e e

JAM/DBi

Copyright (C) 1989 JYACC, Inc.

Please forward comments regarding this document to:

Technical Publications Manager
JYACC, Inc.

116 John Street

New York, NY 10038

Oracle is a registered trademark of Oracle Corp.
Informix is a registered trademark of Informix Software, Inc.
SQLBase is a registered trademark of Gupta Technologies, Inc.

xdb is a registered trademark of Software Systems Technologies,
Inc.

ShareBase is a registered trademark of ShareBase/Britton Lee, Inc.

The names of numerous computers, displays, terminals, and
operating systems are used in this manual only to explain how
JYACC software functions with them. Such names are
trademarks of their respective holders.

JAM/DBI

Contents
1 Introduction0ii e ienunnnnnnn 1
1.1 Whatis JAM/DBi?t innnennn 1
1.2 What Makes Up JAM/DBi?0t iiternn. 2
1.3 What Is in This Document? 2
1.4 What Is the JAM/DBi Development Cycle? 3
1.4.1 A Development Scenario oo eeen. 4
2 Accessing JAM/DBi e 8
2.1 JPL Calls ittt ittt et e 8
21,1 JPLDBMS Calls ittt e e e 8
2102 JPLSQL Callsttt 9
22 Embedded CCallst 9
3 Initializationttt 12
4 Fetching and Inserting Data 13
4.1 Variable Substitution 13
4.1.1 Defining Substitution Variables 14
4.2 Column Mapping and Aliasesc.vvuun.. 15
43 Fetchingttt 17
44 ContinuUingciiiiiiiimnnnnnneennnenn 18
4.5 Next/Cancel/Flush 0., 18
4.5 Next ...ttt it ittt e e 18
452 Cancel e e 19
453 Flushingt innnnn. 19
5 JAM/DBi Environment00.0teunnnnenn. 20
5.1 Determining the Number of Rows a SELECT Will Find .. 20
5.2 Determining the Number of Returned (Read) Rows 20
5.3 SpecifyingaStart Row 20
5.4 Error Processingc..iiiiriinnnennn. 22
5.5 Warning Processing ¢t 22
5.6 Begin/Commit/Rollback 23

6 JAM/DBi Utilities

Appendix A Installation Notes

Appendix B Database-specific Commands

Release 4.0 JAM/DBi |

1 Introduction
1.1 What is JAM/DBi?

JAM/DB; provides an easy-to-use, standard, portable interface
between JAM applications and a variety of popular SQL-based
databases.

JAM is a development tool which provides a prototyping,
development and testing environment for the rapid development
of software applications.

SQL (standard query language) is a tool which provides end users
with a non-procedural, easy-to-use means of accessing databases.
SQL assumes little or no programming skills. SQL is also an
emerging standard. This means that users can move from one
machine, operating system and/or database to another with little
or no retraining in database access methods.

JAM/DBi ties together the cost-effectiveness of JAM application
development with the power of SQL-based databases. And, if the
developer so chooses, it can all be done without ever writing a
line of third-generation, procedural programming code.

A key feature of JAM/DB/ is that it uses the query language
syntax (SQL) of the database you are using. Instead of learning a
new syntax, users continue to use the syntax with which they are
already familiar.

JAM/DB; is easy to use, because data retrieval and update are
accomplished through JAM data dictionary definitions. The user
is not required to understand the lower level operation of the
database or JAM. When data are retrieved (using an SQL
SELECT) they are placed in data dictionary or screen elements
whose names correspond to the database table column names. If
column names do not match data dictionary elements, they may
be "coerced" or mapped using database-supported column
mapping (or alias mapping if a database does not support column
mapping.) For updates (SQL INSERT or UPDATE), the user simply
specifies the names of the data dictionary or screen elements to
be inserted as host variables.

[8/16/89] Introduction

2 JAM/DBi Release 4.0

There are many advantages to the JAM/DBi solution:

it makes linking application screens to databases trivial

it eliminates the need to know the low level access
routines of a database system

it virtually guarantees portability of an application
across many different hardware and operating system
platforms

it provides a standard means of moving applications
from one database to another with no changes to
screens and very few (if any) changes to SQL scripts

it enables a developer to prototype an application with
real links to a database without ever writing a line of
code. Later the developer can go back to the same
application and build in procedural calls to provide
additional functionality.

