

 JAM C Programmer's Guide

 Contents

1 Introduction . 1
1.1 The JAM Run-time Environment . 1
1.2 Functions Invoked by Control Links 1
1.2.1 Return Values and Target Lists . 1
1.2.2 Example . 2
1.3 Functions Attached to Fields . 3
1.3.1 Invocation . 3
1.3.2 Arguments . 3
1.3.3 Return Value . 4
1.3.4 Example . 4
1.4 Screen Entry and Exit Functions . 5
1.4.1 Arguments . 5
1.4.2 Example . 6
1.5 The Function Lists . 6
1.6 The JAM Main Programs . 7
1.7 Sample Programs . 8

2 Overview of Library Functions . 9
2.1 Variants . 9
2.2 Initialization . 10
2.3 Form Display . 10
2.4 Data Entry . 11
2.5 Keyboard Entry . 11
2.6 Cursor Control . 12
2.7 Data Access . 12
2.8 Mass Storage and Retrieval . 13
2.9 Message Display . 13
2.10 Altering the Operation of Other Functions 14
2.11 Scrolling and Shifting Functions 14
2.12 Validation Routines . 15
2.13 Miscellaneous . 15
2.14 Which Function Do I Use? . 15

3 Library Functions by Name . 16

4 Built-in Invoked Functions . 236

5 Environment and Configuration Files 244

6 Keyboard Input . 245
6.1 Logical Characters or Keys . 245
6.2 Key Translation . 245
6.3 Key Routing . 246

7 Screen Output . 247
7.1 Graphics Characters and Alternate Character Sets 247
7.2 The Status Line . 247

8 User-definable Functions . 249
8.1 Installation . 250
8.2 Memo Text Edits . 250

9 The Local Data Block . 251

10 Writing Portable Applications . 252
10.1 Terminal Dependencies . 252
10.2 Items in smmach.h . 252

11 Writing International Applications 253
11.1 Messages . 253
11.2 Characters Outside the U.S. ASCII Set 253

12 Writing Efficient Applications . 253
12.1 Memory-resident Screens . 253
12.2 Memory-resident Configuration Files 254
12.3 Message File Options . 255
12.4 Avoiding Unnecessary Screen Output 255
12.5 Stub Functions . 255

1 Introduction

The Programmer's Guide explains how to write code that works with the JAM
run-time environment. First, we offer a general explanation of how to build your
routines into the run-time system. Then, the library itself is classified into
categories, and an alphabetical listing of all the functions with full
explanations appears. Finally, there are explanations of internal processing and
tips for writing better applications; this material is organized topically, and
is better browsed or used for reference than read straight through.

1.1 The JAM Run-time Environment

A salient fact of programming with JAM is that the application program has no
main control loop. Control flow is handled by JAM's main routine, which uses
control strings to decide how to respond to what you type; your own code is made
up chiefly of screen entry and exit functions, invoked functions, and attached
functions. Invoked functions are placed in JAM control strings; they are called
immediately upon receipt of a user's menu pick or function key, and may prompt
for parameters with an argument window. Attached functions, on the other hand,
are associated with data entry fields, and are called with a predefined set of
arguments when the cursor enters or leaves a field. The next several sections
describe each type of function and provide examples.

It is, of course, possible to gain full control of screen and keyboard
processing, by using the library routines. Section 2 categorizes those routines
and describes their typical use. It is further possible to alter or abolish the
processing of control links by writing your own main routine.

1.2 Functions Invoked by Control Links

A function whose name appears in a JAM control string, preceded by a caret ^,
will be called when a user selects the function key or menu pick associated with
that control string. This means that JAM must be linked with the function. See
Section 1.5 for a detailed explanation of how to link functions with JAM. JAM
supplies a number of built-in invoked functions, which are documented in Section
4 of this chapter.

Invoked functions are passed a single argument, a pointer to a character string.
In the simplest case the string is just the contents of the control field (the
function name plus any following text), with the leading caret stripped off.
However, if the control field contains one or more argument window
specifications (a percent character % followed by the name of a window), the
function receives their contents: JAM opens each window for data entry, then
substitutes the concatenated contents of its fields for the percent
specification, before calling the function. See the Author's Guide for details
on how to create argument windows.

1.2.1 Return Values and Target Lists

The integer return value from an invoked function is ignored, unless

 1. it is the value of a logical key with an associated control string on
 the current screen (EXIT, XMIT, PF1, etc.), or
 2. the control string contains a target list.

If there is no target list and the return value is a logical key with an
associated control string, JAM will execute the control string. Invoked
functions can be chained in this fashion; programmers are responsible for
avoiding looping chains.

A target list in a control string provides for more flexible and
better-documented chaining of invoked functions. Syntactically, a target list

appears between the caret and the function name, and must be enclosed in
parentheses. It consists of one or more pairs, of the form

 return-value = control-string

Here return-value is an integer code returned from the invoked function,
expressed as a decimal or hexadecimal integer, a quoted ASCII character, or a
logical key mnemonic (refer to smkeys.h for a list). Control-string is any JAM
control string, which will be executed whenever the function returns
return-value. If the target list contains more than one such pair, as is likely,
separate them with semicolons.

In the control string below, a return value of -1 from the function process
causes the function cleanup to be invoked, while a return value of 0 causes a
window named step2 to be displayed:

 ^(-1=^cleanup; 0 = &(8,25)step2)process step1

Target lists may nest; that is, caret control strings in a target list may
themselves contain target lists.

1.2.2 Example

The example below shows a function invoked when a user hits TRANSMIT or EXIT on
its screen; it simply saves the contents of the screen in a flat data file. The
two control strings that call it would look like this:

 XMIT => ^save
 EXIT => ^(0=^jm_exit)save close

And here is the function itself:

#include "smdefs.h"
#Include "smidty.h"
#include "myrec.h"

/* The following is an invoked function bound to the
 * TRANSMIT key. It saves the contents of the screen
 * in the data structure 'myrec' and writes it to a file,
 * which is opened if necessary. The argument determines
 * whether the file should be closed; it is in the control
 * string.
 * The data structure myrec is assumed to be defined in
 * "myrec.h", generated from the screen by the f2struct
 * utility.
 */

int save (closeflag)
char *closeflag;
{
 struct myrec myrec;
 int count;
 static FILE *savefile;

 if (strcmp (closeflag, "close") == 0)
 {
 if (savefile != 0)
 fclose (savefile);
 return 0;
 }

 sm_wrtstruct ((char *)&myrec, &count, 0);

 if (savefile == 0)

 {
 savefile = fopen ("savefile", F_B_WRONLY);
 if (savefile == 0)
 return -1;
 }
 if (fwrite ((char *)&myrec, 1, count, savefile) != count)
 return -1;

 return 0;
}

/* Code to install the invoked function above */
struct fnc_data invlist[] = {
 { "save", save, 0, 0, 0, 0 }
};
int howmanyinv = sizeof(invlist) / sizeof(struct fnc_data);

sm_install (CARET_FUNC, invlist, &howmanyinv);

1.3 Functions Attached to Fields

Field entry and field exit functions are both called attached functions, because
they are associated with a specific data-entry field. You attach a function to a
field by placing its name in the field entry or validation function slot of the
screen editor's pop-up windows. (You may place the same function in both slots,
and use the fourth parameter to determine the context of the call; see below.)

To attach a JPL procedure to a field, you can type your code directly into the
screen editor's JPL procedure window. If the JPL procedure is long or useful in
many places, you can also put it in a file, and enter jpl filename in the
attached function window. You may attach JPL code to both hooks, in which case
the attached function is executed before the embedded procedure.

1.3.1 Invocation

A field exit function, also commonly called a validation function, is called:

 1. As part of field validation, when you exit the field by filling it or
 by hitting the TAB or RETURN key; BACKTAB and arrow keys do not
 normally cause validation. These circumstances are subject to
 modification by sm_ok_options, q.v.
 2. As part of screen validation (sm_s_val), when the TRANSMIT key is hit.
 3. When application code calls sm_fval directly.

A field entry function is called from sm_openkeybd whenever the cursor enters
its field.

1.3.2 Arguments

All attached functions receive four arguments:

 1. the field number
 2. a pointer to the buffer containing a copy of the field's contents
 3. the data's occurrence number
 4. an integer containing the VALIDED and MDT bits associated with the item
 or field, plus more flag bits indicating why the function was called;
 refer to the following table.

 Bit name Meaning
 VALIDED If set, indicates that the field has passed all its
 validations, and has not been modified since.
 MDT If set, indicates that the field has been modified, either by
 keyboard input or a library function such as sm_putfield,

 since the current screen was first displayed. It is never
 cleared by JAM, but you may clear it using sm_bitop.
 K_ENTEXIT If set, indicates that the function has been called upon field
 entry. This bit enables a single function to be used for both
 field entry and exit.
 K_KEYS This is a mask for the remaining values in this table. You
 should and the function's fourth parameter with this value,
 then test for equality to one of the five below, thus:

 if ((parm4 & K_KEYS) == K_SVAL)
 K_NORMAL A normal data key caused the cursor to enter or exit the field
 in question.
 K_BACKTAB The BACKTAB key caused the cursor to enter or exit the field
 in question.
 K_ARROW An arrow key caused the cursor to enter or exit the field in
 question.
 K_SVAL The field is being validated as part of screen validation
 (TRANSMIT key or sm_s_val).
 K_USER The application has invoked the function directly, as through
 sm_fval.
 K_OTHER Another key, such as HOME, caused the cursor to enter or exit
 the field in question.

A field exit function is called whether or not the field was previously
validated; it may test the VALIDED and MDT flags to avoid redundant processing.
It is called only after the field's contents pass all other validations.

1.3.3 Return Value

If no error occurs, the function should return 0. At this point, the screen
manager's validation routine will set the VALIDED bit, if it was not already
set. Any nonzero value returned by the function is interpreted as an error. If
the returned value is 1, the cursor is not repositioned; if it is any other
nonzero value, the cursor is repositioned to the field undergoing validation. In
either case, the VALIDED bit is unchanged.

1.3.4 Example

Here is code for an attached function that does nothing much:

#include "smdefs.h"

int apfunc1 (field_number, field_data, occurrence, val_mdt)
int field_number, occurrence, val_mdt;
char *field_data;
{
 int error;
 extern int lookup();
 char errbuf[128];

 /* If field is unchanged since last validation, skip */
 if (val_mdt & VALIDED)
 return (0);

/* Check field for validity (externally defined) */
 error = lookup (field_data);

 if (error)
 {
 /* Notify user of error condition. */
 sm_gofield (1);
 sprintf (errbuf, "Can't find %s; please re-enter all data.",
 field_data);
 sm_quiet_err (errbuf);
 return (1);
 /* leave cursor in field 1 */
 }
 else return (0);
}

While an attached function is free to display windows, it must not display a
form. To do so would wipe out the form or window to which the function was
attached. For the same reason, attached functions must take care to close all
the windows they may open before returning to sm_openkeybd.

1.4 Screen Entry and Exit Functions

Screens, like fields, may have entry and exit functions defined in the screen
editor. The screen entry function is called after the screen has been displayed,
but before control returns from sm_r_window, sm_d_form, or whatever you use to
display the screen. There are several steps in screen initialization, performed
in the following order:

 1. The new screen is displayed, as a form or window.
 2. The screen-entry function is called.
 3. The jam_first control string is executed. (This is an obsolescent
 feature.)
 4. Screen fields are updated with values from the local data block (LDB
 merge).
 5. The jam_auto control string is executed.

During screen initialization, entering data into fields with sm_putfield or
other library routines will not cause the fields' MDT bits to be set; this
applies to the LDB merge as well. If you want to set MDT bits, call sm_bitop.

Screen exit functions are called after named items have been stored in the LDB,
but before the screen is removed from the display and its data structures
destroyed. They are called from sm_close_window, and also from sm_r_form and the
other form-display functions, which cause all open windows to be destroyed
automatically. This implies that the screen may not always be visible when your
exit function is called.

1.4.1 Arguments

Screen entry and exit functions receive two parameters:

 1. The name of the screen, if available. It will not be available if the
 screen is memory-resident and displayed using sm_d_window or a variant.
 2. A flag containing the following bits, defined in smdefs.h :
 K_ENTEXIT Set if the function was called during screen entry,
 clear during exit.
 K_NORMAL Set if the function was called from sm_close_window,
 clear otherwise.

A single function used for both entry and exit can use this bit to distinguish
its context. One advantage of coding screen entry and exit processing in the
same function is that persistent variables, such as pointers to dynamically
allocated buffers, can be made static rather than global.

Any value returned from a screen entry or exit function is ignored.

1.4.2 Example

Here is an example of a screen entry function. This one loads up an item
selection list from a disk file whose name is stored in the screen.

#include "smdefs.h"

/* Here is a screen entry function for a generic item
 * selection screen. It turns the screen name into the
 * name of a text file containing a list of items, one
 * per line, and loads them into the array named "items".
 * This technique could be easily adapted to query a database
 * instead.
 */

void gen_entry (name, context)
char *name;
int context;
{
 FILE *inf;
 char line[256];
 int k;

 sprintf (line, "%s.dat", name ? name : "default");
 if ((inf = fopen (line, "r")) == 0)
 return;
 for (k = 1; fgets (line, sizeof(line), inf); ++k)
 sm_i_putfield ("items", k, line);
 fclose (inf);
}

/* Here is code to install the above function in the screen
 * entry function list. */
static struct fnc_data sentry[] = {
 { "gen_entry", gen_entry, 0, 0, 0, 0 }
};
int count;

count = sizeof(sentry) / sizeof(struct fnc_data);
sm_install (FENTRY_FUNC, sentry, &count);

1.5 The Function Lists

JAM stores function names as text strings in screen files. It needs to associate
these names with the functions' addresses in order to call them. You must
furnish this association by building lists of data structures called function
lists. Attached, invoked, and screen entry functions must all appear; there is
one list for each type of function. For example, if an application's screens
contained two functions named apfunc1 and apfunc2 that were attached to a field,
and another named invoca in a caret control string, its startup code would need
to include the following:

#include "smdefs.h"
#define C_FUNCTION 0

extern int apfunc1(), apfunc2();

struct fnc_data funlist[] =
{
 { "apfunc1", apfunc1, C_FUNCTION, 0, 0, 0 },
 { "apfunc2", apfunc2, C_FUNCTION, 0, 0, 0 },
};
/* The following definition saves a lot of grief */
int howmuchfun = sizeof(funlist) / sizeof(struct fnc_data);

extern int invoca();

struct fnc_data invlist[] =
{
 { "invoca", invoca, C_FUNCTION, 0, 0, 0 }
};
int howmanyinv = sizeof(invlist) / sizeof(struct fnc_data);

...
sm_install (ATTCH_FUNC, funlist, &howmuchfun);
sm_install (CARET_FUNC, invlist, &howmanyinv);
...

In the structure definitions, the quoted strings are names as entered on the
screen, and the non-quoted entries are addresses of functions. Note that the two
need not always be the same; in particular, the same function can be entered in
the list under different names, or aliases. Possible uses for this technique
include mapping functions yet to be written to a stub routine, and using the
same function to perform slightly different tasks (with the name as an implied
parameter).

Refer to the library page on sm_install, and to preceding sections, for fuller
details about each type of function.

1.6 The JAM Main Programs

As a starting point for your own applications, JYACC provides source code for a
main routine, in a file named jmain.c. This routine performs various necessary
initializations before calling JAM's main control loop, which resides in a
library. You can modify the main routine to change the default settings and,
more importantly, to install your application code with calls to sm_install, as
in the previous section. Extensive documentation in the source code will show
you where and how to make your modifications.

You will find similar source files, fmain.c and jxmain.c, that are main routines
for the authoring programs, xform and jxform. Under Release 4.0, you may link
your application code into the authoring environment as well as the run-time

system. This enables you to prototype and revise your screens with even greater
convenience than before.

Refer to the Installation Notes for your system for the locations of these
files. For additional hints on putting your application together, take a look at
the sample programs (next section).

1.7 Sample Programs

JYACC supplies a number of sample programs and screens to demonstrate the use of
JAM routines and the procedures you must use to compile and link application
programs. They include both programs that supply their own main routine, and
programs that use the one provided with JAM. They can generally be found in a
subdirectory, named samples, of the directory where JAM has been installed.
Refer to the Installation Notes for your specific system for a list of the files
making up the sample programs.

2 Overview of Library Functions

After screens have been created with the JAM authoring utility, an application
program can access them using routines from the library. A typical sequence
follows.

 Note that the JAM environment performs something very similar to this
 sequence, and it is not generally necessary for application programs
 to do it; application code is simply attached to fields and function
 keys. Only in circumstances where very tight control over data entry
 is required should it be necessary for an application program to do
 all this work.

 1. sm_initcrt is called to initialize the terminal.
 2. sm_r_form is called to bring up a form on the screen.
 3. The application program may call sm_putfield, or a variant, to
 initialize fields. This can be done as often as desired, and at any
 time.
 4. sm_openkeybd is called, and you may key data into unprotected fields.
 5. One or more data access routines are called to return the fields'
 current contents to the application program.
 6. While the data contain errors or inconsistencies:

 a. sm_gofield, or a variant, is called to reposition the cursor
 to the field containing the error.
 b. sm_err_reset is called to display an error message.
 c. sm_openkeybd is called to accept fresh data.

 7. If special conditions require additional input:

 a. sm_r_window, or a variant, is called to bring up a window with
 additional fields. The entire sequence may be repeated here
 recursively.
 b. sm_close_window is called to close the current window and
 restore the immediately previous display.

 8. sm_resetcrt is called to reset the terminal prior to exiting.

2.1 Variants

Many library routines deal with fields. Most of these have several variants that
accept different sorts of field designations, enabling the application
programmer to choose the most convenient. The variants are, by convention,
distinguished by prefixes to the function name:

 Prefix Field designation
 sm_ Field number only
 sm_o_ Field number and occurrence number
 sm_n_ Field name only
 sm_i_ Field name and occurrence number
 sm_e_ Field name and onscreen element number

In the library section of the manual, only the first variant is documented. The
behavior of the others is identical, save for the handling of errant field
specifications. Also, the n_ and i_ variants will operate on fields that do not
appear in the current screen but are in the local data block.

A similar convention exists for library routines that display screens, depending
on whether the screens file is on disk, in memory, or included in a screen
library. The prefixes are as in the table below. All these functions are
documented separately.

 Prefix Screen file storage
 sm_r_ Single disk-resident file

 sm_d_ Memory-resident file
 sm_l_ Member of screen library

Most JAM library routines fall into one of the following categories:

 .
 Initialization
 .
 Form display
 .
 Data entry (from the application program)
 .
 Keyboard entry
 .
 Cursor control
 .
 Data access (by the application program)
 .
 Mass storage and retrieval
 .
 Message display
 .
 Altering the operation of other library routines
 .
 Scrolling and shifting
 .
 Data validation

The following sections summmarize the routines within each category. Modules
calling JAM library routines should include smdefs.h . Modules testing for
non-ASCII values returned by sm_getkey, sm_openkeybd or sm_menu_proc should also
copy or include smkeys.h .

2.2 Initialization

The following routines are called for initialization. Note that, by default,
most of these are called to set up the JAM run-time environment, and the
application program need not call them itself.

 sm_initcrt Initializes the terminal for JAM, and saves the path name
 for disk resident forms and windows.
 sm_keyinit Initialize memory-resident key translation file.
 sm_msgread Loads message files.
 sm_vinit Initialize memory-resident video file.
 sm_smsetup Initialize memory-resident configuration variable file.
 sm_unsetup restores the default configuration.
 sm_formlist Add to the list of memory-resident forms.
 sm_rmformlist Destroys the memory-resident form list.
 sm_install Installs attached functions, screen entry/exit functions,
 and other user routines to be called from library
 functions.
 sm_resetcrt Restores normal terminal characteristics before exiting.
 sm_leave Prepares the display for a temporary escape from JAM to
 the operating system.
 sm_return Prepares the display to resume processing after an
 sm_leave.
 sm_cancel Resets the terminal and exits. Normally bound to a
 keyboard interrupt handler.
 sm_fextension Changes the default file extension for screen files.
 sm_inictrl Changes the default control string bindings for function
 keys.

2.3 Form Display

The following routines are called to display screens.

 sm_r_form Displays a form. Any previously displayed form is
 cleared. Similarly, sm_d_form, sm_l_form.
 sm_r_window Displays a window at a specified line and column on the
 screen. The previous contents of the window area are
 saved. Similarly, sm_d_window, sm_l_window.
 sm_r_at_cur Displays a window at the current cursor position. The
 previous contents of the window area are saved.
 Similarly, sm_d_at_cur, sm_l_at_cur.
 sm_close_window Closes the current window and restores the immediately
 previous display.
 sm_wselect Brings a "buried" window to the active position.
 sm_wdeselect puts it back.
 sm_l_open Opens a form library.
 sm_l_close Closes a form library.
 sm_hlp_by_name Displays the help screen attached to the current field or
 screen, gets user input, and restores the previous
 display.
 sm_rescreen Refreshes the screen display.

2.4 Data Entry

The following routines enable an application program to enter data into fields
in a screen or the local data block, or to change its display attributes.

 sm_putfield Copies the data from a string into a specified field or
 occurrence. If the string is too long for the field, it
 is truncated.
 sm_amt_format Copies a string into the specified amount field or
 occurrence, after applying the currency format.
 sm_itofield Converts an integer to a string, and copies the string
 into the specified field or occurrence.
 sm_dtofield Converts a double floating point value to a string,
 applies a field currency edit if it exists, and copies
 the string into the specified field or occurrence.
 sm_ltofield Converts a long integer to a string and copies the string
 into the specified field or occurrence.
 sm_calc Evaluates a mathematical expression, possibly involving
 field values, and places the result in a field.
 sm_ldb_init Initialize the local data block from the data dictionary.
 sm_lclear Clear all occurrences with a given scope in the LDB.
 sm_lreset Reinitialize all occurrences in the LDB with a given
 scope.
 sm_chg_attr Changes the display attributes of a field.
 sm_achg Changes the display attributes of a scrolling data item.
 sm_cl_unprot Clears onscreen and offscreen data from unprotected
 fields on the current screen. Date and time fields that
 take system values are reset.
 sm_cl_everyfield Clears all field data, onscreen and off, regardless of
 field protection.
 sm_1clear_array Clears all data from a scrolling array.
 sm_clear_array Clears all data from a scrolling array and all parallel
 scrolling arrays.
 sm_ioccur Inserts a blank occurrence into an array or scroll.
 sm_doccur Deletes an occurrence from an array or scroll.

2.5 Keyboard Entry

The following routines accept and process data entered from the keyboard.

 sm_getkey Returns the interpreted value of the key hit. In the case
 of a displayable key, this is its standard ASCII value;
 in the case of a function key with special meaning to
 JAM, this is a value defined in the file smkeys.h . This
 function is used by all other keyboard input functions.
 sm_ungetkey Pushes a key back on the input stream, to be retrieved by
 sm_getkey.
 sm_openkeybd Accepts and interprets user keyboard entry. Displayable
 data is entered into fields on the screen, subject to any
 restrictions or edits that were defined for those fields
 (see the JAM Author's Guide). Function keys control the
 position of the cursor and aid in editing data.
 sm_menu_proc Returns the initial character of the user's selection
 from a menu whose entries start with distinct ASCII
 characters.
 sm_choice Returns the text of the chosen entry on a menu screen.
 sm_query_msg Displays a question on the status line, and returns a yes
 or no answer.
 sm_keyhit Tests whether a key has been hit during a specified
 interval.
 sm_isabort Returns control to the application through nested
 keyboard entry routines.

2.6 Cursor Control

The following routines affect the positioning and visibility of the cursor.

 sm_getcurno Returns the number of the field within which the cursor
 is currently positioned.
 sm_home Places the cursor in the first unprotected field.
 sm_last Positions the cursor to the start of the last unprotected
 field of the current form.
 sm_tab Moves the cursor to the next unprotected field, or to the
 unprotected field specified by a next field edit.
 sm_nl Moves the cursor to the next unprotected field following
 the current line on the screen.
 sm_backtab Moves the cursor to the start of the current field, or if
 it is already there, to the start of the previous
 unprotected field.
 sm_gofield Positions the cursor to the start of the specified field
 or occurrence.
 sm_off_gofield Positions the cursor to a given offset from the start of
 the specified field.
 sm_disp_off Returns the displacement of the cursor from the starting
 column of the current field.
 sm_c_off Turns the cursor off.
 sm_c_on Turns the cursor on.
 sm_c_vis Turns the cursor position display at the end of the
 status line on or off.

2.7 Data Access

The following routines give an application program access to data entered on a
screen or in the LDB.

 sm_edit_ptr Returns the text of a special field edit.
 sm_getfield Returns the contents of a field or occurrence in a buffer
 supplied by the user.
 sm_fptr Returns the contents of a field in an internal buffer.
 sm_pkptr Returns the contents of a field in an internal buffer,
 with as many blanks as possible removed.
 sm_strip_amt_ptr Returns the contents of a field, stripped of any
 extraneous characters supplied by currency formatting.

 sm_num_occurs Returns the largest number of items entered so far into a
 scrollable field or array.
 sm_intval Returns the integer value of the data found in the
 specified field or occurrence.
 sm_dblval Returns the double floating point value of the data found
 in the specified field or occurrence.
 sm_lngval Returns the long integer value of the data found in the
 specified field or occurrence.
 sm_is_yes Returns 1 if the first character of a yes/no field looks
 like yes, and 0 otherwise.
 sm_dlength Returns the length of the data currently in the specified
 field or occurrence.
 sm_allget Merge LDB data items onto the screen.
 sm_lstore Store screen data into the LDB.

2.8 Mass Storage and Retrieval

The following functions move data to or from groups of fields in the screen or
LDB.

 sm_save_data Writes the contents of the current form's fields to a
 buffer for subsequent retrieval.
 sm_restore_data Restores all fields to the current form from a buffer
 created by sm_save_data.
 sm_sv_data Writes the contents of some of the current form's fields
 to a buffer for subsequent retrieval.
 sm_rs_data Restores part of the current form from a buffer created
 by sm_sv_data.
 sm_wrtstruct Copies the current form's fields to a program data
 structure generated from the screen.
 sm_rdstruct Reads into the current form's fields from such a data
 structure.
 sm_wrt_part Writes the contents of some of the current form's fields
 to such a data structure.
 sm_rd_part Reads some of the current form's fields from such a data
 structure.
 sm_rrecord Copies from a data structure defined by a data dictionary
 record to the screen or LDB.
 sm_wrecord Copies from the screen to such a data structure.

2.9 Message Display

The following routines display a message on the status line of the screen
(typically the bottom line).

 sm_d_msg_line Displays a message with a user-supplied display
 attribute.
 sm_msg Displays a message at a given column on the status line.
 sm_err_reset Displays a message using a standard error message
 attribute. Processing is halted until the user hits the
 space bar, at which time the status line is reset.
 Similarly, sm_emsg.
 sm_quiet_err Displays the word ERROR: followed by the user-supplied
 message. Processing is halted until the user hits the
 space bar, at which time the status line is reset.
 Similarly, sm_qui_msg.
 sm_mwindow Displays your message in a pop-up window, at a location
 you specify.
 sm_query_msg Displays a user-supplied question. Processing is halted
 until the user answers yes or no, at which time the
 status line is reset, and the answer is returned to the
 calling program.
 sm_msg_get Gets a message from the message file. So does sm_msgfind.

 sm_setbkstat Displays a background message, which will be hidden if
 the cursor enters a field that has status text, or if
 another message display routine is called.
 sm_setstatus Turns on or off the automatic display of alternating
 Ready and Wait status line messages, corresponding to an
 open or closed keyboard.

2.10 Altering the Operation of Other Functions

These functions affect the behavior of other parts of the run=-time system. Many
have corresponding setup variables, so that you can experiment with different
conditions with no need to change or recompile your application; see the
Configuration Guide's section on setup.

 sm_er_options Changes the way sm_err_reset and related functions handle
 error message acknowledgement.
 sm_ch_form_atts Changes the display attributes of standard windows used
 by the run-time system.
 sm_ch_emsgatt Changes the display attributes used by sm_err_reset and
 sm_quiet_err.
 sm_ch_qmsgatt Changes the display attribute used by sm_query_msg.
 sm_ch_stextatt Changes the display attribute used for the status line
 text associated with fields.
 sm_ch_umsgatt Changes the display attributes used for error windows.
 sm_mp_options Sets options for sm_menu_proc.
 sm_mp_string Changes sm_menu_proc's interpretation of data keys.
 sm_ok_options Changes the way sm_openkeybd interprets arrow keys, field
 validation, and other items.
 sm_zm_options Changes details of the way zooming is done.
 sm_dicname Changes the application's data dictionary name.
 sm_dd_able Turns LDB write-through on or off.

 sm_keyfilter Turns the keystroke playback/recording mechanism on or
 off.
 sm_dw_options Turns JAM delayed write on or off.

2.11 Scrolling and Shifting Functions

The following routines refer specifically to scrollable or shiftable fields.
Some are listed above, and repeated here for convenience. The sm_e_ prefix is
not used for scrolling routines, since the element numbers of an array designate
the individual on-screen fields which constitute that array, and the scrolling
routines normally process an array as a whole. Individual items within a
scrolling field or scrolling array are referred to by item number, which is
independent of which items are currently displayed on the screen.

 sm_t_scroll Determines whether the specified field or array is
 scrollable.
 sm_item_id Returns the item number of the data in the current
 scrollable field.
 sm_sc_max Changes the maximum number of items in a scrollable field
 or array.
 sm_clear_array Clears all data from a scrollable array and all parallel
 scrollable arrays.
 sm_rscroll Scrolls a single scrollable field or array, or a group of
 parallel scrollable fields or arrays, by a given amount.
 sm_ascroll Scrolls a single scrollable field or array, or a group of
 parallel scrollable fields or arrays, to a given
 location.
 sm_num_items Returns the largest number of items entered so far into a
 scrollable field or array.
 sm_t_shift Determines whether the specified field or array is
 shiftable.

 sm_oshift Shifts the contents of the current shiftable field or
 array.
 sm_sh_off Returns the displacement of the cursor from the start of
 the shiftable data in the current field.
 sm_ind_set Turns shifting and scrolling field indicators on or off.

2.12 Validation Routines

 sm_fval Forces field validation and end of field processing.
 sm_s_val Performs field validation and end of field processing on
 all fields of the current form.
 sm_bitop Tests, sets, and clears a number of bits associated with
 field validation. Overlaps with some more specialized
 routines listed below.
 sm_novalbit Resets the validated bit of a field, so that the field
 will (again) be subject to validation when it is next
 filled or tabbed from.
 sm_cl_all_mdts Resets the modified bits of all occurrences of every
 field.
 sm_tst_all_mdts Returns the field and occurrence numbers of the first
 occurrence that has its modified bit set.

2.13 Miscellaneous

 sm_occur_no Returns the occurrence number of the data in the field
 where the cursor is.
 sm_max_occur Returns the number of the maximum occurrence that can be
 entered in the specified field or array.
 sm_n_fldno Returns the number of a field, given its name.
 sm_base_fldno Returns the field number of the base element of an array,
 obtained from the field number of any element of the
 array.
 sm_size_of_array Returns the number of elements in an array.
 sm_length Returns the length of a field (not its contents).
 sm_1protect Protects a field from some combination of tabbing into,
 data entry, validation, and clearing. sm_protect does all
 four.
 sm_1unprotect The inverse of sm_1protect.
 sm_aprotect Sets protection on an entire array. sm_aunprotect
 reverses the effect.
 sm_sdate Returns current system date information in a formatted
 string.
 sm_stime Returns current system time information in a formatted
 string.
 sm_do_region Paints arbitrary data on one line of the display.
 sm_hlp_by_name Invokes a named help window on the current field.
 sm_flush Forces buffered updates out to the display; JAM buffers
 them for greater efficiency. sm_m_flush just flushes the
 message line.
 sm_resize Changes the size of the display area available to JAM.
 sm_bel Beeps or flashes the terminal.
 sm_keylabel Given a logical key name, returns its label on a real
 keyboard.
 sm_label_key Initialize a softkey label.
 sm_plcall Invoke a routine written in the JYACC Procedural
 Language.
 sm_putjctrl Replace a JAM control string for a function key.
 sm_rescreen Redraw the display if it gets garbled.

2.14 Which Function Do I Use?

The JAM library provides more than one way of doing certain things. Following
are some guidelines for choosing the right ones.

Screen storage and display. There are three ways to store screens for display:
in individual disk files, in memory, and in a form library. This involves the
sm_r_, sm_d_, and sm_l_ families of functions respectively. The first method is
the most flexible, since the screen editor operates only on disk files; it is
clearly best in the early development stages of an application. Form libraries
are useful to reduce the clutter of a large number of screen files, and also to
reduce the overhead of file system access, once an application is in production.
Memory-resident forms are still faster to bring up, although they consume extra
memory.

The most flexible way is to combine all three, using the memory-resident form
list and SMFLIBS setup variable. The sm_r_ family of functions can be used to
display disk-, library-, or memory-resident screens; if a screen needs
alteration, you can simply remove it from the list or library and the altered
disk copy will be used. The JAM run-time system uses the sm_r_ family, so all
three options are open to you.

Field names and numbers. It is normally best to refer to fields by name rather
than by number. The reason is that any addition, deletion, or shuffling of
fields on the screen alters their numbering, with unpredictable consequences for
programs that use hard-coded field numbers.

There are nevertheless certain situations where it makes sense to use field
numbers. A common one is where a group of fields bear some relation to one
another, so that their ordering will not change; in this case, the number of the
first field can be obtained from its name and the rest processed in a loop on
the field number. Such a loop is much more convenient than processing a group of
fields by name. Attached functions are another example; they are passed the
field number as a parameter, and it makes sense to use it for direct access to
that field, or to offset it for access to related fields.

A further consideration for JAM applications is that unnamed fields cannot
appear in the LDB or data dictionary.

Data retrieval. There are three sets of routines for retrieving data from a
field: sm_fptr, sm_pkptr, and sm_getfield. The first two share a limitation:
they store their results in a small ring of buffers which are overwritten after
a few subsequent calls to those routines using the buffers. If you pass a
returned pointer to a subroutine, bugs may develop; such data must be processed
locally and soon. For more durable values use sm_getfield.

Menus. You can use sm_menu_proc or sm_choice; the latter returns you the whole
text of the selected menu item, the former only the first character. If you can
design your menus so that each entry is unique in the first character (perhaps
by preceding the entries with labels), sm_menu_proc is easier to use.
sm_mp_string can be used to make sm_menu_proc cooperate with menus whose entries
are not unique in the first character, but then additional processing is
required after the function returns.

If your menu is too big to fit on the screen and you want to use scrolling, or
if you need to process the whole menu entry, sm_choice is preferable; it will
search the whole scrolling buffer for a match. sm_menu_proc will only search the
entries that appear on the screen, although it will allow you to scroll through
entries with the PAGE UP and PAGE DOWN keys.

Finally, if you wish to recognize function keys as well as menu picks, use
sm_menu_proc; it will return the value of the function key struck, which
sm_choice cannot, since its return value is the text of the field. The JAM
run-time system uses sm_menu_proc for menus with contol fields, and sm_choice
for item selection screens.

3 Library Functions by Name

An alphabetical list of JAM library functions follows. For each, you will find
several items:

 .
 A synopsis similar to a C function declaration, giving the types of the
 arguments and return value.
 .
 A detailed description of the function's arguments, prerequisites,
 results, and side effects.
 .
 The function's return values, if it has any, and their meanings.
 .
 A list of variants and functions that perform related actions, if there
 are any.
 .
 One or two brief coding examples illustrating the function's use. These
 examples have no global framework; where reference is made to external
 functions or variables, their purpose is supposed to be apparent from
 their names, and no more need be read into them.

Modules calling JAM library routines should normally include smdefs.h . Those
testing key values returned by sm_openkeybd, sm_menu_proc, or sm_getkey should
include smkeys.h . Include files necessary for specific functions are shown in
the synopsis.

NAME

 sm_1clear_array - clear all data from an array

SYNOPSIS

 int sm_1clear_array (field_number)
 int field_number;

DESCRIPTION

Clears the onscreen and offscreen data of a scrollable array or field. The
buffers that held the offscreen data are not freed, but are blanked. Clears the
onscreen data of a non-scrollable array or field. This function clears an array
even if it is protected from clearing (CPROTECT). Unlike sm_clear_array, it does
not clear parallel scrolling arrays.

RETURNS

 -1 if the field was not found; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_1clear_array (field_name);
 sm_clear_array (field_number);
 sm_protect (field_number);
 sm_aprotect (field_number);

EXAMPLE

/* Clear the totals column of a screen when the field-erase
 * key is pressed. */

#include "smdefs.h"
#include "smkeys.h"

int key;

sm_route_table[FERA] |= RETURN;
...
if (key == FERA)
 sm_n_1clear_array ("totals");

NAME

 sm_1protect - selectively protect a field

SYNOPSIS

 #include "smdefs.h"

 int sm_1protect (field_number, mask)
 int field_number;
 int mask;

DESCRIPTION

sm_1protect sets the protection bits to protect the specified field from any
combination of data entry, tabbing into, clearing, or validation. Mnemonics for
mask are defined in smdefs.h , and are listed below. Multiple sets can be done
by oring mnemonics together.

