JAM/DB:
for
SYBASE

Notes

Notes for
SYBASE

This appendix provides documentation specific to SYBASE.
It discusses the following:

engine initialization

connection declaration

cursors

formatting for colon-plus and binding
errors and warnings

utilities

engine-specific features

command directory for JAM/DBi SYBASE

This document is designed as a supplement, not a replacement, to the JAM/DBi manual.
Each section identifies its companion chapter or section in the JAM/DBi manual.

1.1

ENGINE INlTIALIZATION See JAM/DBi Manual — Section 7.1

By default, JAM/DB: uses the following values in dbiinit.c for SYBASE initializa-

tion:

static vendor_t vendor list([] =

{

{“sybase”, dm_sybsup, DM PRESERVE CASE , (char *) 0},

{ (char *) 0, (int (*)()) O, (int) O, (char *) 0 }

}:

August 92

JAM/DB: Release 5 SYBASE Notes 1

SYBASE

The default settings are as follows:

sybase Engine name. May be changed.
dm_sybsup Support routine name. Do not change.
DM _PRESERVE_CASE Case setting for matching SELECT columns

with JAM variable names. May be changed.

1.114
Engine Name and Support Routine

An application may change the engine name associated with the support routine
dm_sybsup. The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name, make the
following change:

static vendor_t vendor list[] =
{
{“*tracking”, dm_sybsup, DM PRESERVE_CASE, (char *) 0},

{ (char *) 0, (int (*)()) O, (int) O, (char *) 0 }
}:

If the application is accessing multiple engines, it makes SYBASE the default engine by
executing:

dbms ENGINE sybase engine name

where sybase_engine_name is the string used in vendor_1ist. For example,
dbms ENGINE sybase

or
dbms ENGINE tracking

dm_sybsup is the name of the support routine for SYBASE. This name should not be
changed.

If your application is using multiple engines, you need to add a line to vendor_list for
each engine. You also need to modify your makefile to support both engines and recompile
the JAM/DBi executables, jxdbi and jamdbi.

1.12
Case and Error Flags

The case flag, DM_PRESERVE_CASE, determines how JAM/DBi uses case when search-
ing for JAM variables for holding seLECT results. JAM/DBi uses this setting when

2 JAM/DBi Release 5 SYBASE Notes August 92

Notes

comparing SYBASE column names to either a JAM variable name or to a column name in
apBMS ALIAS statement.

SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when creating
database objects like tables and columns. In a SQL statement, users must use the same exact
case when referring to these objects. By default, JAM/DBi initializes case-sensitive en-
gines using the pM_pRESERVE_CASE flag. This means that JAM/DB: matches the SYBASE
column name to a JAM variable with the same name and case.

By changing this flag, you can force JAM/DB: to perform case-insensitive searches. Use
DB_FORCE_TO_LOWER_CASE to match SYBASE column names to lower case JAM names;
use DM_FORCE_TO_UPPER_CASE to match to upper case JAM names.

You may also set an optional flag to change the behavior of JAM/DBi’s default error han-
dler. An application may set either of the following:

DM _DEFAULT DBI_MSG Set the default error handler to display stan-
. dard JAM/DB: messages for all error mes-
sages.

DM_DEFAULT ENG_MSG Set the default error handler to display SY-
BASE error messages instead of JAM/DBi er-
ror messages.

If neither flag is used, DM_DEFAULT_ DBI_MSG is the default. To show SYBASE error mes-

sages as the default, use the bitwise OR operator and DM_DEFAULT _ENG_MSG :

static vendor_t venaor_list[] =

{
{”sybase”, dm_sybsup, DM PRESERVE_CASE | DM_DEFAULT ENG_MSG,
(char *) 0 },

{ (char *) 0, (int (*)()) O, (int) O, (char *) 0}
}:
If you modify the settings in dbiinit.c, you must recompile and link the JAM/DBi
executables, jxdbi and jamdbi. dbiinit.c does not affect the utility executables,
tbl2f and £2tbl.

Please note that bM_DEFAULT_DBI_MSG and DM_DEFAULT_ENG_MsG do not affect an ap-
plication using an error hook function. An error hook function is installed with pBMS
ONERROR and controls all error message display.

1.2

CO N N ECT' O N See JAM/DBi Manual - Section 7.2

The following options are supported for connections to SYBASE:

August 92 JAM/DB: Release 5 SYBASE Notes 3

SYBASE

USER user_name
PASSWORD password
SERVER server_name

DATABASE database_name
INTERFACES Interfaces_file_pathname
CURSORS 1/2

TIMEOUT seconds

Use INTERFACES to supply the pathname (o an interfaces file. An interfaces file contains
the name and network address of every SYBASE server available on the network. If this
option is not used, SYBASE looks for a file called interfaces in the SYBASE parent
directory (e.g., /usr/sybase/interfaces). This option is ignored for 0S/2, MS-
DOS, and Windows applications.

Use TIMEOUT to set the number of seconds that Open Client waits for a SYBASE response
to a request for a connection. A timeout of 0 seconds represents an infinite timeout period.
The default is usually 60 seconds.

Use CURSORS to control the number of default cursors JAM/DBi creates when the appli-
cation declares a connection. The default is 1. This means that JAM/DBi uses one cursor
for any operation executed with sql or dm_sql, whether it is a SELECT or non-SELECT
operation. The application must set CURSORS to 2 to use browse mode. You may also wish
to use two default cursors if your application switches between a SELECT and non-SELECT
operations. See the section on cursors for additional information.

The syntax for declaring a connection is,

dbras DECLARE connection CONNECTION FOR \
USER user name PASSWORD password DATABASE database \
SERVER server INTERFACES interface_pathname \
TIMEOUT timeout CURSORS number of cursors

For example,

dbms DECLARE dbi_session CONNECTION FOR \
USER :uname PASSWORD :pword DATABASE sales \
SERVER birch INTERFACES ’/usr/sybase/interfaces.app’
TIMEQUT 15 CURSORS 2

where uname and pword are JAM field names.

SYBASE allows your application to use one or more connections. The application may de-

clare any number of named connections with DBMS DECLARE CONNECTION statements,
up to the maximum number permitted by the server.

4 JAM/DBi Release 5 SYBASE Notes August 92

Notes

1.3

CU RSO RS See JAM/DBi Manual — Section 7.3

JAM/DB: uses two cursors for operations performed by sql and its equivalents, dm_sql
and dm_sql_noexp. JAM/DBi uses one cursor for SELECT statements and the other for
non-sELECT statements. Tiese two cursors may be sufficient for small applications. Larger
applications often require more; an application may declare named cursors using DBMS
DECLARE CURSOR. For example, master and detail applications often need to declare at least
one named cursor: one cuzsor selects the master rows and additional cursors select detail
rows. In short, if an applicztion is processing a SELECT set in increments (i.e., by using DBMS
conTINUE) while it is executing other SELECT statements, two Or more cursors are neces-
sary.

JAM/DB: does not put ~ny limit on the number of cursors an application may declare to
an SYBASE engine. Since each cursor requires memory and SYBASE resources, however,
it is recommended that applications close a cursor when it is no longer needed.

1.4

FORMATTING FOR COLON-PLUS AND
B I N D I N G See JAM/DBi Manual - Chapter 8

SYBASE requires a leading dollar sign for values inserted in a money column in order to
ensure precision. JAM/DB: will use a leading dollar sign when it formats DT_CURRENCY
values. Any other amount formatting characters are stripped. Therefore, if a currency field
contained

500,000.00
JAM/DBi would format it as
$500000.00

1.5
SCROL LI N G See JAM/DBi Manual - Section 9.1.2

SYBASE has native support for backward scrolling in a seLECT set. Before using any of the
following commands

August 92 JAM/DBi Release 5 SYBASE Notes 5

SYBASE

dbms [WITH CURSOR cursor] CONTINUE BOTTOM
dbms [WITH CURSOR cursor] CONTINUE TOP
dbms [WITH CURSOR cursor] CONTINUE_UP

the application must specify whether to use native scrolling or JAM/DBi scrolling. To use
native scrolling, use the command

dbms [WITH CURSOR cursor] SET_BUFFER arg
where arg is the number of rows to buffer.
To use JAM/DBi scrolling, use the command
dbms [WITH CURSOR cursor] STORE FILE [filename]

1.5.1
Locking

JAM/DBi SYBASE developers should consider locking issues when building applications
that SELECT large amounts of data.

When an application executes a SELECT that returns many rows, SYBASE may use a
“shared lock™ to preserve read-consistency. That is, to preserve the state of the selected data,
SYBASE may prevent other applications or users from changing the data until the applica-
tion has received all the rows. This behavior is usually seen for SELECT sets that contain
500 or more rows.

As a part of developing and testing an application, JAM/DB; developers should monitor
SYBASE’s behavior by running the SYBASE command sp_1lock from another terminal
when the application executes a SELECT. If a SELECT executed by a JAM/DB: application
is holding a lock, the cursor’s spid will be listed.

Since a shared lock prevents other users from updating data, it is important to release shared
locks as soon as possible. To release a shared locked,

= getall the rows in the SELECT set, or
« flush pending rows in the SELECT set
An application has two ways of getting the entire SELECT set;

s create JAM arrays which are large enough to hold the entire SELECT set,
or

®= useDBMS STORE FILE and DBMS CONTINUE_ BOTTOM to buffer all the
rows in a temporary file on disk

6 JAM/DB: Release 5 SYBASE Notes August 92

Notes

For example, an application may set up a continuation file before executing a SELECT. Be-
fore returning control to the user, the application may execute DBMS CONTINUE_BOTTOM
which forces JAM/DB; get all the rows from the SELECT set and buffer them in a temporary
file. This also forces SYBASE to release any shared lock it is holding for the SELECT.