1.2 What Makes Up JAM/DBi?

The media, file names and contents of your JAM/DBi files are
dependent on the hardware and operating system for which you
ordered JAM/DBi.

Every version of JAM/DBi should have the following files:

one or more files (usually in binary format) that
contain the object code of JAM/DB;i;

« utilities;
a makefile for a JAM/DBi version of jxform;
a makefile for a JAM/DB/ version of JAM;
makefiles for utilities (if necessary).

The actual file names for your machine and operating system are
described in Appendix A of this document,

1.3 What Is in This Document?

This document describes

what JAM/DBi is;

how to use JAM/DBi in building applications that use
supported databases,

Introduction [8/16/89]

Release 4.0 JAM/DBIi 3

and how to use JAM/DBi in specific hardware and
operating system environments.

This document assumes that the reader has a basic knowledge of
the target computer system, databases, JAM and jxform. Except
for details related to building a JAM/DBi link, this manual does
not provide any details about how to use jxform or JAM.

1.4 What Is the JAM/DBi Development Cycle?

Before you can do dny development, you have to build a copy of
JAM that includes the links to the database interface. This
executable is jamdbi. Appendix A describes the procedure you
should follow. You may also build a version of jxform with
links to a database. This executable is jxdbi. Some versions of
jxdbi running under PC-DOS will not have enough memory to
do development. In such cases, you will have to use jxform
without DBi linked in and test using jamdbi.

There are four steps to building a working application with
JAM/DBi.

First, you build a JAM screen using jxform or jxdbi.
This involves defining JAM fields and providing an
access path between a JAM application and JAM/DB:.
In building a JAM screen, you have several ways to
gain access to JAM/DBi. The quickest way is to make
a screen entry call to JPL. The second way is to
associate a JAM/DBi function with a keyboard key.
The third means of access is through attached
functions. The details of making these calls are
presented below in a demonstration scenario.

Second, you should add the fields that you defined in
your JAM screens to the JAM data dictionary. This
ensures that the data brought in from the database to
one screen will be available in all other screens, too.

Third, you need to create a set of JPL statements that
are the actual SQL calls to the database. The name of
the JPL file must be the same as the one specified in
the JAM screen entry specification or in an associated
key. We assume that you already have a set of
database tables with some data to access.

Fourth, you test your program.

[8/16/89] Introduction

4 ' JAM/DBi

1.4.1 A Development Scenario

Release 4.0

In the next few pages, we will walk you through a complete
JAM/DBi development cycle. For our scenario we assume you
are using the ORACLE RDBMS with the following table:

MYDATA

with the following fields:

NAME ADDRESS CITY STATE.

To create MYDATA, go into SQLPLUS and enter:

create table mydata
(name char (30),\
address char (30),\
city char (15),\
state char(2));

You can insert several values into this table with the following

statements:

insert into mydata values

('John Doe'’ v\
'1312 Geary Blvd’,\
'San Francisco'’,’CA’);

insert into mydata values

('Jane Roe’,\
'505 West End Ave’,\
*New York'’,'NY’);

insert into mydata values

('Edgar Woe',\

*3712 Rio Grande Blvd’,\

'Albuquerque’,'NM’);

insert into mydata values

('Amy Snow’,\
'1400 Lakeshore Dr’,\
‘Chigago’,'IL’);

Now exit SQLPLUS and go into jxform (or jxdbi).

Introduction

[8/16/89]

Release 4.0 JAM/DBi 5

Press <Shift PF5> and go into FORMAKER,

When prompted for the name of a form, enter MYTEST and press
<XMIT>.

Press <PF3> to define a border and background colors.
Depending on the characteristics of your terminal, assign any
values you want but leave the size of the form as the default
size.

Press <XMIT>.

Press <SHIFT PF1> to associate a function key with a set of SQL
instructions. A window will appear with the names of the
keyboard keys. Move your cursor down to PF1 and at the prompt
for the name of an entry function enter:

“jpl myjpl.jpl
Press <XMIT>.

Move your cursor down two lines and over several columns.

Now draw in an underscore with 30 characters and, when
finished, move back one space. Press <XMIT>.

Press <PF4> to define field attributes. Assign the following
characteristics:

Type <A> and enter the field name NAME (upper case for
ORACLE!}).

Press <XMIT>.
Type <S> to change the size of the field to an array.

