSize, 160
StatusLineColor, 161
syntax, 146147

Item selection screen, 127, 129

J

jam.ini, 14, 146
sample, 162

jmain.c, 145
JPL comments. See Extensions
Justification, 24, 26, 94

jxmain.c, 145

K

Keysets, 51-52
" kset2mnu, 261-262

Keytops, 47
kset2mnu utility, 261-262

JAM/Pi Release 1.4

L

label, 63, 107

Label widget, 17, 17, 107, 107
bitmap, 130-133
creating, 63
name
Motif, 171
OPEN LOOK, 184

LDB, optionmenus and, 128
Left justified, 24, 26, 94

Library routines, 217-257
file selection box, 218
GUI interface routines, 217
menu bar, 217-218
sm_adjust_area, 35, 219
sm_c_menu, 220-221
sm_d_menu, 222-223

sm_drawingarea, 170, 183, 213, 224-225

sm_filebox, 226-230
sm_filetypes, 231-232
sm_menuinit, 233

sm_mn_forms, 234

sm_mnadd, 235-237
sm_mnchange, 238-239
sm_mndelete, 240-241
sm_mnget, 242-243
sm_mninsert, 244245
sm_mnitems, 246-247
sm_mnnew, 248-249
sm_r_menu, 250-251
sm_translatecoords, 213, 252-254
sm_widget, 171, 183, 213, 255-256
sm_win_shrink, 257-258
sm_X]11init, 145

Line, 98, 98-101
color, 99
creating, 57-61
layering, 100
positioning, 36, 36-37
style, 58, 99

Line drawing characters, 215
list, 63, 108-109

1 December 92

Page 271

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

List box, 20-21, 27, 108-109, 109
creating, 63
height, 97
name
Motif, 172
OPEN LOOK, 184
vertical anchor, 109

Look and feel, 2

maximize, 57, 110

MDI, 40-41, 41
dialog boxes, 88
icon location in, 43
maximized window, 110

Menu, 19-20, 136-137
See also Menu bar
selecting, 210-211

Menu bar, 191-205, 200
add an item, 235-237
alter an item, 238-239
cascadeBug resource in Moitf, 192
cascadeBug resource in Motif, 167
close, 220-221

converting keysets into, 205, 261-262

create new menu bar, 248-249

delete an item, 240

display, 222-223

edit heading, 50-51

enabling support, 202

formMenus resource, 164, 193

get data about, 242243

get number of items, 246-247

initialize support, 233

insert an item, 244-245

install in memory, 234

installing, 202-203

library routines, 201-202, 217-218
See also Library routines
prototyping, 202

location, 164, 191-192

Page 272 JAM/P/ Release 1.4

Menu bar (continued)
menu2bin utility, 259-260
mouse, 209
pop-up, 192, 209
read and display, 250-251
scope, 164, 192-193
script, 194-200
comments, 198
converting to binary, 259-260
display options, 196-197
general structure, 194
global display options, 198
keywords, 194-198
sample, 198-200
storing in memory, 203
testing, 200-201
vs. softkeys, 52, 204-205
widget hierarchy in Motif, 173-175
widget hierarchy in OPEN LOOK,
185-187
window heading, 41, 210

Menu mode, 44
menu2bin utility, 259-260

Message
error, 4447
dialog box icons, 46
optionmenu limitation, 129
status, 44
formStatus resource, 163

Millimeters, 97
Mode, menu vs. data entry, 44

Motif
color naming, 150
font naming, 155-157
overstrike mode, 213 -
resources. See Resource file
shift/scroll indicators, 50

Mouse, 207-212
buttons, 208
editing text, 212
focus, 209-210
in select mode, 212
menu bars, 209
move function, 210

1 December 92

Index

Mouse (continued)
offset function, 210
pointer shape, 56, 134-135, 207
resize function, 210
scrolling, 49, 211-212
selecting text, 50
shifting, 49, 211-212
toggling mode with, 44

MS Windows. See Windows
multiline, 68, 111-112

Multiline text widget, 113-114, 114
creating, 63
name
Motif, 171
OPEN LOOK, 184

Multiple Document Interface. See MDI
multitext, 63, 113-114

N

noadj, 33-34, 35, 73, 115
noborder, 57, 116-117
noclose, 57, 118
nomaximize, 57, 119
nomenu, 57, 120-121
nominimize, 43, 57, 122
nomove, 57, 123
Non-display field, 126
noresize, 57, 124
notitle, 57, 125
nowidget, 65, 126

O

OLJam file, 146
sample, 188-190

JAM/PiRelease 1.4

OPEN LOOK
color naming, 150
font naming, 155-157
overstrike mode, 213
resources. See Resource file
shift/scroll indicators, 50

optionmenu, 64, 127-129

Optionmenu widget, 127-129, 129
creating, 64
height, 97
name
Motif, 172
OPEN LOOK, 184
populating, 70-71

P

Paste, 50-51, 212
Pixels, 96

pixmap, 68, 130-133
pointer, 56, 134-135
Pop-up menu bar, 192
Portability, 4

Positioning, 23-37
boxes, 86
lines, 100-101

Protected field, 17, 107
non—display, 126

Push button, 19, 19-20, 136-137, 137

bitmap, 130-133
color in Windows, 19, 111
creating, 64
multiline, 68, 111-112, 112
name