In the following example, the application puts a message on the status line and flushes the
display. Next is sets up a continuation file and executes the SELECT. It calls
CONTINUE_BOTTOM to force JAM/DBi to get all the rows. Finally, it calls CONT INUE_TOP

to ensure that the SELECT set’s first page (rather than its last page) of rows is displayed
when control is returned to the user.

proc big_select
msg setbkstat ”“Processing. Please be patient...”
flush
dbms STORE FILE
sql SELECT
dbms CONTINUE BOTTOM
dbms CONTINUT_ TOP
return

An application may also limit the number of rows a use may view at a time by using the
DBMS FLUSH command. When this command is executed, SYBASE discards any pending
rows and releases all associated locks. For example,

proc big_ select
sql SELECT
if @dmretcode != DM_NO_MORE_ROWS
dbms FLUSH
return

To monitor lock information within the application, the application may query SYBASE for
the spid number of a cursor and the number of locks held by the cursor. Note that each cur-
sor has its own spid and it keeps the same spid number until the application closes the cur-
sor. To get a cursor’s spid number, an application must use the cursor to select the global
SYBASE variable @@spid.

Get the SYBASE spid for a JAM/DBi cursor
before SELECTing rows.
proc get_spid
parms cursor
vars spid
if cursor ==
sql SELECT spid = @@spid
else

”n

August 92 JAM/DBi Release 5 SYBASE Notes 7

SYBASE

dbms DECLARE :cursor CURSOR FOR \
SELECT spid = @@spid
dbms EXECUTE :cursor
}
return spid

Get the number of locks held by a SYBASE spid.
proc lockstatus
parms spiddselect
" vars lcount
dbms DECLARE lock_count CURSOR FOR \
SELECT COUNT (*) FROM master.dbo.syslocks \
WHERE spid = :spidé4select
dbms WITH CURSOR lock cursor ALIAS lcount
dbms WITH CURSOR lock_cursor EXECUTE
dbms CLOSE CURSOR lock cursor
return lcount

An application may get a cursor’s spid before executing a SELECT for rows. After fetching
rows the application may query SYBASE for the number of locks. Note that the order of
these statements is important: if an application attempts to get a cursor’s spid after fetching
rows, the SELECT for the cursor’s spid will release any locks and any pending rows. For this
reason, be sure to get the cursor’s spid before fetching rows. See the example below.

proc select
vars cursor_spid locks

retvar cursor_spid
jpl get_spid “cl”
retvar

dbms DECLARE cl CURSOR FOR SELECT
dbms WITH CURSOR cl EXECUTE

retvar locks
jpl lockstatus :cursor_spid

retvar

msg emsg “The number of lock(s) is “ locks
return

8 JAM/DB: Release 5 SYBASE Notes August 92

Notes

1.6

ERROR AND STATUS INFORMATION

See JAM/DBi Manual - Section 9.2 and Chapter 13

In Release 5, JAM/DB; uses the global variables described in the following sections to sup-
ply error and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other engines
and for use in future releases of JAM/DBi for SYBASE.

1.6.1

Errors

JAM/DBi initializes the following global variables for error code information:
@dmretcode Standard JAM/DB:i status code.
@dmretmsg Standard JAM/DB: status message.
@dmengerrcode SYBASE error code.

@dmengerrmsg - SYBASE error message.
@dmengreturn Return code an executed stored procedure.

SYBASE retumns error codes and messages when it aborts a command. It aborts a command
usually because the application used an invalid option or because the user did not have the
authority required for an operation. JAM/DB;: writes SYBASE error codes (o the global
variable @dmengerrcode and writes SYBASE messages to @dmengerrmsg.

All SYBASE errors with a severity greater than 10 are JAM/DB: errors. Otherwise, they
are considered wamings.

The easiest way to test for SYBASE errors is with an installed error or exit handler, For
example,

dbms ONERROR JPL errors
dbms DECLARE dbi_session CONNECTION FOR ..

proc errors
parms stmt engire flag
if @dmengerrcode ==
msg emsg ‘.JAM/DBi error: ” @dmretmsg
else
msg emsg “JAM/DBi error: ” @dmretmsg ” %N” \
”":engine crror is” @dmengerrcode ” “ @dmengerrmsg
return 1

August 92 JAM/DB; Release 5 SYBASE Notes 9

SYBASE

If you need additional information about SYBASE errors, please consult your SYBASE
documentation.

1.6.2

Warnings

JAM/DB: initializes the following global variables for warning information:
@dmengwarncode SYBASE warning code.
@dmengwarnmsg SYBASE warning message.

A wamning usually describes some non-fatal change in the SYBASE environment. For ex-
ample, SYBASE issues a warning when the application changes a connection’s default da-
tabase.

You may wish to use an exit hook function to process warnings. An exit hook function is
installed with DBMS ONEXIT. A sample exit hook function is shown below.

proc check status
parms stmt engine flag

if @dmengwarncode

msg emsg ”“SYBASE Warning is ” @dmengwarnmsg
return

1.6.3
Row Information

JAM/DB; initializes the following global variables for row information:

@dmrowcount Count of the number of SYBASE rows af-
fected by an operation.
@dmserial Not used in JAM/DBi for SYBASE.

SYBASE returns a count of the rows affected by an operation. JAM/DB: writes this value
to the global variable @dmrowcount.

As explained on the manual page for @dmrowcount, the value of @dmrowcount after
a SELECT is the number of rows fetched to JAM variables. This number is less than or equal
to the total number of rows in the select set. Immediately after an INSERT, UPDATE, or
DELETE, @dmrowcount is set to the total number of rows affected by the operation. This
variable is cleared whenever a DBMS COMMIT statement is executed.

10 JAM/DB: Release 5 SYBASE Notes August 92

Notes

The value of @dmrowcount may be unexpected after executing a stored procedure. If the
stored procedure executes a SELECT, @dmrowcount equals the number of rows fetched.

If, however, the stored procedure does an INSERT, UPDATE, Or DELETE, @dmrowcount is
set to —1. This is documented SYBASE behavior. If you need this information, SYBASE
recommends that you test for it within the stored procedure and return it as an output param-
eter or return code. @ rowcount is a SYBASE global variable. For example,

create proc update_ship fee @class int, @change float
as
declare Qu _count int
update cost set ship_fee = ship fee * @change
where class = @Qclass
select @Qu_count = @rowcount
return @u_count

————

See your SYBASE Command Reference Manual for more information.

1.7

UTI L ITI ES See JAM/DBi Manual — Chapter 16

If you start the utilities in interactive mode using the -1 flag, the utility displays an engine-
independent logon screen. JAM/DB: uses the following options:

s User

s Password

s Server name

s Database name

when declaring a connection to SYBASE for the utilities. Enter the same information you
use to declare a connection in jamdbi. The other fields on the logon screen may remain
empty.

1.7.1
f2tbl

£2tb1 creates a database iable based on a JAM form. It uses each named field on the form
to create a column, translating field edits to an appropriate SYBASE column definition.
The table below shows the default SYBASE column definitions for each JAM type.

August 92 JAM/DB; Release 5 SYBASE Notes 11

SYBASE

If you do not know how to check a field’s JAM type, please see the Urility Reference Chap-

ter of the JAM/DBi manual.
———S;EXSE Column Definition ==u
Type Length Precision H
DT_CURRENCY m=oney=——]
DT DATETIME jdatetime
DT_YESNO char Same as field length
! FT_CHAR char Same as field length
| FT DOUBLE |float
i FT_FLOAT £loat |
“ FT_INT int II
II FT_LONG int i
|| FT_PACKED float
FT_SHORT smallint
FT_UNSIGNED |int
|| FT_VARCHAR |varchar Same as field length i
II FT_ZONED float |l
e

The utility assigns a length for character-type columns. For all other columns, it uses the
default length of the datatype.

To change these defaults you must edit the JPL procedure type in the distribution JPL
module syb£f2t . jpl, compile it by using jpl2bin, and replace the previous version in
sybjpl.1lib by using formlib -r.

1.7.2

tbl2f

tbl2f creates a JAM form based on an SYBASE table. It creates a field for each column
in the table, using the column’s datatype to assign the appropriate field characteristics. The

12

JAM/DBi Release 5 SYBASE Notes

August 92

Notes

table below lists the following for each SYBASE datatype: the identification number for
that datatype from the SYBASE system table systypes, the default JAM type and the
default field length and precision.

JAM/DB: by default preserves the same case when creating field names for a tb12f
screen. This is consistent with the default case setting for SYBASE in dbiinit.c (see
Section 1.1). If you changed the default in dbiinit.c to DM_FORCE_TO_LOWER_CASE

or DM_FORCE_TO_UPPER_CASE, you should set the case option of tb12f to match. The
case option may be set on the command line or from a pull-down menu in interactive mode.
For example, to start tb12f in interactive mode and use upper case for JAM variables,

type
tbl2f -i -lu

Note that there are additional characteristics associated with each JAM type. Those are
described in the Utility Reference Chapter of the JAM/DBi manual.

SYBASE Type JAM Field Definition
Length Precision

smallint FT_SHORT ?==
tinyint 48 |FT_SHORT 3
timestamp, FT_UNSIGNED
varbinary 37
int 45 [FT_unsiGNED |11 |
bit 50 |FT_UNSIGNED 11
int 56 |FT_LoNG 11 II
intn 38 |FT_LONG 11
float 62 | FT_FLOAT 25 5 n
floatn 59,109 |FT_FLOAT 25 5 “
char 47 |FT_CHAR
money 60 | DT_CURRENCY 11
moneyn 110,122 |DT_CURRENCY 11
datetime 58,61 |DT_DATETIME 20

August 92 JAM/DBi Release 5 SYBASE Notes 13

SYBASE

SYBASE Type JAM Field Definition
JAM Type Precision

datetimen 111 |DT DATETIME

varchar 35 | FT_VARCHAR

sysname, FT_VARCHAR
varchar 39

To change these defaults, or to add other datatypes, you must edit the JPL procedure type
in the distribution JPL module sybt2£. jpl, compile it by using jpl2bin, and replace
the previous version in sybjpl.1lib by using formlib -r.

