JAM/DB:i

Release 5

Document Structure
The JAM/DBi Manual is printed in one volume. It is divided into the following sections:

= JAM/DB: Overview — An overview of the JAM/DB: product and the de-
velopment process. This section describes JAM/DB: from the “big pic-
ture” viewpoint. It describes all the pieces of a sample JAM/DBi applica-
tion.

s Developer’s Guide — A guide to using JAM/DB: features. This section is
divided into four main sections:—accessing a database with JAM/DBi
structures, sending JAM values to a database, sending database values to
JAM variables, and using transactions.

s Reference Guide - Manual pages for the dbms commands, the JAM/DBi
library functions, and the JAM/DB:; utilities.

= Notes — A description of features and discussion of topics particular to an
engine.

= Appendices — These include lists of keywords, error codes, and sugges-
tions on using JAM more effectively with a JAM/DB; application.

= Index

Terminology

Terms will be defined when discussed. However, it is necessary to define a few that will be
used throughout the manual.

s database A physical database consisting of tables and other data.
s vendor A supplier of a DBMS engine.
w engine A DBMS product. An engine is identified by a specific ven-
dor and version.
Notation

To make this manual easier to use, we use the notation described below.

s literal We use this font for text that you will type verbatim. In par-
ticular, we use this font for all examples. We also use it when
naming a JAM library function, a JPL command, or a utility.

® SMALL CAPS It is customary to put SQL keywords in uppercase. We fol-
low this convention. In addition, in synopses of dbms com-

May 92 JAM/DBi Release 5 i

JAM/DB: Document Guide

mands, we put dbms keywords in uppercase. Please note
that the use of case is purely stylistic. Case is significant only
for identifiers—names of fields, columns, tables, variables.
functions, etc.

s Halics We use bold italics to show where variable or procedure
names should appear. Text in this font should be replaced
with a specific, appropriate value in an application.

s [x] Brackets indicate an optional element. The brackets should
not be typed.

= X Ellipses indicate that an element may be repeated one or
more times.

ii AM/DBi Rel 5
ii JAM/DB: Release May 92

TABLE OF CONTENTS

L JAM/DBi OVervIEW ..ceveeeseccececcncencrsnsensss

Chapter 1.
INtroductioncceeeeeeeerocnocscsssccscassannnas

Chapter 2.

What is JAM/DBi?coviereiieosasecnssoccansceaasses
2.1. Components of JAM/DBi Architecturecoooveiiveennirennanans
22.Components Of JAM/DBiciiiiiiiiiiiiiireiinrntnennsnnnsanes

22.1.JAM/DBiILibrariescciiriiiiiiiiiiiiinereannn.
2.22.50urce Codecoiiiiieiiiiinti ittt
223. HeaderFilesc.cvviiieniiinnreneserneeiennsenesnannenans
224 . Makefileociiriiiiiiiiiii i
2.3. Components of a JAM/DBi Applicationcivvviienniniinnnae,

Chapter 3.
JAM/DBi Application Developmentoo000teeennes
3.1. Creating and Editing Application Screensccvvvnveiinienennanss
3.1.1. Mapping Columns to JAM Variablescceviveieerenen
Automatic Mappingocviei ittt iiiis it s e
AlIaSingociiiii i i e et e,
3.12.DataValidationoveieiiiniiiineeeriinanenannn,
32 EmorHandlingc.ciiiiiriiineriiieiititanscnearcanannnnss
3.3. Iterative Application Testingccvveeivriinsecrnnsronessennnns

Chapter 4.

JAM/DBi Control FIOWccccviierincenccnenssananas
4.1. Sample Application —User's Viewc.covvviiennrnennionnnnnns
42. Sample Application — Developer’s Viewc.cooviiiiiiinnnnnn..

4.2.1. Database Tables emp, acc,andreviewcoovevveeennnn.
422 Source Module dbiinit.C ..oviiiiiiniiiiiiiinenrarannena.
4.2 3. Data Dictionary and InitializationFile
A2 4. JAMSCICENS . .vvvrnnnnnanneeesntasnssesssnannncnnnnnnne

MainScreen ...t i e iriee it

May 92 JAM/DBi Release 5

AN LKW

10
10
10
11
11
12

13
14
16
17
19
21

Employee SCreenvvieiiiniiiiiiiieiniiiiainnnaenaans 26

Salary History Screenooiivi it iininiieeniiennscnenennns 33

4.3.JAM/DBiConuol Flow SUMMARYcciiiiiiiiiiiiinnnnnnnnnns 35

4.3.1. Variable Substitution it i iieeee. 36

432, CUISOIS oo vvvnivertennssnrntonenssnsesonssscannsasanssnans 36

Fetching a seLecT SetIncrementallycco0veeanan. 37

Using Multiple SELECT S€LSvniniineieereraiieanannnns 37

Improving Efficiencycoiiiiiiiiiniiiiniiiininnneenn 38

43 3. EmorProcessingoociviiiiiiiennnnietiataetannaaenaans 38
Chapter 5.

JAM/DBi Philosophycoc0ievrevercecnccnsscassees 40

SLJAM/DBIFeaturesccvivvtrnriiinenrnrsreternnnneanananesns 40

51.1.8QL-Basedcoiiiiiii et 40

51.2.0SPortabilityccciiiitt it i e it e e 41

5.1.3. VendorIndependenceccoviercieriinnnernannsenennans 41

5.14. Multi-engine SUPPOItcoviireeieiernreneineesreeennnns 41

5.1.5. Multi-connection Supportcciiiiiiiininianannn. 42

BT T 2 0T a 1 AU 43

52.JAM/DBiDevelopment Hintsccc0iiiiieiiiiinrieenanrnnans 4

IL Developer’sGuidecccevececenencenaccenes 45

Chapter 6.

Introduction to Developmentcc000cvevvecncess 47
6.1.SQL Variantsovvtieneer e eeenenccineacnanorseassosannnnnaenns 47
6.2. JAM/DBiCommandsccociiiiiriinaiitiitienansiriacinencans 48

6.2.1.JPLversus C ... ittt et et 49
Chapter 7.
Accessand Executionccciviiiencecncnssennnass 51
7.1, Initializing One or More Enginescciiiiriiinniiennenrnnnns 52
7.1.1. Initializing an Engine indbiinit.cccciiiievinann.. 52
7.1.2. Initialization Procedurec.ciiiiiiiinninnnenn.n. 54
7.1.3. Setting the DefaultEngine0ciiiiiininennnn, 54

iv JAM/DB: Release 5 May 92

7.2. Connecting to aDatabase Servercoootiiiiiiiiiiiiiiineaas 55

7.2.1. Connections to Multiple Enginesccoeiiiiiiiiinnnn 55
7.2.2. Multiple Connections to a Single Engine 56
7.3, USINZ CUISOTS . . e e cveettereerinennaassnosasnanessssanaasaessnnns 57
7.3.1. Using the Default Cursorcovviiinreeeeniinnnnneanananan, 57
73.2.UsingaNamed Cursor........coevvreverereretranseracaronan 58
Declaring aCursorcoveiiiiiiiieiiesiieiesensoasannnns 58
Executing aCUrsorovvvviiiaenertensrsneneannannnns 59
Modifying or Closing aCursoroiiviiiiecnnaeennnans 60

Chapter 8.
DataFlow fromJAMciiieereceincncssrsceeessss 61
8.1. Colon Preprocessingoovvevvrerereereesesetesentrasssenensenns 62
8.1.1.Colon-plus Processingcooveiiiiiiinreiaininneeiennss 62
Step 1. Perform Standard Colon Preprocessing 64
Step 2. Determine the Variable’s JAMTypecvvenen 64
Step3.FormataNon-null Valuecovvveeiinnn, 66
8.1.2. Colon-equal Processingooevetiniiereriiiieceeennns 68
813 . Examples ...ttt ettt iaaaa 69
A Field with Default Characteristicsccvuieeunereennnn. 69
A Variable with a Date-time EditandaNull Edit 70
A Variable with a Digits Only Character Edit and a C-Type Edit 71
8.2. Using Parameters in a Cursor Declarationccciiineiinnnnneans 72
8.2.1. Parameter Substitution and Formattingc.eevvvnann. 73
20T 111] (= 74

Chapter 9.
Data Flow fromaDatabaseccccceevenerecanennese 17
9.1.Data Fetched by SELECT + v vvveriiiennreininnsnrrocenniasacrsananans 78
9.1.1. JAM Targets fOr @ SELECT ...vvvvunnnuerrrrnnnoneroanannnenas 78
Automatic Mappingoovvvriiniieiiriiieiiienineenanans 7
N 713 T 79
9.1.2. Numberof RowsFetchedcccoiiiiiniinns, 83
Scrolling Through aselectSet............ccovviiiiinieans, 83
Controlling the Number of RowsFetched 88
Choosing a Starting Row inthe selectSet 88
9.1.3.FormatofselectResultsc.cvvvvmiiiniiinn e, 89

May 92 JAM/DB: Release 5 v

Character ColumMniivtiieiniin e s ieeeneeneennnenanan 89

Date-time Columncciiiiiiiiniiinnnrinnernnnnnnenn 89

NumericColumnciiiiiiiiiiiiiiiiiiirnnnnnn 89

Fetching Unique Column Valuescccveviviinnnnnnn 9

9.1.4. Redirecting select Results to Other Targets 92

9.2 Statusand ErrorCodesoiiiiiiiiniiriieittiiiei et iiaieaaa, 93
Chapter 10.

Hook Functionscecieeieieeenncncencsacenceees 95

10.1.ONENTRY FUNCHONc.iiciiiiiiiiiiitienrennrnonronacenneans 96

10.1.1. ONENTRY Function Argumentscoevieeenneennnsn 9%

10.12. ONENTRY Return Codesccviivieiiineennnennnnn 96

10.1.3. Example ONENTRY Functionscccivvivinnnnn. 97

102, ONEXIT funclionvueertiinereaeanarneennnaesseeneennnes 98

10.2.1. ONEXIT Function ATgUmEntscoviunninninenanerenenens 98

102.2.ONEXITReturnCodescoveineiinmnnnnnnnrennnnnnn 98

10.2.3. Example ONEXIT Functioncoiiivevinnnnnennnnnes 98

10.3.ONERRORFUNCHONvvvvineereererecnnronnsnnsasnaaenenenns 99

10.3.1. ONERROR Function Argumentscccvveerennnnnesens 100

10.3.2.ONERRORReturn Codesciiiiiniininennnenennnnns 101

10.3.3. Example ONERRORFunctionccoiiiiiennnnnnnn. 101

Chapter 11.
Transactionsccceveevecereccccnsnsseonnassesseess 103

11.1. Engine-specific Behaviorcciiiiiiiiiiiiiiimnenans 104
11.2. Error Processing for a Transactionc.cveiiiinninnnnreenrnnnen 105

ITI. Reference Guidecoveevveeneecccnecceaees 109

Chapter 12.
JAM/DBi Reference Overviewceceeevenceceeeese. 111

Chapter 13.
DBMS Global Variablescco0iieeeeeenenceneeses 113

vi JAM/DB: Release 5 May 92

13.1. Variable Overview

131 1LEmorDatdcccviiririiiiinierssnsnntncsasostsnsnsnas 113

13.12. Status Data oo it e 114
132, Variable Referenceccciiimmiiiiiiiiiiiiiiiiinneneennnas 114
@dmengerrcode contains an engine-specificerrorcode 115
@dmengerrmsg contains an engine-specific error message 117
@dmengreturn contains a return code from a stored procedure 118
@dmengwarncode contains an engine-specific wamingcode 120
@dmengwarnmsg contains an engine-specific wamning message 121
@dmretcode contains an engine-independent error or status code 122
@dmretmsg contains an engine-independent error or status message 124
@dmrowcount contains a count of the number of rows fetched to JAM 125
@dmserial contains a serial column value after performing INSERT 127
Chapter 14,

DBMS Commandsocceeeeevenncascscscscsccsonss 129
14.1. DBMS Command Overviewcccvviiveeeernrennrovecnonnens 129
142.Command Referenceccvviiiiiernereneeeronconsrnoeeeneans 131
ALIAS set aliases for a declared or default SELECT cursor. 133
BINARY define JAM/DBIi variables for fetching binary values 136
CATQUERY concatenate a full result row to a JAM variableor afile 138
CLOSE_ALL_CONNECTIONS close all connectionsonanenginecc000nunns 141
CLOSE CONNECTION close adeclaredconnectionciiiiniainnnn. 142
CLOSE CURSOR close anamed ordefaultcursorccvviiiinnannnen. 143
CONNECTION set or change the default connection 145
CONTINUE fetch the next set of rows associated with a SELECT cursor ... 146

CONTINUE_BOTTOM
CONTINUE _DOWN
CONTINUE_TOP
CONTINUE_UP
DECLARE CONNECTION
DECLARE CURSOR
ENGINE

EXECUTE

FORMAT

OCCUR

ONENTRY

ONERROR

May 92

fetch the last page of rows associated with a SELECT cursor .. 148
fetch the next set of rows associated with a SELECT cursor ... 149
fetch the first page of rows associated with a SELECT cursor .. 150
fetch the previous page of rows associated a SELECT cursor .. 152

create a named connection to a server and database 154
declare a named cursor for a SQL statement 155
set or change the defaultengine 157
execute the SQL statement declared for a named cursor 158
formatcatqueryvaluescooiiiiiiiiiinan, 160
change the behavior of a select cursor that writes to JAM arrays 162
install anentry functionccciiiiniiiiiennnaann, 164
set the behaviorof the errorhandler 166

JAM/DBi Release 5 vii

ONEXIT install anexithandlercciiviiiiiiiirinennn 168

START specify a startingrowina SELECT'set 170
STORE set up a continuation file for 2 named or default cursor 171
UNIQUE suppress repeating values in selected columns 174
WITH CONNECTION use a named connection for the duration of a statement 175
WITH CURSOR use a named cursor for the duration of a statement 177
WITH ENGINE use a named engine for the duration of a statement 179
Chapter 15.

JAM/DBi Library Referencecvccceveevensecen.e.. 181
dm_bin_create_occur getor allocate an occurrence in a binary variable 183
dm_bin_delete_occur delete an occurrence in a binary variable 184
dm_bin_get_dlength get the length of an occurrence in a binary variable 185
dm_bin_get_occur get the data in an occurrence of a binary variable 186
dm_bin_length get the maximum length of an occurrence in a binary variable . 187
dm bin_max occur get the maximum number of occurrences in a binary variable .. 188
dm _bin_set_dlength set the length of an occurrence in a binary variable 189
dm_dbi_init initialize JAM for JAM/DBioooiiiiiiiiiiiiannnn.. 190
dm_dbms execute a DBMS command directly fromC 191
dm_dbms_noexp execute a DBMS command without colon preprocessing 193
dm_expand format a string foranengine ...l 194
dm_getdbitext get the text of the last executed dbms or sql command 198
dm_init initialize JAM/DBI to access a specific database engine 199
dm_reset disable support for anamedengine 201
dm_sql execute a SQL command directly fromC 202
dm_sql noexp execute a SQL command without colon preprocessing 203
Chapter 16.

JAM/DBi Utility Referencecco0veeeeececnsceenss. 205
f2tbl create a database table fromaJAMform 206
tbl2f create a JAM screen from adatabase table 213

AppendiXeSccecteieiitterccctsscnctesonanees 239

Appendix A.

Keywordscciiniiniiiiiiiiii ittt iiiietsetiiatessaannnnons A-1
Appendix B.

Emmorand StatusCodesoo ittt B-1

viii JAM/DBi Release 5 May 92

Appendix C.
Using the JAM Screen Editor

May 92

JAM/DB: Release 5

>
o

JAM/DB;i
Overv

Overview

Chapter 1.
Introduction

This document is intended for developers who are using JAM/DB:® for the first time, or
for those who wish to gain a better understanding of this product. This document is intended
to provide a conceptual overview of JAM/DB,. It will help you understand and use JAM/
DB..

JAM/DBi is part of a family of JYACC products. The following table describes the rest of

the family:
Product Description

JAM® JYACC Application Manager
JAM/DBi Report writer Report Writer for JAM/DBi

JAM/Pi for Motif Presentation interface for the Motif GUI
JAM/Pi for Microsoft Windows | Presentation interface for Microsoft Windows
JAM/Pi for Graphics Presentation interface for Graphics

J;erm® Color Terminal Emulator optimized for JAM

If you are upgrading from Release 4.8, please read Chapter 21, “Summary of New Fea-
tures” and Chapter 22. “Release 4.8 Compatibility.”

May 92 JAM/DBi Release 5 1

JAM/DBi Overview

Chapter 2.
What is JAM/DB:?

JAM is a software toolkit that aids developers in prototyping and building applications with
sophisticated interfaces. JAM provides tools for creating screens that accept and display
data for end users, and that define the control flow of an application.

JAM/DB; is a portable interface between JAM applications and relational database sys-
tems. It provides facilities for the gamut of data manipulation needs. In particular, a devel-
oper may build a JAM/DB application which permits end users to perform any of the fol-
lowing:

» Retrieve values from database tables for display on screens. Queries may
be hard-coded, or they be created at runtime according to an end user’s
specifications.

s Add rows to or delete rows from database tables.
s Update existing rows.
s Create or drop database tables.

= Execute any other function provided by the database’s dynamic query in-
terface (e.g., execute a stored procedure, rollback a transaction, etc.).

The rest of this document assumes that you are familiar with JAM and the concepts dis-
cussed in the JAM Overview. In addition, it assumes that you have some database experi-
ence.

2 JAM/DBi Release 5 May 92

Overview

2.1.
COMPONENTS OF JAM/DB:
ARCHITECTURE

There are several layers in the JAM/DB; architecture.
1. JAM Application — This typically includes the following:
» Menu screens for control flow in the application;
s Screens for entering new values to a database;
s Screens for viewing and updating information in a database;
= Related hook functions.

2. JAM/DBi - The interface between a JAM application and a DBMS cli-
ent library. The interface has a generic part and one or more specific parts
called “support routines.” A support routine provides access Lo a particu-
lar DBMS product, also called an “engine.”

3. DBMS Client Library — The interface that controls all programmed ac-
cess to a database, This is the interface between JAM/DBi and a DBMS.
The DBMS controls all access to the database.

4. DBMS Network Services — The network services that connect a user’s
client library with one or more DBMS servers.

5. DBMS Server.
See the figure below.

May 92 JAM/DBi Release 5 3

JAM/DBi Overview

End User

wl] ﬂ ol el wll

o A ENEY S 1

Application

CLIENT JAM/DB
E support routine support routine -

; DBM
Client Library :

- - PE

Engine 1 Engine 2

EERVER DBMS Server DBMS Server
Database Database

Figure 1: Components of JAM/DB; Architecture.

4 JAM/DBi Release 5 May 92

Overview

2.2.
COMPONENTS OF JAM/DB;i

The JAM/DB; product is collection of programs and data files. In the sections below, we
briefly discuss the main components of the product. For more information, see the README
file included with the distribution.

2.2.1.

JAM/DB: Libraries

The JAM/DBi interface is written using tools provided by your database vendor, either em-
bedded SQL or a C language API (applications programming interface). A JAM/DBi de-
veloper does not need to write any code using embedded SQL or an API, but in order to link
an application he or she must have access the header files and libraries supplied with these
tools. The README provided with the JAM/DB; distribution names and describes the nec-
essary products.

Each JAM/DB: supplies a “common” library and one or more engine-specific libraries. The
additional engine-specific libraries are provided so that JAM/DBi may support different
versions of a database, or support different modes, for example on MSDOS, real mode and
Windows mode. The library names are database-specific, usually in the form 1ibdb. a or
1libdb.1lib with db representing a vendor name. For example, db may be ora for
ORACLE or syb for SYBASE.The JAM/DBi README file names and describes the li-
braries for your database.

2.2.2.
Source Code

The JAM/DB: source code module is dbiinit . c. Customized for a particular engine, it
specifies header files needed by JAM/DBI, declares the name of the support routine for the
engine, and sets up some defaults for handling errors and case-sensitivity.

May 92 JAM/DBi Release 5 5

JAM/DBi Overview

2.2.3.
Header Files

JAM/DB: supplies some header files. The file dmerror.h defines symbolic constants
and integer codes for JAM/DBi and DBMS errors. The README file provides a complete
list of the distribution header files.

2.2.4.

Makefile

Once you have edited the makefile to describe the engine version and the pathname to its
installation, you must run the makefile to create the JAM/DBi executables, jamdbi,
jxdbi, £2tbl, and tb12£. See the installation notes and instructions in the makefile for
more information.

2.3.
COMPONENTS OF A JAM/DB;
APPLICATION

New users are sometimes confused about the differences between JAM applications and
JAM/DB;i applications. They share many similarities, as shown in the table below.

JAM Application JAM/DBi Application
JAM Screens JAM screens
Data Dictionary Data Dictionary

Hook Functions (JPL and/or C) Hook Functions (JPL and/or C); Hook functions
include database function calls
JAM Executable JAM/DB:i Executable

In a JAM/DB:i application, you can log on, query, or update a database. These functions
cannot be performed in a standard JAM application unless you write your own database
interface.

If you are familiar with JAM, you are familiar with the two types of JAM executables—the
authoring executable and the application executable. (If not, see the introductory chapters of
the JAM Programmer’s Guide.) Similarly, JAM/DBi has two executable versions—the
authoring executable, sometimes called jxdbi, and the application executable, sometimes

6 JAM/DBi Release 5§ May 92

Overview

called jamdbi. The authoring executable links the developer’s hook functions with the
JAM Screen Manager, JAM Executive, and authoring libraries, as well as the JAM/DBi
interface libraries and the engine’s libraries. It is used to create and test an application. The
application executable, on the other hand, is a runtime program which you may distribute to
end users. It does not provide access to the JAM Screen, Keyset, or Data Dictionary Editors.

The tables below list and compare the files which developers must link when creating the
executables. We describe the JAM/DB; files at the end of the section.

JAM Authoring Executable JAM/DBi Authoring Executable

jxmain.o jxmain.o

funclist.o funclist.o
dbiinit.o

JAM Authoring Library (JX) JAM Authoring Library (JX)

JAM Executive Library (JM) JAM Executive Library (JM)

JAM Screen Manager Library (SM) JAM Screen Manager Library (SM)
JAM/DBi Common Interface Library (DM)
JAM/DBi Engine-specific Interface Library
(1 or more for each DBMS)
DBMS Client Library (1 or more for each DBMS)

JAM Application Executable JAM/DBi Application Executable

jmain.o jmain.o

funclist.o funclist.o
dbiinit.o

JAM Executive Library JM) JAM Executive Library (JM)

JAM Screen Manager Library (SM) JAM Screen Manager Library (SM)
JAM/DB: Common Interface Library (DM)
JAM/DB;i Engine-specific Interface Library
(1 or more for each DBMS)
DBMS Client Library (1 or more for each DBMS)

The JAM/DB: Common Interface Library includes the generic routines supported by all
engines. It is the interface between JAM and all the enginc-specific processing for access-
ing a database.

The JAM/DBi Engine-specific Interface Library is also known as the “support routine.” An
application must have a support routine for each engine the application uses. The support
routine contains all the engine-specific code required by JAM/DB:. The JAM/DB; Com-
mon Interface Library calls an engine’s support routine to make the appropriate calls to the
DBMS Client Libraries.

May 92 JAM/DBi Release 5 - 7

JAM/DB: Overview

The DBMS Client Libraries are supplicd by the database vendor. These libraries control all
programmed access to a DBMS.

8 JAM/DBi Release 5 May 92

Overview

Chapter 3.
JAM/DBi Application
Development

Many of the issues involved in developing a JAM/DB: application overlap those involved
in developing a JAM application. Here we emphasize issues specific to JAM/DBi applica-
tions. If necessary, you should see the companion chapter in the JAM Overview for more
information on topics like control strings, the Screen Editor, and the Data Dictionary Editor.

3.1.
CREATING AND EDITING APPLICATION
SCREENS

Generally, a developer starts creating a new application by creating screens. The developer
may use the JAM/DB; authoring executable, jxdbi, or the JAM authoring executable,
jxform. In environments where memory is limited, such as MS-DOS, jxdbi may be too
large and the developer usually must do all development work with jx£orm. If an applica-
tion screen will be based on a particular table in the database, the developer may use the
JAM/DB; utility tb12£. This utility creates a JAM screen with a field for each column in
the table. JAM assigns field characteristics based on the column’s data type. The utility pro-
vides a convenient way to develop a maintenance application for a database table, since the
utility also creates the JPL procedures for adding, deleting, and updating rows in the table.

May 92 JAM/DBi Release 5 9

JAM/DBi Overview

3.1.1.

Mapping Columns to JAM Variables

JAM/DB; provides a simple way of moving data back and forth between JAM and a
DBMS. JAM/DB; transfers a SQL statement from the application to the DBMS. When the
DBMS returns values, JAM/DB; transfers those values to JAM variables.

A JAM variable is any of the following:
s aJPL variable created with a vars stalement,
s ascreen variable
s anLDB entry (i.e., a data dictionary entry with a scope of 2 or greater)

JAM/DB; provides two ways of mapping a database column to a JAM variable: automatic
mapping and aliasing.

Automatic Mapping

By default, JAM/DBi automatically maps a column name in a seLECT statement to a JAM
variable with the same name. Suppose the current screen sales. jam contains a large
scrolling array called item no, and the database table product contains a column also
called item_no. Then,

sqgl SELECT item no FROM product
or,
sql SELECT product.item no FROM product

would place the values of column item_no in the array item_no. Note that a column
name always maps to an unqualified field name.

If an application executes

sql SELECT * FROM product
JAM/DB: searches for a JAM variable matching each column in the table product. If it
finds the variable, it writes the column’s values to the variable. If it does not, it ignores the
column.
Aliasing

In some circumstances, automatic mapping is undesirable or even impossible. Forexample,
an application may use one screen to show values from two columns with the same (unqual-

10 JAM/DBi Release 5 May 92

Overview

ified) name, or a table may have column names that are not valid JAM variable names. In
these cases, developers may specify an alias for one or more database columns using the
command peMs ALIAS.]

For example, if a table containcd a column named st ock ~id, the application could not use
automatic mapping because a carct is not a valid character in JAM variable names. The
application must set up an alias for the column. For instance,

dbms ALIAS “stock”id” stock_id, “company”name” company
sql SELECT stock”id, company”name, dividend FROM stocks

JAM/DB: would fetch the values of stock”id to the alias stock_id. It would fetch the
values of company~name to the alias company. (The quotes are used to help JAM/DBi
parse the column name.) Since no alias was given for the column price, JAM/DBi would
use automatic mapping for this column.

InapBMs ALIAS statement, a comma separates one column-variable pair from another.

3.1.2.
Data Validation

JAM provides extensive character edits and field validation. In JAM/DB: applications, de-
velopers use these features to help end users enter and retrieve data easily. Rather than re-
placing database rules, these edits supply an additional layer of software between the end
user and the DBMS. While the tables’ rules will ensure the integrity of entered data, a devel-
oper can simplify the end users’ task—for example, by creating item-selection screens list-
ing valid data. In addition to providing a better interface, an application that performs some
validation at the frontend is also more efficient because it reduces the number of trips to the
server. :

3.2.
ERROR HANDLING

Error handling is an essential component of any database application. In developing a data-
base application, there is often a need for two different approaches to error handling. Devel-
opers require low level error messages during the development cycle, while end users usual-
ly require high level error messages at runtime.

1. Some engines also support aliasing within a seLect statement. See the section “Using the Engine’s seLect
Syntax" on page 82 for more information.

May 92 JAM/DBi Release 5 11

JAM/DBI Overview

JAM/DBi provides several featurcs to assist the developer with these conflicting needs. For
any database error, the application has access to a JAM/DB; error code and message and an
engine error code and message. With the use of a single statement in an application, the de-
veloper may alter the way errors are handled and what messages are displayed. It allows the
developer to switch easily between running in development mode and prototype mode, and
to see the error message appropriate to the mode. The use of two error handlers is not limited
to the development cycle. An application may use one error handler for standard endusers
and another for the DBA, for instance.

JAM/DB: provides several global variables that hold current error and status information.
An application does not need to define its own variables to trap this data. The values are
accessible from JPL or C.

3.3.

ITERATIVE APPLICATION TESTING

Unless your environment has memory constraints, you may use the JAM/DB; authoring ex-
ecutable to switch between editing with the Screen and the Data Dictionary Editors, and
testing with Application Mode. JAM/DB: is turned off in the Screen Editor (draw and test
modes) to prevent unintended updates to a database. Without any compilation, you may use
Application Mode to test control flow and all JPL procedures in the application. If you are
using C hook functions, you must compile and link before testing them.

12 JAM/DBi Release § May 92

Overview

Chapter 4.
JAM/DBi Control Flow

This chapter discusses data flow in JAM/DBi applications. To demonstrate the concepts of
JAM/DB, it uses a simple example, presenting how the application appears to an end user,
and how it appears to a developer. This application is based on the one presented in the JAM
Overview. An engine-specific version is supplied in the JAM/DBi samples directory.

The application consists of three screens. With the first screen, an end user logs on to the
database and chooses an area of interest. The next two screens provide access to employee
rows stored in three tables. In the application, we use JPL procedures to perform the follow-
ing:

s Logon and log off a database.

= Query tables, retrieving a single row of values to a JAM screen.

= Query a table, retrieving multiple rows into scrolling arrays.

s Update values in a table.
All the procedures are written in JPL.

This section is not a summary of the product’s features. Instead, it uses a fairly simple exam-
ple to demonstrate control flow in a JAM/DB application. An understanding of the con-
cepts discussed here will help you understand the rest of this document.

Developers interested in creating their own “quick start™ application should consider using
the utility tb12£ to build a small application. tb12£ is documented in the Reference
Guide in this document.

May 92 JAM/DBi Release 5 13

JAM/DBi Overview

4.1.

SAMPLE APPLICATION - USER’S VIEW

The first screen presented to the end user ismainscrn. jam.

Enter username & password. Press NL to sign on & enter menu mode.

Figure 2: Human Resources Application Main Menumainscrn.

The user must enter a user name and password. If the user has permission to log on, JAM
logs on the user and toggles the screen from data entry mode to menu mode. When the user
chooses an item from the menu, JAM displays the appropriate screen. If the user chooses
Personnel, JAM displays the screen empscrn shown below.

14 JAM/DB: Release 5 May 92

Overview

PFl:Last Name Search PF2:History PF3:Update PF4:Next PFl0:Main Menu

Figure 3: Personnel Application Employee Screen empscrn.

The end user enters data in the screen empscrn. jam to query the database, and to update
rows. The user queries the database by typing an employee surname in the first field and
pressing PE 1. If more than one employeg has the same last name, the rows will be retrieved
one at a time. The user may press PF4 to see the next employee row with the specified last
name. If the user presses PF1 without supplying a name, the application retrieves all em-
ployee rows in alphabetical order.

May 92 JAM/DBi Release 5 15

JAM/DBi Overview

PF10: Main Menu

Figure 4: Personnel Application Salary History Window salhist.

When JAM displays a row, the user may press the PF2 key to review the employee’s salary
history.

4.2.

SAMPLE APPLICATION - DEVELOPER’S
VIEW

In this section, we show how the main components of this application appear to a developer.
In particular, we describe the database tables, JAM screens, and JPL functions constituting
the application.

16 JAM/DBi Release 5 May 92

Overview

4.2.1.
Database Tables emp, acc, and review

Below are sample SQL statements for the application tables. Please note that some engines
use different names for column datatypes. The table entries represent seven employees.

The table emp has eight columns. Each row stores an employce’s social security number,
name, home address, and current grade.

CREATE TABLE emp (

ssn CHAR(11) NOT NULL,
last CHAR(20),

first CHAR(12),

street CHAR(20),

city CHAR(15),

st CHAR(2),

zip CHAR(S),

grade CHAR(1))

ssn last first street city st zip grade

038-68-6826 Jones Barnabus 321 West 11 St Albuquerque NM 87124
122-98-6541 Aumond Hilary 11-12 Front St Albuquerque NM 87124
122-99-4102 Jones Michael 5 MapleDrive Albuquerque NM 87124
139-42-1651 Blake Norman 34 Concord Ave Albuquerque NM 87124
154-32-6610 Cory Richard 411 Ann St Albuquerque NM 87124
310-77-3997 Grundy Janet 70-2Poe Ave Albuquerque NM 87124
310-32-0084 Jones JohnP 9 VernTerrace Albuquerque NM 87124

Figure 5: Table emp

Table acc has three columns. Each row stores an employee’s social security number, cur-
rent salary, and a number of tax exemptions.

CO0DU0OwmnO

CREATE TABLE acc (

ssn CHAR(1l1l) NOT NULL,
sal NUMERIC (10.2),
exmp NUMERIC (1))

May 92 JAM/DBi Release 5 17

JAM/DB:i Overview

ssn sal exmp

038-68-6826 29500.00
122-98-6541 37800.00
122-99-4102 26000.00
139-42-1651 89500.00
154-32-6610 43100.00
310-77-3997 38000.00
310-32-0084 47500.00

Figure 6: Table acc

Table review has four columns. Each row stores an employee’s social security number, a
hirc date or review date, a new salary if it has changed since the previous review, and a new
grade if it has changed since the previous review. If newsal or newgrade is null, the em-
ployee was reviewed but there was no change in salary or grade.

WA = BN WD WD e

CREATE TABLE review (
ssn CHAR(11) NOT NULL,
revdate DATE NOT NULL,
newsal NUMERIC (10.2),
newgrade CHAR(1l))

ssn revdate newsal newgrade
038-68-6826 12/13/90 49500.00 C
038-68-6826 12/11/89 45000.00 NULL
038-68-6826 12/15/88 NULL NULL
038-68-6826 12/14/87 38500.00 D
122-98-6541 04/10/90 37800.00 NULL
122-98-6541 04/08/39 31000.00 E
122-99-4102 05/01/90 29000.00 NULL
122-99-4102 05/01/89 25200.00 E
139-42-1651 11/12/90 89500.00 NULL
139-42-1651 11/08/89 81000.00 B
139-42-1651 11/10/88 67500.00 C
13942-1651 11/10/87 NULL NULL
139-42-1651 11/08/86 53000.00 D
154-32-6610 02/0191 43100.00 D
310-77-3997 07/16/90 38000.00 D
310-77-3997 07/14/89 30000.00 E

18 JAM/DBi Release 5§ May 92

Qverview

310-32-0084 03/01/91 47500.00 D
310-32-0084 03/01/90 43000.00 E

Figure 7: Table review

The sample application permits an enduser to view rows from these tables and to update
data in some columns.

42.2.
Source Module dbiinit.c

To save memory, JAM supplies sevcral features as optional subsystems. These subsystems
include soft keys and altcrnate scrolling as well as DBi. The JAM/DBi subsystem is in-
stalled by setting the DB macro in jmain.c (or jxmain.c) or by setting a compiler di-
rective.

The application must initialize an engine with the function dm_init before making a con-
nection. Developers may call this function directly or they may use the vendor structure in
dbiinit. c to store the engine initialization information. JAM/DBi supplies a version of
this file customized for your engine.

Anexcerpt from dbiinit . ¢ is shown below. The boldface text shows the statements that
would install a fictional DBMS called XYZdb for the sample application.

#include “smdefs.h”
#include ”“dmerror.h”
#include ”smusrdbi.h”

#include “dmuproto.h”

#if DBIVENDORLIST

/* Support routine function prototypes */

/* Copy the following line for each support routine */
/* that is to be installed. Uncomment each copy, */
/* and replacle ’support_routine’ with the name of */
/* the support routine to be installed. */

/* extern int support_routine PROTO({(int)); */
extern int dm_xyzsup PROTO((int));

/* Add one entry to the following structure for each database support*/

/* routine that is to be installed. The form of each entry is as */
/* follows: */
/* */

May 92 JAM/DBi Release 5 19

JAM/DB: Overview

/* { "engine_name”, support_routine, case_flag, {(char *) 0 }, */
/> ' */
/* Replace ’engine_name’ with the name of the database you are */
/* installing. Replace ‘support_routine’ with the name of the */
/* support routine for that database. Replace ’case_flag’ with */
/* one of: */
/* DM_DEFAULT_CASE (Use the default value for the */
/* case_flag specified in */
/* the support routine) */
/* DM_PRESERVE_CASE (No case conversion is performed on */
/* database columns) */
/* DM_FORCE_TO_LOWER_CASE (Maps upper and mixed case column */
/% names to lower case jam field */
/* names during a database query) */
/* DM_FORCE_TO_UPPER_CASE (Maps lower and mixed case column */
/* names to upper case jam field */
/* names during a database query) */
/* */

/* The last member in the structure is for future expansion.