 Mnemonic Meaning

 EPROTECT protect from data entry
 TPROTECT protect from tabbing into (or from
 entering via any other key)
 CPROTECT protect from clearing
 VPROTECT protect from validation routines

As an example of combined protections, it is often useful to protect a field
from data entry while still allowing the cursor to enter it (tabbing into). This
is suitable for fields in which one selects an item from a circular scroll list,
or from an item selection screen.

sm_1unprotect clears protection bits. sm_protect and its variants set all
protect bits. sm_aprotect sets protection bits for all the fields in an array.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_1protect (field_name, mask);
 sm_e_1protect (field_name, element, mask);
 sm_1unprotect (field_number);
 sm_aprotect (field_number);
 sm_protect (field_number);

EXAMPLE

#include "smdefs.h"

/* Protect field number 5 from data entry and clearing,
 * while still allowing the cursor to enter it. */

sm_1protect (5, EPROTECT | CPROTECT);

NAME

 sm_1unprotect - unprotect a field

SYNOPSIS

 #include "smdefs.h"

 int sm_1unprotect (field_number, mask)
 int field_number;
 int mask;

DESCRIPTION

sm_1unprotect clears protection bits to unprotect the specified field from some
combination of data entry, tabbing into, clearing, or validation.

Mnemonics for the mask are defined in smdefs.h , and are listed below. Multiple
sets can be done by oring the mnemonics.

 Mnemonic Meaning

 EPROTECT protect from data entry
 TPROTECT protect from tabbing into (or from
 entering via any other key)
 CPROTECT protect from clearing
 VPROTECT protect from validation routines

sm_1protect sets protection bits. sm_protect and related functions set all
protect bits. sm_aprotect sets protection bits for all the fields in an array.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_1unprotect (field_name, mask);
 sm_e_1unprotect (field_name, element, mask);
 sm_1protect (field_number);
 sm_aunprotect (field_number);
 sm_unprotect (field_number);

EXAMPLE

#include "smdefs.h"

/* Make field number 5 available for data entry and clearing. */

sm_1unprotect (5, EPROTECT | CPROTECT);

NAME

 sm_achg - change the display attribute attached to a scrolling item

SYNOPSIS

 #include "smdefs.h"

 int sm_o_achg (field_number, item_id, disp_attr)
 int field_number;
 int item_id;
 int disp_attr;

DESCRIPTION

Changes the display attribute attached to a scrollable item. If the item is
onscreen, also changes the attribute with which the item is currently displayed.
Here is a table of attribute mnemonics.

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

If disp_attr is zero, the scrollable display attribute is removed (set to zero).
If the item is onscreen, it is displayed with the attribute attached to its
field.

The attribute change this function makes is associated with a data item rather
than a field on a form, and overrides the attribute associated with the field
where the item is displayed (if any). Use sm_chg_attr to change the display
attribute of a field.

Note: this function has only two variants, sm_o_achg and sm_i_achg. The other
three variants (including sm_achg itself) do not exist.

RETURNS

 -1 if the field isn't found or isn't scrollable, or if item_id is invalid;
 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_o_achg (field_number, item_id, disp_attr);
 sm_i_achg (field_name, item_id, disp_attr);
 sm_chg_attr (field_number, disp_attr);

EXAMPLE

/* Highlight the data item under the cursor in a scrolling array,
* so that the highlight will move with the item rather than
* staying on the field. */

#include "smdefs.h"

int base;
int occur;

base = sm_base_fldno (sm_getcurno ());
occur = sm_occurno ();
sm_o_achg (base, occur, RED | REVERSE);

NAME

 sm_allget - load screen from the LDB

SYNOPSIS

 int sm_allget (respect_flag)
 int respect_flag;

DESCRIPTION

Copies data from the local data block to screen fields with matching names. In
its loop, this function makes use of a data structure set up during screen
display that identifies which fields have LDB entries.

If respect_flag is nonzero, this function does not write to fields that already
contain data, or that have their MDT bits set. If the flag is zero, all fields
are initialized. When this function is called by the JAM run-time system, or by
your screen entry function, it does not set MDT bits for the fields it
initializes.

This function is similar to the Release 3 function ldb_merge. and is called
automatically by the JAM screen-display logic, unless LDB processing has been
turned off using sm_dd_able. Application code should not normally need to call
it.

RETURNS

 Always zero.

VARIANTS AND RELATED FUNCTIONS

 sm_lstore (item_name, value);
 sm_dd_able (flag);

EXAMPLE

#include "smkeys.h"

/* If you open a window using sm_r_window, you want named
 * fields initialized from the LDB, and LDB processing is
 * off, you will need to call sm_allget explicitly. You
 * could use this, e.g., to make the LDB read-only during
 * a certain transaction. */

sm_dd_able (0);
...

if (sm_r_window ("popup", 5, 24) == 0)
{
 sm_allget (0);
 while (sm_openkeybd () != EXIT)
 {
 ...
 }
 sm_close_window ();
}

NAME

 sm_amt_format - write data to a field, applying currency editing

SYNOPSIS

 int sm_amt_format (field_number, buffer)
 int field_number;
 char *buffer;

DESCRIPTION

If the specified field has an amount edit, it is applied to the data in buffer.
If the resulting string is too long for the field, an error message is
displayed. Otherwise, sm_putfield is called to write the edited string to
specified field.

If the field has no amount edit, sm_putfield is called with the unedited string.

RETURNS

 -1 if the field is not found or the item ID is out of range; -2 if the
 edited string will not fit in the field; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_amt_format (field_name, element, buffer);
 sm_i_amt_format (field_name, occurrence, buffer);
 sm_n_amt_format (field_name, buffer);
 sm_o_amt_format (field_number, occurrence, buffer);
 sm_strip_amt_ptr (field_number, text);
 sm_dtofield (field_number, real_value);

EXAMPLE

#include "smdefs.h"

/* Write a list of real numbers to the screen. The first
 * and last fields in the list are tagged with special names.
 * Actually, sm_dtofield () would be more convenient.
 */
int k, first, last;
char buf[256];
double values[];
 /* set up elsewhere... */

last = sm_n_fldno ("last");
first = sm_n_fldno ("first");
for (k = first; k && k <= last; ++k)
{
 sprintf (buf, "%lf", values[k - first]);
 sm_amt_format (k, buf);
}

NAME

 sm_aprotect - protect an array

SYNOPSIS

 #include "smdefs.h"

 int sm_aprotect (field_number, mask)
 int field_number;
 int mask;

DESCRIPTION

sm_aprotect sets protection bits for every field in the array containing
field_number. The fields are then protected from some combination of data entry,
tabbing into, clearing, or validation, according to mask. If the field is
scrolling, all offscreen items are protected as well.

Mnemonics for mask are defined in smdefs.h , and are listed below. Multiple sets
can be done by oring the mnemonics.

 Mnemonic Meaning

 EPROTECT protect from data entry
 TPROTECT protect from tabbing into (or from
 entering via any other key)
 CPROTECT protect from clearing
 VPROTECT protect from validation routines

sm_aunprotect clears protection for an array. sm_protect and variants set all
protect bits for a single field. sm_1protect sets protection bits for a single
field; such changes will supersede the array protection for onscreen elements,
but the array protection will remain in effect for offscreen items.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_aprotect (field_name, mask);
 sm_aunprotect(field_number, mask);
 sm_1protect(field_number, mask);
 sm_protect(field_number, mask);

EXAMPLE

#include "smdefs.h"

/* Postpone calculations by protecting the totals column from
* validation; this will prevent execution of its math edit. */

sm_n_aprotect ("subtotals", VPROTECT);

NAME

 sm_ascroll - scroll to a given occurrence

SYNOPSIS

 int sm_ascroll (field_number, occurrence)
 int field_number;
 int occurrence;

DESCRIPTION

This function scrolls the designated field so that the indicated occurrence
appears there. The field need not be the first element of a scrolling array; you
could use this function, for instance, to place the nineteenth item in the third
onscreen element of a five-element scrolling array.

The validity of certain combinations of parameters depends on the exact nature
of the field. For instance, if field number 7 is the third element of a
scrolling array, the call

 sm_ascroll (7, 1);

will fail on a regular scrolling array but succeed if scrolling is circular.

Parallel arrays or fields will, of course, scroll along with the target array or
field.

RETURNS

 -1 if field or occurrence specification is invalid, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 int sm_n_ascroll (field_name, occurrence);
 int sm_rscroll (field_number, count);
 int sm_t_scroll (field_number);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* Scroll the "records" array (and those parallel to it)
 * to the line indicated in another field on the screen. */

#define GOTO_LINE PF4

if (sm_openkeybd () == GOTO_LINE)
{
 sm_n_ascroll ("records", sm_n_intval ("line");
}

NAME

 sm_aunprotect - unprotect an array

SYNOPSIS

 #include "smdefs.h"

 int sm_aunprotect (field_number, mask)
 int field_number;
 int mask;

DESCRIPTION

sm_aunprotect clears protection bits for every field in the array containing
field_number, and for scrolling items if the array is scrolling. The fields are
then unprotected from some combination of data entry, tabbing into, clearing, or
validation, according to mask.

Mnemonics for mask are defined in smdefs.h , and are listed below. Multiple sets
can be done by oring the mnemonics.

 Mnemonic Meaning

 EPROTECT protect from data entry
 TPROTECT protect from tabbing into (or from
 entering via any other key)
 CPROTECT protect from clearing
 VPROTECT protect from validation routines

sm_aprotect sets protection bits. sm_protect and related functions set all
protect bits for a single field. sm_1protect sets protection bits for a single
field; such changes will supersede the array protection for onscreen elements,
but the array protection will remain in effect for offscreen items.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_aunprotect (field_name, mask);
 sm_aprotect(field_number);
 sm_1unprotect(field_number);
 sm_unprotect(field_number);

EXAMPLE

#include "smdefs.h"

/* open all fields in array number 14 to data entry and clearing */

sm_aunprotect (14, EPROTECT | CPROTECT);

NAME

 sm_backtab - backtab to the previous start of an unprotected field

SYNOPSIS

 void sm_backtab ();

DESCRIPTION

If the cursor is in an unprotected field, but not in the first enterable
position, it is moved to the first enterable position of that field. Otherwise,
it is moved to the first enterable position of the previous unprotected field.
If the cursor is in the first position of the first unprotected field on the
form, or before the first unprotected field on the form, it wraps backward into
the last unprotected field. If there are no unprotected fields, the cursor
doesn't move.

If the destination field is shiftable, it is reset according to its
justification. Note that the first enterable position depends on the
justification of the field and, in digits-only fields, on the presence of
punctuation.

The previous field here means the field with the next lower number; field
numbers increase from left to right within a display line, and from top to
bottom. This function disregards next field edits.

EXAMPLE

#include "smkeys.h"

/* Back the cursor up if the user strikes a key indicating
 * s/he has made a particular mistake. */
int key;

do {
 key = sm_openkeybd ();
 if (key == PF5)
 {
 sm_quiet_err ("OK, start over");
 sm_backtab ();
 }
} while (key != EXIT && key != XMIT);

NAME

 sm_base_fldno - get the field number of the first element of an array

SYNOPSIS

 int sm_base_fldno (field_number)
 int field_number;

DESCRIPTION

If the field specified by field_number is an array element, this function
returns the field number of the first element (base) of the array.

If the field is not an array element, it returns field_number.

RETURNS

 The field number of the base element of the array containing the specified
 field, or 0 if the field number is out of range.

VARIANTS AND RELATED FUNCTIONS

EXAMPLE

#include "smdefs.h"

/* Highlight the data item under the cursor in a scrolling array,
 * so that the highlight will move with the item rather than
 * staying on the field. */

int base;
int occur;

base = sm_base_fldno (sm_getcurno ());
occur = sm_occur_no ();
sm_o_achg (base, occur, RED | REVERSE);
sm_gofield (base);

NAME

 sm_bel - beep!

SYNOPSIS

 void sm_bel ()

DESCRIPTION

Causes the terminal to beep, ordinarily by transmitting the ASCII BEL code to
it. If there is a BELL entry in the video file, sm_bel will transmit that
instead, usually causing the terminal to flash instead of beeping.

Even if there is no BELL entry, use this function instead of sending a BEL,
because certain displays use BEL as a graphics character.

Including a %B at the beginning of a message displayed on the status line will
cause this function to be called.

EXAMPLE

#include "smkeys.h"

/* Beep at unwanted function keys. */
int key;

switch (key = sm_openkeybd ())
{
 case PF1:
 save_something ();
 break;
 case PF2:
 discard_something ();
 break;
 default:
 sm_bel();
 break;
}

NAME

 sm_bitop - manipulate validation and data editing bits

SYNOPSIS

 #include "smbitops.h"

 int sm_bitop(field_number, action, bit)
 int field_number;
 int action;
 int bit;

DESCRIPTION

You can use this function to inspect and modify validation and data editing bits
of screen fields, without reference to internal data structures. The first
parameter identifies the field to be operated upon.

Action can include a test and at most one manipulation, from the following table
of mnemonics:

 Mnemonic Meaning

 BIT_CLR Turn bit off BIT_SET
 Turn bit on BIT_TOGL
 Flip state of bit BIT_TST
 Report state of bit

The third parameter is a bit identifier, drawn from the following table:

 Character edits

 N_ALL N_DIGIT N_YES_NO
 N_ALPHA N_NUMERIC
 N_ALPHNUM N_FCMASK

 Field edits

 N_RTJUST N_REQD N_VALIDED
 N_MDT N_CLRINP
 N_MENU N_UPPER
 N_LOWER N_RETENTRY
 N_FILLED N_NOTAB
 N_WRAP N_EPROTECT
 N_TPROTECT N_CPROTECT
 N_VPROTECT N_ALLPROTECT
 N_ADDLEDS

The character edits are not, strictly speaking, bits; you cannot toggle them,
but the other functions work as you would expect. N_ALLPROTECT is a special
value meaning all four protect bits at once.

N_VALIDED and N_MDT are the only bit operations that can apply offscreen. All
other bit operations are attached to fixed onscreen positions.

This function has two variants, sm_a_bitop and sm_t_bitop, which perform the
requested bit operation on all elements of an array. Their synopses appear
below. If you include BIT_TST, these variants return 1 only if bit is set for
every element of the array. The variants sm_i_bitop and sm_o_bitop are
restricted to N_VALIDED and N_MDT.

RETURNS

 -1 if the field or occurrence cannot be found; -2 if the action or bit
 identifiers are invalid; 1 if there was no error, the action included
 a test operation, and bit was set; -3 if sm_i_bitop or sm_o_bitop
 were called with bit set to something other than N_VALIDED or N_MDT;
 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_bitop (array_name, element, action, bit);
 sm_i_bitop (array_name, occurrence, action, bit);
 sm_n_bitop (field_name, action, bit);
 sm_o_bitop (field_number, occurrence, action, bit);

 sm_a_bitop (array_name, action, bit);
 sm_t_bitop (array_number, action, bit);

EXAMPLE

#include "smbitops.h"

/* Check whether a field is valid. If not, place the
 * cursor there. */

if (! sm_n_bitop ("operation", BIT_TST, N_VALIDED))
{
 sm_n_gofield ("operation");
}

/* Make the array "quantities" required. */

sm_a_bitop (sm_n_fldno ("quantities"), BIT_SET, N_REQD);

NAME

 sm_c_off - turn the cursor off

SYNOPSIS

 void sm_c_off ();

DESCRIPTION

This function notifies JAM that the normal cursor setting is off. The normal
setting is in effect except when a block cursor is in use, as during menu
processing (cursor off); while screen manager functions are writing to the
display (cursor off); and within certain error message display functions (cursor
on).

If the display cannot turn its cursor on and off (CON and COF entries are not
defined in the video file), this function will have no effect.

VARIANTS AND RELATED FUNCTIONS

 sm_c_on ();

EXAMPLE

 sm_err_reset("Verify that the cursor is turned ON");
 sm_c_off();
 sm_emsg("Verify that the cursor is turned OFF");
 sm_c_on();
 sm_emsg("Verify that the cursor is turned ON");

NAME

 sm_c_on - turn the cursor on

SYNOPSIS

 void sm_c_on ();

DESCRIPTION

This function notifies JAM that the normal cursor setting is on. The normal
setting is in effect except when a block cursor is in use, as during menu
processing (cursor off); while screen manager functions are writing to the
display (cursor off); and within certain error message display functions (cursor
on).

If the display cannot turn its cursor on and off (CON and COF entries are not
defined in the video file), this function will have no effect.

VARIANTS AND RELATED FUNCTIONS

 sm_c_off ();

EXAMPLE

 sm_err_reset("Verify that the cursor is turned ON");
 sm_c_off();
 sm_emsg("Verify that the cursor is turned OFF");
 sm_c_on();
 sm_emsg("Verify that the cursor is turned ON");

NAME

 sm_c_vis - turn cursor position display on or off

SYNOPSIS

 void sm_c_vis (disp)
 int disp;

DESCRIPTION

If disp is non-zero, subsequent messages displayed on the status line, including
background status messages, will include the cursor's screen position. If the
message would overlap the cursor position display, it is truncated. If disp is
zero, subsequent messages displayed on the status line will not include the
cursor's position.

If the CURPOS entry in the video file is not defined, this function will have no
effect; the cursor position will not appear. JAM uses an asynchronous function
and a status line function to perform the cursor position display; if the
application has previously installed either of those, this function will clobber
it.

VARIANTS AND RELATED FUNCTIONS

 sm_u_async ();
 sm_u_statfnc ();
 sm_install (which_hook, what_func, howmany);

EXAMPLE

#include "smkeys.h"

/* Toggle the cursor position display on or off when the
* PF10 key is struck. The first time the key is struck,
* it will go on. */

static int cpos_on = 0;

switch (sm_openkeybd ())
{
...
case PF10:
 sm_c_vis (cpos_on ^= 1);
...
}

NAME

 sm_calc - perform a calculation

SYNOPSIS

 int sm_calc (field_number, item_id, expression)
 int field_number;
 int item_id;
 char *expression;

DESCRIPTION

The field_number and item_id parameters identify the field and item with which
the calculation is associated. (If the field is not scrollable, item_id should
be set to zero.) Expression is a calculation, written as specified in the JAM
Author's Guide. Briefly, a calculation contains an optional precision specifier,
%m.n; a destination field identifier; an equal sign; and a math expression. The
expression uses conventional arithmetic operators and parentheses in infix
notation, with a few special unary operators. It and the destination field
identifier may specify fields by name, absolute number, or relative number.

If the calculation begins with % the rounding information is extracted.
Otherwise, rounding information is taken from the float or double data type
edit, if any, attached to the destination field; or from the amount edit, if
any, attached to the destination field. If none of the above are available, the
default rounding to 2 decimal places is performed.

If the destination field is a date field, the value of the expression is
formatted as a date. sm_calc provides a way of placing arbitrary dates in
fields, through the @date expression. You should call sm_calc with an argument
in the following form:

 destination-field = @date (your-date)

where destination-field identifies a field by name or number as defined in the
Author's Guide, and your-date is formatted as MM/DD/YYYY; assuming that the
destination field is a date field, it will be written out in the proper format.
This is presently the only way of getting an arbitrary date, properly formatted,
into a date field.

If a math error such as divide by zero or wrong date format occurs, a message is
presented to the operator, and the function returns -1.

RETURNS

 -1 is returned if a math error occurred. 0 is returned otherwise.

EXAMPLE

/* Place a famous date in a field. */

sm_calc ("day1 = @date(07/04/1776)");

NAME

 sm_cancel - reset the display and exit

SYNOPSIS

 void sm_cancel ();

DESCRIPTION

This routine is installed by sm_initcrt to be executed if a keyboard interrupt
occurs. It calls sm_resetcrt to restore the display to the operating system's
default state, and exits to the operating system.

If your operating system supports it, you can also install this function to
handle conditions that normally cause a program to abort. If a program aborts
without calling sm_resetcrt, you may find your terminal in an odd state;
sm_cancel can prevent that.

EXAMPLE

/* the following program segment could be found in some
 * error routines */

if (error)
{
 sm_quiet_err("fatal error -- can't continue!\n");
 sm_cancel();
}

/* The following code can be used on a UNIX system to
 * install sm_cancel() as a signal handler. */

#include <signal.h>

extern void sm_cancel ();

signal (SIGTERM, sm_cancel);

NAME

 sm_ch_emsgatt - change the standard error message attributes

SYNOPSIS

 #include "smdefs.h"

 void sm_ch_emsgatt (noisy_att, quiet_att)
 int noisy_att, quiet_att;

DESCRIPTION

Changes the display attributes used by sm_err_reset and sm_quiet_err. Noisy_att
is used for the message by sm_err_reset and for the message prefix (normally
"ERROR:") displayed by sm_quiet_err. Quiet_att is used for the message body
displayed by sm_quiet_err.

If either argument is zero, the corresponding display attribute is unchanged. If
an argument is nonzero but no color is specified, and the display does not
support background color, the color is made WHITE.

The following display attribute mnemonics may be used in the arguments to this
function:

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

If sm_ch_emsgatt is never called, sm_err_reset uses WHITE with BLINK, and
HILIGHT if it is available. The default attribute for the message body displayed
by sm_quiet_err is just WHITE.

If you define the SMCHEMSGATT variable in your setup file, this function will
automatically be called with the parameters you provide there.

VARIANTS AND RELATED FUNCTIONS

 sm_err_reset (message);
 sm_quiet_err(message);
 sm_er_options (key, discard);

EXAMPLE

#include "smdefs.h"

sm_ch_emsgatt(NORMAL_ATTR, NORMAL_ATTR);
sm_err_reset("Verify this message is displayed in white.");

sm_ch_emsgatt(REVERSE, NORMAL_ATTR);
sm_err_reset("Verify this message is in reverse video.");

NAME

 sm_ch_form_atts - change the standard JAM library window attributes

SYNOPSIS

 #include "smdefs.h"

 void sm_ch_form_atts (bord_style, bord_attr,
 protect_attr, entry_attr)
 int bord_style;
 int bord_attr;
 int protect_attr;
 int entry_attr;

DESCRIPTION

Changes the display characteristics of windows that are part of the library.
Currently, there are four such windows: the system calls (SPF2) window; the
go-to-screen (SPF3) window; the error window, used to display a message too long
to fit on the status line; and the hit space window, which pops up if you hit
the wrong key to acknowledge an error message.

This function is intended to be called once, at the beginning of an application,
to set the display characteristics of the library windows to harmonize with the
application's own forms.

If bord_style is less than 0, the windows are made borderless. Otherwise, it is
made the border style number (0 through 9), and border_attribute, if nonzero, is
made the border attribute.

If protect_attr is nonzero, it is used for protected fields that contain
messages. If entry_attr is nonzero, it is used for the unprotected data entry
fields.

If you define the SMCHFORMATTS variable in your setup file, this function will
automatically be called with the parameters you provide there.

EXAMPLE

#include "smdefs.h"

/* Give the library windows a colorless graphics border
* (conventionally style 1), with yellow message fields and
* green data entry field. */

sm_ch_form_atts (1, NORMAL_ATTR, YELLOW, GREEN);

NAME

 sm_ch_qmsgatt - change the standard query message attribute

SYNOPSIS

 #include "smdefs.h"

 void sm_ch_qmsgatt (disp_attr)
 int disp_attr;

DESCRIPTION

Changes the display attribute used by sm_query_msg. If no color is specified, it
is set to WHITE.

The argument disp_attr is the logical sum of one or more of the following:

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

If sm_ch_qmsgatt is never called, sm_query_msg uses WHITE and REVERSE, with
HILIGHT if it is available.

If you define the SMCHQMSGATT variable in your setup file, this function will
automatically be called with the parameters you provide there.

VARIANTS AND RELATED FUNCTIONS

 sm_query_msg (question);

EXAMPLE

#include "smdefs.h"

sm_ch_qmsgatt(NORMAL_ATTR);
sm_query_msg("Verify that this message is displayed in white.");

sm_ch_qmsgatt(GREEN);
sm_query_msg("Verify that this message is displayed in green.");

NAME

 sm_ch_stextatt - change the status text display attribute

SYNOPSIS

 #include "smdefs.h"

 void sm_ch_stextatt (disp_attr)
 int disp_attr;

DESCRIPTION

Changes the display attribute used for displaying status text associated with a
field. If no color is specified, it is set to WHITE.

The argument disp_attr is the logical sum of one or more of the following:

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

If sm_ch_stextatt is never called, the display attribute used for the status
text associated with a field is normal intensity WHITE.

If you define the SMCHSTEXTATT variable in your setup file, this function will
automatically be called with the parameters you provide there.

EXAMPLE

#include "smdefs.h"

/* Change the default status text attribute to bright green. */

sm_ch_stextatt (GREEN | HILIGHT);

NAME

 sm_chg_attr - change the display attribute of a field

SYNOPSIS

 #include "smdefs.h"

 void sm_chg_attr (field_number, disp_attr)
 int field_number, disp_attr;

DESCRIPTION

Changes the display attribute of a field. If the field is scrolling, each data
item may also have a display attribute, which will override the field display
attribute when the item arrives onscreen; use sm_achg to change scrolling
attributes.

Disp_attr is the logical sum of one or more of the following. If no color is
specified, and BLACK is not a valid color, sm_chg_attr will automatically
include the color WHITE.

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

VARIANTS AND RELATED FUNCTIONS

 sm_n_chg_attr (field_name, disp_attr);
 sm_e_chg_attr (field_name, element, disp_attr);
 sm_o_chg_attr (field_number, occurrence, disp_attr);
 sm_i_achg (field_name, item_id, disp_attr);
 sm_o_achg (field_number, item_id, disp_attr);

EXAMPLE

#include "smdefs.h"

sm_chg_attr (1, NORMAL_ATTR);
sm_err_reset ("Verify that the text in field 1 is white.");

sm_chg_attr (1, BLANK);
sm_err_reset ("Verify that the text in field 1 is invisible.");

NAME

 sm_choice - get item selection

SYNOPSIS

 #include "smdefs.h"

 char *sm_choice (type)
 int type;

DESCRIPTION

This is a menu-handling function, similar in some respects to sm_menu_proc. It
enables you to tab, backtab, arrow and scroll through a screen, in order to
select the contents of one of the fields or scrolling items. The entry at which
the cursor is positioned is shown in reverse video; fields that are blank in
their first position, and those without a MENU field edit, will be skipped.

Hitting a key that matches the first character of a screen entry causes the
cursor to be positioned there; if more than one entry begins with that
character, the cursor is positioned to the first entry following its current
location. Entries are searched by field number. Arrays and scrolls, however, are
searched in their entirety following their first field, and scrolling occurs
automatically. If type is UPPER (or LOWER), an alphabetic key is translated to
upper (or lower) case before a match is attempted; if it is UPPER | LOWER, both
are tried; and if type has any other value, the entry is not translated.

sm_choice returns to the calling program only when you hit the TRANSMIT or EXIT
key. It ignores menu return codes attached to fields; the returned value is the
result of a call to sm_fptr.

The functions sm_mp_options and sm_mp_string, which control the behavior of
sm_menu_proc, do not affect sm_choice.

Menu control strings are not executed within this function, but at a higher
level of the JAM run-time system. If you call this function, do not expect your
selection's control string to be executed.

RETURNS

 The contents of the selected field if TRANSMIT was hit, or 0 if EXIT was
 hit.

VARIANTS AND RELATED FUNCTIONS

 sm_menu_proc (type);
 sm_fptr (field_number);

EXAMPLE

#include "smdefs.h"
#define WHI WHITE | HILIGHT
#define NOT_UL ~(UPPER|LOWER)

#define INS1 "Move cursor to 2nd field and press TRANSMIT"
#define INS5 "Press 'c' and TRANSMIT"

/* Move the cursor to the second field
 * and press the TRANSMIT key. Verify that a pointer
 * to the text of the second field is returned. */

sm_d_msg_line(INS1,WHI);
if (strcmp("bcdefgh", sm_choice(NOT_UL)))
 sm_err_reset ("Bad choice");

/* Press the first letter of the first item of
 * the third field ("c" or "C") and verify that the
 * cursor is located correctly. */

sm_d_msg_line(INS5,WHI);
if (strcmp("CDE", sm_choice(UPPER)))
 sm_err_reset ("Bad choice");

NAME

 sm_cl_all_mdts - clear all MDT bits

SYNOPSIS

 void sm_cl_all_mdts ();

DESCRIPTION

Clears the MDT (modified data tag) of every data item, both onscreen and off.

JAM sets the MDT bit of an occurrence to indicate that it has been modified,
either by keyboard entry or by a call to a function like sm_putfield, since the
screen was first displayed.

VARIANTS AND RELATED FUNCTIONS

 sm_mdt_clear (field_number);
 sm_mod_test (field_number);
 sm_tst_all_mdts (field_number, occurrence);

EXAMPLE

#include "smdefs.h"

/* Clear MDT for all fields on the form; then write
 * data to the last field, and check that its MDT is
 * the first one set. */

int occurrence;

sm_cl_all_mdts();
sm_putfield (sm_numflds, "Hello");
if (sm_tst_all_mdts (&occurrence) != sm_numflds)
 sm_err_reset ("Something is rotten in the state of Denmark.");

NAME

 sm_cl_everyfield - clear all fields, protected or not

SYNOPSIS

 void sm_cl_everyfield ();

DESCRIPTION

Erases all fields on the current screen, including protected fields and
offscreen data. Date and time fields that take system values are re-initialized.

VARIANTS AND RELATED FUNCTIONS

 sm_cl_unprot ();

EXAMPLE

/* The following code effectively binds sm_cl_everyfield
 * to the CLEAR ALL key, instead of sm_cl_unprot (the
 * normal binding). */

#include "smdefs.h"
#include "smkeys.h"

int key;

/* Make the CLEAR ALL key returnable and NOT executable. */
sm_route_table[CLR] = RETURN;

while ((key = sm_openkeybd ()) != EXIT)
{
 if (key == CLR)
 {
 sm_cl_everyfield ();
 continue;
 }
 ...
}

NAME

 sm_cl_unprot - clear all unprotected fields

SYNOPSIS

 void sm_cl_unprot ();

DESCRIPTION

Erases onscreen and offscreen data from all fields that are not protected from
clearing (CPROTECT). Date and time fields that take system values are
re-initialized.

This function is normally bound to the CLEAR ALL key.

VARIANTS AND RELATED FUNCTIONS

 sm_cl_everyfield ();
 sm_1protect (field_number);

EXAMPLE

/* The following code clears all unprotected fields and puts
 * the cursor into the first one. */

sm_cl_unprot ();
sm_home ();

NAME

 sm_clear_array - erase all data from an array

SYNOPSIS

 int sm_clear_array (field_number)
 int field_number;

DESCRIPTION

Clears onscreen and offscreen data of the specified array or field. If there are
scrollable arrays or fields parallel to the one specified, they are also
cleared.

The array indicated by the argument will be cleared regardless of protection;
the protection of parallel scrolling arrays will, however, be respected.

The buffers that held the offscreen data are freed and are no longer accessible.

RETURNS

 -1 if the field is not found; -2 if memory allocation fails; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_clear_array (field_name);
 sm_1clear_array (field_number);
 sm_aprotect (field_number);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* Make the ERASE key clear the entire array of "names",
 * first ensuring that it will be returned to us. */

int key;

sm_route_table[FERA] |= RETURN;

while ((key = sm_openkeybd ()) != EXIT)
{
 if (key == FERA)
 sm_n_clear_array ("names");
}

NAME

 sm_close_window - close current window

SYNOPSIS

 int sm_close_window ();

DESCRIPTION

The currently open window is erased, and the screen is restored to the state
before the window was opened. All data from the window being closed is lost
unless LDB processing is active, in which case named fields are copied to the
LDB using sm_lstore. Since windows are stacked, the effect of closing a window
is to return to the previous window. The cursor reappears at the position it had
before the window was opened.

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 -1 is returned if there is no window open, i.e. if the currently displayed
 screen is a form (or if there is no screen up). 0 is returned
 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_r_window (screen_name, line, column);
 sm_d_window (address, line, column);
 sm_l_window (library_descriptor, screen_name, line, column);
 sm_wselect (window_num);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* In a validation routine, if the field contains a
 * special value, open up a window to prompt for a
 * second value and save it in another field. */

int validate (field, data, occur, bits)
char *data;
{
 char buf[256];

 if (bits & VALIDED)
 return 0;

 if (strcmp(data, "other") == 0)
 {
 sm_r_at_cur ("getsecval");
 if (sm_openkeybd () != EXIT)
 sm_getfield (buf, 1);
 else buf[0] = 0;
 sm_close_window ();
 sm_n_putfield ("secval", buf);
 }

 return 0;
}

NAME

 sm_d_at_cur - display a memory-resident window at the current cursor
 position

SYNOPSIS

 int sm_d_at_cur (mr_screen)
 char *mr_screen;

DESCRIPTION

Displays a memory-resident window at the current cursor position, offset by one
line to avoid hiding that line's current display. Mr_screen is the address of
the screen in memory.

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the top most,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

You can use JYACC bin2c to convert screens from disk files, which you can modify
using jxform, to program data structures you can compile into your application.
A memory-resident screen is never altered at run-time, and may therefore be made
shareable on systems that provide for sharing read-only data. sm_r_at_cur can
also display memory-resident screens, if they are properly installed using
sm_formlist. Memory-resident screens are particularly useful in applications
that have a limited number of screens, or in environments that have a slow disk
(e.g. MS-DOS).

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 0 is returned if no error occurred during display of the form; -3 is
 returned if no memory was available; -7 is returned if the screen
 contained fields that would not fit within the physical display. The
 screen is always restored to its previous condition.

VARIANTS AND RELATED FUNCTIONS

 sm_d_form (mr_screen);
 sm_d_window (mr_screen, line, column);
 sm_r_at_cur (name);

EXAMPLE

/* Display a warning message in a memory-resident window,
 * and wait for acknowledgement before continuing.
 * The warning should include the instruction,
 * "Press any key to continue." */

extern char warning[];

if (over_threshold ()) /* Externally defined condition */
{
 sm_d_at_cur (warning);
 sm_getkey ();
 sm_close_window ();
}
...

NAME

 sm_d_form - display a memory-resident form

SYNOPSIS

 int sm_d_form (mr_screen)
 char *mr_screen;

DESCRIPTION

This function displays a memory-resident screen as a base form. Mr_screen is the
address of the screen.

Bringing up a screen as a form causes the previously displayed form and windows
to be discarded, and their memory freed. The new screen is displayed with its
upper left-hand corner at the extreme upper left of the display (position (0,
0)). Any error in this function leaves the display and JAM internals in an
undefined state.

If the form contains display data that are too big for the physical display,
they are truncated without warning. However, if there are fields that won't fit
within the physical display, this function returns an error without displaying
the form.

You can use JYACC bin2c to convert screens from disk files, which you can modify
using jxform, to program data structures you can compile into your application.
A memory-resident screen is never altered at run-time, and may therefore be made
shareable on systems that provide for sharing read-only data. sm_r_at_cur can
also display memory-resident screens, if they are properly installed using
sm_formlist. Memory-resident screens are particularly useful in applications
that have a limited number of screens, or in environments that have a slow disk
(e.g. MS-DOS).

This function should be called by JAM applications only under unusual
circumstances, as it does not update the control stack. You should execute a
control string to display the form instead.

RETURNS

 0 is returned if no error occurred during display of the screen. -5 is
 returned if, after the screen was cleared, the system ran out of
 memory. -7 is returned if the screen contained fields that would not
 fit within the display.

VARIANTS AND RELATED FUNCTIONS

 sm_d_window (mr_screen, line, column)
 sm_d_at_cur (mr_screen)
 sm_r_form (screen_name)
 sm_l_form (library_descriptor, screen_name)

EXAMPLE

/* Display a memory-resident form to provide a
 * blank background for what follows. */

extern char blank[];

if (sm_d_form (blank) < 0)
{
 sm_err_reset ("Error in form display - goodbye!");
 sm_cancel ();
}
...

NAME

 sm_d_msg_line - display a message on the status line

SYNOPSIS

 #include "smdefs.h"

 void sm_d_msg_line (message, attrib)
 char *message;
 int attrib;

DESCRIPTION

The message in message is displayed on the status line, with an initial display
attribute of attrib. This message overrides background status text and field
status text; it will itself be overwritten by sm_err_reset and related
functions, or by the ready/wait message enabled by sm_setstatus.

Several percent escapes provide control over the content and presentation of
status messages. They are interpreted by sm_d_msg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character following the percent sign must be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%W, for instance; see below) must appear at the
beginning of the message, i.e. before anything except perhaps another percent
escape.

 .
 If a string of the form %Annnn appears anywhere in the message, the
 hexadecimal number nnnn is interpreted as a display attribute to be
 applied to the remainder of the message. The table below gives the
 numeric values of the logical display attributes you will need to
 construct embedded attributes. If you want a digit to appear
 immediately after the attribute change, pad the attribute to 4 digits
 with leading zeroes; if the following character is not a legal hex
 digit, leading zeroes are unnecessary.
 .
 If a string of the form %KKEYNAME appears anywhere in the message,
 KEYNAME is interpreted as a logical key mnemonic, and the whole
 expression is replaced with the key label string defined for that key
 in the key translation file. If there is no label, the %K is stripped
 out and the mnemonic remains. Key mnemonics are defined in smkeys.h ;
 it is of course the name, not the number, that you want here. The
 mnemonic must be in upper-case.
 .
 If %N appears anywhere in the message, the latter will be presented in
 a pop-up window rather than on the status line, and all occurrences of
 %N will be replaced by newlines.
 .
 If the message begins with a %B, JAM will beep the terminal (using
 sm_bel) before issuing the message.
 .
 If the message begins with %W, it will be presented in a pop-up window
 instead of on the status line. The window will appear near the bottom
 center of the screen, unless it would obscure the current field by so
 doing; in that case, it will appear near the top. If the message
 begins with %MU or %MD, and is passed to one of the error message
 display functions, JAM will ignore the default error message
 acknowledgement flag and process (for %MU) or discard (for %MD) the
 next character typed.