1.8
STORED PROCEDURES

An application may execute a stored procedure with the command sql and the engine’s
command for execution. For example,

sql EXEC procedure

executes the named stored procedure. An application may also use a named cursor to ex-
ecute a stored procedure.

dbms DECLARE cursor CURSOR FOR \
[declare parameter type [declare parameter type...]11\
EXEC procedure [parameter [OUT], [parameter [OUT]...]]

dbms [WITH CURSOR cursor] EXECUTE [USING values]
For example, if emp_grades is the following stored procedure,

create proc emp grades @gval char(l)
as
select last, first from emp where grade = @gval

either of the following,
sql EXEC emp_grades :+grade
or

dbms DECLARE x CURSOR FOR EXEC emp_grades ::g_parm
dbms WITH CURSOR x EXECUTE USING grade

14 JAM/DBi Release 5 SYBASE Notes August 92

Notes

executes the stored procedure, selecting the names of all employees with the specified
grade. If the current screen (or LDB) contains the fields 1ast and f£irst, the procedure
writes the values to JAM.

Remember, double colons (::) in a DECLARE CURSOR statement are for cursor parameters.
A value is supplied for the employee grade each time the cursor is executed. If a single
colon or colon-plus were used, the employee grade would be supplied when the cursor was
declared, not when it was executed. See Section 8.2 in the JAM/DBi manual for more in-
formation.

If the DBMS supports output parameters, the keyword ouT traps the value of an output pa-
rameter in a JAM variable. For example, if summ_by grade is the following stored pro-
cedure,

create proc summ by grade
@cnt int output, @asal money output, @gr char(l)
as
create table empsum (ss char(ll), sal money)
insert into empsum select emp.ss, acc.sal from emp, acc
where emp.ss=acc.ss and emp.grade = @gr
select @cnt = count (*) from empsum
select @asal = avg(sal) from empsum
drop table empsum

the application should declare a cursor for the procedure:

dbms DECLARE curl CURSOR FOR \
declare @tl int declare @t2 money \
EXEC summ by_grade @cnt=@tl OUT, Rasal=@t2 OUT, \
@gr=::grade_parm
dbms WITH CURSOR curl EXECUTE USING gr = grade
If cnt and asal are JAM variables, the procedure returns the number of employees in the
specified grade and their average salary. Note that t 1 and t 2 are temporary SYBASE vari-
ables, not JAM variables. SYBASE requires that output values be passed as variables, not
as constants, The application may use DBMS ALIAS to map the values of output parameters
to JAM variables. For example,

dbms DECLARE curl CURSOR FOR \
declare @tl int declare @t2 money \
EXEC summ by grade @cnt=@tl OUT, Qasal=@t2 OUT, \
@gr=::grade_parm
dbms WITH CURSOR curl ALIAS cnt emp_count, asal sal_avg
dbms WITH CURSOR curl EXECUTE USING gr = grade

August 92 JAM/DBi Release 5 SYBASE Notes 15

SYBASE

maps the value of cnt to the JAM variable emp_count and the value of asal to the
JAM variable sal_avg.

1.8.1
Remote Procedure Calls

In addition to the EXEC command, SYBASE supports a remote procedure call (“rpc”™) for
executing a stored procedure. Developers should consider using rpc rather than ExEc when
either the following occur:

s Oneormore of the stored procedure’s parameters has a datatype that is not
char. Anrpcismore efficient in these cases because it is capable of pass-
ing parameters in their native datatypes rather than only as ASCII charac-
ters. This reduces the amount of data conversion for the application and
the server.

» The stored procedure returns output parameters. An rpc provides a faster
and simpler mechanism for accommodating output parameters.

To make an remote procedure call, an application performs the following steps:

1. Must declare an rpc cursor.

2 Mus-t declare the datatype of each parameter that has a non-char datatype.
3. May specify aliases for output parameters or selected columns.
4

Must execute the cursor, supplying in the USING clause a JAM variable
for each parameter.

The sections below describe these steps in detail. Examples follow.

Declaring the mc¢ Cursor

JAM/DBi uses binding to support rpcs. Therefore, to execute a stored procedure with an
1pC, the application must declare an rpc cursor. The syntax is the following:

dbms [WITH CONNECTION connection] \
DECLARE cursor CURSOR FOR \
RPC procedure [::parameter [OQUT] [, ::parameter [OUT]...]]

The keyword RPC is required. Following the keyword is the name of the procedure and the
names of the procedure’s parameters. All parameters must begin with a double colon, the
JAM/DB;i syntax for cursor parameters. If a parameter is an output parameter, the keyword
out should follow the parameter name if the application is to receive its value.

16 JAM/DB: Release 5 SYBASE Notes August 92

Notes

Datatyping the rpc Parameters

To pass parameters in their native datatypes, the application must specify a datatype for
each non-character parameter. The syntax for DBMS TYPE is the following:

dbms [WITH] CURSOR ecursor TYPE [parameter] engine datatype \
[, [parameter] engine_datatype . ..]

parameter is a parameter in the DBMS DECLARE CURSOR statement. engine_datatype is the
datatype of a parameter in the procedure. If parameter names are not given, the types are
assigned by position.

JAM/DB: uses the information in the DBMS TYPE statement to make the required calls to

add parameters to an rpc. Please note that DBMS TYPE has no effect on the data formatting
performed for binding.

Redirecting the Value of Output Parameter

By default, when an rpc cursor with an output parameter is executed, JAM/DBi searches
for a JAM variable with the same name as the output parameter. To write the output value
to a JAM variable with another name, use the DBMS ALIAS command.

dbms [WITH] CURSOR cursor ALIAS [output parameter] Jamvar \
[, (output parameter] Jamvar ...)

If the procedure selects rows, aliases may be given for the tables’ columns. If the procedure
returns output parameters and column values, aliases should be given by name rather than
by position.

Executing the rpc Cursor

The application executes the stored procedure by executing the rpc cursor. The USING
clause must provide a JAI variable for each parameter. The syntax is the following:

dbms [WITH] CURSCR cursor EXECUTE \
USING [parameter =] variable [, [parameter =] variable .. .]

JAM/DBi passes the name of parameter given in the DEMS DECLARE CURSOR statement,
the datatype of the parameter given in the DBMS TYPE statement, and the parameter’s value
which is the value of variable.

Parameters and JAM variables may be bound either by name or by position. The two forms
should not be mixed, however, in one statement.

Example
If newsal is the following stored procedure,

August 92 JAM/DB: Release 5 SYBASE Notes 17

SYBASE

create proc newsal
@ssn char(ll), @change float,
@salary money output, @proposed_sal money output
as
select @salary = (select sal from acc where ssn = @ssn)
select @proposed_sal = @salary * (Gchange + 1)

"an rpc would be more efficient than an exec cursor because the procedure has an input pa-
rameter with a non-char datatype, and because it returns two output parameters.
The following statement declares an rpc cursor for the stored procedure. Note that the key-
word ouT follows each of the output parameters.

dbms DECLARE cur2 CURSOR FOR RPC newsal ::ssn, ::change,\
::salary OUT, ::proposed sal OUT

Before executing the cursor, the application must specify the SYBASE datatypes for the
three non-character datatypes.

dbms WITH CURSOR cur2 TYPE \
change float, salary money, proposed sal money
When executing the cursor, the application must provide a JAM variable for each parame-
ter. JAM/DBi passes the name, datatype, and value of the parameters to the procedure. Note
that the procedure does not use the input value of the parameters salary and
proposed_sal. JAM/DBi’s binding mechanism, however, requires a variable in the
USING clause for each parameter.
dbms WITH CURSOR cur2 EXECUTE \
USING ssn, change, salary, proposed sal
The procedure passcs its output, the two salary values, to the JAM variables salary and
proposed_sal. To put the output values in the fields sall and sal2, execute the fol-
lowing:

dbms WITH CURSOR cur2 ALIAS salary sall, \
proposed_sal sal2

dbms WITH CURSOR cur2 EXECUTE USING ssn=ssn, \
change=change, salary=currency, proposed_sal=currency

Note that the variable names in the USING clause do not affect the destination of output val-

_ues when the cursor is executed. Only aDBMS ALIAS statement can remap the output vari-
ables to other JAM variables.

Of course, this procedure may also be executed with the standard ExEc cursor. It would re-
quire the following declaration,

18 JAM/DB: Release 5 SYBASE Notes August 92

Notes

dbms DECLARE cur3 CURSOR FOR \
declare @x money declare @y money \
EXEC newsal @ssn = ::s8sn, Qchange = ::change, \
@salary = @x output, @proposed_sal = @y output

dbms WITH CURSOR cur3 EXECUTE USING ssn=ssn, change=change

1.8.2
Controlling the Execution of a Stored
Procedure

JAM/DB: provides a command for controlling the execution of a stored procedure that con-
tains more than one SELE~T statement. The command is

dbms [WITH CURSOR cursor] SET behavior
where behavior is one of the following
STOP_AT_FETCH
EXECUTE_ALL

If behavior is STOP_AT FETCH, JAM/DBi stops each time it executes a non-scalar
SELECT statement in the stored procedure. Therefore, a SELECT from a table will halt the
execution of the procedure. However, a SELECT of a single scalar value (i.e., using the SQL
functions suM, COUNT, Avt;, MAX. or MIN) does not halt the execution of a stored procedure.

The application may execite
dbms [WITH CURSOR cursor] CONTINUE

or any of the CONTINUE variants to scroll through the selected records. To abort the fetching
of any remaining rows in the SELECT set, the application may execute

dbms [WITH CURSOR cursor] FLUSH

To execute the next statemment in the procedure the application must execute
dbms [WITH CURSOR cursor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

To abort the execution of any remaining statements in the stored procedure or the sql state-
ment, the application may cxecute

dbms [WITH CURSOR cursor] CANCEL

August 92 JAM/DB: Release 5 SYBASE Notes 19

SYBASE

All pending statements are aborted. Canceling the procedure also returns the procedure’s
return status code. The return code DM_END_OF _ PROC signals the end of the stored proce-
dure.