*¥/static vendor_t vendor_list[] =

{

/* { “engine_name”, support_routine, case_flag, (char *) 0 }, */
{ “xyzdb”, dm xyzsup, DM _FORCE_TO_LOWER_CASE, (char *) 0 },
{ (char *) 0, (int (*)()) O, (int) 0, ({(char *) 0 }

}i

The entry
{ “xyzdb”, dm_ xyzsup, DM FORCE_TO LOWER CASE, (char *) 0 }
contains four elements. The first,
“xyzdb”

names the engine for the application. It may be any name the developer wishes; an abbre-
viated vendor name is common. The second element,

dm_xyzsup

names the engine’s support routine. This support routine is supplied in a library as a part of
the JAM/DB: distribution and its name is documented in the README file. The third,

DM_FORCE_TO_LOWER_CASE

20 JAM/DBi Release 5 May 92

Overview

tclls JAM/DBi how to handle the case of column names when executing a seLecT. This flag
tclls JAM/DB: to convert column names to lower case when searching for JAM variable
destinations for a seLEcT. Therefore, the application uscs lower case for screen, LDB, and
JPL variables that are targets for database columns.

Any developer-written C hook functions are installed in funclist. c. Since the sample
application uses only JPL it uses the distributed funclist . ¢ without any modifications.
For more information on funclist . c or prototyped functions, see the JAM Program-
mer’s Guide.

4.2.3.
Data Dictionary and Initialization File

The application’s data dictionary has three types of entries. They are the following:
= constants named and initialized for JAM/DB: errors
= variables for passing database values between screens at runtime

See the figures below.

" DATA DICTIONARY MAINTENANCE = "~

NAME SC R/G COMMENT
DM_NOCONNECTION_ 1 _ Initialized to_value of DBi_code_
DM_NO_MORE_ROWS_ 1 _ Initialized to_value_of_DBi_code
DM_ROLLBACK 1 _ Initialized to_value.of DBi_code__
current_ssn 2 _ For_passing_the_value_of_index_key
current_name____ 2 _ For_passing_the concatenated__ name_
EOF

Figure 8: Developer’s View of the Data Dictionary.

May 92 JAM/DBi Release 5 21

JAM/DBi Overview

const.ini
This file inializes LDB constants.
Values correspond to those in DBi header file dmerror.h

“DM_NO_MORE_ROWS” ”53256"
“DM_ROLLBACK"” ”53263"
“DM_NOCONNECTION” ”53271"

Figure 9: Developer’s View of the Constants’ Initialization File.

The DM _ variables are named after symbolic constants in the JAM/DBi file dmerror.h.
Note that the scope of these variables is 1. At runtime, these values are treated as constants
by the local data block (LDB) initialization. A constants’ initialization file, such as
const. ini, assigns the values to the constants. See Appendix B. for the complete list of
JAM/DB: error codes.

The entries current_ssn and current_name are used to pass database values be-
tween screens at runtime.

4.2.4.

JAM Screens

There are three application screens.

Each of the screens uses one or more JPL modules. There are several ways of storing and
accessing JPL procedures and modules. A module is one or more JPL procedures. The type
of module describes how it is stored—in a file, as a miscellaneous field edit, etc. See the JPL
Guide in the JAM manual for a discussion of these topics.

Main Screen

The screen mainscrn. jam contains a menu and two data entry fields, uname and
pword. The screen opens in data entry mode. The field pword has a procedure in its JPL
field module. When the end user tabs from this field, the procedure installs an error handler
and attempts 1o log the end user onto the database with the user name and password entered
in the fields. If log on is successful, it calls the built-in function jm_mnutogl to toggle the
screen from data entry mode to menu mode.

22 JAM/DB: Release 5 May 92

Overview

Enter JPL program text:
Enter username & passwo| gpns ONERROR JPL dbi_error_handler
dbms ENGINE xyzdb
dbms DECLARE cl CONNECTION FOR \
USER :uname PASSWORD :pword
call jm_mnutogl
msg setbkstat “Choose an application \

NOTE:

Logon arguments

are engine-specific. and press ¥KNL.”

return 0

rJPL Field Module
attached to pword

Figure 10: Human Resources Application Main Menu, mainscrn.

JPL Field Module Attached to Field pworad

The first statement of the procedure sets up error processing for the rest of the application.
The psMs ONERROR statement installs the JPL procedure dbi_error_handler as the
application’s error handler. Whenever a JAM/DB: ermror occurs, JAM/DB passes three ar-
guments to the procedure—the text of the statement that failed, the name of the current en-
gine, and an error flag—and executes the procedure. A sample error handler is shown in
Figure 11.

The statement pBMs ENGINE names xyzdb as the default engine. Since only one engine
was installed in dbiinit. c, this statement is optional.

May 92 JAM/DBi Release 5 23

JAM/DBi Overview

The statement DBMS DECLARE CONNECTION attempts Lo log the user on to a database server.
If log on is successful JPL continues executing the procedure: it toggles mainscrn from
data entry mode to mcnu mode and displays a new status line message.

JPL Procedure for Error Handling, dbi_error_handler

If the log on is unsuccessful, JAM/DB; immediately calls the installed error handler
dbi_error_handler:

¥

#
#

3

proc dbi_error handler
parms stmt code flag

All DM_ variables are constants in the LDB.

If stmt failed because the user did not logon, prompt user to return
to main screen.

if (@dmretcode == DM_NOCONNECTION)
{
msg emsg “Not logged on. Press $KPF1l0 to restart.”
}
else

{

For all other errors, display the JAM/DBi message and any database
error message.

msg emsg @dmretmsg
if @dmengerrmsg != ’¢
msg emsg @dmengerrmsg

}

For all errors, return the abort code (1) to abort the JPL procedure
where the error occurred. If 0 were returned, the procedure where the
error occurred would continue executing.

return 1

Figure 11: Sample JPL Error Handler for Human Resources Application.

Note that three arguments are automatically passed to any error handler installed with pBMs
ONERROR!:

24

s the text of the statement that failed
= the name of the engine in use when the error occurred

= aflag indicating that this procedure was called because an error occurred

JAM/DBi Release 5 May 92

Overview

Alter receiving the arguments, the procedure examines the error code. Note the use of the
variables @dmretcode, @dmretmsg, and @dmengerrmsg. These are global variables
defined and maintained by JAM/DBL. If there is an error executing a sql or dbms state-
ment, JAM/DB: writes a JAM/DB: error code to @dmretcode, a JAM/DB error mes-
sage to @dmretmsg, an engine-specific error code to @dmengerrcode and an engine-
specific error message to @dmengerrmsg. The application may use these variables in JPL
statements such as i £ or msg when processing for errors.

The procedure first checks if the user is connected to an engine. For instance, if the user has
amouse and clicks on a menu choice, he or she may move to the next screen before logging
on. However, once he or she attempts to view employee data, JAM/DB; will return an error
because there is no connection to the database. In case of this error, the error handler
prompts the user on how to recover—pressing PF10 returns the user to the top-level form
where a user name and password may be entered.2 Recall that DM_NOCONNECTION was
defined as an LDB constant (Figure 8 and Figure 9).

For all other errors, the error handler displays a standard JAM/DB: error message, and also
an engine-specific message if there is one in the global JAM variable @dmengerrmsgq.
For example, the user may enter a user name and password on mainscrn, but the logon
may fail for some reason. In such a case, the handler first displays a JAM/DBi message tell-
ing the user that the operation failed. Next it displays the engine-specific message further
describing the failure—for example invalid user name, password is required, or the server
is not available, elc.

In addition to displaying messages, the error handler also determines whether to continue or
abort execution of the JPL proccdure where the error occurred. If the error handler returns
0, JPL continues execution at the next statement after the one that failed. If the handler re-
turns 1, JPL aborts the procedure and returns control to the procedure’s caller.

The sample error handler returns the abort code (1) for all errors. Therefore, if logon fails,
JPL does not execute the rest of the procedures in the JPL field module of pword. There-
fore, it does not cxecute the statements which toggle the screen to menu mode and change
the status line message. Instead, it returns control to the procedure’s caller, in this case JAM.

There are many advantages to JAM/DBi’s error handling features. Most notably, it gives
developers both generic and vendor-spccific means of handling errors. In addition, the error
handler like the rest of the application is easily prototyped. In early stages of the application,
the error handler may simply display all error messages. As the application grows, the de-
veloper may enhance the error handler, adding special processing and messages for particu-
lar errors. The error handler may also be written in C.

2. Of course, a target list on the menu control strings on mainscrn could prevent this. Each menu choice
could call a procedure that verifies that the has user logged on before opening the next form or window. See the
Author's Guide in the JAM documentation for information on using target lists.

May 92 JAM/DBi Release 5 25

JAM/DBi Overview

To usc a JPL error procedure most efficiently, the procedure should be in a public module.
Sec the JPL Guide for details.
Menu Choices ONmainscrn

Once in menu mode on mainscrn, the user may choose among the three applica-
tions—Benefits, Personnel, Recruiting—or may quit.

The last option on the menu, QUIT, calls the JPL procedure quit to log the user off the
database and exit the application. Logoff may be executed with the statement,

dbms CLOSE_ALL_CONNECTIONS

The rest of this chapter describes the Personnel option.

Employee Screen

If the user chooses Personnel from the menu, JAM opens the form empscrn shown
below.

Screen Entry
Function is

jpl open

PFl:Last Name Search PF2:Salary PF3:Update PF4:Next PF10:Main Menu

Figure 12: Personnel Application Employee Screen empscrn. The social securi-
ty, salary, and grade fields are protected from data entry.

26 JAM/DB: Release 5 May 92

Overview

The scrcen empscrn. jam is used to update and display data from the database. The
screenhaseleven fields: last,first,street,city, st, zip,ssn,grade,sal and
exmp. The function keys PF1 and PF2 are associated with JPL functions that query the
tables acc, emp, and review. The PF3 key permits a user to update name and address
values in the table emp, and the number of exemptions in the table acc. If the end user
wishes to scroll through the cmployee records, pressing the PF4 will fetch a new row. The
PF10 key returns the user to the menu screen.

The fields ssn, sal, and grade are protected from data entry. The end user may update
an employee’s name, address, or number of exemptions. The application assumes that an
employee’s social security number should not change. An employee's salary and grade may
only be changed after an employce review. We assume that such information is entered in
another application. Developers, of course, could write a function that pcrmits certain users
to change data in protected fields. The JAM Programmer’s Guide documents the library
functions necessary for this type of processing.

Below is the text of the JPL procedures for empscrn and an explanation of the procedures.

JPL Procedure open

proc open
msg setbkstat “\

$KPF1 Last Name Search %KPF2 Salary $KPF3 Update $%KPF4 Next \
$KPF10 Main Menu”

dbms DECLARE emp_cursor CURSOR FOR \
SELECT emp.first, emp.last, emp.street, emp.city, emp.st, emp.zip,\
emp.ssn, emp.grade, acc.sal, acc.exmp FROM emp, acc \
WHERE emp.ssn=acc.ssn AND emp.last LIKE ::parm_last \
ORDER BY emp.last, emp.first
return 0

Figure 13 a : JPL screen module for empscrn.

This procedure is the screen entry function. The msg statement displays a status line mes-
sage which describes the screen’s control keys. The second statement declares a cursor,
emp_cursor, for a seLecT statement. The seLecT is just like a sELECT statement ex-
ecuted in a DBMS interface, except for the argument : : parm_last. This argument is a
binding parameter. JAM/DBi will not know its value until the end user presses the PF1 key
which exccutes the cursor. Executing the cursor will execute the seLecT and fetch data to
the screen.

May 92 JAM/DBi Release 5 27

JAM/DB: Overview

JPL Procedures search and next

proc search
if last == "

dbms WITH CURSOR emp_cursor EXECUTE USING parm_last = ‘%’
else

dbms WITH CURSOR emp_cursor EXECUTE USING parm_last = last
if @dmretcode == DM_NO_MORE_ROWS

msg emsg ”"There are no employees with the surname :last .”
return 0

proc next

dbms WITH CURSOR emp_cursor CONTINUE

if dbi_retcode == DM_NO_MORE_ROWS
msg emsg “There are no more rows.”

return 0

Figure 13 b: Continuation of JPL screen module for empscrn. These functions
are executed with PF1 and PF4.

The procedure search begins by checking if the field 1ast is empty. If it is empty, the
procedure executes emp_cursor (declarcd in Figure 13 a) using the wild character *%’.
Thus, if the end user presses PF1 without supplying a surname, JAM/DB:i fetches all the
employee rows one at a time in alphabetical order.

If the field 1ast is not empty, the procedure executes emp_cursor with the surname en-
tered in the field. If two or more employees have the same surmame, more than one row is
returned. The enduser presses the Next key to see the next available record.

For example, if the end user entered the surname “Jones” in the field named last, the
DBMS would find three qualifying employees in the database. JAM/DBi displays the infor-
mation on employee Barnabus Jones when the PF1 key is pressed. When the PF4 key is
pressed, JAM/DB: displays the next employee in the seLecT set, John P. Jones. When the
PF4 is pressed a second time, JAM/DB displays the information on the final employee,
Michael Jones. If the user presses the PF4 key a third time, the procedure tells the user that
there are no more rows in the SELECT set.

The procedure can tell the user when all rows have been displayed because the engine sends
ano-more-rows signal if the application tries to fetch more rows than there are in the sELECT
set. When this signal is returned, JAM/DB; writes the value of the DM_NO_MORE_ROWS
code to the global variable @dmretcode. The JPL procedure knows the value of
DM_NO_MORE_ROWS because a variable of the same name was defined as an LDB con-
stant (Figure 8) and was assigned a value by the initialization file const . ini (Figure 9).

28 JAM/DBi Release 5 May 92

Overview

JPL Procedure check_ssn

proc check_ssn
if ssn t= “"
return 0

msg emsg ”\

A social security number is required. Please enter an employee’s\
last name and press $KPF4 to retrieve the necessary information.\
When a record is displayed, press %KPF2 to see the salary history\
or press $KPF3 to make an update.”

return 1

Figure 13 ¢: Continuation of JPL screen module for empscrn.
The procedure check_ssn is used by the procedures salhist and update. It verifies

that the user has entered a social security number. If no number is given, check_ssn dis-
plays an error message.

JPL Procedure salhist

proc salhist
vars jpl_retcode
retvar jpl_retcode

jpl check_ssn

if jpl_retcode == 0

{
cat current_ssn ssn
cat current_name first ” “ last
call jm keys PF14

}

return 0

Figure 13 d: Continuation of JPL screen module for empscrn.This function is
executed with PF2.

The end user presses the PF2 key to review an employee’s salary history. The procedure
begins by setting up a return variable and calling the procedure check_ssn. The proce-
dure check_ssn (Figure 13 ¢) tests whether the field ssn is empty. If ssn is empty, the
procedure displays a message telling the user to press the PF 1 key before requesting a histo-
ry. The return code from check_ssn determines whether salhist continues executing.
If the code is O (i.e., ssn is not empty) the procedure continues.

This routine copies the current employee social security number to the LDB variable
current_ssn, and concatenates the values of first and 1ast in the LDB variable
current_name. The values are copied to the LDB so that the salary history screen may
use them.

May 92 JAM/DB: Release 5 29

JAM/DBi Overview

The statementcall jm_keys execites a control string. The JAM control string window
for empscrn contains the entry

PF14 &(9,25)salhist

which opens the screen salhist at row 9, column 25. The discussion of the salhist
screen begins on page 33.

30 JAM/DBi Release 5 May 92

Overview

JPL Procedure update and Related Procedures

proc update
vars jpl_retcode ans
retvar jpl_retcode
jpl check_ssn
if jpl_retcode == 0
{
msg query “Update this record now?” ans
if ans
jpl tran_handle upd_emp
}
return 0

proc tran_handle
parms subroutine
vars tran_error
retvar tran_error
jpl :subroutine
if tran_error
P
msg emsg “Rolling back transaction.”
dbms ROLLBACK
}

else
msg emsg “Transaction successful.”
return 0
NOTE:
proc upd emp Transaction commands >
dbms BEGIN are engine-specific. ,

sql UPDATE emp SET last=:+last, first=:+first, \
street=:+street, city=:+city, st=:+st, zip=:+zip WHERE ssn=:+ssn
sql UPDATE acc SET exmp=:t+exmp WHERE acc.ssn=:+ssn
dbms COMMIT
return 0

Figure 13 e: End of JPL screen module for empscrn. The procedure update is
executed with PF4.

The procedure update begins by setting up a return variable and calling the procedure
check_ssn. The procedure check_ssn (Figure 13 ¢) tests whether the field ssn is
empty. If ssn is empty, the procedure displays a message (elling the user to press the PF1
key before performing an update. The return code from check_ssn determines whether
update continues executing. If the code is 0 (i.e., ssn is not empty) the procedure contin-
ues, asking the user to confirm the update. If the end user enters the value of SM_YES (typi-
cally “y”), the procedure passes the name of a subroutine upd_emp to a transaction handler
tran_handle.

May 92 JAM/DB: Release 5 31

JAM/D8B: Overview

The procedure tran_handle is a generic procedure that may be used to execute any
transaction. It receives one argument, the name of a subroutine that contains the transaction
statements. Before calling the subroutine, however, t ran_handle defines and declares a
return variable tran_error. After calling the subroutine, tran_handle checks if
tran_error is non-zero; a non-zero value signals that an error has occurred and that
tran_handle must cxecute a rollback. This method permits the application to test and
rollback for both JAM and JAM/DB: errors. The return code for a JAM error is always -1,
and the return code from the sample error handler dbi_error_handleris 1.

The procedure upd_emp is engine-specific. Some engines, such as ORACLE, begin a
transaction with the command peMs aurocomvIT OFF. If you are building this application,
pleasc consult the engine-specific documentation.

Note the use of : +variable in the uppaTe statements. This is the colon-plus preprocessor.
Before executing the statement, JPL replaces each instance of : +variable with the value of
variable in a format suitable for the engine.

For example, if the screen contained the following values,

PFl:Last Name Search PF2:History PF3:Update PF4:Next PFl0:Main Menu

Figure 14: Screen Editor Entry Screen

and assuming that the fields 1ast, first, street,city, st, and zip are all character
ficlds with no spccial edits, and exmp is a digits only field, the procedure would ex-
ecute something like the following,

32 JAM/DBi Release 5 May 92

Overview

UPDATE emp SET last='0’’Toole’, first=’'Hilary’, \
street=’'64 Yorkville Road’, city='Albuquerque’,\
st='NM’', zip='87124’ WHERE ssn=’'122-98-6541'

UPDATE acc SET exmp=4 WHERE acc.ssn=’122-98-6541'

Note that the colon-plus processor formats character data differently than numeric data.
Character strings are automatically enclosed in quotes and embedded quotes in character
strings are escaped. Numeric values are not quoted. This formalting is engine-specific and
is handled automatically by JAM/DB:. This topic is covered in detail in the Developer's
Guide of this manual.

Salary History Screen

If the user presses the Salary History key while an employee row is displayed, JAM
opens the window salhist, shown below.

Screen entry function

IS 'S5 Ty
jpl getsalhist / d !
. LR : & { Field iscurrent_name.’

PF10: Main Menu

Figure 15: Developer’s View of salhist.
Upon opening salhist, JAM calls the JPL function get salhist, shown below.

May 92 JAM/DB: Release 5 33

JAM/DBi Overview

proc getsalhist

msg setbkstat ” %KPF10 Main Menu”

sql SELECT revdate, newsal FROM review WHERE ssn=:+current_ssn
return

Figure 16: Developer's View of the JPL Screen Module for salhist.

Remember that current_name and current_ssn are LDB variables (Figure 8). The
proccdure salhist on the previous screen concatenated the values of first and last
in the variable current_name, and copied the social security number from ssn to
current_ssn (Figure 13 d). The field name is protected from data entry and tabbing.

If empsczn is displaying the data belonging to the employee Bamabus Jones when the
History key is pressed, then getsalhist executes

SELECT revdate, newsal FROM review \
WHERE ssn=’'038-68-6826"

and JAM displays the following data:

34 JAM/DBi Release 5 May 92

Overview

PF10: Main Menu

Figure 17: Personnel Application Salary History Window salhist.

The arrays revdate and newsal are large scrolling arrays. The user may press the
page-up and page-down keys (JAM logical keys SPGU and SPGD) to view all the rows. The
user may press the EXIT key to return to empscrn, or press the Main Menu key to return
to the application’s first screen.

4.3.

JAM/DB:; CONTROL FLOW SUMMARY

In this section we review control flow between JAM and a database, using the Personnel
Application as an example.

In JAM/DB: applications, database queries are embedded in hook functions written in JPL
or C. Hook functions are explained in detail in the JAM Programmer s Guide. Here we note
that the choice of hook function and the choice of coding language affects the construction
and the control flow of a query.

May 92 JAM/DBi Release 5 35

JAM/DB: Overview

43.1.
Variable Substitution

Applications usually require that the end user specify search criteria at runtime. In these
cascs, an end user enters data into screen fields and JAM uses the fields’ contents in the
SELECT statement. JAM providcs several ways of accessing field contents at runtime. They
are the following:

= colon preprocessor
= sm_getfield and related functions
» argument of a field function

The colon preprocessor is an easy and efficient method of accessing field contents at run-
time. JAM invokes the colon preprocessor on the arguments of a control string beginning
with a caret. Thercfore, developers may pass the contents of JAM variables as parameters
to the control function. If the control string is passing more than one parameter to a C func-
tion, the function should be installed as a prototyped function. See the Author’s Guide for
morce information on colon preprocessing and control strings. See the Programmer’s Guide
for information on prototyped and control string functions.

JAM invokes the colon preprocessor each time it executes a JPL statement. Therefore, JPL
developers may access ficld and LDB values within a JPL procedure. (See the JPL Guide
for information on colon preprocessing with JPL commands.)

JAM also invokes the colon preprocessor on the arguments of the JAM/DB: library func-
tions dm_sql and dm_dbms. In addition, C developers may use the library function
sm_getfield, or a host of variants, to access runtime values. See the Programmer’s
Guide for descriptions of these JAM functions.

In JAM/DB; applications, colon preprocessing is usually preferable to the functions like
sm_getfield beccause it automatically formats data in an engine’s style.

4.3.2.
Cursors

SQL vendors support cursors as a part of the interface to custom applications such as
jamdbi. A cursor is a SQL object that allows an application

= (o fetch rows from a seLECT set incrementally

L to use more than one seLECT set at a time

36 JAM/DBi Release 5 May 92

Overview

= to improve cfficiency when execuling a SQL statement many times

On each connection, JAM/DBi automatically creates a cursor for SELECT statements. For
some engines, it also creatcs another cursor non-seLecT statements. These cursors are
known as the “default” cursors. The JPL command sql and the library function dm_sql
always use a default cursor.

In addition, developers may declare cursors with the command DBMS DECLARE CURSOR. A
declared cursor is always named and associated with a SQL statement. Named cursors are
cxecuted with the JPL command dbms or with the library function dm_dbms. In JPL, the
statement is

dbms WITH CURSOR cursor EXECUTE

Executing a named cursor exccules the statement that was associated with the cursor at its
declaration.

Fetching a serecr Set Incrementally

When creating screens for displaying database values, the developer may, at best, only ap-
proximate the number of rows which will be in a seLECT set felched by the application.
Therefore, JAM/DB:i needs a mechanism for handling seLEcT sets that contain more rows
than can be held by the JAM destination variables at one time. If, for example, a sELECT set
contains 100 rows, but destination variables have only twenty occurrences each, JAM/DBi
cannot fetch more than 20 rows at a time. Therefore, it needs a “place holder” in the set so
that after fetching rows 1 through 20 when the seLECT is executed, it can fetch rows 21
through 40 when pBMs conTINUE is first executed, rows 41 through 60 when pems
coNTINUE is cxecuted a second time, and so on. A cursor acts as such a placeholder.

Using Multiple serecr Sets

JAM/DB: automatically creates one default cursor for sELECT statements. Very often, how-
ever, applications use two or more seLEcT scts concurrently. This would permit a user, for
example, to select many item “summary” rows where he or she may position the screen cur-
sor and then execute one or more seLECTS for “detail” rows further describing the item. Af-
ter viewing detail rows, the user may contain viewing the item summary rows.

This was the approach in the sample application where we used a named cursor to select
employee rows and the default cursor to select salary details on an individual employee.
This permitted the end user to switch between seLecT statements. If the user pressed the
PF1 key without specifying a last name, the application selected all the rows. While scroll-
ing through the rows (pressing the PF4 key), the user was also permitted to view each em-

May 92 JAM/DBi Release 5 37

JAM/DB: Overview

ployce's salary history before viewing the next employee row. If the application did not use
a named cursor to sclect cmployec rows, JAM/DBi would use the default cursor again, los-
ing the uscr’s place in first seLECT set when it issued the second sELECT statement.

Improving Efficiency

Before executing a SQL statement, the DBMS must prepare the statement. Preparation may
includc parsing the statement and declaring an engine-cursor. If a statement will be executed
many times, declaring a cursor may improve the application’s efficiency because the prepa-
ration is done only once, rather than each time the statement is executed. An application
may declare some cursors upon start up or upon screen entry, and it may use function keys
to call procedures which execute the named cursors.

4.3.3.
Error Processing

JAM/DB: provides two ways of managing errors in an application. The default method
writes error messages to the status line, just as for JAM errors, and aborts the JPL proce-
dure it was executing. The other method is for the developer to write and install an error
handler which JAM/DB: will execute whenever a JAM/DBi error occurs.

An error handler written in JPL is installed with the statement -
dbms ONERROR JPL procedure name

An error handler written in C must be a prototyped function (i.e. installed in pfuncs in
funclist.c)and is installed with the statement

dbms ONERROR C function

When a JAM/DB: error occurs, JAM/DB; will execute the installed error handler. JAM/
DBi automatically passes arguments to the error handler—the text of the statement that
failed, the engine name, and an error flag. The engine name is the name that was used 1o
initialize the engine in jmain. c. The error flag equals 2.

The error handler is responsible for displaying any error messages. It may use @dmretmsg
to display a JAM/DBi message, @dmenge rrmsg to display an engine-specific error mes-
sage, or it may examine the error codes @dmretcode and @dmengerrcode and display
its own error messages.

The procedure’s return code determines whether or not JPL continues or aborts the proce-
dure it was executing,

Error handling is summarized in the figure below.

38 JAM/DBi Release § May 92

Overview

| JAM/DB:

error processing

GLOBALS
@dmretcode
@dmretmsg
@dmengerrcode
@dmengerrmsg

wrillen 10 the status line.

When default error handling
is used, error messages are

v

default

Error:Attempt to insert duplicate key
row in object ‘emp’ with unique key

| JAM/DBi |
[

error processing

GLOBALS
@dmretcode
@dmretmsg
@dmengerrcode
fdmengerrmsg

When an error handler is
installed, JAM/DBi ex-
ecules the function when an
error occurs. v

jpl dbi_error_handler

Fl:Salary F2:Search F3:Next F4:Update

Figure 18: JAM/DB: Error Flow from the Database to JAM. The solid line shows
the path used by the example.

May 92

JAM/DB: Release 5 39

JAM/DB: Overview

JAM/DBi

Chapter 5. |
JAM/DB: Philosophy

In this chapter, we address several features of JAM/DBi and suggest some development
strategies.

5.1.

JAM/DBi FEATURES

JAM/DB: is a powerful tool for developing frontend applications and interfaces. The sec-
tions below discuss its prominent features.

5.1.1.

SQL-Based

SQL (Structured Query Language) is the standard for relational database languages. It is a
tool which provides interactive users with a non-procedural, easy-to-use means of accessing
databases and it assumes little or no programming skills. A key feature of JAM/DB; is that
it uses the SQL syntax of the database you are using. You have complete access to all the
features supplied by your DBMS. You do not need 1o learn a new syntax to use JAM/DBi
because any SQL statement may be embedded in JPL and C hook functions. In JPL, a SQL
statement is prefixed with the verb sql or associated with a declared cursor. In C, a SQL
statement is passed as an argument to the JAM/DB; library function dm_sql.

As a result, JAM/DB; developers may create an entire frontend application simply using
SQL and the JAM authoring tools.

40 JAM/DB; Release 5 May 92

Overview

5.1.2.

OS Portability

JAM/DB: is available on most operating system platforms. The JAM terminal and key-
board translation files provide all the hardware configuration needed by JAM/DBI. Devel-
opers customize the makefile distributed with JAM/DB: [or sofiware and operating system
specifics.

5.1.3.
Vendor Independence

Vendor independence is an important feature of JAM/DB:. Since JAM/DB; is available for
many popular relational databases, developers may choose a database for its data manage-
ment capabilities whilc using JAM's powerful tools Lo create the frontend applications. In
this way, devclopers are not limited by the vendor’s frontend development tools.

In addition, JAM/DBi provides a standard means of moving applications {from one dalabase
to another, with no changes to screens. If the two databases use different SQL syntax, how-
ever, developers may need to make some changes to SQL statements. Additional changes
may be needed for differences in locking and transaction management on the two databases.

5.1.4.

Multi-engine Support

Some installations may maintain several databases, each with a DBMS supplied by a differ-
ent vendor. JAM/DBi permits developers to access different engines in the same applica-
tion. The user must have a JAM/DB support routine for each DBMS product that the appli-
cation will use.

May 92 JAM/DBi Release 5 41

JAM/DBi Overview

Engine 1

Application

JAM/DBi

support routine

L
support routine

I DBMS Network Services]

{ DBMS Network Services |

N /
/ Network yd
g .
Engine 2
| DBMS Network Services | [DBMS Network Services |

DBMS Server

Database

DBMS Server

Figure 19: Components of JAM/DBi Architecture when using muitiple engines.

5.1.5.

Multi-connection Support

Some engines permit multiple connections. This allows an application to have connections
to multiple servers and databases of the engine. Connections are named, permitting the
application to set a default connection and to switch between connections as it executes da-
tabase operations.

42

JAM/DBi Release 5

May 92

Overview

Application

_J/\

JAM/DBi

1
support routine

1
| DBMS Network Services |

/ Network /

—

| DBMS Network Services]

Engine []
DBMS Server DBMS Server
e — 1 —_
Connection 1 Connection 2

Figure 20: Components of JAM/DB: Architecture when using multiple connec-
tions.

5.1.6.

Prototyping

Developers using JAM/DB: may prototype an application with real links to a database
without writing any third-generation programming code. Database functions may be simu-

May 92 JAM/DBi Release 5 43

JAM/DBi Overview

lated by placing sample data on screens with JPL. Later, the the simulation code can be re-
placed with sql and dbms statcments.

5.2.

JAM/DB:; DEVELOPMENT HINTS

There are a few suggestions which developers should consider before developing an appli-
cation.

s Execute seLEcT statements when the target variables are on the active
screen. Use the LDB just to pass a particular column value to another
screen when necessary. In the sample application, two screens needed the
values of the employee’s social security number, first name, and last name.
Rather than putting the target variable ssn in the data dictionary, the
application defined ssn on the screen empscrn and defined
current_ssn in the data dictionary. Therefore, current_ssn con-
tains a value only when the application explicitly writes to the variable. By
keeping only necessary column variables in the LDB, the developer re-
duces the amount of memory needed by the LDB, reduces the chances that
the LDB will pass data to an unexpccted target, and reduces the amount of
application maintenance.

» Use an error and/or exit handler to process error and status information.
Not only does this reduce the amount of code in the application, it also en-
sures consistent error handling throughout the application.

Appendix C. covers these topics in more detail.

44 JAM/DB: Release § May 92

Developer’s
Guide

Introduction

Chapter 6.
Introduction to Development

This document is intended for JAM/DB; developers. We discuss the development and cre-
ation of executable JAM/DBi programs using developer-written hook functions to access
and manipulate a database.

We assume that the reader is familiar with JAM. JAM/DB: developers should see the JAM
Author's Guide for information on using the Screen Editor, Keyset Editor, and the Data Dic-
tionary Editor. They should see the JPL Guide for information on writing and storing JPL
procedures. They should see the Programmer's Guide for information on installing C hook
functions in the application function list and for customizing the source modules, jmain.c
or jxmain.c.

In addition, developers should review the JAM Development Overview and the JAM/DB;
Development Overview before proceeding. These sections discuss the architectural compo-
nents and the control flow of JAM and JAM/DB;.

6.1.

SQL VARIANTS

SQL is an evolving standard in the database industry and there are numerous SQL-based
products on the market today. At this writing JAM/DB: supports more than ten vendors’
SQL-based products. Each of these vendors implements aspects of SQL differently. For ex-
ample, some engines permit the use of only single quotes around literals in query state-
ments. Other engines permit the use of either single or double quotes. Engines often have
different rules for the use of case and special characters in variable names. JAM/DB; pro-
vides features to assist developers with these differences. Developers may use the colon-
plus preprocessor to format values for a particular DBMS engine before inserting them in
database columns. They may control case handling by setting the engine’s case flag at ini-
tialization.

May 92 JAM/DB: Release 5 47

II. Developer's Guide

The obvious advantage is ease of use. JAM/DB; provides access to almost all functions sup-
ported by the vendor, without changes in command syntax. Developers concerned with
DBMS portability, however, must use a compatible SQL syntax. For example, the SQL syn-
tax of most vendors includes a subset of ANSI-compliant SQL commands. The syntax of
these commands is usually portable.

The Developer's Guide discusses concepts common to all supported engines. For this rea-
son, we do not emphasize any particular implementation of SQL. Any SELECT, INSERT,
UPDATE, Or DELETE statement in the examples is used only to clarify concepts. When using
the concept in an actual application, use the SQL syntax of the DBMS.

6.2.
JAM/DBi COMMANDS

Developers may execute JAM/DB; functions from JPL statements and C language function
calls. JAM/DB: distinguishes between two types of database commands. In JPL, database
commands are executed with either the command sql or the command dbms. Similarly in
C, database commands are executed with the functions dm_sql or dm_dbms.

The sql variants execute statements that may be given in the interactive query language of
the database. They include crReaTE, DROP, SELECT, INSERT, UPDATE and DELETE.

The dbms variants execute the following types of functions:

B Statements not needed or not supported in the database’s interactive query
language. (i.e., LOGON, DECLARE CURSOR, CONTINUE)

® Statements to customize the JAM/DB: environment. These include error
trapping and directing output to a file or an array occurrence.

B Vendors’ “extended” SQL functions. These functions are non-standard en-
hancements to SQL (e.g., browse, control execution of a stored procedure,
etc.).

® SQL statements to be executed under the control of explicitly declared
Cursors.

Actually, any SQL statement may be executed with a dbms command. This is done in two
steps: a cursor is declared and associated with the SQL statement, and then the cursor is ex-
ecuted. Developers may use the “short-cut” command sql to execute simple queries in a
single step. For example,

dbms DECLARE item cursor CURSOR FOR \
SELECT description, price FROM products \
WHERE code = :+code

dbms WITH CURSOR item cursor EXECUTE

48 JAM/DBi Release 5 May 62

Introduction

fetches the same rows as

sql SELECT description, price FROM products \
WHERE code = :+code

6.2.1.

JPL versus C

The colon preprocessor has always been a powerful incentive to use JPL rather than C for
JAM/DB: functions. Release 5 makes two improvements to the colon preprocessor: it pro-
vides a special form for formatting database values, and it performs colon preprocessing on
the arguments of dm_dbms and dm_sql, the library functions for executing database com-
mands.

The decision to use JPL or C is lcft to the developers’ discretion. Developers should know
that they may execute any SQL statement from either language, and they may use either or
both languages in an application. JPL procedures may be executed without compilation.

Most of the examples in this guide use JPL.

May 92 JAM/DB: Release 5 49

Access and Execution

JAM/DBi

Chapter 7.
Access and Execution

In this chapter we discuss how an application accesses and queries a database. We discuss
the following topics:

s Initializing one or more engines — the application tells JAM/DB; which
engines (i.e., vendor products) it will use. (Section 7.1.)

= Connecting to a server and database - the application connects to a server
where an initialized engine is running. (Section 7.2.)

s Using cursors — the application uses a default or named cursor to execute
an operation on a connection. (Section 7.3.)

May 92 JAM/DBi Release § 51

Il. Developer's Guide

7.1.
INITIALIZING ONE OR MORE ENGINES

An engine is a DBMS product. It is identified by a specific vendor and version. For exam-
ple, SYBASE 4.0, ORACLE 6.0, and ORACLE 5.1 are three distinct engines. JAM/DB; is
distributed with an object file containing a support routine for a particular engine. The sup-
port contains all the vendor-specific code necessary for executing database operations with
JAM/DBi.