Note that, if a message containing percent escapes - that is, %A, %B, %K, %N or
%W - is displayed before sm_initcrt or after %W is called, the percent escapes
will show up in it.

 Attribute Hex value

 BLACK 0 BLUE
 1 GREEN
 2 CYAN
 3 RED
 4 MAGENTA
 5 YELLOW
 6 WHITE
 7

 B_BLACK 0 B_BLUE
 100 B_GREEN
 200 B_CYAN
 300 B_RED
 400 B_MAGENTA
 500 B_YELLOW
 600 B_WHITE
 700

 BLANK 8 REVERSE
 10 UNDERLN
 20 BLINK
 40 HILIGHT
 80 DIM
 1000

If the cursor position display has been turned on (see sm_c_vis), the end of the
status line will contain the cursor's current row and column. If the message
text would overlap that area of the status line, it will be displayed in a
window instead.

VARIANTS AND RELATED FUNCTIONS

 sm_err_reset (message);
 sm_msg (message, start_column);
 sm_mwindow (text, line, column);

EXAMPLE

/* The following prompt uses labels for the EXIT and
 * return keys, and underlines crucial words. */

sm_d_msg_line ("Press %KEXIT to %A0027abort%A7, or %KNL to %A0027continue%A7.");

/* To clear the message line, use: */

sm_d_msg_line ("", 0);

NAME

 sm_d_window - display a memory-resident window at a stated position

SYNOPSIS

 int sm_d_window (mr_screen, line, column)
 char *mr_screen;
 int line, column;

DESCRIPTION

The memory-resident screen whose address is in mr_screen is brought up with its
upper left-hand corner at (line, column). The line and column are counted from
zero: if line is 1, the screen is displayed starting at the second line of the
screen. Note that the window coordinates you place in JAM control strings are
counted from 1 as usual.

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the top most,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

You can use JYACC bin2c to convert screens from disk files, which you can modify
using jxform, to program data structures you can compile into your application.
A memory-resident screen is never altered at run-time, and may therefore be made
shareable on systems that provide for sharing read-only data. sm_r_at_cur can
also display memory-resident screens, if they are properly installed using
sm_formlist. Memory-resident screens are particularly useful in applications
that have a limited number of screens, or in environments that have a slow disk
(e.g. MS-DOS).

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 0 is returned if no error occurred during display of the screen. -5 is
 returned if, after the screen was cleared, the system ran out of
 memory. -7 is returned if the screen contained fields that would not
 fit within the display.

VARIANTS AND RELATED FUNCTIONS

 sm_d_at_cur (mr_screen);
 sm_d_form (mr_screen);
 sm_r_window (screen_name, line, column);
 sm_l_window (library_descriptor, screen_name, line, column);

EXAMPLE

/* Display a warning message in a memory-resident
 * window centered on the screen, and
 * wait for acknowledgement before continuing. */

extern char warning[];

if (over_threshold ()) /* Externally defined condition */
{
 sm_d_window (warning, 8, 18);
 sm_err_reset ("Press any key to continue");
 sm_close_window ();
}
...

NAME

 sm_dblval - get the value of a field as a real number

SYNOPSIS

 #include "smdefs.h"

 double sm_dblval (field_number)
 int field_number;

DESCRIPTION

This function returns the contents of field_number as a real number. It calls
sm_strip_amt_ptr to remove superfluous amount editing characters before
converting the data.

RETURNS

 The real value of the field is returned. If the field is not found, the
 function returns 0.

VARIANTS AND RELATED FUNCTIONS

 sm_e_dblval (field_name, element);
 sm_i_dblval (field_name, occurence);
 sm_n_dblval (field_name);
 sm_o_dblval (field_number, occurrence);
 sm_dtofield (field_number, value, format);
 sm_strip_amt_ptr (field_number);

EXAMPLE

#include "smdefs.h"

/* Retrieve the value of a starting parameter. */

double param1;

param1 = sm_n_dblval ("param1");

NAME

 sm_dd_able - turn LDB write-through on or off

SYNOPSIS

 void sm_dd_able (flag)
 int flag;

DESCRIPTION

During normal JAM processing, named fields in the screen and local data block
are kept in sync. When a screen is brought up, values are copied in from the
LDB; when control passes from the screen, values are copied back to the LDB.
When application code reads or writes a value to or from a name that is not in
the screen, JAM accesses the LDB instead.

sm_dd_able turns that feature off or on, according to the value of flag. It is
on by default; when it is off, the LDB is never accessed. Refer to Section 9 for
a full explanation.

EXAMPLE

/* Turn LDB write-through off. */

sm_dd_able (0);

NAME

 sm_dicname - set data dictionary name

SYNOPSIS

 int sm_dicname (dictionary_name)
 char *dictionary_name;

DESCRIPTION

This function names the application's data dictionary, which is data.dic by
default. It must be called before JAM initialization, in particular before
sm_ldb_init is called to initialize the local data block from the data
dictionary. The argument dictionary_name is a character string giving the
filename; JAM will search for it in all the directories in the SMPATH variable.

You can achieve the same effect by defining the SMDICNAME variable in your setup
file equal to the data dictionary name. See the section on setup files in the
Configuration Guide.

RETURNS

 -1 if it fails to allocate memory to store the name, 0 otherwise.

EXAMPLE

/* Set the name of the application's data dictionary to
* /usr/app/common.dic .*/

sm_dicname ("/usr/app/common.dic");

NAME

 sm_disp_off - get displacement of cursor from start of field

SYNOPSIS

 int sm_disp_off ();

DESCRIPTION

Returns the difference between the first column of the current field and the
current cursor location. This routine ignores offscreen data; use sm_sh_off to
obtain the total cursor offset of a shiftable field.

RETURNS

 The difference between cursor position and start of field, or -1 if the
 cursor is not in a field.

VARIANTS AND RELATED FUNCTIONS

 sm_sh_off ();
 sm_getcurno ();

EXAMPLE

/* Retrieve the contents of the current field, up to
 * the cursor position, discarding the rest. This
 * example assumes the field is non-shifting and
 * left-justified. */

char buf[256];
int index;

sm_getfield (buf, sm_getcurno ());
if ((index = sm_disp_off ()) >= 0)
 buf[index] = '\0';

NAME

 sm_dlength - get the length of a field's contents

SYNOPSIS

 int sm_dlength (field_number)
 int field_number;

DESCRIPTION

Returns the length of data stored in field_number. The length does not include
leading blanks in right justified fields, or trailing blanks in left-justified
fields (which are also ignored by sm_getfield). It does include data that have
been shifted offscreen.

RETURNS

 Length of field contents, or -1 if the field is not found.

VARIANTS AND RELATED FUNCTIONS

 sm_e_dlength (field_name, element);
 sm_i_dlength (field_name, occurrence);
 sm_n_dlength (field_name);
 sm_o_dlength (field_number, occurrence);
 sm_length (field_number);

EXAMPLE

/* Save the contents of the "rank" field in a buffer
 * of the proper size. */

char *save_rank;

if ((save_rank = malloc (sm_n_dlength ("rank") + 1)) == 0)
 punt ("Malloc error");
sm_n_getfield (save_rank, "rank");

NAME

 sm_do_region - rewrite part or all of a screen line

SYNOPSIS

 #include "smdefs.h"

 void sm_do_region (line, column, length, attribute,
 text)
 int line, column, length, attribute;
 char *text;

DESCRIPTION

The screen region defined by line, column, and length is rewritten. Line and
column are counted from zero, with (0, 0) the upper left-hand corner of the
screen. If text is zero, the actual text that is written is taken from the
screen buffer; if text is shorter than length, it is padded out with blanks. In
any case, the display attribute of the whole area is changed to attribute. A
table of attribute mnemonics follows.

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

The fifth argument, if passed as zero, must be cast, as in

 sm_do_region (line, col, length, attrib, (char *)0);

EXAMPLE

#include "smdefs.h"
#include "smvideo.h"

/* Place a centered text string in a part of the screen where
 * there is (hopefully) no field. The line number is
 * made zero-relative. */

void centerstring (text, line)
char *text;
{
 int offset, length = strlen (text);

 offset = (*sm_video[V_COLMS] - length) / 2;
 if (offset < 0)
 return;
 sm_do_region (line - 1, offset, length, REVERSE | WHITE, text);
}

NAME

 sm_doccur - delete occurrences

SYNOPSIS

 int sm_o_doccur (field_number, occurrence, count);
 int field_number;
 int occurrence;
 int count;

DESCRIPTION

Deletes count data items beginning with the specified occurrence, moving all
following occurrences up. If there are not enough occurrences, fewer than the
requested number will be deleted. The memory associated with the deleted data
items is released. If count is negative, occurrences are inserted instead,
subject to limitations explained at sm_ioccur.

If occurrence is zero, the occurrence used is that of field_number. If
occurrence is nonzero, however, it is taken relative to the first field of the
array in which field_number occurs.

This function is normally bound to the DELETE LINE key. It has only the o_ and
i_ variants; the others, including sm_doccur itself, do not exist.

RETURNS

 -1 if the field or occurence number was out of range; -3 if insufficient
 memory was available; otherwise, the number of occurrences actually
 deleted (zero or more).

VARIANTS AND RELATED FUNCTIONS

 sm_i_doccur(field_name, occurrence, count);
 sm_i_ioccur(field_name, occurrence, count);
 sm_o_ioccur(field_number, occurrence, count);

NAME

 sm_dtofield - write a real number to a field

SYNOPSIS

 int sm_dtofield (field_number, value, format)
 int field_number;
 double value;
 char *format;

DESCRIPTION

The real number value is converted to human-readable form, according to format,
and moved into field_number via a call to sm_amt_format. If the format string is
null, the number of decimal places will be taken from a data type edit, if one
exists; failing that, from a currency edit, if one exists; or failing that, will
default to 2.

The format string is in the style of the C library function printf, q.v. It
should have the form %m.nf, where m is the total output width, n is the number
of decimal places, and both are optional.

RETURNS

 -1 is returned if the field is not found. -2 is returned if the output
 would be too wide for the destination field. 0 is returned otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_dtofield (field_name, element, value, format);
 sm_i_dtofield (field_name, occurrence, value, format);
 sm_n_dtofield (field_name, value, format);
 sm_o_dtofield (field_number,occurrence, value, format);
 sm_dblval (field_number)
 sm_amt_format (field_number, text);

EXAMPLE

/* Place the value of pi on the screen, using the formatting
 * attached to the field. */

sm_n_dtofield ("pi", 3.141596, (char *)0);

/* Do it again, using only three decimal places.

sm_n_dtofield ("pi", 3.141596, "%5.3f");

NAME

 sm_dw_options - turn delayed write on or off

SYNOPSIS

 #include "smdefs.h"

 void sm_dw_options (flag)
 int flag;

DESCRIPTION

This function turns the delayed-write feature of the JAM library on or off. It
is on by default. The value of flag should be either DW_ON or DW_OFF.

When delayed write is on, output from library functions is not sent immediately
to the display, but is used to update a screen image in memory. When it becomes
necessary to update the display (usually when the keyboard is opened), output is
sent to the display a line at a time, and a check is made for keyboard input
between each line. If you press a key before the screen has been fully updated,
JAM processes the key before doing any more output. This scheme make JAM more
responsive, especially at low baud rates.

You may find it advantageous to turn delayed write off while debugging an
application, so that you can see the output produced by each function call. In
this case you should also investigate the BUFSIZ video file entry, which
controls the output buffer size; see the video manual in the Configuration
Guide. When delayed write is off, the display will still not be flushed until
the keyboard is opened; however, JAM will not check for input while writing to
the display.

If you define the SMDWOPTIONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameter you
specify there.

VARIANTS AND RELATED FUNCTIONS

 sm_getkey ();
 sm_ungetkey (key);
 sm_flush ();

EXAMPLE

#include "smdefs.h"

/* Turn delayed write off for debugging. */

#ifdef DEBUG
sm_dw_options (DW_OFF);
#endif

newpage NAME

 sm_e_1protect selectively protect an array element sm_e_1unprotect
 selectively unprotect an array element sm_e_amt_format
 format data and write to an array element sm_e_bitop
 manipulate field edit bits sm_e_chg_attr
 change display attribute of an array element
 sm_e_dblval
 get decimal value of array element sm_e_dlength
 get length of data stored in an array element
 sm_e_dtofield
 write decimal value to array element sm_e_fldno
 * see next page * sm_e_fptr
 get copy of array element's data sm_e_fval
 force validation of an array element sm_e_getfield
 copy data from array element into buffer sm_e_gofield
 position cursor to an array element sm_e_intval
 get integer value of data in an array element
 sm_e_is_yes
 test array element for yes sm_e_itofield
 write integer to an array element sm_e_lngval
 get long integer value of data in an array element
 sm_e_ltofield
 write long integer to an array element sm_e_mdt_clear
 reset the MDT bit of an array element sm_e_mod_test
 test the MDT bit of an array element sm_e_novalbit
 reset the validated bit of an array element
 sm_e_off_gofield
 move cursor to specified offset within an array element
 sm_e_protect
 protect an array element from data entry sm_e_putfield
 write data string to an array element sm_e_unprotect
 allow data entry into an array element

DESCRIPTION

Each of the above functions accesses one element of an array by field name and
element number. For the description of sm_e_fldno, see next page. For a
description of any other particular function, look under the related function
without e_ in its name. For example, sm_e_amt_format is described under
sm_amt_format.

Despite the fact that they take a field name as argument, these functions do not
search the LDB for names not found in the screen.

NAME

 sm_e_fldno - get the field number of an array element

SYNOPSIS

 int sm_e_fldno (field_name, element)
 char *field_name;
 int element;

DESCRIPTION

Returns the field number of an array element specified by field_name and
element.

If element is zero, returns the field number of the named field, or of the base
element of the named array.

RETURNS

 0 if the name is not found, if the element number exceeds 1 and the named
 field is not an array, or if the element number exceeds the size of
 the array. Otherwise, returns an integer between 1 and the maximum
 number of fields on the current form.

VARIANTS AND RELATED FUNCTIONS

 sm_n_fldno (field_name);

EXAMPLE

/* Retrieve the field numbers of the first three elements of the
* "horses" array. */

int winnum, placenum, shownum;

winnum = sm_e_fldno ("horses", 1);
placenum = sm_e_fldno ("horses", 2);
shownum = sm_e_fldno ("horses", 3);

NAME

 sm_edit_ptr - get special edit string

SYNOPSIS

 #include "smdefs.h"
 char *sm_edit_ptr (field_number, command)
 int field_number, command;

DESCRIPTION

This function searches the special edits area of a field or array for an edit of
type command. The command should be one of the following values, which are
defined in smdefs.h :
 Command Contents of edit string

 NAMED Field name RANGEL
 Low bound on range; up to 9 permitted RANGEH
 High bound on range; up to 9 permitted NEXTFLD
 Next field (contains both primary and
 alternate fields) DOLLARS
 Amount field formatting parameters TEXT
 Status line prompt CPROG
 Name of field exit function HELPSCR
 Name of help screen CALC
 Math expression executed at field exit DATEFLD
 Format string for system-supplied date TIMEFLD
 Format string for system-supplied time CKDIGIT
 Flag and parameters for check digit FTYPE
 Data type for inclusion in structure USRDATE
 Format string for user-supplied date USRTIME
 Format string for user-supplied time ITEMSCR
 Name of item selection screen HARDHLP
 Name of automatic help screen HARDITM
 Name of automatic item selection screen MEMO1
 Nine arbitrary user-supplied text strings ...
 ... MEMO9
 ... FE_CPROG
 Name of field entry function EDT_BITS
 For internal use: bit string showing what
 other edits are present. Always first. RETCODE
 Return value for menu or return entry field JPLTEXT
 Attached JPL code, or JPL file name SUBMENU
 Name of pull-down menu screen CMASK
 Regular expression for field validation CCMASK
 Regular expression for character validation TABLOOK
 Name of screen for table-lookup validation

The string returned by this function has the command code in its second byte,
and the total length of the string (including the two overhead bytes and any
terminators) in its first; the body of the edit follows. If the field has no
edit of type command, this function returns a null string. If a field has
multiple edits of one type, such as RANGEH or RANGEL, the first one is returned;
the rest follow it.

This function is especially useful for retrieving user-defined information
contained in MEMO edits.

RETURNS

 A pointer to the first (length) byte of the special edit for this field is
 returned. Zero is returned if the field or edit is not found.

VARIANTS AND RELATED FUNCTIONS

 sm_n_edit_ptr (field_name, command);

EXAMPLE

#include "smdefs.h"

/* Useful little function to retrieve the name of a field. */

char *field_name (fieldnum)
int fieldnum;
{
 char *name;

 if (fieldnum < 1 || fieldnum > sm_numflds)
 return 0;

 if ((name = sm_edit_ptr (fieldnum, NAMED)) == 0)
 return 0;
 return name + 2;
}

NAME

 sm_emsg - display an error message and reset the message line, without
 turning on the cursor

SYNOPSIS

 void sm_emsg (message)
 char *message;

DESCRIPTION

This function displays message on the status line, if it fits, or in a window if
it is too long; it remains visible until the operator presses a key. The
function's exact behavior in dismissing the message is subject to the error
message options; see sm_er_options.

sm_emsg is identical to sm_err_reset, except that it does not attempt to turn
the cursor on before displaying the message. It is similar to sm_qui_msg, which
inserts a constant string (normally "ERROR:") before the message. That string
may be altered by changing the SM_ERROR entry in the message file.

Several percent escapes provide control over the content and presentation of
status messages. They are interpreted by sm_d_msg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character following the percent sign must be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%W, for instance; see below) must appear at the
beginning of the message, i.e. before anything except perhaps another percent
escape.

 .
 If a string of the form %Annnn appears anywhere in the message, the
 hexadecimal number nnnn is interpreted as a display attribute to be
 applied to the remainder of the message. The table below gives the
 numeric values of the logical display attributes you will need to
 construct embedded attributes. If you want a digit to appear
 immediately after the attribute change, pad the attribute to 4 digits
 with leading zeroes; if the following character is not a legal hex
 digit, leading zeroes are unnecessary.
 .
 If a string of the form %KKEYNAME appears anywhere in the message,
 KEYNAME is interpreted as a logical key mnemonic, and the whole
 expression is replaced with the key label string defined for that key
 in the key translation file. If there is no label, the %K is stripped
 out and the mnemonic remains. Key mnemonics are defined in smkeys.h ;
 it is of course the name, not the number, that you want here. The
 mnemonic must be in upper-case.
 .
 If %N appears anywhere in the message, the latter will be presented in
 a pop-up window rather than on the status line, and all occurrences of
 %N will be replaced by newlines.
 .
 If the message begins with a %B, JAM will beep the terminal (using
 sm_bel) before issuing the message.
 .
 If the message begins with %W, it will be presented in a pop-up window
 instead of on the status line. The window will appear near the bottom
 center of the screen, unless it would obscure the current field by so
 doing; in that case, it will appear near the top. If the message
 begins with %MU or %MD, and is passed to one of the error message
 display functions, JAM will ignore the default error message
 acknowledgement flag and process (for %MU) or discard (for %MD) the
 next character typed.

Note that, if a message containing percent escapes - that is, %A, %B, %K, %N or
%W - is displayed before sm_initcrt or after %W is called, the percent escapes
will show up in it.

 Attribute Hex value

 BLACK 0 BLUE
 1 GREEN
 2 CYAN
 3 RED
 4 MAGENTA
 5 YELLOW
 6 WHITE
 7

 B_BLACK 0 B_BLUE
 100 B_GREEN
 200 B_CYAN
 300 B_RED
 400 B_MAGENTA
 500 B_YELLOW
 600 B_WHITE
 700

 BLANK 8 REVERSE
 10 UNDERLN
 20 BLINK
 40 HILIGHT
 80 DIM
 1000

If the cursor position display has been turned on (see sm_c_vis), the end of the
status line will contain the cursor's current row and column. If the message
text would overlap that area of the status line, it will be displayed in a
window instead.

VARIANTS AND RELATED FUNCTIONS

 sm_er_options (key, discard);
 sm_err_reset (message);
 sm_quiet_err (message);
 sm_qui_msg (message);

EXAMPLE

sm_emsg ("%MDYou goofed. Press %A0017any%A7 key to continue";

NAME

 sm_er_options - set error message options

SYNOPSIS

 #include "smdefs.h"

 void sm_er_options (acknowledge_key, flags)
 int acknowledge_key;
 int flags;

DESCRIPTION

This function affects the behavior of the error message display functions:
sm_err_reset, sm_emsg, sm_quiet_err, and sm_qui_msg. By default, an error
message remains on the display until you acknowledge it by pressing the space
bar; this function changes both the key and the requirements for error
acknowledgement.

Flags specifies whether the acknowledgement key is to be discarded, and (if so)
whether the hit-space window is to be displayed. The following two pairs of
flags are recognized:

 ER_DISCARD Default. All error messages must be acknowledged by the
 acknowledge_key, which is then discarded. Any other key
 struck before the acknowledgement key will also be
 discarded.
 ER_USE_KEY Error messages may be acknowledged by any key, which is
 then treated as ordinary keyboard input; for instance,
 an invalid input message would be acknowledged by the
 first character of the corrected input. However, the
 keyboard typeahead buffer is flushed, so that anything
 you typed before the message was displayed is still
 discarded.
 ER_YES_WIND Default. If ER_DISCARD is in effect and another key is
 hit when the acknowledgement key is expected, a reminder
 window pops up. (The text in the window is obtained
 from the message file entries SM_SP1 and SM_SP2.) Both
 the reminder window and the message disappear when the
 acknowledgement key is struck.
 ER_NO_WIND If ER_DISCARD is in effect and another key is hit when
 the acknowledgement key is expected, the terminal beeps.

If neither of one pair is specified, the corresponding option remains unchanged.
These options will be overridden by a %MD or %MU string at the beginning of a
message.

If you define the SMEROPTIONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.

VARIANTS AND RELATED FUNCTIONS

 sm_emsg (message);
 sm_err_reset (message);
 sm_quiet_err (message);
 sm_qui_msg (message);

EXAMPLE

#include "smdefs.h"

/* Reset error message options to their defaults. */

sm_er_options (" ", ER_DISCARD|ER_YES_WIND);

NAME

 sm_err_reset - display an error message and reset the status line

SYNOPSIS

 void sm_err_reset (message)
 char *message;

DESCRIPTION

The message is displayed on the status line until you acknowledge it by pressing
a key. If message is too long to fit on the status line, it is displayed in a
window instead. The exact behavior of error message acknowledgement is governed
by sm_er_options. The initial message attribute is set by sm_ch_emsgatt, and
defaults to blinking.

This function turns the cursor on before displaying the message, and forces off
the global flag sm_do_not_display. It is similar to sm_emsg, which does not turn
on the cursor, and to sm_quiet_err, which inserts a constant string (normally
"ERROR:") before the message.

Several percent escapes provide control over the content and presentation of
status messages. They are interpreted by sm_d_msg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character following the percent sign must be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%W, for instance; see below) must appear at the
beginning of the message, i.e. before anything except perhaps another percent
escape.

 .
 If a string of the form %Annnn appears anywhere in the message, the
 hexadecimal number nnnn is interpreted as a display attribute to be
 applied to the remainder of the message. The table below gives the
 numeric values of the logical display attributes you will need to
 construct embedded attributes. If you want a digit to appear
 immediately after the attribute change, pad the attribute to 4 digits
 with leading zeroes; if the following character is not a legal hex
 digit, leading zeroes are unnecessary.
 .
 If a string of the form %KKEYNAME appears anywhere in the message,
 KEYNAME is interpreted as a logical key mnemonic, and the whole
 expression is replaced with the key label string defined for that key
 in the key translation file. If there is no label, the %K is stripped
 out and the mnemonic remains. Key mnemonics are defined in smkeys.h ;
 it is of course the name, not the number, that you want here. The
 mnemonic must be in upper-case.
 .
 If %N appears anywhere in the message, the latter will be presented in
 a pop-up window rather than on the status line, and all occurrences of
 %N will be replaced by newlines.
 .
 If the message begins with a %B, JAM will beep the terminal (using
 sm_bel) before issuing the message.
 .
 If the message begins with %W, it will be presented in a pop-up window
 instead of on the status line. The window will appear near the bottom
 center of the screen, unless it would obscure the current field by so
 doing; in that case, it will appear near the top. If the message
 begins with %MU or %MD, and is passed to one of the error message
 display functions, JAM will ignore the default error message
 acknowledgement flag and process (for %MU) or discard (for %MD) the
 next character typed.

Note that, if a message containing percent escapes - that is, %A, %B, %K, %N or
%W - is displayed before sm_initcrt or after %W is called, the percent escapes
will show up in it.

 Attribute Hex value

 BLACK 0 BLUE
 1 GREEN
 2 CYAN
 3 RED
 4 MAGENTA
 5 YELLOW
 6 WHITE
 7

 B_BLACK 0 B_BLUE
 100 B_GREEN
 200 B_CYAN
 300 B_RED
 400 B_MAGENTA
 500 B_YELLOW
 600 B_WHITE
 700

 BLANK 8 REVERSE
 10 UNDERLN
 20 BLINK
 40 HILIGHT
 80 DIM
 1000

If the cursor position display has been turned on (see sm_c_vis), the end of the
status line will contain the cursor's current row and column. If the message
text would overlap that area of the status line, it will be displayed in a
window instead.

VARIANTS AND RELATED FUNCTIONS

 sm_er_options (key, discard);
 sm_emsg (message);
 sm_quiet_err (message);
 sm_qui_msg (message);

EXAMPLE

#include "smdefs.h"

/* Let somebody know that his name isn't in the database. */

int validate (field, name, occur, bits)
char *name;
{
 char buf[128];

 if (getrec (name) == 0)
 {
 sprintf (buf, "%s is not in the database.", name);
 sm_err_reset (buf);
 return -1;
 }

 return 0;
}

NAME

 sm_fcase - set case sensitivity when searching for screens

SYNOPSIS

 #include "smdefs.h"

 int sm_fcase (case)
 int case;

DESCRIPTION

Controls whether the matching of screen names in the form stack, form libraries,
and memory resident form list is case-sensitive. Case must be either CASE_SENS
or CASE_INSENS; those values are defined in smdefs.h . Refer to sm_r_window and
Section 12.1 for descriptions of the searches affected by this function.

RETURNS

 -1 if case was invalid ; 0 otherwise.

EXAMPLE

#include "smdefs.h"

/* Use case-insensitive search on case-insensitive
 * operating systems. */

#if (defined MSDOS || defined VMS)
 sm_fcase (CASE_INSENS);
#endif

NAME

 sm_fextension - set default screen file extension

SYNOPSIS

 int sm_fextension (extension)
 char *extension;

DESCRIPTION

This function makes extension the default file extension for screen files. When
searching for a screen, JAM will append it to any name that does not already
contain an extension. Refer to sm_r_window and Section 12.1 for a description of
the searches affected by this function, and to the introduction to the
Configuration Guide for details on how JAM handles file extensions generally.

Extension should not contain any separator, such as a period. That and the
placement of the extension are controlled by the SMUSEEXT setup variable; by
default, extensions are placed at the end of the filename and are separated from
it by a period.

The same effect may be achieved by defining the SMFEXTENSION variable in your
setup file. Refer to the section on setup files in the Configuration Guide.

RETURNS

 -1 if insufficient memory is available to store the extension; 0 otherwise.

EXAMPLE

/* Change the default extension to "form". */

sm_fextension ("form");

/* Declare that screen files should have no default extension. */

sm_fextension ("");

NAME

 sm_flush - flush delayed writes to the display

SYNOPSIS

 void sm_flush ();

DESCRIPTION

This function performs delayed writes and flushes all buffered output to the
display. It is called automatically whenever the keyboard is opened and there
are no keystrokes available, i.e. typed ahead.

Calling this routine indiscriminately can significantly slow execution. As it is
called whenever the keyboard is opened, the display is always guaranteed to be
in sync before data entry occurs; however, if you want timed output or other
non-interactive display, use of this routine will be necessary.

sm_flush does two sorts of flushing: first it does output that has been delayed,
then it calls a system-dependent routine that empties display output buffers.

VARIANTS AND RELATED FUNCTIONS

 sm_rescreen ();

EXAMPLE

/* Update a system time field once per second, until a key
 * is pressed. */

while (!sm_keyhit (10))
{
 sm_n_putfield ("time_now", "");
 sm_flush ();
}

/* ...process the key */

NAME

 sm_formlist - update list of memory-resident forms

SYNOPSIS

 #include "smdefs.h"

 int sm_formlist (ptr_to_form_list)
 struct form_list *ptr_to_form_list;

DESCRIPTION

This function adds to a list of memory-resident forms. Each member of the list
is a structure giving the name of the form, as a character string, and its
address in memory.

The library functions sm_r_form, sm_r_window, and sm_r_at_cur, which are all
called with a screen name as parameter, search for it in the memory-resident
form list before attempting to read the screen from disk.

This function is called once from sm_initcrt to pick up the global list
sm_memforms; this is for compatibility with Release 3. It can be called any
number of times from an application program to add forms to the list.

Since no count is given with the list, care must be taken to end the new list
with a null entry.

RETURNS

 -1 if insufficient memory is available for the new list; 0 otherwise.

EXAMPLE

#include "smdefs.h"

/* The following code adds two screens to the
 * memory-resident form list. */

struct form_list new_list[] =
{
 "new_form1", new_form1,
 "new_form2", new_form2,
 "", 0
};

sm_formlist (new_list);

NAME

 sm_fptr - get the contents of a field

SYNOPSIS

 #include "smdefs.h"

 char *sm_fptr (field_number)
 int field_number;

DESCRIPTION

Returns the contents of the field specified by field_number. Leading blanks in
right-justified fields, and trailing blanks in left-justified fields, are
stripped.

This function shares with several others a pool of buffers where it stores
returned data. The value returned by any of them should therefore be processed
quickly or copied. sm_getfield is not subject to this restriction.

RETURNS

 The field contents, or 0 if the field cannot be found.

VARIANTS AND RELATED FUNCTIONS

 sm_e_fptr (field_name, element);
 sm_i_fptr (field_name, occurrence);
 sm_n_fptr (field_name);
 sm_o_fptr (field_number, occurrence);
 sm_getfield (buffer, field_number);
 sm_putfield (field_number, text);

EXAMPLE

#include "smdefs.h"

/* Little function to tell somebody something s/he
 * already knows. */

void report (fieldname)
char *fieldname;
{
 char buf[256], *stuf;
 if ((stuf = sm_n_fptr (fieldname)) == 0)
 return;

 sprintf (buf, "You have typed %s in the %s field.",
 stuf, fieldname);
 sm_emsg (buf);
}

NAME

 sm_fval - force field validation

SYNOPSIS

 int sm_fval (field_number)
 int field_number;

DESCRIPTION

This function performs all validations on the indicated field or occurrence, and
returns the result. If the field is protected against validation, the checks are
not performed and the function returns 0; see sm_1protect. Validations are done
in the order listed below. Some will be skipped if the field is empty, or if its
VALIDED bit is already set (implying that it has already passed validation).

 Validation Skip if valid Skip if empty

 required y n
 must fill y y
 regular expression y y
 range y y
 check-digit y y
 date or time y y
 table lookup y y
 currency format y n*
 math expresssion n n
 exit function n n
 jpl function n n

*
 The currency format edit contains a skip-if-empty flag; see the Author's Guide.

If you need to force a skip-if-empty validation, make the field required. A
digits-only field must contain at least one digit in order to be considered
nonempty; for other character edits, any nonblank character makes the field
nonempty.

Math expressions and field exit functions are never skipped, since they can
alter fields other than the one being validated. If you are planning to use this
function, be careful to make no assumptions about the cursor position when
writing field exit functions. Often it is assumed that the cursor is in the
field being validated, so that sm_tab and similar functions will work properly.

Field validation is performed automatically within sm_openkeybd when the cursor
exits a field. Application programs need call this function only to force
validation of other fields.

RETURNS

 -2 if the field or occurrence specification is invalid; -1 if the field
 fails any validation; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_fval (array_name, element);
 sm_i_fval (field_name, occurrence);
 sm_n_fval (field_name);
 sm_o_fval (field_number, occurrence);
 sm_s_val ();

EXAMPLE

#include "smdefs.h"

/* Make sure that the previous field has been validated
* before checking the current one. */

validate (fieldnum, data, occurrence, bits)
char *data;
{
 if (sm_fval (fieldnum - 1))
 {
 /* Place cursor in the previous field and indicate error */
 sm_gofield (fieldnum - 1);
 return 1;
 }
 ...
}

NAME

 sm_getcurno - get current field number

SYNOPSIS

 int sm_getcurno ();

DESCRIPTION

Returns the number of the field in which the cursor is currently positioned. The
field number ranges from 1 to the total number of fields in the screen.

RETURNS

 Number of the current field, or 0 if the cursor is not within a field.

VARIANTS AND RELATED FUNCTIONS

 sm_occur_no ();

EXAMPLE

/* Imagine that the screen contains an 8 by 8 array
 * of fields, like a checkerboard. The following code
 * gets the number of the current field and returns
 * the corresponding row and column. */

void get_location (row, column)
int *row, *column;
{
 int fieldnum;

 if ((fieldnum = sm_getcurno ()) == 0)
 *row = *column = -1;
 else
 {
 *row = (fieldnum - 1) / 8 + 1;
 *column = (fieldnum - 1) % 8 + 1;
 }
}

NAME

 sm_getfield - copy the contents of a field

SYNOPSIS

 int sm_getfield (buffer, field_number)
 char *buffer;
 int field_number;

DESCRIPTION

Copies the data found in field_number to buffer. Leading blanks in
right-justified fields, and trailing blanks in left-justified fields, are not
copied.

Responsibility for providing a buffer large enough for the field's contents
rests with the calling program. This should be at least one greater than the
maximum length of the field, taking shifting into account.

Note that the order of arguments to this function is different from that to the
related function sm_putfield.

RETURNS

 The total length of the field's contents, or -1 if the field cannot be
 found.

VARIANTS AND RELATED FUNCTIONS

 sm_e_getfield (buffer, field_name, element);
 sm_i_getfield (buffer, field_name, occurrence);
 sm_n_getfield (buffer, field_name);
 sm_o_getfield (buffer, field_number, occurrence);
 sm_fptr (field_number);
 sm_putfield (field_number, text);

EXAMPLE

#include "smdefs.h"

/* Save the contents of the "rank" field in a buffer
 * of the proper size. */

int size;
char *save_rank;

size = sm_n_length ("rank");
if ((save_rank = malloc (size + 1)) == 0)
 punt ("Malloc error");

if (sm_n_getfield (save_rank, "rank") > size)
 punt ("Bug in sm_length or sm_getfield!");

NAME

 sm_getkey - get translated value of the key hit

SYNOPSIS

 #include "smkeys.h"

 int sm_getkey ();

DESCRIPTION

Gets and interprets keyboard input according to an algorithm described
elsewhere, and returns the interpreted value to the calling program. Normal
characters are returned unchanged; function keys are interpreted according to a
key translation file for the particular computer or terminal you are using.

Function keys include TRANSMIT, EXIT, HELP, LOCAL PRINT, arrows, data
modification keys like INSERT and DELETE CHAR, user function keys PF1 through
PF24, shifted function keys SPF1 through SPF24, and others. Defined values for
all are in smkeys.h . A few function keys, such as LOCAL PRINT and RESCREEN, are
processed locally in sm_getkey and not returned to the caller.

There is another function called sm_ungetkey, which pushes logical key values
back on the input stream for retrieval by sm_getkey. Since all JAM input
routines call sm_getkey, you can use it to generate any input sequence
automatically. When you use it, calls to sm_getkey will not cause the display to
be flushed, as they do when keys are read from the keyboard.

There is a key-change hook in sm_getkey. Before returning a translated key to
its caller, it passes the key to a user-installed function which may alter the
key value, delete it from the input stream, or whatever. See sm_u_keychange and
sm_install.

There is another pair of hooks, for recording and playing back sequences of
keys. These are a recording function, which is passed the key just typed, and a
playback function, which is called to obtain a key. See sm_u_record and
sm_u_play.

Finally, there is a mechanism for detecting an externally established abort
condition, essentially a flag, which causes JAM input functions to return to
their callers immediately. The present function checks for that condition on
each iteration, and returns the ABORT key if it is true. See sm_isabort.

Application programmers should be aware that JAM control strings are not
executed within this function, but at a higher level within the JAM run-time
system. If you call this function, do not expect function key control strings to
work.

RETURNS

 The standard ASCII value of a displayable key; a value greater than 255 (FF
 hex) for a key sequence in the key translation file.

VARIANTS AND RELATED FUNCTIONS

 sm_ungetkey (key);
 sm_u_keychange (key);
 sm_keyfilter (flag);
 sm_u_play ();
 sm_u_record (key);
 sm_isabort (flag);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* Alternate version of sm_query_msg, which makes up
 * its mind right away. */

int query (text)
char *text;
{
 int key;

 sm_d_msg_line (text, REVERSE);
 for (;;)
 {
 switch (key = sm_getkey ())
 {
 case XMIT:
 case 'y':
 case 'Y':
 sm_d_msg_line ("", WHITE");
 return 1;
 default:
 sm_emsg ("%MU I take that for a 'no'");
 sm_d_msg_line ("", WHITE");
 return 0;
 }
 }
}

PSEUDOCODE

The multiplicity of hooks in sm_getkey makes it a little difficult to see how
they interact, which take precedence, and so forth. In an effort to clarify the
process, we present an outline of sm_getkey. The process of key translation is
deliberately omitted, for the sake of clarity; that algorithm is presented
separately, toward the end of this chapter.

-- Step 1

If an abort condition exists,
 return the ABORT key.

If there is a key pushed back by ungetkey,
 return that.