If behavior is EXECUTE_ALL, JAM/DB: executes all statements in the stored procedure
without halting. If the procedure selects rows, JAM/DBi returns as many rows as can be
held by the destination variables and continues executing the procedure. The application
cannot use the DBMS CONT INUE commands to scroll through the procedure’s SELECT sets.

1.83
Trapping a Return Code from a Stored
Procedure

JAM/DBi provides the global variable
@dmengreturn

to trap the return status code of a stored procedure. This variable is empty unless a stored
procedure explicitly sets it. Note that the variable will not be set until the procedure has
completed execution. Therefore, an application should evaluate @dmengreturn when
@dmretcode = DM_END_OF PROC. See Appendix B in the JAM/DB; manual for the
value of DM_END_OF_PROC.

Executing a new sql or dbms statement, clears the value of @dmengreturn.

If multiply is the following stored procedure,

create proc multiply @ml int, @m2 int,
@guess int output, @result int output
as
select @result = @ml * @m2
if @result = Qguess
return 1
else
return 2

the application should set up variables for the output parameters.

Either an rpc cursor or an exec cursor may be declared and executed for the procedure,

20 JAM/DBi Release5 SYBASE Notes August 92

Notes

RPC cursor
dbms DECLARE x CURSOR FOR \

RPC multiply ::ml, ::m2, ::guess OUT, ::result OUT
dbms WITH CURSOR x TYPE ml int, m2 int, \

guess int, result int
dbms WITH CURSOR x ALIAS guess attempt, result answer
dbms WITH CURSOK x EXECUTE USING ml, m2, attempt, answer

EXEC cursor
dbms DECLARE y CURSOR FOR \
declare @syb_tmpl int \
declare @syb_tmp2 int \
select @syb_tmpl = ::user_guess\
EXEC multiply @ml=::pl, @m2=::p2, \

@guess= @syb_tmpl OUT, @result= @syb tmp2 OUT
dbms WITH CURSOF. y ALIAS guess attempt, result answer
dbms WITH CURSOF. y EXECUTE \

USING user_guess = attempt, pl = ml, p2 = m2

After executing the cursoi, the application may test the value of @dmengreturn and dis-
play a message based on the return status code.

proc check_ret
DM _END OF PROC is a constant in the LDB.
if @dmretcode == DM _END_OF_ PROC
{
if @dmengreturn ==
msg emsg “Good job!”
else if @dmer.greturn ==
msg emsg “Better luck next time.”
}
else
{
dbms NEXT
jpl check_ret
}

return

1.9
TRANSACTIONS

On SYBASE, a transaction controls exactly one cursor. Therefore, in a JAM/DBi applica-
tion a transaction controls all statements executed with a single named cursor or the default

August 92 JAM/DBi Release 5 SYBASE Notes 21

SYBASE

cursor. Applications that need transaction control on multiple cursors should use two-phase
commit service. The discussion of the JAM/DBi commands for two-phase commit is in
Section 1.9.2.

The following events commit a transaction on SYBASE:
= executing DBMS COMMIT
= executing a data definition command such as CREATE, DROP, RENAME, Or
ALTER
The following events rollback a transaction on SYBASE:
s executing aDBMS ROLLBACK.

s closing the transaction’s cursor or connection before the transaction is
committed

Note that SYBASE will not rollback remote procedure calls (rpcs) or data definition com-
mands that create or drop database objects. See the SYBASE documentation for more infor-
mation on these restrictions.

1.9.1
Transaction Control on a Single Cursor

Once a connection has been declared, an application may begin a transaction on the default
cursor or on any declared cursor.

SYBASE supports the following transaction commands:

= DBMS [WITH CONNECTION connection] BEGIN
DBMS [WITH CURSOR cursor] BEGIN
Begin a transaction on a default or named cursor.
= DBMS [WITH CONNECTION connection] SAVE savepoint
DBMS [WITH CURSOR cursor] SAVE savepoint
Create a savepoint in the transaction on a default or named cursor.
= DBMS [WITH CONNECTION connection] COMMIT
DBMS [WITH CURSOR cursor] COMMIT

Commit the transaction on a default or named cursor.
= DBMS [WITH CONNECTION connection] ROLLBACK |[savepoint]

DBMS [WITH CURSOR cursor] ROLLBACK [savepoint)

Rollback to a savepoint or to the beginning of the transaction on a default
or named cursor.

22 JAM/DB: Release 5 SYBASE Notes August 92

Notes

A transaction on a default cursor controls all inserts, updates, and deletes executed with the
JPL command sql or dm_sql. The application may set the default connection before be-
ginning the transaction or it may use the WITH CONNECTION clause in each statement. A
simple transaction on a default cursor may appear as

dbms CONNECTION connection
dbms BEGIN

sql statement

sql statement

dbms SAVE savepoin?

sql statement

dbms ROLLBACK savepoint
dbms COMMIT

If a named cursor is declared for multiple statements, it may be useful to execute the cursor
in a transaction. This way. the application may ensure that SYBASE executes either all of
the cursor’s statements or none of the cursor’s statements. A simple transaction on a named

cursor may appear as

dbms DECLARE cursor CURSOR FOR slatement (statement...]
dbms WITH CURSOR cursor BEGIN
dbms WITH CURSOR cursor EXECUTE (USING parm [parm...]]

dbms WITH CURSOR cursor COMMIT

If necessary, the cursor may be executed more than once in the transaction. The application
should not, however, redeclare a cursor within a transaction.

Examples are shown below with error handlers.

Example 1. A Transaction on the Default Cursor

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.
jpl tran_handle new_employee

August 92 JAM/DBi Release 5 SYBASE Notes 23

SYBASE

proc tran handle
{
parms subroutine
vars jpl_retcode
retvar jpl_retcode
Call the subroutine.
jpl :subroutine
Check the value of jpl_retcocde. If it is 0, all statements in
the subroutine executed successfully and the transaction was
committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine. Execute a
ROLLBACK for all non—-zero return codes.
if jpl_retcode ==
{

&

3 e s dp ok

msg emsg ”"Transaction succeeded.”

}

else

{

msg emsg ”“Aborting transaction.”
dbms ROLLBACK

proc new_employee
dbms BEGIN
sql INSERT INTO emp VALUES \
(:+ssn, :+last, :+first, \
t+street, :+city, :+st, :+zip)
sql INSERT INTO review VALUES \
(:+ssn, :+startdate, :+startsal, :+grade)
sql INSERT INTO acc VALUES (:+ssn, :+startsal, :+exmp)
dbms COMMIT
return 0

The procedure t ran_handle is a generic handler for the application’s transactions. It is
like the one described in the Developer's Guide. The procedure new_employee contains
the transaction statements. This method reduces the amount of error checking code.

The application executes the transaction by executing
jpl tran handle new_employee

The procedure t ran_handle receives the argument “new, employee and writes it to the
variable subroutine. It defines and declares a JPL variable to receive a JPL return code.
After performing colon processing :subroutine is replaced with its value,

24 JAM/DBi Release 5 SYBASE Notes August 92

Notes

new_employee, and JPL calls the procedure. The procedure new_employee begins
the transaction, performs three inserts, and commits the transaction.

If new_employee executes without any errors, it retuns O to the variable
jpl_retcode inthe cailing procedure t ran_handle.JPL then evaluates the i f state-
ment, displays a success message, and exits.

If however an error occurs while executing new_employee, JAM/DBi calls the applica-
tion’s error handler. The error handler should display any error messages and return the
abort code, 1. :

For example, assume the first INSERT in new_employee executes successfully but the
second INSERT fails because it violates the rule grade_range. In this case, JAM/DBi
calls the error handler to display an error message. When the error handler returns the abort
code 1, JAM aborts the procedure new_employee (therefore, the third INSERT is not
attempted). JAM returns 1 to jpl_retcode in the calling procedure tran_handle.
JPL evaluates the if stalcment, displays a message and executes a rollback. The rollback
undoes the insert to the table emp.

1.9.2
Transaction Control on Multiple Cursors

SYBASE provides two-phase commit service for distributed transactions. In a two-phase
commit, one main transaction controls two or more subtransactions on one or more servers.
A subtransaction is a transaction on single cursor, like those described in the section above.

With two-phase commit service using Microsoft SQL Server, the commit server and the
target server must be different servers.

The main transaction must be declared with the command

dbms [WITH CONNECTION connection] \
DECLARE transaction TRANSACTION FOR \
APPLICATION application SITES sites

s connection: if no connection is given, the default connection is used; the
connection data structure stores a user login name, a server name, and an
interface file name. Since SYBASE requires that a particular server be re-
sponsible for coordinating a two-phase commit, the connection declara-
tion must in~lude a server name.

s transaction: the name of the transaction; SYBASE does not permit peri-
ods (.) orcclons (;) in a transaction name. Since “transaction” and “tran”
are keyword- for both JAM/DBi and SYBASE, do not use these words for
this argument.

August 92 JAM/DBi Release 5 SYBASE Notes 25

SYBASE

= application: the name of the application; it may be any character string
that is not a keyword.

s sites: the number of cursors (i.e., subtransactions) participating in the
two-phase commit. This value is used by the SYBASE commit and recov-
ery systems and must be set appropriately.

Once the two-phase commit transaction is declared, its name is used to begin and to commit
or rollback the transaction. The syntax is

dbms BEGIN transaction
dbms COMMIT transaction
dbms ROLLBACK ftransaction

As with cursors and connections, JAM/DB: uses a data structure to manage a two-phase

commit transaction. This structure should be closed when the transaction is completed.