JAM/DBIi permits an application to access one or more engines. The application must have
a support routine for each engine, and it must initialize an engine before opening a connec-
tion or a executing a query on the engine,

7.1.1.
Initializing an Engine in dbiinit.c
A call to initialize one or more engines may be put in the JAM/DBi source module
dbiinit.c. Asample dbiinit.c isdistributed with JAM/DB: . The file,

1. makes a function declaration for one or more support routines

2. describes the engine initialization in the structure vendor_list
vendor_list appears like the following,

static vendor_t vendor_list([] =

{
{“engine”, support routine, case flag |error flag, (char *) 0},
{ {(char *)0, (int (*)()) 0, (int) O, (char *) 0}

}:

The name for eng/neis chosen by the developer. If an application uses two or more engines,
the application will use the mnemonic engine to tell JAM which DBMS to use. Most of the
examples in the guide use a vendor name as the mnemonic, for example sybase or
oracle, but any character string that is not a keyword is valid. Keywords are listed in Ap-
pendix A.

The name of support_routine is documented in the distributed dbiinit . c. The name is
usually in the form dm_vendorsup where vendor is an abbreviated vendor name. Some
examples are

s dm_intsup

s dm orasup

52 JAM/DBi Release 5 May 92

Access and Execution: Initializing an Engine

= dm sybsup

case_flag sets the case-handling feature of JAM/DB.. It determines how JAM/DBi uses
case to map column names to JAM variables when executing a seLeEcT. The options are

= DM _PRESERVE_CASE Use case exactly as returned by the en-
gine.

s DM _FORCE_TO_UPPER CASE Force all column names returned by an
engine to upper case. The developer
should use upper case when naming JAM
variables.

= DM FORCE_TO_LOWER_CASE Force all column names returned by an
engine to lower case. The devcloper
should use lower case when naming JAM
variables.

= DM DEFAULT CASE Usually defaults to
DM_PRESERVE_CASE. Another default
' value may be set by JYACC in the support

routine.

For example, ORACLE returns all column names in upper case. If DM_PRESERVE_CASE
is set, JAM/DB; will look for JAM variables with upper case names. To map columns to
JAM variables with lower <case names, set the «case flag 1o
DM_FORCE_TO_LOWER_CASE. SYBASE, on the other hand, is case sensitive and it may
return column names in upper, lower, or mixed cases. To map SYBASE columns to single
case JAM variables, set the case flag to DM_FORCE_TO UPPER CASE or
DM_FORCE_TO_LOWER_CASE.

error_flag determines which error messages are displayed by the default error handler. This
flag is “or—ed” with the case flag. The options are

s DM DEFAULT DBI_MSG The default error handler displays engine-
independent error messages when an error
occurs. These messages are defined in the
JAM message file,

= DM _DEFAULT_ENG_MSG The default error handler displays engine-
dependent error messages when an error
occurs, These messages are supplied by
the engine.

If neither flag is used, the default is DM_DEFAULT DBI_MSG.
The last argument (char *) 0 is provided for future use.

May 92 JAM/DBi Release 5 53

II. Developer's Guide

If the DBI subsystem is installed (i.e., its macro is set to 1 in jmain. c or by a compiler
directive), jmain (or jxmain) will call the JAM/DB; library function dm_init foreach
support routine in the list.

If the initialization is successful, support routine returns zero. In some cases sup-
port_routine may reject the initialization and return an error code. In these cases, there may
be insufficicnt memory, the engine may not be installed, or the application may have initial-
ized the same support routine more than once. If such an error occurs when executing
jmain, JAM will display an error message and terminate.

7.1.2.
Initialization Procedure

As a partof initialization, JAM/DBi calls the support routine for information on the particu-
lar DBMS. For each engine, JAM/DB; has information on the following

= theengine’s capabilitics (e.g., whether the engine can execute stored pro-
cedures or support multiple connections)

= the required formatting for character and null strings being inserted into a
table

= the default for case handling

In addition, JAM/DB: sets up some structures at initialization, including structures for
tracking the number and names of all connections on an engine.

7.1.3.

Setting the Default Engine

The application may connect to any initialized engine.

An application with two or more initialized engines sets the default engine with the com-
mand

DBMS ENGINE engine

or sets a current engine for a statement with the clause witTH ENGINE. Anapplication access-
ing multiple engines must reset the default or current engine when declaring connections to
the different engines. Once a connection is declared, the default connection determines the
default engine.

54 JAM/DB: Release 5 May 92

Access and Execution: Connecting to a Database

7.2.
CONNECTING TO A DATABASE SERVER

Before performing operations on database tables, JAM/DBi must connect to a DBMS serv-
er with the statement

dbms [WITH ENGINE engine]l DECLARE connection CONNECTION \
FOR OPTION argument [OPTION argument]

Different engines support different options. Please see the DBMS-specific Notes in this doc-
ument for a list of the valid options.

Once a connection is opened, the application may operate on the database tables.

A declared connection is a named structure describing a session on an engine. This informa-
tion includes

= aconnection name
= apointer to engine information

= logon information supplied by the option arguments, for example, a user
and database name

s a data structure for a default seLEcT cursor

s pointers to other structures associated with the connection, including
named cursors (thus when an application closes a connection, JAM/DBi is
able to close all open cursors on the connection)

If no engine is named, the connection is declared for the default engine.
The statement
dbms CLOSE CONNECTION connection

logs off and closes the connection.

7.2.1.
Connections to Multiple Engines

If an application is using two or more engines, a connection may be declared for each en-
gine. A default connection may be set with the command

dbms CONNECTION connection
For example,

May 92 JAM/DBi Release 5 55

Il. Developer's Guide

dbms WITH ENGINE sybase DECLARE sybcon CONNECTION FOR \
USER :uname PASSWORD :pword SERVER birch

dbms WITH ENGINE oracle DECLARE oracon CONNECTION FOR \
USER :uname PASSWORD :pword

dbms CONNECTION sybcon

sgl SELECT * FROM emp WHERE last = :+last

In the example, connections are declared on the engine sybase and the engine oracle.
The connection sybcon is chosen as the default. Therefore, JAM/DBi performs the
SELECT on the connection sybcon and uses the support routine of sybcon’s engine to
execute the query.

The witH connecTIoN clause specilics a connection to be used for a single statement, over-
riding the default connection. For example,

sql WITH CONNECTION oracon SELECT * FROM sales

Remember that a connection is always associated with an installed engine. Setting a connec-
tion as the current or default connection also sets the current or default engine.

72.2.
Multiple Connections to a Single Engine

Some engines permit two or more simultaneous connections. See the DBMS-specific Notes
in this document for information on your engine. Developers who wish to take advantage of
this feature on a valid engines should declare a named connection for each session on the
engine.

dbms ENGINE sybase
dbms DECLARE sl CONNECTION FOR \

USER :uname PASSWORD :pword SERVER birch
dbms DECLARE s2 CONNECTION FOR \

USER :uname PASSWORD :pword SERVER maple
dbms CONNECTION sl

If this is the second or later connection on the engine, and the engine supports multiple con-
nections, the support routine opens the additional connection and JAM/DBi keeps a count
of the number of active connections for the engine. If the engine does not support multiple
connections or the connection name is not unique, JAM/DBi returns the emor
DM_ALREADY_ ON.

The application may close all connections by executing oeMs cLOSE connEcTION for each
declared connection or it may close all conniections on an enginc or all engines by executing

dbms [WITH ENGINE engine] CLOSE_ALL_CONNECTIONS '

56 JAM/DB: Release 5 May 92

Access and Execution: Using Cursors

7.3.
USING CURSORS

A cursor is a SQL object associated with a specific query or operation. JAM/DB:i stores
information on each cursor. This includes,

= the cursor’s name
= the cursor’s connection

» any cursor attributes assigned with the commands peMs aLIAs, DBMS
CATQUERY, DBMS FORMAT, DBMS OCCUR, DBMS START, DBMS STORE, and
DBMS UNIQUE

= otheroperation-specific information (e.g., the number of rows to fetch, in-
formation on target variables or binding parameters, etc.)

Cursors are not JAM variables, and they do not follow the scoping rules of JAM variables.
When a cursor is declared, JAM/DBi creates a structure for it and adds its name to a list of
open cursors. The cursor is available throughout the application until the application closes
the cursor or closes the cursor’s connection. JAM/DB; frees the structure when the cursor
is closed.

Every connection has one or two default cursors which JAM/DB;i automatically creates. An
application may also declare named cursors on a connection. A JAM/DB: application may
use cither or both of these types of cursors.

The default cursors are convenient for SQL statements that are executed once, and for appli-
cations using only one seLECT set at a time. All database commands executed with the JPL
command sql or the library function dm_sql use default cursors.

Named cursors are convenient for SQL statements that are executed several times. A cursor
is declared for a statement; executing the cursor executes the statement. Named cursors of-
ten improve an application’s efficiency because the same statement does not need parsing
each time it is executed. Named cursors are also necessary for applications using more than
one SELECT set at a time,

The rest of this section describes the use of cursors in an application. Please note that the

discussion of how data is passed between an application and a database is not covered here
but in Chapters 8. and 9.

7.3.1.
Using the Default Cursor

For most engines, JAM/DB: automatically declares two default cursors—one for sELECT
statements and one for non-seLECT statements such as uppaTE. In a few cases, the engine's

May 92 JAM/DBi Release 5 57

Il. Developer's Guide

standard is a single default cursor and JAM/DBi will declare one default cursor. On such
engines, an additional option, cursoRrs, is supported in the engine’s DECLARE connection
statcment. It permits the developer to choose between one or two default cursors for the con-
nection. See the DBMS-specific Noles in this document (or more information.

A dcfault seLECT cursor is associated with a particular connection, namely the connection in
effcct when a seLECT statement is executed. For example,

dbms CONNECTION c2
dbms WITH CONNECTION cl \

SELECT code, region FROM sales WHERE sales > 999.99
sql UPDATE sales SET code = :+code WHERE region = :+new

The first statement sets the decfault connection. The second statcment uses WITH
CONNECTION 10 set c1 as the currcnt connection for the seLecT statement. In the last state-
ment, no connection is specified for the uppate statement. Therefore, JAM/DB: uses the
default connection c2.

7.3.2.
Using a Named Cursor

A developer may create one or more named cursors to access and manipulate data. The se-
quence is the following:

» Declare one or more named cursors.
= Execute cursor(s).
» Close cursor(s).

Declaring a Cursor

Named cursors are created with a declaration statement. The statement names the cursor and
associates it with a connection and a SQL statement. If a connection is not named in the
declaration, JAM/DBi uses the default connection.

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \
FOR SQLstmt

For example,

dbms DECLARE customer_cur CURSOR FOR \
SELECT * FROM directory WHERE lname = :+lname

This statement is a declaration statement. JAM/DBi does not pass the query to the DBMS.
Instcad it parses the query, performing any specified colon expansion. Colon expansion is
not repeated when the cursor is executed.

58 JAM/DB: Release 5 May 92

Access and Execution: Using Cursors

Executing a Cursor

Once a cursor has been created, the statement
dbms WITH CURSOR cursor_name EXECUTE

executes the SQL statement associated with eursor_name. For the examples used above,
the statement

dbms WITH CURSOR customer_ cur EXECUTE

executes the SQL statement SELECT * FROM directory WHERE lname =
value of Iname when cursor was declared. If qualifying rows are found, the database will
return them now to JAM/DB:.

If the SQL statement is a seLECT statement that retrieves more rows than will fit on the
screen, the statement

dbms WITH CURSOR cursor_name CONTINUE

continues the previous ExecuTe for cursor_name by fetching the next screenful of records
from the seLECT set.

Executing a Cursor with Parameters
Parameters may be passed with the statement pBMs ExecuTE. The syntax is the following:

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \
FOR SQL statement
dbms [WITH] CURSOR cursor EXECUTE USING var! (, var2...]

There is a one-to-one mapping between parameters in SQL statement and the var values
in the usine statement. In a DECLARE CURSOR Stalement for any engine, JAM/DB inter-
prets : : parameter as a binding parameter. For example,

dbms WITH CONNECTION cl DECLARE x_cursor CURSOR \
FOR SELECT * FROM sales WHERE cost = ::parm
dbms WITH CURSOR x_cursor EXECUTE USING newcost

Note that the use of parameters is different than the use of colon preprocessing when declar-
ing a cursor. When the colon preprocessor is used, column values are supplied when the cur-
sor is declared. To use different values, the cursor must be redeclared before it is executed.
When binding is used, the application supplies column values each time it executes the cur-
SO.

If an engine uses another syntax for binding parameters, JAM/DB; will also support it.
This topic is covered in detail in Section 8.2.

May 92 JAM/DB: Release 5 59

1. Developer's Guide

Note to Developers Using Multiple Connections

Note that the command peus ExEcUTE does not permit the wITH CONNECTION clause. The
cursor remains associated with the connection specified by name or by default in the
DECLARE statement. For example,

dbms CONNECTION sybcon

dbms DECLARE curl CURSOR FOR SELECT * FROM books
dbms CONNECTION oracon

dbms WITH CURSOR curl EXECUTE

sql UPDATE

When cursor curl is declared JAM/DBi associates it with the default connection
sybconl. Although the default connection is changed to oracon before the cursor is ex-
ecuted, the conncction associated with curl does not change. When the cursor is executed,
the JAM/DB; performs the seLECT on connection sybcon. The default connection
oracon performs the subsequent UPDATE.

Modifying or Closing a Cursor

A cursor may be redeclared for another SQL statement. For example,

DBMS DECLARE abc CURSOR FOR \
SELECT order_id, total FROM newsales \
WHERE total > :+cost

DBMS WITH CURSOR abc EXECUTE

DBMS DECLARE abc CURSOR FOR \
SELECT * FROM directory WHERE dept = ’'Sales’
DBMS WITH CURSOR abc EXECUTE

JAM/DB; provides several commands for changing the default behavior for a cursor asso-
ciated with a seLecT statement. The commands are pBMS ALIAS,DBMS CATQUERY with DBMs
FORMAT, DBMS OCCUR, and pBMs sTART. They are discussed in Chapter 9. Here we note that
these settings are not lost when a cursor is redeclared, but only when the cursor is closed.

To close a cursor and free its data structure, execute the following
dbms CLOSE CURSOR cursor_name

60 JAM/DBi Release 5§ May 92

Data Flow from JAM

Chapter 8.
Data Flow from JAM

This chapter discusses how JAM/DB; passes data from an application to a database. The
topics are the following:

s Colon preprocessing: using the colon preprocessor to put JAM values
into SQL statements. Its forms are :variable and :+variable.

» Parameters: binding values to SQL parameters when executing a named
cursor. Their form is ::variable.

May 92 JAM/DBi Release 5 61

Il. Developer's Guide

8.1.
COLON PREPROCESSING

JAM supports two types of colon preprocessing,
" var Standard colon preprocessing, and
= *var Re-expanded colon preprocessing.

Both methods are described in the JPL Guide in Volume II of JAM. One or more colon vari-
ables may appear almost anywhere in a sql or dbms statement. There are two exceptions.

The first word in the statement may not be colon-expanded. Therefore, the statements

:verb SELECT * FROM students
:command EXECUTE cursorl

are both illegal. JPL. must know the command word to perform syntax checking and compi-
lation before executing a JPL statement,

Colon cxpansion is not permitted in the wITH ENGINE or the WITH CONNECTION clause.
Therefore,

dbms :eng_str DECLARE cl CONNECTION FOR USER :uname
sql WITH CONNECTION :cname SELECT * FROM students

are also both illegal. JPL must know which engine or connection is in use before performing
any colon processing,

In addition to the standard forms, JAM/DB; supports special forms of colon pre-processing
for values sent to a database. The forms are

s :+var Database colon preprocessing for column values (colon-plus)

s :=var Database colon preprocessing for operator and column values
(colon-equal)

These forms of colon preprocessing replace a variable with its value and format it in a style
that is appropriate for a column value in an INSERT statement, an UPDATE Statement, or a
wHERE clause. They are described below.

8.1.1.
Colon-plus Processing

Before colon preprocessing a statement, JPL determines which engine to use. If executing
a sql or dbms statement, the JPL parser examines the statement for awits ENGINE clause.

62 JAM/DB: Release 5 May 92

Data Flow from JAM: Colon Preprocessing

If it finds the clause, it uses the specified engine. If it finds a wITH conNEcTION clause, it
uses the connection’s enginc. If neither clause is used, JPL uses the engine of the default
conncection. In other JPL statements, such as cat, JPL always uses the engine of the default

connection. Note that colon-plus processing is not necessary in statements using the WITH

cursor clause. The only wiTH cursor statement that uses column values is DBMS EXECUTE

and this statement uses binding, not colon-plus processing, to supply column values.

For each : +variable used in the JPL statement, the following steps are performed:

1.

May 92

The standard colon preprocessor replaces the variable : +varfable with
the value of variable.

The colon-plus processor examines the source. If variable has a null edit
and its value is the null edit’s string, the colon-plus processor replaces the
value with the engine’s null value. If it does not have a null edit, or does
not contain the null edit string, the processor determines the variable’s
JAM type. The term JAM type refers to a classification of JAM field
characteristics used by the library function sm_£type, the colon-plus
processor, and JAM/DB: routines for binding. The JAM types are

® DT_CURRENCY
« DT DATETIME
= DT_YESNO

" FT_CHAR

= FT_DOUBLE

s FT_FLOAT

= FT_INT

» FT_LONG

= FT_PACKED

" FT_SHORT

= FT_UNSIGNED
» FT_VARCHAR
s FT_ZONED

If the JAM type is DT_DATETIME, FT_CHAR, or FT_VARCHAR the
processor formats the value according to engine-specific rules, usually
enclosing the string in quote characters. For the other format types, the
processor calls a function to strip amount editing characters, such as dol-
lar signs, from the value. Finally, the new value is returned to the JPL
statement.

JAM/DBi Release 5

63

Il. Developer's Guide

The steps are described in full below.

Step 1. Perform Standard Colon Preprocessing

JAM will scarch for variable in the following places
= JPL variables local to the procedure that JPL is executing

a JPL variables local 1o the module containing the procedure that JPL is ex-
ecuting

= fields on the current screen
s LDB variables?

When it finds the variable, it copies its value to an internal work buffer. Any formatting is
performed on this copy. The variable’s contents remained unchanged.

For more information on variables and scope, see the JPL Guide.

Step 2. Determine the Variable’s JAM Type

If the variable is a field or LDB entry that has a null edit, and the value of the variable equals
this null edit string, the processor replaces the value with the engine’s null string. On most
engines, it is the string NULL. For example, if field named address had a null field edit,
the Screen Editor window could appear as the following:

enter null indicator string
*

replicated?y

Figure 21: Null field edit window in JAM Screen Editor.

If the user or program does not enter text in the field named address, the field is null and
JAM will display the string, *** % * * x a5 the field contents. JAM/DBi would convert the
string ******* {9 NULL (i.e., the value of the engine’s null string) before passing it to a
DBMS.

If the variable does not have a null edit, or its value does not equal its null edit string, the
processor calls a routine to examine field characteristics and determine the variable's JAM

type.

3. Notethat when JAM is execuling a screenentry function, JAM by defauli will search for variableinthe LDB
before searching the current screen.

64 JAM/DBi Release 5 May 92

Data Flow from JAM: Colon Preprocessing

A field or LDB variable has exactly one JAM type. Since a variable may have more than
one of the qualifying PF4 characteristics, JAM uses some precedence rules when assigning
the JAM type.

Field Summary

AANAANAAAN

Name Zfield for colon_plus Char Edits unfilt
Lengthzg- (Max) Onscreen Elems 1 pistance unfile

digit
yes/no

Display Att: WHITE UNDLN HILIGHT
letters

Field Edits:
Other Edits: TYPE USR~DT/TM SYS-DT/TM CURRENCY

numeric
alphanum
reg exp

1 2 3
Summary | Setting of Field Characteristic
Keyword (PF4 menu in draw mode) Submenu Option JAM Type
TYPE type char string FT_CHAR
(C types for structures) int FT_INT
unsigned int FT_UNSIGNED
short int FT_SHORT
long int FT_LONG
float FT_FLOAT
double FT_DOUBLE
zoned dec. FT_ZONED
packed dec. FT_PACKED
USR-DT/TM | misc. edits date or time DT_DATETIME
SYS-DT/TM
-|CURRENCY | misc. edits currency DT_CURRENCY
Char Editﬁ char edits digits only FT_UNSIGNED
yes/no field DT_YESNO
numeric FT_DOUBLE

Figure 22: Field Summary Screen (PF5 in draw mode). Use the summary screen to de-
termine a field's JAM type. A TYPE edit has the highest priority, then a date time edit,
then a currency edit, and tinally a character edit. A variable with any other edits has the

JAM type FT_CHAR.

C record types are assigned with the t ype option on the PF4 key menu. For clarity, we call
these types C types. To assist developers using utilities such as £2st ruct, JAM automati-
cally assigns a default C type to each field. Developers may also explicitly set a C type.
JAM/DBi ignores C types assigned by default; it only uses those assigned explicitly by a

May 92 JAM/DB: Release § 65

. Developer's Guide

developer. The field summary screen is an casy way of checking whether or not JAM/DB;
will use the variable’s C type. If the word TYPE is shown on the Other Edits line of the
field summary window, and the type is not omit, JAM/DB;i will use it to assign a JAM
type.

Otherwise, JAM examincs the miscellaneous edits; a date-time or currency edit will pro-
vide a JAM type. If the variable does not have a date-time or currency edit, JAM examines
the variable’s PF4 char edits. An edit of digits only, yes/no field, or
numeric will provide a JAM type. For all other ficld and LDB variables, and for all JPL
variables, JAM assigns FT_CHAR as the JAM type.

Beware of C type edits that may conflict with other edits. For example, if a field had a type
editint andadate-time edit,its JAM type would be FT_INT. The Screen Manag-
er would enforce the date-time format for user entry but JAM/DB; would not convert the
date-time string into a format the engine would recognize.

Note: developers may also use sm_ftype to determine a variable’s JAM type. The assign-
ments are the same as those in the table above, except for JPL variables. The library function
sm_ftype returns 0, not FT_CHAR, for JPL variables.

Step 3. Format a Non-null Value

Once JAM/DB: determines a variable’s JAM type, it uses the classification to perform any
necessary formatting and returns the formatted text to JPL.

DT _DATETIME Variable

If JAM type is DT_DATET IME, the processor calls the support routine to format the text in
the engine’s default syntax for dates. Some support routines store a JAM date-time format
string in the style of the engine. When formatting a field value, it may simply pass the for-
mat string and value to JAM’s date-time routines to reformat the string, Other support rou-
Line may call a conversion function from the DBMS library to perform the task.

Of course, the actual result is dependent on the engine. For example, if the value in a date-
time field is December 31, 1999 3:05 PM and the current engine is using the ORACLE sup-
port routine, JAM/DB; formats the date as

TO_DATE(’ 31121999 150500’, ’'ddmmyyyy hh24miss’)
If the engine is using the SYBASE support routine, however, JAM/DBi formats the date as
‘Dec 31,1999 3:5:0:000PM’

Some engines support more than one datatype for date-time columns. Please see the engine-
specific Notes.

66 JAM/DBi Release 5 May 92

Data Flow from JAM: Colon Preprocessing

FT_CHAR Variables

If JAM type is FT_CHAR, the processor checks if the engine uses quote and escape charac-
ters. By default, an engine uses a single quote for quote_char, and a single quote for
escape_char.

The processor first determines the size of the formatted text by adding the length of the un-
formatted text, the number of embedded quote_char’s in the text, and 2 (for the enclos-
ing quote characters). If it cannot allocate a buffer large cnough for the text, the processor
returns the SM_MALLOC error. If the allocation is successful, the processor writes the for-
matted text to the buffer. [t puts a quote_char at the first position in the buffer and, as it
copies each character from the source string to the buffer, it compares the character with
quote_char. If the character equals quote_char the processor puts an
escape_char before the embedded quote_char. A final enclosing quote_char is
put at the end of the text.

For example, JAM/DB: would format the field value
Ms. Penelope O’Brien
to
'Ms. Penelope O’ ’Brien’
JAM/DBi would format the field value
Reported record sales for ”“The Novice’s Guide to PC’s”
1o
‘Reported record sales for “The Novice’’s Guide to PC’’'s”
A few engines do not support both single and double quotes within a character string. For
engine-specific information, please see the Notes section in this document.
FT_ numeric and DT_CURRENCY Variables

For the remaining JAM types, the processor calls the JAM function
sm_strip amt_ptr 1o strip editing characters from the numerical string. The function
strips all non-digit characters except for an optional leading negative sign and a decimal
point. See the JAM Programmer’s Guide for more informationon sm_strip_amt_ptr.
The colon preprocessor does not use precision edits when formatting numeric values.

For example, JAM/DB; would format
$500,000.00

as
500000.00

May 92 JAM/DB: Release 5 67

lI. Developer's Guide

JAM/DBi would format
(-89.003)

as
-89.003

It would format
001-02~-0003

as
001020003

If you wish 1o preserve embedded punctuation in numeric fields, set the ficld’s C type to
char.

Sec the engine-specific Notes for additional information.

8.1.2.
Colon-equal Processing

To specify a NULL value in a search criteria, most engines require the syntax
SELECT column_list FROM table WHERE column IS NULL

To permit endusers to select rows where a column value is either known or unknown (i.e.,
NULL), use the colon-equal processor. For example,

sql SELECT * FROM emp WHERE zip :=zip

If zip is a character field with the null edit

enter null indicator string
0

replicated?y

Figure 23: Null field edit window in JAM Screen Editor.

JAM/DBi would format the value
10038

68 JAM/DBi Release 5 May 92

Data Flow from JAM: Colon Preprocessing

as
= r10038'
thus executing
SELECT * FROM emp WHERE zip = ‘10038’
It would format the ficld’s “null” valuc
00000
as
IS NULL
thus executing
SELECT * FROM emp WHERE zip IS NULL

8.1.3.
Examples

A Field with Default Characteristics

If the current screen has a ficld named 1ast with no field, miscellaneous or type edits, and
acharacter edit unfilt, its field summary screen would appear as

Field Summary
ANANAAANNAN
Name last Char Edits Unfilt
Length.gl (Max) Onscreen Elems 1 _ Distance (Max Occurs)
Display Att: WHITE UNDLN HILIGHT

Field Edits:
Other Edits:

Figure 24: Field Summary Screen. With these edits, JAM type = FT_CHAR.

Since the field does not have any of the field characteristics listed in Figure 22 on page 65,
JAM type =FT_CHAR. If the field 1ast contained the text D’ Angelo when the follow-
ing were executed,

sql SELECT * FROM employee WHERE last = :+last

May 92 JAM/DB: Release 5 69

II. Developer's Guide

JAM/DBi would pass the query
SELECT * FROM employee WHERE last = ‘D’’Angelo’

If the field Last were empty, JAM/DB; would pass the empty string, not the nutll string,
SELECT * FROM employee WHERE last = '’

Null conversion is performed only on variables with a null field edit.

A Variable with a Date-time Edit and a Null Edit

If the current screen contains a field hiredate with a null field edit string 00/00/00,a
date-time edit MON2 /DATE2 /YR2 for a user-specified date, and character editof digits
only, ils summary screen would appear as

Field Summary

AAAAAAAN

Name hiredate Char Edits Sigit
Lengthe_ (Max) Onscreen Elems 1l_ pistance (Max Occurs)

Display Att: WHITE UNDLN HILIGHT
Field Edits:
Other Edits: USR-DT/TM NULL

Figure 25: Field Summary Screen. For this field, JAM type = DT_DATETIME.

Assume that back slash characters are saved with the field as embedded punctuation. Since
a date-time edit has a higher precedence than a character edit, the JAM type for this field is
DT_DATETIME. If the user entercd the date 12/31/91 and executed the following func-
tion,

sql WITH CONNECTION oracle_conn \
INSERT INTO employee (last, hiredate) \
VALUES (:+last, :+hiredate)

and the engine, for example, were ORACLE, JAM/DB: would pass the statement

INSERT INTO employee (last, hiredate) VALUES \
('D’'Angelo’, \
TO_DATE (/31121991 000000’, ’‘ddmmyyyy hh24miss’))

1o the cngine.

If the user did not change the text in the field hiredate, so that its contents were
00/00/00, JAM/DBi would pass the statement

70 JAM/DB: Release 5 May 92

Data Flow from JAM: Colon Preprocessing

INSERT INTO employee (last, hiredate) \
VALUES (’D’’Angelo’, NULL)

to the engine.

A Variable with a Digits Only Character Edit and a
C-Type char string Edit

Very often it is uscful to use the digits only character edit on fields that accept values
such as a social security number, zip code, or telephone number. If this is the only edit on the
field, the colon-plus processor will format the field's value as an unsigned integer, removing
embedded punctuation and leading zeros. However, if the developer resets the C-type edit to
char string, the colon-plus processor will format the field’s contents as a character
string, preserving embedded punctuation and leading zeros.

If the current screen contains a field zip_code with a character edit of digits only
anda Ctypeof char string, its summary screen would appear as

Field Summary

AAANANAAA

Name Zip _code Char Edits digit
Length5_ (Max) Onscreen Elems 1l __ Distance (Max Occurs)

Display Att: WHITE UNDLN HILIGHT
Field Edits:
Other Edits: TYPE

Figure 26: Field Summary Screen. For this field, JAM type is set according to
the value of TYPE. If TYPE is “char string” JAM type = FT_CHAR.

For example, if a user entered 00912 in the field zip_code and executed the following
function,

sql SELECT * FROM marketing WHERE zip = :+zip_ code
JAM/DBi would pass the query

SELECT * FROM marketing WHERE zip = 00912’
to the DBMS.

Note that if the developer assigned digit only to the field, but did not reset the C type,
JAM/DBi would pass the query

SELECT * FROM marketing WHERE zip = 912

May 92 JAM/DB: Release 5 71

Il. Developer's Guide

8.2.
USING PARAMETERS IN A CURSOR
DECLARATION

Some engines permit parameters in the SQL statement of a cursor declaration statement.
Therefore, they permit one or more values to be supplied when the cursor is executed. On
those engines that do not support binding (e.g., Progress and SYBASE) JAM/DBi internal-
ly supports cursors with parameters.

When JAM/DBi executes a DECLARE CURSOR Statement, it scans the statement for parame-
ters. For all engincs, JAM/DBI recognizes

: : parameter

to be a parameter.* If JAM/DBi finds a parameter, it sets up a data structure for it. It will
attempt to find a value for the parameter when the cursor is executed. Parameters may be
used to supply column values for any sELECT, INSERT, UPDATE, Of DELETE statement. For
example,

dbms DECLARE a_cursor CURSOR FOR \
SELECT * FROM emp WHERE last = ::xyz

dbms DECLARE b_cursor CURSOR FOR \
INSERT INTO acc VALUES (::ss, ::sal, ::exmp)

dbms DECLARE c¢_cursor CURSOR FOR \
UPDATE emp SET street=::street, city=::city, \
st=::st, zip=::zip WHERE ss=::ss

dbms DECLARE d_cursor CURSOR FOR \
DELETE newsales WHERE custid=::id

The binding data structures are stored with an individual cursor. Therefore, the application
should give a unique name to each parameter belonging to a single cursor. A cursor cannot
have two parameters with the same name.

4. Many vendorsuse a single colontobegin a parameter name. Since this form conflicts with the colon prepro-
cessor, two colons must be used in JPL. The second colon prevents the colon processor from performing variable
substitution. Some vendors, such as INFORMIX, use a single question mark to represent a parameter. JAM/DBi
also recognizes these engine-specific forms.

72 JAM/DBi Release 5 May 92

Data Flow from JAM: Parameters

A value for a parameter is supplied in the us1nG clause of an EXECUTE statement,
dbms WITH CURSOR cursor EXECUTE USING arg [, arg...]

JAM/DBi looks for the keyword us1ng before passing the cursor’s query to the DBMS. If
it finds the keyword, it assumes the arguments which follow are parameter values. If an arg
is not quoted, JAM/DBi assumes it is a variable and performs variable substitution and for-
matting. Values and parameters may be bound by position. For example,

dbms DECLARE b_cursor CURSOR FOR \
INSERT INTO acc VALUES (::pl, ::p2, ::p3)
dbms WITH CURSOR b_cursor EXECUTE USING ss, sal, exmp
Values and parameters may also be bound explicitly by name,
dbms DECLARE b_cursor CURSOR FOR \
INSERT INTO acc VALUES (::pl, ::p2, ::p3)
dbms WITH CURSOR b_cursor EXECUTE \
USING p3=exmp, pl=ss, p2=sal

Note that p3, pl, and p2 are not JAM variables but exmp, ss, and sal are. JAM/DB|
uses the values of exmp, ss,and sal to execute the 1nserT. To supply a literal value to the
INSERT, put the value in quotes,

dbms WITH CURSOR b_cursor EXECUTE \
USING p1=35, p2=sal’ p3=no"

JAM/DB: formats binding values in a method similar to the colon-plus processor. This is
discussed in detail in the next section.

On those engines that support parameters, using them often improves the efficiency of the
application, especially when a query is executed several times. On engines where JAM/DBi
simulates support, such as SYBASE, the use of parameters will be less efficient. However,
the convenience and the greater ease of portability may compensate for the additional pro-
cessing.

8.2.1.
Parameter Substitution and Formatting

An arg in a us1nG clause may be either
s aquoted string, or
= a JAM variable

May 92 JAM/DBi Release 5 73

II. Developer's Guide

Colon-plus processing is not necessary because JAM/DB: automatically formats the value
of parameter variables. If the variable is an array name, an occurrence number may be given.
If no occurrence is given, JAM/DBi concatenates all the non-empty occurrences in the
array, separating the occurrences with a single space. Substrings are not permitted.

For each cursor, JAM/DB: maintains binding information. When a cursor’s statement uses
paramelers, JAM/DB! stores the names of the parameters. When a cursor is executed,
JAM/DBIi compares the values in the pBMs EXECUTE statement with the binding informa-
tion from the cursor’s declaration. This permits both positional and explicit binding.

JAM/DBi uses a data structure to store the formatted text and JAM type of arg. If arg is not
quoted, JAM/DB: assumes it is a variable and calls sm_ftype to determine the variable’s
ftype code and flags. Like the colon-plus processor, the binding routine distinguishes be-
tween empty and null variables; a variable is null if it has a null edit and contains the null
edit string,.

If ftype=DT_DATETIME, JAM/DB; calls the support routine to convert the value to a
binary date-time value. See the discussion of bT_paTeTIME On page 66 for more informa-
tion.

No processing is done on the values of FT_CHAR variables or quoted strings.

For all other types, JAM/DB! strips characters other than digits, the decimal point, and a
leading negative sign from the value.

Below are some examples showing the different formats for arg in a us1nG clause.

dbms DECLARE x CURSOR FOR \
SELECT * FROM emp WHERE name=::pl or ss=:p2

newname and ss_number are LDB variables
dbms WITH CURSOR x EXECUTE \
USING pl=newname, p2=ss_number

code is a JPL variable containing the text ”ss_number”
and ss_number is a field on the current screen
dbms WITH CURSOR x EXECUTE USING pl=’Jones’, p2=:code

name and ss_number are field arrays. i is a JPL variable

dbms WITH CURSOR x EXECUTE \
USING pl=name[i], p2=ss_number[i}]

Examples

If the current screen contained a field named t ot al with a currency edit and character edit
of numeric its summary screen would appear as

74 JAM/DB: Release 5 May 92

Data Flow from JAM: Parameters

Field Summary
ANNANAANAN

Name kotal Char Edits fumeric
Length.:!-_s_. (Max) Onscreen Elems 1 _ Distance {Max Occurs)

Display Att: WHITE UNDLN HILIGHT
Field Edits:
Other Edits: CURRENCY

Figure 27: Field Summary Screen. For this field, ftype = DT_CURRENCY.

If the user entered the total $9, 499. 99 and executed the following statements:
dbms DECLARE sales_cursor CURSOR FOR \
SELECT * FROM orders WHERE total > ::x
<.il->r.ns WITH CURSOR sales_cursor EXECUTE USING x=total
the DBMS would execute
SELECT * FROM orders WHERE total > 9499.99

If the current screen contained a field named description withanull field edit

and a word wrap edit, its summary screen would appear as

Field Summary

AAAAAAAN

Name description . Char Edits unfilt

Length.3i (Max) Onscreen Elems 5 __ Distance (Max OccurslO)

Display Att: WHITE UNDLN HILIGHT
Field Edits: WDWRP
Other Edits: NULL

Figure 28: Field Summary Screen. With these edits, ftype = FT_CHAR.