If playback is active and a key is available,
 take it directly to Step 2; otherwise read and translate input from the
 keyboard.

-- Step 2

Pass the key to the keychange function. If that function says to discard the
key, go back to Step 1; otherwise if an abort condition exists,
 return the ABORT key.

If recording is active,
 pass the key to the recording function.

-- Step 3

If the routing table says the key is to be processed locally,
 do so.

If the routing table says to return the key,
 return it; otherwise, go back to Step 1.

NAME

 sm_gofield - move the cursor into a field

SYNOPSIS

 int sm_gofield (field_number)
 int field_number;

DESCRIPTION

Positions the cursor to the first enterable position of field_number. If the
field is shiftable, it is reset.

In a right-justified field, the cursor is placed in the rightmost position; in a
left-justified field, in the leftmost. In either case, if the field is
digits-only, the cursor goes to the nearest position not occupied by a
punctuation character. Use sm_off_gofield to place the cursor elsewhere than in
the first position.

When called to position the cursor in a scrollable field or array, sm_o_gofield
and sm_i_gofield return an error if the occurrence number passed exceeds by more
than 1 the number of items in the specified field or array.

RETURNS

 -1 if the field is not found; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_gofield (field_name, element)
 sm_i_gofield (field_name, occurrence)
 sm_n_gofield (field_name)
 sm_o_gofield (field_number, occurrence)
 sm_getcurno ();
 sm_off_gofield (field_number, offset);

EXAMPLE

#include "smdefs.h"

/* If the combination of this field and the previous one
 * is invalid, go back to the previous for data entry. */

int validate (field, data, occur, bits)
char *data;
{
 if (bits & VALIDED)
 return 0;

 if (!lookup (data, sm_fptr (field - 1)))
 {
 sm_novalbit (field - 1);
 sm_gofield (field - 1);
 sm_quiet_err ("Lookup failed - please re-enter both items.");
 return 1;
 }
 return 0;
}

NAME

 sm_hlp_by_name - present help window

SYNOPSIS

 int sm_hlp_by_name (help_screen)
 char *help_screen;

DESCRIPTION

The named screen is displayed and processed as a normal help screen, including
input processing for the current field (if any). Four types of help screens are
automatically recognized and processed:

 1. A help screen with one unprotected field, which has no attached
 function. This function will change the help field's length to that of
 the underlying field, if necessary by making the help field shiftable;
 and it will copy the underlying field's contents and most of its edits
 into the help field. The operator may then change the help field's
 contents, and, by hitting TRANSMIT, have the new contents copied back
 to the underlying field.
 2. A help screen with two or more unprotected fields, all of which are
 menu fields. The screen will be treated as a menu, except that menu
 entries will be used only to bring up lower level help screens.
 3. A help screen with entry-protected fields only. The screen is
 displayed until the operator hits either EXIT or TRANSMIT. Hitting the
 HELP key while the cursor is in a field will bring up any help screen
 associated with that field.
 4. A help screen with display data only. The screen is displayed until
 the operator hits any returnable key (excluding such keys as LOCAL
 PRINT, RESCREEN, or HELP), at which point the window is closed.

Refer to the Author's Guide for further instructions on how to create each kind
of help screen.

RETURNS

 -1 if screen is not found or other error; 1 if data copied from help screen
 to underlying field; 0 otherwise.

EXAMPLE

#include "smdefs.h"

/* If user tabs out of empty field, find the field's
 * help screen and execute it. Implemented as a validation
 * function. */

nonempty (field, data, occur, bits)
char *data;
{
 char *helpscreen;

 if (*data == 0)
 {
 if ((helpscreen = sm_edit_ptr (field, HELP)) != 0 ||
 (helpscreen = sm_edit_ptr (field, HARDHELP)) != 0)
 sm_hlp_by_name (helpscreen + 2);
 }

 return 0;
}

NAME

 sm_home - home the cursor

SYNOPSIS

 int sm_home ();

DESCRIPTION

This routine moves the cursor to the first enterable position of the first
tab-unprotected field on the screen; or, if the form has no tab-unprotected
fields, to the first line and column of the topmost window.

The cursor will be put into a tab-protected field if it occupies the first line
and column of the window and there are no tab-unprotected fields.

RETURNS

 The number of field in which the cursor is left, or 0 if the form has no
 unprotected fields and the home position is not in a protected field.

VARIANTS AND RELATED FUNCTIONS

 sm_gofield (field_number);
 sm_last ();

EXAMPLE

#include "smdefs.h"

/* Suppose that at some point the data entry process
 * has gotten fouled up beyond all repair. The following
 * code fragment could be used to start it over. */

/* ... */
sm_cl_unprot ();
sm_home ();
sm_err_reset ("%MUI'm confused! Let's start over.");
/* ... */

NAME

 sm_i_achg change the display attribute of a scrolling item
 sm_i_amt_format
 format data and write to occurrence sm_i_bitop
 manipulate edit bits of an occurrence sm_i_dblval
 get decimal value of occurrence sm_i_dlength
 get length of data in occurrence sm_i_doccur
 delete an occurrence sm_i_dtofield
 write decimal value to occurrence sm_i_fptr
 get copy of occurrence's data sm_i_fval
 force validation of occurrence sm_i_getfield
 copy data from occurrence into buffer sm_i_gofield
 position cursor to occurrence sm_i_intval
 get integer value of occurrence sm_i_ioccur
 insert a blank occurrence into a scroll or array
 sm_i_itofield
 write integer to occurrence sm_i_lngval
 get long integer value of occurrence sm_i_ltofield
 write long integer to occurrence sm_i_mdt_clear
 reset MDT bit of an occurrence sm_i_mod_test
 test MDT bit of an occurrence sm_i_novalbit
 reset validated bit of an occurrence sm_i_off_gofield
 place cursor in the middle of an occurrence
 sm_i_putfield
 write data string to occurrence

DESCRIPTION

Each of the above functions refers to data by field name and occurrence number.
As used in the above functions, occurrence means

 1. item, if the field or array is scrollable;
 2. element, if the specified field is part of a non-scrollable array; or
 3. the specified field, if neither scrollable nor an array.

If occurrence is zero, the reference is always to the current contents of the
named field, or of the base field of the named array.

For the description of a particular function, look under the related function
without i_ in its name. For example, sm_i_amt_format is described under
sm_amt_format.

If the named field is not on the screen, these functions will attempt to
retrieve or change its value in the local data block.

NAME

 sm_inbusiness - tell whether the screen manager is up and running or
 not

SYNOPSIS

 int sm_inbusiness ();

DESCRIPTION

This function inspects internal screen manager flags and data structures to
determine whether screen manager I/O is in progress, and returns a nonzero value
if it is. The library functions sm_initcrt and sm_return turn on that state;
sm_resetcrt and sm_leave turn it off.

Applications may find this function useful in deciding how to display error
messages, or how to handle error conditions generally.

RETURNS

 1 if the screen manager is running, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_initcrt ();
 sm_resetcrt ();
 sm_leave ();
 sm_return ();

EXAMPLE

#define ERRMSG1 "Insufficient memory available"
char *buf;

if ((buf = malloc (4096)) == 0)
{
 if (sm_inbusiness ())
 sm_quiet_err (ERRMSG1);
 else fprintf (stderr, "%s\n", ERRMSG1);
}

NAME

 sm_ind_set - control onscreen shifting and scrolling indicators

SYNOPSIS

 int sm_ind_set (flag)
 int flag;

DESCRIPTION

This function controls the presence and style of shifting and scrolling
indicators, which JAM uses to indicate the presence of offscreen data in a field
or array. Flag is restricted to the following values, which are defined in
smdefs.h . The where codes are to be ored with the whether codes:

 Whether to display indicators

 IND_NONE no indicators
 IND_SHIFT shifting indicators only
 IND_SCROLL scrolling indicators only
 IND_BOTH shift and scroll

 Where to display scrolling indicators

 IND_FULL full width of field
 IND_FLDLEFT left corner of field
 IND_FLDCENTER center of field
 IND_FLDRIGHT right side of field
 IND_FLDENTRY left or right, according to
 the field's justification

If flag is IND_NONE, the existing indicators are erased from the display and the
indicator table is discarded; otherwise, an indicator table is allocated if
needed, and the new indicators are displayed. The default setting is IND_BOTH
and IND_FULL.

This function should be called before reading the screen for which indicators
are desired; normally, it is called once at the beginning of the program.
Closing a window does not perform a recalculation, but restores the underlying
screen's indicators; to avoid confusion, this function should be called when no
windows are displayed.

If you define the SMINDSET variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.

RETURNS

 -1 if sufficient memory for a new table was not available; 0 otherwise.

EXAMPLE

#include "smdefs.h"
/* Set indicator display back to defaults */
sm_ind_set (IND_BOTH | IND_FULL);

NAME

 sm_ininames - record names of initial data files for local data block

SYNOPSIS

 int sm_ininames (name_list)
 char *name_list;

DESCRIPTION

Sets up a list of initialization files for local data block items. The file
names in the single string name_list should be separated by commas, semicolons
or blanks; there may be up to ten of them. The files themselves contain pairs of
names and values, which are used to initialize local data block items by
sm_ldb_init, q.v. That function is called automatically during JAM
initialization, so sm_ininames should be called before then. White space in the
initialization files is ignored, but we suggest a format like the following:

 "emperor" "Julius Caesar" "lieutenant"
 "Mark Antony" "assassin[1]"
 "Brutus" "assassin[2]"
 "Cassius"

You may achieve the same effect by defining the SMININAMES variable in your
setup file to the list of names. See the section on setup files in the
Configuration Guide for details.

Items of all scopes may be freely mixed within all files. We recommend, however,
that items be grouped in files by scope if you are planning to use sm_lreset,
q.v. That function clears all items of a given scope before reinitializing them
from a single file.

RETURNS

 -5 if insufficient memory is available to store the names; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_lreset (scope, filename);
 sm_ldb_init ();

EXAMPLE

/* Set up five initialization files. */

sm_ininames ("scope0.ini, scope1.ini, scope2.ini,\
scope3.ini, scope4.ini");

NAME

 sm_initcrt - initialize the display and JAM data structures

SYNOPSIS

 void sm_initcrt (path)
 char *path;

DESCRIPTION

This function must be called at the beginning of screen handling, that is,
before any screens are displayed or the keyboard opened for input to a JAM
screen. Functions that set options, such as sm_ok_options, and those that
install functions or configuration files, such as sm_install or sm_vinit, are
the only kind that may be called before sm_initcrt.

Path is a directory to be searched for screen files by sm_r_window and variants.
First the file is sought in the current directory; if it is not there, it is
sought in the path supplied to this function. If it is not there either, the
paths specified in the environment variable SMPATH (if any) are tried. The path
argument must be supplied. If all forms are in the current directory, or if (as
JYACC suggests) all the relevant paths are specified in SMPATH, an empty string
may be passed. After setting up the search path, sm_initcrt performs several
initializations:

 1. It calls a user-defined initialization routine (see sm_u_uinit).
 2. It determines the terminal type, if possible by examining the
 environment (TERM or SMTERM), otherwise by asking you.
 3. It executes the setup files defined by the environment variables SMVAGS
 and SMSETUP, and reads in the binary configuration files (message, key,
 and video) specific to the terminal.
 4. It allocates memory for a number of data structures shared among JAM
 library functions.
 5. If supported by the operating system, keyboard interrupts are trapped
 to a routine that clears the screen and exits.
 6. It initializes the operating system screen and keyboard channels, and
 clears the display.

This function is called automatically during JAM start-up, and should not be
called by application programs.

VARIANTS AND RELATED FUNCTIONS

 sm_smsetup ();
 sm_uinit (term_type);
 sm_msgread (prefix, range, address, name);
 sm_vinit (video_file);
 sm_keyinit (key_file);

EXAMPLE

/* To initialize the screen manager without supplying a path
* for screens: */

 sm_initcrt ("");

NAME

 sm_install - attach application functions to JAM library hooks

SYNOPSIS

 #include "smdefs.h"

 struct fnc_data *sm_install (which_hook,
 what_funcs, howmany)
 int which_hook;
 struct fnc_data what_funcs[];
 int *howmany;

DESCRIPTION

This function places an application routine on one of the screen manager library
hooks; this enables JAM to pass control to your code in the proper context. Each
hook is documented separately in this chapter; refer to the table below.

Which_hook must be drawn from the following list. It identifies the hook your
routine is to be attached to.

 Which Purpose Refer to

 UINIT_FUNC initialization sm_u_uinit
 URESET_FUNC exit-time cleanup sm_u_ureset
 VPROC_FUNC video processing sm_u_vproc
 CKDIGIT_FUNC check digit computation
 sm_u_ckdigit
 KEYCHG_FUNC translated key peek/poke
 sm_u_keychg
 INSCRSR_FUNC insert/overwrite toggle
 sm_u_inscrsr
 PLAY_FUNC play back saved keys sm_u_play
 RECORD_FUNC record keys for playback
 sm_u_record
 AVAIL_FUNC check for recorded keys
 sm_u_avail
 ASYNC_FUNC asynchronous function sm_u_async
 STAT_FUNC status line function sm_u_statfnc
 ATTCH_FUNC field attached function list
 Section 1.3
 FORM_FUNC screen entry/exit listSection 1.4
 CARET_FUNC invoked function list Section 1.2

The last three hooks mentioned are not for single functions, but for lists of
functions. When you install these, names are required in the fnc_data
structures; what_funcs should be an array of structures; and howmany should hold
the number of functions in the list. Your functions are added to any already in
the list.

The second parameter, what_funcs, is the address of a structure describing an
application routine. If which_hook is a list, it is the address of an array of
such structures. Here is a definition of the structure:

struct fnc_data {
 char *fnc_name;
 int (*fnc_addr)();
 char language;
 char intrn_use;
 char appl_use;
 char reserved;
};

 .
 Fnc_name is a character string naming your routine. It is required only
 if which_hook is ATTCH_FUNC, CARET_FUNC, or FORM_FUNC, and should match
 the function name used in your screens.
 .
 Fnc_addr is always required. It is the address of your routine.
 .
 Language is a language identifier, drawn from smdefs.h . C is always 0.
 .
 Intrn_use serves as an installation parameter. Currently it is used
 with ASYNC_FUNC and the lists; see below.
 .
 Appl_use is reserved for your own use.
 .
 reserved is reserved for future use by JYACC.

The third parameter, howmany, is required only if which_hook is a list. It is
the address of an integer variable giving the number of entries in your list.
The count is passed by reference so that sm_install can return a count for the
new list with its return value. If the value pointed to by howmany is zero, all
functions in the list are removed, except those having a non-zero value in the
intrn_use field of the structure. Built-in functions supplied with JAM are
protected from removal in this fashion.

When you are installing an asynchronous function using ASYNC_FUNC, the intrn_use
field of the structure should be set to the timeout, in tenths of a second.
While the keyboard is idle, the asynchronous function will be called at that
interval.

RETURNS

 The address of the old function data structure(s), or zero if no function
 was previously installed. For lists of functions, also places the
 number of entries in the new list in howmany.

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/************* Example 1 *************/

/* Here is a function to change the RETURN key to TAB, and
 * chain to the old keychange function, which is stored in
 * prev_fix.
 */
static struct fnc_data *prev_fix;

int keyfix (key)
{
 int k = key == NL ? TAB : key;
 if (prev_fix)
 return (*(prev_fix->fnc_addr)) (k);
 else return k;
}

/* Install the new function, storing the old one in prev_fix.
 * You must take the address of the fnc_data structure.
 */

static struct fnc_data fix = {
 0, keyfix, 0, 0, 0, 0
};

prev_fix = sm_install (KEYCHG_FUNC, &fix, (int *)0);

/************* Example 2 *************/

/* Install two attached functions, defined elsewhere.
 */

extern int atch1(), atch2();

static struct fnc_data atch[] = {
 { "atch1", atch1, 0, 0, 0, 0 },
 { "atch2", atch2, 0, 0, 0, 0 },
};
int count;

count = sizeof(atch) / sizeof(struct fnc_data);
sm_install (ATTCH_FUNC, atch, &count);

NAME

 sm_intval - get the integer value of a field

SYNOPSIS

 int sm_intval (field_number)
 int field_number;

DESCRIPTION

Returns the integer value of the data contained in the field specified by
field_number. Any punctuation characters in the field (except, of course, a
leading plus or minus sign) are ignored.

RETURNS

 The integer value of the specified field, or zero if the field is not
 found.

VARIANTS AND RELATED FUNCTIONS

 sm_e_intval (field_name, element);
 sm_i_intval (field_name, occurrence);
 sm_n_intval (field_name);
 sm_o_intval (field_number, occurrence);
 sm_itofield (field_number, value);

EXAMPLE

/* Retrieve the integer value of the "sequence" field. */

int sequence;

sequence = sm_n_intval ("sequence");

NAME

 sm_ioccur - insert blank occurrences

SYNOPSIS

 int sm_o_ioccur (field_number, occurrence, count)
 int field_number;
 int occurrence;
 int count;

DESCRIPTION

Inserts count blank data items before the specified occurrence, moving that
occurrence and all following occurrences down. If inserting that many would move
some occurrence past the end of its array or scrolling array, fewer will be
inserted. This function never increases the maximum number of items a scroll can
contain; sm_sc_max does that. If count is negative, occurrences will be deleted
instead, subject to limitations described in the page for sm_doccur.

If occurrence is zero, the occurrence used is that of field_number. If
occurrence is nonzero, however, it is taken relative to the first field of the
array in which field_number occurs.

This function is normally bound to the INSERT LINE key. It has only two
variants, sm_i_ioccur and sm_o_ioccur; the other three, including sm_ioccur
itself, do not exist.

RETURNS

 -1 if the field or occurrence number is out of range; -3 if insufficient
 memory is available; otherwise, the number of occurrences actually
 inserted (zero or more).

VARIANTS AND RELATED FUNCTIONS

 sm_i_ioccur(field_name, occurrence, count);
 sm_i_doccur(field_name, occurrence, count);
 sm_o_doccur(field_number, occurrence, count);

EXAMPLE

#include "smkeys.h"

/* As a shortcut, make the PF5 key insert five blank
 * lines in the "amounts" array. */

int field, key;

while ((key = sm_openkeybd ()) != EXIT)
{
 if (key == PF5)
 {
 /* Make sure we're in the right place */
 field = sm_base_fldno (sm_getcurno ());
 if (field == sm_n_fldno ("amounts"))
 sm_o_ioccur (field, 0, 5);
 }
 ...
}

NAME

 sm_is_yes - boolean value of a yes/no field

SYNOPSIS

 int sm_is_yes (field_number)
 int field_number;

DESCRIPTION

The first character of the specified field_number is compared with the first
letter of the SM_YES entry in the message file, ignoring case, and the resulting
logical value is returned.

This function is ordinarily used with one-letter fields restricted to yes or no
by the appropriate character edit. Unlike the field data retrieval functions
(sm_fptr, etc.), it does not ignore leading blanks.

RETURNS

 1 if the field is found, and its contents match as described above; 0
 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_is_yes (field_name);
 sm_e_is_yes (field_name, element);
 sm_i_is_yes (field_name, occurrence);
 sm_o_is_yes (field_number, occurrence);

EXAMPLE

/* Keep processing until the user enters "n" in
 * a flag field. This is an alternative for the
 *& usual checking against the EXIT key. */

while (sm_n_is_yes ("continue"))
{
 sm_openkeybd ();
}

NAME

 sm_isabort - test and set the abort control flag

SYNOPSIS

 #include "smdefs.h"

 int sm_isabort (flag)
 int flag;

DESCRIPTION

This function sets the abort flag to the value of flag, and returns the old
value. Flag must be one of the following:

 Flag Meaning

 ABT_ON set abort flag ABT_OFF
 clear abort flag ABT_DISABLE
 turn abort reporting off ABT_NOCHANGE
 do not alter the flag

Abort reporting is intended to provide a quick way out of processing in the JAM
library, which may involve nested calls to sm_openkeybd and other input
functions. The triggering event is the detection of an abort condition by
sm_getkey, either an ABORT keystroke or a call to this function with ABT_ON.

This function enables application code to verify the existence of an abort
condition by testing the flag, as well as to establish one. You may need to
verify it because certain functions, such as sm_choice, cannot return the ABORT
key directly. Abort processing is described in detail later in this chapter.

RETURNS

 The previous value of the abort flag.

EXAMPLE

#include "smdefs.h"

/* Establish an abort condition */

sm_isabort (ABT_ON);

/* Verify that an abort condition exists, without
 * altering it. */

if (sm_isabort (ABT_NOCHANGE) == ABT_ON)
 ...

NAME

 sm_itofield - write an integer value to a field

SYNOPSIS

 int sm_itofield (field_number, value)
 int field_number, value;

DESCRIPTION

The integer passed to this routine is converted to characters and placed in the
specified field. A number longer than the field will be truncated (on the left
or right, according to the field's justification) without warning.

RETURNS

 -1 if the field is not found; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_itofield (field_name, element, value);
 sm_i_itofield (field_name, occurrence, value);
 sm_n_itofield (field_name, value);
 sm_o_itofield (field_number, occurence, value);
 sm_intval (field_number);

EXAMPLE

/* Find the length of the data in field number 12, and
 * tell somebody about it. */

sm_n_itofield ("count", sm_dlength (12));

NAME

 sm_jclose - close current window under JAM control

SYNOPSIS

 int sm_jclose ();

} DESCRIPTION

The currently open window is erased, and the screen is restored to the state
before the window was opened. Since windows are stacked, the effect of closing a
window is to return to the previous window. The cursor reappears at the position
it had before the window was opened.

Note that this function closes a window regardless of whether it was opened via
a control string, or sm_jwindow. If the last window was opened through a call to
sm_r_window the results are unpredictable.

RETURNS

 -1 is returned if there is no window open, i.e. if the currently displayed
 screen is a form (or if there is no screen up). 0 is returned
 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_jwindow (screen_arg);

EXAMPLE

/* This is an example of a caret function attached to the XMIT */
/* key. It validates login and password information. If the */
/* login and password are incorrect, the program proceeds to */
/* close three of the four "security" windows used for getting*/
/* a user's login and password information, and the user may */
/* again attempt to enter the information. If the password */
/* passes, the welcome screen is displayed, and the user may */
/* proceed.

int complete_login(jptr);
char *jptr;
{
 char pass[10];
 sm_n_getfield("pass", "password");
 if(!check_password(pass)) /*call routine to validate password*/
 {
 sm_jclose(); /*close current password window*/
 sm_jclose(); /*close 3rd underlying login window*/
 sm_jclose(); /*close 2nd underlying login window*/
 sm_emsg("Please reenter login and password");
 } /*in bottom window*/
 else
 {
 sm_d_msg_line("Welcome to Security Systems, Inc.");
 sm_jform("Welcome");
 /*open welcome screen*/
 }
 return (0);
}

NAME

 sm_jform - display a screen as a form under JAM control

SYNOPSIS

 int sm_jform (screen_name)
 char *screen_name;

DESCRIPTION

This function displays the named screen as a base form. The form's opening and
closing (with the EXIT key) are under JAM control. The function is similar to
sm_r_form.

Bringing up a screen as a form causes the previously displayed form and windows
to be discarded, and their memory freed. The new form is displayed with its
upper left-hand corner at the extreme upper left of the screen.

If the form contains display data that are too big for the physical display,
they are truncated without warning. However, if there are fields that won't fit
within the physical display, this function returns an error without displaying
the form.

The named form is sought on disk in the current directory; then under the path
supplied to sm_initcrt; then in all the paths in the setup variable SMPATH. If
any path exceeds 80 characters, it is skipped. If the entire search fails, this
function displays an error message and returns.

In the case of a return of -1, -2 or -7 the previously displayed form is still
displayed and may be used. Other negative return code indicate that the display
is undefined; the caller should display another form before using screen manager
functions. The return code -2 typically means that the named screen does not
exist; however, it may occur because the maximum allowable number of files is
already open.

RETURNS

 0 if no error occurred; -1 if the screen file's format is incorrect; -2 if
 the form cannot be found; -4 if, after the screen has been cleared,
 the form cannot be successfully displayed because of a read error; -5
 if, after the screen was cleared, the system ran out of memory; -7 if
 the screen was larger than the physical display, and there were fields
 that would have fallen outside the display.

VARIANTS AND RELATED FUNCTIONS

 sm_r_form (screen_name);
 sm_jwindow (name, line, column);

EXAMPLE

/* This exemplifies a caret function attached to the XMIT key. */
/* Here we have completed entering data on the second of several*/
/* security screens. If the user entered "bypass" into the login, */
/* he bypasses the other security screens, and the "welcome" */
/* screen is displayed. If the user login is incorrect, the */
/* current window is closed, and the user is back at the */
/* initial screen (below). Otherwise, the next security window */
/* is displayed. */

int getlogin(jptr)
char *jptr;
{
 char password[10];
 sm_n_getfield(password, "password");
 /* check if "bypass" has been entered into login */
 if (strcmp(password,"bypass"))
 sm_jform("welcome");
 /* check if login is valid */
 else if (check_password(password))
 {
 sm_jclose();
 /*close current (2nd) login window */
 sm_emsg("Please reenter login");
 }
 else
 sm_jwindow("login3");
 return (0);
}

}

NAME

 sm_jwindow - display a window at a given position under
 JAM control

SYNOPSIS

 int sm_jwindow (screen_arg)
 char *screen_arg;

DESCRIPTION

Displays screen_arg with its upper left-hand corner at the current cursor
position, if no line and column are specified. The function's argument can
include a specification of the display position (for instance, ("wind1 10 20").
The line and column are counted from one. The display takes place under JAM
control. JAM can also close the window through a call to sm_jclose.

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the topmost,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

RETURNS

 0 if no error occurred during display of the screen; -1 if the screen
 file's format is incorrect; -2 if the form cannot be found; -3 if the
 system ran out of memory but the previous screen was restored; -7 if
 the screen was larger than the physical display, and there were fields
 that would have fallen outside the display.

VARIANTS AND RELATED FUNCTIONS

 sm_r_window (name);
 sm_jform (name);
 sm_jclose ();

EXAMPLE

/* This is an example of a caret function attached to the XMIT key.*/
/* Here we have completed entering data on the second of several */
/* security screens. If the user entered "bypass" into the login, */
/* he bypasses the other security screens, and the "welcome" */
/* screen is displayed. If the user login is incorrect, the */
/* current window is closed, and the user is back at the */
/* initial screen (below). Otherwise, the next security window */
/* is displayed. */

int getlogin(jptr)
char *jptr;
{
 char password[10];
 sm_n_getfield(password, "password");
 /* check if "bypass" has been entered into login */
 if (strcmp(password,"bypass"))
 sm_jform("welcome");
 /* check if login is valid */
 else if (check_password(password))
 {
 sm_jclose();
 /*close current (2nd) login window */
 sm_emsg("Please reenter login");
 }
 else
 sm_jwindow("login3");
 return (0);
}

NAME

 sm_keyfilter - control keystroke record/playback filtering

SYNOPSIS

 int sm_keyfilter (flag)
 int flag;

DESCRIPTION

This function turns the keystroke record/playback mechanism of sm_getkey on
(flag = 1) or off (flag = 0). If none of the recording hooks have functions on
them, turning them on has no effect.

It returns a flag indicating whether recording was previously on or off.

RETURNS

 The previous value of the filter flag.

VARIANTS AND RELATED FUNCTIONS

 sm_getkey ();
 sm_u_avail (interval);
 sm_u_play ();
 sm_u_record (key);

EXAMPLE

/* Disable key recording and playback. */

sm_keyfilter (0);

NAME

 sm_keyhit - test whether a key has been typed ahead

SYNOPSIS

 int sm_keyhit (interval)
 int interval;

DESCRIPTION

This routine checks whether a key has already been hit; if so, it returns 1
immediately. If not, it waits for the indicated interval and checks again. The
key (if any is struck) is not read in, and is available to the usual keyboard
input routines.

Interval is in tenths of seconds; the exact length of the wait depends on the
granularity of the system clock, and is hardware- and operating-system
dependent. JAM uses this function to decide when to call the user-supplied
asynchronous function.

If the operating system does not support reads with timeout, this function
ignores the interval and only returns 1 if a key has been typed ahead.

RETURNS

 1 if a key is available, 0 if not.

VARIANTS AND RELATED FUNCTIONS

 sm_getkey ();
 sm_u_async ();
 sm_u_avail (interval);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* The following code adds one asterisk per second to a
 * danger bar, until somebody presses EXIT. */

static char *danger_bar = "*************************";
int k;

sm_d_msg_line ("You have 25 seconds to find the EXIT key.", WHITE);
sm_do_region (5, 10, 25, WHITE, ""); /* Clear the danger bar area */
sm_flush ();

for (k = 1; k <= 25; ++k)
{
 if (sm_keyhit (10))
 {
 if (sm_getkey () == EXIT)
 break;
 }
 sm_do_region (5, 10, k, WHITE, danger_bar);
 sm_flush ();
}
if (k <= 25)
 sm_d_msg_line ("%BCongratulations! you win!");
else sm_err_reset ("Sorry, you lose.");

NAME

 sm_keyinit - initialize key translation table

SYNOPSIS

 int sm_keyinit (key_file)
 char key_file[];

DESCRIPTION

This routine is called by sm_initcrt as part of the initialization process, but
it can also be called by an application program (either before or after
sm_initcrt) to install a memory-resident key translation file.

To install a memory-resident key translation file, key_file must contain the
address of a key translation table created using the JYACC key2bin and bin2c
utilities, q.v. If it is zero, a disk file whose name is obtained from the SMKEY
variable will be used instead.

If no memory-resident file is supplied and an error occurs while reading the
disk file, this function prints out an error message and exits to the operating
system.

RETURNS

 0 if the key file is successfully installed; -1 if a disk file is requested
 and the terminal type is unknown; program exit if an error occurs
 while reading a disk file.

EXAMPLE

/* Install a memory-resident key file */

extern char keyfile[];

sm_keyinit (keyfile);

NAME

 sm_keylabel - get the printable name of a logical key

SYNOPSIS

 #include "smkeys.h"

 char *sm_keylabel (key)
 int key;

DESCRIPTION

Returns the label defined for key in the key translation file; the label is
usually what is printed on the key on the physical keyboard. If there is no such
label, returns the name of the logical key from the following table. Here is a
list of key mnemonics:

 EXIT XMIT HELP BKSP TAB
 NL BACK HOME DELE INS
 LP FERA CLR SPGU SPGD
 LARR RARR DARR UARR REFR
 EMOH INSL DELL ZOOM FHLP
 CAPS ABORT

If the key code is invalid (not one defined in smkeys.h), this function returns
the empty string.

RETURNS

 A string naming the key, or the empty string if it has no name.

VARIANTS AND RELATED FUNCTIONS

 sm_keyname (key);

EXAMPLE

#include "smkeys.h"

/* Put the name of the TRANSMIT key into a field
 * for help purposes. */

char buf[80];

sprintf (buf, "Press %s to commit the transaction.",
 sm_keylabel (XMIT));
sm_n_putfield ("help", buf);

NAME

 sm_l_at_cur - display a library-resident window at the current cursor
 position

SYNOPSIS

 int sm_l_at_cur (lib_desc, screen_name)
 int lib_desc;
 char *screen_name;

DESCRIPTION

Displays a library-resident window at the current cursor position, offset by one
line to avoid hiding that line's contents.

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the top most,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

A screen library is a single file containing many screens. You can assemble one
from individual screen files using the screen librarian, JYACC formlib.
Libraries provide a convenient way of distributing a large number of screens
with an application, and can improve efficiency by cutting down on filesystem
path searches.

The library descriptor is an integer returned by sm_l_open, which you must call
before trying to read any screens from a library. Note that sm_r_window and
related functions also search any open screen libraries.

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 0 is returned if no error occurred during display of the window. -2 is
 returned if lib_desc is invalid, or if that library does not contain
 screen_name. -3 is returned if a malloc failed to find available
 memory before the screen area was cleared, or if a malloc or read
 error occurred after the area was cleared but the screen was
 subsequently restored. -6 is returned if the screen library is
 corrupted.

VARIANTS AND RELATED FUNCTIONS

 sm_l_open (library_name);
 sm_l_form (library_descriptor, screen_name);
 sm_l_window (library_descriptor, screen_name, line, column);
 sm_l_close (library_descriptor);

EXAMPLE

/* Bring up a window from a library. */

int ld;

if ((ld = sm_l_open ("myforms")) < 0)
 sm_cancel ();
...
sm_l_at_cur (ld, "popup");

NAME

 sm_l_close - close a screen library

SYNOPSIS

 int sm_l_close (lib_desc)
 int lib_desc;

DESCRIPTION

Closes the screen library indicated by lib_desc and frees all associated memory.
The library descriptor is a number returned by a previous call to sm_l_open.

RETURNS

 -1 is returned if the library file could not be closed; -2 is returned if
 the library was not open; 0 is returned if the library was closed
 successfully.

VARIANTS AND RELATED FUNCTIONS

 sm_l_open (library_name);
 sm_l_at_cur (library_descriptor, screen_name);
 sm_l_form (library_descriptor, screen_name);
 sm_l_window (library_descriptor, screen_name, line, column);

EXAMPLE

/* Bring up a window from a library. */

int ld;

if ((ld = sm_l_open ("myforms")) < 0)
 sm_cancel ();
...
sm_l_at_cur (ld, "popup");
...
sm_l_close (ld);

NAME

 sm_l_form - display a library-resident screen as a base form

SYNOPSIS

 int sm_l_form (lib_desc, screen_name)
 int lib_desc;
 char *screen_name;

DESCRIPTION

This function displays a library-resident screen as a base form.

Bringing up a screen as a form causes the previously displayed form and windows
to be discarded, and their memory freed. The new screen is displayed with its
upper left-hand corner at the extreme upper left of the display (position (0,
0)). Any error in this function leaves the display and JAM internals in an
undefined state.

If the form contains display data that are too big for the physical display,
they are truncated without warning. However, if there are fields that won't fit
within the physical display, this function returns an error without displaying
the form.

A screen library is a single file containing many screens. You can assemble one
from individual screen files using the screen librarian, JYACC formlib.
Libraries provide a convenient way of distributing a large number of screens
with an application, and can improve efficiency by cutting down on filesystem
path searches.

The library descriptor is an integer returned by sm_l_open, which you must call
before trying to read any screens from a library. Note that sm_r_window and
related functions also search any open screen libraries.

This function should be called by JAM applications only under unusual
circumstances, as it does not update the control stack. You should execute a
control string to display the form instead.

RETURNS

 0 is returned if no error occurred during display of the screen. -2 is
 returned if lib_desc is invalid, or does not contain screen_name. -4
 is returned if, after the screen has been cleared, the form cannot be
 displayed successfully because of a read error. -5 is returned if,
 after the screen has been cleared,not enough memory is available. -6
 is returned if the library is corrupt.

VARIANTS AND RELATED FUNCTIONS

 sm_l_window (library_descriptor, screen_name, line, column);
 sm_l_at_cur (library_descriptor, screen_name);
 sm_l_open (library_name);
 sm_l_close (library_descriptor);

EXAMPLE

/* Put up a base form from a previously opened library. */

extern int formlib1;

if (sm_l_form (formlib1, "background"))
 sm_cancel ();

NAME

 sm_l_open - open a screen library

SYNOPSIS

 int sm_l_open (lib_name)
 char *lib_name;

DESCRIPTION

Opens a screen library created by JYACC formlib, preparatory to displaying
screens therein. It allocates space to store information about the library,
leaves the library file open, and returns a descriptor identifying the library.
That descriptor may subsequently be used by sm_l_window and related functions,
to display screens stored in the library; or the library can be referenced
implicitly by sm_r_window and related functions, which search all open screen
libraries.

The library file is sought in all the directories identified by SMPATH and the
parameter to sm_initcrt. Defining the SMFLIBS variable in your setup file to a
list of library names will cause this function to be called on the libraries;
all will then be searched automatically by sm_r_window and variants.

Several libraries may be kept open at once. This may cause problems on systems
with severe limits on memory or simultaneously open files.

RETURNS

 -1 if the library cannot be opened or read; -2 if too many libraries are
 already open; -3 if the named file is not a library; -4 if
 insufficient memory is available; Otherwise, a non-negative integer
 that identifies the library file.

VARIANTS AND RELATED FUNCTIONS

 sm_l_form (library_descriptor, screen_name);
 sm_l_at_cur (library_descriptor, screen_name);
 sm_l_window (library_descriptor, screen_name, line, column);
 sm_l_close (library_descriptor);
 sm_r_window (screen_name, line, column);

EXAMPLE

/* Prompt for the name of a screen library until a
 * valid one is found. Assume the memory-resident
 * screen contains one field for entering the library name,
 * with suitable instructions. */

int ld;
extern char libquery[];

if (sm_d_form (libquery) < 0)
 sm_cancel ();
sm_d_msg_line ("Please enter the name of your screen library.");

do {
 sm_openkeybd ();
} while ((ld = sm_l_open (sm_fptr (1))) < 0);

NAME

 sm_l_window - display a library-resident window at a given location

SYNOPSIS

 int sm_l_window (lib_desc, screen_name, start_line, start_column)
 int lib_desc, start_line, start_column;
 char *screen_name;

DESCRIPTION

The screen screen_name is read from the library indicated by lib_desc, and
displayed with its upper left-hand corner at (line, column). The line and column
are counted from zero: if line is 1, the screen is displayed starting at the
second line of the screen.

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the top most,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

A screen library is a single file containing many screens. You can assemble one
from individual screen files using the screen librarian, JYACC formlib.
Libraries provide a convenient way of distributing a large number of screens
with an application, and can improve efficiency by cutting down on filesystem
path searches.

The library descriptor is an integer returned by sm_l_open, which you must call
before trying to read any screens from a library. Note that sm_r_window and
related functions also search any open screen libraries.