When the structure is closed, JAM/DB: calls the support routine to close the connection
. with the SYBASE commit service. The command is the following:

dbms CLOSE TRANSACTION transaction

Operations on a single cursor are subtransactions. To control a subtransaction in a
two-phase commit transaction, the following commands may be used:

dbms [WITH CURSOR cursor] BEGIN

dbms [WITH CURSOR cursor] SAVE savepoint

dbms [WITH CURSOR cursor] PREPARE COMMIT
dbms [WITH CURSOR cursor] COMMIT

dbms [WITH CURSOR cursor] ROLLBACK [savepoint]

The command DBMS PREPARE_COMMIT is an additional command required by the two-
phase commit service. Executing it signals that the subtransaction has been performed and
that the server is ready is to commit the update. Once the application has “prepared” all the

subtransactions, it issues a COMMIT to the main transaction and each subtransaction.
The sequence of events in a SYBASE two-phase commit transaction is the following:
1. Declare any necessary connections and cursors.
2. Declare the main transaction.

dbms DECLARE tname TRANSACTION FOR SITES sites \
APPLICATION application

3. Begin the main transaction.
dbms BEGIN tname

26 JAM/DB: Release 5 SYBASE Notes August 92

Notes

4. For each subtransaction cursor, begin the subtransaction and execute the
desired operations. When all subtransactions are complete, execute a

PREPARE_COMMIT for each. In the pseudo code below there are three
subtransactions (using cursori, the default cursor, and cursor2):

dbms WITH CURSOR cursorl BEGIN
dbms WITH CURSOR cursorl EXECUTE USING parm

dbms BEGIN

sql statement

sql statement

dbms SAVE savepoint

sql statement

dbms ROLLBACK savepoint

dbms WITH CURSOR cursor2 BEGIN
dbms WITH CURSUR cursor2 EXECUTE USING parm

dbms WITH CURSOR cursorl PREPARE_COMMIT
dbms PREPARE_COMMIT
dbms WITH CURSOR cursor2 PREPARE_COMMIT

5. Commit the main transaction.
dbms COMMIT tname
6. Commit each subtransaction indicating a named or default cursor.

dbms WITH CURSOR cursorl COMMIT
dbms COMMIT
dbms WITH CURSOR cursor2 COMMIT

7. Close the transaction.
dbms CLOSE TRANSACTION tname

It is strongly recommended that the application use an error handler while the transaction is
executing. If an error occurs while executing a command in the subtransaction (i.e., execut-
ing a sql statement or a named cursor) the application should not continue executing the
transaction.

An example with an error handler follows.

FHAHEEI AL FE AR A A LA FF AR E A HE A HH AR R LBHAHH R AR AR ESS
Declare connections and specify servers.
dbms DECIARE cl CONNECTION \
FOR USER :uid PASSWORD :pwd SERVER maple \
INTERFACES ’ /usr/sybase/interfaces.ny’
dbms DECLARE c2 CONNECTION \
FOR USER :uid PASSWORD :pwd SERVER juniper

August 92 JAM/DBi Release 5§ SYBASE Notes 27

SYBASE

28

Declare cursors.

Use :: to insert a value when the cursor is executed,

not when the cursor is declared.

dbms WITH CONNECTION cl DECLARE x CURSOR FOR INSERT \
emp (ss, last, first, street, city, st, zip, grade) \

VALUES (::ss, ::last, ::first, ::street, ::city, \
::st, ::zip, ::grade)

dbms WITH CONNECTION c2 DECLARE y CURSOR FOR INSERT \
acc (ss, sal, exmp) VALUES (::ss, ::sal, ::exmp)

FHEFRLEH A EHBHAFHA AR AR AR AFRR AR HE AR AR HB AR AR AR HE AR EH S
proc 2phase
vars retval
call sm_s_val
if retval
{
msg reset ”Invalid entry.”
return
}
dbms WITH CONNECTION cl DECLARE new_emp TRANSACTION \
FOR APPLICATION personnel SITES 2
dbms ONERROR JPL tran_ error
jpl do_tran
if ! (retval)
msg emsg “Transaction succeeded.”
else
{
dbms ROLLBACK newemp
if retval >= 100
dbms WITH CURSOR x ROLLBACK
if retval >= 200
dbms WITH CURSOR y ROLLBACK
}
dbms ONERROR CALL generic_errors
dbms CLOSE TRANSACTION new_emp
return

proc do_tran
Begin new_emp and set the flag tran_level (LDB var)
dbms BEGIN new_emp

dbms WITH CURSOR x BEGIN
cat tran_level "1”
dbms WITH CURSOR x EXECUTE USING \
(ss, last, first, street, city, st, zip, grade)

JAM/DBi Release 5 SYBASE Notes

Notes

dbms WITH CURSOR y BEGIN

cat tran level ”2”

dbms WITH CURSOR y EXECUTE USING \
(ss, startsal, exemptions)

dbms WITH CURSOR x PREPARE_COMMIT
dbms WITH CURSOR y PREPARE_COMMIT

Execute commits.

dbms COMMIT new_einp
dbms WITH CURSOR x COMMIT
dbms WITH CURSOR y COMMIT

msg emsg “Insert completed.”
cat tran_level "”
return

HERESH A A RERAAFRIFRRAFSRAESF AP ERREFRHH SRS RIR AN
proc tran_error

vars fail_ area [2] (20), tran_erxrr(3)

cat fail area[l] "address”

cat fail area[2] “accounting data”

if tran_level != 7

{
Display an error message describing the failure.
msg emsg “%WTransaction failed. Unable to insert \
:fail_area[tran level] because of ” @dmengerrmsg
math tranerr = tran_level * 100
cat tran_level "~
return :tranerct

}
msg emsg @dmengercmsg
return 1 :

1.10

SYBASE-SPECIFIC COMMANDS

See JAM/DBi Manual - Chapter 11

JAM/DB: for SYBASE provides additional commands for SYBASE-specific features. If
you are using multiple engines or are porting an application to or from another engine,
please note that these commands may work differently or may not be supported on some
engines.

August 92 JAM/DBi Release 5 SYBASE Notes 29

SYBASE

1.10.1
Using Browse Mode

- BROWSE execute a SELECT for browsing
UPDATE update a table while browsing
1.10.2
Using Stored Procedures
CANCEL abort execution of a stored procedure
DECLARE CURSOR FOR RPC declare a cursor to execute a stored procedure using a
remote procedure call
FLUSH abort execution of a stored procedure
NEXT execute the next statement in a stored procedure
SET set execution behavior for a procedure (execute all,

stop at fetch, eic.)

TYPE set data types for parameters of a stored procedure
executed with an rpc cursor

1.10.3
Using Transactions

JAM/DB: supports the following commands when using transactions. See the reference
pages for more information on each command.

REGIN begin a transaction

CLOSE_ALL_TRANSACTIONS close all transactions declared for two-phase commit

CLOSE TRANSACTION close a named transaction

COMMIT commit a transaction

DECLARE TRANSACTION declare a transaction for two-phase commit
PREPARE_COMMIT prepare to commiit a transaction

30 JAM/DB: Release 5 SYBASE Notes August 92

Notes

ROLLBACK rollback a transaction

SAVE save a two-phase commit

August 92 JAM/DB: Release 5 SYBASE Notes 31

SYBASE

BEGIN

start a transaction

SYNOPSIS

dbms [WITH CONNECTION connection] BEGIN
dbms [WITH CURSOR cursor] BEGIN

dbms BEGIN itwo phase commit

DESCRIPTION

This command sets the starting point of a transaction. It is available in two contexts. It can
start a transaction on a single cursor or it can start a distributed transaction which may in-
volve multiple cursors on different servers.

A transaction is a logical unit of work on a database contained within DBMS BEGIN and
DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction. Once a transac-
tion is begun, changes to the database are not committed until a DBMS COMMIT is executed.
Changes are undone by executing DBMS ROLLBACK.

IfawITH CURSOR clauseisusedinaDBMS BEGIN statement, JAM/DBi begins a transac-
tion on the named cursor. f aWITH CONNECTION clause is used, JAM/DBi begins a trans-

action on the default cursor of the named connection. If no wITH clause is used, JAM/DBi
begins a transaction on the default cursor of the default connection.

To begin a distributed transaction (two-phase transaction), first declare a named transaction
with DBMS DECLARE TRANSACTION. Since this statement supports a WITH CONNECTION
clause, JAM/DBi associates the transaction name with a particular connection; the connec-
tion’s server is the coordinating server for the distributed transaction. When the application
executes DBMS BEGIN two_phase_commit where two_phase commitis the name of the de-
clared transaction, JAM/DB: starts the transaction on the coordinating server.

Be sure to terminate the transaction with a DBMS ROLLBACK or DBMS COMMIT before
logging off. Note that JAM/DB: will not close a connection with a pending two-phase com-
mit transaction,

SEE ALSO
Section 1.9 — Transactions.

Documentation provided by the database vendor.

32 JAM/DB: Releasa 5 SYBASE Notes August 92

Notes

RELATED COMMANDS
dbms COMMIT

dbms ROLLBACK
dbms SAVE
EXAMPLE

Refer to the examples in Section 1.9 - Transactions.

August 92

JAM/DB: Release 5 SYBASE Notes

33

SYBASE

BROWSE

retrieve SELECT results one row at a time

BB

SYNOPSIS
dbms BROWSE SELECTstmt

DESCRIPTION

This command allows an application to execute a SELECT in *“browse” mode. This means
that SYBASE will return the SELECT rows one at a time to the JAM/DB; application; SY-
BASE will not set any shared locks for the sELECT. The application may use the companion
command DBMS UPDATE to update the current row. SYBASE will verify that the row has
not been changed before it issues the UPDATE.

To use browse mode, the table being updated must have a timestamp column and a unique
index. A row’s timestamp indicates the last time the row was updated. If the timestamp has
not changed since DEMS BROWSE was executed, the application may UPDATE the row. If the
timestamp has changed, then some other user or application has updated the row after DBMS
BROWSE was executed. The update is aborted and an error is returned.