If the user executed the following statements:

dbms DECLARE ins_cursor CURSOR FOR \
INSERT INTO products (description) VALUES (::pl)

dbms WITH CURSOR ins_cursor EXECUTE USING description

May 92 JAM/DB: Release 5

75

Il. Developer's Guide

when the word wrapped array were cmpty, the DBMS would execute
INSERT INTO products (description) VALUES ('’)

If, however, the array contained text, JAM/DBi would concatenate the non-empty occur-
rences into one long string which the DBMS would insert into the column description.

76 JAM/DB: Release 5 May 92

Data Flow from a Database

Chapter 9.
Data Flow from a Database

A JAM/DB: application receives two types of information from a database:
s datarequested by a seLECT statement
= acount of the rows fetched for a seLECT statement
= error and status codes from an engine and from JAM/DBi

The rest of the chapter discusses how this information flows from one or more databases to
variables in a JAM application. The first part discusses the destination and format of data
returned by seLECT statements. The second part discusses the global JAM/DB; variables for
status and error data.

In addition to the two types of information described above, an application may also receive
data as the result of executing a stored procedure. Since all engines do not support stored
procedures, and the syntax of commands varies among those that do, the topic is covered in
the Notes section of this document.

May 92 JAM/DBi Release 5 77

Developer's Guide

9.1,
DATA FETCHED BY seLECT

When a seLECT statement is passed to an engine, JAM/DBi performs several steps before
transferring data to JAM variables.

1. JAM/DBi: counts the number of columns in the query and records infor-
mation on each column’s name, length, and type. Type is
DT_DATETIME, FT_INT,or FT_CHAR.

2. Foreach column, it searches for a JAM variable destination. If a destina-
tion exists, JAM/DB: records the length of the variable. If no JAM desti-
nation exists for a column, or the destination is an LDB constant, JAM/
DBi does no fetches for the column. The discussion of JAM destinations
is in Section 9.1.1. on page 78.

3. Itdetermines the number of rows to feich. This number usually equals the
number of occurrences in the smallest JAM destination variable, or O if
there are no target variables. See Section 9.1.2. on page 83.

4. Finally, JAM/DBi formats data before writing it to the destination vari-
ables if the database column has a date datatype, or if the destination vari-
able has a null, currency, or precision edit. See Section 9.1.3. on page 89.

The sequence above describes a seLEcT that writes database column values to individual
occurrences of a field, JPL variable, or LDB variable. Developers may also direct the results
of a seLECT 10 two other types of targets. See Section 9.1.4. on page 92 for more informa-
tion.

9.1.1.
JAM Targets for a serecT

For an application to retrieve data from a database, there must be an unambiguous mapping
between a selected database column and its JAM destination. There are two ways of asso-
ciating JAM targets with database columns.

w The developer gives a JAM target variable the same name as a database
column. This is called automatic mapping.

= The developer explicitly declares a JAM variable as the target of a data-
base column. This is called aliasing.

78 JAM/DBi Release 5 May 92

Data Flow from a Database: Targets of a SELECT

Automatic Mapping

By default when executing a seLecT statement, JAM/DB: will search for JAM variables
with the same names as the specified columns. For the statement,

sql SELECT lastname, ssnumber, dept, date FROM emp

1o return values to JAM variables, the table emp must have at least four columns:
lastname, ssnumber, dept, and date. If any of these columns does not exist in the
table emp, the engine returns an crror.

The application may have a JAM destination variable for none, some, or every named col-
umn in the seLecT statement. To return the values of all four columns to the application,
then there must be a JAM variable for each column. The variables may be named
lastname, ssnumber, dept, and date. If one of these fields does not exist, JAM/
DBi ignores the values belonging to that particular column.

Developers may also use one or more qualified column names in seLEcT statements. For
example,

sql SELECT emp.lastname, emp.ssnumber, emp.dept, \
emp.date FROM emp

The JAM targets, however, must be given unqualified names: lastname, ssnumber,
dept,and date.

JAM/DB; also permits the use of the shortcut SELECT statement,
sql SELECT * FROM emp

Using automatic mapping, JAM/DB; looks for a JAM variable for each column in the table
emp. Columns without matching variables are simply ignored. This is not treated as an er-
TOL.

When using automatic mapping, the case of the JAM variable names should correspond to
the case flag used in the engine initialization in dbiinit. c. If the engine’s case flag is
DM_FORCE_TO_LOWER_CASE, the JAM variables for a seLEcT should have lower case
names. If the case flag isDM_FORCE_TO_UPPER_CASE, the JAM variables should have
upper case names. If the case flag isDM_PRESERVE_CASE, the JAM variables should use
the exact case of the database columns.

Aliasing

Aliasing is used when automatic mapping is inconvenient or impossible to use. In particular,
aliasing is necessary when selccting any of the following:

» acolumn whose name is not a legal JAM variable name

May 92 JAM/DBi Release 5 79

Developer's Guide

s a column whose name conflicts with other JAM variable names in the
application

s acomputed column or an aggregate function (COUNT, SUM, AVG, MAX, MIN)

Aliasing is not limited to these conditions. Any or all columns may be aliased if desired.
Occasionally, developers like to alias a column if its name is not descriptive or because they
wish 10 name target variables for a particular table and column.

Developers use the command beMs aLIas to specify aliases. On some engines, developers
may also use the engine’s sELECT syntax to specify aliases.

Using pBMs ALIAS

DBMS ALIAS iS associated with a sELECT cursor, either a named cursor or the default seLEcT
cursor. If a cursor is not named, the aliases affect all sELEcT’s executed with the default cur-
sor. The syntax for assigning aliases to a cursor is either of the following:

dbms [WITH CURSOR cursor] ALIAS columnl jam_vari \
[, column2 jam var2 ...)

to alias a column name to a JAM variable, or

dbms [WITH CURSOR cursor] ALIAS [jam_var1] \
(, [jam_var2] ...]

to alias a column position to a JAM variable. Either named or positional aliasing may be
used, but both forms may not be used in a single statement.

To turn off aliasing, execute pBMs ALIAs without any arguments. Again, if a cursor name is
given, aliasing is turned off on the named cursor. If no cursor name is given, aliasing is
turned off on the default cursor.

The case of the column names in the bBMs ALIAs statement should correspond to the case
flag used in the engine initialization in dbiinit.c. If the engine’s case flag is
DM_FORCE_TO_LOWER_CASE, the column names should be in lower case. If the case
flagisDM_FORCE_TO_UPPER_CASE, the column names should be upper case. If the case
flag isDM_PRESERVE_CASE, the column names should use the exact case of the database
columns. The case of jam_var should always match the exact case of the JAM variable
name.

If an application aliases a column to a JAM variable that does not exist JAM/DB; ignores
the column’s values. This is NOT treated as an error.

Using oeMs aLias to Alias Column Names

First consider an example that aliases column names to JAM variables. For example,

80 JAM/DBi Release § May 92

Data Flow from a Database: Targets of a SELECT

dbms ALIAS first firstname, last lastname
sql SELECT ssn, last, first FROM emp

JAM/DB:i writes the values from the column first to the variable £irstname and it
writes the values of column 1ast to the variable Lastname. Since no alias was given for
ssn, it maps it to a variablc of thc same name. See the figure below.

Table emp:

first ssn

Arnold 001-23-9876
Lucinda 001-31-0058

dbms ALIAS aliases: T

last -> lastname first -> firstname

Field is
named lastname ' Field is
n named ssn

Fiel_d is
JAM Screen: eznamed firstname<gi:

Figure 29: The mapping of SELECT ssn, last, first FROM emp when
aliases are used.

Aliases may also be given after declaring a named cursor. For example,

dbms DECLARE sales_cursor CURSOR FCR \

SELECT inv#, sale_date, ship_date, amount FROM acc
dbms WITH CURSOR acc_cursor ALIAS “inv#” invoice_id
dbms WITH CURSOR acc_cursor EXECUTE

Since inv# is notalegal JAM variable name, the application must declare an alias for the
column if it is to receive the column’s value. Before executing the cursor, the application
aliases column inv# to variable invoice_id. The cursor keeps this alias until the appli-
cation turns it off with pBMs ALIAs or closes the cursor with pBMS cLoSE cursor. If a
column name is not a valid JAM identifier, enclose it in quote characters; this ensures that
JAM/DBi parses it correctly.

Using oems aL1as to Alias Column Posltions
Now consider an example that uses positional aliases. For example,

May 92 JAM/DB: Release 5 81

Developer's Guide

dbms ALIAS min_salary, max_salary, avg_salary
sql SELECT MIN(sal), MAX(sal), AVG(sal) FROM acc

JAM/DBi wriles the aggregate function values to the alias variables. MIN (sal) is written
to the variable min_salary, MAX (sal) is written to the variable max_salary, and
AVG (sal) iswritien to the variable avg_salary. Note that there is no automatic map-
ping available. If the application had not declared aliases, the values would not be written to
JAM variables.

Of course, the application should turn off the positional aliases when it is finished. If it does
not turn them off before executing the next seLect, JAM/DBi will attempt to write the first
three columns’ value to the three positional alias variables. If those variables are no longer
available, JAM/DB: will ignore the first three columns in the sELECT set.

Using the Engine’s seLecT Syntax

Many engines support aliasing in their seLECT syntax. In interactive mode, this permits the
user to specify for a view a column heading that is different than the database column name.
Typically, the syntax is

SELECT column1 headingt, column2 heading2...FROM table

In interactive mode, the values of column1 are placed under the heading heading1, and the
values of column2 are places under the heading heading2. Please note that in this syntax a
space separates a column from its alias, and a comma separates the column-alias set from
the next column or column-alias set. Some cngines may support another syntax. See your
database documentation for details.

If an cngine supports aliasing in a seLECT statement, JAM/DBi will also support it. Devel-
opers may follow the syntax of the engine, replacing heading with the name of the appro-
priate JAM variable.

For example, if the syntax shown above is supported by the engine, than the following could
be used in a JAM/DBi application,

sql SELECT id product_no, supplier, ucost price FROM inv

When this stalement is executed, the DBMS tells JAM/DBi that the columns
product_no, supplier, and ucost were selected. JAM/DB: will look for variables
with those names. If there is a variable id available, this sELEcT statement will not write to
it because the engine has aliased it to product_no.

Although this form is supported, we recommend the use of pBMs ALIAS, especially for
applications accessing more than one engine. JAM/DB; provides identical support for peus
aLIAs on all engines.

82 JAM/DBi Release 5 May 92

Data Flow from a Database: Number of Rows Fetched

9.1.2.
Number of Rows Fetched

A seLECT set often contains more than one row. JAM/DBi must determine how many rows
it may fetch at one time from a seLecT sct. The rest of the seLect is fetched by executing
one or more DBMS CONTINUE'S.

» If an occurrence number was specified with a target variable name, only
one row is fetched.

w Ifatarget is a word wrapped array, only one row is fetched.

= If using browse mode, only one row is fetched. (See the engine-specific
Notes).

Otherwise, JAM/DBi examines the number of occurrences in each of the targeted vari-
ables. Usually, all the target variables have the same number of occurrences. If this is true,
JAMY/DB: fetches a row for each occurrence. If the targets do not have the same number of
occurrences, JAM/DB; finds the target variable with the least number of occurrences and
fetches that number of rows. Be careful of LDB variables that are unintentional targets of a
seLEcT especially when using the wild card * in a seLECT or when executing a sELEcT ina
screen entry function.

For example, consider an application using the wild card,
sql SELECT * FROM table

The application has onscreen fields for some of the columns in the table. The LDB, howev-
er, contains an entry with the name of one of these unrepresented columns. If the onscreen
fields have 20 occurrences and the LDB cntry has 5 occurrences, the seLecT will fetch only
five rows at a time.

Also, consider an application that executes a SELECT in a screen entry function. By default,
JAM first searches the LDB and then the screen for JAM variables when executing screen
entry functions. Therefore, if a variable is represented both as an onscreen field and as an
LDB variable, a screen entry function will write to the LDB variable before the LDB merge
writes to the onscreen field. If the LDB variable and the field do not have the same number
of occurrences, data is lost or appears lost when the LDB merge updates the screen fields.

Scrolling Through a serecT Set

Most JAM/DB: developers must create applications capable of handling a fluctuating num-
ber of data rows. Based on the type of data selected and the hardware in use, a developer
may use either or both types of scrolling—JAM scrolling or JAM/DB; scrolling.

May 92 JAM/DB: Release 5 83

Developer's Guide

With JAM scrolling, the application uses large scrolling arrays as the destination variables
of a seLeCT statement. The entire seLEcT sel is fetched in a single step and the user presses
the page up and page down keys (logical keys SPGU and SPGD) to vicw the rows.

With JAM/DBi scrolling, the application uscs single-element fields or non-scrolling arrays
as the destination variables of a seLecT stalcment. The seLEcT set is fetched incrementally.
To permit the user to scroll backward and forward in the set, the application must set up
function keys to execute the JAM/DB; scrolling commands.

The two methods are described in detail below.

JAM-based Scrolling

JAM-based scrolling is useful for small to mid-sized seLEcT sets. The upper limit on the
number of rows is 9999, the maximum number of occurrcnces allowed for a JAM variable.
Since the application must keep the entire sELECT set in memory, the realistic limit may be
much lower on a platform like MS-DOS or for a seLEcT involving many columns,

With this approach, the developer creates large scrolling arrays with more occurrences than
the number of rows he or she expects to be in the seLecT set. When the seLecT is executed
at runtime, there is no penalty for unused occurrences; JAM allocates only whatever
memory is needed to hold the returned rows. Therefore, a JAM screen might contain vari-
ables each with 10 elements and 1000 occurrences. If a seLECT set contained only 75 rows
JAM would allocate memory for 75 occurrences in each of the variables; it would not allo-
cate memory for the 925 unused occurrences.

There are several ways of verifying that the arrays actually contained enough occurrences to
hold the entirc seLEcTset. Most often the application examines the value of the global vari-
able @dmretcode. JAM/DB: wriles a no-more-rows status code to this variable when the
engine signals that it has returned all requested rows. The value of this variable may be ex-
amined after a seLecT. Sec page 93 for more information on these variables. An example
procedure is shown below:

proc select_all
DM_NO_MORE_ROWS is an LDB constant.
sql SELECT inv_no, prod _no, prod_desc, quantity, \
unit_price, total FROM new_sales
if @dmretcode == DM_NO_MORE_ROWS
msg esmg “All rows returned.”
else
msg emsg “Application could not display all orderxs.”
return

This approach is very easy to use. Since all the rows are fetched at once, the application
makes only one request of the database server and it is free to use the default seLECT cursor
to make new selects.

84 JAM/DBi Release 5 May 92

Data Flow from a Database: Number of Rows Fetched

It is not the best method for large serect sets. If the application is too slow displaying the
data or is sluggish after thc rows have been fetched, the developer should consider JAM/
DBi-based scrolling or some other alternative scroll driver.

JAM/DBi-based Scrolling

JAM/DBi-based scrolling is uscful for mid-sized to large seLect sets. Neither JAM nor
JAM/DB: impose any limit on the number of rows that may be displayed with this method.

With this approach, developers crcate non-scrolling arrays. The target fields contain ele-
ments to display one or more rows on the screcn at time. At least two procedures are needed
to view the seLEcT set. The first procedure executes the seLEcT and fetches the first screen-
ful of rows. The second procedure cxecutes a beMs conTINUE to [etch the next screenful of
rows from the seLEcT set. The second procedure may be executed many times before the
user sees all the rows.

For example, the current screen has fields named for the columns in the table emp. Each
field has five elements. The application uses the procedures like the following to select data
from a table:

proc select_emp
sql SELECT * FROM emp
return

proc continue_select
dbms CONTINUE
return

as well as control strings like the following:

PF1 ~jpl select_emp
PF2 ~jpl continue_select

Assume that table emp contains 12 rows. When the user presses the PF1 key, the applica-
tion executes the JPL procedure select_emp and writes rows 1 through 5 to the screen.
If the user presses PF2, the application executes the procedure continue_select
which clears the arrays and writes rows 6 through 10 to the screen. If the user presses PF2
again, the application executes continue_select again which clears the arrays and
writesrows 11 and 12 to the screen. If the uscr presses PE 2 a third time, the application does
nothing because there are no more rows in the seLeCT set.

An application may simulate scrolling through a seLEcT set by using the following com-
mands:

5. In multi-user environments developers should know how the engine ensures read consistency: the guarantee
that data seen by a seLecT does not change during statement execution. The engine may be using rollback seg-
ments or shared locks to provide read consistency. Since a shared lock prevents other users from updating locked
rows, applications on these engincs should release the lock as soon as possible. Sce the engine-specific Notes for
more information.

May 92 JAM/DB: Release 5 85

Developer's Guide

s DBMS CONTINUE_UP to scroll up a screenful of rows
® DBMS CONTINUE_TOP to scroll to the first screenful of rows
= DBMS CONTINUE_BOTTOM 1o scroll to the last screenful of rows

Some engines have native support for these commands. For example, the engine may buffer
the rows in memory on the scrver. JAM/DB; also provides its own support for these com-
mands. Applications may usc pBMS STORE FILE to Setup a continuation file for a named or
default seLecT cursor. When it is used, JAM/DB: buffers seLecT rows in a temporary
binary file. The syntax of the command is

dbms [WITH CURSOR cursor] STORE FILE [file]

The command is supported on all engines. To select and view data, an application uses pro-
cedures like the following:

proc select_emp

dbms STORE FILE

sql SELECT * FROM emp
return

proc scroll_down
dbms CONTINUE
return

proc scroll up
dbms CONTINUE_UP
return

proc scroll top
dbms CONTINUE_TOP
return

proc scroll end
dbms CONTINUE_BOTTOM
return

as well as control strings like the following:

PF1 ~jpl select_emp
PF2 ~jpl scroll_down
PF3 ~jpl scroll_up
PF4 ~jpl scroll top
PF5 ~jpl scroll _end

Using the same number of rows and occurrences as earlier, when the user presses the PF1
key, the application exccutes the JPL procedure select emp and writes rows 1 through

86 JAM/DB: Release 5 May 92

Data Flow from a Database: Number of Rows Fetched

5 to the screen. If the user presses PF2, the application executes the procedure
scroll_down which clears the arrays and writes rows 6 through 10 to the screen. If the
user presses PF 3, the application executes scroll_up which clears the arrays and writes
rows 1 through 5 to the screen. If the user presses PF5 the application execules
scroll_end which clears the arrays and writes the last 5 rows in the sELECT set, rows 8
through 12, to the screen.

Although function keys arc necded to call the JPL procedures which execute the JAM/DB;
scrolling commands, end uscrs usually prefer the standard page up and page down keys to
the PF keys. The logical keys SPGU and SPGD are not listed in the JAM Control String
window of the screen editor but their logical values may be reassigned with the JAM library
function sm_keyopt ion. Therefore, the application may use an cntry and exit function to
change how SPGU and SPGD work on a scrcen or in a field. The entry function calls
sm_keyoption so that SPGU acts like the function key that calls the scroll up procedure,
and calls sm_keyopt ion so that SPGD acts like the function key that calls the scroll down
procedure. The exit function calls sm_keyoption 1o restore the default behavior,

Developers who wish to use JPL to call sm_keyoption must install the function in the
prototyped listin funclist . c. The JPL procedure must also use the decimal or hexadeci-
mal values of the logical keys. The hexadecimal values are listed in the JAM Configuration
Guide in the key file chapter. An examplc function is shown below. This function could be
used as the field entry and exit on cach target field.

vars ENTRY (4) EXIT(4)
vars SPGU(6) SPGD(6) APP1(6) APP2(6) KEY_ XLATE(l)
cat ENTRY 128

cat EXIT "leo’

cat SPGU r0x113’
cat SPGD "Oxl14’
cat APP1l '0x6102’
cat APP2 '0x6202’

cat KEY XLATE '2’

proc entry_exit
parms £ no f data £ _occ f flag
APP1 ~jpl scroll_up
APP2 ~jpl scroll_down
if (f£f_flag & ENTRY)
{
call sm keyoption :SPGU :KEY XLATE :APP1
call sm_keyoption :SPGD :KEY_XLATE :APP2
}
else if (f_flag & EXIT)

May 92 JAM/DBi Release 5 87

Developer's Guide

call sm_keyoption :SPGU :KEY XLATE :SPGU
call sm keyoption :SPGD :KEY XLATE :SPGD
}

return

JAM/DBi;-scrolling uscs less memory than JAM scrolling. The application needs only
enough memory for the rows displayed on screen. The other rows are buffered either in a
binary disk file or by the database server. With large seLEcT sets, this approach often im-
proves the application’s performance and response time.

This approach requires a little more work by the developer. The application needs proce-
dures to handle the scrolling and possibly the remapping of cursor control keys. Also, the
method restricts the seLecT cursor. If the application needs to perform other sELECT state-
ments while scrolling through this set, the application must declare named cursors.

Controlling the Number of Rows Fetched

Developers using field or LDB arrays as the destinations of a seLecT may specify the maxi-
mum number of rows 10 fetch and the first occurrence to write to in the array destination.
The command is

dbms [WITH CURSOR cursor] OCCUR int [MAX int]
dbms [WITH CURSOR cursor] OCCUR CURRENT [MAX int]

See the Reference Guide in this document for information.

Choosing a Starting Row in the serect Set
A developer may also change the number of rows feiched by using the command
dbms [WITH CURSOR cursor] START int

The command tells JAM/DB; to read and discard int— 1 rows before writing the rest of the
SELECT sct to JAM variables.

See the Reference Guide in this document for information.

88 JAM/DB: Release 5 May 92

Data Flow from a Database: Format of SELECT Output

9.1.3.
Format of serect Results

Before writing a database column value to a JAM variable occurrence, JAM/DBi deter-
mines the data type of the database column. In all cases, if the value equals the engine’s null
(e.g., NULL), JAM/DB:i writes clears the variable. If the variable has a null field edit, JAM
automatically converts the null string to the one assigned by the field edit.

If any value is longer than the variable, the data is truncated.

Character Column

If a column has a character datatype, the value is simply written to the target variable. If the
variable has a word wrap edit or a right-justified edit, the edit is applied.

Date-time Column

If a column has a date datatype, JAM/DBi formats the value before writing it to a JAM
variable. If the variable has a date-time edit, JAM/DB;: uses it. If the variable does not,
JAM/DB: uses the format assigned to the message file entry SM_ODEF_DTIME. By de-
fault, the entry is '

SM_ODEF_DTIME = %m/%d/%2y %h:%0M

For example, April 1, 1991 10:05:03 would be formatted as 4/1/91 10:05.
When the message file default is used, JAM/DB{ assumes a 12-hour clock.

See the Author’s Guide and the Configuration Guide in the JAM documentation for infor-
mation on date-time formats.

Numeric Column

If a column has an integral type, JAM/DB: converts the value to a long. JAM then converts
the value to ASCII and writes it to the variable, truncating any data longer than the destina-
tion field.

If a column has a real type, JAM/DB: converts the value to a double. Before writing the
value to a JAM variable, JAM/DBi determines the precision by examining the variable’s
currency and/or C type edit.

w The field has a currency edit, but no C type edit. If the value is less precise
than the edit’s minimum number of decimal places, the value is padded to
the minimum number of decimal places. If the value is more precise, it is

May 92 JAM/DB: Release 5 89

Developer's Guide

See the Author's Guide in the JAM documentation for more information on currency edits.

roundcd or adjusted to the currency edit’s maximum number of decimal
places. Note that the round up, round down, or adjust option of the curren-
cy cdit is applied.

The field has a C type edit, but no currency edit. If the C type is one of the
integer types, the value is adjusted by standard rounding to O places. If the
C type is float or double, the value is padded or adjusted to the type’s preci-
sion.

The field has a currency edit and C type edit that conflict. If the value is
less precise than the currency edit’s minimum number of decimal places,
the value is padded to the minimum number of decimal places. If the value
is more precise than the minimum number of places, JAM/DB; compares
the currency’s maximum number of places and the C type’s precision, and
uses the less precise of the two. If it uses the currency’s maximum number
of places, then it also uses the currency’s round up, round down, or adjust
option. If it uses the C type precision, it adjusts by standard rounding to the
precision.

The field has neither a currency edit or a C type edit. The precision de-
faults 10 2.

Fetching Unique Column Values

By default, when a column is sclected JAM/DB: retums all values. JAM/DB; also provides

a command for displaying only a column’s unique values,

dbms [WITH CURSOR cursor] UNIQUE column {[column ...]

JAM/DB: rcplaces a repeating value with the empty string.

This command is useful if an application is selecting values from a table which uses two or
more columns as the primary key. For example, if the table projects has the columns
project_id, staff, task_code and the columns project_idand staf£ consti-
tute the primary key, an application could suppress the repeating values in one of the col-

umns of the primary key to improve readability on the screen.

90

JAM/DBi Release 5 May 92

Data Flow from a Database: Format of SELECT Output

project_id staff task_code
1001 Jones A
1001 Carducci A
1001 Bryant [o]
1004 Carducci B
1004 Mohr A
1004 Silver B
1004 Thomas D
1031 Jones E

Figure 30: The primary key of table projects is (project_id, staff).

dbms DECLARE proj_cur CURSOR FOR \

SELECT * FROM projects ORDER BY project_id
dbms WITH CURSOR proj_cur UNIQUE project_id
dbms WITH CURSOR proj_cur EXECUTE

Below is a sample screen displaying the results.

Project Employee

1001 Jones
Carducci
Bryant

1004 Carducci
Mohr
Silver
Thomas
Jones

Figure 31: The JAM layout is easier to read than the table layout.

See the Reference Guide in this document for more information.

May 92 JAM/DBi Release 5 91

Developer's Guide

9.1.4.
Redirecting seiect Results to Other Targets

Occasionally, developers need other destinations for seLecT statements. JAM/DB: pro-
vides a featurc for concatenating a {ull result row and writing it to either a JAM variable or
a text file.

dbms [WITH CURSOR cursor] CATQUERY TO jam_var \
[SEPARATOR text] [HEADING [ON | OFF]]

dbms [WITH CURSOR cursor] CATQUERY TO FILE filename \
[SEPARATOR text] [HEADING [ON | OFF] 1

JAM/DB; also provides a command for formatting the results,
dbms [WITH CURSOR cursor] FORMAT [column] format

See the Reference Guide in this document for details.

92 JAM/DBi Release 5 May 92

Data Flow from a Database: Status and Error Codes

9.2.

STATUS AND ERROR CODES

JAM/DBi supplies several pre-defined variables where it stores error and status data for the
application. These variables are

@dmretcode

@dmretmsg

@dmengerrcode

@dmengerrmsg

@dmengwarncode

@dmengwarnmsg

@dmengreturn

@dmrowcount

@dmserial

The status of the last executed dbms or sql statement, Its
value is 0 or one of the codes defined in dmerror.h.

A message describing the status of the last executed dbms
or sql statement. Its value is empty or one of the messages
from the JAM message file. If @dmretcode is0, this vari-
able is empty.

An engine-specific error code for the lastexecuted dbms or
sql statement. Its value is O or an engine-specific code. If
0, the engine did not detect any errors.

An engine-specific error message for the last executed
dbms or sql statement. If @dmengerrcode is empty,
this variable is also empty.

Anengine-specific warning code or bit setting for the lastex-
ecuted dbms or sql statement. If empty, the engine did not
detect any warning conditions.

Anengine-specific warning message describing the warning
code for the last executed dbms or sql statement. If
@dmengwarn is a byte or is blank, this variable is also
empty.

The return code from the last executed stored procedure. Its
value is either blank or aninteger. If blank, the engine did not
supply a return code.

The number of rows fetched to JAM variables by the last
SELECT Or CONTINUE statement. See the engine-specific
Notes.

An engine-generated value for a serial column. Its value is
0 or an appropriate serial value for the column. Seg the en-
gine-specific Notes.

After executing a statement JAM/DB; updates these variables with any error, warning, or
status information returned by the engine. In addition to the engine-specific codes and mes-
sages, JAM/DB: also supplies engine-independent codes and messages to the variables
@dmretcode and @dmretmsg.

May 92

JAM/DBi Release 5 93

Developer’'s Guide

These global variables are available throughout the application from both JPL and C. Note
that JAM/DB: does not automatically display these values, except in the case of error mes-
sages.

JAMY/DB: uses a default error handler when executing dbms and sql commands from JPL
or C. If a JAM/DB: error occurs, the default error handler displays an error message. The
source of the message depends on the message flag used to initialize the engine, either the
DM_DEF_ENG_MSG flag or the DM_DEF _DBI_MSG flag.

If a JAM/DBi error occurs while executing JPL, the default error handler displays a mes-
sage and JAM displays the dbms or sql statement where the error occurred. When the last
message is acknowledged, JAM/DB; aborts the JPL procedure where the error occurred.
An aborted JPL procedure always returns -1 to its caller.

If a JAM/DB: error occurs while executing one of the C library functions, the default error
handler displays the error message and JAM returns —1 to the function.

An application may override the default handler by installing its own function to handle er-
rors. It may also install an exit function to process all error and status information and dis-
play these values to the enduser. This topic is covered in the next chapter.

94 JAM/DBi Release 5 May 92

Hook Functionss

(JAM/DB:

Chapter 10.
Hook Functions

JAM/DBi provides three hooks for developer-written functions. They are the following

s ONENTRY This function is called before executing any dbms or sql com-
mand from JPL or C.

s ONEXIT This function is called after executing any dbms or sql com-
mand from JPL or C.

s ONERROR This function is called if an error occurs while executing any

dbms or sql command from JPL or C,
JAM/DBi hook functions may be written in JPL or C.
A JPL hook function is installed like the following:
dbms ONXXXX JPL entry_point

where entry_point is an entry point to a JPL module. An entry point may be a procedure
name or a file name. See the JPL Guide for more information.

A C hook function is installed like the following:
dbms ONXXXX CALL function

where function is a prototyped function. A prototyped function appears on JAM'’s
PROTO_FUNC list. As a JAM/DBi hook function, it must be prototyped with three argu-
ments: two strings and an integer. For example,

static struct fnc_data pfuncs[] =
{
{sm_flush()”, f£flush, 0o, 0, 0, 0 1},

{ function(s,s,i)”, function, 0, 0, 0, 0 },

May 92 JAM/DBi Release 5 95

Developer's Guide

Please consult the JAM Programmer's Guide for more information on prototyped func-
tions.

10.1.

ONENTRY FUNCTION

Before executing a dbms or sql command from JPL or C, JAM/DBi will execute the
application’s installed onenTRY function. An oNeENTRY function is useful for logging or de-
bugging statements. You may also use an oNENTRY function to modify the JAM environ-
ment, {or instance remap cursor control keys or change protection edits on fields.

To install an oNENTRY function, use one of the following:
dbms ONENTRY JPL entry_point
dbms ONENTRY CALL function

To turn off the oNENTRY function, execute the command with no arguments:
dbms ONENTRY

10.1.1.

ONENTRY Function Arguments

An oNENTRY hook function receives three arguments:

1. A copy of the first 255 characters of the command line. If the command
was executed from JPL, this is the first 255 characters after the JPL com-
mand word dbms or sql.

2. The name of the current engine. If the command used a WITH ENGINE Or
WITH CONNECTION clause, the argument identifies this engine. If no wrth
clause is used, the argument identifies the default engine.

3. A context flag identifying why this function was called. For an ONENTRY
function this value is 0.

10.1.2.

ONENTRY Return Codes

In the present release, the return code from an onenTry function is ignored if the current
command was executed from JPL. If the command was executed from C, the return code is
returned to the calling function.

96 JAM/DB: Release 5 May 92

Hook Functionss

To ensure compatibility with future rcleases, it is reccommended that this function returns 0.

10.1.3.

Example ONENTRY Functions

The following sample function logs the current statement in a text file.

/*
/*
/*
/*

/*

This function is installed as a prototyped function.*/
It writes the current time, name of the current */
engine, and the command which JAM/DBi will execute */
to a file called dbi.log. */

dbms ONENTRY CALL dbientry */

#include “smdefs.h”

int

dbientry (stmt, engine, flag)
char *stmt;

char *engine;

int flag;

{

}

FILE *fp;
time_t timeval;

fp = fopen (”dbi.log”, "a”):
timeval = time (NULL)
fprintf (fp, “%s\n%s\n%s\n\n”,
ctime (¢timeval), engine, stmt);
fclose (fp):
return 0;

This sample function displays a message before performing any JAM/DBi operations.

dbms ONENTRY JPL entrymsg

proc entrymsg

May 92

msg setbkstat “Processing. Please be patient...”
£lush
return 0

JAM/DBi Release 5 97

Developer's Guide

10.2.

ONEXIT FUNCTION

After executing a dbms or sql command from JPL or C, JAM/DB; will execute the appli-
cation’s installed oNex1T function. An onex1T function is useful for logging or debugging
statements. You may also use an oNENTRY function to modify the JAM environment, for in-
stance remap cursor control keys or change protection edits on fields. This function is useful
for checking error and status codes after each command.

10.2.1.

ONEXIT Function Arguments

An onex1T hook function receives three arguments:

1. A copy of the first 255 characters of the command line. If the command
was executed from JPL, this is the first 255 characters after the JPL com-
mand word dbms or sql.

2. The name of the current engine. If the command used a WITH ENGINE or
WITH CONNECTION clause, the argument identifies this engine. If no witu
clause is used, the argument identifies the default engine.

3. A context flag identifying why this function was called. For an onex1T
function its value is 1.

10.2.2.

ONEXIT Return Codes

The return code from an onex1T function is ignored unless an error occurred while execut-
ing a sql or dbms command using JPL. If the return code from the function is non-zero,
JAM/DB; will abort the JPL procedure where the error occurred. If the command is ex-
ecuted from C, the return code is returned to the calling function.

If the application is also using an onERROR function, the return code from the oNERROR func-
tion overrides the return code from the oNex1T function.

10.2.3.

Example ONEXIT Function

This sample function looks for the no more rows codes after executing a command.

o8 JAM/DB: Release 5 May 92

Hook Functionss

dbms ONEXIT JPL checkstat
DM_NO_MORE_ROWS is an LDB constant set to 53256

proc checkstat
parms stmt engine flag
if @dmretcode != 0
{
if @dmretcode == DM_NO_MORE_ROWS
{
msg emsg “All rows were returned.”
return 0
}
msg emsg “Error executing ” stmt ”“$N” \
@dmretmsg ”%N” @dmengerrrmsg
return 1
}

return 0

10.3.

ONERROR FUNCTION

If a JAM/DB: error occurs while executing a dbms or sql command from JPL or C,
JAMV/DB: will execute the application’s installed oNERROR function. An oNExIT function
usually displays the values of the global error variables @dmretmsg and
@dmengerrmsg. It may also display the text of the command that failed. The application
may use this function to log error information in a text file.

There are two classes of JAM/DB: errors:

» Syntax or Logic Error in a dbms Statemeni. Some examples are execut-
ing a dbms command that is not supported by the current cngine, using an
invalid akeyword, executing a cursor that has not been declared, or failing
to declare a connection before executing an sql statement. These errors
are detected by JAM/DB; and reported using standard JAM/DB; error
codes and messages. These errors update the global variables
@dmretcode and @dmretmsg.

s Engine Error. Some examplcs are atlempting to seLECT from a non-exis-
tent table or column, inserting invalid data in a column, logging on with
invalid arguments, or attempting to connect to a server that is not running.

May 92 JAM/DBi Release 5 99

Developer's Guide

These crrors are detected by the engine and reported by the JAM/DBi in-
terface. These errors update the global variables @dmretcode,
@dmretmsg, @dmengerrcode, @dmengerrmsg.

Note that JAM and JPL errors are not a class of JAM/DBi errors. In addition to a JAM/DBi
error, a JPL procedure may fail because of JPL syntax or colon preprocessing errors. If a
JPL error occurs, JAM displays an error message describing the error, the source of the JPL
statement, and the statement that failed. Furthermore, it aborts the JPL procedure where
such an error occurred and returns control to the procedure’s caller. It is assumed that JPL
and JAM errors are detected and corrected during application development. The only time
that developers may need special handling for these errors is during transaction processing.
This is discussed in Chapter 11.

An oNERROR function overrides JAM/DB;i’s default error handler. The function controls the
display of error messages. If the error occurred while execuling a command from JPL, the
ONERROR function also determines whether control is returned to the procedure or to the pro-
cedure’s caller.