Tab to number of elements and enter "10" for an array of 10
occurrences.

Tab to horizontal and enter <N> (for "No").
Press <XMIT> to confirm these field attributes.
Type <E> (for "Exit") to return to the form window.

Move the cursor over a few spaces and repeat the same process
for a field of 30 characters and name it ADDRESS.

[8/16/89] Introduction

6 JAM/DBi Release 4.0

It is important for ORACLE that the field names be entered in
upper case. (Some databases do not care, and some want the
entry to be in lower case. These considerations are described in
Appendix B.)

Move your cursor to the next-to-the-last line on the screen and
about 20 columns from the left and enter the following text:

PRESS <F1> TO EXECUTE SQL STATEMENT

You should have a screen that looks something like this when
you press <SHIFT PF3>:

NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
NAME ADDRESS ST
PRESS <F1> TO EXECUTE SQL STATEMENT

Press <PF1> to return to the form window.

Press <EXIT> and type <S> to save your form. When the "form
saved" message appears, type <SPACE> and <E> to exit.

Using any text editor, create an ASCII text file called
‘myjpl.jpl’
and enter the following lines:

DBMS LOGON username password

SQL SELEGCT NAME,ADDRESS,STATE FROM MYDATA
DBMS LOGOFF

RETURN O

Introduction [8/16/89]

Release 4.0 JAM/DBi 7

username and password are your name and password on your
ORACLE RDBMS. (We assume you have been granted resources
to create a table.)

Exit your editor and type JAMDBI MYTEST. When the screen
comes up, press <PF1> to execute the JPL/SQL statements.

If all went well, your screen should look like this:

John Doe 1312 Geary Blvd CA
Jane Roe 505 West End Ave NY
EdgarRoe 3712 Rio Grande Blvd NM
Amy Snow 1400 Lakeshore Dr IL

To exit, press <EXIT>.

[8/16/89] Introduction

8 JAM/DBi Release 4.0

2 Accessing JAM/DBi

There are two basic ways of accessing JAM/DBi functions:
through JPL statements and direct C language function calls.

The advantage of using JPL is that

it is easier to prototype an application;

it is easier to see what is going on in a particular
function;

it is easier to change a function,

and you do not have to compile anything in order to
see your application run,

The advantage of using C calls is that

the reading and first parsing of JPL statements are
eliminated;

your SQL calls are embedded and cannot be changed
(or erased!) by end users,

and your applications are more secure.

Both of these access methods are described below.
2.1 JPL Calls

There are two types of DB/ statements in JPL. The JPL DBMS
statements begin with the keyword DBMS and JPL SQL statements
begin with the keyword SQL.

(Note: Under the ShareBase version of JAM/DBi there is an
additional JPL verb - IDL - which works much like SQL. The
IDL dependent features are described in Appendix B of the
JAM/DBi ShareBase documentation.)

2.1.1 JPL DBMS Calls

DBMS statements are used for either database specific functions
such as logging on, or for controlling the JAM/DBi environment
such as setting error levels. Examples of JPL DBMS statements
are:

DBMS LOGON DEMO JIM MYPASSWD

Accessing JAM/DBi [8/16/89]

Release 4.0 JAM/DBIi 9

DBMS COUNT MYCOUNT
DBMS ERROR

2.1.2 JPL SQL Calls

SQL statements are used for standard SQL calls such as SELECT,
INSERT, UPDATE, COUNT, etc. Examples of the use of JPL SQL
statements are:

SQL SELECT NAME, ADDRESS, CITY FROM MYDATA
SQL SELECT NAME FOR UPDATE FROM EMP WHERE\
EMPLOY_NUM=678

2.2 Embedded C Calls

If desired, DBMS and SQL calls may be hidden and passed
directly to JAM/DBi. However, the developers who do this must
be careful to test the return codes and handle errors properly.

There are two functions that can be called, namely, dbi__dbms
and dbi_sql (summarized below). The appropriate function call
corresponds to whether the argument being passed is a DBMS or
a SQL statement.

[8/16/89] Accessing JAM/DBi

10 JAM/DBi Release 4.0

NAME

dbi_dbms -parse and execute a DBMS statement

SYNOPSIS

int dbi_dbms(dbms_statement)
char * dbms_statement;

DESCRIPTION

Parses, validates and executes a DBMS statement. The DBMS
statement must be syntactically the same as a JPL DBMS
statement, but without the JPL verb DBMS at the beginning.