Browse mode requires a connection with two default cursors. The application must open the

browse mode connection by setting the CURSORS option to 2. JAM/DB uses one default
cursor to select the rows and the other default cursor to update the rows.

It is the programmer’s responsibility to determine whether a table is browsable. It the table
is not browsable, JAM/DB: returns the DM_BAD_ARGS error. If a table is browsable,
JAM/DB: returns the first row in the select set when DBMS BROWSE is executed. Note that
only row is returned at a time.

To view the next row, the application must execute DBMS CONTINUE.
RELATED COMMANDS

dbms CONTINUE

dbms FLUSH

dbms UPDATE
EXAMPLE

Browse mode requires a connection declared with 2
cursors.
dbms DECLARE browse_con CONNECTION FOR \
USER :user PASSWORD :pass SERVER :server CURSORS 2

34 JAM/DBi Release 5 SYBASE Notes August 92

Notes

proc start_browse_mode
dbms CONNECTION browse_con
dbms BROWSE SELECT ss, last, first, sal FROM employee
return

proc update_browse_row
Allow the user to update the employee salary. DBi builds
the WHERE clause to identify this row.

dbms UPDATE employee SET sal = :+sal

return

proc next_browse_ row

Fetch the next row.
dbms CONTINUE
return

August 92 JAM/DBi Release 5 SYBASE Notes 35

SYBASE

CANCEL

cancel the execution of a stored procedure

SYNOPSIS
dbms [WITH CURSOR cursor] CANCEL

DESCRIPTION

This command cancels any outstanding work on the named cursor. In particular, this com-
mand may be used to cancel a pending stored procedure. When the statement is executed,
the following operations are performed:

a any rows to be fetched are flushed
= any remaining unexecuted statements are ignored
s the procedure’s return status code is returned

If the WITH CURSOR clause is not used, JAM/DBi executes the command on the default
Cursor.

SEE ALSO
. Section 1.8 — Stored Procedures.

RELATED COMMANDS
dbms FLUSH

- 36 JAM/DB: Release 5 SYBASE Notes August 92

Notes

CLOSE_ALL_TRANSACTIONS

close all transactions declared for two-phase commit

SYNOPSIS
dbms CLOSE_ALL_TRANSACTIONS

DESCRIPTION

This command attempts to close all transactions declared for two-phase commit with DBMS
DECLARE TRANSACTION. If the transaction has not been terminated by a cCOMMIT or
ROLLBACK, JAM/DBi will return the error DM_TRAN_PENDING.

If an application terminates with a pending two-phase commit transaction, SYBASE will
mark the transaction’s process as “infected.” You will need the system administrator to de-
lete the infected process. To help prevent this, JAM/DBi will not close a connection unless
all two-phase commit transactions have been closed. Furthermore, JAM/DB; will not close
a two-phase commit transaction unless the application explicitly terminated the transaction

with a DBMS COMMIT two_phase_commitor DBMS ROLLBACK two_phase _commit,

Since this command verifies that all two-phase commit transactions were terminated, you
may wish to call this command before logging off.

SEE ALSO
Section 1.9 — Transactions.

RELATED COMMANDS
dbms BEGIN
dbms CLOSE TRANSACTION
dbms COMMIT
dbms DECLARE TRANSACTION
dbms ROLLBACK

EXAMPLE

proc cleanup
dbms ONERROR JPL cleanup_failure
dbms CLOSE_ALL_TRANSACTIONS
dbms CLOSE_ALL CONNECTIONS
return ’

August 92 JAM/DBi Release 5 SYBASE Notes a7

38

SYBASE

APP1 = ~jpl two_phase_cleanup
proc cleanup_failure

parms stmt engine flag

if @dmretcode == DM TRAN_PENDING
{

call jm _keys APPl
}

return 0

proc two_phase cleanup
dbms ROLLBACK ...
dbms CLOSE TRANSACTION
return

JAM/DB: Release 5 SYBASE Notes

August 92

Notes

CLOSE TRANSACTION

close a declared transaction structure

SYNOPSIS
dbms CLOSE TRANSACTION transaction

DESCRIPTION

This command closes the main transaction which was previously defined using DBMS

DECLARE TRANSACTION. A main transaction controls the execution of a two-phase com-
mit process. This command signals the completion of the main transaction and closes the
SYBASE structures associated with the transaction.

An error code is returned if a transaction was pending. An application cannot close a con-
nection with an open transaction.

SEE ALSO
Section 1.9 — Transactions.

RELATED COMMANDS
dbms BEGIN
dbms COMMIT
dbms DECLARE TRANSACTION
dbms PREPARE_COMMIT
dbms ROLLBACK
dbms SAVE

August 92 JAM/DBi Release 5 SYBASE Notes 39

SYBASE

COMMIT

commit a transaction

SYNOPSIS

dbms [WITH CONNECTION connection] COMMIT
dbms [WITH CURSOR cursor] COMMIT

dbms COMMIT itwo _phase commit

DESCRIPTION

Use this command to commit a pending transaction. Committing a transaction saves all the
work since the last comM1T. Changes made by the transaction become visible to other users.

If the transaction is terminated by DBMS ROLLBACK, the updates are not committed, and the
database is restored to its state prior to the start of the transaction.

This command is available in two contexts. It can commit a transaction on a single cursor
or it can commit a two-phase commit transaction. If a WITH CURSOR clause isusedina
DBMS COMMIT statement, JAM/DBi commits the transaction on the named cursor. If a
WITH CONNECTION clause is used, JAM/DBi commits the transaction on the default cur-

sor of the named connection. If no WITH clause or no distributed transaction name is used,
JAM/DBi commits the transaction on the default cursor of the default connection.

If a distributed transaction name is used, JAM/DB; issues the commit to the coordinating
server. If this is successful, the application should issue a DBMS cOMMIT for each subtrans-

actions. AWITH CURSOROr WITH CONNECTION clause is required for a subtransaction on
a named cursor or a subtransaction on the default cursor of a non-default connection.

SEE ALSO
Section 1.9 — Transactions.

RELATED COMMANDS
dbms BEGIN
dbms CLOSE TRANSACTION
dbms DECLARE TRANSACTION
dbms PREPARE_COMMIT
dbms ROLLBACK
dbms SAVE

40 JAM/DBi Release 5 SYBASE Notes August 92

Notes

EXAMPLE
Refer to the example in Section 1.9 — Transactions.

August 92 JAM/DB: Release 5 SYBASE Notes 41

SYBASE

DECLARE CURSOR FOR RPC

declare a named cursor for a remote procedure

SYNOPSIS

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \
FOR RPC procedure [::parameter [OUT] [datatype] \
[, ::parameter [OUT] [datatype] ...]]

DESCRIPTION

Use this command to create or redeclare a named cursor to execute a remote procedure call
(rpc). Since JAM/DB: uses its binding mechanism to support rpc’s, the default cursor can-
not execute an rpc. .

The keyword RPC is required. Following the keyword is the name of the procedure and the
names of the procedure’s parameters. All parameters must begin with a double colon, which
is the JAM/DBi syntax for cursor parameters. If a parameter is an output parameter, the
keyword ouT should follow the parameter name if the application is to receive its value. A
parameter’s datatype may be given in the DBMS DECLARE CURSOR statement, or in a DBMS

TYPE statement.

The application executes an rpc cursor as it executes any named cursor, with DBMS
EXECUTE.

SEE ALSO
Section 1.8 —- Stored Procedures.
@dmengreturn

RELATED COMMANDS
dbms CLOSE CURSOR
dbms WITH CURSOR cursor EXECUTE
dbms TYPE
WITH CURSOR

EXAMPLE
Refer to the example in Section 1.8 - Stored Procedures.

42 JAM/DB: Release 5 SYBASE Notes August 92

Notes

DECLARE TRANSACTION

declare a named transaction for two phase commit

A A A AN A A S

AR,

SYNOPSIS

dbms [WITH CONNECTION connection] \
DECLARE transaction TRANSACTION FOR \
SITES sites APPLICATION application

DESCRIPTION
This command declares a two-phase commit transaction structure.

The WITH CONNECTION clause identifies the server which will coordinate the distributed
transaction. If the clause is not used, the server of the default connection is used. Be sure to
name the server when declaring the connection.

transaction is the name of the two-phase commit transaction. Do not use the keywords
*“tran” or “transaction” for this argument. The application will use this name to begin, to
commit or rollback, and to close the transaction.

sites is the number of subtransactions involved in the distributed transaction. Each cursor
where a BEGIN is issued is a subtransaction. This number is critical to recovery if the trans-
action fails.

application is an optional argument which identifies the name of the transaction.

The application must use transaction to begin and commit or rollback the two-phase com-
mit.

After declaring the transaction, begin the transaction using DBMS BEGIN. When the trans-
action is complete, close the transaction using either CLOSE TRANSACTION or
CLOSE_ALL_TRANSACTIONS. An application must close all declared transactions before
closing their connections.

SEE ALSO
Section 1.9 — Transactions.

RELATED COMMANDS
dbms CLOSE TRANSACTION transaction

EXAMPLE
Refer to the examples in Section 1.9 — Transactions.

August 92 JAM/DBi Release 5 SYBASE Notes 43

SYBASE

FLUSH

flush any selected rows not fetched to JAM variables

SYNOPSIS
dbms [WITH CURSOR ecursor] FLUSH

DESCRIPTION

Use this command to throw away any unread rows in the SELECT set of the default or
named cursor.

This command is often useful in applications that execute a stored procedure. If the stored
procedure executes a SELECT, the procedure will not return the DM_END_OF _PRoC signal if
the SELECT set is pending. The application may execute DBMS CONTINUE until the
DM_NO_MORE_ROWS signal is returned, or it may execute DBMS FLUSH which cancels the
pending rows.

. This command is also useful with queries that fetch very large SELECT sets. The application
may execute DBMS FLUSH after executing the SELECT, or after a defined time-out interval.
This guarantees a release of the shared locks on all the tables involved in the fetch. Of
course, once the rows have been flushed, the application may not use DBMS CONTINUE to
view the unread rows.