Developers using JPL are encouraged to use an oNeRROR function. This ensures consistent
error handling throughout the application and reduces the amount of code needed to handle
errors. If an oNex1T function is also installed, JAM/DBi calls the onvex 1T function, then the
ONERROR function.

To install an onERROR function, use one of the following:
dbms ONERROR JPL entry_point
dbms ONERROR CALL function

To turn off the onerroR function and reinstall the default error handler, execute the com-
mand with no arguments:

dbms ONERROR

10.3.1.

ONERROR Function Arguments

An onERROR hook function receives three arguments:

1. A copy of the first 255 characters of the command line. If the command
was executed from JPL, this is the first 255 characters after the JPL com-
mand word dbms or sql.

2. The name of the current engine. If the command used a WITH ENGINE Or
WITH CONNECTION Clause, the argument identifies this engine. If no wit
clause is used, the argument identifies the default engine,

100 JAM/DBi Release 5 May 92

Hook Functionss

3. A context flag identilying why this function was called. For an ONERROR
function its value is 2.

10.3.2.

ONERROR Return Codes

If an application is using an installed error handlecr, the error handler determines the handl-
ing for JAM/DB: errors that occur whilc using JPL.

If a JAM/DB: error occurs while executing JPL, a non-zero return code aborts the JPL pro-
cedure where the error occurred. The procedure’s caller (either JAM or another JPL proce-
dure) gains control. If the return code is 0 however the JPL procedure resumes control;
JAM will execute the next statement in the JPL procedure.

If a JAM/DB; error occurs while executing C, Lthe oNERROR return code is rcturned to the
calling function.

The return code from an oNERROR function overrides the return code from an oNEx 1T func-
tion.

10.3.3.

Example ONERROR Function

DM _ALREADY ON is an LDB constant.

proc dbi_error_ handler
parms stmt engine flag

if (@dmretcode == DM_ALREADY_ON)

{
msg emsg “You are already logged on.”
return 0

}
if (@dmengerrcode != 0)
{
msg emsg @dmretmsg
jpl engine_errors :engine

else

May 92 JAM/DB: Release 5 101

Developer's Guide

msg emsg “Application Erxor: “ \
@dmretmsg \
“See the DBA for assistance.”

return 1
proc engine_errors
parms engine_name

if engine_name == “xyzdb”

Examine DBMS ERROR codes here.

This procedure first checks if the checks if the error is DM_ALREADY_ON. In this case, it
simply displays a message and returns 0. For all other errors, it checks for an engine error
code. If there is an engine crror it calls another subroutine to check for engine-specific er-
rors. For any other errors, it displays the standard JAM/DB; message.

102 JAM/DB: Release 5 May 92

Transactions

JAM/DB:

Chapter 11.
Transactions

In addition to the data access capabilities of an engine, JAM/DBi supports the engine’s
transaction processing capabilities.

A transaction is a logical unit of work on a database. The unit of work is usually a set of
statements that update a database in a consistent way. That is, the update takes the database
from one consistent state to another. Using the familiar personnel database described
throughout the document, consider these possible transactions:

s An employee review transaction. It involves: an insert to the table
review supplying a social security number, review date, new salary, and
new grade level and an update to the employee’s current salary in the table
acc.

s Anewemployee transaction. It involves: an insert to the table emp supply-
ing the employee’s social security number, name, and home address; an
insert to the table review supplying the employee’s social security num-
ber, hire date, salary, and grade; and an insert to the table acc supplying
the employee’s social security number, current salary, and number of tax
exemptions.

Transaction processing is sometimes a difficult topic for new developers. For one, transac-
tion processing is very engine dependent and thus it requires a clear understanding of the
engine’s behavior. For another, transaction processing in a JAM/DB application requires
careful error processing. For some errors, the application must explicitly tell the engine to
undo the transaction. The application must test for these errors.

May 92 JAM/DB: Release 5 103

Il. Developer's Guide

11.1.

ENGINE-SPECIFIC BEHAVIOR

As noted earlicr, transaction processing is not implemented consistently among SQL data-
bases. Developers should review the documentation on transaction processing supplied by
the database vendor before using JAM/DB: features,

Generally, transaction processing falls into two types: those that support explicit transac-
tions and those that support auto transactions. An explicit transaction starts with a BEGIN
statement; an auto transaction gencrally starts with the first recoverable statement after a
logon, commIT, or ROLLBACK. Usually an engine supports either explicit transactions or auto
transactions, but not both.

On engines supporting explicit transactions, each coMMIT or RoLLBACK must have a match-
ing BEGIN. On engines supporting autocommit modes, the application may use any number
of comMIT or ROLLBACK statements; if there is no recoverable statement, the comM1 or
RoOLLBACK is ignored. Engines have different ways of handling transactions that are not ter-
minated by an explicit commit or roilback. Some engines automatically commit or rollback
the transaction. Others may leave the database in an inconsistent state. Under no circum-
stances should the application use the engine’s default behavior to terminate a transaction.

The use of explicit rollbacks and commits
= protects the integrity of Lthe database

= makes new and updated data available to the rest of the application and
other users at the logical end of the transaction

= releases locks set on tables by the transaction once the transaction is com-
pleted, not when the connection closes, permitting the rest of the applica-
tion or other users to begin new transactions on the tables

s reduces the chances for unrelated operations interfering with one another
= produces applications which are less database-dependent

Finally, although vendors supply commands for transaction processing in their SQL lan-
guage, developers should use those provided by JAM/DB:; either with the JPL command
dbms or the library routine dm_dbms. Using sql or dm_sql to handle transaction pro-
cessing like commit and rollback is NOT recommended. Using the pems versions permits
JAM/DBi to establish necessary structures and it provides better error handling if a transac-
tion fails.

104 JAM/DBi Release 5 May 92

Transactions

11.2
ERROR PROCESSING FOR A

TRANSACTION

The engine is responsible for rccovery from system failures such as power loss. Also, if a
single statement fails for some reason in the middle of execution, the engine is responsible
for rolling back the effects of that statement. IF that statement was executed in a transaction,
howeyver, the application must execute an explicit rollback to undo any work done between
the start of the transaction and the failed statement.

At the very least, JAM/DB: must execute a rollback when the engine returns an error to the
application. For example, the engine might reject an insert because the row’s primary key is
not unique. If the insert were part of a transaction, the application should stop executing the
transaction and execute a rollback to undo any work done by previous statements in the
transaction.

As an additional precaution, developers very likely want to execute a rollback for any error
that occurs during the transaction, including an error dctected by JAM or JAM/DB; before
a statement is passed to the engine. An error detected by JAM or JAM/DB: rather than the
engine is usually the result of a development or maintenance error rather than bad user input
(e.g., astatement’s colon-plus or binding variable cannot be found because a JAM field was
renamed). While these errors should be rare, the application should provide handling for
them.

If the transaction processing is done with the JAM/DB; C library functions, JAM and
JAM/DB; error codes are returned to the calling function, either directly or via an installed
error handler. If a transaction requires very sophisticated error handling, it may be easier to
use these JAM/DB; library functions rather than JPL.

If the transaction processing is done in JPL with dbms, developers should use the JPL com-
mand retvar to declare a return variable. A retvar variable is sct to 0 if a called proce-
dure retumns 0 (the default for success) or if a dbms or sql statement executes without er-
ror. If a called procedure aborts because of a JAM error, a retvar variable is set to~1. If
an installed error handler is called, a retvar variable is set to the handler’s return code.
The JPL Guide in Volume II of the JAM manual has a complete description of this com-
mand. The examples in this chapter use retvar so that a transaction is rolled back for all
JAM/DB: and JAM errors.

The best method for transaction processing in JPL uses a generic JPL procedure as a trans-
action hander. This procedurcs does the following:

= defines and declares a JPL return variable, jpl_retcode.

s callsa JPL subroutine that contains the actual transaction statements.

May 92 JAM/DB: Release 5 105

Il. Developer's Guide

= on return from the subroutine, examines the JPL return variable, Jpl_ret-
code. If it is 0, the subroutine, and therefore the transaction, executed suc-
cessfully. Il it is not zero, the subroutine was aborted by a JAM or by the
error handler. For either type of crror, it executes a rollback.

A sample of such a procedure is shown in the JPL code below. The actual transaction state-
ments are execuled in the subroutine whose name is passed to this procedure. This transac-
tion handler may be used with the default error handler or with an installed error handler that
returns the abort code (1) for all errors.

proc tran_handle
{
parms subroutine
vars jpl_retcode
retvar jpl_retcode
Call the subroutine.
jpl :subroutine
Check the value of jpl retcode. If it is 0, all statements in
the subroutine executed successfully and the transaction was
committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine. Execute a
ROLLBACK for all non-zero return codes.
if jpl_retcode
{

d= M= e e

msg emsg “Aborting transaction.”
dbms ROLLBACK

}

else

{

msg emsg “Transaction succeeded.”

}

return 0

}

proc update_emp
{

dbms COMMIT
return 0

}
To execute the update transaction, the application should execute

jpl tran_handle update_emp

Once tran_handle has set up the return variable, it calls the procedure update_emp.
Whether update_emp is successful or unsuccessful, control is always returned to
tran_handle.

106 JAM/DB: Release 5 May 92

Transactions

In the engine-specific Notes, there is a list and description of the supported transaction com-
mands with more examples.

May 92 JAM/DB: Release 5 107

JAM/DB:
Reference Guide

Reference Overview

Chapter 12.
JAM/DBi Reference Overview

This guide has a reference chapter on each of the following:
= JAM/DBi global variables
» peMs commands
» JAM/DBi library functions
"= JAM/DBi utilities

Each reference chapter provides a summary of the topic, and a reference page for each com-
mand, function, or utility. The reference pages use following notation:

literal This font indicates text that the developer will type verbatim, In par-
ticular, it is used for all examples and for the names of JAM library
functions, JPL commands, or utilities.

SMALL CAPS Uppercase is used for SQL keywords and dbms command keywords.
This use of case is stylistic. Case is significant only for identifiers—
names of fields, columns, tables, variables. functions, etc.

Ralics Bold italics show where variable or procedure names should appear.
Text in this font should be replaced with a value appropriate for the
application.

[x] Brackets indicate an optional element. The brackets should not be
typed.

{xIx} Braces indicate a series of valid options. At least one option must be

used. The braces should not be typed.

X... Ellipses indicate that an element may be repeated one or more times.

May 92 JAM/DBi Release 5 1

Global Variable Reference

Chapter 13.
DBMS Global Variables

This chapter summarizes and categorizes the JAM/DB/ global variables.

13.1.

VARIABLE OVERVIEW

The global JAM/DBi variables are automatically defined by JAM/DBj at initialization. All
JAM/DBj global names begin with the characters @dm. Since the character @ is not per-
mitted in user-defined JAM variables, these variables will never conflict with any screen,
LDB, or JPL variables defined by your application.

These variables and their values are available to JPL commands and to JAM library func-
tions like sm_n_getfieldand sm_n_fptr.

The variables are automatically maintained by JAM/DBI. Before executing a dbms or sql
statement, JAM/DBi clears the contents of all its global variables. After executing the state-
ment and before returning control to the application, JAM/DB/ updates the variables to in-
dicate the current status.

13.1.1.

Error Data

@dmretcode JAM/DBi error code. Codes are the same f<.)r all engines.

@dmretmsg JAM/DBi error message. Messages are the same for all
engines.

@dmengerrcode Engine error code. Codes are unique to the engine.

May 92 JAM/DBi Release 5 113

I1i. Reference Guide

@dmengerrmsg

13.1.2.

Status Data

@dmretcode
@dmretmsg
@dmengreturn
@dmrowcount
@dmserial
@dmengwarncode

@dmengwarnmsg

13.2.

Engine error message. Messages are unique to the en-
gine. Some engines do not supply messages.

JAM/DBi status code for “no more rows” or “end of
proc.”

JAM/DB; status message for *“no more rows” or “end of
proc.”

Engine return code from a stored procedure. Not used by
all engines.

Count of the number of rows fetched to JAM by the last
SELECT or coNTINUE. Used by all engines.

A serial value returned after inserting a row into a table
with a serial column, Not used by all engines.

A code or byte signalling a non-fatal error or unusual
condition. Used by all engines.

A message corresponding to an engine warning code.
Not used by all engines.

VARIABLE REFERENCE

The rest of this chapter contains a reference page for each global variable. Since some vari-
ables store engine-specific values, additional information is provided in the engine-specific

Notes.

Each reference page has the following sections:

» A description of the variable.

s Alist of related variables and commands.

s Anexample.

The variables are documented in alphabetical order.

114

JAM/DB/ Release § May 92

@dmengerrcode

@dmengerrcode
contains an engine-specific error code

MR

e AR R s R

DESCRIPTION
JAM/DBi sets this variable to 0 before executing a dbms or sql statement. If the engine
detects an error, JAM/DBi writes the engine’s error code to @dmengerrcode.

Note that a 0 value in this variable does not guarantee that the last statement executed with-
out error. Some errors are detected by JAM/DBi before a request is made to the engine. For
example, if an application attempts a seLEcT before declaring a connection, JAM/DBi de-
tects the error. Use the global variable @dmretcode to check for JAM/DB: errors.

Because the value of @dmengerrcode is engine-specific, the use of an installed error
handler is strongly recommended. The application may test for engine-specific errors with-
in the error handler or in a multi-engine application, the error handler may call another func-
tion to do this.

Please consult the engine-specific Notes for more information about the codes for your en-
gine.
SEE ALSO

JAM/DBi Developer's Guide, Section 9.2. and Chapter 10.,

RELATED FUNCTIONS
dbms ONERROR [JPL enirypoint | CALL function)]

RELATED VARIABLES
@dmengerrmsg
@dmretcode
@dmretmsg

EXAMPLE

proc dbi_errhandle

parms stmt engine flag

if @dmengerrcode ==
msg emsg @dmretmsg

else if engine == "xyzdb”
jpl xyzerror @dmengerrcode
else if engine == ”oracle”

May 92 JAM/DB: Release 5 1156

lil. Reference Guide

jpl oraerror @dmengerrcode
else

msg emsg “Unknown engine.”
return 1

proc xyzerror

Check for specific xyzdb error codes.

parms error
if error == 90931
msg emsg “Invalid user name.”
else if error == ...

else
msg emsg @dmengerrmsg
return
116 JAM/DBi Release 5§

May 92

@dmengerrmsg

@dmengerrmsg
contains an engine-specific error message

D S R

DESCRIPTION

JAM/DB: clears this variable before executing a new @dbms or @sq1l statement. If the en-
gine returns an error message after attempting to execute the statement, JAM/DBi writes
the message to this variable.

If @dmengerrcode is 0, this variable contains no message.
Please consult the engine-specific Notes for more information about the error messages for
your engine.
SEE ALSO
JAM/DBI Developer's Guide, Section 9.2. and Chapter 10..

RELATED FUNCTIONS
dbms ONERROR [JPL enirypoint | CALL function)]

RELATED VARIABLES
@dmengerrcode

@dmretcode
@dmretmsg

EXAMPLE

proc dbi_errhandle
parms stmt engine flag
if @dmengerrcode ==
msg emsg @dmretmsg
else
msg emsg @dmretmsg ”“%N” @dmengerrmsg
return 1

May 92 JAM/DB: Release 5 117

lll. Reference Guide

@dmengreturn

contains a return code from a stored procedure

DESCRIPTION

If your engine supports stored procedures and stored procedure return codes, use this vari-
able to get a procedure’s return or status code.

By default, JAM/DB; will pause the execution of a stored procedure if the procedure ex-
ecutes a seLECT statement and the number of rows in the seLECT set is greater than the num-
ber of occurrences in the JAM destination variables. The application must execute DBMS
CONTINUE Or DBMS NEXT to resume execution. If the value of @ dmengreturn is null after
calling a stored procedure, the procedure may be pending. If the engine has completed the
execution of the procedure, @dmretcode will contain the DM_END_OF_PROC code and
@dmengreturn will contain the procedure’s return code.

Note that the value of this variable will be cleared once another dbms or sql statement is
executed. If the application needs this value for a longer period of time, it should copy it to
a standard JAM variable or some other static location.
SEE ALSO

Notes

RELATED FUNCTIONS
dbms [WITH CURSOR cursor] NEXT

dbms [WITH CURSOR cursor] SET \
[SINGLE_STEP| STOP_AT FETCHI| EXECUTE_AL'L]

RELATED VARIABLES
@dmretcode

@dmretmsg

EXAMPLE

create proc checkid @id char(l5) as

declare @idcount int

select @idcount = SELECT COUNT (*) FROM products WHERE
id = Qid

if QRidcount == 1

return 1

118 JAM/DB: Release 5 May 92

@dmengreturn

else
return -1

sql EXEC checkid :+id
if @dmengreturn ==
jpl addrow
else if @dmengreturn == -1
msg emsg “Sorry, ” id ” is not a valid code.”
return

May 92 JAM/DBi Release 5 119

lll. Reference Guide

@dmengwarncode
contains an engine-specific warning code

R S e e e s

DESCRIPTION
Most engines supply a mechanism for signalling an unusual, but non-fatal condition,

Some engines use an eight-element array. If there is a warning, it sets the first element to
indicate a warning and then sets one or more additional elements to describe the warning,.
Other engines uses codes and messages similiar to those it uses for errors. Those of a high
severity are handled as errors and those of a low severity are handled as wamings. Please
consult the engine-specific Notes for information about your engine and for an example.

By default, JAM/DBi ignores wamnings. If an application needs to alert users to warning
codes, it must use a JPL or C function to check for them. There is no default warning han-
dler. The most efficient way to process warning codes is with an installed exit handler.

SEE ALSO
JAM/DB; Developer's Guide, Section 9.2. and Chapter 10..

RELATED FUNCTIONS
dbms ONEXIT [JPL entrypoint | CALL function]

RELATED VARIABLES
@dmengwarnmsg

120 JAM/DBi Release 5 May 92

@dmengwarnmsg

@dmengwarnmsg

DESCRIPTION

Most engines supply a mechanism for signalling an unusual, but non-fatal condition. Some
engines uses a warning array or byte. These engines do not supply warning messages and
therefore do not use @dmengwa rmsg. Others use a code and message for low-severity er-
rors. Please consult the engine-specific Notes for information about your engine and for an
example.

By default, JAM/DBi ignores warnings. If an application needs to alert users to warning
codes or messages, it must use a JPL or C function to check for them. There is no default
waming handler. The most efficient way to process warning values is with an installed exit
handler.

SEE ALSO
JAM/DB: Developer's Guide, Section 9.2. and Chapter 10..

RELATED FUNCTIONS
dbms ONEXIT [JPL enirypoint | CALL function]

RELATED VARIABLES
@dmengwarncode

May 92 JAM/DB: Release 5 121

11l. Reference Guide

@dmretcode

contains an engine- lndependent error or status code

D N R0

DESCRIPTION

Before executing a new dbms or sql statement, JAM/DB; writes a 0 to @dmret code. If
the statement fails because of a JAM/DBi or engine error, JAM/DB: writes an error code to
@dmretcode describing the failure. These codes are defined in dmerror. h and are en-
gine-independent. The codes are 5-digits long. See Appendix B. for a listing.

Usually a non-zero value in @dmret code indicates that an error occurred. The default or
an installed error handler is called for an error. If the default handler is in use, JAM/DB; will
display an error message. If the application has installed its own error handler, the installed
function controls what messages are displayed. Since these codes are generic, applications
often need engine-specific error values as well. Engine-specific error codes are written to
@dmengerrcode.

There are two non—zero codes for @dmretcode which are not errors:
DM_NO_MORE ROWS and DM_END_OF PROC. When an engine indicates that it has re-
turned all rows for a seLect set, JAM/DBi writes the DM | NO_MORE_ROWS code to
@dmretcode. Since this is not considered an error, JAM/DB; does not call the default or
an installed error handler. You may test for DM_MORE_ROWS after executing a SELECT or in
an exit handler. JAM/DBi uses DM_END_OF_PROC with engines that support stored pro-
cedures. When an engine indicates that it has completed executing the stored procedure,
JAM/DBi writes the DM_END_OF _PROC code to @dmretcode. This is not an error. An
application may test for ‘this code in an exit procedure or after calling a stored procedure.
See the engine-specific Notes for information on stored procedures.

SEE ALSO
JAM/DBi Developer's Guide, Section 9.2. and Chapter 10..
Appendix B.
RELATED FUNCTIONS
dbms ONERROR [JPL entrypoint | CALL function}
dbms ONEXIT [JPL enirypoint | CALL function]
RELATED VARIABLES
@dmengerrcode

@dmengerrmsg

122 JAM/DB: Release 5§ May 92

@dmretcode

@dmretmsg

EXAMPLE

The following are LDB constants.
DM_ALREADYON = 53251

DM_LOGON_DENIED = 53253

DM_NO MORE ROWS = 53256

proc dbi_errhandle

parms stmt engine flag

Check for logon errors.

if @dmretcode == DM_ALREADYON
return 0

else if @dmretcode == DM LOGON_DENIED
msg emsg @dmretmsg ”%N” @dmengerrmsg

return 1

proc dbi_exithandle

parms stmt engine flag

if @dmretcode == DM_NO_MORE_ROWS

msg emsg “All rows returned.”
return 0

May 92 JAM/DB: Release 5 123

lll. Reference Guide

@dmretmsg

contains an englne mdependent error or status message

DESCRIPTION

Before executing a new dbms or sql statement, JAM/DB; clears @dmretmsg. If the
statement fails because of a JAM/DB: or engine error, JAM/DB; writes an error message to
@dmretmsg describing the failure. These messages are defined in JAM's msgfile and
are engine-independent. See Appendix B. for a listing.

Note that if @dmretcode is 0, @dmretmsg is always empty.

SEE ALSO
JAM/DBi Developer’s Guide, Section 9.2. and Chapter 10..

RELATED FUNCTIONS
dbms ONERROR [JPL enirypoint | CALL function)
dbms ONEXIT [JPL enirypoint | CALL function]
RELATED VARIABLES
@dmengerrcode
@dmengerrmsg
@dmretcode

EXAMPLE

proc dbi_errhandle

parms stmt engine flag
msg emsg “Statement ” stmt ” failed.” \
@dmretmsg “%N” @dmengerrmsg
return 1

124 JAM/DB: Release 5 May 92

@dmrowcount

@dmrowcount

contains a count of the number of rows fetched to JAM by
a SELECT or CONTINUE

T N I A NS

DESCRIPTION

Before executing a new dbms or sql statement, JAM/DB; writes a 0 to this variable. If the
statement fetches rows, JAM/DBi updates the variable writing the number of rows fetched
to JAM variables.

Most SQL syntaxes provide an aggregate function count to count the number of values in
a column or the number of rows in a seLEcT set. The value of @dmrowcount is NOT the
number of rows in a sELECT set; rather, it is the number of rows retumned to JAM variables.
Therefore if a sELECT set has 14 rows in total, and its target JAM variables are arrays, each
with ten occurrences, @dmrowcount will equal 10 after the seLEcT is executed, and 4 after
the peMs conTINUE is executed. If pBMS coNTINUE were executed a second time,
@dmrowcount would equal 0.

The integer written to @dmrowcount is either less than or equal to the maximum number
of rows that can be written to the targeted JAM destinations; the maximum number of rows
is the number of occurrences in a destination variable. If the value in @dmrowcount is less
than the maximum number of occurrences, then the entire SELECT set was written to the tar-
get variables and no further processing is needed. If @dmrowcount equals the maximum
number of occurrences, then the seLecT may have fetched more rows than will fit in the
variables. To display the rest of the serLecT set, the application must execute DBMS
conTINUE until @dmrowcount is less than the maximum number of occurrences (or equals
0) or until @dmretcode receives the DM_NO_MORE_ROWS code.

SEE ALSO
JAM/DB: Developer’s Guide, Section 9.2. and Chapter 10..

RELATED FUNCTIONS
dbms ONEXIT [JPL enirypoint | CALL function]

RELATED VARIABLES
@dmretcode

May 92 JAM/DBi Release 5 125

lll. Reference Guide

EXAMPLE

proc get_selection
sql SELECT * FROM movie_archive WHERE subject=:+subj
jpl check_count
return

proc check_count
If rows are returned but not the NO_MORE_ROWS code,
let the user know there are rows pending.

if (G@dmrowcount > 0) && (@dmretcode != DM _NO_MORE_ROWS)

msg setbkstat "Press %KPFl to see more.”

else .
msg setbkstat “All rows returned.”
return

proc get_more
This function is called by pressing PF1l.
It retrieves the next set of rows.

dbms CONTINUE

jpl check_count

return

126 JAM/DB: Release 5 May 92

@dmserial

@dmserial
contains a serial column value after

NSERT

o .
A

DESCRIPTION

Some engines supply the datatype serial to assist endusers and applications that need to
assign a unique numeric value to each row in a table. When an application inserts a row in
a table with a serial column, the engine generates a serial number, inserts the row with the
number, and returns the number to the application. See the engine-specific Notes for infor-
mation about support for this on your engine.

Before executing a new dbms or sql statement, JAM/DB: writes a 0 to @dmserial. If
the statement is an 1nserT and the engine returns a serial value, JAM/DBi writes the value
to @dmserial. Since this variable is cleared before executing a new sql or dbms state-
ment, you must copy its value to another location if you wish to use the value in subsequent
statements,

SEE ALSO
JAM/DB: Developer's Guide, Section 9.2. and Chapter 10..

EXAMPLE
Column order num is a SERIAL column.

proc new_order
vars 1(3) order_id(5)

dbms BEGIN
First INSERT row into invoices table.
Column order_ id in table invoices is a SERIAL.
sql INSERT INTO invoices \
(order_id, order_date, cust_num) VALUES \
(0, :+today, :+cust_num)

Copy the serial value to a JPL variable for use with
subsequent INSERTS.
cat order_id @dmserial

Use order number to insert new rows to the orders

table. Column order_id in table orders is an INT.
for i=1 while i<=max step 1

May 92 JAM/DBi Release 5 127

1ll. Reference Guide

sql INSERT INTO orders \

(order_id, part_id, quant, u_cost) VALUES \

(:order_id, :+part_id[i}, :+quant[i], :+u_cost[i])
dbms COMMIT

msg emsg “Order completed. Invoice number is ” order_num
return

128 JAM/DBi Release 5 May 92

Command Reference

Chapter 14.
DBMS Commands

This chapter summarizes and categorizes the pBMs commands supported by all engines.
These commands are executed with the JPL. command dbms or the C library function
dm_dbms. Commands that are specific to an engine are described in Notes. This includes
the transaction commands and any special feature commands.

14.1.

DBMS COMMAND OVERVIEW

The peMs commands fall into several categories. The sections below summarize the com-
mands in each category. Some commands may be listed more than once.

14.1.1.

Engine Selection

ENGINE set the default engine for the application

WITH ENGINE set the default engine for the duration of a command
14.1.2.

Using Connections

CLOSE CONNECTION close a named connection

May 92 JAM/DB; Release 5 129

|Il. Reference Guide

CLOSE_ALL_CONNECTIONS
CONNECTION
DECLARE CONNECTION

WITH CONNECTION

14.1.3.
Using Cursors

CLOSE CURSOR
CONTINUE
DECLARE CURSCR
EXECUTE

WITH CURSOR

14.1.4.

close all connections on all engines
set a default connection and engine for the application
declare a named connection to an engine

set the default connection for the duration of a command

close a cursor

fetch the next screenful of rows from a seLECT set
declare a named cursor

execute a named cursor

specify the cursor to use for a statement

Changing serecr Behavior

ALIAS

BINARY
CATQUERY
FORMAT

OCCUR

START

UNIQUE

14.1.5.

name a JAM variable as the destination of a selected col-
umn or an aggregate function

create a JAM/DB; variable for fetching binary values
redirect seLECT results to a file or a JAM variable
format the results of a cATQUERY

set the number of rows for JAM/DBi to fetch to an array
and choose an occurrence where JAM/DBi should begin
writing result rows

set the first row for JAM/DBito return from a seLECT set

suppress repeating values in a selected column

Paging through Multiple Rows

CONTINUE

130

fetch the next screenful of rows from a seLECT set

JAM/DB; Release 5

May 92

Command Reference

CONTINUE_BOTTOM fetch the last screenful of rows from a seLECT set
CONTINUE_DOWN fetch the next screenful of rows from a seLEcT set
CONTINUE_UP fetch the previous screenful of rows from a seLECT set
CONTINUE_TOP fetch the first screenful of rows from a sELECT set
STORE FILE store the rows of a sELECT set in a temporary file so that

the application may scroll through the rows

14.1.6.

Handling Binary Data

BINARY define one or more binary variables

14.1.7.

Status and Error Processing

ONENTRY install a JPL procedure or C function which JAM/DB/
will call before executing a sql or dbms statement

ONERROR install a JPL procedure or C function which JAM/DB/
will call whenever a sql or dbms statement fails

ONEXIT install a JPL procedure or C function which JAM/DB/
will call after executing a sql or dbms statement

14.2.

COMMAND REFERENCE

The rest of this chapter contains a reference page for each peMs command. The commands
in this chapter may be executed with the JPL command dbms or the library function
dm_dbms. Some engines may support additional commands. See the engine-specific Notes
for a list of such commands.

Each reference page has the following sections:

= A synopsis of the command, including a listing of available keywords and
arguments.

May 92 JAM/DBi Release 5 131

Ill. Reference Guide

» A description of the command.
s Alist of related commands.

s Anexample.

132 JAM/DB/ Release 5§ May 92

ALIAS

ALIAS

set aliases for a declared or default SELECT cursor

SYNOPSIS

dbms [WITH CURSOR cursor] ALIAS [column Jamvar \
[, column jamvar ...]]}

dbms [WITH CURSOR cursor] ALIAS [jamvar [, jamvar ...] }

DESCRIPTION

By default, database values are written to JAM variables with the same names as the se-
lected columns. Use this command to map a database column or value to any JAM variable.

If a column name is given, the column is associated with the variable name that follows it.
For example,

dbms ALIAS lastname emp lastname, street address

If the column 1astname is selected with the default cursor, JAM/DB; will write its values
to the JAM variable emp_lastname. If the column st reet is selected with the default
cursor, JAM/DBi will write its values to the JAM variable address. For all other col-
umns selected with the default cursor, JAM/DBi will write to a variable with the same (un-
qualified) name as the selected column.

If column contains characters not permitied in JAM identifiers, enclose column in quotes
to ensure correct parsing.

The case of column should match the setting of the case flag used to initialize the engine in
dbiinit.c. For example, if the case flag is DM_FORCE_TO_LOWER_CASE, column
must be typed in lower case. The case of Jamvar must be the case used to name the JAM
variable. If jamvar does not exist, JAM/DBi ignores the column when it executes the
SELECT.

If no column arguments are given, the association is positional. For example,
dbms ALIAS emp_ var, , abc

If the above statement is executed, then each time values are selected with the default cursor,
JAM/DBi will write the values of the first and third columns to the JAM variables
emp_var and abc respectively. For all other columns selected with the default cursor,
JAM/DB: will write to a variable with the same (unqualified) name as the selected column.
The order of column names in the seLECT statement determines the mapping. The case of

May 92 JAM/DBi Release 5 133

Il. Reference Guide

Jamvar must be the case used to name the JAM variable. If jamvar does not exist, JAM/
DB: simply ignores the column when it executes the seLECT.

Named and positional aliases may not be assigned in a single statement.

If aliases are declared for a caToueRY cursor with the HEADING oN option, JAM/DB; will
use the aliases rather than the column names to build the heading. The alias for a column
selected with a caTQUERY cursor may be enclosed in quotes This permits a column heading
to use embedded spaces. For example,

dbms DECLARE emp_cursor CURSOR FOR \
SELECT first, last, dept FROM emp
dbms WITH CURSOR emp_cursor CATQUERY TC FILE emp list
dbms WITH CURSOR emp_cursor ALIAS \
"First Name”, “Last Name”, Department
dbms WITH CURSOR emp_cursor EXECUTE

Aliasing for a cursor is turned off by executing the pBMs ALIAs command with no argu-
ments. Closing a cursor also turns off aliasing. If a cursor is redeclared without being closed,
the cursor keeps the aliases. Aliases do not affect INSERT, UPDATE, Or DELETE Statements.

This command is necessary if the name of a selected column is not a valid JAM variable
name, if the application is selecting values from different tables which use the same column
name for different values, or if a selection is not a column value, but the value of an aggre-
gate function.

SEE ALSO
JAM/DBIi Developer's Guide, page 79.

RELATED FUNCTIONS

dbms [WITH CURSOR cursor] CATQUERY [TO [FILE] destination \
[SEPARATOR “text”] [HEADING [ON | OFF]]]

[WITH CURSOR cursor]

EXAMPLE

Assign aliases by named for a declared cursor.
dbms DECLARE x CURSOR FOR \

SELECT lname, fname, code FROM directory
dbms WITH CURSOR x ALIAS \

lname last, fname first, code dept
dbms WITH CURSOR x EXECUTE
dbms WITH CURSOR x ALIAS

134 JAM/DB: Release 5 May 92

ALIAS

Set a positional alias for the 2nd and 4th columns.
Use automatic mapping for the 1lst and 3rd columns.
dbms ALIAS , var _x, , var_y

sql SELECT ssn, last, first, address FROM emp

DBi will write

Column ssn to Variable ssn,

Column last to Variable var_x,

Column first to Variable first, and

Column address to Variable var_ y.

d4F k4

Note how the mappings change when the columns are
listed in another order.

sql SELECT last, first, address, ssn FROM emp

DBi will write

Column last to Variable last,

Column first to Variable var_x,

Column address to Variable address, and
Column ssn to Variable var_y.

= H 3k

May 92 JAM/DBi Release 5 135

lll. Reference Guide

BINARY

define JAM/DBz variables for fetchmg bmary values

SYNOPSIS
dbms BINARY variable [, variable .. .)

DESCRIPTION

Many engines support a binary datatype for bytes strings and other non-printable data. An
application cannot fetch binary values to JAM variables (fields, LDB variables, or JPL vari-
ables) but it may fetch them to JAM/DBi variables defined with the command pems
BINARY.

variable is the name of the binary variable which JAM/DB: will create. Its definition may
include a number of occurrences and/or a length. If a number of occurrences is supplied, it
must be enclosed in square brackets. If a variable length is supplied, it must be enclosed in
parentheses. If both are supplied, the number of occurrences must be first. Any of the fol-
lowing are permitted:

dbi_binvar
dbi_binvar [10] (255)
dbi_binvar [5]
dbi_binvar (8)

Any valid JAM variable name is a legal JAM/DB: variable name. The default number of
occurrences is 1, and the default length is the maximum, 255. Memory is allocated for the
occurrences when they are used (i.e., when a binary column is fetched).

If an application is selecting a binary column, use this command to create a binary variable
for the column. The variable may have the same name as the column, or it may be mapped
to the column with peMs aLIas. Because a binary variable is a target of a seLecT, JAM/
DBi will examine its number of occurrences when determining how many rows to fetch.
Therefore, the binary variable should have the same number of occurrences as the other
JAM target variables. When searching for target variables, JAM/DBi searches among the
binary variables before searching among the JAM variables. The developer is responsible
for ensuring that the binary variable names do not conflict with JAM variable names.

The only legal use of a binary variable in JPL is in the usine clause of a DBMS EXECUTE
statement. If no occurrence is given for the variable, the first occurrence is the default.

Once defined, a binary variable is available to the rest of the application. Note that

136 JAM/DB: Release 5 May 92

BINARY

dbms BINARY dbi_binvar[10]
dbms BINARY timestamp[100]

is the same as
dbms BINARY dbi_binvar([10] timestamp(100]

To delete all binary variables, execute DBMS BINARY with no arguments:
dbms BINARY '

Several JAM/DB: library routines are provided for accessing and manipulating the binary
variables. These routines are only available in C. They are described in Chapter 15. and
listed below.

RELATED FUNCTIONS

dm bin_create_occur (variable, occurrence) ;

dm bin_delete_occur (variable, occurrence) ;
dm_bin_get_dlength (variable, occurrence) ;
dm_bin_get_occur (variable, occurrence) ;
dm_bin_lehgth (variable) ;

dm bin_max_occur (variable) ;

dm bin_set_dlength (variable, occurrence, length) ;

EXAMPLE

“photo” is a binary column

dbms BINARY dbi_binvar

dbms ALIAS photo dbi_binvar

sql SELECT jobcode, site, photo FROM newbuildings \
WHERE architect = :+lastname

dbms BINARY lastchanged[20]
sql SELECT id, name, description,

May 92 JAM/DB: Release 5 137

CATQUERY

CATQUERY

concatenate a full result row to a JAM variable or a file

S TR kO R b e, e Y

SYNOPSIS
dbms [WITH CURSOR cursor] CATQUERY TO jamvar
[SEPARATOR ”“text”] [HEADING [ON | OFF]]

dbms [WITH CURSOR cursor] CATQUERY TO FILE file
[SEPARATOR “fext”] [HEADING [ON | OFF]]

DESCRIPTION

The result columns of a seLECT statement are usually mapped to individual variables. Use

cATQUERY to map full result rows to a variable’s occurrences or to a text file. The options are
described below.