RETURNS

0 if no error
-1 if an error.

Accessing JAM/DBi [8/16/89]

Release 4.0 JAM/DBIi 11

NAME

dbi_sql -parse and execute a SQL statement

SYNOPSIS

int dbi_sql(sql_statement)
char * sql_statement;

DESCRIPTION

Parses, validates and executes a SQL statement. The SQL
statement must be syntactically the same as a JPL SQL statement,
but without the JPL verb SQL at the beginning. The statement
must also be syntactically correct for the database being used.

NOTE: Because no JPL parsing is done on SQL statements called
by this function, there is no colon substitution of variables.
RETURNS

0 if no error
-1 if an error.

[8/16/89] Accessing JAM/DBi

12 JAM/DBIi Release 4.0

3 Initialization

Most databases require a logon procedure or a function call. The
actual parameters used in the logon depend on the database. See
Appendix B for details.

The syntax of the logon command is:

DBMS LOGON <other arguments>

If, for example, one were using Gupta Technologies’ SQLBase
and the data dictionary variables DBNAME (for database name),
USER (for the user name) and PASSWORD (for the user’s
password), the logon command would look like this:

DBMS LOGON :DBNAME :USER :PASSWORD

The phrases :DBNAME, :USER and :PASSWORD are variables which
JAM/DBi will replace with correct values from the JAM data
dictionary. The process of variable substitution is described
below.

The obverse of the logon command is logoff. There are no
arguments to the logoff command:

DBMS LOGOFF

You shpuld always execute a LOGOFF to disconnect properly.
Otherwise, you may create inconsistencies in your database.

Initialization [8/16/89]

Release 4.0 JAM/DBIi I3

4 Fetching and Inserting Data

JAM/DBi permits you to move data between a JAM application
and a supported database. JAM/DB/ may insert data into, or
update data from, a JAM screen, a JAM data dictionary and/or a
supported database.

All data manipulation in JAM/DB; is done using the JPL verb
SQL. The SQL verb in turn expects to be passed a SQL data
manipulation string using column-based instructions such as
SELECT, INSERT, UPDATE and DELETE, or table- or
view-based instructions such as CREATE, ALTER or DROP.

JAM/DBi manipulates all SQL statements dynamically, creating
temporary data storage space, doing any requisite data
conversions and, in the case of a SELECT, moving data into a
JAM screen or the JAM data dictionary.

JAM/DBi pre-parses your SQL statement and makes any
necessary variable substitutions. JAM/DB; then passes on to your
database system the SQL statement you asked JAM/DBi to
prepare.

All database errors are trapped and will be displayed (depending
on the environmental controls set by the developer; see Section 5
below). Warnings may be ignored, depending on the
environmental handling set by the application developer.

IMPORTANT DEPENDENCY: JAM/DBi SQL syntax is native
to the database you are using. For example, some databases
convert column names to lower (upper) case and return data with
the lower case mapping. Users who define JAM screen or data
dictionary names in upper (lower) case with such databases will
not find any data being passed back and forth between JAM and
the database.

4.1 Variable Substitution
A SQL statement such as

SQL SELECT NAME, ADDRESS FROM EMP
will always search and return all instances of data with name and

address in the table EMP. In many cases, however, such a SQL
statement needs to be qualified. For example:

[8/16/89] Fetching and Inserting Data

14 JAM/DBIi Release 4.0

will always search and return all instances of data with name and
address in the table EMP. In many cases, however, such a SQL
statement needs to be qualified. For example:

SQL SELECT NAME, ADDRESS FROM EMP WHERE\
NAME='JOHN'

In this case, SQL will search for and return all instances of data
where name is equal to JOHN.,

For most applications, the qualifying value in the WHERE clause
of a SQL statement is not known until runtime. To handle such
situations, JAM/DBi allows dynamic variable substitution in SQL
statements.

Substitution variables are variables in a SQL statement that are
replaced with values from the JAM application screen or the data
dictionary. These correspond to standard SQL host variables.
However, JAM/DBi provides an extended capability in that
substitution variables can contain any character string for
substitution. This means that substitution variables may contain
whole or partial SQL statements for substitution (see below).