RELATED COMMANDS
dbms DECLARE CURSOR

dbms CANCEL
dbms CONTINUE
dbms NEXT

EXAMPLE

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
sql SELECT * FROM cities_data
if @dmretcode != DM NO_MORE_ROWS
dbms FLUSH
return 0

44 JAM/DB: Release 5 SYBASE Notes August 92

Notes

NEXT

execute the next statement in a stored procedure

SYNOPSIS
dbms [WITH CURSCR cursor] NEXT

DESCRIPTION

Unless DBMS SET equals EXECUTE_ALL, an application must execute DBMS NEXT after a
stored procedure returns one or more SELECT rows to JAM. DBMS NEXT executes the next
statement in the stored procedure. If the application executes bBMS NEXT and there are no
more statements to execu'e, JAM/DB: returns the DM_END_OF _PROC code.

If a cursor is associated with two or more SQL statements and DBMS SET equals
STOP_AT_FETCH, the application must execute DBMS NEXT after each SELECT that returns
rows to JAM. If pBMS SET equals SINGLE_STEP, the application must execute DBMS
NEXT after each statement, including non-SELECT statements. If the application executes
DBMS NEXT after all of the cursor’s statements have been executed, JAM/DBi returns the
DM_END_OF_PROC code.

SEE ALSO
Section 1.8 — Stored Procedures.

RELATED COMMAND¢;

dbms DECLARE CULSOR

dbms CANCEL

dbms CONTINUE

dbms FLUSH

dbms SET [EXECUTE_ALL | SINGLE_STEP | STOP_AT_FETCH]
EXAMPLE

Refer to the example in Section 1.8 — Stored Procedures.

August 92 JAM/DBi Release 5 SYBASE Notes 45

SYBASE

PREPARE_COMMIT

prepare a two phase commit

SYNOPSIS
dbms [WITH CURSOR cursor] PREPARE_COMMIT

DESCRIPTION

Use of this command is required during the two-phase commit service. It needs to be
executed for each subtransaction when the subtransaction has been performed. Execution
of this command signals the application that the server is ready to commit the update. Once
the application has “prepared” all the subtransactions, it needs to issue a DBMS COMMIT to
the main transaction and to each subtransaction.

If the WITH CURSOR clause is not used, JAM/DBi issues the command on the default cur-
sor.

SEE ALSO
Section 1.9 — Transactions

RELATED COMMANDS
dbms BEGIN
dbms CLOSE TRANSACTION
dbms COMMIT
dbms DECLARE TRANSACTION
dbms ROLLBACK
dbms SAVE

EXAMPLE
Refer to the example in Section 1.9 - Transactions.

46 JAM/DB; Release 5 SYBASE Notes August 92

Notes

ROLLBACK

rollback a transaction

SYNOPSIS
dbms [WITH CONNECTION connection] ROLLBACK savepoint
dbms [WITH CURSOR cursor] ROLLBACK savepoint

dbms ROLLBACK two_phase commit

DESCRIPTION

Use this command to rollback a transaction and restore the database to its state prior to the
start of the transaction.

This command is available in two contexts. It can rollback a transaction on a single cursor,
or it can rollback a two-phase rollback transaction. IfawITH CURSOR clause is used ina
DBMS ROLLBACK statement, JAM/DB; rollbacks the transaction on the named cursor. If a
WITH CONNECTION clause is used, JAM/DBi rollbacks the transaction on the default cur-

sor of the named connection. If no wITH clause or no distributed transaction name is used,
JAM/DB:i rollbacks the transaction on the default cursor of the default connection.

If a distributed transaction name is used, JAM/DB: issues the rollback to the coordinating
server. The application should also issue a DBMS ROLLBACK for each subtransaction. A

WITH CURSOROr WITH CONNECTION clause is required for a subtransaction on a named
cursor or a subtransaction on the default cursor of a non-default connection.

SEE ALSO
Section 1.9 — Transactions

RELATED COMMAND?
dbms BEGIN
dbms COMMIT
dbms DECLARE TRINSACTION
dbms PREPARE_COMYMIT
dbms ROLLBACK
dbms SAVE

EXAMPLE
Refer to the example in Section 1.9 — Transactions.

August 92 JAM/DBi Release 5 SYBASE Notes 47

SYBASE

SAVE

set a savepoint or checkpoint within a transaction

SYNOPSIS

dbms [WITH CONNECTION connection] SAVE savepoint
dbms [WITH CURSOR cursor] SAVE savepoint

DESCRIPTION

This command creates a savepoint in the transaction. A savepoint is a pointer set by the
programmer within a transaction. When a savepoint is set, the procedures following the

savepoint can be cancelled using DBMS ROLLBACK savepoint.

When the transaction is rolled back to a savepoint, the transaction must then be completed
or completely rolled back to the beginning.

.SEE ALSO
Section 1.9 — Transactions

RELATED COMMANDS
dbms BEGIN
dbms COMMIT
dbms DECLARE TRANSACTION
dbms PREPARE_COMMIT
dbms ROLLBACK
dbms SAVE

EXAMPLE
Refer to the example in Section 1.9 — Transactions.

48 JAM/DBi Release 5 SYBASE Notes August 92

Notes

SET

set handling for a cursor that executes a stored procedure
or multiple statements

R

SYNOPSIS

dbms [WITH CURSOR cursor] SET \
[EXECUTE_ALL | SINGLE_STEP | STOP_AT FETCH]

DESCRIPTION
This command controls the execution of a stored procedure or a cursor with multiple state-
ments. Its options are

EXECUTE_ALL Specifies that the DBMS return control to JAM/DBi only
when all statements have been executed or when an error oc-
curs. If a SELECT is executed, only the first pageful of rows
is returned to JAM variables. This option may be set for a
multi-statement or a stored procedure cursor.

SINGLE_STEP Specifies that the DBMS return control to the JAM Execu-
tive after executing each statement belonging to the multi-
statement cursor. After each SELECT, the user may press a
function key to execute a DBMS CONTINUE and scroll the
SELECT set. To resume executing the cursor’s statements, the
application must execute DBMS NEXT. This option may be

set for a multi-statement cursor. If this option is used with a
stored procedure cursor, JAM/DBi uses the default setting

STOP_AT_FETCH.

STOP_AT FETCH Specifies that the DBMS return control to the JAM Execu-

tive after executing a SELECT that fetches rows. (Note that
control is not returned for a SELECT that assigns a value to a
local SYBASE parameter.) The application may use DBMS
CONTINUE to scroll through the SELECT set. To resume ex-
ecuting the cursor’s statements or procedure, the application
must execute DBMS NEXT. This option may be set for a mul-
ti-statement or a stored procedure cursor.

The default behavior for both stored procedure and multi-statement cursors is

STOP_AT_FETCH. Executing DBMS SET with no arguments restores the default behavior.

August 92 JAM/DBi Release 5 SYBASE Notes 49

SYBASE

SEE ALSO

Section 1.8 - Stored Procedures

RELATED COMMANDS

dbms CANCEL

dbms CONTINUE

dbms DECLARE CURSOR

dbms DECLARE CURSOR FOR EXEC
dbms DECLARE CURSOR FOR RPC
dbms FLUSH

dbms NEXT

EXAMPLE

50

vars DM_NO_MORE_ROWS (5) DM_END_OF PROC (5)
cat DM_NO_MORE_ROWS “”53256"
cat DM_END_OF_PROC ”53270”

dbms DECLARE x CURSOR FOR \
SELECT company, sStreet, city, st, zip \

FROM client_list WHERE co_id = ::company_id \

INSERT INTO contacts VALUES \

(::newfirst, ::newlast, ::newloc, ::newphone) \
SELECT first, last, location, phone FROM contacts \

WHERE co_id = ::company_id
msg d_msg “%KPFl1 START %KPF2 SCROLL SELECT\
$KPF3 EXECUTE NEXT STEP”

proc fl
dbms WITH CURSOR x SET SINGLE_STEP

dbms WITH CURSOR x EXECUTE USING company_id, newfirst, \

newlast, newloc, newphone, company_ id
dbms WITH CURSOR x SET
return

proc f2
This function is called by the PF2 key.
dbms WITH CURSOR x CONTINUE
if @dmretcode == DM _NO_MORE_ROWS
msg emsg “All rows displayed.”

JAM/DBi Release 5 SYBASE Notes

August 92

Notes

return

proc f£3
This function is called by the PF3 key.
dbms WITH CURSOPR x NEXT
if @dmretcode == DM_END_OF PROC
msg emsg “Done!”
return

August 92 JAM/DB; Release 5 SYBASE Notes 51

SYBASE

SET_BUFFER

set up a buffer for engine-supported scrolling

SYNOPSIS

dbms [WITH CURSOR cursor] SET_BUFFER [number of rows]
DESCRIPTION
SYBASE supports non-sequential scrolling if the application has set up a buffer for result

rows. If an application does not need DBMS CONTINUE_UP or is using a continuation file
(DBMS STORE FILE), this command is not needed.

number_of_rows is the number of rows SYBASE will buffer. To be useful, number_of rows
should be greater than the number of occurrences in the JAM destination fields.

When this command is used with a SELECT cursor, SYBASE saves the specified number of
result rows of the SELECT in memory. When the application executes DBMS

CONTINUE_BOTTOM, DBMS CONTINUE_TOP, Or DBMS CONTINUE_UP commands, the re-
sult rows in memory are returned.

The buffer is maintained for the life of the cursor, or until the buffer is released with the
command,

dbms [WITH CURSOR cursor] SET_BUFFER

Executing the command without supplying the number._of_rows argument turns off the fea-
ture for the named or default cursor and frees the buffer. Note that redeclaring the cursor
does not free the buffer. Closing the cursor does release the buffer.

Because the use of this command is expensive (approximately 2K of memory per row), it
should be used only if the application needs non-sequential scrolling but cannot use scrol-
ling arrays or a continuation file. The application should turn off DBMS SET_ BUFFER when
finished with the SELECT set.