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 0 is returned if no error occurred during display of the form. -1 is
 returned if the window could not be displayed successfully because the
 format was incorrect. -2 is returned if lib_desc is invalid, or does
 not contain screen_name. -3 is returned if the system ran out of
 memory but the screen was restored successfully.

VARIANTS AND RELATED FUNCTIONS

 sm_l_open (library_name);
 sm_l_form (library_descriptor, screen_name);
 sm_l_at_cur (library_descriptor, screen_name);
 sm_l_close (library_descriptor);
 sm_r_window (screen_name, line, column);

EXAMPLE

/* Bring up a window from a library. */

int ld;

if ((ld = sm_l_open ("myforms")) < 0)
 sm_cancel ();
...
sm_l_window (ld, "popup", 5, 22);
...
sm_l_close (ld);

NAME

 sm_label_key - put a function key block label onto the screen

SYNOPSIS

 int sm_label_key (label_number, line1_text,
 line2_text)
 int label_number;
 char *line1_text, *line2_text;

DESCRIPTION

Certain terminals provide special areas on the screen to hold descriptions of
function key actions. This routine places a label into one of those blocks.
Label_number tells which block to use; the two strings will be placed on line 1
and line 2 of the block. (For a blank line, pass the empty string.)

This function assumes that there are two lines available per block. The KPAR and
KSET entries must be present in the video file in order for this routine to
work. Refer to the video manual in the Configuration Guide for instructions.

RETURNS

 -1 if the label number is out of range, 0 otherwise.

EXAMPLE

/* Put any old label into the first two function key blocks. */

 sm_label_key(1, "blk1, ln1", "blk1, ln2");
 sm_label_key(2, "blk2, ln1", "blk2, ln2");

NAME

 sm_last - position the cursor in the last field

SYNOPSIS

 void sm_last ();

DESCRIPTION

Places the cursor at the first enterable position of the last unprotected field
of the current form. The first enterable position is the leftmost in a
left-justified field, and the rightmost in a right-justified field; furthermore,
if the field is digits-only, punctuation characters will be skipped.

Unlike sm_home, this function will not reposition the cursor if the screen has
no unprotected fields.

VARIANTS AND RELATED FUNCTIONS

 sm_home ();
 sm_gofield (field_number);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* Assume the last field must be entered for confirmation.
 * This code puts the cursor there, after the TRANSMIT key
 * is pressed. */

while (sm_openkeybd () != XMIT)
 ;
sm_unprotect (sm_numflds);
sm_last ();
sm_openkeybd ();
if (sm_is_yes (sm_numflds))
 commit (); /* Finish whatever it is */

NAME

 sm_lclear - erase LDB entries of one scope

SYNOPSIS

 int sm_lclear (scope)
 int scope;

DESCRIPTION

This function erases the values stored in the local data block for all names
having a scope of scope; legal values are between 1 and 9. Constant variables
having scope 1 can be erased.

Refer to the Author's Guide for a discussion of the scope of LDB entries.

VARIANTS AND RELATED FUNCTIONS

 sm_lreset (file_name, scope);

EXAMPLE

/* Clear out LDB entries of scope 6, which has been
 * assigned to customer information. */

#define CUSTOMER_SCOPE 6

sm_lclear (CUSTOMER_SCOPE);

NAME

 sm_ldb_init - initialize (or reinitialize) the local data block

SYNOPSIS

 void sm_ldb_init ();

DESCRIPTION

This function creates an empty index of named data items by reading the data
dictionary, then loads values into them from initialization files. There is no
LDB prior to the execution of this function.

Selected parts of the LDB, namely those assigned a certain scope, can be
reinitialized using sm_lclear or sm_lreset.

This function is called automatically during JAM initalization. Other functions
that affect its behavior, such as sm_dicname and sm_ininames, should be called
first.

VARIANTS AND RELATED FUNCTIONS

 sm_lreset (filename, scope);
 sm_ininames (file_list);
 sm_dicname (dictionary_name);

EXAMPLE

/* After a catastrophic application failure, reboot the index. */
if (bad_data ())
{
 sm_ldb_init ();
 ...
}

NAME

 sm_leave - prepare to leave a JAM application temporarily

SYNOPSIS

 void sm_leave ();

DESCRIPTION

It may at times be necessary to leave a JAM application temporarily: to escape
to the command interpreter, to execute some graphics functions, and so on. In
such a case, the terminal and its operating system channel need to be restored
to their normal states.

This function should be called before leaving. It clears the physical screen
(but not the internal screen image); resets the operating system channel; and
resets the terminal (using the RESET sequence found in the video file).

VARIANTS AND RELATED FUNCTIONS

 sm_return ();

EXAMPLE

#include "smdefs.h"

/* Escape to the UNIX shell for a directory listing */

sm_leave ();
system ("ls -l");
sm_return ();
sm_c_off ();
sm_d_msg_line ("Hit any key to continue", BLINK | WHITE);
sm_getkey ();
sm_d_msg_line ("", WHITE);
sm_rescreen ();

NAME

 sm_length - get the maximum length of a field

SYNOPSIS

 int sm_length (field_number)
 int field_number;

DESCRIPTION

Returns the maximum length of the field specified by field_number. If the field
is shiftable, its maximum shifting length is returned. This length is as defined
in jxform, and has no relation to the current contents of the field; use
sm_dlength to get the length of the contents.

RETURNS

 Length of the field, or 0 if the field is not found.

VARIANTS AND RELATED FUNCTIONS

 sm_n_length (field_name);
 sm_dlength (field-number);

EXAMPLE

/* Compute the number of blanks left in a
 * right-justified field (number 6), and fill them
 * with asterisks. */

int blanks, k;
char buf[256];

blanks = sm_length (6) - sm_dlength (6);
for (k = 0; k < blanks; ++k)
 buf[k] = '*';
sm_getfield (buf + blanks, 6);
sm_putfield (6, buf);

NAME

 sm_lngval - get the long integer value of a field

SYNOPSIS

 #include "smdefs.h"

 long sm_lngval (field_number)
 int field_number;

DESCRIPTION

Returns the contents of field_number, converted to a long integer. All non-digit
characters are ignored, except of course for a leading plus or minus sign.

RETURNS

 The long value of the field; 0 if the field is not found.

VARIANTS AND RELATED FUNCTIONS

 sm_e_lngval (field_name, element);
 sm_i_lngval (field_name, occurrence);
 sm_n_lngval (field_name);
 sm_o_lngval (field_number, occurrence);
 sm_intval (field_number);
 sm_ltofield (field_number, value);

EXAMPLE

#include "smdefs.h"

/* Retrieve the number of fish in one particular sea
 * (a big number) from the screen. */

#define MEDITERRANEAN 4
long fish;

fish = sm_e_lngval ("seas", MEDITERRANEAN);

NAME

 sm_lreset - reinitialize LDB entries of one scope

SYNOPSIS

 int sm_lreset (file_name, scope)
 char *file_name;
 int scope;

DESCRIPTION

This function sets local data block entries to values read from file_name. Scope
must be between 1 and 9; references in the file to LDB entries not belonging to
scope are ignored. All variables belonging to scope are cleared before
reinitializing; therefore, this function erases variables that are not in the
file.

The file may be in the current directory, or in any of the directories listed in
the SMPATH environment variable. It contains pairs of names with values, each
enclosed in quotes. While all whitespace outside the quotes is ignored, we
recommend for readability that the file have one name-value pair per line. If an
entry has multiple occurrences, it may be subscripted in the file. Here are a
few sample pairs:

 "husband" "Ronald Reagan"
 "wife[1]" "Jane Wyman"
 "wife[2]" "Nancy Davis"

If you plan to use this function, we recommend that you group your variables in
separate files by scope. You can use sm_ininames to list a number of files for
initialization.

RETURNS

 -1 if error (file not found or scope out of range), 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_lclear (scope);

EXAMPLE

/* Reinitialize LDB entries of scope 6, which has been
 * assigned to customer information. */

#define CUSTOMER_SCOPE 6
#define CUSTOMER_INIT "customers.ini"

sm_lreset (CUSTOMER_INIT, CUSTOMER_SCOPE);

NAME

 sm_lstore - copy everything from screen to LDB

SYNOPSIS

 int sm_lstore ();

DESCRIPTION

Copies data from the screen to local data block entries with matching names. In
its loop, this function makes use of a data structure set up during screen
display that identifies which fields have LDB entries.

This function is similar to the Release 3 function ldb_store. It is called
automatically by the JAM screen display logic, when bringing up a new screen,
and need not be called by application code except under special circumstances.

RETURNS

 -3 if sufficient memory is not available, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_allget (respect_flag);

NAME

 sm_ltofield - place a long integer in a field

SYNOPSIS

 int sm_ltofield (field_number, value)
 int field_number;
 long value;

DESCRIPTION

The long integer passed to this routine is converted to human-readable form and
placed in field_number. If the number is longer than the field, it is truncated
without warning, on the right or left depending on the field's justification.

RETURNS

 -1 if the field is not found. 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_ltofield (field_name, element, value);
 sm_i_ltofield (field_name, occurrence, value);
 sm_n_ltofield (field_name, value);
 sm_o_ltofield (field_number, occurrence, value);
 sm_lngval (field_number);
 sm_itofield (field_number, value);

EXAMPLE

#include "smdefs.h"

/* Set the number of fish in the sea to a smallish number. */

#define MEDITERRANEAN 4

sm_e_ltofield ("seas", MEDITERRANEAN, 14L);

NAME

 sm_m_flush - flush the message line

SYNOPSIS

 void sm_m_flush ();

DESCRIPTION

Forces updates to the message line to be written to the display. This is useful
if you want to display the status of an operation with sm_d_msg_line, without
flushing the entire display as sm_flush does.

VARIANTS AND RELATED FUNCTIONS

 sm_flush ();

EXAMPLE

#include "smdefs.h"

/* Process a big pile of records, providing status as we go. */
char buf[80];
int k;

k = 0;
do {
 sprintf (buf, "Processing record %d", k + 1);
 sm_d_msg_line (buf, REVERSE | WHITE);
 sm_m_flush ();
} while (process (records[k++]) >= 0);

NAME

 sm_max_occur - get the maximum number of occurrences that can be
 entered into an array or field

SYNOPSIS

 int sm_max_occur (field_number)
 int field_number;

DESCRIPTION

If the field or array designated by field_number is scrollable, returns the
maximum number of items the scroll can hold. Note that this is the maximum as
defined by jxform or a call to sm_sc_max, not the greatest number actually
entered so far.

If the field is an element of a non-scrollable array, the function returns the
number of elements in the array. If it is a non-scrollable single field, the
function returns 1.

RETURNS

 0 if the field designation is invalid; 1 for a non-scrollable single field;
 The number of elements in a non-scrollable array; The maximum number
 of items in a scrollable array or field.

VARIANTS AND RELATED FUNCTIONS

 sm_n_max_occur (field_name);

EXAMPLE

#include "smdefs.h"

/* Find the number of occurrences in an array of
 * whole numbers, say numbers of children, and
 * allocate some memory to hold them. */

int *children, howmany;

if ((howmany = sm_n_max_occur ("children")) > 0)
 children = (int *)calloc(howmany, sizeof(int));

NAME

 sm_menu_proc - get a menu selection

SYNOPSIS

 #include "smdefs.h"

 int sm_menu_proc (type)
 int type;

DESCRIPTION

Allows you to tab, backtab, arrow, and scroll through a menu screen, and select
an item from it. The entry under the cursor is displayed in reverse video. The
routine returns to the calling program when you hit EXIT or a function key (PF,
SPF, or APP), or make a selection. A selection is made when you hit the TRANSMIT
key, or a sequence of characters that uniquely match a menu entry (see
mp_string).

Hitting a key that matches the first character of a menu entry on the screen
causes the cursor to be positioned to that entry. If type is UPPER (or LOWER),
any alphabetic keyboard entry is translated to upper (or lower) case before a
match is attempted. If type contains both UPPER and LOWER, both translations are
tried; the search is totally insensitive to case. Any other value yields a
case-sensitive search. The search always starts at the beginning of the menu,
and ignores off-screen data; to see off-screen menu items you must use the
scrolling keys.

Each menu selection must be defined as initial data in a tab-unprotected menu
field. Furthermore, unless you change the default setting by calling mp_string,
each selection must begin with a unique character.(The JAM run-time system does
so during its standard initialization sequence. You can define arbitrary return
codes for each field using jxform; the default is to use the first character of
the menu entry itself. See the JAM Author's Guide for a detailed discussion of
menu creation and return values.

Two auxiliary functions, mp_options and mp_string, can alter the behavior of the
cursor; refer to their definitions.

Menu control strings are not executed within this function, but at a higher
level of the JAM run-time system. If you call this function, do not expect your
selection's control string to be executed.

RETURNS

 If the cursor is not within a field, returns 0. The translated value (see
 smkeys.h) of EXIT, or of any other function key except TRANSMIT. If a
 selection is made with TRANSMIT or a menu character, the menu return
 code defined in jxform, or the first character of the selected entry
 if there is no return code.

EXAMPLE

See sm_mp_string for an example.

NAME

 sm_mp_options - define cursor motion for sm_menu_proc

SYNOPSIS

 #include "smdefs.h"

 int sm_mp_options (wrap, vertical_arrow,
 horizontal_arrow)
 int wrap, vertical_arrow, horizontal_arrow;

DESCRIPTION

This function takes three parameters. Wrap determines whether the arrow keys
wrap, that is, whether the cursor procedes from the rightmost field around to
the leftmost on right arrow (and so forth). The TAB and BACKTAB keys always
wrap. Vertical_arrow and horizontal_arrow influence which field the arrow keys
land you in when wrapping is not imminent. If you want to leave any of the
settings unchanged, pass the special value OK_NOCHANGE.

The mnemonics listed below are defined in smdefs.h ; they are the same as those
used by ok_options.

 wrap:
 OK_NOWRAP No wrapping. The terminal beeps if an attempt is made to
 arrow past the edge of the current form (or window).
 OK_NOWRAP is overridden by OK_TAB and equivalent
 settings.
 OK_WRAP Default. The arrow keys wrap. Vertical arrows wrap
 straight from bottom to top and vice versa; right arrow
 wraps to the beginning of the next (or first) line, left
 arrow to the end of the previous (or last) line.

 vertical arrow (up- and down-arrow keys):
 OK_NXTLINE The cursor will be positioned to the closest field whose
 line is closest to the current line.
 OK_FREE Default. Same as OK_NXTLINE.
 OK_RESTRICT The arrow keys are not operative; the terminal will beep
 if they are pressed.
 OK_SWATH The cursor will be positioned to the closest field that
 overlaps the "swath" containing the current field.
 OK_COLM Same as OK_SWATH.
 OK_NXTFLD The cursor will be positioned to the field closest to
 the current line and column. The calculation uses the
 diagonal distance, assuming that the terminal has a 5 to
 2 aspect ratio.
 OK_TAB The arrow keys behave like TAB and BACKTAB.

 horizontal arrow (left- and right-arrow keys):
 OK_TAB The arrow keys behave like TAB and BACKTAB.
 OK_FREE Default. Same as OK_TAB.
 OK_RESTRICT The arrow keys are not operative.
 OK_COLM The cursor will be positioned to the closest field on
 the current line.
 OK_SWATH Same as OK_COLM.
 OK_NXTLINE The cursor will be positioned to the closest of those
 fields whose column is closest to the current column.
 OK_NXTFLD The cursor will be positioned to the field closest to
 the current line and column. The calculation uses the
 diagonal distance, assuming that the terminal has a 5 to
 2 aspect ratio.

If you define the SMMPOPTIONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.

RETURNS

 -1 if any parameter is invalid (nothing is changed); 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_menu_proc (type);

EXAMPLE

#include "smdefs.h"

/* Restore the menu_proc options to their default values. */

if (sm_mp_options (OK_WRAP,OK_FREE,OK_FREE))
 sm_cancel ();
}

NAME

 sm_mp_string - set string option for sm_menu_proc

SYNOPSIS

 #include "smdefs.h"

 int sm_mp_string (option)
 int option;

DESCRIPTION

Sets the string option for sm_menu_proc to one of the following values. The
mnemonics are defined in smdefs.h .

If option is OK_NOSTRING (the default), each data key struck is compared against
the initial character of each menu item, beginning with the first. As soon as a
match is found that entry is selected, regardless of whether there are other
items that begin with the same character; therefore, the second and subsequent
duplicate entries can never be selected by a data key.

If option is OK_STRING, data keys are collected until the saved sequence is long
enough to match one menu item unambiguously. As keys are collected, the cursor
moves to the item closest to the top that matches everything typed so far.

If you define the SMMPSTRING variable in your setup file, it will cause this
function to be called automatically during start-up with the parameter you
specify there.

Suppose a menu contains the following items, and the string option is on:

 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
 º º
 º AAA Auto º
 º Ace Body Work º
 º Acme Auto Parts º
 º º
 ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼

Typing a positions the bounce bar to the first item; typing c moves to the
second; typing m moves to the third and selects it. Typing aa selects the first
item.

RETURNS

 -1 if the option is invalid, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_menu_proc (type);

EXAMPLE

See above.

NAME

 sm_msg - display a message at a given column on the status line

SYNOPSIS

 void sm_msg (column, length, text)
 int column, length;
 char *text;

DESCRIPTION

The message is merged with the current contents of the status line, and
displayed beginning at column. Length gives the number of characters in text.

On terminals with onscreen attributes, the column position may need to be
adjusted to allow for attributes embedded in the status line. Refer to
sm_d_msg_line for an explanation of how to embed attributes and function key
names in a status line message.

This function is called, for example, by the function that updates the cursor
position display (see sm_c_vis).

VARIANTS AND RELATED FUNCTIONS

 sm_d_msg_line (msg);

EXAMPLE

#include "smdefs.h"

/* This code displays a message, then chops out
 * part of it. */

char *text0 = " ";
char *text1 = "Message is displayed on the status line at col 1.";

sm_msg(1, strlen(text1), text1);
sm_msg(12, strlen(text0), text0);

NAME

 sm_msg_get - find a message given its number

SYNOPSIS

 #include "smdefs.h"
 #include "smerror.h"

 void *sm_msg_get (number)
 int number;

DESCRIPTION

The messages used by JAM library routines are stored in binary message files,
which are created from text files by the JYACC msg2bin utility. Use sm_msgread
to load message files for use by this function.

This function takes the number of the message desired and returns the message,
or a less informative string if the message number cannot be matched.

Messages are divided into classes based on their numbers, with up to 4096
messages per class. The message class is the message number divided by 4096, and
the message offset within the class is the message number modulo 4096.
Predefined JAM message numbers and classes are defined in smerror.h .

RETURNS

 The desired message, if found; the message class and number, as a string,
 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_msgfind (number);
 sm_msgread ();

EXAMPLE

#include "smdefs.h"
#include "smerror.h"

/* Assume that an anxious programmer has just typed
 * in the question, "Will my boss like my new program?"
 * This code fragment answers the question. */

sm_n_putfield ("answer", rand() & 1 ?
 sm_msg_get (SM_YES) :
 sm_msg_get (SM_NO));

NAME

 sm_msgfind - find a message given its number

SYNOPSIS

 #include "smdefs.h"
 #include "smerror.h"

 char *sm_msgfind (number)
 int number;

DESCRIPTION

This function takes the number of a screen manager message, and returns the
message string. It is identical to sm_msg_get, except that it returns zero if
the message number is not found.

Screen manager message numbers are defined in smerror.h .

RETURNS

 The message, or 0 if the message number is out of range.

EXAMPLE

#include "smdefs.h"
#include "smerror.h"

/* print out message #4 */

sprintf (buf, "The message reads: %s\n", sm_msgfind (SM_BADKEY));
sm_quiet_err (buf);

NAME

 sm_msgread - read message file into memory

SYNOPSIS

 #include "smerror.h"

 int sm_msgread (code, class, mode, arg)
 char *code;
 int class;
 int mode;
 char *arg;

DESCRIPTION

Reads a single set of messages from a binary message file into memory, after
which they can be accessed using sm_msg_get and sm_msgfind. Code selects a
single message class from a file that may contain several classes:

 Code Class Contents

 SM SM_MSGS Screen manager messages
 FM FM_MSGS Formaker (xform) messages
 JM JM_MSGS JAM run-time messages
 JX JX_MSGS JAM Formaker (jxform) messages
 (blank) Undesignated user messages

Class identifies a class of messages. Classes 0-7 are reserved for user
messages, and several classes are reserved to JAM; see smerror.h . As messages
with the prefix code are read from the file, they are assigned numbers
sequentially beginning at 4096 times class.

Mode is a mnemonic or mnemonics drawn from the following list. The first five
indicate where to get the message file; at least one of these must be supplied.
The other four modify the basic action.

 Mnemonic Action

 MSG_DELETE Delete the message class and
 recover its memory.
 MSG_DEFAULT Use the default file defined by the
 SMMSGS setup variable.
 MSG_FILENAME Use a file named in arg.
 MSG_ENVIRON Use the file named in an environment
 variable named by arg.
 MSG_MEMORY Use a memory-resident file whose address
 is given by arg.

 MSG_NOREPLACE Modifier: do not overwrite previously
 installed messages.
 MSG_DSK Modifier: leave file open, do not read into
 memory
 MSG_INIT Modifier: do not use screen manager
 error reporting.
 MSG_QUIET Modifier: do not report errors.

You can or MSG_NOREPLACE with any mode except MSG_DELETE, to prevent overwriting
messages read previously. Error messages will be displayed on the status line,
if the screen has been initialized by sm_initcrt; otherwise, they will go to the
standard error output. You can or MSG_INIT with the mode to force error messages

to standard error. Combining the mode with MSG_QUIET suppresses error reporting
altogether.

If you or MSG_DSK with the mode, the messages are not read into memory. Instead
the file is left open, and sm_msg_get and sm_msgfind fetch them from disk when
requested. If your message file is large, this can save substantial memory; but
you should remember to account for operating system file buffers in your
calculations.

Arg contains the environment variable name for MSG_ENVIRON; the file name for
MSG_FILENAME; or the address of the memory-resident file for MSG_MEMORY. It may
be passed as zero for other modes.

RETURNS

 0 if the operation completed successfully; 1 if the message class was
 already in memory and the mode included MSG_NOREPLACE; 2 if the mode
 was MSG_DELETE and the message file was not in memory; -1 if the mode
 was MSG_ENVIRON or MSG_DEFAULT and the environment variable was
 undefined; -2 if the mode was MSG_ENVIRON, MSG_FILENAME, or
 MSG_DEFAULT and the message file could not be read from disk; other
 negative values if the message file was bad or insufficient memory was
 available.

VARIANTS AND RELATED FUNCTIONS

 sm_msg_get (number);
 sm_msgfind (number);

EXAMPLE

#include "smdefs.h"
#include "smerror.h"

/****************** Example 1 **********************
 * These calls are issued by sm_initcrt() to load
 * standard messages and one set of user messages. */

sm_msgread ("SM", SM_MSGS, MSG_DEFAULT, (char *)0);
sm_msgread ("", 0, MSG_DEFAULT, (char *)0);

/***************** Example 2 ***********************
 * This code fragment duplicates the Release 3 routine
 * sm_msginit(). */

int sm_msginit (memfile)
char memfile[];
{
int sm_msginit (msg_file)
char * msg_file;
{
 int mode = (msg_file ? MSG_MEMORY : MSG_DEFAULT | MSG_NOREPLACE)
 | MSG_INIT;

 if (sm_msgread ("SM", SM_MSGS, mode, msg_file) < 0 ||
 sm_msgread ("JM", JM_MSGS, mode, msg_file) < 0 ||
 sm_msgread ("FM", FM_MSGS, mode, msg_file) < 0 ||
 sm_msgread ("JX", JX_MSGS, mode, msg_file) < 0)
 {
 exit (RET_FATAL);
 }
 sm_msgread ((char *)0, 0, mode & ~MSG_INIT | MSG_QUIET, msg_file);
 return (0);
}

NAME

 sm_mwindow - display a status message in a window

SYNOPSIS

 int sm_mwindow (text, line, column)
 char *text;
 int line;
 int column;

DESCRIPTION

This function displays text in a pop-up window, whose upper left-hand corner
appears at line and column. The line and column are counted from zero: if line
is 1, the top of the window will be on the second line of the display. The
window itself is constructed on the fly by the run-time system; no data entry is
possible in it, nor is data entry possible in underlying screens as long as it
is displayed. Make sure that sm_close_window is called after this function.

All the percent escapes for status messages, except %M, are effective; refer to
sm_d_msg_line for a list and full description. If either line or column is
negative, the window will be displayed according to the rules given at
sm_r_at_cur.

RETURNS

 -1 if there was a malloc failure. 1 if the text had to be truncated to fit
 in a window 0 otherwise

VARIANTS AND RELATED FUNCTIONS

 sm_d_msg_line (text, attribute);

EXAMPLE

/* By judicious use of %N's, it is possible to get your
 * messages centered on the screen when you call
 * sm_mwindow().
 */

void poem ()
{
 sm_mwindow ("The world is too much with us. Late and soon,%N\
Getting and spending, we lay waste our powers.%N\
Little we see in Nature that is ours;%N\
We have given our hearts away, a sordid boon!%N%N\
The sea that bares her bosom to the Moon,%N\
The winds that will be raging at all hours,%N\
And are up-gathered now like sleeping flowers,%N\
For this, for everything, we are out of tune;%N\
It moves us not. Great God! I'd rather be%N\
A pagan, suckled in a creed outworn;%N\
So might I, standing on this pleasant lea,%N\
Have glimpses that would make me less forlorn:%N\
Catch sight of Proteus rising from the sea,%N\
Or hear old Triton blow his wreathed horn.",
 6, 16);
}

NAME

 sm_n_1clear_array clear all data from a single scrolling array
 sm_n_1protect
 selectively protect a field sm_n_1unprotect
 selectively unprotect a field sm_n_amt_format
 format data and write to a field sm_n_aprotect
 protect an entire array or scroll sm_n_aunprotect
 unprotect an entire array or scroll sm_n_bitop
 manipulate field edit bits sm_n_chg_attr
 change the display attribute(s) of a field
 sm_n_clear_array
 clear all data from a scrolling array and parallel
 arrays sm_n_dblval
 get the decimal value of a field sm_n_dlength
 get the length of data stored in a field sm_n_dtofield
 write decimal value to a field sm_n_edit_ptr
 get special edit sm_n_fldno
 * see next page * sm_n_fptr
 get copy of data in field sm_n_fval
 force validation of a field sm_n_getfield
 copy data from field into buffer sm_n_gofield
 position cursor to a field sm_n_intval
 get integer value of data in field sm_n_is_yes
 test field for yes sm_n_itofield
 write integer value to field sm_n_length
 get length of field sm_n_lngval
 get long integer value of data in field sm_n_ltofield
 write long integer value to field sm_n_max_occur
 get maximum occurrence of field sm_n_mdt_clear
 reset field's MDT bit sm_n_mod_test
 test field's MDT bit sm_n_novalbit
 reset field's validated bit sm_n_num_items
 get number of items entered in scrollable field or
 array sm_n_off_gofield
 move cursor to specified offset in a field
 sm_n_protect
 protect field from data entry sm_n_putfield
 write data string to field sm_n_size_of_array
 get number of elements in an array sm_n_unprotect
 allow data entry into field sm_n_wselect
 select a hidden window by name

DESCRIPTION

Each or the above functions accesses a field by means of the field name. For a
description of sm_n_fldno, see the next page. For a description of any other
function listed above, look under the related function without n_ in its name.
For example, sm_n_amt_format is described under sm_amt_format. If the named
field is not on the screen, these functions will attempt to access a similarly
named entry in the local data block.

NAME

 sm_n_fldno - get the field number of a named field

SYNOPSIS

 int sm_n_fldno (field_name)
 char *field_name;

DESCRIPTION

Returns the field number of a field specified by name, or the base field number
of an array specified by name.

RETURNS

 An integer ranging from 1 to the maximum number of fields on the current
 form. 0 if the field name is not found.

VARIANTS AND RELATED FUNCTIONS

 sm_e_fldno (field_name, element)

EXAMPLE

#include "smdefs.h"

/* Write a list of real numbers to the screen. The first
 * and last fields in the list are tagged with special names.
 * Actually, sm_dtofield () would be more convenient.
 */
int k, first, last;
char buf[256];
double values[];
 /* set up elsewhere... */

last = sm_n_fldno ("last");
first = sm_n_fldno ("first");
for (k = first; k && k <= last; ++k)
{
 sprintf (buf, "%lf", values[k - first]);
 sm_amt_format (k, buf);
}

NAME

 sm_nl - tab to the first unprotected field beyond the current line

SYNOPSIS

 void sm_nl ();

DESCRIPTION

This function moves the cursor to the next item of a scrolling field or array,
scrolling if necessary. Unlike the down-arrow, it will open up a blank scrolling
item if there are no more below (but the maximum has not yet been exceeded).

If the current field is not scrolling, the cursor is positioned to the first
unprotected field, if any, following the current line of the form. If there are
no unprotected fields beyond there, the cursor is positioned to the first
unprotected field of the form.

If the form has no unprotected fields at all, the cursor is positioned to the
first column of the line following the current line; if the cursor is on the
last line of the form, it goes to the top left-hand corner of the form.

This function is ordinarily bound to the RETURN key.

VARIANTS AND RELATED FUNCTIONS

 sm_tab ();
 sm_home ();
 sm_last ();

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* Scuttle down a scrolling array until we come
 * to a nonblank item, or run out of array. */

char buf[256];

while (sm_t_scroll (sm_fldnumber + 1) &&
 sm_getfield (buf, sm_fldnumber + 1) == 0)
{
 sm_nl ();
}

NAME

 sm_novalbit - forcibly invalidate a field

SYNOPSIS

 int sm_novalbit (field_number)
 int field_number;

DESCRIPTION

Resets the VALIDED bit of the specified field, so that the field will again be
subject to validation when it is next exited, or when the screen is validated as
a whole.

JAM sets a field's VALIDED bit automatically when the field passes all its
validations. The bit is initially clear, and is cleared whenever the field is
altered by keyboard input or by a library function such as sm_putfield.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_novalbit (field_name, element)
 sm_i_novalbit (field_name, occurrence)
 sm_n_novalbit (field_name)
 sm_o_novalbit (field_number, occurrence)
 sm_fieldval ();
 sm_s_val ();

EXAMPLE

#include "smdefs.h"

/* Here is a validation function for a "last_name"
 * field. When it is changed, it marks the
 * "first_name" field, which depends on it, invalid. */

int validate (field, data, occur, bits)
char *data;
{
 if (bits & VALIDED) /* Not really changed */
 return 0;

 sm_n_novalbit ("first_name");
 return 0;
}

NAME

 sm_num_occurs - count the occurrences in a scrollable field or array

SYNOPSIS

 int sm_num_occurs (field_number)
 int field_number;

DESCRIPTION

Returns the number of items actually entered so far into the scrollable field or
array identified by field_number. They may have been entered either through the
keyboard, or through calls to sm_putfield or similar functions.

This count is different from the maximum capacity of a scroll, which you can
retrieve by calling sm_max_occur.

RETURNS

 -1 if the field is not found; otherwise, the number of items entered,
 possibly 0.

VARIANTS AND RELATED FUNCTIONS

 sm_n_num_occurs (field_name);
 sm_max_occur (field_number);

EXAMPLE

#include "smdefs.h"

/* Compute the number of unused items in this scroll. */

int unused;

unused = sm_n_max_occur ("hatpins") -
 sm_n_num_occurs ("hatpins");

NAME

 sm_o_achg change the display attribute of a scrolling item
 sm_o_amt_format
 format a currency value and write to occurrence
 sm_o_bitop
 manipulate an occurrence's edit bits sm_o_chg_attr
 change the display attribute of a field sm_o_dblval
 get decimal value of occurrence sm_o_dlength
 get length of data in occurrence sm_o_doccur
 delete an occurrence from an array or scroll
 sm_o_dtofield
 write decimal value to occurrence sm_o_fptr
 get copy of occurrence's data sm_o_fval
 force validation of an occurrence sm_o_getfield
 copy data from occurrence into buffer sm_o_gofield
 position cursor to occurrence sm_o_intval
 get integer value of occurrence sm_o_ioccur
 insert a blank occurrence into an array or scroll
 sm_o_itofield
 write integer value to occurrence sm_o_lngval
 get long integer value of occurrence sm_o_ltofield
 write long integer value to occurrence sm_o_mdt_clear
 reset MDT bit of an occurrence sm_o_mod_test
 test MDT bit of an occurrence sm_o_novalbit
 reset validated bit of an occurrence sm_o_off_gofield
 place the cursor in the middle of an occurrence
 sm_o_putfield
 write data string to occurrence

DESCRIPTION

Each of the above functions refers to data by field number and occurrence
number. As used in the above functions, occurrence means

 1. item, if the field or array is scrollable;
 2. element, if the specified field is part of a non-scrollable array; or
 3. the specified field, if neither scrollable nor an array.

If the occurrence is zero, the reference is always to the current contents of
the specified field.

For the description of a particular function, look under the related function
without o_ in its name. For example, sm_o_amt_format is described under
sm_amt_format.

NAME

 sm_occur_no - get the occurrence number of data in the current field

SYNOPSIS

 int sm_occur_no ();

DESCRIPTION

Returns the occurrence number of the data item in the current field. If the
current field is scrollable, the occurrence number is the item ID, that is, the
item's index in the whole scroll. If the field is an element of a non-scrollable
array, the occurrence number is the field's element number. Otherwise, the
occurrence number is 1.

RETURNS

 0 if the cursor is not in a field; 1 if the cursor is in a field that is
 neither scrollable nor an array element; The element number if the
 cursor is in a non-scrollable array; The item id if the cursor is in a
 scrollable field or array.

VARIANTS AND RELATED FUNCTIONS

 sm_getcurno ();

EXAMPLE

#include "smdefs.h"

/* Find the number of the scrolling item under the cursor,
 * and scroll down to the next higher multiple of 5. */

int thisn;

thisn = sm_occur_no ();
sm_rscroll (sm_getcurno (), 5 - (thisn % 5));

NAME

 sm_off_gofield - move the cursor into a field, offset from the left

SYNOPSIS

 int sm_off_gofield (field_number, offset)
 int field_number, offset;

DESCRIPTION

Moves the cursor into field_number, at position offset within the field's
contents, regardless of the field's justification. The field's contents will be
shifted if necessary to bring the appropriate piece onscreen.

If offset is larger than the field length (or the maximum length if the field is
shiftable), the cursor will be placed in the rightmost position.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_off_gofield (field_name, element, offset);
 sm_n_off_gofield (field_name, offset);
 sm_i_off_gofield (field_name, item_id, offset);
 sm_o_off_gofield (field_number, item_id, offset);
 sm_gofield (field_number);
 sm_disp_off ();
 sm_sh_off ();

EXAMPLE

#include "smdefs.h"
#include <ctype.h>

/* Place the cursor over the first embedded blank in the
 * "names" field. */

char buf[256], *p;
int length;

length = sm_n_getfield (buf, "names");
for (p = buf; p < length; ++p)
 if (isspace (*p))
 break;
sm_n_off_gofield ("names", p - buf);

NAME

 sm_ok_options - set openkeybd options

SYNOPSIS

 #include "smdefs.h"

 int sm_ok_options (block, wrap, fld_reset,
 vert_arrow, horiz_arrow, val_opt)
 int block, wrap, fld_reset;
 int vert_arrow, horiz_arrow, val_opt;

DESCRIPTION

The six options set by this function control how the function sm_openkeybd
responds to cursor motion keys and other keyboard input.

The first defines the appearance of the cursor. The second determines whether
wrapping occurs on arrow keys. The third determines whether the arrow keys can
be used to enter a field in the middle. The next two options define cursor
movement in response to the arrow keys. The last determines when field
validation is performed.

Six arguments must be passed, even if you want default values for some of them.
Use the special value OK_NOCHANGE to leave a setting unaltered.

Mnemonics for setting the options are given in smdefs.h and are listed below.
These mnemonics are also used for sm_mp_options.

 block:
 OK_NOBLOCK Default. The cursor occupies one character position.
 OK_BLOCK The cursor fills the field. (Actually, the cursor is
 turned off and the current field made reverse video.)

 wrap:
 OK_NOWRAP Default. No wrapping. The terminal beeps if an attempt is
 made to arrow past the edge of the current form (or
 window).
 OK_WRAP The arrow keys wrap. Vertical arrows wrap straight from
 bottom to top and vice versa; right arrow wraps to the
 beginning of the next (or first) line, left arrow to the
 end of the previous (or last) line.

 fld_reset:
 OK_NORESET Default. The arrow keys can be used to enter the middle
 of a field.
 OK_RESET When a field is entered, the cursor always goes to the
 first data position (allowing for justification, and
 punctuation in digits-only fields).
 OK_ENDCHAR Default off. When a character is typed at the last
 position of a no-autotab field, beep the terminal instead
 of overwriting the last character.

 vert_arrow (up and down arrow keys):
 OK_FREE Default. Free cursor movement.
 OK_RESTRICT The arrow keys will not take the cursor out of the
 current field.
 OK_COLM The cursor will be positioned to the closest field
 (observing wrapping, if set) that overlaps the current
 column.
 OK_SWATH The cursor will be positioned to the closest field
 (observing wrapping, if set) that overlaps the "swath"
 containing the current field.