4.1.1 Defining Substitution Variables

A substitution variable is identified by a preceding colon (e.g.
:MYVAR). Colons in the middle of a word (e.g. MY:VAR) will be
ignored. When a colon is detected, the word following it is used
to search the field list on the JAM screen and then the JAM data
dictionary. (A double colon () can be used to suppress
substitution.)

If the substitution variable name is found, the corresponding
value is inserted into the SQL statement in place of the
substitution variable name.

The substitution variable may be a single element, a complete
array or an element of one. If an array name is specified without
reference to a specific array element, all non-blank fields in the
array are inserted in place of the substitution variable. The
inserted fields of a complete array are separated by single spaces.

Examples of using substitution variables follow:

SQL INSERT INTO EMP VALUES\
(' :NEWNAME' , : SALARY, ' : START_DATE', : EMPLOY_NUM, 'HIRE’)

Fetching and Inserting Data [8/16/89]

Release 4.0 JAM/DBi 15

SQL UPDATE EMP SET SALARY—:SALARY TABLE[4]\
WHERE EMPLOY NUM=:EMPLOY NUM

SQL :SQL_STATEMENT

The first SQL statement adds a new row of data to the database
table EMP with the JAM string variables :NEWNAME and
:START_DATE, the JAM numeric variables :SALARY and
:EMPLOY_NUM and a fixed string HIRE.

The second statement modifies an existing row or rows of data in
the table EMP. It changes all instances of SALARY in EMP to the
value of element 4 of a JAM array field called SALARY_TABLE.
In that array, the column EMPLOY_NUM is equal to JAM data field
EMPLOY_NUM.

The third SQL statement replaces the JAM/DBi SQL variable
:SQL_STATEMENT with whatever is found in the JAM data field
SQL_STATEMENT. In this case, presumably, SQL_STATEMENT
would hold an entire SQL statement. Users may also use nested
bindings with JPL. See JAM JPL Programmer's Guide for
instructions.

Note that SQL statements in JPL are not terminated by a
semi-colon (;).

4.2 Column Mapping and Aliases

When a SELECT statement is executed, JAM/DBi copies returned
values into JAM screen-or data dictionary fields, if any. For
JAM/DBi to do this, there must be a one-to-one mapping
between SQL column names and JAM field names. For example,
a SQL statement retrieving data from EMPLOY_ NAME will attempt
to place the returned data into a JAM field of exactly the same
name. (Names are truncated in JAM to 31 characters.) If such a
field is not found, JAM/DBi will ignore the returned value for
that column.

It is because of this mapping that users can invoke a SQL
statement like the following:

SQL SELECT * FROM EMP

[8/16/89] Fetching and Inserting Data

16 JAM/DBi Release 4.0

However, there are times when a one-to-one mapping is not
possible or it is too constraining. In such cases, many databases
permit a remapping of names. For example, if the database
column was named EMP_NAME and the JAM field was named
EMPLOYEE_NAME (perhaps because EMP_NAME was already used
for some other purpose), the developer can remap the association
of database and JAM field names. This is done within the SQL
statement itself. Using our example where the database column
name is EMP_NAME, the JAM fields EMP_NAME and
EMPLOYEE_NAME are defined and the developer does not want to
change the current JAM field value of EMP_NAME, the
appropriate SQL statement would be:

SQL SELECT EMP_NAME EMPLOYEE NAME
FROM EMP WHERE EMPLOY_ NUM=:EMPLOY_NUM

Note that there is no comma between EMP_NAME and
EMPLOYEE_NAME. It is the absence of the comma that permits the
parser to map the association of the column name EMP_NAME with
the JAM field name of EMPLOYEE_NAME. A comma between the
two names would have caused a SQL SELECT error if
EMPLOYEE_NAME were not also in the table EMP.

IMPORTANT DEPENDENCY: There are some databases that DO
NOT SUPPORT COLUMN REMAPPING. Check in Appendix B
to determine whether your database supports column remapping.
If your database does not support remapping, JAM/DB/ provides
an alternative means of accomplishing the same thing using a
DBMS command called DBMS SELECT ALIAS.