WITH CURSOR cursor Names a declared seLecT cursor. If the clause is not used,
JAMY/DBi uses the default sELECT cursor.

TO fjamvar Names a JAM variable as the destination.

To FILE file Names a text file as the destination. If the file already exists,
it is overwritten when the seLecT is executed.

SEPARATOR “"texf” Specifies that JAM/DB: should use text to separate column
values in a result row. The default is two blank spaces.

HEADING ON Specifies that JAM/DB;: should put a heading at the begin-
ning of the seLEcT results. This is the default for a catquery to
a file. The heading is built using the column names or any
aliases assigned to the cursor. The maximum length of a
heading is 255 characters. Any additional characters are trun-
cated.

HEADING OFF Specifies that JAM/DB; should not use a heading. This is the
default for a catquery to a JAM variable.

JAM/DBi attempts to format the column values by searching for JAM variables of the
same name and using their attributes for length, precision, and date-time or currency edits.
The application may override any default formatting with the command peMs FORMAT.

The catquery for a cursor is turned off by executing the pBMs caTouERY command with no
arguments. Closing a cursor also turns off the catquery. If a cursor is redeclared without be-
ing closed, the cursor keeps the catquery destination as the cursor’s seLECT destination.

138 JAM/DBi Release 5 May 92

lil. Reference Guide

Catquery to a Variable

When the catquery destination is a JAM variable, JAM/DBi concatenates a result row and
writes it to famvar when the seLEcT is executed. If famvaris an LDB or field array, JAM/
DBi writes the result rows to the array occurrences. If there are more result rows than occur-
rences in jamvar, use oBMs coNINUE to fetch the additional rows.

If the clause HEADING oN is used, JAM/DBi creates a heading by using the cursor’s aliases
and column names. If famvar has two or more occurrences, JAM/DB: will put the heading
in the first occurrence of jamvar.

Catquery to a Text File

When the catquery destination is a text file, JAM/DB;: writes all the result rows to the speci-
fied text file when the seLecT is executed. Any existing file with the same name is overwrit-
ten. If a result row is longer than the page width, JAM/DB; wraps the row to the next line.

If aliases have been specified for the cursor, JAM/DB: uses those aliases as column head-
ings in the text file. If there are no aliases, JAM/DB: uses the columns’ names. If the clause
HEADINGOFF is used, JAM/DBi does not print a heading.

Since all result rows are written to the file, the pBMs conTINUE commands should not be
used with a caTouery To FILE cursor while the file is open.

The file remains open until pBMs CATQUERY is reset or the cursor is closed.

RELATED FUNCTIONS
dbms [WITH CURSOR cursor] ALIAS [column] "text”...

dbms [WITH CURSOR cursor] FORMAT [column] format ...

EXAMPLE

select an employee’s first and last name
and concatenate the values in the field “fullname”
dbms DECLARE name_cursor CURSOR FOR \
SELECT last, first WHERE ssn=:+ssn
dbms WITH CURSOR name_cursor CATQUERY TO fullname \
SEPARATOR ”, ”
dbms WITH CURSOR name_cursor EXECUTE

select the maximum value from the column “cost”
and write it to the JPL variable "hi_cost”
formatting it with currency edit saved with the LDB
variable “money_var”

vars hi_cost

dbms DECLARE max_cursor CURSOR FOR \

4k 3k 3k 3k

May 92 JAM/DB: Release 5 139

CATQUERY

SELECT MAX(cost) FROM inventory
dbms WITH CURSOR max_cursor CATQUERY TO hi_cost
dbms WITH CURSOR max cursor FORMAT money_var
dbms WITH CURSOR max cursor EXECUTE

Write the results of the default SELECT cursor
to a file with heading. Turn off ALIAS and CATQUERY
when finished.

dbms CATQUERY TO FILE phonelist

dbms ALIAS emplast “Last Name”, empfirst “First Name”,\

phonel “Main Number”, phone2 “Additional Number”

sql SELECT emplast, empfirst, phonel, phone2 FROM emp
dbms CATQUERY

dbms ALIAS

140 JAM/DB: Release 5 May 92

CLOSE_ALL_CONNECTIONS

CLOSE_ALL_CONNECTIONS

close all connections on an engine

R e e
SYNOPSIS

dbms CLOSE_ALL CONNECTIONS
DESCRIPTION

When this command is executed, JAM/DB: closes every connection which the application
declared on any and all engines. For each connection, it closes all cursors belonging to the
connection, disconnects from the engine, and frees all structures associated with the connec-
tion.
SEE ALSO

JAM/DBi Developer's Guide, page 55.

VARIANTS
dbms CLOSE CONNECTION [connection]

RELATED FUNCTIONS

dbms [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR [OPTION arg ...]

May 92 JAM/DBi Release 5 141

Ill. Reference Guide

CLOSE CONNECTION

close a declared connection

SYNOPSIS
dbms CLOSE CONNECTION [connection]

DESCRIPTION

Executing this command closes all open cursors associated with the named or default con-
nection, logs off the connection from its engine, and frees the connection data structure.

SEE ALSO
JAM/DBIi Developer’s Guide, 55.

VARIANTS
dbms [WITH ENGINE engine] CLOSE_ALL_ CONNECTIONS

RELATED FUNCTIONS

dbms [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR [OPTION arg ...}

WITH CONNECTION connection

142 JAM/DBi Release 5 May 92

CLOSE CURSOR

CLOSE CURSOR

close a named or default cursor

SYNOPSIS
dbms CLOSE CURSOR [cursor]

dbms WITH CONNECTION connection CLOSE CURSOR

DESCRIPTION

Use this command to close an open cursor. Closing a cursor frees all structures associated
with the cursor.

Closing a cursor is convenient way of turning off all attributes assigned to the cursor with
DEMS ALIAS, DEMS CATQUERY, DBMS FORMAT, DBMS OCCUR, DBMS START, DBMS
STORE_FILE, DBMS TYPE,and DBMS UNIQUE.

If cursor is not given, JAM/DB closes the default seLECT cursor. A connection may also
be specified when closing a default cursor. JAM/DB; will automatically declare another de-
fault seLecT cursor when needed. A connection name should not be given when closing a
named cursor.

Closing a connection also closes all cursors associated with the connection.
SEE ALSO
JAM/DBIi Developer’s Guide, page 57.
VARIANTS
dbms [WITH ENGINE engine] CLOSE CONNECTION [connection)
dbms CLOSE_ALL CONNECTIONS

RELATED FUNCTIONS

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \
FOR SQLstmt

dbms WITH CURSOR cursor EXECUTE

WITH CURSOR cursor

May 92 JAM/DBi Release 5 143

lll. Reference Guide

EXAMPLE

Assign a catquery and aliases to the default SELECT
cursor. Close the cursor when finished.
dbms CATQUERY TO FILE phonelist
dbms ALIAS emplast “Last Name”, empfirst “First Name”, \
phonel “Main Number”, phone2 “Additional Number”
sql SELECT emplast, empfirst, phonel, phone2 FROM emp
dbms CLOSE CURSOR

144 JAM/DB: Release 5 May 92

1. Reference Guide

CONNECTION

set or change the default connection

SYNOPSIS
dbms CONNECTION connection
DESCRIPTION

If an application has declared two or more connections, the application may set a default
connection with this command. The default connection is used for all subsequents state-
ments that do not use a WITH CONNECTION OF WITH CURSOR cClause.

RELATED FUNCTIONS
dbms CLOSE CONNECTION connection

dbms [WITH ENGINE engine] DECLARE CONNECTION cohnection
WITH CONNECTION connection

EXAMPLE

dbms ENGINE sybase
dbms DECLARE a CONNECTION FOR \

USER :uname PASSWORD :pword SERVER sl DATABASE master
dbms DECLARE b CONNECTION FOR \

USER :uname PASSWORD :pword SERVER s2 DATABASE projects
dbms CONNECTION a
dbms WITH CONNECTION b DECLARE cl CURSOR FOR \

INSERT finance {(number, title, manager) \

VALUES (::number, ::title, ::manager)

May 92 JAM/DBi Release 5 145

Ill. Reference Guide

CONTINUE

fetch the next set of rows associated with a default or
name

TR AR

SYNOPSIS
dbms [WITH CURSOR cursor] CONTINUE

DESCRIPTION

If a sELECT retrieves more rows than will fit in its destination variables, JAM/DBi will re-
turn only as many rows as will fit. It continues fetching more rows from the seLEcT set when
the application executes this command. If there are pending rows, executing this command
clears the destination variables, and fetches the next screenful of rows from the seLecT set.
If there are no pending rows, executing this command does nothing.

DBMS CONTINUE is always associated with a seLEcT cursor. If no cursor is named, JAM/DBi
uses the default seLECT cursor.

Note that if the cursor’s aliases have changed between the execution of the seLecT and the
execution of bBMS CONTINUE, DBMS CONTINUE uses the new settings.

This command should not be used with a CATQUERY TO FILE CUrSOr. CATQUERY TO FILE
always writes out the entire select set to the caTQueRy file.

VARIANTS
dbms [WITH CURSOR cursor] CONTINUE_DOWN

RELATED FUNCTIONS
dbms [WITH CURSOR cursor] CONTINUE BOTTOM
dbms (WITH CURSOR cursor] CONTINUE_TOP
dbms [WITH CURSOR cursor] CONTINUE UP
dbms [WITH CURSOR cursor] STORE [FILE [file]]

EXAMPLE

dbms DECLARE movie list CURSOR FOR \
SELECT * FROM movie archive WHERE subject=::subj

proc get_selection
dbms WITH CURSOR movie list EXECUTE USING subject

146 JAM/DB: Release 5 May 92

CONTINUE

jpl check_count
return

proc check count
DM NO MORE_ROWS is an LDB constant equal to 53256
if @dmretcode != DM_NO_MORE_ROWS

msg setbkstat ”“Press %KPFl to see more films ” \

“or press %$KPF2 to specify another topic.”

else

msg setbkstat “That’s all folks!”
return

proc get_more

This function is called by pressing PF1l.
It retrieves the next set of rows.

dbms WITH CURSOR movie list CONTINUE

jpl check_count

return

May 92 JAM/DB: Release 5 147

1ll. Reference Guide

CONTINUE_BOTTOM

fetch the last page of rows associated with the default or
named SELECT cursor

SYNOPSIS
dbms [WITH CURSOR cursor] CONTINUE_BOTTOM
DESCRIPTION

This command fetches the last screenful of rows from the cursor’s seLECT set. If no cursor
is named, JAM/DBi uses the default seLEcT set. If number of rows in the seLECT set is less
than the number of occurrences in the JAM variables, JAM/DB;: will ignore the request.

Some engines automatically support this command. Other engines require a temporary stor-
age file created by the command peMs store FILE. If JAM/DBi returns DM_BAD_CMD
error when the application executes this command, the engine needs a scrolling file. See the
engine-specific Notes for more information.

This command should not be used with a CATQUERY TO FILE CUrsor.
RELATED FUNCTIONS

dbms [WITH CURSOR cursor] CONTINUE

dbms [WITH CURSOR cursor] CONTINUE DOWN

dbms [WITH CURSOR cursor] CONTINUE TOP

dbms [WITH CURSOR cursor] CONTINUE UP

dbms [WITH CURSOR cursor] STORE [FILE [filename]]
EXAMPLE

#Engines not requiring STORE FILE
dbms DECLARE emp cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp_cursor EXECUTE

dbms WITH CURSOR emp_cursor CONTINUE_ BOTTOM

#Engines requiring STORE FILE

dbms DECLARE emp_ cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp_cursor STORE FILE

dbms WITH CURSOR emp_cursor EXECUTE

dbms WITH CURSOR emp_cursor CONTINUE BOTTOM

148 JAM/DBi Release 5 May 92

CONTINUE_DOWN

CONTINUE _DOWN

fetch the next set of rows associated with the default or
named SELECT cursor

AR T R R R R e

SYNOPSIS
dbms [WITH CURSOR cursor] CONTINUE_DOWN

DESCRIPTION
This command is identical to DEMS CONTINUE.

Note that conTINUE is always associated with a seLEcT cursor. If no cursor is named, JAM/
DB: uses the default seLECT cursor.

VARIANTS
dbms [WITH CURSOR cursor] CONTINUE

RELATED FUNCTIONS

dbms [WITH CURSOR cursor] CONTINUE_ BOTTOM

dbms (WITH CURSOR cursor] CONTINUE_TOP

dbms [WITH CURSOR cursor] CONTINUE_UP

dbms [WITH CURSOR cursor] STORE (FILE [filename))
EXAMPLE

dbms DECLARE emp_cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp_ cursor EXECUTE

proc get_more

dbms WITH CURSOR emp_cursor CONTINUE_DOWN

May92 - JAM/DBi Release 5 149

Ill. Reference Guide

CONTINUE_TOP

fetch the first page of rows associated with the default or

SYNOPSIS
dbms [WITH CURSOR cursor] CONTINUE_TOP

DESCRIPTION

This command fetches the first screenful of rows from the cursor’s seLEcT set. If no cursor
is named, JAM/DB:i uses the default seLecT cursor. If number of rows in the seLECT set is
less than the number of occurrences in the JAM variables, JAM/DB; will ignore the re-
quest.

Some engines automatically support this command. Other engines require a temporary stor-
age file created by the command pBMs sToRE FILE. If the engine needs such a file and the
application tries to execute DBMS CONTINUE_TOP without executing bBMs sTORE, JAM/DBi
returns the error DM_BAD _CMD. See the engine-specific Notes for more information.

RELATED FUNCTIONS
dbms [WITH CURSOR cursor] CONTINUE
dbms [WITH CURSOR cursor] CONTINUE_BOTTOM
dbms [WITH CURSOR cursor] CONTINUE_DOWN
dbms [WITH CURSOR cursor] CONTINUE_UP
dbms [WITH CURSOR cursor] STORE [FILE [fllename]]

EXAMPLE

#Engine not requiring STORE FILE

dbms DECLARE emp_cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp_ cursor EXECUTE

proc go_to_start

dbms WITH CURSOR emp_ cursor CONTINUE_TOP

150 JAM/DBi Release 5 May 92

CONTINUE_TOP

#Engines requiring STORE FILE

dbms DECLARE emp_cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp_cursor STORE FILE

dbms WITH CURSOR emp_cursor EXECUTE

proc go_to_start

dbms WITH CURSCR emp cursor CONTINUE_TOP

May 92 JAM/DBi Release 5§ 151

lil. Reference Guide

CONTINUE_UP

fetch the previous page of rows associated with the
default or named SELECT cursor

SYNOPSIS
dbms [WITH CURSOR cursor] CONTINUE UP

DESCRIPTION

Use this command to scroll backwards through a seLecT set. If no cursor is named, JAM/
DB: uses the default seLEcT set. If number of rows in the seLEcT set is less than the number
of occurrences in the JAM variables, JAM/DB; will ignore the request.

Some engines automatically support this command. Other engines require a temporary stor-
age file created by the command psMs sTorRe FILE. If the engine needs such a file and the
application tries to execute bBMs coNTINUE_UP before executing peMs sTore, JAM/DBi
returns the error DM_BAD_ CMD. See the engine-specific Notes for more information.

This command should not be used with a cATQUERY TO FILE cursor.
RELATED FUNCTIONS

dbms [WITH CURSOR cursor] CONTINUE

dbms [WITH CURSOR cursor] CONTINUE_ BOTTOM

dbms [WITH CURSOR cursor] CONTINUE DOWN

dbms [WITH CURSOR cursor] CONTINUE_TOP

dbms [WITH CURSOR cursor] STORE [FILE [fllename]]
EXAMPLE

#Engine not requiring STORE FILE

dbms DECLARE emp cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp_cursor EXECUTE

proc go_back

dbms WITH CURSOR emp_cursor CONTINUE_UP

152 JAM/DB;i Release 5 May 92

CONTINUE_UP

#Engines requiring STORE FILE

dbms DECLARE emp_cursor FOR SELECT * FROM emp
dbms WITH CURSOR emp cursor STORE FILE

dbms WITH CURSOR emp_cursor EXECUTE

proc go_back

dbms WITH CURSOR emp cursor CONTINUE_UP

May 92 JAM/DB: Release 5 153

lll. Reference Guide

DECLARE CONNECTION

create a named connection to a server and database

SYNOPSIS

dbms [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR OPTION arg ...]

DESCRIPTION

Applications which must connect to two or more servers should use this command to de-
clare a named connection to a server. If JAM/DBi executes this statement successfully, it
allocates a connection structure and adds it to the list of open structures.

The combination of necessary or supported options is engine-specific. See the engine-spe-
cific Notes in this document for a listing.

The connection remains open until it is closed with pEMs cLOSE CONNECTION Or DBMS
CLOSE_ALL_CONNECTIONS.

RELATED FUNCTIONS
dbms CLOSE CONNECTION [connection]
dbms CLOSE_ALL CONNECTIONS
dbms CONNECTION connection
WITH CONNECTION connection

154 JAM/DB: Release 5 May 92

DECLARE CURSOR

DECLARE CURSOR

declare a named cursor for a SQL statement

SYNOPSIS

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \
FOR SQLstmt

DESCRIPTION
Use this command to create or redeclare a named cursor.

If the application has not already declared cursor, JAM/DBi allocates a new cursor struc-
ture and adds its name to the list of declared cursors.

If a structure already exists for cursor and the connection is the same, JAM/DB: reinitial-
izes the structure. Reinitialization clears any information on seLecT columns, binding pa-
rameters, and the maximum number of rows to fetch. It does not clear any attributes as-
signed to the cursor with the statements DBMS ALIAS,DEMS CATQUERY, DBMS FORMAT, DBMS
OCCUR, DBMS START, DBMS STORE, DBMS TYPE, Or DBMS UNIQUE. JAM/DBi will use these
settings if the cursor is redeclared with a seLECT statement. It will ignore the attributes if the
cursor is redeclared with an INSERT, UPDATE, Or DELETE statement. To redeclare the cursor
with a new (empty) structure, close the cursor with pBMs cLOSE CuRsor before executing
the new declaration.

If a cursor is redeclared on another connection, JAM/DBi automatically closes the cursor
and declares a new structure.

The cursor remains open until it is explicitly closed with the command peuMs cLosE
cursor. Closing a connection also closes all cursors on the connection.

There are few restrictions on valid cursor names. However, you should avoid using any SQL
or JAM/DB: keyword as a cursor name. Please note that JAM/DB; is case sensitive regard-
ing cursor names; for example, it interprets cursor c1 as distinct from cursor C1.

SEE ALSO
JAM/DBI Developer's Guide, pages 57, 72.

RELATED FUNCTIONS
dbms WITH CURSOR cursor EXECUTE
dbms CLOSE CURSOR cursor
WITH CURSOR cursor

May 92 JAM/DB: Release 5 185

lll. Reference Guide

EXAMPLE

dbms WITH ENGINE oracle DECLARE emp_cursor FOR \
SELECT ss, last, first FROM emp \
WHERE dept = ::parameter

dbms WITH CURSOR emp_cursor EXECUTE USING dept_name

156 JAM/DB: Release 5

May 92

ENGINE

ENGINE

set or change the default engine

SRR R o e e e

SYNOPSIS
dbms ENGINE engine

DESCRIPTION

If an application has initialized two or more engines, the application may use this command
to set a default engine. If an application has only one initialized engine, JAM/DB; automati-
cally assigns that engine as the default.

engine is a mnemonic associated with one of the support routines initialized in
dbiinit.corinacalltodm init.

SEE ALSO
JAM/DBi Developer's Guide, page 52.

RELATED FUNCTIONS
WITH ENGINE engine

May 92 JAM/DB: Release 5 157

lll. Reference Guide

EXECUTE

SYNOPSIS
dbms WITH CURSOR cursor EXECUTE [USING args]

DESCRIPTION
Use this statement to execute the statement associated with a declared cursor.
This statement does not support the wITH connecTION clause. JAM/DBi uses the engine

that was specified either by name or by default when the cursor was declared. The only way
to change the cursor’s engine or connection is to redeclare the cursor.

If an application is executing a similar statement many times, it is often more efficient to
declare a cursor for the statement. Usually the engine saves the parsed statement, executing
it when the application executes the cursor. It is not necessary to redeclare the cursor to sup-
ply new data for a wHERE or vALUEs clause, Instead, the application may declare the cursor
and use a substitution parameter for each value that the application will supply when it ex-
ecutes the cursor. Substitution parameters begin with a double colon (::). For example,

dbms DECLARE cl CURSOR FOR \
SELECT * FROM titles WHERE author LIKE ::author_ parm

author_parmissimply a place holder for the value that will be supplied when the cursor
is executed. For example,

dbms WITH CURSOR cl EXECUTE USING “Fau%”

would fetch rows where author began with the characters “Fau.” The application could
execute the cursor repeatedly, each time with a new value. It may use the value of a field to
supply a value. For example,

dbms WITH CURSOR cl EXECUTE USING aname

Since aname is not quoted, JAM/DB: assumes it is a JAM variable. If an argument in the
us1nG clause is a field or LDB variable with a date-lime, currency, null field, or type edit
JAM/DB: formats the variable’s value before passing it to the engine.

This topic is covered in detail in the Developer’s Guide.
SEE ALSO
JAM/DBi Developer’s Guide, page 72.

RELATED FUNCTIONS
dbms DECLARE cursor CURSOR FOR SQLstmt

158 JAM/DB: Release 5 May 92

EXECUTE

dbms CLOSE CURSOR cursor
dbms [WITH CURSOR cursor] CONTINUE
WITH CURSOR cursor

EXAMPLE

dbms DECLARE x CURSOR FOR \
SELECT * FROM inventory WHERE lname=::pl OR ss=::p2

bind by position:
dbms WITH CURSOR x EXECUTE USING newname, ss_number

or bind by name:

dbms WITH CURSOR x EXECUTE \
USING pl = newname, p2 = SS_number

May 92 JAM/DB: Release 5 159

lll. Reference Guide

FORMAT

format caTouery values

SYNOPSIS
dbms [WITH CURSOR cursor] FORMAT \
[[column] format [, [column] format ...]]
DESCRIPTION

Use this command to format caTouery values before writing them to a variable or a text file.
The options are explained below.

WITH CURSOR cursor Names a declared seLecT cursor. If the clause is not used,
JAM/DB:i uses the default sELECT cursor.

column Names a selected column. The case of column should match
the setting of the case flag for the engine in dbiinit.c.If
columns are not named, the formats are applied by position.

format Describes how JAM/DBi should format the value. format is
either a JAM variable or a quoted precision edit.

If formatis a JAM variable, JAM/DB: formats the column value as if it were writing to the
field. In particular, the following characteristics will affect the formatting:

B variable’s maximum shifting length
8 variable’s JAM type

See Section 9.1.3. in the Developer's Guide of this document for more information about
formatting with JAM type.

format may also be a precision edit. A precision edit is a quoted string beginning with a
percent sign. It supplies the length of the value, and optionally, a decimal precision for nu-
meric values.

A precision is given in the form
” % width”
” % width.precision”

To turn off formatting on the default or named cursor, execute the command with no argu-
ments.

160 JAM/DB: Release 5 May 92

FORMAT

EXAMPLE

use column “lastname” exactly as returned

format column ”“revdate” with the LDB variable “today”,
format column ”sal” to width 15 with 2 decimal places,
format column “comment” to width 30 and truncate excess
dbms CATQUERY TO FILE listing

dbms FORMAT revdate today, sal ”“%15.2”, comment “%30”
sql SELECT lastname, sal, revdate, comment FROM employee

May 92 JAM/DBi Release 5 161

{ll. Reference Guide

OCCUR

change the behavior of a seLecT cursor that writes to JAM
arrays

SYNOPSIS

dbms [WITH CURSOR cursor] OCCUR occ_int [MAX Int]
dbms [WITH CURSOR cursor] OCCUR CURRENT [MAX int]

DESCRIPTION

By default, if the destination of a sELECT is one or more arrays, JAM/DB: fetches as many
rows as will fit in the arrays and begins writing at the first occurrence in the arrays. Use this
command to change the default behavior for a seLecT cursor. The options for the command
are:

WITH cURsSOR cursor Names a declared seLEcT cursor. If the clause is not used,
JAM/DB; uses the default sELECT cursor.

occ_int Specifies the occurrence number where JAM/DBi should be-
gin placing seLECT results.
CURRENT Specifies that JAM/DB; should use the occurrence number

of the “current” field. JAM/DB; begins writing at this occur-
rence number in the target arrays. Note that the current field
is the one containing the JAM screen cursor and is not neces-
sarily a target variable.

MAX int Specifies the maximum number of rows to fetch fora sgLecT
or conTINUE. If Intis less than 1, no rows are fetched.

The setting is turned off by executing the peMs occur command with no arguments. Clos-
ing a cursor also turns off the setting. If a cursor is redeclared without being closed, the cur-
sor continues to use to the setting for seLECT’S and CONTINUE’S.

DBMS OCCUR is ignored with a cATQUERY cursor.

RELATED FUNCTIONS
[WITH CURSOR cursor]

162 JAM/DBi Release 5 May 92

OCCUR

EXAMPLE
dbms DECLARE title_cursor CURSOR FOR \
SELECT * FROM booklist WHERE isbn = :+code

dbms WITH CURSOR title_cursor OCCUR CURRENT
dbms WITH CURSOR title_cursor EXECUTE

May 92 JAM/DBi Release 5 163

lll. Reference Guide

ONENTRY

SYNOPSIS

dbms ONERROR CALL function
dbms ONERROR JPL jpl entry_point

DESCRIPTION

Use this command to install a JPL routine or a C function which JAM/DBi will call before
it executes a sql or dbms statement.

Currently, this function is for informational purposes only. For instance, you may wish to
log statements to a file on disk before executing them. You may use this function with an
exit handler to track the start and complete time for a query or any database other operation.

The function is passed three arguments:

1. acopyof thefirst255 characters of the statement; if the statement
was executed from JPL, this is the first 255 characters after the
command word sql or dbms

2. the name of the engine where
3. context flag; for the entry handler its value is 1.

The function’s return code is not used.

If the error occurred while executing a JPL statement with the command dbms or sql:
e (O returns control to the JPL procedure where the error occurred

o 1 aborts the JPL procedure where the error occurred and returns
1tothe procedure’s caller (either JAM or another JPL procedure)

If the error occurred while executing a statement with one of the dm _ library functions, the
dm__ function returns the error handler’s return code.

To use a C function as an error handler, you must first install the function as a prototyped
function. Please consult the JAM Programmer’s Guide for more information.

SEE ALSO
JAM/DB; Developer’s Guide, page 93.

JAM/DBi Reference Guide, global variables, page 113

164 JAM/DB: Release 5 May 92

ONENTRY

RELATED FUNCTIONS
dbms ONEXIT ([JPL enirypoint | CALL function]

May 92 JAM/DB: Release 5 165

lll. Reference Guide

ONERROR

set the behavuor of the error handler

SYNOPSIS
dbms ONERROR CALL function
dbms ONERROR CONTINUE
dbms ONERROR JPL jpl entry_point
dbms ONERROR STOP

DESCRIPTION

Use this command to set or change the behavior of the JAM/DBi error handler for the appli-
cation. The default error handler displays an error message. The source of the message is
determined by the engine’s initialization. If an engine is initialized with the flag
DM _DEFAULT_ENG_MSG the default error handler displays an engine-specific error mes-
sage. If it is initialized with the flagDM_DEFAULT_ DBI_MSG the error handler uses mes-
sages only from the JAM message file. If an error occurs while executing a JPL procedure,
the default handler aborts the procedure, returning —1 to the calling procedure.

An application may override the default error handler with the command peMs ONERROR
and an argument. Please note that the error handler is global to the application. Each execu-
tion of this command overrides the previous error handler.

The command variants are explained below.

ONERROR STOP

This command restores the default error handler.

ONERROR CONTINUE

This command prevents the default error handler from aborting a JPL procedure where a
JAM/DB: error occurs. Message display is not changed.

ONERROR JPL or ONERROR CALL

These commands install a user function as the error handler. If JAM/DB: or the engine find
an error, JAM/DBi updates the global error and status variables (i.e., @dm variables) and
calls the installed function.

The function displays any error messages and its return code controls whether or not JPL
execution is aborted.

The function is passed three arguments:

1. the first 255 characters of the statement; if the statement was ex-
ecuted from JPL, this is the first 255 characters after the com-
mand word sql or dbms

166 JAM/DB: Release § May 92

ONERROR

2. the name of the engine for the attempted statement
3. context flag; for the error handler its value is 2.

The function’s return code is returned to the application.

If the error occurred while executing a JPL statement with the command dbms or sql:
e (O returns control to the JPL procedure where the error occurred

e 1 aborts the JPL procedure where the error occurred and returns
1to the procedure’s caller (either JAM or another JPL procedure)

If the error occurred while executing a statement with one of the dm_ library functions, the
dm_ function returns the error handler’s return code.

To use a C function as an error handler, you must first install the function as a prototyped
function. Please consult the JAM Programmer’s Guide for more information.

SEE ALSO
JAM/DBi Developer’s Guide, page 93.

JAM/DBi Reference Guide, global variables, page 113

RELATED FUNCTIONS
dbms ONEXIT [JPL enirypoint | CALL function]

May 92 JAM/DB: Release 5 167

lll. Reference Guide

ONEXIT

install an exit handler

SYNOPSIS

dbms ONEXIT CALL function
dbms ONERROR JPL Jpl entry point

DESCRIPTION

Use this command to install a function which JAM/DBi will call after executing a dbms or
sql command from JPL or C. You may use this function to process error and status codes
after every command.

Installing an onex1T function will override the default error handler. Please note that the exit
handler is global to the application. Each execution of this command overrides the previous
exit handler.

The function is passed three arguments:

1. thefirst 255 characters of the statement; if the statement was ex-
ecuted from JPL, this is the first 255 characters after the com-
mand word sql or dbms

2. the name of the engine for the attempted statement
3. context flag; for the exit handler its value is 1.

The function’s return code is returned to the application. If an error occurred while execut-
ing a JPL statement with the command dbms or sql and there is no oNexzIT function, then

e (returns control to the JPL procedure where the error occurred

o 1 aborts the JPL procedure where the error occurred and returns
1tothe procedure’s caller (either JAM or another JPL procedure)

If an error occurred while executing a statement with one of the dm_ library functions and
there is no onex1T function, the dm_ function returns the exit handler’s retarn code.

To use a C function as an exit handler, you must first install the function as a prototyped
function. Please consult the JAM Programmer's Guide for more information.

SEE ALSO
JAM/DBi Developer’s Guide, page 93.

JAM/DB; Reference Guide, global variables, page 113

168 JAM/DB: Release 5 May 92

ONEXIT

RELATED FUNCTIONS
dbms ONEXIT [JPL enirypoint | CALL function)]

May 92 JAM/DB: Release 5 169

1ll. Reference Guide

START

specify a startingrowina S

o R S

ELECT set

L SRR

SYNOPSIS
dbms [WITH CURSOR cursor] START [int]

DESCRIPTION

By default, when a seLECT set contains more than one row, JAM/DB; fetches them sequen-
tially beginning with the first row in the seLECT set. Use this command to begin fetching at
row Int. JAM/DB: will read and discard /nt — 1 rows from the seLEcT set before returning
the requested rows to the application. If the application is counting the rows fetched, the
discarded rows do not update @dmrowcount. If int is greater than the number of rows in
the seLECT set, no rows are displayed.

If no cursor is specified, JAM/DB: uses the default seLECT cursor.

The setting is turned off by executing pBMs sTarT with no arguments. Closing a cursor also
turns off the setting. If a cursor is redeclared without being closed, the cursor continues to
use to the setting for seLECT’s.

RELATED FUNCTIONS
WITH CURSOR cursor

EXAMPLE

proc discard 100
dbi_count is an LDB variable
dbms COUNT dbi_count
dbms START 100
sql SELECT * FROM emp
if @dmrowcount ==
msg emsg “There are less than 100 employees.”
dbms START
return

170 JAM/DB: Release 5 May 92

STORE

STORE

set up a continuation file for a named or default cursor

i st R Ay L
SYNOPSIS

dbms [WITH CURSOR cursor] STORE ([FILE [fllename])
DESCRIPTION

When this command is used with a seLecT cursor, JAM/DBi maintains a copy of the result
rows in a temporary binary file. The use of a file permits an application to scroll forward and
backward in a seLECT set, even if the database has no native support for backward scrolling.

If filename is not given, JAM/DBi calls the standard C library routine tmpfile to create
and open a temporary binary file.

A continuation file remains open for the life of the cursor, or until the feature is turned off
with the command,

dbms [WITH CURSOR cursor] STORE

Executing the command without the keyword FILE closes and deletes the file and turns off
the feature for the named or default cursor. Closing the cursor also closes and deletes the
file. If a cursor is not closed but simply redeclared for another seLecT statement, the file is
cleared. Therefore, a continuation file holds the results of one seLECT statement only.

The use of a continuation file does not force the engine to return the entire seLECT set when
the seLEcT is executed. In its usual manner, JAM/DBi examines the number of occurrences
in the destination variable to determine the number of rows to fetch. Each time it fetches
rows from the engine by executing the sELECT or a pBMs CcONTINUE, JAM/DBi updates the
screen and appends the new data to the continuation file. If the application wishes to see
rows already fetched, JAM/DBi uses the continuation file to get the rows and update the
screen. If JAM/DBi reaches the end of the continuation file and the application executes
another oBMs contrnug, JAM/DBi will attempt to get more rows from the engine. When
the engine returns the no-more-rows code, JAM/DBi sets @dmretcode to the value of
DM_NO_MORE_ROWS. Similarly, if the application attempts to scroll back past the first row
in the continuation file, JAM/DBi sets @dmretcode to DM_NO_MORE_ROWS. See Ap-
pendix B. for a list of error and status codes. Write errors are not reported.

This command provides several advantages:

e ameans for displaying very large seLECT sets without keeping all rows in memory
atonce

May 92 JAM/DB: Release 5 171

lll. Reference Guide

e Dbetter response time for very large sELECT sets; since fetches are incremental it is
not necessary to get the entire sELECT Set at once

e ameans for forcing an engine to release a shared lock on a large seLEcT set

Consult the Notes for information on engine-specific scrolling issues.

RELATED FUNCTIONS
dbms [WITH CURSOR cursor] CONTINUE_BOTTOM

dbms [WITH CURSOR cursor] CONTINUE_TOP

dbms [WITH CURSOR cursor] CONTINUE_UP

EXAMPLE

dbms DECLARE emp cursor CURSOR FOR SELECT * FROM emp
dbms WITH CURSOR emp_cursor STORE FILE

dbms WITH CURSOR emp cursor EXECUTE

jpl mapkeys

proc mapkeys

vars SPGU(6) SPGD(6) APPl(6) APP2(6) XLATE (1)
cat SPGU ”“0x113”

cat SPGD ”0x114”

cat APP1l "0x6102”

cat APP2 ”0x6202”

cat XLATE ”2”

Set the control strings for APP1 and APP2 on
this screen to call DBi scroll functions
call sm putjctrl :APPl ”“~jpl scroll forward” 0
call sm_putjctrl :APP2 ”"~jpl scroll back” 0

Remap the logical page up and down keys to

APPl and APP2. (This should be reset on screen exit.)
call sm keyoption :SPGU :XLATE :APP1

call sm _keyoption :SPGD :XLATE :APP2

return

proc scroll forward

SPGU -> APPl = “jpl scroll_forward
dbms WITH CURSOR emp_cursor CONTINUE
return

172 JAM/DBi Release 5 May 92

STORE

proc scroll_ back

SPGD -> APP2 = ~jpl scroll_back

dbms WITH CURSOR emp cursor CONTINUE_UP
return

May 92 JAM/DBi Release 5 173

lll. Reference Guide

UNIQUE

suppress repeating values in selected columns

—— o e R S
SYNOPSIS

dbms [WITH CURSOR cursor] UNIQUE column [, column...]
DESCRIPTION

The following command suppresses repeating values in each named column of a seLecT set
when the values are in adjacent rows. Typically, this feature is set for a column named in an
ORDER BY clause.