Motif, 171

OPEN LOOK, 184
selecting, 210-211
text alignment in Motif, 20, 21
toggling into menu mode, 44

pushbutton, 64, 136-137

1 December 92 Page 273

JAM/Pj for OSF/Motif, Microsoft Windows and OPEN LOOK

R

Radio button, 20-21, 27, 64, 138
converting to list box, 108-109
radiobutton widget, 138
togglebutton widget, 64, 143

radiobutton, 64, 138
Range check, 139
Resource. See Resource file

Resource file, 7, 14, 15, 163-173
aliases, 158-160
armPixmap, 131
background, 167, 179
vs. bg extension, 82
background resource, 152
baseWindow, 47, 52, 163, 168, 181
bitmaps in Windows, 131
cascadeBug in Motif, 167, 192
class name, 147
color aliases, 158-160
colors, 149-152
focusAutoRaise, 42, 165
font, 153-157
font resource in OPEN LOOK, 179
fontList, 167
foreground, 167, 179
foreground resource, 152
formMenus, 52, 193
formStatus, 47, 163
indicators, 50, 168
location, 148
Motif, 167-179
sample, 175-179
names, 145-146
OPEN LOOK, 179-190
sample, 188-190
overriding extensions, 75, 151
ownColorMap, 167, 180
restricting resources to a screen, 170, 182
screen title, 39, 142
selectPixmap, 131
setSensitive, 167, 180
syntax, 146-147

Page 274 JAM/Pi Release 1.4

RGB, 149
rgb.txt, 166
Right justified, 24, 26, 94

S

scale, 64, 139

Scale widget, 139, 139
accessing data in, 139
creating, 64
name

Motif, 172
OPEN LOOK, 184
range, 69

Scope, 192-193

Screen
appearance, 39-44
arrangement, 23-37
fine tuning, 33-35
border, 42
eliminating, 57, 116-117
decorations, 5657
focus, 4142
mouse, 209-210
font, 89-92
handle, 224-225
iconification, 43
minimizing, 43
mouse pointer shape, 134-135
moving, 210
refresh, 35, 219
resizing, 210
resources
Motif, 170
OPEN LOOK, 182
scroll bar, 39
scrolling, 210
size, 257-258
size and fonts, 30-32
start maximized, 110
title bar, 39, 142
suppressing, 57
trim, 257-258

1 December 92

Index

Screen (continued)
widget hierarchy
Motif, 169
OPEN LOOK, 182
widget id, 224-225

Screen extensions. See Extensions
Script. See Menu bar

Scroll bar
list box, 69, 108
multiline text widget, 69, 113
scrolling with mouse, 211-212

Scrolling array, 47-50
list box, 108
multiline text widget, 113

Scrolling indicator, 49-50
Select mode, 212

Separator, 98-101
creating, 57-61
positioning, 36, 36-37, 100-101

SFTS, 200-201

Shifting field, 47-50
shifting with mouse, 211-212

Shifting indicator, 49-50

Sibling window, 43
mouse, 209

sm_.... See Library routines
SMTERM, 161

Soft keys, 51-52

space, 33, 34,73, 140
SPF11, 53

SPF12, 53

State abbreviations, 97

Status line, 4447
formStatus resource, 163
location, 47, 163

JAM/P/Release 1.4

System command, 214

T

Test mode, 23, 25

Text
cut, copy and paste, 50-51
editing with mouse, 212

text, 64, 141

Text widget, 17-18, 18, 141, 141
creating, 64
editing text, 212
multiline, 63, 113-114
height, 97
name
Motif, 171
OPEN LOOK, 184
shifting, 48
toggling into data entry mode, 44

title, 54, 142

Title bar, 39
suppressing, 57, 125
text, 54, 142

Togglebutton, 20-21, 21
bitmap, 130-133
multiline, 111-112, 112
name

Matif, 171
OPEN LOOK, 184
selecting, 210-211

togglebutton, 64, 143

U

Units of measurement, 60, 96-97

Utilities, 258-262
kset2mnu, 261-262
menu2bin, 256-260

1 December 92 Page 275

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

V lines, 185
menu bars, 185-187

. id, 255-256
valign, 27-28, 73, 94-95 invisible, 65
Vertical alignment. See valign JAM objects into, 17-21
Vertical positioning. S i . names in Motif, 168-175

ertical positioning. See Vo names in OPEN LOOK, 180-187
vline, 57-61, 98-101 placement, 26-29
horizontal, 72, 102-103

voff, 34-35, 73, 102-103 vertical, 73, 102-103
VWPT key, 210 recalculating position, 35

scroll bars, 69, 108, 113
setting the type, 62

W size
default, 32
: specifying height, 71, 96-97
Whitespace, 23, 29-30 specifying width, 72, 96-97
Widget, 11-21 width, 72, 96-97
See also individual widgets by name win.ini, 14, 161

adjusting position, 34-35
anchoring. See Anchoring
attribute hierarchy, 13
attributes, 12-16

Windows
color naming, 149
control panel, 14, 149, 161
font naming, 155

default type, 11 maximized frame, 40
drawing area, 170, 183 MDI, 4041
expanding into whitespace, 29-30 Multiple Document Interface, 40—41
font, 65, 89-92 system commands, 214
forcing a type, 61, 65 title bar, 40
handle, 255-256
hierarchy
Motif, 168-175 x
Ease sereen. 168-169 XAPPLRESDIR, 148
oxes,
: Xdefaults, 14, 15, 148
dialog box, 169 P .
display text, 173 sample, 175-179, 188-190
fields, 171-172 xfontsel, 157
JAM screens, 169-171 XJam file, 146
lines, 173 sample, 175-179
menu bars, 173-175 xIsfonts, 155

OPEN LOOK, 180-187

base screen, 181 xoff. See hoff

boxes, 185 xrdb, 148
dialog box, 183

display text, 185 Y
fields, 183-185

JAM Screens, 182-183 yoff. See voff

Page 276 JAM/PjRelease 1.4 1 December 92