SELECT_ALIAS is available only in those databases that do
support remapping. A SELECT_ALIAS must be executed just
before the SQL SELECT statement to be parsed. SELECT_ALIAS
must be used if any of the column names in the SQL SELECT
statements do not directly correspond to the JAM field names
(e.g., if the DBMS column name is NAME and the JAM field
name is CLIENT_NAME). An example of SELECT_ALIAS is:

DBMS SELECT_ALIAS CLIENT NAME, TEST, -, RESULT
for the SQL statement:
SQL SELECT NAME, GRADE, AGE, SCORE FROM XYZ

Fetching and Inserting Data [8/16/89]

-’

Release 4.0 JAM/DBi 17

The hyphen in the SELECT_ALIAS means that no remapping is
required for the third column name in the SQL SELECT (i.e.,
AGE). There is a one-to-one correspondence between the number
of arguments in SELECT_ALIAS and the number of columns
specified in a SQL SELECT.

4.3 Fetching

Most of the information you need to fetch data with SELECT has
been specified above. However, there are several implementation
details that are important.

1. When retrieving multiple rows of data, JAM/DB; will
determine the maximum number of rows that can be
retrieved at one time. In the event a JAM field is
defined as an array in the screen or the data
dictionary, JAM/DB; will take the minimum number
of defined occurrences of the field in the screen or
the data dictionary. While developers are strongly
discouraged from creating arrays in a form and the
data dictionary of the same name but different size
(measured in terms of array element occurrences),
JAM/DBi will protect the developer by returning the
lesser of the occurrences. To continue retrieving data,
see the DBMS CONTINUE command below.

2. The maximum number of rows of data that JAM/DBi
will return in a single fetch is based on the smallest
number of array occurrences of any single data
element in the fetch. As an example, if you execute
SQL SELECT NAME, ADDRESS, STATE FROM EMP, and
NAME and ADDRESS have been defined in a JAM
application as arrays of 15 occurences each and STATE
as an array of 10 occurrences, then the maximum
number of rows returned will be 10 at a time.

3. Some SQL developers may be used to forcing the
closing of a SQL data storage area (called a SQL
cursor). In JAM/DBi, you do not have to force the
closing of a SQL cursor. JAM/DB; will automatically
open and close cursors.

4. Because JAM Version 4.0 permits fields to be defined
on a screen and not necessarily in a data dictionary,
JAM/DBi uses the following order of precedence
when searching for a field name and its characteristics:

[8/16/89] Fetching and Inserting Data

I8 JAM/DBIi Release 4.0

a. Screen variables
b. Data dictionary variables

5. If after searching these lists JAM/DBi cannot match a
field name with a SQL column name, JAM/DBi will
ignore that SQL column in the subsequent retrieval of
data.

6. JAM fields may be defined anywhere. Subsequently, a
SQL statement may call for the retrieval of data where
some fields are defined only in the JAM screen, where
others are defined only in the JAM data dictionary
and yet others are defined in both places.

7. Some users of JAM/DB; Version 3.X will find that
some JAM/JPL DBMS verbs are no longer supported
(DIAG in Informix and AUTOCOMMIT in ORACLE).

4.4 Continuing

If a SELECT returns more rows than can be placed into a JAM
field array (wherever it is defined), you can subsequently
continue to retrieve more data by attaching a DBMS CONTINUE
statement in a JPL file.

Moreover, if a user explicitly calls a CONTINUE after SQL has
indicated there are no more rows to fetch, JAM/DB/ will not
access the database. To control this, the developer should set the
environment variable ERROR (see Section 5) and constantly check
the current value of the ERROR variable for a 'no more rows’
condition. The actual value returned is database dependent.

Alternatively, users can use the DBMS COUNT function to check
the number of rows returned by the SQL SELECT and maintain
their own current count of how many rows are left in the fetch.
(This is obviously more problematic for databases that permit
forward and backward retrieval of rows.)