SEE ALSO
dbms STORE [FILE [fllename]]

RELATED COMMANDS
dbms CONTINUE BOTTOM
dbms CONTINUE_TOP
dbms CONTINUE_UP

52 JAM/DBi Release 5 SYBASE Notes August 92

Notes

EXAMPLE

dbms DECLARE emp cursor CURSOR FOR SELECT * FROM emp
dbms WITH CURSOR emp_ cursor SET_BUFFER 500

proc scroll_ up
dbms WITH CURSOR emp cursor CONTINUE_UP
return

proc scroll_down

dbms WITH CURSOR emp cursor CONTINUE_DOWN
return

August 92 JAM/DBi Release 5 SYBASE Notes 53

SYBASE

TRANSACTION

set a default declared two-phase commit transaction

SYNOPSIS
dbms TRANSACTION varlable

DESCRIPTION

If an application has declared more than one two-phase commit transaction, it may use this
command to set the default two-phase commit transaction for a subtransaction.

RELATED COMMANDS
dbms BEGIN
dbms COMMIT
dbms DECLARE TRANSACTION
dbms PREPARE COMMIT
dbms ROLLBACK
dbms SAVE

54 JAM/DB: Release 5 SYBASE Notes August 92

Notes

TYPE

declare p
SYNOPSIS
dbms WITH CURSOF. cursor TYPE parameter datatype \
[, parameter datotype .. .]
DESCRIPTION

If an application has declared a cursor for a remote procedure call (“rpc™) but has not de-
clared the datatypes of the procedure’s parameters, it should use the DBMS TYPE command.

parameter is the name of a parameter in the stored procedure and in the DBMS DECLARE
CURSOR statement. datatype is the datatype of the parameter in the stored procedure. JAM/
DB: uses the information supplied with this command to execute the remote procedure call.
Please note that these datatypes have no effect on any data formatting performed by colon-
plus processing or binding.

Executing this command with no arguments deletes all type information for the named cur-
sor.

SEE ALSO
Section 1.8 - Stored Praocedures

RELATED COMMANDS

dbms DECLARE curror CURSOR FOR RPC procedure \
[: : parameter [OUT: datatype [, ::parameter [OUT] datatype ...]

dbms DECLARE cursor CURSOR FOR RPC procedure \
[: :parameter [OU1) ([, ::parameter [OUT] ...]

EXAMPLE

FEEFFHAFHARFHEHARFRAR RS RF R F SRR R H S F R RS E RS S
#procedure newsal:

#create proc newsal @ss char(ll), @change float,

@salary money output, @proposed_sal money output

as

select @salary = (select sal from acc where ss = @ss)
select @proposed_sal = @salary * (@change + 1)
HEAFREFAHFHHRAA S LIRSS E LSS H 4R H 444

August 92 JAM/DB: Release 5 SYBASE Notes 55

SYBASE

dbms DECLARE sal cursor CURSOR FOR \
RPC newsal ::ss, ::change, ::salary OUT, \
: :proposed_sal OUT

dbms WITH CURSOR sal cursor TYPE \
change float, salary money, proposed sal money

dbms WITH CURSOR sal_cursor EXECUTE \
USING ss, change, salarxy, proposed_sal

56 JAM/DBi Release’5 SYBASE Notes

August 92

Notes

UPDATE

update a table while browsing

SYNOPSIS
dbms UPDATE table SET column = value [, column = value ...]

DESCRIPTION

Browse mode permits an application to browse through a SELECT set, updating a row at a
time. Browse mode is useful for an application that wants to ensure that a row has not been
changed in the interval between the fetch and the update of the row.

When DBMS BROWSE is executed, it fetches the rows in the SELECT set one at a time. The
application should provide two other procedures to execute DBMS CONTINUE and DBMS
UPDATE.

Please note that the DBMS UPDATE statement has no WHERE clause. JAM/DB; calls a SY-
BASE routine to build a where clause using the unique index of the current row and the
value of its timestamp column when the row was fetched. If the timestamp value has not
been changed, the row is updated. However, if the timestamp value has changed, then
another user has modifieG the row since the application executed DBMS BROWSE; in this
case SYBASE will not perform the update.

RELATED COMMANDS
dbms BROWSE
dbms CANCEL
dbms CONTINUE
dbms FLUSH

EXAMPLE
See manual page for DBMS BROWSE.

August 92 JAM/DBi Release 5 SYBASE Notes 57

SYBASE

USE

open an existing database

SYNOPSIS
dbms [WITH CONNECTION connection] USE database

DESCRIPTION

This command changes a connection’s default database. database must be an existing data-
base, and the user must have the appropriate permissions to use the database or else JAM/
DBi returns an error.

RELATED COMMANDS
dbms DECLARE connection CONNECTION FOR [USER user [PASSWORD
password]] [SERVER server] [DATABASE database] [CURSORS [1]2]]
[INTERFACES filename] [TIMEOUT seconds]

EXAMPLE
dbms DECLARE cl CONNECTION FOR \
USER :uname PASSWORD :pword SERVER :server \
DATABASE master
sql SELECT * FROM emp
dbms WITH CONNECTION cl USE projects
sql SELECT * FROM newjobs

58 JAM/DB; Release 5 SYBASE Notes August 92

Notes

1.1

COMMAND DIRECTORY FOR SYBASE

This section contains a directory for all the commands available in JAM/DB; for SYBASE.
The following table lists the command, a short description of the command, and the location
of the reference page for that command. If the location is described as SYBASE Notes, that
information is enclosed in this document.

Command Description Documentation
ALIAS name a JAM variable as the destina- | JAM/DBi
tion of a selected column or aggregate | Manual
function
BEGIN begin a transaction SYBASE Notes ||
BINARY create a JAM/DB: variable for fetch- | JAM/DBi
ing binary values Manual
BROWSE execute a SELECT for browsing SYBASE Notes
CANCEL abort execution of a stored procedure | SYBASE Notes
CATQUERY redirect SELECT resultstoa fileora |JAM/DBi
JAM variable Manual
CLOSE ALL cONNEcTIONs |close all connections on all engines JAM/DBi
-7 Manual i
CLOSE_ALL TRANSACTIONS |close all transactions SYBASE Notes
CLOSE CONNECTION close a named connection JAM/DBi
i Manual
CLOSE CURSOR close a cursor JAM/DBi
Manual
CLOSE TRANSACTION close a named transaction SYBASE Notes
COMMIT commit a transaction SYBASE Notes
CONNECTION set a default connection and engine JAM/DBi

August 92

for the application

JAM/DBi Release 5 SYBASE Notes

Manual

59

SYBASE

Command Description Documentation
—_—
CONTINUE fetch the next screenful of rows from | JAM/DB:
a SELECT set Manual
CONTINUE_BOTTOM fetch the last screenful of rows from a | JAM/DBi
SELECT set Manual
CONTINUE_DOWN fetch the next screenful of rows from | JAM/DBi
a SELECT set Manual
CONTINUE_TOP fetch the first screenful of rows from | JAM/DBi
a SELECT set Manual
CONTINUE_UP fetch the previous screenful of rows | JAM/DBi
from a SELECT set Manual
DECLARE CONNECTION declare a named connection to anen- | JAM/DBi
gine Manual
DECLARE CURSOR declare a named cursor JAM/DBI
Manual
DECLARE CURSOR FOR declare a cursor to execute a stored SYBASE Notes
RPC procedure using a remote procedure
call
DECLARE TRANSACTION declare a transaction for two-phase SYBASE Notes
commit
ENGINE set the default engine for the applica- | JAM/DBi
tion Manual
EXECUTE execute a named cursor JAM/DBi
Manml F|
FLUSH abort execution of a stored procedure | SYBASE Notes
FORMAT format the results of a CATQUERY JAM/DBi
Manual
NEXT execute the next statement in a stored | SYBASE Notes
procedure
_
60 JAM/DBi Release 5 SYBASE Notes

August 92

Notes

Description

Documentation

set the number of rows for JAM/DBi
to fetch to an array and choose an oc-
currence where JAM/DBi should be-
gin writing result rows

ONENTRY install a JPL procedure or C function |JAM/DBi
which JAM/DBi will call before ex- | Manual
ecuting a sql or dbms statement
ONERROR install a JPL procedure or C function | JAM/DBi
which JAM/DB;i will call whenevera | Manual
sql or dbms statement fails
ONEXIT install a JPL procedure or C function |JAM/DBi
which JAM/DB; will call after ex- Manual
ecuting a sql or dbms statement
PREPARE_COMMIT prepare to commit a transaction SYBASE Notes II
ROLLBACK rollback a transaction SYBASE Notes
SAVE save a two-phase commit SYBASE Notes
SET set execution behavior for a procedure | SYBASE Notes |
(execute all, stop at fetch, etc.)
SET_BUFFER set up a buffer for engine—supported | SYBASE Notes
scrolling
START set the first row for JAM/DBitore- |JAM/DBi
turn froma SELECT set Manual II
STORE store the rows of a SELECT setin a JAM/DBI
temporary file so that the application | Manual
may scroll through the rows
|| TRANSACTION set the default transaction SYBASE Notes
TYPE set data types for parameters of a SYBASE Notes
stored procedure executed with an rpc
cursor
August 92 JAM/DBi Release 5 SYBASE Notes 61

SYBASE

UNIQUE

Description

suppress repeating values in a se-
lected column

Documentation

JAM/DBi
Manual

UPDATE

update a table while browsing

SYBASE Notes

USE

open an existing database

SYBASE Notes

WITH CONNECTION set the default connection for the du- | JAM/DBi
ration of a command Manual

WITH CURSOR specify the cursor to use for a state- JAM/DB;
ment Manual

WITH ENGINE

62

JAM/DB: Release 5 SYBASE Notes

set the default engine for the duration | JAM/DBi
of a command Manual

August 92