 OK_NXTLINE The cursor will be positioned to the closest of those
 fields (observing wrapping, if set) whose line is closest
 to the current line.
 OK_NXTFLD The cursor will be positioned to the field closest to the
 current line and column. The calculation uses the
 diagonal distance, assuming that the terminal has a 5 to
 2 aspect ratio.
 OK_TAB The arrows behave like TAB and BACKTAB, except that the
 up-arrow goes to the end of the field instead of the
 beginning.

 horiz_arrow (left and right arrow keys):
 OK_FREE Default. Free cursor movement.
 OK_RESTRICT The arrow keys will not take the cursor out of the
 current field.
 OK_COLM The cursor will be positioned to the closest field on the
 current line.
 OK_SWATH Same as OK_COLM.
 OK_NXTLINE The cursor will be positioned to the closest field
 (observing wrapping, if set) whose column is closest to
 the current column.
 OK_NXTFLD The cursor will be positioned to the field closest to the
 current line and column. The calculation uses the
 diagonal distance, assuming that the terminal has a 5 to
 2 aspect ratio.
 OK_TAB The arrows behave like TAB and BACKTAB, except that the
 left-arrow goes to the end of the field instead of the
 beginning.

 val_opt:
 OK_NOVALID Default. Field validations are performed only on TAB and
 RETURN keys.
 OK_VALID Validations are performed whenever the field is exited
 (by arrows, backtab, etc.)

If you define the SMOKOPTIONS variable in your setup file, this function will
automatically be called with the parameters you provide there.

RETURNS

 0 is returned if all the arguments are valid; -1 is returned if they are
 not. In this case, no options are affected.

VARIANTS AND RELATED FUNCTIONS

 sm_openkeybd ();

EXAMPLE

#include "smdefs.h"

/* Restore the default sm_openkeybd options. */

sm_ok_options(OK_NOBLOCK, OK_NOWRAP, OK_NORESET,
 OK_FREE, OK_NOVALID);

NAME

 sm_openkeybd - open the keyboard for data entry

SYNOPSIS

 #include "smdefs.h"
 #include "smkeys.h"

 int sm_openkeybd ();

DESCRIPTION

This routine calls sm_getkey to read the keyboard and translate function keys to
logical values. Ordinary keys, such as letters, numbers, and punctuation, are
entered into fields on the screen, subject to restrictions and edits defined
during screen authoring. Cursor motion keys, such as TAB, PAGE UP, and arrows,
move the cursor between data items; exiting a field causes its contents to be
validated against conditions defined during authoring. Data editing keys, such
as ERASE, INSERT, and BACKSPACE, make it easier to alter existing data. The
Author's Guide, in the section on "data entry," lists all the function keys and
describes their actions.

The processing of TRANSMIT, EXIT, HELP, and the cursor positioning keys is
determined by a routing table. For each key, if the EXECUTE bit is set, the
appropriate action is performed (tab, field erase, etc.) If the RETURN bit is
set, sm_openkeybd returns the key to its caller. Since the bits are examined
independently, four combinations of actions are possible. The default setting is
EXECUTE only (although normal execution may cause the key to be returned, as in
the case of the EXIT key).

You may change key actions "on the fly". For example, to disable the BACKTAB
key, the application program would execute the following:

 sm_route_table[BACK] = 0;

while to make the ERASE key return to the application program without erasing
the field's contents:

 sm_route_table[FERA] = RETURN;

The mnemonics are defined in smkeys.h . The PF, SPF, and APP function keys are
not in the routing table; they behave as though their entries were RETURN only.
A few keys, including RESCREEN and LOCAL PRINT, are processed locally in
sm_getkey and not returned to sm_openkeybd, unless their RETURN bits are set
Note that data keys may be made returnable too.

sm_openkeybd returns to its caller either when you press a returnable key, or
when you exit a return entry field (by completing or tabbing out). In the former
case, it returns a code for the function key. When you exit a return entry
field, it returns the field's return code, if one has been defined. If one has
not, it returns the last key struck in the field (if the field is autotab) or
the rightmost data character in the field (if it is no-autotab).

Another function, sm_ok_options, defines the specific behavior of certain keys
under sm_openkeybd.

Application programmers should be aware that JAM control strings are not
executed within this function, but at a higher level within the JAM run-time
system. If you call this function, do not expect function key control strings to
work.

RETURNS

 See above.

EXAMPLE

#include "smkeys.h"

/* Beep at unwanted function keys. */
int key;

switch (key = sm_openkeybd ())
{
 case PF1:
 save_something ();
 break;
 case PF2:
 discard_something ();
 break;
 default:
 sm_bel();
 break;
}

VARIANTS AND RELATED FUNCTIONS

 sm_ok_options (block, wrap, field_reset, varrow, harrow, val_opt);

NAME

 sm_oshift - shift a field by a given amount

SYNOPSIS

 int sm_oshift (field_number, offset)
 int field_number;
 int offset;

DESCRIPTION

Shifts the contents of field_number by offset positions. If offset is negative,
the contents are shifted right (data past the left-hand edge of the field become
visible); otherwise, the contents are shifted left. Shifting indicators, if
displayed, are adjusted accordingly.

The field may be shifted by fewer than offset positions if the maximum shifting
width is reached thereby.

RETURNS

 The number of positions actually shifted, or 0 if the field is not found or
 is not shifting.

VARIANTS AND RELATED FUNCTIONS

 sm_n_oshift (field_name, offset);

EXAMPLE

#include "smdefs.h"

/* Shift the Republicans gently toward the left,
 * and the Democrats toward the right.
 * For extra credit, speculate on which shift is positive. */

sm_n_oshift ("GOP", 1);
sm_n_oshift ("DEM", -1);

NAME

 sm_plcall - execute a JPL procedure

SYNOPSIS

 int sm_plcall (procedure_name)
 char *procedure_name;

DESCRIPTION

Executes the JPL procedure contained in the file procedure_name. The file will
be sought in all the directories listed in SMPATH.

Although JPL procedures can return values through this function, their usual use
is to modify named fields on the screen and in the LDB.

JPL, the JYACC Procedural Language, is the subject of a separate chapter.

RETURNS

 -1 if the procedure could not be loaded; otherwise, the value returned by
 the JPL procedure.

EXAMPLE

#include "smdefs.h"

/* Imagine that you want to validate a field using a JPL
* procedure, but only on certain conditions that are awkward
* to test in JPL. You could use the following field exit
* function: */

int validate (field, data, occur, bits)
char *data;
{
 char *procname;

 if (bits & VALIDED)
 return;
 if (field_needs_validating (field, data) &&
 (procname = sm_edit_ptr (field, JPLTEXT)))
 {
 return sm_plcall (procname + 2);
 }
}

NAME

 sm_protect - protect a field completely

SYNOPSIS

 #include "smdefs.h"

 int sm_protect (field_number)
 int field_number;

DESCRIPTION

Protects the specified field from all of the following.

 Mnemonic Meaning

 EPROTECT protect from data entry
 TPROTECT protect from tabbing into (or from
 entering via any other key)
 CPROTECT protect from clearing
 VPROTECT protect from validation routines

To protect a field selectively, use sm_1protect; to protect an entire array, use
sm_aprotect.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_protect (field_name, element)
 sm_n_protect (field_name)
 sm_unprotect (field_number);
 sm_1protect (field_number);
 sm_aprotect (field_number);

EXAMPLE

#include "smdefs.h"

/* If the executive has a PC, unprotect a field to
 * hold its make; otherwise, protect that field. */

if (sm_n_is_yes ("owns_pc"))
 sm_n_unprotect ("pc_make");
else sm_n_protect ("pc_make");

NAME

 sm_putfield - put a string into a field

SYNOPSIS

 int sm_putfield (field_number, data)
 int field_number;
 char *data;

DESCRIPTION

The string data is moved into the field specified by field_number. If the string
is too long, it is truncated without warning. If it is shorter than the
destination field, it is blank filled (to the left if the field is right
justified, otherwise to the right). If data is empty or zero the field's
contents are erased; if the field is a date or time field taking system values,
the date or time is refreshed.

This function sets the field's MDT bit to indicate that it has been modified,
and clears its VALIDED bit to indicate that the field must be revalidated upon
exit. sm_n_putfield and sm_i_putfield will store data in the LDB if the named
field is not present in the screen. However, if the LDB item has a scope of 1
(constant), its contents will be unaltered and the function will return -1.

Notice that the order of arguments to this function is different from that of
arguments to the related function sm_getfield.

RETURNS

 -1 if the field is not found, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_putfield (field_name, element, data)
 sm_i_putfield (field_name, occurrence, data)
 sm_n_putfield (field_name, data)
 sm_o_putfield (field_number, occurence)
 sm_getfield (buffer, field_number);

EXAMPLE

#include "smdefs.h"

/* Perform sm_putfield specifying a field and a string the size
 * of the field. Verify that the field matches the string
 * and that 0 is returned. */

sm_putfield (1, "This string has 29 characters");

NAME

 sm_putjctrl - associate a control string with a key

SYNOPSIS

 int sm_putjctrl (key, control_string, default)
 int key;
 char *control_string;
 int default;

DESCRIPTION

Each JAM screen contains a table of control strings associated with function
keys. JAM also maintains a default table of keys and control strings, which take
effect when the current screen has no control string for a function key you
press. This table enables you to define system-wide actions for keys. It is
initialized from INICTRL setup variables; see the section on setup in the
Configration Guide.

This function associates control_string with key in one of the tables, replacing
the control string previously associated with key (if there was one). If the
flag default is zero, the control string will be installed in the current
screen, and will disppear when you exit the screen; otherwise, it will go into
the system-wide default table.

If you install a default control string for a key that is defined in the current
screen, the definition in the screen will be used. Note also that JAM will not
search back up the form or window stack for function key definitions; only the
current screen and the default table are consulted.

Mnemonic values for key are in smkeys.h . The syntax for control strings is
defined in the Author's Guide.

RETURNS

 -5 if insufficient memory is available; 0 otherwise.

EXAMPLE

#include "smkeys.h"

/* These three calls duplicate the default associations for
* the JAM run-time system. */

sm_putjctrl (SPF1, "^jm_gotop");
sm_putjctrl (SPF2, "^jm_system");
sm_putjctrl (SPF3, "^jm_goform");

NAME

 sm_query_msg - display a question, and return a yes or no answer

SYNOPSIS

 int sm_query_msg (message)
 char *message;

DESCRIPTION

The message is displayed on the status line, until you type a yes or a no key. A
yes key is the first letter of the SM_YES entry in the message file, and a no
key is the first letter of the SM_NO entry; case is ignored. At that point, this
function returns a lower case 'y' or 'n' (English!) to its caller. All keys
other than yes and no keys are ignored.

The initial attribute for the message defaults to highlighted reverse video; you
may alter it by calling sm_ch_qmsgatt. Refer to sm_d_msg_line for an explanation
of how to embed changed attributes and function key names in your message. The
old status line is redisplayed as soon as you answer the question.

RETURNS

 Lower-case ASCII 'y' or 'n', according to the response.

VARIANTS AND RELATED FUNCTIONS

 sm_d_msg_line (message, attribute);
 sm_is_yes (field_number);

EXAMPLE

#include "smdefs.h"

/* Ask a couple of straightforward questions. Be careful of
 * the dangling else, which has ruined many relationships. */

if (sm_query_msg("Are you single?") == 'y')
 if (sm_query_msg("Will you go out with me?") == 'y')
 if (sm_query_msg("Do you like Clint Eastwood movies?") == 'n')
 ...

NAME

 sm_qui_msg - display a message preceded by a constant tag, and reset
 the message line

SYNOPSIS

 void sm_qui_msg (message)
 char *message;

DESCRIPTION

This function prepends a tag (normally "ERROR:") to message, and displays the
whole on the status line (or in a window if it is too long). The tag may be
altered by changing the SM_ERROR entry in the message file. The message remains
visible until the operator presses a key; refer to sm_er_options for an exact
description of error message acknowledgement. If the message is longer than the
status line, it will be displayed in a window instead.

This function is identical to sm_quiet_err, except that it does not turn the
cursor on. It is similar to sm_emsg, which does not prepend a tag.

Several percent escapes provide control over the content and presentation of
status messages. They are interpreted by sm_d_msg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character following the percent sign must be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%W, for instance; see below) must appear at the
beginning of the message, i.e. before anything except perhaps another percent
escape.

 .
 If a string of the form %Annnn appears anywhere in the message, the
 hexadecimal number nnnn is interpreted as a display attribute to be
 applied to the remainder of the message. The table below gives the
 numeric values of the logical display attributes you will need to
 construct embedded attributes. If you want a digit to appear
 immediately after the attribute change, pad the attribute to 4 digits
 with leading zeroes; if the following character is not a legal hex
 digit, leading zeroes are unnecessary.
 .
 If a string of the form %KKEYNAME appears anywhere in the message,
 KEYNAME is interpreted as a logical key mnemonic, and the whole
 expression is replaced with the key label string defined for that key
 in the key translation file. If there is no label, the %K is stripped
 out and the mnemonic remains. Key mnemonics are defined in smkeys.h ;
 it is of course the name, not the number, that you want here. The
 mnemonic must be in upper-case.
 .
 If %N appears anywhere in the message, the latter will be presented in
 a pop-up window rather than on the status line, and all occurrences of
 %N will be replaced by newlines.
 .
 If the message begins with a %B, JAM will beep the terminal (using
 sm_bel) before issuing the message.
 .
 If the message begins with %W, it will be presented in a pop-up window
 instead of on the status line. The window will appear near the bottom
 center of the screen, unless it would obscure the current field by so
 doing; in that case, it will appear near the top. If the message
 begins with %MU or %MD, and is passed to one of the error message
 display functions, JAM will ignore the default error message
 acknowledgement flag and process (for %MU) or discard (for %MD) the
 next character typed.

Note that, if a message containing percent escapes - that is, %A, %B, %K, %N or
%W - is displayed before sm_initcrt or after %W is called, the percent escapes
will show up in it.

 Attribute Hex value

 BLACK 0 BLUE
 1 GREEN
 2 CYAN
 3 RED
 4 MAGENTA
 5 YELLOW
 6 WHITE
 7

 B_BLACK 0 B_BLUE
 100 B_GREEN
 200 B_CYAN
 300 B_RED
 400 B_MAGENTA
 500 B_YELLOW
 600 B_WHITE
 700

 BLANK 8 REVERSE
 10 UNDERLN
 20 BLINK
 40 HILIGHT
 80 DIM
 1000

If the cursor position display has been turned on (see sm_c_vis), the end of the
status line will contain the cursor's current row and column. If the message
text would overlap that area of the status line, it will be displayed in a
window instead.

VARIANTS AND RELATED FUNCTIONS

 sm_er_options (key, discard);
 sm_emsg (message);
 sm_err_reset (message);
 sm_quiet_err (message);
 sm_await_space (message);

EXAMPLE

#include "smdefs.h"

sm_qui_msg ("Be %A17veewwwwy%A7 quiet. I'm hunting wabbits.");

NAME

 sm_quiet_err - display error message preceded by a constant tag, and
 reset the status line

SYNOPSIS

 void sm_quiet_err (message)
 char *message;

DESCRIPTION

This function prepends a tag (normally "ERROR") to message, turns the cursor on,
and displays the whole message on the status line (or in a window if it is too
long). The tag may be altered by changing the SM_ERROR entry in the message
file. The message remains visible until the operator presses a key; refer to
sm_er_options for an exact description of error message acknowledgement. If the
message is longer than the status line, it will be displayed in a window
instead.

This function is identical to sm_qui_msg, except that it turns the cursor on. It
is similar to sm_err_reset, which does not prepend a tag. Refer to sm_d_msg_line
for an explanation of how to change display attributes and insert function key
names within a message.

VARIANTS AND RELATED FUNCTIONS

 sm_er_options (key, discard);
 sm_emsg (message);
 sm_err_reset (message);
 sm_qui_msg (message);
 sm_await_space (message);

EXAMPLE

/* Display an error message that is surely long
 * enough to be put into a window. */

char *buf;

if ((buf = malloc (8192)) == 0)
{
 sm_quiet_err ("Sorry, guy, I'm %A0017all%A7 out of memory. Here's \
500 bucks, why don't you just run down to the corner dealer and \
pick me up a meg?");
 sm_cancel ();
}

NAME

 sm_r_at_cur - display a window at the current cursor position

SYNOPSIS

 int sm_r_at_cur (screen_name)
 char *screen_name;

DESCRIPTION

Displays a window at the current cursor position, offset by one line to avoid
hiding that line's current display.

The named screen is sought first in the memory-resident form list, and if found
there is displayed using sm_d_window. It is next sought in all the open screen
libraries, and if found is displayed using sm_l_window. Next it is sought on
disk in the current directory; then under the path supplied to sm_initcrt; then
in all the paths in the setup variable SMPATH. If any path exceeds 80
characters, it is skipped. If the entire search fails, this function displays an
error message and returns.

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the top most,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 0 if no error occurred during display of the window; -1 if the window
 cannot be successfully displayed because the format is incorrect; -2
 if the form cannot be found; -3 if the system ran out of memory but
 the screen was restored to its former state.

VARIANTS AND RELATED FUNCTIONS

 sm_r_form name);
 sm_r_window (name, line, column);
 sm_close_window ();

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* In a validation routine, if the field contains a
 * special value, open up a window to prompt for a
 * second value and save it in another field. */

int validate (field, data, occur, bits)
char *data;
{
 char buf[256];

 if (bits & VALIDED)
 return 0;

 if (strcmp(data, "other") == 0)
 {
 sm_r_at_cur ("getsecval");
 if (sm_openkeybd () != EXIT)
 sm_getfield (buf, 1);
 else buf[0] = 0;
 sm_close_window ();
 sm_n_putfield ("secval", buf);
 }

 return 0;
}

NAME

 sm_r_form - display a screen as a form

SYNOPSIS

 int sm_r_form (screen_name)
 char *screen_name;

DESCRIPTION

This function displays the named screen as a base form.

Bringing up a screen as a form causes the previously displayed form and windows
to be discarded, and their memory freed. The new screen is displayed with its
upper left-hand corner at the extreme upper left of the display (position (0,
0)). Any error in this function leaves the display and JAM internals in an
undefined state.

If the form contains display data that are too big for the physical display,
they are truncated without warning. However, if there are fields that won't fit
within the physical display, this function returns an error without displaying
the form.

The named screen is sought first in the memory-resident form list, and if found
there is displayed using sm_d_window. It is next sought in all the open screen
libraries, and if found is displayed using sm_l_window. Next it is sought on
disk in the current directory; then under the path supplied to sm_initcrt; then
in all the paths in the setup variable SMPATH. If any path exceeds 80
characters, it is skipped. If the entire search fails, this function displays an
error message and returns.

In the case of a return of -1 or -2, the previously displayed form is still
displayed and may be used. Other negative return code indicate that the display
is undefined; the caller should display another form before using screen manager
functions. The return code -2 typically means that the named screen does not
exist; however, it may occur because the maximum allowable number of files is
already open.

This function should be called by JAM applications only under unusual
circumstances, as it does not update the control stack. You should execute a
control string to display the form instead.

RETURNS

 0 if no error occurred; -1 if the screen file's format is incorrect; -2 if
 the form cannot be found; -4 if, after the screen has been cleared,
 the form cannot be successfully displayed because of a read error; -5
 if, after the screen was cleared, the system ran out of memory; -7 if
 the screen was larger than the physical display, and there were fields
 that would have fallen outside the display.

VARIANTS AND RELATED FUNCTIONS

 sm_r_at_cur (name);
 sm_r_window (name, line, column);

EXAMPLE

#include "smdefs.h"
#include <setjmp.h>

/* If an abort condition exists, read in a special
 * form to handle that condition, discarding all open
 * windows. */

extern jmp_buf re_init;

if (sm_isabort (ABT_OFF) > 0)
{
 sm_r_form ("badstuff");
 if (sm_query_msg ("Do you want to continue?") == 'y')
 longjmp (re_init);
 else sm_cancel ();
}

NAME

 sm_r_window - display a window at a given position

SYNOPSIS

 int sm_r_window (screen_name, start_line,
 start_column)
 char *screen_name;
 int start_line, start_column;

DESCRIPTION

Displays screen_name with its upper left-hand corner at the specified line and
column. The line and column are counted from zero: if start_line is 1, the form
is displayed starting at the second line of the screen.)

Whatever part of the display the new window does not occupy will remain visible.
However, only the top most window and its fields are accessible to keyboard
entry and library routines. JAM will not allow the cursor outside the top most,
or current, window. (See sm_wselect for a way to shuffle windows.)

If the window will not fit on the display at the location you request, JAM will
adjust its starting position. If the window would hang below the screen and you
have placed its upper left-hand corner in the top half of the display, the
window is simply moved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Similar
adjustments are made in the horizontal direction.

If, after adjustment, the window contains display data that won't fit on the
display, it is brought up anyway, without the extra. But if any field won't fit,
display of the window is aborted and an error code returned.

JAM provides the control string mechanism for opening, closing, and keeping
track of windows. If your code calls this function instead of executing a window
control string, certain features of the JAM run-time system will not work as
expected, particularly the EXIT key.

RETURNS

 0 if no error occurred during display of the screen; -1 if the screen
 file's format is incorrect; -2 if the form cannot be found; -3 if the
 system ran out of memory but the previous screen was restored; -7 if
 the screen was larger than the physical display, and there were fields
 that would have fallen outside the display.

VARIANTS AND RELATED FUNCTIONS

 sm_r_at_cur (name);
 sm_r_form (name);
 sm_close_window ();

EXAMPLE

#include "smdefs.h"

/* The following is a horribly inefficient (but simple) hack
 * to bring a window up centered on the display. It reads
 * the thing in once to find out how big it is (with display
 * turned off), then reads it in again in the right place.
 */

int center_win (window)
char *window;
{
 int start_line, start_column;

 sm_do_not_display = 1;
 if (sm_r_at_cur (window))
 return -1;
 /* Compute offsets. */
 start_line = (sm_nlines - (sm_eline - sm_stline)) / 2;
 start_column = (sm_ncolms - (sm_ecolm - sm_stcolm)) / 2;
 sm_close_window ();

 sm_do_not_display = 0;
 return sm_r_window (window, start_line, start_column);
}

NAME

 sm_rd_part - read part of a data structure to the screen

SYNOPSIS

 #include "smdefs.h"

 void sm_rd_part (screen_struct, first_field, last_field, language)
 char *screen_struct;
 int first_field, last_field, language;

DESCRIPTION

This function copies a data structure in memory to the screen, for all fields
between first_field and last_field. An array and its scrolling items will be
copied only if the first element falls between first_field and last_field.

The address of the structure is in screen_struct; note that this is a structure
for the whole screen, not just the part of interest. There is a utility, JYACC
f2struct, that will automatically generate such a structure from the screen
file.

The argument language stands for the programming language in which the structure
is defined; it controls the conversion of string and numeric data. Zero stands
for C with null-terminated strings, one for C with blank-filled strings.

The structure being read may have been filled in previously by a call to
sm_wrtstruct or sm_wrt_part, using the same values of screen_structure and
language; or your application can fill it in. Using an uninitialized structure,
using an inconsistent value for language, or not terminating strings properly
can cause sm_rdstruct to lie or crash.

If your screen is so designed that (for instance) the input and output fields
are grouped together, this function can be much faster than sm_rdstruct, which
copies every field.

VARIANTS AND RELATED FUNCTIONS

 sm_wrt_part (screen_structure, first_field, last_field, language);
 sm_rdstruct (screen_structure, byte_count, language);

EXAMPLE
Refer to sm_wrt_part for a rather lengthy example.

NAME

 sm_rdstruct - copy data from a structure to the screen

SYNOPSIS

 #include "smdefs.h"

 void sm_rdstruct (screen_struct, byte_count,
 language)
 char *screen_struct;
 int *byte_count;
 int language;

DESCRIPTION

This function copies a data structure in memory to the screen, converting
individual items as appropriate.

The address of the structure is in screen_struct. There is a utility, JYACC
f2struct, that will automatically generate such a structure from the screen
file.

The argument byte_count is the address of an integer variable. sm_rdstruct will
store there the number of bytes copied from the structure.

The argument language stands for the programming language in which the structure
is defined; it controls the conversion of string and numeric data. Zero stands
for C with null-terminated strings, one for C with blank-filled strings.

The structure being read may have been filled in previously by a call to
sm_wrtstruct, using the same values of screen_structure and language; or your
application can fill it in. Using a partially uninitialized structure, using an
inconsistent value for language, or not terminating strings properly can cause
sm_rdstruct to lie or crash.

VARIANTS AND RELATED FUNCTIONS

 sm_wrtstruct (screen_structure, byte_count, language);
 sm_rd_part (screen_structure, first_field, last_field, language);

EXAMPLE
Please refer to sm_wrtstruct for an extended example.

NAME

 sm_rescreen - refresh the data displayed on the screen

SYNOPSIS

 void sm_rescreen ();

DESCRIPTION

Repaints the entire display from JAM's internal screen and attribute buffers.
Anything written to the screen by means other than JAM library functions wil be
erased. This function is normally bound to the RESCREEN key and executed
automatically within sm_getkey.

You may need to use this function after doing screen I/O with the flag
sm_do_not_display turned on, or after escaping from an JAM application to
another program (see sm_leave). If all you want is to force writes to the
display, use sm_flush.

VARIANTS AND RELATED FUNCTIONS

 sm_flush ();
 sm_return ();

EXAMPLE

/* Mess the screen up good and proper, then restore it
 * with a call to sm_rescreen. */

for (i=1; i<30; i++)
{
 printf("***");
 printf("***\n");
}

sm_rescreen();
sm_err_reset("Verify that the screen has been restored.");

NAME

 sm_resetcrt - reset the terminal to operating system default state

SYNOPSIS

 void sm_resetcrt ();

DESCRIPTION

This function resets terminal characteristics to the operating system's normal
state. This function should be called when leaving the screen manager
environment, as before program exit.

It frees all the memory associated with the display and open screens. However,
the buffers holding the message file, key translation file, etc. are not
released; a subsequent call to sm_initcrt will find them in place. It then
clears the screen and turns on the cursor, transmits the RESET sequence defined
in the video file, and resets the operating system channel.

This function is called automatically during JAM exit, and should not be called
by application programs except in case of abnormal termination.

VARIANTS AND RELATED FUNCTIONS

 sm_leave ();
 sm_cancel ();

EXAMPLE

/* If an effort to read the first form results in
 * failure, clean up the screen and leave. */

if (sm_r_form ("first") < 0)
{
 sm_resetcrt ();
 exit (1);
}

NAME

 sm_resize - dynamically change the size of the display

SYNOPSIS

 int sm_resize (rows, columns)
 int rows;
 int columns;

DESCRIPTION

This function enables you to change the size of the display used by JAM from the
default defined by the LINES and COLMS entries in the video file. It makes it
possible to use a single video file in a windowing environment, with FORMAKER
applications being run in different sized windows; each application can set its
display size at run time. It can also be used for switching between normal and
compressed modes (e.g. 80 and 132 columns on VT100-compatible terminals).

All screens brought up following a call to sm_resize must fit within the display
rectangle it defines; if that rectangle is larger than the physical display, the
results will be unpredictable. You may specify at most 255 rows or columns.

This function clears the physical and logical screens; any displayed forms or
windows, together with data entered on them, are lost.

RETURNS

 -1 if a parameter was less than 0 or greater than 255; 0 if successful.
 Program exit on memory allocation failure. -2 if the current form or
 window exceeds the size specified for it.

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"
#include "smvideo.h"
#define WIDTH_TOGGLE PF9

/* Somewhat irregular code to switch a VT-100 between
 * 80- and 132-column mode by pressing PF9. */

switch (sm_openkeybd ())
{
...
case WIDTH_TOGGLE:
 if (sm_video[V_COLMS] == 80)
 {
 printf ("\033[?3h");
 sm_resize (sm_video[V_LINES], 132);
 }
 else
 {
 printf ("\033[?3l");
 sm_resize (sm_video[V_LINES], 80);
 }
 break;
...
}

NAME

 sm_restore_data - restore previously saved data to the screen

SYNOPSIS

 int sm_restore_data (buffer)
 char *buffer;

DESCRIPTION

Restores all data items, both onscreen and offscreen, to the current screen from
an area initialized by sm_save_data. Buffer is the address of the area. Passing
an address not returned by sm_save_data, or attempting to restore to a screen
other than the one saved, can produce unpredictable results.

Data items are stored in the save-data buffer as null-terminated character
strings. The contents of a scrollable field or array is preceded by 2 bytes
giving the total number of items saved (high order byte first); each item is
preceded by two bytes of display attribute, and followed by a null. There is an
additional null following all the scrolling data. The whole area is preceded by
an unsigned integer giving its size. If you are programming in C, you can access
it by

 length = ((unsigned int *)buffer)[-1];

RETURNS

 -1 if an error occurred, usually memory allocation failure; 0 otherwise.

NAME

 sm_return - prepare for return to JAM application

SYNOPSIS

 void sm_return ();

DESCRIPTION

This routine should be called upon returning to a JAM application after a
temporary exit.

It sets up the operating system channel and initializes the display using the
SETUP string from the video file. It does not restore the screen to the state it
was in before sm_leave was called; use sm_rescreen to accomplish that, if
desired.

VARIANTS AND RELATED FUNCTIONS

 #include "smdefs.h"

 sm_leave ();
 sm_resetcrt ();

EXAMPLE

#include "smdefs.h"

/* Escape to the UNIX shell for a directory listing */

sm_leave ();
system ("ls -l");
sm_return ();
sm_c_off ();
sm_d_msg_line ("Hit any key to continue", BLINK | WHITE);
sm_getkey ();
sm_d_msg_line ("", WHITE);
sm_rescreen ();

NAME

 sm_rmformlist - empty out the memory-resident form list

SYNOPSIS

 void sm_rmformlist ();

DESCRIPTION

This function erases the memory-resident form list established by sm_formlist,
and releases the memory used to hold it. It does not release any of the
memory-resident screens themselves. Calling this function will prevent
sm_r_window and related functions from finding memory-resident screens.

VARIANTS AND RELATED FUNCTIONS

 sm_formlist (ptr_to_form_list);

EXAMPLE

/* Hide all the memory-resident forms, perhaps
 * because the disk versions are being modified. */

sm_rmformlist ();

NAME

 sm_rrecord - read data from a structure to the screen or local data
 block

SYNOPSIS

 #include "smdefs.h"

 void sm_rrecord (structure_ptr, record_name, byte_count, lang);
 char *structure_ptr;
 char * record_name;
 int *byte_count;
 int lang;

DESCRIPTION

When a data dictionary containing records is run through the dd2struct utility,
structure definitions based on the fields of each record in the data dictionary
are saved in a file with the record name plus a language-specific extension.
Including this file in an application allows declarations of objects of these
structure types. Such objects must be declared for sm_rrecord and sm_wrecord to
be used.

The argument structure_ptr is the address of one such declared structure. The
argument record_name is the name of the data dictionary record, needed for
looking up its attributes.

The argument byte_count is a pointer to an integer. Upon return from sm_rrecord,
the value contained in the integer will be the number of bytes or characters
read from or written to the structure. It will be 0 if an error occured.

The argument lang is the language number, as defined in smdefs.h . Zero stands
for C with null-terminated strings, one for C with blank-filled strings.

sm_rrecord reads a structure into fields on the screen, or, if the field is not
on the screen, of the local data block. The fields involved are those contained
in the corresponding data dictionary record. If a structure element is of a
numeric type, such as integer or floating point, it is first converted into a
character array. Because the field names are available in the data dictionary
record definition, they may be selected arbitrarily; with sm_rdstruct, on the
other hand, the structure must contain the entire screen.

The structure being read should have been filled in previously by a call to
sm_wrecord, using the same values of structure_ptr, record_ptr, and lang. Or,
the application can access the elements of the structure directly, and fill in
data prior to a call of sm_rrecord. Failure to use the same values of
structure_ptr and lang, or not terminating strings properly when accessing the
structure directly, may cause sm_rrecord to lie or crash.

VARIANTS AND RELATED FUNCTIONS

 sm_wrecord (structure_ptr. record_name, byte_count, lang);

NAME

 sm_rs_data - restore saved data to some of the screen

SYNOPSIS

 void sm_rs_data (first_field, last_field, buffer);
 int first_field;
 int last_field;
 char *buffer;

DESCRIPTION

Restores all data items, both onscreen and offscreen, to the fields between
first_field and last_field from an area initialized by sm_sv_data. The address
of the area is in buffer.

See sm_sv_data to create a buffer for subsequent retrieval by this function. If
the range of fields passed to this function does not match that passed to
sm_sv_data, or buffer is not a value returned by that function, grievous errors
will probably occur.

The format of the data area is explained briefly under sm_restore_data.

RETURNS

 -1 if an error occurred, usually memory allocation failure; 0 otherwise.

EXAMPLE

NAME

 sm_rscroll - scroll an array or parallel arrays

SYNOPSIS

 int sm_rscroll (field_number, req_scroll)
 int field_number;
 int req_scroll;

DESCRIPTION

This function scrolls an array or set of parallel arrays by req_scroll items. If
req_scroll is positive, the array scrolls down (towards the bottom of the data);
otherwise, it scrolls up. It supersedes the Release 3 function sm_scroll.

The function returns the actual amount scrolled. This could be the amount
requested; a smaller value, if the requested amount would bring the array past
its beginning or end; or zero, if the array was at its beginning or end, or an
error occurred. It is never negative.

RETURNS

 See above.

VARIANTS AND RELATED FUNCTIONS

 sm_n_rscroll (field_name, req_scroll);
 sm_t_scroll (field_number);
 sm_ascroll (field_number, occurrence);

EXAMPLE

#include "smdefs.h"

/* Find the number of the scrolling item under the cursor,
 * and scroll down to the next higher multiple of 5. */

int thisn;

thisn = sm_occur_no ();
sm_rscroll (sm_getcurno (), 5 - (thisn % 5));

NAME

 sm_s_val - validate the current screen

SYNOPSIS

 int sm_s_val ();

DESCRIPTION

This function loops through the screen validating each field and data item,
whether on or offscreen, that is not protected from validation (VPROTECT). It is
called automatically from sm_openkeybd when you press the TRANSMIT key.

Validations are performed as follows. If there are no scrolling arrays or
fields, the order is left to right, then top to bottom. If a scrolling array or
field is encountered, and it contains the first onscreen item for that array (or
field), earlier offscreen items are validated first. If it contains the last
onscreen item, any later offscreen items are validated immediately after that
field.

If parallel scrolling arrays (or fields) exist, there are more complications.
When an offscreen item is validated, the corresponding items from parallel
arrays are validated as well, from left to right. The offscreen items preceding
the parallel arrays are validated before the first onscreen item of the leftmost
of the parallel arrays; similarly, the offscreen items following the arrays are
validated immediately after the last onscreen item of the rightmost.

Individual field validations are performed in the following order. The table
also notes conditions under which validations are skipped.

 Validation Skip if valid Skip if empty

 required y n
 must fill y y
 regular expression y y
 range y y
 check-digit y y
 date or time y y
 table lookup y y
 currency format y n*
 math expresssion n n
 exit function n n
 jpl function n n

*
 The currency format edit contains a skip-if-empty flag; see the Author's Guide.

If you need to force a skip-if-empty validation, make the field required. A
digits-only field must contain at least one digit in order to be considered
nonempty; for other character edits, any nonblank character makes the field
nonempty. The currency format edit contains a skip-if-empty flag; see the
Author's Guide.

If an item fails validation, the cursor is positioned to it and an error message
displayed. (If the item was offscreen, its array or field is first scrolled to
bring it onscreen.) This routine returns at the first error; fields past that
will not be validated.

RETURNS

 -1 if any field fails validation, 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_fval (field_number);

EXAMPLE

#include "smdefs.h"
#include "smkeys.h"

/* Treat the SPF1 key as transmit, for a change. */

int key;

sm_d_msg_line ("Press %KSPF1 when done.", WHITE | REVERSE);

while ((key = sm_openkeybd ()) != EXIT)
{
 if (key == SPF1)
 {
 if (sm_s_val ())
 sm_err_reset ("Please correct the mistake(s).");
 else break;
 }
}
...

NAME

 sm_save_data - save screen contents

SYNOPSIS

 char *sm_save_data ();

DESCRIPTION

The current screen's data is saved for external access or subsequent retrieval,
and the address of the save area returned.

To restore the saved data, use sm_restore_data; refer to that function for a
brief explanation of the save format. Use sm_sv_free to discard a save area.

RETURNS

 0 if insufficient memory was available, otherwise the address of a memory
 area containing the screen's data.

VARIANTS AND RELATED FUNCTIONS

 sm_restore_data (buffer);
 sm_sv_data (first_field, last_field);
 sm_sv_free (buffer);

EXAMPLE

NAME

 sm_sc_max - alter the maximum number of items allowed in a scrollable
 field or array

SYNOPSIS

 int sm_sc_max (field_number, new_max)
 int field_number, new_max;

DESCRIPTION

Changes the maximum number of items allowed in field_number, and in all fields
(or arrays) parallel to it. The original maximum is set when the form is
created. If the desired new maximum is less than the number of items already
entered into the field or array, the old maximum will remain. The maximum can
decrease only if new_max is between the number of items already entered and the
previous maximum.

RETURNS

 The actual new maximum (see above); or 0 if the desired maximum is invalid,
 or if the field is not scrollable.

VARIANTS AND RELATED FUNCTIONS

 sm_n_sc_max (field_name, new_max);
 sm_max_item (field_number);
 sm_num_items (field_number);

EXAMPLE

#include "smdefs.h"
#define SCROLLNUM 7

/* When the number of items entered in a scroll exceeds
 * ten less than the maximum, increase the maximum by 100. */

int maxnow;

maxnow = sm_max_item (SCROLLNUM);
if (maxnow - sm_num_items (SCROLLNUM) < 10)
 sm_sc_max (SCROLLNUM, maxnow + 100);

NAME

 sm_sdate - get formatted system date

SYNOPSIS

 #include "smdefs.h"

 char *sm_sdate (format)
 char *format;

DESCRIPTION

Obtains the current date from the operating system, and formats it according to
format, and returns the resulting string.