4.5 Next/Cancel/Flush
4.5.1 Next

Some databases support multiple commands to be issued in a
single string. If your database supports this feature, JAM/DBi
will attempt to process such strings. If, however, a command
(other than the last command in a sequence) returns data (via

Fetching and Inserting Data [8/16/89]

Release 4.0 JAM/DBi 1_9

SELECT) and you are required to issue a DBMS CONTINUE, the
original command will be suspended. To continue processing a
multicommand string from a suspended state, issue the following:

DBMS NEXT

4.5.2 Cancel

If there are multiple commands in a single string and processing
has been suspended as described above, the remaining commands
may be canceled with the following command:

DBMS CANCEL

4.5.3 Flushing

Some database systems using multicommand strings (e.g., Britton
Lee) require that, when a SELECT has returned multiple rows and
not all rows are fetched by JAM/DBi, the application must
explicitly flush unread rows before another command is
processed. Since there are no side effects to flushing, you may
issue a flush command even if you are not sure whether there
are any more rows left. The syntax for this command is:

DBMS FLUSH

[8/16/89] Fetching and Inserting Data

20 JAM/DBIi Release 4.0

5 JAM/DBi Environment

JAM/DB: provides several functions to control processing, error
trapping and database maintenance. These functions frequently
use native functions provided by the database system.

5.1 Determining the Number of Rows a SELECT Will Find

Since JAM/DB: keeps track of only the rows read but not of
how many are held in a cursor (some databases do not easily
provide that information), you can find out how many records
will be found by a given SQL SELECT by issuing the SELECT
COUNT command, as explained below.

First create a variable in the JAM data dictionary to hold the
return value. Let’s assume we have such a variable, called TOTAL.

SQL SELECT COUNT (EMPLOY NUM) TOTAL\
FROM EMP WHERE EMPLOY NUM > :EMPLOY NUM

A subsequent SQL statement that uses the same table and WHERE
clause will return the same number of rows as the number in
TOTAL.

5.2 Determining the Number of Returned (Read) Rows

When a SQL SELECT is issued, there is no guarantee of how
many rows of data the database will return. Frequently, it is
important to know either that no rows were returned or how
many rows must be processed.

Note that the DBMS COUNT function does not return the total
number of rows found by SQL for a specific SELECT. (Use a
SQL COUNT to do that.) It returns the number of rows read into
memory from the current SQL cursor.

To find out how many rows were returned, define either a JAM
screen field or data dictionary field to hold the row count (e.g.
MYCOUNT), and issue the following command:

DBMS COUNT MYCOUNT

After each SELECT and any subsequent CONTINUE, JAM/DBi will
place the returned row count into MYCOUNT.

DBMS COUNT can also be used for SQL DELETE and SQL UPDATE.

JAM/DBi Environment (8/16/89]

Release 4.0 JAM/DBIi 21

5.3 Specifying a Start Row

Some databases do not offer any means to page backwards
through the database, nor does the current version of JAM/DBi
provide any direct support for backward paging (or redirected
start and end). To help you around this problem, JAM/DBi
provides a means for reading a predetermined number of records
and discarding them before beginning to read the records that
you want to see.

Let’s assume that you want to page backwards through the
database. Just issue the following commands:

VARS RUNNING_COUNT

CAT RUNNING_COUNT "O"
DBMS START :RUNNING_COUNT
DBMS COUNT MYCOUNT
RETURN 0

Issue a SQL SELECT COUNT command:
SQL SELECT COUNT (EMPLOY_NUM) TOTAL FROM EMP

This number can be used to make sure that you do not create a
starting row value greater than the number of rows that can be
returned.

Then issue your SELECT statement:
SQL SELECT EMPLOY_NAME, EMPLOY NUM FROM EMP

After each SELECT or CONTINUE, add the value in MYCOUNT to
RUNNING_COUNT.

Let us also assume that you have an array that holds 15 rows of
data and that the SQL statement has returned the value of 50
into TOTAL. Furthermore, assume that you have read 3 pages (or
45 rows of data), of which the first 2 pages aré lost. To go back
one page of data, issue the following JAM/JPL command:

MATH RUNNING_COUNT=RUNNING_ COUNT - 30

IF RUNNING_COUNT <"O"

{

CAT RUNNING_COUNT "O"

)
DBMS START:RUNNING_COUNT

(8/16/89] JAM/DBIi Environment

22 JAM/DBi Release 4.0

SQL SELECT EMPLOY_NAME, EMPLOY _NUM FROM EMP
RETURN 0

Of course, if rows are added to or deleted from the table by
other users, the starting point will be only proximate to the top
of each page as the user pages forwards.