The options are

WITH CURSOR cursor Names a declared seLecT cursor. If the clause is not used,
JAM/DB; uses the default seLECT cursor.

column Specifies a column name in the seLECT statement.
If no cursor is specified, JAM/DB; uses the default seLEcT cursor.

If the destination variable has a null edit, an occurrence containing a suppressed value is
blank, not null.

The setting is turned off by executing the peMs un1QUE command with no arguments. Clos-
ing a cursor also turns off the setting. If a cursor is redeclared without being closed, the cur-
sor continues to use to the setting for sELECT’S and CONTINUE’S.

RELATED FUNCTIONS
WITH CURSOR cursor

EXAMPLE

#Since several items may be ordered on the same invoice,
#suppress repeating invoice numbers when listing
foutstanding sales orders.

dbms DECLARE order_cursor CURSOR FOR \
SELECT invoice_no, id, desc, quan, cost FROM newsales \
ORDER BY invoice_no

dbms WITH CURSOR order_cursor UNIQUE invoice_no

dbms WITH CURSOR order_ cursor EXECUTE

174 JAM/DBi Release 5 May 92

WITH CONNECTION

WITH CONNECTION

.........................

SYNOPSIS
dbms WITH CONNECTION connection DBMS statement. . .
sql WITH CONNECTION connection SQL_statement ...

DESCRIPTION

This clause specifies a connection for the execution of the command, overriding the default
connection. connection must be declared and open.

Any sql statement may use this clause.
Some dbms statements may also use it. In particular,
dbms [WITH CONNECTION connection] DECLARE cursor CURSOR. ..

Once a cursor is declared it remains associated with the connection on which it was de-
clared. After declaring the cursor, the wITE coNNECTION clause should not be used in state-
ments that manipulate the cursor. However, the wITH conNECTION clause may be used on
statements that manipulate the default cursor on any declared connection. Therefore, the
following statements:

dbms
dbms
dbms
dbms
dbms
dbms
dbms
dbms
dbms
dbms
dbms
dbms

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION

connection
connection
connection
connection
connection
connection
connection
connection
connection
connection
connection
connection

ALIAS
CATQUERY ...
CLOSE CURSOR
CONTINUE
CONTINUE_BOTTOM
CONTINUE_TOP
CONTINUE_UP
FORMAT

OCCUR ...
START ...
STORE ...
UNIQUE ...

perform the request on the default seLECT cursor on the named connection.

Some engine-specific dbms commands may also support the wITH coNNECTION clause. See
the engine-specific Notes for more information.

SEE ALSO
JAMY/DB: Developer's Guide, page 55.

May 92 JAM/DB: Release 5 175

lll. Reference Guide

Engine-specific Notes.

RELATED FUNCTIONS

dbms [WITH ENGINE enginel DECLARE connection CONNECTION \
SERVER server [DB database]

dbms CONNECTION connection

dbms CLOSE CONNECTION [connection)
dbms CLOSE_ALL_CONNECTIONS

WITH CURSOR cursor

WITH ENGINE engine

176 JAM/DB: Release 5 May 92

WITH CURSOR

WITH CURSOR

use a named cursor for the duration of a statement

SYNOPSIS
dbms WITH CURSOR cursor DBMS_statement

DESCRIPTION

This clause specifies the name of a declared cursor on which JAM/DBi will execute the
dbms command.

Once a cursor has been declared, the application may manipulate or execute the cursor by
using the wITH CURSOR clause.

dbms WITH CURSOR cursor ALIAS

dbms WITH CURSOR cursor CATQUERY ...
dbms WITH CURSOR cursor CONTINUE
dbms WITH CURSOR cursor CONTINUE_ BOTTOM
dbms WITH CURSOR cursor CONTINUE_TOP
dbms WITH CURSOR cursor CONTINUE_UP
dbms WITH CURSOR cursor EXECUTE ...
dbms WITH CURSOR cursor FORMAT ...
dbms WITH CURSOR cursor OCCUR ...
dbms WITH CURSOR cursor START ...
dbms WITH CURSOR cursor STORE ...
dbms WITH CURSOR cursor UNIQUE ..

If the wITH cURsOR clause is not used with these statements, JAM/DB; uses the default
SELECT cursor. The application may also manipulate the default cursor by using the witH
CONNECTION clause.

Some engine-specific dbms commands may also support the wITH cONNECTION clause. See
the engine-specific Notes for more information.

SEE ALSO
JAM/DBi Developer's Guide, page 57.
Engine-specific Notes.

RELATED FUNCTIONS
dbms DECLARE cursor CURSOR FOR SQLstmt

May 92 JAM/DB: Release 5 177

Ill. Reference Guide

dbms CLOSE CURSOR cursor
WITH CONNNECTION cohnection
WITH ENGINE engine

178 JAM/DB: Release 5 May 92

WITH ENGINE

WITH ENGINE

use a named engine for the duration of a statement

SYNOPSIS
dbms WITH ENGINE engine DBi command. ..

DESCRIPTION

This clause specifies which engine JAM/DB; should use when executing a command. en-
gine must be an initialized engine. An engine is initialized by using the vendor_list
structure indbiinit.corbyacalltodm init.

engine must be one of the mnemonics associated with an initialized support routine.
The following commands accept an optional wITH ENGINE clause:
dbms WITH ENGINE engine DECLARE connection CONNECTION ...

Ifthe wrTh ENGINE clause is not used, JAM/DBi uses the default engine. If only one engine
is initialized, that engine is automatically the default. An application using two or more en-
gines may set the default engine with the peMs ENGINE command.

Once a connection is declared it remains associated with the engine on which it was de-
clared. After declaring the connection, the wITH ENGINE clause is no longer necessary or
valid in any statement except pBMs CLOSE CONNECTION if the application wishes to close
the default connection on an engine.

SEE ALSO
JAM/DBi Developer's Guide, 52.

RELATED FUNCTIONS
dbms ENGINE engine
WITH CONNECTION connection

WITH CURSOR cursor

May 92 JAM/DB: Releases 5 179

Library Functions

Chapter 15.
JAM/DB/ Library Reference

This chapter contains a reference page for each of the JAM library functions.

The library includes functions for initializing JAM/DB, and installing and de-installing an
engine at runtime. The functions are:

= dm_dbi_init: initialize JAM for use with JAM/DBi.
s dm_init: initialize an engine.
= dm reset: close all structures associated with an engine.
It includes functions for executing SQL and DBMS commands. The functions are
= dm _dbms: execute any pems command directly from C.
= dm_sql:execute any SQL statement directly from C.

» dm dbms noexp: like dm_dbms except no colon preprocessing is per-
formed.

= dm sql_noexp: like dm_sql except no colon preprocessing is per-
formed.

It provides a function for simulating colon-plus processing from C. It is
= dm_expand

It provides a function for getting the full text of the last executed dbms or sql command.
Itis

= dm getdbitext
The library also provides functions for handling binary values. They are
s dm bin_create_occur

= dm bin_delete occur

May 92 JAM/DBi Release 5 181

lll. Reference Guide

» dm bin get_dlength
» dm bin_get_occur

m dm bin length

= dm bin_max_occur

» dm bin set_dlength

Developers may use these functions in any C hook function. Each reference page has the
following sections:

= A synopsis of the function, including a listing of available keywords and
arguments.

s A description of the function.
s Alist of related functions.

s Anexample.

182 JAM/DBi Release 5 May 92

Library Functions: dm_bin_create_occur

dm_bin_create_occur

get or allocate an occurrence in a binary variable

R

SYNOPSIS

char *dm_bin_create_occur (variable, occurrence)
char *variable;
int occurrence;

DESCRIPTION

If the application has created a binary variable with peMs BINaRy, this routine gets the spe-
cified occurrence from the variable. If the occurrence has not been allocated, this routine
will allocate it. Note that occurrence must be less than or equal to the number of occur-
rences specified in the pBMs BINARY Statement.

RETURNS

0 if the variable is not found or the occurrence number is not valid
else a pointer to an occurrence in a binary variable

VARIANTS
dm bin_get_occur (variable, occurrence) ;
RELATED FUNCTIONS
dbms BINARY variable[occ)] (length) [, variable [occ] (length) ...]1]

dm _bin_delete occur (variable, occurrence) ;

dm bin_get_dlength (variable, occurrence) ;

dm bin_length (variable) ;

dm_bin_max_occur (variable) ;

dm _bin_set_dlength (variable, occurrence, length) ;

May 92 JAM/DB: Release 5 183

lIl. Reference Guide

dm_bin_delete occur

delete an occurrence in a binary variable

NI

O R S b A R R e R e e

SYNOPSIS

void dm_bin_delete_occur (variable, occurrence)
char *variable;
int occurrence;

DESCRIPTION

If the application has created a binary variable with peMs BinaryY and the occurrence has
been allocated, this routine frees the specified occurrence and sets the pointer to the occur-
rence to 0. If the occurrence has not been allocated, the routine does nothing.

RETURNS
Nothing.
RELATED FUNCTIONS
dbms BINARY [varlable [, variable ...]

dm bin_create_occur (variable, occurrence) ;

dm bin_get_dlength (variable, occurrence) ;

dm bin_get occur (variable, occurrence) ;

dm bin_length (variable) ;

dm_bin_max_occur (variable) ;

dm bin_set_dlength (variable, occurrence, length) ;

184 JAM/DB: Release 5 May 92

Library Functions: dm_bin_get dlength

dm_bin_get dlength
get the length of an occurrence in a binary variable

S e R

SYNOPSIS

unsigned int dm bin_get_dlength (variable, occurrence)
char *variable;
int occurrence;

DESCRIPTION

If the application has created a binary variable with pemMs BInaRry and the occurrence has
been allocated, this routine returns the length of the contents in the specified occurrence.

RETURNS
0 if variable or occurrence is not found,
else the length of the occurrence
RELATED FUNCTIONS
dbms BINARY [(variable [, variable ...]}

dm bin_create_occur (variable, occurrence) ;

dm bin_delete_occur (varlable, occurrence) ;
dm_bin_get_occur (variable, occurrence) ;

dm _bin length (variable) ;

dm_bin_max occur (variable) ;

dm bin_set_dlength (varlable, occurrence, length) ;

May 92 JAM/DB; Release 5 185

Ill. Reference Guide

dm_bin_get occur
get the data in an occurrence of a binary variable

----- o R, A e e A e

SYNOPSIS

char *dm bin_get_occur (variable, occurrence)
char *variable;
int occurrence;

DESCRIPTION

If the application has created a binary variable with beMs BINARY and the occurrence has
been allocated, this routine gets the specified occurrence from the variable.

RETURNS

0 if the variable or occurrence is not found
else a pointer to an occurrence in the variable

VARIANTS

dm bin_create_occur (variable, occurrence) ;
RELATED FUNCTIONS

dbms BINARY [variable [, variable ...]

dm bin_delete_occur (variable, occurrence) ;
dm_bin _get_dlength (variable, occurrence) ;

dm bin_length (variable) ;

dm_bin_max_occur (variable) ;

dm bin_set_dlength (variable, occurrence, lengih) ;

186 JAM/DBi Release 5 May 92

Library Functions: dm_bin_length

dm_bin_length
get the maximum length of an occurrence in a binary
variable

SYNOPSIS

unsigned int dm bin_length (variable)
char *variable;

DESCRIPTION

If the application has created a binary variable with pBMs BINARY, this routine gets the max-
imum length of a single occurrence in the variable. To get the length of an occurrence’s con-
tents, use dm_bin_get_dlength.

RETURNS

0 if the variable is not found
else the length of the variable

RELATED FUNCTIONS
dbms BINARY [variable [, variable ...)

dm bin _create_occur (variable, occurrence) ;

dm bin_delete_occur (variable, occurrence) ;

dm bin_get_dlength (variable, occurrence) ;

dm bin_get_occur (varlable, occurrence) ;

dm bin_max_occur (variable) ;

dm bin_set_dlength (variable, occurrence, length) ;

May 92 JAM/DB: Release 5 187

IIl. Reference Guide

dm_bin_max_occur

get the maximum number of occurrences in a binary
variable

SYNOPSIS

int dm bin_max_occur (variable)
char *variable;

DESCRIPTION

If the application has created a binary variable with bBMs BINARY, this routine gets the max-
imum number of occurrences in the variable.

RETURNS

0 if variable is not found
else the number of occurrences in the variable.

RELATED FUNCTIONS
dbms BINARY {variable [, variable ...]

dm bin_create_occur (varfable, occurrence) ;

dm bin_delete_occur (varliable, occurrence) ;

dm bin_get_dlength (variable, occurrence) ;

dm bin_get_occur (variable, occurrence) ;

dm bin_length (variable) ;

dm bin_set_dlength (variable, occurrence, length) ;

188 JAM/DB; Release 5 May 92

Library Functions: dm_bin_set dlength

dm_bin_set dlength

SYNOPSIS

void dm bin_set_dlength (variable, occurrence, length)
char *variable;

int occurrence;

unsigned int length;

DESCRIPTION

If the application has created a binary variable with peMs BINARY, this routine sets the max-
imum length of a single occurrence in the binary variable. length may be less than or greater
than the variable’s declared length.

RETURNS
Nothing.
RELATED FUNCTIONS
dbms BINARY [variable [, variable ...]

dm bin_create occur (variable, occurrence) ;
dm bin_delete_occur (variable, occurrence) ;
dm bin get_dlength (variable, occurrence) ;
dm bin_get_occur (variable, occurrence) ;
dm bin length (variable) ;

dm_bin_max occur (variable) ;

May 92 JAM/DBi Release 5 189

lli. Reference Guide

dm_dbi_init
initialize JAM for JAM/DB;

SYNOPSIS
void dm dbi_init ()

DESCRIPTION

JAM must be initialized for use with JAM/DBi, This function tells JAM the class of error
messages for JAM/DB: and how to handle the JAM/DB: JPL commands dbms and sql.

In the distributed source files jmain.c and jxmain.c, this function is called in the
initialize routine. Developers modifying these source files or using a custom execu-
tive, may call this routine at another time. dm dbi_init should be called before
sm_initcrt to ensure that the message file is loaded properly.

RETURNS
Nothing

190 JAM/DB: Release 5§ May 92

Library Functions: dm_dbms

dm_dbms

execute a DBMS command directly from C

SYNOPSIS

int dm _dbms (arg)
char *arg;
DESCRIPTION
Use this function to execute any peMs command directly from C.
First arg is examined for the wITH ENGINE Or WITH CONNECTION clause. If it is not used,
dm_dbms assumes the default engine and connection. Next the colon preprocessor ex-

amines arg for colon variables. Finally, arg is passed to the appropriate routine for handing
peMs commands.

After executing the requested command, JAM/DB: updates all global status and error vari-
ables (Rdm).

If the application has installed an entry function with bEMs ONENTRY, an exit function with
DBMS ONEXIT, or an error handler with peMs onexrT.the installed function will be called
for commands executed through the function dm_dbms.

RETURNS

0 is no error

else an error code from the default or installed error handler
RELATED FUNCTIONS

dm_dbms_noexp (arg):

dm_sql (arg):
EXAMPLE

int start_up ()
{

int retcode;

retcode = dm_dbms (”ONERROR CALL do_error”);
if (retcode)

{
sm_emsg (”"Cannot install the application error handler.”)
return 0;

May 92 JAM/DB: Release 5 191

lll. Reference Guide

}
dm_dbms (”DECLARE cl CONNECTION FOR USER :user PASSWORD :password”);

return 0;

192 JAM/DBi Release 5 May 92

Library Functions: dm dbms noexp

dm_dbms_noexp

execute a DBMS command without colon preprocessing

AR A A

R R R

SYNOPSIS

int dm_dbms_noexp (arg)
char *arg;

DESCRIPTION

This function is identical to dm_dbms except that colon preprocessing is NOT performed
on arg.

RETURNS

0 is no error
else a return code from an installed or default error handler

RELATED FUNCTIONS
dm _dbms (arg):

e

dm_expand (arg):
dm sql (arg):;
dm sql_noexp (arg);

May 92 JAM/DBi Release 5 193

1ll. Reference Guide

dm_expand
format a string for an engine
SRR ¥ R S

SYNOPSIS

int dm_expand (engine, data, type, buf, buflen, edit)
char *arg;

char *data;

int type;

char *buf;

int *buflen;

char *edit;

DESCRIPTION

Use this function to format a string for a particular engine and JAM type. The function co-
pies the formatted string to a buffer provided by the program.

engine is the name of an initialized engine. If this argument is null, JAM/DB; uses the de-
fault engine.

data is the string to format. Use a JAM library functions such as sm_get field to get the
value of a field or LDB entry.

type is one of the JAM types defined in smedits. h:

e DT_CURRENCY

¢ DT_DATETIME

e DT_YESNO

e FT_CHAR

e FT_DOUBLE

e FT_INT

e FT_LONG

e FT_FLOAT

e FT_SHORT

bufis abuffer provided by the program. The program is responsible for allocating a buffer
large enough for the formatted string. buflerr points to the size of the buffer. Upon return

194 JAM/DB: Release 5 May 92

Library Functions: dm_expand

from dm_expand, the value contained in the integer will be the length of the formatted
text. The program can compare this value with the allocated length to ensure that truncation
did not occur.

edit is a date-time edit string describing data. It is required when type is DT_DATETIME,
Use sm_edit_ptr to get a format from a date-time field, or construct a format string us-
ing JAM ’s date-time tokens. See sm_dt ime for more information.

RETURNS

0 is no error,

-1 if engine is invalid,

-2 if arguments are invalid (illegal JAM type, buflen <= 0, buf not allocated, or
DT_DATETIME was used without a datetime edit)

-3 formatting routine failed

RELATED FUNCTIONS
int dm _dbms_noexp (arg);

int dm _sql_noexp (arg):
EXAMPLE

#include “smdefs.h”
#include “smedits.h”
#include ”“smerror.h”

#define FLD_NOT FOUND-1;
#define MALLOC_ERROR -2;
#define EXPAND_ERROR -3;
ftdefine NO_FORMAT -4;

}int
formatter (src_name, dst_name, engine, jamtype)
char *src name, *dst_name, *engine;
int jamtype;
{
int dst_len, src_len, prec, ret;
char *edit, *dst_buf, *src_buf;

/* Get data. */
/* Allocate a buffer based on the length of the source */
/* text and call getfield. */
if ((src_len = sm n dlength (src_name)) == -1)
return FLD_NOT_FOUND;

May 92 JAM/DBi Release 5 195

11l. Reference Guide

if

((src_buf=malloc(src_len + 1)) == 0)
return MALLOC_ERROR;

sm_n_getfield (src_buf, src_name);

/* If no type was supplied, get it from the source field.*/

if
{
}
/*
if
{

if

if

(jamtype == 0)

jamtype = sm n ftype(src_name, &prec);

If type is DT _DATETIME get format from field. */
(jamtype == DT_DATETIME)

edit = sm n_edit_ptr (src_name, UDATETIME);
if (edit == 0)
{
edit = sm n_edit_ptr (src_name, SDATETIME);
if (edit == 0)
return NO_FORMAT;
}
edit = edit +2;

Allocate a buffer based on the length of the
desination field.*/

((dst_len = sm n_length(dst_name)) == 0)
return FLD_NOT_FOUND;
((dst_buf=malloc(dst_len + 1)) == 0)

return MALLOC ERROR;

/* Call dm expand. */
ret = dm_expand
(engine, src_buf, jamtype, dst_buf, &dst_len, edit);

196

if
{

(ret == 0)

/* Write formatted text to destination field.
sm n_putfield (dst_name, dst_buf);

/* Free buffers. *x/

free (src_buf);
free (dst_buf);

JAM/DB: Release 5

*/

May 92

Library Functions: dm_expand

/* If formatted string was too long for destination field, */

/* ret will be greater than 0. If the format failed, it will */

/* be less than 0. x/
return ret;

}

May 92 JAM/DB: Release 5 197

111, Reference Guide

dm_getdbitext

e last executed dbms or sql command

NS R
SYNOPSIS

char *dm getdbitext
DESCRIPTION

Use this function to get the full text of the last executed dbms or sql command. This in-
cludes all commands executed from JPL with dbms or sql, or executed from C with
dm_dbms, dm_dbms_noexp,dm sql,ordm_sql noexp.

The text pointed to by the pointer returned by dm_getdbitext has a limited duration. If
the application needs this information, it should call this function immediately after execut-
ing a JAM/DBi command. The program should process the returned string or copy it to a
local variable before making additional function calls.

This is the same string that is passed to the first argument of an installed entry, error or exit
handler, except that the error or exit handler is limited to 255 characters.

RETURNS
A pointer to the last executed JAM/DBi command

RELATED FUNCTIONS

dbms ONERROR [JPL enirypoint | CALL function]
dbms ONEXIT [JPL entrypoint | CALL function]
EXAMPLE
int
logfunc (stmt, engine, flag)
char *stmt;
char *engine;
int flag;
{
FILE *fp;
if (strlen(stmt)} >= 255))
stmt = dm getdbitext();
fp = fopen (”“dbi.log”, "a”):
fprintf (fp, ”%s\n”, stmt);
fclose (fp):;
return O;

198 JAM/DB: Release 5 May 92

Library Functions: dm init

dm_init
initialize JAM/DB: to access a specific database engine

R o AR

SYNOPSIS

int dm_init (engine, support routine, options, arg)
char *engine;

int support_routine;

int options;

char *arg;

DESCRIPTION

Before an application can access a database, JAM/DBi must perform an engine initializa-
tion. The initialization adds the engine name to the list of available engines, allocates a data
structure for the engine, calls the engine’s support routine to initialize the data structure, and
sets case and error handling for the engine. Developers may use the vendor_1ist struc-
ture in dbiinit . c to initialize an engine at startup or else use dm_init to initialize an
engine at a later point in the application.

The name for engine is chosen by the developer. If an application uses two or more engines,
the application will use the mnemonic engine to indicate a particular DBMS. Most of the
examples in the guide use a vendor name as the mnemonic, for example sybase or
oracle, but any character string that is not a keyword is valid. Keywords are listed in Ap-
pendix A.. If engine is already installed, dm_init simply returns 0.

The name of support_routine is documented in the dbiinit . c file provided with the
distribution. The file name is usually in the form dm_vendorsup where vendor is an ab-
breviated vendor name. Some examples are

s dm sybsup
s dm _orasup
= dm_intsup

options sets some defaults for the engine. It is composed of one or two flags: case and
error. They may be “or-ed.”

The option case sets the case-handling feature of JAM/DB;. It determines how JAM/DBi
uses case to map column names to JAM variables when executing a seLecT. The values are

s DM DEFAULT CASE Defaults to DM PRESERVE_CASE.
Another may be set by JYACC in the sup-
port routine.

May 92 JAM/DB: Release 5 199

1Il. Reference Guide

» DM _PRESERVE_CASE Use case exactly as returned by the en-
gine.

= DM FORCE_TO_UPPER CASE Force all column names returned by an
engine to upper case. Therefore, the appli-

cation should use upper case names for
JAM variables.

= DM _FORCE_TO_LOWER CASE Force all column names returned by an
engine to lower case. Therefore, the appli-
cation should use lower case names for
JAM variables.

The option error sets the behavior of the default error handler. If none is given, the default
isDM_DEFAULT_DBI_MSG. The values are

= DM_DEFAULT_DBI_MSG Restrict the default error handler to using
generic JAM/DBi messages for all error
messages.

« DM_DEFAULT_ENG_MSG Allow the default error handler to use en-
gine-specific messages when an error oc-
curs,

arg is provided for future use. It should be set to 0.
Once the engine has been initialized, the application may declare a connection on it.
RETURNS

0 if there is no error,
otherwise a return code from the support routine.

RELATED FUNCTIONS
dm reset (name);

EXAMPLE

#include “dmerror.h”
tinclude “smusrdbi.h”

int retcode;

retcode = dm_init(“oracle”,
dm_orasup,
DM_FORCE_TO_LOWER_CASE | DM_DEFAULT_DBI_MSG,
0);

200 JAM/DB: Release 5 May 92

Library Functions: dm_reset

dm_reset
disable support for a named engine
SYNOPSIS

int dm_reset (name)
char *name;

DESCRIPTION
An application may call this function to disable support for a named engine.

If the routine executes successfully, it performs the following steps:
1. Closes all active connections on the engine.
2. Calls the support routine to perform any engine-specific reset processing.
3. If name was the default engine, sets the default engine to 0.
4, Frees all data structures associated with the engine.

Once an engine has been reset, the application cannot connect to the engine unless it initial-
izes the engine withdm_init.

RETURNS
0 if the database engine was successfully disabled.
-1 if name was not a valid engine name.
RELATED FUNCTIONS

dm init (engine, support _routine, case, args);

EXAMPLE

dm_reset (”oracle”);

May 92 JAM/DB: Release 5 201

Il Reference Guide

dm_sql
execute a SQL command directly from C
SYNOPSIS

int dm_sql (arg)
char *arg;

DESCRIPTION
Use this function to execute any SQL command directly from C.

First arg is examined for the wiTh connecrIoN clause. If it is not used, dm_sql assumes
the default connection. Next the colon preprocessor examines arg for colon variables. Final-
ly, arg is passed to the appropriate routine for handing soL. commands.

After executing the requested command, JAM/DBi updates all global status and error vari-
ables (Rdm).

If the application has installed an entry function with pBMs ONENTRY, an exit function with
DBMS ONEXIT, or an error handler with peMs oNex1T.the installed function will be called
for commands executed through the function dm_sql.

RETURNS

0 is no error,

else the return code from the default or an installed error handler
RELATED FUNCTIONS

int dm dbms (arg);

EXAMPLE

int select_ssn ()

{

int retcode;
retcode = dm sql (”SELECT * FROM emp WHERE ssn LIKE :+ssn”);
return retcode;

202 JAM/DBi Release 5 May 92

Library Functions: dm_sgl noexp

dm_sql_noexp

execute a SQL command without colon preprocessing

SYNOPSIS

int dm_sql noexp (arg)
char *arg;

DESCRIPTION

This function is identical to dm_sql except that colon preprocessing is NOT performed on
arg.

RETURNS

0 is no error,
else an code from the default or an installed error handler

RELATED FUNCTIONS
int dm _dbms (arg):;
int dm_dbms_noexp (arg);
int dm expand (arg):
int dm_sql (arg);

May 92 JAM/DBi Release 5 203

Utilities

Chapter 16.
JAM/DB;: Utility Reference

Unlike the JAM utilities, the JAM/DB: utilities £2tbl and tb12f are not distributed as
executables. Libraries, object code, and a makefile for £2tbl and tb12f are included
with the JAM/DB: distribution. Developers must edit the makefile to describe the environ-
ment and to supply the paths to the JAM, JAM/DB:, and database installations.

The rest of this chapter contains reference pages for the JAM/DB; utilities:
s f£2tbl: create a database table from a JAM form
» tbl2f: create a JAM form from a database table
Each reference page has the following sections:
» A synopsis of the utility, including a listing of options and arguments.
m A description of the utility.

» Examples.

May 92 JAM/DB; Release 5 205

lll. Reference Guide

f2tbl

create a database table from a JAM form

N e ue e R S AL, e
B R S e RS A RN N A R

SYNOPSIS

f2tbl [-il \
[(-u user [-p password]] [-s server] [-d database) [-y dictionary]\
[-t tablename] ([-1{l|u}] [-c outfile] (-£] screen .

OPTIONS

-i Run utility in interactive mode. This opens windows where you may enter any
information not supplied on the command line.

-u Connect with the given user name.

-p Connect with the given password.

-5 Connect to the named server.

—d Connect to the named database.

-y Connect using the named dictionary.

-t Use tablename as the name of the database table. By default, the table name
is the screen name minus SM_FEXTENSION.

-1 Convert all field names to lower or upper case column names in the cReaTE
statement. For case, use —11 for lower or —1u for upper. The default is to use
the case of the field names.

- Write the SQL creaTE statement(s) to the named ASCII file. Do not create the
table on the database.

-f Overwrite an existing database table or script file. To overwrite an existing

table, £2tb1 executes a SQL statement to drop the existing table before creat-
ing the new one. All rows in the old table will be lost when the table is
dropped.

If no options or invalid options are given, the utility displays a usage message and a list of
the valid options.

DESCRIPTION

Use this utility to create a database table or a script file for one or more JAM screens. If you
are converting many screens, interactive mode is recommended.

206 JAM/DBi Release 5 May 92

Utility: f2tbl

For each screen, the utility defines a table with a column for each named field on the screen.
The column’s datatype is engine-specific and is based on the field’s JAM type. If a field has
a character JAM type, the utility calculates the column length by examining the field's
edits. Based on the field’s null field edit, the utility declares whether or not the column ac-
cepts nulls.

The —c flag is recommended, particularly for new users. With this flag, £2tbl writes the
crREATE statement to an ASCII file where it may be examined and edited before it is ex-
ecuted.

Some of the logon flags are not supported on some engines. If you use an unsupported logon
flag, the utility ignores it and the argument. See the engine-specific Notes for a list of the
supported logon options.

If £2tbl cannot create the table, it displays either a JAM/DBi or engine error message.

Converting Fields to Column Definitions

COLUMN NAME

f£2tbl uses the field name as the column name. If a field is unnamed, £2tb1 ignores it.
Please note that some valid JAM field names may be not be valid column names. For exam-
ple, JAM allows the characters $ and . in JAM field names but many engines do not permit
these characters in column names. If a name is illegal, £2tb1 will display the engine’s error
message when it attempts to create the table.

MATCHING A JAM TYPE TO AN ENGINE DATATYPE

A field has exactly one JAM type. Since a field may have more than one of the qualifying
PF4 characteristics, JAM uses precedence rules when determining the JAM type. You may
determine a field’s JAM type by looking at its summary screen while inside the Screen Edi-
tor.

May 92 JAM/DB: Release 5 207

|ll. Reference Guide

Field Summary

AAAAAAAA

Name field for f2tbl Char Edits

Lengthzg. (Max) Onscreen Elems 1 pistance
Display Att: WHITE UNDLN HILIGHT

Field Edits:
Other Edits: TYPE USR-DT/TM SYS-DT/TM CURRENCY

letters

numeric

1 2 3

Figure 32: Field Summary Window (PF5 in draw mode). Use the summary screen to de-
termine a field’s JAM type. A TYPE edit has the highest priority, then a date time edit,
then a currency edit, and finally a character edit.

Summary | Setting of Field Characteristic
Keyword (PF4 menu In draw mode) Submenu Option JAM Type
TYPE type char string FT_CHAR
(C types for structures) int FT_INT
unsigned int FT_UNSIGNED
short int FT_SHORT
long int FT_LONG
float FT_FLOAT
double FT_DOUBLE
zoned dec. FT_ZONED
packed dec. FT_PACKED
USR-DT/TM | misc. edits date or time DT_DATETIME
SYS-DT/TM
CURRENCY | misc. edits currency DT_CURRENCY
Char Edits| char edits digits only FT_UNSIGNED
yes/no field DT_YESNO
numeric FT_DOUBLE

Figure 33: The keywords on the summary window indicate which of the field characteris-
tics has set the field’s JAM type.

If the word TYPE appears on the field summary window, you must press the PF4 key and
choose type to open the C type submenu. The setting on the submenu indicates the JAM
type. For example, if double is chosen on the submenu, the JAM type is FT_DOUBLE.
Figure 33 shows the C type names and the corresponding JAM types.

208 JAM/DB: Release 5 May 92

Utility: f2tbl

If the keyword TYPE is not on the summary window, the JAM type is immediately deter-
minable. With the keyword USR-DT/TM or SYS-DT/TM, the JAM type is
DT_DATETIME. Otherwise, with the keyword CURRENCY, the JAM type is
DT_CURRENCY. If none of those keywords appear, the character edit may apply: with
digits only the JAM type is FT_UNSIGNED, with yes/no field the type is
DT_YESNO, or with numeric the type is FT_DOUBLE.

If none of the above edits are set, but the field has a word-wrapped edit, the JAM type is
F'T_VARCHAR. For all other fields, the JAM type is FT_CHAR.

Since engines uses different names for datatypes, the mapping of JAM types to engine data-
types is listed in the engine-specific Notes.

CALCULATING THE COLUMN LENGTH

If the field has the JAM type FT_CHAR, FT_VARCHAR, or DT_YESNO, £2tbl attempts
to use the field’s length as the column length. For all other JAM types, a length is not calcu-
lated because the JAM type is mapped to an engine datatype with a default length.

For FT_VARCHAR fields (word-wrapped), the calculated length is the maximum shifting
length times the total number of occurrences in the array. For FT_CHAR and DT_YESNO
fields, the calculated length is the maximum (shifting) length of the field.

If the calculated length in either case is greater than the length permitted by the engine,
£2tbl will use the maximum permitted length.

DEFINING A COLUMN AS NULL OR NOT NULL

If the field has a null field edit, the column is defined as permitting nulls. On some engines,
this is the default. Others may explicitly use the keyword NULL.

If the field does not have a null field edit, the column is defined as NOT NULL.

OUTPUT
£2tbl builds a SQL creaTE statement in a form similar to the following:

CREATE TABLE {ablename (
column_1 datatype [(length)] [NOT] [NULL] ,
column_2 datatype ((length)] ([NOT] [NULL] ,

column_n datatype [(length)] [NOT] NULL]

May 92 JAM/DB: Release 5 209

1ll. Reference Guide

Example
Assume the screen named inventory has the following named fields:

s id_no

® product_name
® price

s description

The figures below show the field summary window for each field. A sample column decla-
ration is also shown for each field. Since column datatypes are engine-specific, the names
used here are solely for illustration.

Field Summary

AAAAAAAN

Name id no Char Edits Sigit
Length& (Max) Onscreen Elems 3— Distance (Max Occurs1l15)

Display Att: WHITE UNDLN HILIGHT
Field Edits:
Other Edits: TYPE

Figure 34: Field id_no. The type edit is set to char string to override the dig-
its only character edit. Therefore, its JAM type is FT_CHAR.

The column definition would appear like the following
id_no char (11) NOT NULL

Since the field does not have a word-wrapped edit, the number of occurrences is ignored. In
addition, since the field does not have a null field edit, the column is defined as not allowing
null values.

210 JAM/DB: Release 5 May 92

Utility: f2tbl

Field Summary

AAAAAAAAN

Name product_name Char Edits unfilt
Lengthl8_ (Max25) Onscreen Elems l_ Dpistance (Max Occurs 15)

Display Att: WHITE UNDLN HILIGHT
Field Edits:
Other Edits:

Figure 35: Field product_name. Its JAM type is FT_CHAR.
The column definition would appear like the following
product_name char (25) NOT NULL

Note that the column length is 25 which is the maximum shifting length, rather than 15
which is the onscreen length. Since the field does not have a word-wrapped edit, the number
of occurrences is ignored. In addition, since the field does not have a null field edit, the col-
umn is defined as not allowing null values.

Field Summary

AAAAAAANAN

Name price Char Edits aumeric
Length1_1 (Max) Onscreen Elems 1l _ Distance (Max Occursl5)

Display Att: WHITE UNDLN HILIGHT
Field Edits:
Other Edits: CURRENCY

Figure 36: Field price. Its JAM type is DT_CURRENCY.

If the engine had a datatype called money, the column definition would appear like the fol-
lowing

price money NOT NULL

On most engines, a currency datatype has a predefined length. In this case, £2tbl ignores
the field’s length. If the engine does not have a currency type, £2tbl may use a type such
as NUMERIC or FLOAT and it may calculate a length or precision.

Since the field does not have a null field edit, the column is defined as not allowing null
values.

May 92 JAM/DB: Release 5 211

Ill. Reference Guide

Field Summary

AAAAAANAAN

Name description Char Edits Bnfilt
Lengthﬂ- (Max) Onscreen Elems 2 Distance (Max Occurs)

Display Att: WHITE UNDLN HILIGHT
Field Edits: WDWRP
Other Edits: NULL

Figure 37: Field description. ts JAM type is FT_VARCHAR.
The column definition would appear like the following
description char (250)

Note that the column’s length is the field’s length 50 multiplied by the number of elements
5, and therefore 250. In this case, the field’s number of occurrences affected the column
length because the word-wrap edit was set. Since the field also has a null field edit, the col-
umn is defined as permitting null values. Some engines may also use the keyword NULL at
the end of the definition.