You may retrieve the date format from a field, using sm_edit_ptr, or construct
it by other means. Refer to the Author's Guide for a description of date
formats. Refer to sm_calc for a way of getting an arbitrary date into a
formatted date field.

This function shares a single static buffer with other date and time formatting
functions. The formatted date returned by this function should therefore be
processed quickly, or copied to a local string.

RETURNS

 The current date in the specified format. Empty if the format is invalid.

EXAMPLE

#define FORMAT1 "MM/DD/YY"

/* Display the date and the string used to format it. */

 sm_n_putfield ("format", FORMAT1);
 sm_n_putfield ("date", sm_sdate (FORMAT1));

NAME

 sm_setbkstat - set background text for status line

SYNOPSIS

 #include "smdefs.h"

 void sm_setbkstat (message, attr)
 char *message;
 int attr;

DESCRIPTION

The message is saved, to be shown on the status line whenever there is no higher
priority message to be displayed. The highest priority messages are those passed
to sm_d_msg_line, sm_err_reset, sm_quiet_err, or sm_query_msg; the next highest
are those attached to a field by means of the status text option (see the JAM
Author's Guide). Background status text has lowest priority.

Attr is the initial display attribute for the message, and is a combination of
the following values.

 Colors Highlights

 BLACK BLUE BLANK REVERSE
 GREEN CYAN UNDERLN BLINK
 RED MAGENTA HILIGHT
 YELLOW WHITE DIM

The background colors defined in smdefs.h (B_BLACK and so forth) are also
available.

sm_setstatus sets the background status to an alternating ready/wait flag; you
should turn that feature off before using this function.

Refer to sm_d_msg_line for an explanation of how to embed attribute changes and
function key names into your message.

VARIANTS AND RELATED FUNCTIONS

 sm_setstatus (flag);
 sm_d_msg_line (message, attribute);

EXAMPLE

#include "smdefs.h"
#define PAUSE sleep (3)

/* The hierarchy of status messages. Assume the field
 * "mama" has status text reading "Mama bear", and that
 * the home field has none. */

sm_d_msg_line ("", WHITE);
sm_setstatus (0);
sm_setbkstat ("Baby bear", MAGENTA);
PAUSE;
sm_n_gofield ("mama");
PAUSE;
sm_d_msg_line ("Papa bear", BLUE | HILIGHT);
PAUSE;
sm_home ();
PAUSE;

NAME

 sm_setstatus - turn alternating background status message on or off

SYNOPSIS

 void sm_setstatus (mode)
 int mode;

DESCRIPTION

If mode is non-zero, alternating status flags are turned on. After this call,
one message (normally Ready) is displayed on the status line while the keyboard
is open for input, and another (normally Wait) when it is not. If mode is zero,
the messages are turned off.

The status flags will be replaced temporarily by messages passed to sm_err_reset
or a related function. They will overwrite messages posted with sm_d_msg_line or
sm_setbkstat.

The alternating messages are stored in the message file as SM_READY and SM_WAIT,
and can be changed there. Attribute changes and function key names can be
embedded in the messages; refer to sm_d_msg_line for instructions.

VARIANTS AND RELATED FUNCTIONS

 sm_setbkstat (message, attr);

EXAMPLE

#include "smdefs.h"
#include "smerror.h"
#define PAUSE sleep (3)

char buf[100];

/* Tell people what you're gonna tell 'em. */
sprintf (buf, "You will soon see %s alternating with %s below.",
 sm_msg_get (SM_READY), sm_msg_get (SM_WAIT));
sm_do_region (3, 0, 80, WHITE, buf);

/* Now tell 'em. */
sm_setstatus (1);
PAUSE; /* Shows WAIT */
sm_openkeybd (); /* Shows READY */

/* Finally, tell 'em what you told 'em. */
sprintf (buf, "That was %s alternating with %s on the status line.",
 sm_msg_get (SM_READY), sm_msg_get (SM_WAIT));
sm_err_reset (buf);

NAME

 sm_sh_off - determine the cursor location relative to the start of a
 shifting field

SYNOPSIS

 int sm_sh_off ();

DESCRIPTION

Returns the difference between the start of data in a shiftable field and the
current cursor location. If the current field is not shiftable, it returns the
difference between the leftmost column of the field and the current cursor
location, like sm_disp_off.

RETURNS

 The difference between the current cursor position and the start of
 shiftable data in the current field. -1 if the cursor is not in a
 field.

VARIANTS AND RELATED FUNCTIONS

 sm_disp_off ();

EXAMPLE

#include "smdefs.h"

/* Fancy test to see whether a field is shifted to the left. */

if (sm_sh_off () != sm_disp_off ())
 sm_err_reset ("Ha! You shifted!");

NAME

 sm_size_of_array - get the number of elements in an array

SYNOPSIS

 int sm_size_of_array (field_number)
 int field_number;

DESCRIPTION

Returns the number of elements in the array containing field_number. A non-array
field is considered to have one element.

RETURNS

 0 if the field designation is invalid; 1 if the field is not an array; The
 number of elements in the array otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_n_size_of_array (field_name);
 sm_num_items (field_number);
 sm_max_occur (field_number);

EXAMPLE

#define THEFIELD 6

/* Compute the number of pages of data in a scrolling
 * array, where a page is one onscreen-array-full. */

int pages, elements;

elements = sm_size_of_array (THEFIELD);
pages = (sm_num_items (THEFIELD) + elements - 1) / elements;

NAME

 sm_smsetup - initalize table of setup variables, and execute some

SYNOPSIS

 int sm_smsetup (memfile)
 char memfile[];

DESCRIPTION

This function loads a file or files of setup variables into memory, and uses
some of them to set various screen manager options. It is called automatically
at screen manager start-up, by sm_initcrt. The file can be either disk- or
memory-resident. A complete list of setup variables can be found in the section
on the setup file, in the Configuration Guide. You may find using a setup file
to be more flexible and convenient than calling many of the option-setting
routines in the library.

If the argument memfile is nonzero, this function uses it alone, in place of the
system SMVARS file. If there is an SMSETUP in the memory-resident file or the
system environment, it will be used too. If memfile is zero, the two files
pointed to by SMVARS and SMSETUP are read in.

There is another function, sm_unsetup, that restores all the options affected by
this routine to their default values.

RETURNS

VARIANTS AND RELATED FUNCTIONS

 sm_unsetup ();

EXAMPLE

/* Install a memory-resident setup file. */
extern char memsetup[];

if (sm_smsetup (memsetup) < 0)
 sm_cancel ();

NAME

 sm_stime - get formatted system time

SYNOPSIS

 #include "smdefs.h"

 char *sm_stime (format)
 char *format;

DESCRIPTION

Obtains the current time from the operating system, formats it according to
format, and returns the resulting string. The format can be obtained from a time
field by calling sm_edit_ptr, or you can construct it by other means.

See the Author's Guide for a description of recognized time formats.

This function shares a single static buffer with other date and time formatting
functions. The formatted time returned by this function should therefore be
processed quickly, or copied to a local string.

RETURNS

 The time of day in the specified format.

EXAMPLE

#define FORMAT1 " HH:MM:SS"

/* Print the time, and why it looks the way it does. */

 sm_n_putfield ("format" ,FORMAT1);
 sm_n_putfield ("time", sm_stime (FORMAT1));

NAME

 sm_strip_amt_ptr - strip amount editing characters from a string

SYNOPSIS

 #include "smdefs.h"

 char *sm_strip_amt_ptr (field_number, inbuf)
 int field_number;
 char *inbuf;

DESCRIPTION

Strips all non-digit characters from the string, except for an optional leading
minus sign and decimal point. If inbuf is nonzero, field_number is ignored and
the passed string is processed in place.

If inbuf is zero, the contents of field_number are used. This function shares
with several others a pool of buffers where it stores returned data. The value
returned by any of them should therefore be processed quickly or copied.

RETURNS

 A pointer to a buffer containing the stripped text, or 0 if inbuf is 0 and
 the field number is invalid.

VARIANTS AND RELATED FUNCTIONS

 sm_dblval (field_number);
 sm_amt_format (field_number, string);

EXAMPLE

#include "smdefs.h"

char *strip_text;

strip_text = sm_strip_amt_ptr (0, "$1,123,456");
if (strcmp (strip_text, "1123456") != 0)
 punt ("Bug in strip_amt_ptr");

NAME

 #COMMENT(NOT PYRCOB) sm_sv_data - save partial screen contents

SYNOPSIS

 #include "smdefs.h"

 char *sm_sv_data (first_field, last_field)
 int first_field;
 int last_field;

DESCRIPTION

The current form's data, from all fields numbered from first_field to
last_field, is saved for external access or subsequent retrieval, and the
address of the save area returned. Use sm_rs_data to restore it.

See sm_restore_data for the save format.

RETURNS

 The address of an area containing the saved data. 0 if the current screen
 has no fields, or sufficient free memory is not available.

VARIANTS AND RELATED FUNCTIONS

 sm_rs_data (first_field, last_field, buffer);
 sm_save_data ();
 sm_sv_free (buffer);

NAME

 sm_sv_free - free a save-data buffer

SYNOPSIS

 void sm_sv_free (buffer)
 char *buffer;

DESCRIPTION

The save area at buffer, which must have been created by sm_save_data or
sm_sv_data, is released and is no longer accessible.

sm_save_data and related functions record the addresses of save areas, and after
ten have been accumulated the oldest are released automatically; calls to this
function are therefore not strictly necessary.

NAME

 sm_t_scroll - test whether field can scroll

SYNOPSIS

 int sm_t_scroll (field_number)
 int field_number;

DESCRIPTION

Returns 1 if the field in question is scrollable, and 0 if not or if there is no
such field.

RETURNS

 1 if field exists and scrolls; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_t_shift (field_number);

EXAMPLE

/* If the current field is scrolling, set it back to
 * the beginning. */

if (sm_t_scroll (sm_getcurno ())
 sm_ascroll (sm_base_fldno (sm_getcurno ()), 1);

NAME

 sm_t_shift - test whether field can shift

SYNOPSIS

 int sm_t_shift (field_number)
 int field_number;

DESCRIPTION

Returns 1 if the field in question is shiftable, and 0 if not or if there is no
such field.

RETURNS

 1 if field is shifting. 0 if not shifting or no such field

VARIANTS AND RELATED FUNCTIONS

 sm_t_scroll (field_number);

EXAMPLE

#include "smdefs.h"

/* Turn on shifting indicators if the screen contains any
 * shifting fields. */

int f;

for (f = 1; f <= sm_numflds; ++f)
{
 if (sm_t_shift (f))
 {
 sm_ind_set (IND_SHIFT);
 sm_rescreen ();
 break;
 }
}

NAME

 sm_tab - move the cursor to the next unprotected field

SYNOPSIS

 void sm_tab ();

DESCRIPTION

If the cursor is in a field with a next-field edit and one of the fields
specified by the edit is unprotected, the cursor is moved to the first enterable
position of that field. Otherwise, the cursor is advanced to the first enterable
position of the next unprotected field on the form.

The first enterable position is the leftmost in a left-justified field and the
rightmost in a right-justified field; furthermore, in a digits-only field,
punctuation characters are skipped.

Unlike the TAB key, this function does not cause field exit processing to be
performed. To simulate a TAB keystroke, see below.

EXAMPLE

#include "smkeys.h"

/* This moves the cursor to the next field. */
sm_tab ();

/* This moves the cursor to the next field, validating
 * the current one first. */
sm_ungetkey (TAB);

NAME

 sm_tst_all_mdts - find first modified item

SYNOPSIS

 int sm_tst_all_mdts (occurrence)
 int *occurrence;

DESCRIPTION

This routine tests the MDT bits of all occurrences of all fields on the current
screen, and returns the field and occurrence numbers of the first item with its
MDT set, if there is one. The MDT bit indicates that an item has been modified,
either from the keyboard or by the application program, since the screen was
displayed (or since its MDT was last cleared by sm_op_mdt).

This function returns zero if no items have been modified. If one has been
modified, it returns the field number, and stores the occurrence number in the
variable addressed by occurrence.

RETURNS

 0 if no MDT bit is set anywhere on the screen; The number of the first
 field on the current screen for which some occurrence has its MDT bit
 set. In this case, the number of the first occurrence with MDT set is
 returned in the reference parameter occurrence.

VARIANTS AND RELATED FUNCTIONS

 sm_op_mdt (field_number, operation);

EXAMPLE

#include "smdefs.h"

/* Clear MDT for all fields on the form; then write
 * data to the last field, and check that its MDT is
 * the first one set. */

int occurrence;

sm_cl_all_mdts();
sm_putfield (sm_numflds, "Hello");
if (sm_tst_all_mdts (&occurrence) != sm_numflds)
 sm_err_reset ("Something is rotten in the state of Denmark.");

NAME

 sm_u_async - asynchronous keyboard input hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_async;

 int my_async (interval)
 int interval;

DESCRIPTION

The function is called only when the keyboard is being read, and only if a
keystroke does not arrive within the time limit given at installation. That
timeout is in tenths of a second, although its real value depends on the
granularity of your system's clock; it is placed in the intrn_use member of the
fnc_data structure. See sm_install for more about installation.

The asynchronous function is called from sm_gtchar, one level below sm_getkey.
If it returns zero, everything proceeds as before. If it returns -1, sm_gtchar
goes directly to the keyboard for a character, and does not call the
asynchronous function again until it gets one (and is asked for another). Any
other value is passed back to sm_getkey.

The authoring utility uses an asynchronous function to update its cursor
position display. Another typical use might be to implement a real-time clock
display.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 See above.

VARIANTS AND RELATED FUNCTIONS

 sm_install (which_hook, what_funcs, howmany);

EXAMPLE

/* A typical use of the window selection routines is to
 * update information to a window that may (or may not) be
 * covered. For example, suppose that the current time
 * should be maintained on the underlying form. Assume
 * that a field named "curtime" exists on that form.
 * The following code fragments can be used
 * to maintain that field independent of the number of windows
 * currently open above the form.
 */

#include "smdefs.h"

updatetime()
{
 sm_wselect (0); /* quietly select the bottom form */
 sm_n_putfield ("curtime", ""); /* update system time display */
 sm_wdeselect ();/* restore visible window */
 sm_flush ();
 return (0);
}

/* In initialization code: called every second. */

 static struct fnc_data afunc = { 0, updatetime, 0, 10, 0, 0 };
 sm_install (ASYNC_FUNC, &afunc, (int *)0);

NAME

 sm_u_avail - playback character availability hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_avail;

 int my_avail (interval)
 int interval;

DESCRIPTION

This hook is called from sm_keyhit, q.v. That function's mission is to find if
there's a key waiting to be read; before looking at the physical keyboard, it
checks for avavilable playback characters by calling this function. The latter
should return a positive value if there are characters available for playback
(by sm_u_play), and zero if there is nothing to play back. If the playback
system is inactive, it should return -1, and sm_keyhit will go on to poll the
keyboard. This hook is also called from sm_getkey; if it returns a positive
value, the latter then calls sm_u_play to retrieve a key.

The argument interval is the length of time, in tenths of a second, that
sm_keyhit is supposed to wait for a key. You can use this to simulate a
realistic rate of typing, by pausing in this function.

Along with sm_u_play and sm_u_record, this function forms part of a keystroke
recording and playback package. Such a package can be quite useful in regression
testing and performance analysis of JAM applications, because it enables you to
reproduce a series of inputs exactly and with little effort.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 1 (or other positive value) if there are characters to be played back; 0 if
 the playback system is active but there are no characters available;
 -1 if the playback system is inactive.

VARIANTS AND RELATED FUNCTIONS

 sm_keyfilter (flag);
 sm_u_play ();
 sm_u_record (key);

EXAMPLE

See sm_u_play for a detailed example of a keystroke recording package.

NAME

 sm_u_ckdigit - check digit validation hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_ckdigit;

 int myckdigit (field, data, item, modulus, digits);
 int field, item, modulus, digits;
 char *data;

DESCRIPTION

This hook is called by field validation. It verifies that data contains the
required minimum number of digits, terminated by the proper check digit. If not,
it positions the cursor to the indicated occurrence and posts an error message
before returning. It also be used to check any character string, or any field.
If data is null, the string to check is obtained from the field and occurrence
number, and the error message is displayed if that string is bad. If
field_number is zero, no message will be posted, but the function's return code
will indicate whether the string passed its check.

The source code to sm_ckdigit is included with JAM; refer to it for descriptions
of our check digit algorithms and how to implement your own. Note that the
parameter digits specifies the minimum number of digits, not the check digit. If
you decide to modify that module without renaming it, you do not need to call
sm_install; JAM already does that.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 0 if the number contains the minimum number of digits and the proper check
 digit; -1 for a present but invalid string; -2 if no string is
 supplied and the field or occurrence number is out of range.

VARIANTS AND RELATED FUNCTIONS

 sm_ckdigit (field, data, item, modulus, digits);
 sm_install (which_hook, what_func, howmany);

EXAMPLE

#include "smdefs.h"

/* Validate a check digit in field 1 directly. The
 * routine itself will display an error message if the
 * validation fails. */

if (sm_ckdigit(1, (char *)0, 0, 10, 2))
 sm_gofield (1);

NAME

 sm_u_inscrsr - insert/overstrike mode switch hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_inscrsr;

 int myinscrsr (insert_mode)
 int insert_mode;

DESCRIPTION

The JAM library calls a user-defined function while switching from insert to
overstrike mode (or vice versa). The intention is to allow for a visible
indication of the mode. Insert_mode is 1 if JAM is entering insert mode, and 0
if it is entering overstrike mode.

Your function must be installed via a call to sm_install, q.v. It will be called
by sm_getkey when the latter reads the INSERT key from the keyboard. If the
INSON and INSOFF entries are present in the video file, JAM will send them in
addition to calling this function; if all you want is a change of cursor style,
you can get away with that.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

VARIANTS AND RELATED FUNCTIONS

 sm_install (which_hook, what_function, howmany);

EXAMPLE

#include "smdefs.h"

/* The following function is installed on the "change
 * insert mode" hook. It modifies an area at the lower right-
 * hand corner of the screen to show whether the current
 * mode is insert or overstrike. */

int insf (insert_on)
int insert_on;
{
 if (insert_on)
 sm_do_region (sm_nlines - 1, sm_ncolms - 4, 3,
 REVERSE | WHITE, "INS");
 else
 sm_do_region (sm_nlines - 1, sm_ncolms - 4, 3,
 REVERSE | WHITE, "OVR");
 return 0;
}

/* Installation code for the above. */

struct fnc_data insf = {
 "mycurs", mycurs, 0, 0, 0, 0
};

sm_install (INSCRSR_FUNC, &insf, (int *)0);

NAME

 sm_u_keychg - logical key translation hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_keychg;

 int mykeychg (input_key)
 int input_key;

DESCRIPTION

This is a user-installable function called from sm_getkey. You can install your
own by calling sm_install with KEYCHG_FUNC.

The argument to this function is a logical key read by sm_getkey; you may put
special key processing here. If your function returns zero, the key is removed
from the input stream, and sm_getkey reads in the next one without returning to
its caller. If your function returns any other value, sm_getkey returns that
directly to its caller.

See sm_u_play for an additional example of a keychange function.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 as described above

VARIANTS AND RELATED FUNCTIONS

 sm_install (which_hook, what_func, howmany);
 sm_getkey ();

EXAMPLE

/* What follows is an extremely simple-minded keyboard
 * macro implementation, using a keychange function.
 * Any character following a backslash \ is looked up in a
 * hard-coded table, and the string corresponding to
 * that character (if any) substituted. If the character isn't
 * there, it beeps. The expansion string is pushed back
 * onto the input using sm_ungetkey.
 */

#include "smdefs.h"

int macro ();
void try_expand ();

/* Macro expansion table. Will expand \j to "JYACC, Inc."
 * and so forth. The zero tag marks the end of the table. */

static struct macrotab {
 char tag;
 char *expansion;
} macrotab[] = {
 'j', "JYACC, Inc.",
 'v', "Version 4.0",
 'a', "116 John St., New York, NY, 10038",
 0, ""
};

/* This is the keychange function. It looks out for a
 * backslash, and when it gets one sets a flag to try
 * expanding the next character it gets. Both the backslash
 * and the following character are deleted from the input
 * stream. The actual expansion is done in a subroutine.
 */

int macro (key)
int key;
{
#define ESCAPE '\\'
 static int saw_escape_last_time;

 if (saw_escape_last_time)
 {
 try_expand (key);
 saw_escape_last_time = 0;
 return 0;
 }
 else if (key == ESCAPE)
 {
 saw_escape_last_time = 1;
 return 0;
 }
 else return key;
}

/* This function looks up 'key' in the table, and if it
 * finds it there, pushes the expansion onto the input.
 * Note that the expansion must be pushed backwards.
 */

void try_expand (key)
int key;
{

 struct macrotab *m;
 char *p;

 for (m = macrotab; m->tag != 0; ++m)
 {
 if (m->tag == key)
 {
 p = m->expansion + strlen (m->expansion) - 1;
 while (p >= m->expansion)
 sm_ungetkey (*p--);
 return;
 }
 }

 sm_bel (); /* Could not expand */
}

/* Finally, here is code to install 'macro' as a
 * keychange function, using sm_install. */

static struct fnc_data keychg = {
 "macro", macro, 0, 0, 0, 0
};

sm_install (KEYCHG_FUNC, &keychg, (int *)0);

NAME

 sm_u_play - keystroke playback hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_play;

 int myplay ();

DESCRIPTION

This hook is called from sm_getkey. If it returns a nonzero value, sm_getkey
treats it as an already translated logical key, which is returned to its caller.
The key may be a standard displayable ASCII character, or one of the values
defined in smkeys.h . Normally, the returned key will have been stored in some
fashion by a previous call to sm_u_record; the recording algorithm is entirely
up to you. Refer to sm_getkey for details about just when this and other input
processing hooks are invoked.

Along with sm_u_avail and sm_u_record, this function forms part of a keystroke
recording and playback package. Such a package can be quite useful in regression
testing and performance analysis of JAM applications, because it enables you to
reproduce a series of inputs exactly and with little effort.

When sm_getkey obtains a key from this function, it does not update the display
first, as it does when reading a key from the keyboard. You may want to call
sm_flush from this function or from sm_u_avail in order to keep the display in
sync with the input, e.g. to have data characters echoed.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 Any ASCII character or JAM logical key code; zero if there is nothing to
 play back.

VARIANTS AND RELATED FUNCTIONS

 sm_keyfilter (flag);
 sm_u_record (key);
 sm_u_avail (interval);

EXAMPLE

#include "smdefs.h"
#include "smerror.h"
#include "smkeys.h"

/* The code below forms a simple keystroke recording and playback
 * package, using the three hooks provided for that purpose.
 * Pressing PF2 causes following keystrokes to be saved in memory;
 * pressing PF3 stops recording keystrokes; and pressing PF4 causes
 * the list of saved keystrokes to be played back, with a one-second
 * pause between them. These transitions are done in a keychange
 * function, which is another sm_getkey hook.

 * While either recording or playback is in progress, a small
 * display area in the upper left-hand corner tells what is going on
 * and how many keys have been processed so far.
 */

/* Assign names for the control keys. */
#define START_RECORDING PF2
#define STOP_RECORDING PF3
#define START_PLAYING PF4

int play(), record(), avail(), playchange();
void status();

int *keylist, /* Buffer for saved keys */
 keycount, /* Number of keys saved up */
 keysize, /* Size of save buffer */
 playkey, /* Index of next key to play back */
 recording, /* Nonzero while recording */
 playing; /* Nonzero while playing back */

/* This function is installed on the playback hook.
 * It just steps through the list of recorded keys, and
 * turns itself off when it reaches the end. */

int play ()
{
 if (! playing)
 return 0;
 else if (playkey == keycount)
 {
 playing = 0;
 status (0, 0);
 return 0;
 }
 else
 {
 status ('P', playkey + 1);
 return keylist[playkey++];
 }
}

/* This function is installed on the record hook.
 * It save the key it is passed in a dynamic array,
 * expanding the array when it's full. */

int record (key)
{
 if (recording)
 {
 if (keycount == keysize)
 keylist = (int *)realloc(keylist,
 sizeof(int) * (keysize *= 2));
 keylist[keycount++] = key;
 status ('R', keycount);
 }
 return 0;
}

/* This function tells sm_getkey whether there's anything left
 * to play back. It also flushes the display and pauses for
 * a second, so you can see the replayed characters going by. */

int avail (interval)
{

 if (playing)
 {
 sm_flush ();
 sleep (1);
 return 1;
 }
 return 0;
}

/* This function controls all of the above, triggering on
 * the PF2, PF3, and PF4 keys. */

int playchange (key)
{
 switch (key)
 {
 case START_PLAYING:
 if (recording)
 sm_quiet_err ("You're recording.");
 else if (keycount <= 0)
 sm_quiet_err ("Nothing to play.");
 else
 {
 playing = 1;
 playkey = 0;
 status ('P', 0);
 }
 return 0;

 case START_RECORDING:
 if (playing)
 sm_quiet_err ("You're playing.");
 else if (recording)
 sm_quiet_err ("You're already recording.");
 else
 {
 keylist = (int *)malloc(sizeof(int) * (keysize = 50));
 keycount = 0;
 recording = 1;
 status ('R', 0);
 }
 return 0;

 case STOP_RECORDING:
 recording = 0;
 status (0, 0);
 return 0;

 default:
 return key;
 }
}

/* This routine places the current operation and count in the
 * upper left-hand corner of the screen. The calculation is
 * to avoid borders. */

void status (flag, count)
{
#define SWIDTH 4
 int corner;
 char buf[10];

 corner = sm_cform->form.bord_char ? 1 : 0;

 if (flag == 0)
 {
 buf[0] = 0;
 sm_do_region (corner, corner, SWIDTH, WHITE, buf);
 }
 else
 {
 sprintf (buf, "%c%.3d", flag, count);
 sm_do_region (corner, corner, SWIDTH, REVERSE | WHITE, buf);
 }
}

/* Finally, here is code to initialize the necessary hooks. */

static struct fnc_data playf = {
 "play", play, C_FUNC, 0, 0, 0
};
static struct fnc_data recordf = {
 "record", record, C_FUNC, 0, 0, 0
};
static struct fnc_data availf = {
 "avail", avail, C_FUNC, 0, 0, 0
};
static struct fnc_data changef = {
 "playchange", playchange, C_FUNC, 0, 0, 0
};

sm_install (PLAY_FUNC, &playf, (int *)0);
sm_install (RECORD_FUNC, &recordf, (int *)0);
sm_install (AVAIL_FUNC, &availf, (int *)0);
sm_install (KEYCHG_FUNC, &changef, (int *)0);

NAME

 sm_u_record - keystroke recording hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_record;

 void myrecord (key);
 int key;

DESCRIPTION

This hook is called from sm_getkey. When it has a translated key value in hand,
whether read from the keyboard or obtained from another source, sm_getkey passes
it to this function so that it may be recorded, and perhaps played back by a
future call to sm_u_play. Values stored by sm_ungetkey are not passed to this
hook, but are returned directly to the caller of sm_getkey; refer to that
function's description for details about just when this and other input
processing hooks are invoked.

Along with sm_u_play and sm_u_avail, this function forms part of a keystroke
recording and playback package. Such a package can be quite useful in regression
testing and performance analysis of JAM applications, because it enables you to
reproduce a series of inputs exactly and with little effort.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

VARIANTS AND RELATED FUNCTIONS

 sm_keyfilter (flag);
 sm_u_play ();
 sm_u_avail (interval);

EXAMPLE

See sm_u_play for a detailed example of a keystroke recording package.

NAME

 sm_u_statfnc - status line display hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_statfnc;

 int mystatfnc ();

DESCRIPTION

This function is called before the generic code JAM uses to display stuff on the
status line. It is intended for use on terminals with really weird status lines
indecipherable to the generic code (see the video manual in the Configuration
Guide), but more imaginative uses are possible.

This function takes no arguments. The text to be displayed on the status line is
always stored in the last line of the global screen data buffer, sm_screen. You
can examine that line as:

 sm_screen[sm_nlines]

and have your way with it. If your function returns 0, sm_d_msg_line continues
with its processing. Otherwise, sm_d_msg_line returns immediately, assuming that
you have updated the status line.

jxform uses this hook to redisplay the cursor position on the screen whenever
the status line is changed; see sm_c_vis. Your function must be installed by a
call to sm_install, using STAT_FUNC.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 See above.

VARIANTS AND RELATED FUNCTIONS

 sm_d_msg_line (message, attribtue);
 sm_c_vis (flag);
 sm_install (which_hook, what_func, howmany);

EXAMPLE

NAME

 sm_u_uinit - do application-specific things at screen manager
 initialization time

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_uinit;

 int myuinit (terminal_type)
 char terminal_type[];

DESCRIPTION

This function is a hook for application code at screen manager initialization
time. It is called immediately on entry to sm_initcrt, which treats it as if its
job were to determine the terminal type; however, it need not do that, and it
may do anything else. It receives, in terminal_type, the address of a buffer
where JAM stores its terminal type string; if it writes a null-terminated string
there, sm_initcrt will use that instead of checking the environment.

On operating systems without an environment, this function can be used to obtain
the terminal type in some system-specific way. It can be used to do
initializations, but those are better done before the call to sm_initcrt.

This function must be installed via a call to sm_install, q.v., using
UINIT_FUNC.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

VARIANTS AND RELATED FUNCTIONS

 sm_initcrt (path);
 sm_install (which_hook, what_func, howmany);

NAME

 sm_u_ureset - screen manager cleanup hook

SYNOPSIS

 #include "smdefs.h"

 extern struct fnc_data *sm_u_ureset;

 void myureset ();

DESCRIPTION

sm_resetcrt calls this function just before returning; it provides a hook for
application-specific cleanup code. It receives no parameters, and any return
value is ignored. You should use sm_install to install it.

sm_resetcrt is normally called when the program catches an interrupt signal, or
exits normally; this is therefore a good place to attach processing that needs
to be done in the case of (abnormal) exit.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

VARIANTS AND RELATED FUNCTIONS

 sm_resetcrt ();
 sm_install (which_hook, what_func, howmany);
 sm_cancel ();

NAME

 sm_u_vproc - video processing hook

SYNOPSIS

 #Include "smdefs.h"

 extern struct fnc_data *sm_u_vproc;

 int myvproc (operation, parameters)
 int operation;
 int *parameters;

DESCRIPTION

This function is a hook for video output. JAM defines generic video operations,
and uses a configuration file to support them on a given display. It calls this
function to display output, passing it a video operation code, and a vector of
parameters containing zero or more integers. The operation codes are defined in
smvideo.h , and are listed below.

 Code Operation # Parameters

 V_INIT initialization string
 V_RESET reset string
 V_ED erase entire display & home cursor
 V_EL erase from cursor to end of line
 V_EW erase window to given background
 5
 V_REPT repeat character sequence 2
 V_CON turn cursor on
 V_COF turn cursor off
 V_INSON set insert cursor style
 V_INSOFF set overstrike cursor style
 V_SCP save cursor position
 V_RCP restore cursor position
 V_CUP absolute cursor position 2
 V_CUU cursor up 1
 V_CUD cursor down 1
 V_CUF cursor forward 1
 V_CUB cursor back 1
 V_SGR set latch graphics rendition 11
 V_ASGR set area graphics rendition 11
 V_ARGR remove area attribute
 V_OMSG open message line
 V_CMSG close message line
 V_KSET write to softkey label 2
 V_MODE0 set graphics mode 0
 (likewise V_MODE1, 2, 3)
 V_MODE4 single-character graphics mode
 (likewise V_MODE5, 6)
 BELL visible alarm sequence

This hook enables you to add special processing for standard video operations,
should you wish to replace or extend them. If you have severe memory
constraints, you can use sm_u_vproc to hard-code all video processing and
eliminate the device-independent video package entirely, thus saving substantial
space. Not all codes defined there will be passed to this routine, just those
that actually produce output, as are shown in the table.

Your video function must be installed with a call to sm_install, using
VPROC_FUNC. If it returns a nonzero value, JAM's run-time system will process
the operation normally, so you need implement only those operations you are
really interested in.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it will
conflict with the global variable used by JAM to store your function's address.

RETURNS

 Zero if the parameters were successfully processed, nonzero otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_install (which_hook, what_func, howmany);

NAME

 sm_ch_umsgatts - change the standard error windows attributes

SYNOPSIS

 void sm_ch_umsgatt (border_style, border_attribute,
 protected_attribute, menu_attribute)
 int border_style;
 int border_attribute;
 int protected_attribute;
 int menu_attr;

DESCRIPTION

Changes the display characteristics of the error windows that are part of the
library. Currently, there are two such windows: the error window, used to
display a message too long to fit on the status line; and the hit space window,
which pops up if you hit any key other than the space bar to acknowledge an
error message.

This function is intended to be called once, at the beginning of an application,
to set the display characteristics of the library windows to harmonize with the
application's own forms.

This function is similar to sm_ch_form_atts, which changes the attributes of the
system calls and "go to" windows as well as those of the error windows. Use of
that function is therefore preferable.

If border_style is less than 0, the windows are made borderless. Otherwise, it
is taken to be the border style number (0 through 9), and border_attribute, if
nonzero, is made the border attribute.

If protect_attribute is nonzero, it is used for protected fields that contain
messages in the error windows. menu_attribute is not currently used.

NAME

 sm_ungetkey - push back a translated key on the input

SYNOPSIS

 #include "smkeys.h"

 int sm_ungetkey (key);
 int key;

DESCRIPTION

Saves the translated key given by key so that it will be retrieved by the next
call to sm_getkey. Multiple calls are permitted; the key values are pushed onto
a stack (LIFO).

When sm_getkey reads a key from the keyboard, it flushes the display first, so
that the operator sees a fully updated display before typing anything. Such is
not the case for keys pushed back by sm_ungetkey; since the input is coming from
the program, it is responsible for updating the display itself.

RETURNS

 The value of its argument, or -1 if memory for the stack is unavailable.

VARIANTS AND RELATED FUNCTIONS

 sm_getkey ();

EXAMPLE

#include "smkeys.h"

/* Force tab to next field */
sm_ungetkey (TAB);

NAME

 sm_unprotect - completely unprotect a field

SYNOPSIS

 int sm_unprotect (field_number)
 int field_number;

DESCRIPTION

Removes all four kinds of protection (see table) from the field indicated by
field_number.

 Mnemonic Meaning

 EPROTECT protect from data entry
 TPROTECT protect from tabbing into (or from
 entering via any other key)
 CPROTECT protect from clearing
 VPROTECT protect from validation routines

To unprotect a field selectively, use sm_1unprotect; to unprotect an array as a
unit, use sm_aunprotect.

RETURNS

 -1 if the field is not found; 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_e_unprotect (field_name, element);
 sm_n_unprotect (field_name);
 sm_protect (field_number);
 sm_1unprotect (field_number, mask);
 sm_aunprotect (field_number, mask);

EXAMPLE

#include "smdefs.h"

/* If the executive has a PC, unprotect a field to
 * hold its make; otherwise, protect that field. */

if (sm_n_is_yes ("owns_pc"))
 sm_n_unprotect ("pc_make");
else sm_n_protect ("pc_make");

NAME

 sm_unsetup - restore screen manager options to their default values

SYNOPSIS

 void sm_unsetup ();

DESCRIPTION

This function calls all the option-setting library functions mentioned in the
setup file with their default parameters, effectively restoring "factory
defaults" to the whole library. There is a list of the functions involved in the
section on setup files in the Configuration Guide.

The values read in by sm_smsetup are not erased from memory.

VARIANTS AND RELATED FUNCTIONS

 sm_smsetup (memfile);

EXAMPLE

/* Back to defaults we go. */

sm_unsetup ();

NAME

 sm_vinit - initialize video translation tables

SYNOPSIS

 int sm_vinit (video_file)
 char *video_file;

DESCRIPTION

This routine is called by sm_initcrt as part of the initialization process. It
can also be called directly by an application program, with video_file the
address of a memory resident video file. Such a file must be created by the
JYACC vid2bin and bin2c utilities, then compiled into the application.

If video_file is zero, this function will read the binary file named by the
environment variable SMVIDEO from disk.

RETURNS

 0 if initialization is successful; -1 if video_file is zero and SMVIDEO is
 undefined; program exit if an error occurs in reading from disk.

EXAMPLE

/* Install a memory-resident video file */

extern char special_vid[];

sm_vinit (special_vid);

NAME

 sm_wdeselect - restore the formerly active window

SYNOPSIS

 int sm_wdeselect ();

DESCRIPTION

This function restores a window to its original position in the form stack,
after it has been moved to the top by a call to sm_wselect. Information
necessary to perform this feat is saved during each call to sm_wselect, but is
not stacked; therefore a call to this routine must follow a call to sm_wselect,
and select/deselect pairs cannot be nested.

RETURNS

 -1 if there is no window to restore. 0 otherwise.