5.4 Error Processing

By default, JAM/DBi displays any database errors at the bottom
of the screen. If you want to control error processing yourself,
use the DBMS ERROR command to define a field to hold the
database return code and, optionally, an error message. For
example, to save the return value of a database status, create a
field called MYERROR and issue the following:

DBMS ERROR MYERROR

If you want to store a return error message from the database,
you can specify a data dictionary element (and optionally an
occurrence). For example, if you have an array ERROR_MSG with
20 occurrences and you want to store a database error in the 8th
occurrence, use the following statement:

DBMS ERROR MYERROR ERROR _MSGS[8]

To return to the default condition, just issue the following:
DBMS ERROR

Users should note that in JAM/DB/ Version 4.0 SQL errors will
not terminate JPL processing. In Version 3.X, on the other hand,
if error trapping was turned off, SQL errors would stop JPL
processing.

Note: The DBMS ERROR function, if active, passes on only those
errors that are returned by the database. Errors in JPL' syntax
will report an error and terminate the JPL procedure. Moreover,
some databases do not return error messages, and in some cases
users are required to fetch messages from a database file on the
basis of an error number.

JAM/DBi Environment [8/16/89]

Release 4.0 JAM/DBIi 23

5.5 Warning Processing

By default, JAM/DB/ ignores database warnings. To catch and
process warnings, first create a JAM data dictionary variable (for
example, MYWARNING) to store the warning message and then
issue the command:

DBMS WARN MYWARNING

You can also use JAM arrays. Note that warning formats vary
from database to database. See Appendix B for details. You can
return to the default status by issuing the following:

DBMS WARN

5.6 Begin/Commit/Rollback

If your database supports "before image journaling", you may
create sets of transactions that may be written to the database at
once. Such sets provide the opportunity to "rollback” an entire set
of interrelated transactions if one of the SQL transactions fails.
The way this procedure works varies from database to database.
The basic process includes marking the beginning of a
transaction, executing one or more transactions and then, after
testing the return codes of these transactions, executing either a
COMMIT or ROLLBACK. In some databases, there is no need to
mark the beginning of a transaction since all transactions since
the last COMMIT or ROLLBACK will be affected by a COMMIT or
ROLLBACK.

The syntax for these commands is:

DBMS BEGIN
DBMS COMMIT
DBMS ROLLBACK

[8/16/89] JAM/DBi Environment

24 JAM/DBi Release 4.0

6 JAM/DBi Utilities

Version 4.0 of JAM/DBi provides two utilities to aid in program
development. The first utility - £2tbl - creates a database table
from a binary JAM form. The second utility - tbl2f - creates a
basic JAM form from a database table definition.

JAM/DBi Utilities [8/16/89]

Release 4.0 JAM/DBi 25

NAME
£2tbl - form to table utility
SYNOPSIS

£2tbl <JAM file name>
DESCRIPTION

This utility program will take a user-specified JAM form in
binary file format, identify JAM fields and data types and create
a table in the user’s database with those fields.

This version of £2tbl maps a one-to-one correspondence
between form and table. Future versions will permit a form to
map to different tables.

The user is prompted for the name of the table to be created. If
the database being used requires a database name, user name
and/or password, the user will also be prompted for that
information.

f2tbl will exclude JAM control fields (i.e., those defined with a
jam_ definition and fields that are not named).

f£2tbl will create a maximum of 50 columns (JAM fields) in a
table.

The only two data types supported are character and integer. All
other data types will be converted to one of these types.

[8/16/89] JAM/DBIi Utilities

26 JAM/DBi Release 4.0

NAME
tb1l2f - table to form utility

SYNOPSIS

tbl2f
DESCRIPTION

This utility program will take a database table and create a
binary JAM form with named fields corresponding to the fields
in the database table.

This version of tbl2f maps a one-to-one correspondence
between table and form. Future versions will permit multiple
tables to map to a single form.

If the database requires a database name, user name and/or
password, the user is prompted for such information. tb12f will
prompt the user for a table name. tbl2f will then prompt the
user for a form name. The default is the database table truncated
(if necessary) to a valid file name length with the extension
JAM.

A maximum of 24 fields will be created. tb12f will inform the
user of how many fields were created or how many were
dropped from the specification if the number of columns exceeds
24,

The three data types supported are character, integer and float.
All other data types will be converted to one of these types. Note
that LONG VARS (variable length) will be created but data will be
truncated. Future versions of JAM/DB; will support LONG and
RAW vars.

Each field will have a maximum on-screen size of 20, but fields
larger than 20 characters will be made into shifting fields.

JAM/DBi Utilities (8/16/89]