The resulting create statement would appear similar to the following:

CREATE TABLE inventory (
id no (11) NOT NULL,
product_name char (20) NOT NULL,
price money NOT NULL,
description char (250)

)

SEE ALSO
Engine-specific Notes

212 JAM/DB: Release 5 May 92

Utility: tbl2f

tbl2f

create a JAM screen from a database table

T D O N A Rt

SYNOPSIS

tbl2f [-i] \
[(-u user [-p password]] [-s server] [-d database) [-y dictionary]\
(-j Jpl_template] [-t screen_tempiate] \
[~k Index_key) [-1 {u|l}] [-e ext] [-f] table [table...]

OPTIONS

-i Run utility in interactive mode. This opens windows where you may enter any
information not supplied on the command line.

-u Connect with the given user name.

-p Connect with the given password.

-5 Connect to the named server.

—d Connect to the named database.

-y Connect using the named dictionary.

-3 Use the named file as a template for creating the JPL screen module and assign-

ing control strings. The utility looks in the current directory and in the SMPATH
directories for the named file. The default template is dbexm. jpl.

-t Use the named file as a template for creating the JAM screen.

-k Use the named column as the index key in the JPL procedures. If this flag isnot,
tbl2£ chooses an index by querying the engine’s system tables. If it cannot
find one for the table, it defaults to the first column in the table.

-1 Force the case of column names in the JPL procedures and the field names on
the screen to upper (—1u) or lower (—11) case. The default is to preserve case.

-e Append ext as the extension to the screen files. The default is
SMFEXTENSION, typically JAM.

-f Overwrite an existing screen file.

If no options or invalid options are given, the utility displays a usage message and a list of
the valid options.

DESCRIPTION

Use this utility to create a JAM screen for each named database table. If you are converting
many tables, interactive mode is recommended.

May 92 JAM/DB: Release 5 213

lll. Reference Guide

In each screen, tb12 £ will create the following
s A field for each column in the table, with up to 250 fields created in total.

s Display text on the screen identifying the name of the screen and the name
of each field.

s Control strings to call the JPL procedures.
» JPL procedures to query and update the table.
The following topics are covered in the remaining sections:

s Controlling the case of field names and predicting field characteristics on
the created screen (page 214).

m Using a JPL template file to change and add procedures in the JPL screen
module (page 216).

s« Using a JPL template file to put control strings on the created screen (page
223).

s Using a screen template to change the default screen characteristics (page
225).

Fields

The utility creates a field for each column in the table, with up to 250 fields created in total.
Field characteristics are assigned according to the column’s data type. A field is named for
its column in the table. The field’s length is taken from the column definition.

FIELD NAMES

When tbl 2 £ creates a field, it names the field for a database column. By default, the utility
uses case exactly as returned by the database. On engines where column names are always
upper case, for example ORACLE, the utility will create upper case field names by default.
On engines where columns names may be in either or mixed case, the utility will create field
names using the exact case of the column name.

The utility provides the option of forcing case to upper or lower. This is done with the -1
flag on the command line or with the Opt i ons menu in interactive mode. Please note that
this option forces the case of both onscreen field names and the column names used in the
SQL statements in the JPL procedures.

To the left of each field, the utility displays the field name. Note that if the field name con-
tains any draw field symbols, such as the underscore, those characters will be converted to
fields when the screen is edited.

While almost all column names are valid JAM identifiers, tb12 £ does not verify if a col-
umn name is a valid JAM field name and thus does not report an error for bad field names.

214 JAM/DB: Release 5 May 92

Utility: tbl2f

You may easily verify the validity of field names by using the JAM utility £2asc to create
an ASCII version of the screen file and then run £2asc to convert it back to binary. Since
f2asc validates field names before re-creating the binary file, it will report any invalid
field names. If it does, you may use a text editor to quickly edit the £2asc ASCII file and
then convert the file to a binary screen file. If the screen has JPL procedures referencing the
fields, you should change only the references to the invalid field name and not change the
references to the column name. For example, if the table inventory contained three col-
umns id#, product, and description, the field names product and
description are valid, but the field name id# is not. If the field were renamed id_no,
a JPL statement like the following

sql SELECT id#, product, description FROM inventory \
WHERE id# = :+id#
should be edited to
dbms ALIAS id# id_no

sql SELECT id#, product, description FROM inventory \
WHERE id# = :+id no

FIELD CHARACTERISTICS

When tb12£ creates a field, it assigns field characteristics based on the column’s datatype
and characteristics. The distributed JPL file dbt2£ . jp1, where db is an abbreviated ven-
dor name, equates engine datatypes with JAM types. For example, an engine datatype such
as money is typically treated as the JAM type DT_CURRENCY. An engine datatype char
is usually treated as the JAM type FT_CHAR. See the engine-specific Notes for a listing.

Based on the JAM type, the field is assigned the following edits:

May 92 JAM/DBi Release 5 215

lll. Reference Guide

Column Type Assigned

Equivalent to: Field Characteristics:

JAM Type -C.TyT; (non-defau) | misc. edits char edits
FT_SHORT short int digits only
FT_INT int digits only
FT_UNSIGNED | unsigned int digits only
FT_LONG long int digits only
FT_FLOAT float numeric
FT_DOUBLE double numeric
DT_DATETIME date time |unfiltered
DT_CURRENCY currency unfiltered
FT_CHAR unfiltered
FT_VARCHAR unfiltered

Since engines uses different names for datatypes, the mapping of datatypes to JAM types is
listed in the engine-specific Notes.

The length of the field depends on the field’s JAM type.

= An FT_CHAR or FT_VARCHAR field is assigned the length of the col-
umn, up to the maximum length of 255.

s ADT_DATETIME column is assigned a default length of 20.

s A numeric type column is assigned an engine-specific length and preci-
sion defined in dbt 2£ . jpl.

tbl2f supports the engine’s standard datatypes. Some engines permit developers to define
their own datatypes. To change the JAM type of a standard datatype or to supply one for a
user datatype, you must modify dbt 2 £ . jpl. After editing the file, yon must recompile the
tbl2f executable so that the new assignments are used.

JPL Procedures

As a part of the distribution, JAM/DBi supplies a template of JPL procedures. It uses this
template to create a JPL screen module. The default template dbexm. jpl builds proce-
dures to fetch, update, insert, and delete rows in the table.

These table-specific procedures are created with the use of special tbl2 £ variables which
begin with a double colon (: :). The tb12£ variables provide strings or statements to help
perform some commonly useful tasks.

There are 18 tb12 £ variables. The variable names are composed of a root and a suffix. The
6-character root describes an action such as : : CLR _ for clear or : : QBEX for query by ex-

216 JAM/DBi Release 5 May 92

Utility: tbi2f

pression. The 3-character suffix describes which columns the action will involve. The roots
and suffixes are described in the tables below.

Root Description

: :CLR_ | for clearing the onscreen value of one or more columns in the form
cat column

::COND | for a list of conditions in the form
column = :+column [:CONAND column = :+column ...]

::LIST | for a list of one or more column names in the form
column [:LISTAND column ...]

: :SET_ | for a list of one or more onscreen column values in the form
t:+column [:SET_AND :+column ...]

::VAL_ | for a list of one or more onscreen column values in the form
:+column [:VAL AND :+column ...}
on some engines this is equivalent to SET_

: :QBEX | for if block(s) that build a query-by—expression clause in the form

if (column != #”)

{
CAT QBYEXAM QBEXAM VAND “column {:LIKEWORD|=} :+column ”
CAT VAND LIKEAND

}

Suffix Description

ALL | use all columns

EIN |use all columns except the index column

IND |useonly the index column

Every combination of rootsuffix is a legal tb12£ variable.

If there any other double colon variables in the template, tb12f simply strips off the first
column. The utility will attempt to expand standard colon variables, If

:tabname

is used in the template, the utility replaces it with the name of the table that it is processing.
If it cannot expand a colon variable it ignores it. For best results, use the backslash to pre-
serve all variables that should be expanded by the application rather than the utility. For ex-
ample,

May 92 JAM/DBi Release 5 217

JIl. Reference Guide

tbl2f will replace :tabname with the table name
sql SELECT * FROM :tabname

JPL will replace :uid when the application is run
dbms DECLARE connl CONNECTION FOR USER \:uid

The sections below give an example for each root showing a suggested use in a template and
its output. The output is shown in two forms, one generic and the other based on a sample
table called acc. The table acc contains three columns:

" ssn a character column of length 11
» salary a money column
» exmp an integer column

The index column for acc is ssn.

::CLR_ VARIABLES

Use the : : CLR_ variables to create cat statements to clear one, some, or all the onscreen
column values.

Syntiax in a JPL Template

proc clear
::CLR_ALL
return

Output Syntax in a JPL Screen Module

proc clear
cat Index_fleld
cat fleid1

cat fleld2

return
Output for Sample Table acc

proc clear
cat ssn
cat salary
cat exmp
return

218 JAM/DB:i Release 5 May 92

Utility: tbl2f

::COND VARIABLES

Use a : : COND variable to get a string suitable for a wiere clause. While all : : COND vari-
ables are legal, the condition ::CONDALL or ::CONDIND is more useful than
: : CONDEIN when performing a SELECT, UPDATE, OF DELETE.

If : : CONDALL is used, the conditions are separated with the JPL variable : CONDAND. In
the distributed templates, CONDAND is usually the keyword AND.

Syntax in a JPL Template

sql SELECT * FROM :tabname WHERE ::CONDIND
Output Syntax in JPL Screen Module

sqgl SELECT * FROM lable WHERE Index_column = :+Index_fleld
Output for Sample Table acc

sql SELECT * FROM acc WHERE ssn = :+ssn

::LIST VARIABLES

Use a : : LIST variable to get a string of one, some, or all column names separated by the
value of the JPL variable LISTAND. In the distributed template, LISTAND is usually a
comma.

Syntax in a JPL Template

vars LISTAND(10)
cat LISTAND ”, ”

sql SELECT ::LISTALL FROM :tabname
Output Syntax In a JPL Screen Module

vars LISTAND(10)
cat LISTAND ”, ”

sql SELECT columni :LISTAND column2 ... FROM table
Output for Sample Table acc

vars LISTAND(10)
cat LISTAND ”, ”

sql SELECT ssn :LISTAND salary :LISTAND exmp FROM acc

::QBEX VARIABLES

Use a : : QBEX variable to create JPL statements which at runtime generate a string expres-
sion suitable for the whERE clause of a query-by-expression procedure. For each column re-

May 92 JAM/DB: Release 5 219

11l. Reference Guide

quested by the suffix, it creates a block of statements which test if the onscreen field is
empty and concatenate a JPL variable called QBYEXAM with the name of the column and its
onscreen value. Other procedures may use the value of QBYEXAM as the search criteria for
a SELECT Or an UPDATE.

Syntax in a JPL Template

vars QYBEXAM LIKEWORD (10) LIKEAND (10)
cat LIKEWORD ”LIKE”
cat LIKEAND “AND”

proc sellike

Call procedure “query” to build the QBE expression

QBYEXAM is replaced when the application is executed.
jpl query

sql SELECT * FROM :tabname \:QYBEXAM

return

proc query
Assign a value to the JPL variable “QBYEXAM”
vars VAND (10)
cat QYBEXAM
cat VAND
::QBEXALL puts an “if” block for each column here:
ST EI LSS ELELLLEEE LTSI LILIELETIES LT L
: :QBEXALL
S EE TSI E LA LERLLEIIEIESELLEILEILESILELL L L
if (QBYEXAM != ””)
{
cat QBEXAM ” WHERE ” QYEXAM
}

return 0
Output Syntax In a JPL Screen Module
For each FT _CHAR column, : : OBYEXAM produces the following statements:

if (fleld 1= ")

{
cat QBYEXAM QBEXAM VAND “column :LIKEWORD :+fleld”
cat VAND LIKEAND

}

For each non-FT_CHAR column (e.g. numeric and date columns), QBYEXAM produces the
following statements:

220 JAM/DB: Release 5 May 92

Utility: tbi2f

if
{

}

(fleld '= "”)

cat QBYEXAM QBEXAM VAND “column = :-+fleld”
cat VAND LIKEAND

Output for Sample Table acc

vars QYBEXAM LIKEWORD (10) LIKEAND (10)
cat LIKEWORD “LIKE”
cat LIKEAND “AND”

proc sellike

Call procedure “query” to build the QBE expression
jpl query

sql SELECT * FROM acc :QBYEXAM

return

proc query
Assign a value to the JPL variable "QBYEXAM”
cat QYBEXAM

cat VAND

#

:QBYEXAM puts an ”“if” block for each column here:

FHEHEEF R R R R R AR R R R AR R R 4

if

}

(ssn != "")

cat QBYEXAM QYEXAM VAND ” ssn :LIKEWORD :+ssn”
cat VAND LIKEAND

(salary != ”")

cat QBYEXAM QYEXAM VAND ” salary = :+salary”
cat VAND LIKEAND

(exrnp != III’)

cat QOBYEXAM QYEXAM VAND ” exmp = :+exmp”
cat VAND LIKEAND

FHERRHRH AR AR R R R R R R R RS B R4

May 92

JAM/DB: Release 5 221

1ll. Reference Guide

if (QBYEXAM != "")

{
cat QBEXAM “ WHERE “ QYEXAM
}

return 0

::SET_VARIABLES

Usea : : SET__ variable to get a string of the name and onscreen value of one or more col-
umns. The pairs of column name and column value are separated by the value of the variable
SET_AND. In the distributed template SET AND is a usually comma. These variables are
useful for the seT clause of an uppaTE statement.

Syntax In a JPL Template

vars SET_AND

cat SET_AND ”,”

sql UPDATE :tabname SET ::SET_EIN WHERE ...
Output Syntax in a JPL Screen Module

vars SET_AND
cat SET_AND ”,”

sql UPDATE lable SET columnl = :+column :SET_AND \
column2 = :+column2 ... WHERE ...
Output for Sample Table acc

vars SET_AND
cat SET AND “,”

sql UPDATE acc SET salary = :+salary :SET_AND \
exmp = :+exmp WHERE ...

::VAL_ VARIABLES

Use a : : VAL_ variable to create a string of the name and onscreen value of one or more
columns. The pairs of column name and column value are separated by the value of the vari-
able VAL_AND. In the distributed template VAL_AND is a usually comma. These variables
are useful for the vaLues clause of an oNserT statement. In the distributed template,
VAL_AND is a comma.

222 JAM/DBi Release 5 May 92

Utility: tbl2f

Syntax in a JPL Template

vars LISTAND (10) VAL_AND(10)
cat LISTAND ”, ”
cat VAL _AND “, ”

sql INSERT INTO :tabname (::LISTALL) \
VALUES (::VAL_ALL)

Output Syntax in a JPL Screen Module

vars LISTAND (10) VAL AND(10)
cat LISTAND ”, ”
cat VAL_AND “, ”

sql INSERT INTO table (columni :LISTAND column2 ...) \
VALUES (:+columni :VAL AND :+column2 ...)

Output for Sample Table acc

vars LISTAND(10) VAL AND(10)
cat LISTAND ”, ”
cat VAL _AND “, “

sqgl INSERT INTO acc (ssn :LISTAND salary :LISTAND exmp) \
VALUES (:+ssn :VAL AND :+salary :VAL AND :+exmp)

Control Strings

If a screen template is not used, control strings may be assigned to logical keys PF1-PF10,
and SPF1-SPF10 using the JPL template. The syntax is

#jctl 1 control string for PF1
#jctl 2 control string for PF2
#jctl 3 control string for PF3
#jctl 4 control string for PF4
#jctl 5 control string for PF5
#jctl 6 control siring for PF6
#jctl 7 conirol string for PF7
#jctl 8 control string for PF8
#jctl 9 control string for PF9

#jctl 10 conirol string for PF10
#jctl 11 control string for SPF1
#jctl 12 conirol string for SPF2
#jctl 13 control string for PF13
#jctl 14 control string for PF14
#jctl 15 control string for PF15

May 92 JAM/DB: Release 5 223

Ill. Reference Guide

#jctl 16 conirol string for PF16
#jctl 17 control string for PF17
#jctl 18 control string for PF18
#jctl 19 conirol string for PF19
#jctl 20 conirol string for SPF10

Note that the pound sign must be in the first column of the line and the word jtcl must
follow it immediately, Any lines that do not begin this way are assumed to be JPL. comments
and they are simply copied to the JPL screen module. controls string may be any valid
JAM control string. Control strings are documented in the Author's Guide of the JAM man-
uval.

You may assign none, some, or all these control strings. No assignments are made for num-
bers outside the range of 1 to 20. The assignments may be in any order and place in the tem-
plate but we recommend that you put them in a block at the beginning of the template. If the
template assigns a control string more than once, the last assignment takes precedence.

In the JPL template you may wish to include a procedure that displays a status line message
describing the key assignments. Remember that $K may be used in messages to display key-
top labels. See the JPL Guide for more information on message display.

If a screen template is used (-t option), tb12£ ignores any control string assignments in
the JPL template.

Example Template
#jctl 1 ~jpl select_all
#jctl 2 ~jpl select_by_ index
#jctl 10 main_menu

proc message_line

msg setbkstat \
“$KPF1l: Select_All ”\
“%KPF2: Select_by Index “\
”%KPFl0: Main Menu”

return

proc select_all

vars LISTAND (10)

cat LISTAND “,”

sql SELECT ::LISTALL FROM :tabname
return

proc select_ by index

sgql SELECT ::LISTALL FROM :tabname WHERE ::CONDIND
return

224 JAM/DB: Release 5§ May 92

Utility: tbi2f

Screen Characteristics

An existing JAM screen may be used as a template for new screens created with tb12f£. A
screen template is supplied with the —t flag or in interactive mode. If you are using a local
engine on a PC, you may not have enought memory to use a screen template.

The following screen characteristics are supported by the template:

1. Minimum number of lines and columns. tb12f will not create a screen
smaller than these dimensions. If necessary, it may create a larger screen.
The maximum width is the default number of columns defined in the vid-
eo file. If afield is longer than the onscreen width, £2tbl creates a shift-
ing field. If there are not enough onscreen lines for the fields, tb12£
creates a virtual screen with up to the maximum 254 lines.

2. Border style and attribute. tbl2f£ uses the template’s border style and
attribute for the new screen.

3. Background color. tb12f uses the template’s background color for the
new screen.

4. Start as menu setting. If the template screen has menu fields, set the start-
ing mode for the new screen.

S. Screen-level help. Assign a screen-level help window for the new screen.

Screen entrylexit functions. Assign screen entry and exit hook functions
for the new screen.

Screen-level keyset. Assign a keyset for the screen.

8. Display text attribute. Use the PF4 key in draw mode to set the attributes
for pen on the template screen. tb12f will use this pen when writing
labels on the new screen.

Please note that any JPL in the screen JPL module of the template is not copied to the new
screen. Use the JPL template option to supply JPL procedures for the screen.

tbl2f has its own default attributes for the fields it creates. Any draw field symbols on the
template screen are copied to the new screen, but they are not used by the utility.

All control strings on the template screen are copied to the new screen. Any control string
assignments in the JPL template are ignored.

All fields and display text on the template are written to the new screen. th12 £ begins writ-
ing the database fields at the first empty line below the template’s display text and/or fields.
The current release does not copy groups from the template.

SEE ALSO
Engine-specific Notes

May 92 JAM/DBi Release 5 225

Keywords

Appendix A.
Keywords

Below is a list of all the keywords for JAM/DBi commands. We strongly encourage devel-
opers to avoid using these keywords as identifiers, particularly for cursors, connections, en-
gines, and transactions. We also recommend that developers avoid using these keywords
when naming JAM variables which will be used in a dbms or sql statement. The list in-

cludes keywords supported by Release 4.8 and Release 5.

alias
auvtocommit

begin
binary
browse

call

cancel

catquery
checkpt_interval
close
close_all_connections
commit

connect
connected
connection

cont inue
continue_bottom
continue_down
continue_top
continue_up
create_proc
create_trigger
count

current

May 92

cursor
cursors

database

db

dbms

declare
disconnect
drop_proc
drop_trigger

end

engine

error
error_continue
exec

execute
execute_all

flush
file
for
format
heading

interfaces

JAM/DB: Release 5

jpl
locklevel
lockt imeout

logon
logoff

max

next
null

occur
of £

on
onentry
onerror
onexit
options
out
output

password
prepare_commit
print

proc
proc_control

A1

Appendix A

redirect
return
retvar
rfjournal
rollback
rpc

save
schema

select
select_aliases
separator
serial

A2

server

set
set_buffer
single_step
sql

start

stop
stop_at_fetch
store

supreps

tee

JAM/DBi Release 5

timeout

to
transaction
type

unique
update
use
user
using

warn
with

May 92

Error Codes

Appendix B.
Error and Status Codes

Like JAM, JAM/DB; uses symbolic constants to define its error codes. Any error handling
functions written in C may simply include the header file dmexrror.h to use these con-
stants. JPL,, on the other hand, is an interpreted language and it has no access to these con-
stants when performing variable substitution. JPL does have access, however, to constants
in the local data block (LDB). Therefore, we recommend that developers using JPL for error
handling also use the data dictionary and an initialization file to define all the constants that
the procedures will need. A sample data dictionary and initialization file are provided with
the JAM/DB; distribution. Please see the README for directions on using these samples.

For example, if a JPL procedure must test for the no more rows signal, add the entry
DM_NO_MORE_ROWS to the data dictionary, with length 5 and scope 1. Use an initialization
file such as const . ini to assign its value,

“DM_NO_MORE_ROWS” ”53256"”

The developer may then use the name of the LDB constant in JPL procedures rather than
hard-coding the decimal value in the procedure. For example, it may execute the following

proc select_all

sql SELECT * FROM emp

if @dmretcode == DM NO_MORE_ROWS
msg emsg “All rows returned.”

May 92 JAM/DBi Release 5 B.1

Appendix B.

The table lists the constant’s name, its decimal value, and its default error message.

Constant Value Message

DM _NODATABASE 53249 |No database selected.
DM_NOTLOGGEDON 53250 |Not logged in.

DM_ALREADY ON 53251 |Already logged on.

DM_ARGS NEEDED 53252 |Arguments required.
DM_LOGON_DENIED 53253 | Logon denied.

DM _BAD_ARGS 53254 |Bad arguments.

DM _BAD_CMD 53255 |Bad command.

DM NO_MORE ROWS 53256 |No more rows indicator.
DM_ABORTED 53257 |Processing aborted due to DB error.
DM _NO_CURSOR 53258 | Cursor does not exist.
DM_MANY CURSORS 53259 | Too many cursors.

DM_KEYWORD 53260 |Bad or missing keyword.
DM_INVALID DATE 53261 | Invalid date.

DM_COMMIT 53262 |Commit failed.

DM _ROLLBACK 53263 |Rollback failed.

DM _PARSE_ERROR 53264 | SQL parse error.

DM_BIND_COUNT 53265 | Incorrect number of bind vars.
DM BIND_VAR 53266 |Bad or missing bind variable.
DM _DESC_COL 53267 |Describe select column error.
DM FETCH 53268 |Error during fetch.

DM _NO_NAME 53269 | No name specified.
B.2 JAM/DBi Release 5 May 92

Error Codes

Constant Value Message

DM _END OF_PROC 53270 |End of procedure.

DM _NOCONNECTION 53271 |No connection active.

DM_NOTSUPPORTED 53272 | Command not supported for the
specified engine.

DM_TRAN PEND 53273 | Transaction pending.

DM_NO_TRANSACTION | 53274 |Transaction does not exist.

DM _ALREADY INIT 53275 |Engine already installed.

May 92

JAM/DBi Release 5

B3

Using JAM's Screen Editor

Appendix C. -
Fields in a
JAM/DBi Application

JAM/DB; applications primarily use fields to move data between the end user and a data-
base. Developers create a named JAM field for each database column that the end user will
view or update.

In this chapter, we give some suggestions on creating fields for a JAM/DB: application. We
briefly discuss how you may use the various field settings of JAM’s PF 4 key when creating
JAM/DB: fields, and how these settings may affect an application. In particular, we discuss
how these settings affect

» the end user’s interface
= data formatting between JAM and a database

The physical flow of data between JAM and a database is discussed in detail in Chapters 8.
and 9..

22.1.

JAM FIELD CHARACTERISTICS (PF34)

JAM'’s field characteristics provide developers with many tools for creating attractive and
successful interfaces. Very briefly, we highlight here those features that are likely to be use-
ful to JAM/DB: developers.

Furthermore, we discuss how the features affect data formatting between JAM and an en-
gine.

May 92 JAM/DB: Release 5 C1

Appendix C.

22.1.1.
Field Display Attributes

The use of display attributes like color or highlight have no effect on the data.

22.1.2.

Character Edits

A character edit provides one way of helping end users enter data quickly and correctly,
since it verifies each character as it is entered.

Developers may use character edits to enforce rules or checks at the application frontend.
Although rules and data integrity should still be enforced by the database, effective use of
character edits should reduce the number of unnecessary trips to the server, thus improving
the application’s efficiency.

Embedded punctuation is a useful feature with certain character edits. When a field has the
character edit digits-only, letters-only, or alphanumeric the developer may save punctuation
characters in the field which the user cannot type over or delete. For example, a field that
accepts a U.S. telephone number would have a digits-only character edit and parentheses
and a dash as embedded punctuation.

character edit is digits only
punctuation characters are embedded
C type is char string

Marketing Applicatig

Contact:
Phone: () = /

Comment :

Figure 38:

JAM/DBi uses character edits to determine a JAM type if the field or LDB variable does
not have any of the following edits: date/time, currency, or data type (excluding omi t and
char string).

c.2 JAM/DB: Release § May 92

Using JAM's Screen Editor

Character Filter Format Type

digits only ft_unsigned

yes/no field dt_yesno

numeric (+, -, .) ft_double

all other ft_char
22.1.3.

Field Edits

Developers may also use field edits to enforce some integrity checks at the application fron-
tend. Remember that field edits are not enforced until the field is validated.

The field edits right justified and null field are enforced when JAM/DB; writes seLecT data
to a field.

By default, JAM distinguishes between empty fields and null fields. To make JAM and
JAM/DB: treat a blank field as null, you must modify the message file:

SM_NULLEDIT = ” *”

22.1.4.

Field Attachments

The following field attachments are useful in a JAM/DB; application:
s field name
= item selection
s table lookup

We discuss them below.

Field Name

This is the only required field characteristic for a JAM/DBi field. Database values cannot
be written to unnamed fields.

Usually the developer gives a field the same name as a database column. The case of the
field name is very important. In the vendor_1list structureindbiinit.c thedevelop-
er sets a case flag for the engine. If the flagisDM FORCE_TO_LOWER_CASE the develop-
er must use lower case for the database fields. If the flagisDM_FORCE_TO_UPPER_CASE

May 92 JAM/DBi Release 5 c3

Appendix C.

the developer must use upper case for the database fields. If the flag is
DM_PRESERVE_CASE the developer must use the exact case of the column names for the
database fields.

A developer may also alias a database column to a JAM variable. This is done with the com-
mand peMs aLIas. When aliasing is used, the developer may use any valid JAM variable.

Item Selection and Table Lookup Screens

These attachments often improve an application’s user interface. The screen entry function
of the lookup or selection screen may query the database for lookup or selection values.
Since the application saves the query, rather than the values, the screen maintains itself,

Developers may use the JAM library function sm_svscreen to save the selection or
lookup screen in memory at runtime. If the screen is saved in memory, the application will
not need to execute the query each time it displays the lookup or selection screen.

See the JAM Author’s Guide and Programmer’s Guide for more information.

22.1.5.
Miscellaneous Edits

Developers may execute database functions from any of the field hook functions attached in
this window. Two of the miscellaneous edits may be used to format data, the date time edit
and the currency edit.

JAM TYPE:
Miscellaneous Edit Format Type Precision
date or time field DT_DATETIME n/a ,
currency format DT_CURRENCY from places edit

If data is fetched to fields with either of these edits, the database values are automatically
formatted with the date-time or currency edit.

22.1.6.

Field Size

The length of a field should generally be the same as the width of its associated database
column, If the column is very wide, set field length to a smaller size and set the maximum

C4 JAM/DBi Release 5 May 92

Using JAM's Screen Editor

shifting length to the column width. If a field’s maximum length is not equal to the width of
its associated column, surplus data is truncated without wamning.

Developers should set the number of elements and occurrences for a JAM/DB: field accord-
ing to the screen size and the type of query. If a query is designed to return only one row at
a time, developers should create a field with one element for each column in the row. If the
query is designed to return multiple rows, the developers should create an array for each
column in the row. Developers may create a scrolling array by setting the maximum number
of occurrences to the greatest number of rows that may be retrieved. Developers may also
create a non-scrolling array.

In brief, the two approaches are:

= Retrieve all qualifying records into large scrolling arrays. Each array rep-
resents a database column. The arrays usually have the same number of
occurrences, so that array occurrences with the same occurrence number
represent a database row. Developers may use @dmrowcount to ensure
that the number of rows selected is less than the number of array occur-
rences. Users scroll through the arrays with the PgUp and PgDn keys (log-
ical keys SPGU and SPGD). Developers may also install a customized
scroll driver for an array. See the JAM Programmer’s Guide for details.

= Retrieve n qualifying records incrementally into non-scrolling arrays. In
MS-DOS environments where memory is limited, developers may wish to
limit the number of rows read in at any one time. For each column, devel-
opers create an array with n non-scrolling occurrences. The first select re-
trieves the first n rows. Each subsequent bBMs cONTINUE retrieves the
next nrows. To make this arrangement invisible to the user, the developers
may use a key change function or a keyset to map the pBus conrINue call
to the user’s physical PgDn key. Of course, the function may also be called
by a standard function key. To support backward scrolling, the application
may use a continuation file. A continuation file is created with the peMs
STORE command.

Developers may use the word-wrap edit to write long character strings to an array.

22.1.7.

Data Type

JAM data type edits have no affect on the application interface. In other words, JAM does
not validate a field’s contents against its data type edit and developer’s cannot use this fea-
ture to perform frontend integrity checks. Developer’s may use it however to set a field’s
format type.

May 92 JAM/DB: Release 5 C5

Appendix C.

When determining a variable’s format type, JAM/DB: first checks the data type edit. If aC
type is explicitly set, the keyword TYPE will appear on the field’s summary window (PF'5
in draw mode of the JAM Screen Editor). If there is no explicit data type, or it is omit
JAM/DB;i will examine the variable’s date-time, currency, and character edits to determine
a format type. The data type edits which set format types are listed below.

Data Type Format Type Precision
char string FT_CHAR

int FT_INT

unsigned int FT_UNSIGNED

short int FT_SHORT

long int FT_LONG

float FT_FLOAT yes
double FT_DOUBLE yes
zoned dec. FT_ZONED

packed dec. FT_PACKED

csé JAM/DBi Release 5 May 92

Symbols

:: Overview 27; Developers 72—T76

+ Overview 32; Developers 62—68
:= Developers 68—69

@ Developers93; Reference 113—114

A

Aggregate functions: Developers 81—82

Aliases: Overview 10; Developers
79—82

Autocommit. See Transaction

AVG. See Aggregate functions

Binary columns: Reference 131, 181

Binding: Overview 27; Developers
72—176
examples: Developers 74

C

Case sensitivity: Overview 20;
Developers 53

alias names: Developers 80
connection names: Developers 55
cursor names: Developers 57
engine names: Developers 52
field names: Developers 79
keywords: Appendices 1

May 92

JAM/DB: Release 5

Colon preprocessing: Overview 32, 33,
36; Developers 62—71
colon equal: Developers 68
colon plus: Developers 62—68
examples: Developers 69—T71
simulating from C: Reference 181

Commit
See also Transaction

Connection: Developers 55—56;
Reference 129—130

closing: Developers 55, 56, 60

current: Developers 56

declaring: Developers 55

declaring, options. See Engine specific
Notes

default: Developers 55, 56

using more than one: Overview 42;
Developers 55, 60

Continuation File: Developers 85
Currency edits: Developers 67, 89—90

Cursor: Overview 27, 36; Developers
57; Reference 130
declaring: Developers 58
default: Developers 57
executing: Developers 59
executing with parameters: Developers

maximum number of, See Engine
specific Notes

named: Developers 58

redeclaring: Developers 60

D

Data dictionary: Overview 44
Date and time edit: Developers 66, 89

dbiinit.c: Overview S, 7, 19—21;
Developers 52

Index-1

dbms: Developers 48—49

DBMS commands: Reference 129—132
ALIAS: Developers 19—82
CATQUERY: Developers 92
COMMIT: Developers 104
CONTINUE: Developers 85—88
CONTINUE_BOTTOM: Developers

86—88
CONTINUE_TOP: Developers 86
CONTINUE_UP: Developers 86
FORMAT: Developers 92
OCCUR: Developers 88
ONENTRY: Developers 96—97
ONERROR: Developers 39—102
ONEXIT: Developers 98—99
ROLLBACK: Developers 104
START: Developers 88
STORE FILE: Developers 85—88
UNIQUE: Developers 90—91

DBMS functions, ROLLBACK:
Developers 105—107

dbms versus sql: Developers 48

dm_
@dm variables: Reference 113—114

dm_library functions: Reference
181—182

E

Engine: Overview 3,7, 42; Developers
52; Reference 129
accessing: Developers 55
current: Developers 54, 56
de—installing: Reference 181
default: Developers 54, 56
errors: Developers 93
initializing: Overview 19; Developers
52, 54; Reference 181

using more than one: Overview 41;
Reference 179

Errors: Overview 11, 38, 39; Reference
131

@dmengerrcode, @dmengerrmsg:
Reference 113, 115—116, 117

@dmretcode, @dmretmsg: Reference
113,122—123, 124

customized processing: Overview 38,
44; Developers 98—102

default processing: Developers 94

displaying error messages: Overview
38; Developers 53

engine-specific error codes:
Developers 93; Reference
115—116, 117

error handler: Overview 38;
Developers 98—102

sample: Overview 24

generic DBi error codes: Developers
93; Reference 122, 124,
Appendices 1-—3

transactions: Developers 105—107

warning codes: Developers 93

F

f2tbl: Reference 206—212

Field characteristics, affecting formatting
and colon preprocessing: Developers

Formatting text for a database:
Developers 62—171, 13—76

Formatting text from a database:
Developers 89

G

Global error and status variables:
Reference 113

Index-2 JAM/DB: Release 5 May 92

H

Hook functions: Developers 95;
Reference 131

Identifier
case sensitivity for ficld names:
Developers 79
column name: Developers 79

Initialization: Overview 19
engines: Reference 181
JAM/DBi: Reference 181

J

JAM type: Developers 63, 64, 89
C type: Developers 66, 71
character: Developers 67, 69—70, 89
currency: Developers 66,67—171
date and time: Developers 66, 70, 89
null: Developers 64,70
numeric: Developers 67—171, 89

JPL versus C: Developers 49

L

Logging on and off. See Connection

MAX. See Aggregate functions

Multiple rows, retrieving: Overview 37;
Developers 83—88

N

No more rows status: Developers 84;
Reference 122, 124

Null: Developers 64, 68—69

Number of rows fetched: Developers
83—88
@dmrowcount: Reference 114, 125

P

Parameters: Developers 72—76
binding: Developers 73

Precision: Developers 89—90

R

Rollback. See Transaction

S

SELECT: Developers 718—82;
Reference 130
aliasing: Overview 10; Developers
79—82
automatic mapping: Overview 10;
Developers 79
binary columns: Reference 131
concatenating result row: Developers
92
destination of: Overview 10;
Developers 718—82,92
aggregate functions: Developers 81
format of results: Developers 89
no more rows: Developers 84;
Reference 125
number of rows fetched: Developers
83—88; Reference 125

May 92 JAM/DBi Release 5 Index-3

scrolling: Developers 83—88,;
Reference 130

suppressing repeating values:
Developers 90—91

unique column values: Developers
90—91

writing to a file: Developers 92

writing to a specific occurrence:
Developers 83, 88

writing to word—wrapped arrays:
Developers 83

Serial
See also Engine specific Notes
@dmserial: Reference 114,127—128

sql: Developers 48

SQL syntax: Overview 40; Developers
47

Stored procedure
See also Engine specific Notes
return code, @dmengreturn: Reference
114, 118—119

SUM. See Aggregate functions

Support routine: Overview 3, 7, 19, 20,
41; Developers 52

Index-4

JAM/DBi Release 5

T

tbl2f: Reference 213—225

Transaction: Overview 41; Developers
103—107
See also Engine specific Notes
error handling: Developers 105—107

U

Utilities: Reference 205

\'

Variables, global @dm: Reference 113

W

Warnings, @ dmengwarncode,
@dmengwammsg: Reference
113—114, 120, 121

WITH clause: Reference 175,177,179
Word wrapped edit: Developers 83

May 92