VARIANTS AND RELATED FUNCTIONS

 sm_wselect (window);
 sm_n_wselect (window_name);

EXAMPLE

/* A typical use of the window selection routines is to
 * update information to a window that may (or may not) be
 * covered. For example, suppose that the current time
 * should be maintained on the underlying form. Assume
 * that a field named "curtime" exists on that form.
 * The following code fragments can be used
 * to maintain that field independent of the number of windows
 * currently open above the form.
 */

#include "smdefs.h"

updatetime()
{
 sm_wselect (0); /* quietly select the bottom form */
 sm_n_putfield ("curtime", ""); /* update system time display */
 sm_wdeselect ();/* restore visible window */
 sm_flush ();
 return (0);
}

/* In initialization code: called every second. */

 static struct fnc_data afunc = { 0, updatetime, 0, 10, 0, 0 };
 sm_install (ASYNC_FUNC, &afunc, (int *)0);

NAME

 fnc(wrecord) - copy data from the screen or LDB to a structure

SYNOPSIS

 #include "smdefs.h"

 void sm_wrecord (structure_ptr, record_name, byte_count, lang);
 char *structure_ptr;
 char * record_name;
 int *byte_count;
 int lang;

DESCRIPTION

When a data dictionary containing records is run through the dd2struct utility,
structure definitions based on the fields of each record in the data dictionary
are saved in a file with the dictionary name plus a language-specific extension.
Including this file (or specific structures of the file) in an application
allows declarations of objects of these structure types. Such objects must be
declared for sm_rrecord and sm_wrecord to be used.

The argument structure_ptr is the address of one such declared structure. The
argument record_name is the name of the data dictionary record, needed for
looking up its attributes.

The argument byte_count is a pointer to an integer. Upon return from sm_wrecord,
the value contained in the integer will be the number of bytes or characters
read from or written to the structure. It will be 0 if an error occured.

The argument lang is the language number, as defined in smsmdefs.h . Zero stands
for C with null-terminated strings, one for C with blank-filled strings.

sm_wrecord reads field data from the screen if possible, or from the local data
block, and fills in the appropriate elements of the structure. If a structure
element is of a numeric type, the data is first converted into the appropriate
representation for the machine.

VARIANTS AND RELATED FUNCTIONS

 sm_rrecord (structure_ptr, record_name, byte_count, lang);

NAME

 sm_wrt_part - write part of the screen to a structure

SYNOPSIS

 #include "smdefs.h"

 void sm_wrt_part (form_struct, first_field,
 last_field, language)
 char *form_struct;
 int first_field, last_field, language;

DESCRIPTION

This function copies the contents of all fields between first_field and
last_field to a data structure in memory. An array and its scrolling items will
be copied only if the first element falls between first_field and last_field.

The address of the structure is in screen_struct; it is a structure for the
whole screen, not just the part of interest. There is a utility, JYACC f2struct,
that will automatically generate such a structure from the screen file.

Language stands for the programming language in which the structure is defined;
it controls the conversion of string and numeric data. Zero stands for C with
null-terminated strings, one for C with blank-filled strings.

If your screen is so designed that (for instance) the input and output fields
are grouped together, this function can be much faster than sm_wrtstruct, which
copies every field.

VARIANTS AND RELATED FUNCTIONS

 sm_rd_part (screen_structure, first_field, last_field, language);
 sm_wrtstruct (screen_structure, byte_count, language);

EXAMPLE

The code example below uses the same screen as the sm_rdstruct example; refer to
that example for the screen's picture and listing.

Here is a header file produced by f2struct from the screen:

struct strex
{
 long date;
 char name[26];
 char address[3][76];
 char telephone[14];
};

Finally, here is a program that processes the screen using sm_rd_part and
sm_wrtpart.

#include "smdefs.h"
#include "smkeys.h"
#include "strex.h"

#define C_LANG 0

int main ();
void punt ();

char *program_name;

main (argc, argv)
char *argv[];
{
 struct strex
 example;
 int key;
 char ebuf[80];

 /* Initialize all structure members to nulls. This is
 * important because we are going to do an sm_rd_part
 * first. */
 example.date = 0L;
 example.name[0] = 0;
 example.address[0][0] = example.address[1][0] = 0;
 example.address[2][0] = 0;
 example.telephone[0] = 0;

 /* Copy command line arguments, if any, into the structure. */
 switch (argc)
 {
 case 6:
 default:
 /* Ignore extras */
 strcpy (example.telephone, argv[5]);
 case 5:
 strcpy (example.address[2], argv[4]);
 case 4:
 strcpy (example.address[1], argv[3]);
 case 3:
 strcpy (example.address[0], argv[2]);
 case 2:
 strcpy (example.name, argv[1]);
 program_name = argv[0];
 break;
 }

 /* Initialize the screen and copy the structure to it,
 * excluding the date field. */
 sm_initcrt ("");
 if (sm_r_form ("strex") < 0)
 punt ("Cannot read form.");
 sm_rd_part (&example, 2, sm_numflds, C_LANG);
 sm_n_putfield ("date", "");

 /* Open the keyboard to accept new data to the form, and
 * copy it to the structure when done. Break out when user
 * hits EXIT key. */
 sm_d_msg_line ("Enter data; press %KEXIT to quit.",
 WHITE | HILIGHT);
 do {
 key = sm_openkeybd ();
 sm_wrtstruct (&example, 2, sm_numflds, C_LANG);
 sprintf (ebuf, "Acknowledged: byte count = %d.",
 count);
 sm_err_reset (ebuf);
 } while (key != EXIT);

 /* Clear the screen and display the final structure contents. */
 sm_resetcrt ();
 printf ("%s\n", example.name);
 for (count = 0; count < 3; ++count)
 if (example.address[count][0])
 printf ("%s\n", example.address[count]);
 printf ("%s\n", example.telephone);

 exit (0);
}

void
punt (message)
char *message;
{
 sm_resetcrt ();
 fprintf (stderr, "%s: %s\n", program_name, message);
 exit (1);
}

NAME

 sm_wrtstruct - copy data from the screen to a memory structure

SYNOPSIS

 #include "smdefs.h"

 void sm_wrtstruct (form_struct, count, language)
 char *form_struct;
 int *count, language;

DESCRIPTION

This function copies a data structure in memory to the screen, converting
individual items as appropriate. The address of the structure is in
screen_struct. There is a utility, JYACC f2struct, that will automatically
generate such a structure from the screen file.

The argument count is the address of an integer variable. sm_wrtstruct will
store there the number of bytes copied to the structure.

The argument language stands for the programming language in which the structure
is defined; it controls the conversion of string and numeric data. Zero stands
for C with null-terminated strings, one for C with blank-filled strings.

VARIANTS AND RELATED FUNCTIONS

 sm_wrt_part (screen_structure, first_field, last_field, language);
 sm_rdstruct (screen_structure, byte_count, language);

EXAMPLE

The code example below uses this screen, whose picture and listing follow.

 ÉÍÍÍ»
 º º
 º Name: _________________________ º
 º Address: _________________________ º
 º _________________________ º
 º _________________________ º
 º Telephone: (___)___-____ º
 º º
 ÈÍÍÍ¼

 FORM 'strex'

FIELD DATA:

Field number : 1 (line 1, column 32, length = 8)
Field name : date
Display attribute : UNDERLINED HIGHLIGHTED WHITE
Field edits : PROTECTED FROM: ENTRY OF DATA; TABBING INTO; CLEARING;
 VALIDATION;
Date field data : SYSTEM DATE; FORMAT = MM.DD.YY
Data type : LONG INT

Field number : 2 (line 3, column 15, length = 25)
Field name : name
Display attribute : UNDERLINED HIGHLIGHTED WHITE

Field number : 3 (line 4, column 15, length = 25)
Field name : address
Vertical array : 3 elements; distance between
 elements = 1
Array field numbers : 3 4 5
Shifting values : maximum length = 75; increment = 1
Display attribute : UNDERLINED HIGHLIGHTED WHITE

Field number : 6 (line 7, column 15, length = 13)
Field name : telephone
Display attribute : UNDERLINED HIGHLIGHTED WHITE
Character edits : DIGITS-ONLY
Data type : CHAR STRING

Here is a header file produced by f2struct from the screen above.

struct strex
{
 long date;
 char name[26];
 char address[3][76];
 char telephone[14];
};

Finally, here is a program that processes the screen using sm_rdstruct and
sm_wrtstruct.

#include "smdefs.h"
#include "smkeys.h"
#include "strex.h"

#define C_LANG 0

int main ();
void punt ();

char *program_name;

main (argc, argv)
char *argv[];
{
 struct strex example;
 int count,
 key;
 char ebuf[80];

 /* Initialize all structure members to nulls. This is
 * important because we are going to do an sm_rdstruct
 * first. */
 example.date = 0L;
 example.name[0] = 0;
 example.address[0][0] = example.address[1][0] = 0;
 example.address[2][0] = 0;
 example.telephone[0] = 0;

 /* Copy command line arguments, if any, into the structure. */
 switch (argc)
 {
 case 6:
 default:
 /* Ignore extras */
 strcpy (example.telephone, argv[5]);
 case 5:
 strcpy (example.address[2], argv[4]);
 case 4:
 strcpy (example.address[1], argv[3]);
 case 3:
 strcpy (example.address[0], argv[2]);
 case 2:
 strcpy (example.name, argv[1]);
 program_name = argv[0];
 break;
 }

 /* Initialize the screen and copy the structure to it. */
 sm_initcrt ("");
 if (sm_r_form ("strex") < 0)
 punt ("Cannot read form.");

 sm_rdstruct (&example, &count, C_LANG);
 sm_n_putfield ("date", "");

 /* Open the keyboard to accept new data to the form, and
 * copy it to the structure when done. Break out when user
 * hits EXIT key. */
 sm_d_msg_line ("Enter data; press %KEXIT to quit.",
 WHITE | HILIGHT);
 do {
 key = sm_openkeybd ();
 sm_wrtstruct (&example, &count, C_LANG);
 sprintf (ebuf, "Acknowledged: byte count = %d.",
 count);
 sm_err_reset (ebuf);
 } while (key != EXIT);

 /* Clear the screen and display the final structure contents. */
 sm_resetcrt ();
 printf ("%ld\n", example.date);
 printf ("%s\n", example.name);
 for (count = 0; count < 3; ++count)
 if (example.address[count][0])
 printf ("%s\n", example.address[count]);
 printf ("%s\n", example.telephone);

 exit (0);
}

void
punt (message)
char *message;
{
 sm_resetcrt ();
 fprintf (stderr, "%s: %s\n", program_name, message);
 exit (1);
}

NAME

 sm_wselect - shuffle windows

SYNOPSIS

 int sm_wselect (window)
 int window;

DESCRIPTION

This routine brings a hidden window (or form) to the active position, where it
will be referenced by screen manager library calls such as sm_putfield and
sm_getfield. You identify the window you want by its sequence number in the
stack of windows: the form underlying all the windows is window 0; window = 1
gets the first window opened, window = 2 the second, and so forth.

Here are two different ways of using window selection. One is to select a hidden
screen momentarily, to update something in it, and replace it by calling
sm_wdeselect without opening the keyboard. This sequence will have no immediate
visible effect, unless sm_flush is called. The other is to select a hidden
screen and open the keyboard; in this case, the selected screen becomes visible,
and may hide part or all of the screen that was previously active. In this way
you can implement multipage forms, or switch among several windows that tile the
screen (do not overlap).

After this routine is called the order of the windows on the stack, and thus the
numbering of the windows, is changed. Subsequent calls to this function must be
aware of the current ordering of windows. The JAM screen stack is unaffected by
this function.

A related function sm_n_wselect, takes the name of a window as argument and
looks for it in the window stack. It will not find windows displayed with
sm_d_window or related functions, because they do not record the window name.

JAM applications should only use this routine in paired calls with sm_wdeselect,
or the control stack will become incorrect and unexpected results may occur.

RETURNS

 The number of the window that was made active (either the number passed, or
 the maximum if that was out of range). -1 if the system ran out of
 memory.

VARIANTS AND RELATED FUNCTIONS

 sm_wdeselect ();
 sm_n_wselect (window_name);

EXAMPLE

/* A typical use of the window selection routines is to
 * update information to a window that may (or may not) be
 * covered. For example, suppose that the current time
 * should be maintained on the underlying form. Assume
 * that a field named "curtime" exists on that form.
 * The following code fragments can be used
 * to maintain that field independent of the number of windows
 * currently open above the form.
 */

#include "smdefs.h"

updatetime()
{
 sm_wselect (0); /* quietly select the bottom form */
 sm_n_putfield ("curtime", ""); /* update system time display */
 sm_wdeselect ();/* restore visible window */
 sm_flush ();
 return (0);
}

/* In initialization code: called every second. */

 static struct fnc_data afunc = { 0, updatetime, 0, 10, 0, 0 };
 sm_install (ASYNC_FUNC, &afunc, (int *)0);

NAME

 sm_zm_options - set zooming options

SYNOPSIS

 #include "smdefs.h"

 int sm_zm_options (flag)
 int flag;

DESCRIPTION

Controls the behavior of the zooming function, normally bound to the ZOOM key.
Flag is a mnemonic defined in smdefs.h , or a pair of mnemonics ored together,
that select the operations desired.

Zooming makes more of scrolling and shifting fields visible than is ordinarily
the case. It expands the current field either horizontally or vertically, as far
as the physical display will allow, and places it in a window atop the currently
displayed screen. If a field is both scrolling and shifting, zooming will
ordinarily take place in two steps: scrolling expansion will be done first, and
shifting expansion next. If a scrolling field has parallel scrolls, they will be
displayed too.

The following mnemonics control scroll expansion:

 ZM_NOSCROLL Scrolling arrays will not be expanded; the process
 goes immediately to shift expansion.
 ZM_SCROLL Scrolling arrays will be expanded to display as many
 items as possible.
 ZM_PARALLEL Scrolling arrays will be expanded to display as many
 items as possible, along with their parallel arrays.
 ZM_1STEP Scrolling arrays will be expanded to display as many
 items as possible; shifting arrays will be expanded at
 the same time. This option overides the shift mode
 flag.

The following mnemonics control array/scrolling expansion when shifting fields
are being expanded in step two:

 ZM_NOSHIFT Shifting fields will not be expanded; they will remain
 shifting, and no second step takes place.
 ZM_SCREEN Shifting arrays will have as many on-screen elements
 as the previous form had. This will be the original
 form ONLY if ZM_NOSCROLL is used; otherwise, ZM_SCREEN
 means the scroll-expansion screen, or show as many
 items as possible.
 ZM_ELEMENT Show 1 element on-screen, but allow scrolling (via
 arrow keys) to the rest of the array. If a scroll mode
 was selected, the shift window can be zoomed again,
 showing all elements.
 ZM_ITEM Show only 1 element. There is no way of seeing more
 items in the "ITEM" scroll window.

Here are some useful combinations whose semantics are perhaps not crystal clear
from the above descriptions:

ZM_PARALLEL|ZM_SCREEN This is the default, and zooms in two steps. The
 first step will expand the scrolling arrays; the
 second step will add expansion of shifting
 fields, but lose the parallel arrays.
ZM_PARALLEL|ZM_ELEMENT This will zoom in three steps, adding a
 single-line shift expansion as step two. This

 will save screen update time when looking at a
 single record.
ZM_NOSCROLL|ZM_SCREEN This will disable scroll expansion, but the
 shift expansion window will still show the items
 that were on-screen in the original screen.
ZM_NOSCROLL|ZM_ELEMENT This will minimize screen output when all that
 is wanted is shift-expansion of an oversize
 description field.
ZM_NOSCROLL|ZM_ITEM This will restrict zoom to shift expansion of
 only the current item.
ZM_1STEP This will always give the maximum data in the
 first step. However, no parallel arrays are
 displayed.

If you define the SMZMOPTIONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.

RETURNS

 -1 if the parameter is invalid, otherwise the previous options.

EXAMPLE

#include "smdefs.h"

/* Restore zooming options to their defaults. */

sm_zm_options (ZM_PARALLEL | ZM_SCREEN);

4 Built-in Invoked Functions

This section describes invoked (caret) functions supplied with JAM. The format
of each page is similar to that of the preceding section, with a few exceptions.
The synopsis is for a JAM control string, not a programming language source
statement; boldface indicates keywords to be entered as shown, while normal type
indicates parameters to be replaced by a string you choose. The return value of
a caret function can only be used in a target list; see Section 1.2.1.

You may use these functions only in caret control strings. If you call them
directly from your own code a wide variety of results, ranging from perfect
success through obscure run-time problems to linker errors, is possible.

NAME

 jm_exit - end processing and leave the current screen

SYNOPSIS

 ^jm_exit

DESCRIPTION

Erases the current form or window and returns to the previous one. If the
current form is the last one on the control path (the application's top-level
form), will cause JAM to prompt and exit to the operating system.

The effect is like the default action of the run-time system's EXIT key.

EXAMPLE

The following control string invokes a function named process. If it returns 0,
another function is invoked to reinitialize the screen; but if it returns -1,
the screen is exited. See jm_gotop for another example.

 ^(-1=^jm_exit; 0=^reinit)process

The example below shows how a form or a window can be swapped with another form
or a window:

 ^(0=&w2)jm_exit

NAME

 jm_gotop - return to application's top-level form

SYNOPSIS

 ^jm_gotop

DESCRIPTION

Returns to the application's top-level screen, ordinarily the first screen to
appear when the application was run. All forms and windows on the control path
are discarded.

The run-time system's SPF1 key performs the same action, unless you change it
using SMINICTRL.

EXAMPLE

The following menu makes use of both jm_exit and jm_gotop.

 ÉÍÍÍ»
 º º
 º Query customer database__ custquery.jam__ º
 º Update customer database_ custupdate.jam_ º
 º Free-form query__________ !sql___________ º
 º Return to previous menu__ ^jm_exit_______ º
 º Return to main menu______ ^jm_gotop______ º
 º º
 ÈÍÍÍ¼

NAME

 jm_goform - prompt for and display an arbitrary form

SYNOPSIS

 ^jm_goform

DESCRIPTION

This function pops up a window in which you may enter the name of a form; it
will then close the window and attempt to display the form, as if that form's
name had appeared in a control string. It is useful for providing a shortcut
around a menu system for experienced users.

The result is the same as the default action of the run-time system's SPF3 key.

EXAMPLE

The following line, if placed in your setup file, will make the PF10 key act
like SPF3 normally does:

 SMINICTRL= PF10=^jm_goform

NAME

 jm_keys - simulate keyboard input

SYNOPSIS

 ^jm_keys keyname-or-string [keyname-or-string ...]

DESCRIPTION

Queues characters and function keys that appear after the function name for
input to the run-time system, using sm_ungetkey. The run-time system then
behaves as though you had typed the keys.

Function keys should be written using the logical key mnemonics listed in
smkeys.h . Data characters should be enclosed between apostrophes '', backquotes
``, or double quotes "". This function passes its arguments to sm_ungetkey in
reverse order, so you supply them in the natural order.

EXAMPLE

Enter the name of your favorite bar, followed by a tab and the name of its
owner:

 ^jm_keys 'Steinway Brauhall' TAB "James O'Shaughnessy"

Return to the preceding menu and choose the second option:

 ^jm_keys EXIT HOME TAB XMIT

NAME

 jm_mnutogl - switch between menu and data entry mode on a dual-purpose
 screen

SYNOPSIS

 ^jm_mnutogl

DESCRIPTION

JAM supports the use of a single screen for both menu selection and data entry;
one popular example is a data entry screen with a "menu bar". The screen must,
however, be either one or the other at any given moment. This function switches
the run-time system's treatment of the screen to the other mode. When the screen
is a menu, the run-time system uses sm_menu_proc for keyboard input; otherwise,
it uses sm_openkeybd.

Screens with a jam_menu field will be treated initially as menus; others will be
treated initially as data entry screens. A screen cannot be used as a menu
unless it has fields with the MENU bit set.

EXAMPLE

Below is a screen with four menu options on the left and data entry fields on
the right. Selecting a menu option first causes a function to be invoked, which
will store the choice; when that function returns zero, jm_mnutogl is invoked to
begin data entry. When data entry is completed by the TRANSMIT key, a function
attached to that key can use the stored menu option to perform the desired
transaction.

 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍËÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
 º º Name: __________________________ º
 º LOOKUP º Address: __________________________ º
 º ^(0=^jm_mnutogl)look º __________________________ º
 º ADD___ º __________________________ º
 º ^(0=^jm_mnutogl)add_ º Phone: (___)___-____ º
 º MODIFY º Notes: __________________________ º
 º ^(0=^jm_mnutogl)mod_ º __________________________ º
 º DELETE º __________________________ º
 º ^(0=^jm_mnutogl)del_ º __________________________ º
 ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÊÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼

NAME

 jm_system - prompt for and execute an operating system command

SYNOPSIS

 ^jm_system

DESCRIPTION

This function pops up a small window, in which you may enter an operating system
command. When you press TRANSMIT, it closes the window and executes the command.
While the command is executing, your terminal is returned to the operating
system's default I/O mode.

The run-time system's SPF2 key invokes this function by default.

EXAMPLE

The following line, when placed in your setup file, will cause the PF10 key to
act as SPF2 normally does:

 SMINICTRL= PF10 = ^jm_system

NAME

 jpl - invoke a JPL procedure stored in a file

SYNOPSIS

 ^jpl filename [argument ...]

DESCRIPTION

This function invokes a procedure written in the JYACC Procedural Language and
stored in a file. Filename should be the name of the file containing your
procedure; anything following that will be passed to the procedure as arguments.
The value returned by your procedure will be passed along by jpl for use in a
target list.

This function is similar to the JPL jpl command, but does not do colon
expansion.

EXAMPLE

The control string below invokes a JPL function, passing it the name of a field
in which its command is stored.

 ^jpl execute command

5 Environment and Configuration Files

This section describes only an essential few of the many configuration variables
supported by JAM; refer to the section on setup files in the Configuration Guide
for more. The following list summarizes JAM's most commonly used environment
variables:

 SMMSGS file name for message text SMVIDEO
 file name for video information SMKEY
 file name for keyboard translation SMVARS
 single variable for consolidation TERM
 terminal mnemonic SMTERM
 substitute for TERM

The first three are required: they name configuration files used by JAM to
describe its operating environment. It finds them by looking either in the
system environment, or in a binary file named by SMVARS. If it fails to find
either the variables or the configuration files themselves, it will post a
message and exit.

The system variable TERM and the JAM variable SMTERM are used in conjunction
with SMVARS. You may replace the three environment variables with SMVARS. This
variable gives the name of a binary file containing the other screen manager
variables. A typical SMVARS source file might look like the following:

 SMKEY = (TV:TV950)/sm/config/TVkeys.bin SMKEY =
 (vt100:d0:d1:d2)/sm/config/vt100keys.bin SMVIDEO = /sm/config/vt100vid.bin
 SMMSGS = /usr/local/msgfile.bin SMPATH = /appl/masks

The lists enclosed in parentheses are terminal types; JAM uses them to find the
right files for your terminal. The SMVARS source file must be converted to
binary using var2bin; the system environment then needs only the name of the
binary file (and perhaps your terminal), as

 SMVARS=/usr/local/smvars.bin
 TERM=vt100

The terminal type, used to match against the lists in parentheses, is taken from
the variable SMTERM, or from TERM if that is not present. (If you want JAM to
recognize a terminal mnemonic different from TERM, put it in SMTERM. For
example, the text editor might work fine with the terminal in vt100 emulation,
but JAM could want the features of vt220 emulation; you could set TERM to vt100
and SMTERM to vt220.)

Application programs initialize JAM by calling sm_initcrt. This call must
precede calls to just about any other library routine, except those that install
memory resident message, key and/or video files, or set options; see Section
12.2. sm_initcrt first calls an optional user-supplied initialization routine,
sm_u_uinit, which may (among other things) initialize the character string
sm_term.

sm_initcrt then looks for SMVARS and SMSETUP in the system environment, and uses
them to read in setup files. Subsequently, setup variables are sought first in
the system environment and then in the setup files.

Next the terminal type is determined and placed in a character array called
sm_term, which is declared in smdefs.h . An application program can force a
terminal type by setting sm_term before sm_initcrt is called. If the array is
empty, SMTERM is sought first, then TERM. If neither is found, initialization is
attempted without a terminal type.

SMMSGS comes next. If this variable is not found, or the file it names is found
by sm_msginit not to be useable, JAM will abort initialization. Initialization
errors in file I/O are reported using the C library function perror; these

messages are system-dependent. Other errors encountered before the message file
is loaded provoke hard-coded messages; afterward, all error messages are taken
from the message file.

Video and keyboard initialization are next attempted, in that order, using
sm_keyinit and sm_vinit respectively. If after all this JAM still can't
determine which configuration files to use, it will prompt you for a terminal
type and retry the entire sequence. Finally, JAM initializes the terminal and
its operating system channel.

After ensuring that the environment is set up, sm_initcrt initializes the
operating system's terminal channel. It is set to "no echo" and non-buffered
input. If other changes are desired (e.g. from 7 to 8 data bits), they can be
made in the user initialization routine.

Next the initialization string found in the video file is transmitted to the
terminal. The Video Manual gives details; here we simply note that system calls
can be embedded in the string. Often this feature can be used in lieu of a user
initialization routine.

6 Keyboard Input

Keystrokes are processed in three steps. First, the sequence of characters
generated by one key is identified. Next the sequence is translated to an
internal value, or logical character. Finally, the internal value is either
acted upon or returned to the application ("key routing"). All three steps are
table-driven. Hooks are provided at several points for application processing;
they are described in Section 8.

6.1 Logical Characters or Keys

JAM processes characters internally as logical values, which frequently (but not
always) correspond to the physical ASCII codes used by terminal keyboards and
displays. Specific keys or sequences of keys are mapped to logical values by the
key translation table, and logical characters are mapped to video output by the
MODE and GRAPH commands in the video file. For most keys, such as the normal
displayable characters, no explicit mapping is necessary. Certain ranges of
logical characters are interpreted specially by JAM; they are

 .
 0x0100 to 0x01ff: operations such as tab, scrolling, cursor motion
 .
 0x6101 to 0x7801: function keys PF1 - PF24
 .
 0x4101 to 0x5801: shifted function keys SPF1 - SPF24
 .
 0x6102 to 0x7802: application keys APP1 - APP24

6.2 Key Translation

The first two steps together are controlled by the key translation table, which
is loaded during initialization. The name of the table is found in the
environment (see Section 5 for details). The table itself is derived from an
ASCII file which can be modified by any editor; a screen-oriented program,
modkey, is also supplied for creating and modifying key translation tables (see
the Configuration Guide).

After the table is read into memory, it has the form of an array of structures:

 struct
 {
 char key[6];
 int value;
 };

The first field is an array of up to 6 characters; it holds the sequence of
characters sent to the computer when the key is pressed. The second member is
the logical value of the key.

JAM assumes that the first character of a multi-character key sequence is a
control character in the ASCII chart (0x00 to 0x1f, 0x7f, 0x80 to 0x9f, or
0xff). All characters not in this range are assumed to be displayable characters
and are not translated. The routine that performs the translation is called
sm_getkey.

Upon receipt of a control character, sm_getkey searches the translation table.
If no match is found on the first character, the key is accepted without
translation. If a match is found on the first character and the next character
in the table's sequence is 0, an exact match has been found, and sm_getkey
returns the value indicated in the table. The search continues through
subsequent characters until either

 1. an exact match on n characters is found and the n+1'th character in the
 table is zero, or n is 6. In this case the value in the table is
 returned.
 2. an exact match is found on n-1 characters but not on n. In this case
 sm_getkey attempts to flush the sequence of characters returned by the
 key.

This last step is of some importance: if the operator presses a function key
that is not in the table, the screen manager must know "where the key ends."
The algorithm used is as follows. The table is searched for all entries that
match the first n-1 characters and are of the same type in the n'th character,
where the types are digit, control character, letter, and punctuation. The
smallest of the total lengths of these entries is assumed to be the length of
the sequence produced by the key. (If no entry matches by type at the n'th
character, the shortest sequence that matches on n-1 characters is used.) This
method allows sm_getkey to distinguish, for example, between the sequences ESC O
x, ESC [A, and ESC [1 0 ~.

6.3 Key Routing

The main routine for keyboard processing is sm_openkeybd. This routine calls
sm_getkey to obtain the translated value of the key. It then decides what to do
based on the following rules.

If the value is greater than 0x1ff, sm_openkeybd returns to the caller with this
value as the return code.

If the value is between 0x01 and 0x1ff, the processing is determined by a
routing table. This is an array whose address is stored in sm_route_table. The
value returned by sm_getkey is used to index into the table, where two bits
determine the action. The bits are examined independently, so four different
actions are possible:

 .
 If neither bit is set, the key is ignored.
 .
 If the EXECUTE bit is set and the value is in the range 0x01 to 0xff,
 it is written to the screen (as interpreted by the GRAPH entry in the
 video file, if one exists). If the value is in the range 0x100 to
 0x1ff, the appropriate action (tab, field erase, etc.) is taken.
 .
 If the RETURN bit is set, sm_openkeybd returns the logical value to the
 caller; otherwise, sm_getkey is called for another value.
 .
 If both bits are set, the key is executed and then returned.

The default settings are ignore for ASCII and extended ASCII control characters
(0x01 - 0x1f, 0x7f, 0x80 - 0x9f, 0xff), and EXECUTE only for all others. The
application function keys (PF1-24, SPF1-24, APP1-24, and ABORT) are not handled
through the routing table. Their routing is always RETURN, and cannot be
altered.

Applications can change key actions on the fly by modifying the routing table.
For example, to disable the backtab key the application program would execute

 sm_route_table[BACK] = 0;

To make the field erase key return to the application program, use

 sm_route_table[FERA] = RETURN;

Key mnemonics can be found in the file smkeys.h .

7 Screen Output

JAM uses a sophisticated delayed-write output scheme, to minimize unnecessary
and redundant output to the display. No output at all is done until the display
must be updated, either because keyboard input is being solicited or the library
function sm_flush has been called. Instead, the run-time system does screen
updates in memory, and keeps track of the display positions thus "dirtied".
Flushing begins when the keyboard is opened; but if you type a character while
flushing is incomplete, the run-time system will process it before sending any
more output to the display. This makes it possible to type ahead on slow lines.
You may force the display to be updated by calling sm_flush.

JAM takes pains to avoid code specific to particular displays or terminals. To
achieve this it defines a set of logical screen operations (such as "position
the cursor"), and stores the character sequences for performing these operations
on each type of display in a file specific to the display. Logical display
operations and the coding of sequences are described in excruciating detail in
the Video Manual; the following sections, along with Sections 11.2, and 12.4,
describe additional ways in which applications may use the information encoded
in the video file.

7.1 Graphics Characters and Alternate Character Sets

Many terminals support the display of graphics or special characters through
alternate character sets. Control sequences switch the terminal among the
various sets, and characters in the standard ASCII range are displayed
differently in different sets. JAM supports alternate character sets via the
MODEx and GRAPH commands in the video file.

The seven MODEx sequences (where x is 0 to 6) switch the terminal into a
particular character set. MODE0 must be the normal character set. The GRAPH
command maps logical characters to the mode and physical character necessary to
display them. It consists of a number of entries whose form is

 logical value = mode physical-character

When JAM needs to output logical value it will first transmit the sequence that
switches to mode, then transmit physical-character. It keeps track of the
current mode, to avoid redundant mode switches when a string of characters in
one mode (such as a graphics border) is being written. MODE4 through MODE6
switch the mode for a single character only.

7.2 The Status Line

JAM reserves one line on the display for error and other status messages. Many
terminals have a special status line (not addressable with normal cursor
positioning); if such is not the case, JAM will use the bottom line of the
display for messages. There are several sorts of messages that use the status
line; they appear below in priority order.

 1. Transient messages issued by sm_err_reset or a related function
 2. Ready/wait status
 3. Messages installed with sm_d_msg_line or sm_msg
 4. Field status text
 5. Background status text

There are several routines that display a message on the status line, wait for
acknowledgement from the operator, and then reset the status line to its
previous state: sm_query_msg, sm_err_reset, sm_emsg, sm_quiet_err, and
sm_qui_msg. sm_query_msg waits for a yes/no response, which it returns to the
calling program; the others wait for you to acknowledge the message. These
messages have highest precedence.

sm_setstatus provides an alternating pair of background messages, which have
next highest precedence. Whenever the keyboard is open for input the status line
displays Ready; it displays Wait when your program is processing and the
keyboard is not open. The strings may be altered by changing the SM_READY and
SM_WAIT entries in the message file.

If you call sm_d_msg_line, the display attribute and message text you pass
remain on the status line until erased by another call or overridden by a
message of higher precedence.

When the status line has no higher priority text, the screen manager checks the
current field for text to be displayed on the status line. If the cursor is not
in a field, or if it is in a field with no status text, JAM looks for background
status text, the lowest priority. Background status text can be set by calling
sm_setbkstat, passing it the message text and display attribute.

In addition to messages, the rightmost part of the status line can display the
cursor's current screen position, as, for example, C 2,18. This display is
controlled by calls to sm_c_vis.

During debugging, calls to sm_err_reset or sm_quiet_err can be used to provide
status information to the programmer without disturbing the main screen display.
Keep in mind that these calls will work properly only after screen handling has
been initialized by a call to sm_initcrt. sm_err_reset and sm_quiet_err can be
called with a message text that is defined locally, as in the following
examples:

1. sm_err_reset ("Zip code invalid for this state.");

2. int i, j;
 char bugbuf[81];
 sprintf (bugbuf, "i = %d; j = %d.", i, j);
 sm_quiet_err (bugbuf);

However, the JAM library functions use a set of messages defined in an internal
message table. This is accessed by the function sm_msg_get, using a set of
defines in the header file smerror.h . For example:

 sm_quiet_err (sm_msg_get (SM_MALLOC));

The message table is initialized from the message file identified by the
environment variable SMMSGS. Application messages can also be placed in the
message file. See the section on message files in the Configuration Guide.

8 User-definable Functions

The JAM library contains numerous hooks where you can install routines to be
called from someplace within the run-time system. This is occasionally necessary
when you have exotic hardware, but more often it is simply convenient to do some
application-specific function in the context of a run-time system operation. The
keyboard input functions, for instance, contain several hooks.

A hook tells JAM everything it needs to know in order to call your routine. This
generally includes the routine's name, its address, and the programming language
it was written in. JAM knows how to interpret the routine's arguments and return
value by which hook it is installed on.

The following list itemizes all the different hooks and tells where to go for
information about each; the boldface references are to Section 3 of this
chapter. Many hooks hold a single application routine, but the first three in
the list can hold any number. In this case JAM uses the routine name, such as
the one you specify in the screen for an attached function, to find the
information it needs.

 .
 Screen entry and exit functions, Section 1.4
 .
 Attached functions, including field entry, field exit (or validation),
 and attached JPL procedure, Section 1.3
 .
 Invoked functions, Section 1.2
 .
 Memo edits, Section 8.2
 .
 Keystroke processing hooks:

 .
 Key translation function, sm_u_keychange
 .
 Key recording hook, sm_u_record
 .
 Key playback hook, sm_u_play
 .
 Key lookahead hook, sm_u_avail
 .
 Asynchronous function, sm_u_async

 .
 Display processing hooks:

 .
 Video processing hook, sm_u_vproc
 .
 Insert mode transition function, sm_u_inscrsr
 .
 Status line display function, sm_u_statfnc

 .
 Screen manager initialization and reset hooks, sm_u_uinit and
 sm_u_ureset
 .
 Check digit validation, sm_u_ckdigit

The hooks for which library function names are given are all documented under
those names in the library section of this chapter, and should be installed
using sm_install; the next section discusses installation. Attached, invoked
(caret), and screen entry functions are discussed in Sections 1.3, 1.2, and 1.4,
respectively. Memo edits are discussed below.

8.1 Installation

In general, there are two ways of getting JAM to call an application routine.
One is to write a routine in C with the same name and calling sequence as one
provided in the library, and link it with the application; the linker will then
ignore the library routine and load the application routine in its place. You
can use this technique for the sm_u_uinit, sm_u_ureset, video, and check digit
functions. This mechanism will not work on many systems. It is supported for
backward compatibility only, and may be phased out in the future.

The other technique is to call sm_install, q.v.; this is portable, supported,
and strongly to be preferred. You pass this function a data structure containing
the name, address, and source language of your function. Every function or type
of function listed in the previous section (with the exception of memo edits)
can be installed with sm_install.

8.2 Memo Text Edits

Memo text edits are not function hooks; rather, they are special edits you can
use to attach arbitrary information to a field. The JAM run-time system ignores
memo edits, but application routines may access them, using sm_edit_ptr. An
example of memo edit use follows.

Suppose a screen contains fields whose contents are interdependent, such as
state abbreviation and zip code. The zip code field might have an attached
function that performs a validation based on the state abbreviation. However, if
the zip code was validated and the operator subsequently changed the state
abbreviation, the zip code might become invalid. A simple solution would be to
attach the following function to the state abbreviation field:

int state_change (field_num, data, occurrence, val_mdt)
{
 if (val_mdt & MDT)
 /* current field changed */
 sm_n_novalbit ("zip"); /* reset zip VALIDED bit*/
 return 0;
}

Now suppose a screen contains several groups of interdependent fields. One could
use MEMO1 to hold a list of dependent fields (say by number, separated by
commmas), and the following function to process them:

field_change (field_num, data, occurrence, val_mdt)
int field_num;
char *data;
int occurrence;
int val_mdt;
{
 char *ptr;

 if (val_mdt & MDT) /* current field changed */
 {
 ptr = sm_edit_ptr (field_number, MEMO1);
 if (ptr) /* find MEMO1 edit, if any */
 {
 ptr += 2;
 /* skip length, command code*/
 while (*ptr)
 {
 sm_novalbit (atoi (ptr));
 while (*ptr && *ptr != ',')
 ++ptr;
 if (*ptr) ++ptr;
 }
 }
 }
 return (0);
}

9 The Local Data Block

The LDB is a table of name-value pairs maintained by the run-time system. As you
enter data in named fields, the values are copied to the LDB; when you bring up
a new screen with named fields, values are copied in from the LDB. This
procedure implements data links, and goes by the name of LDB write-through. The
list of names is taken from the data dictionary; certain other field
characteristics needed for the proper formatting of data, such as field size and
currency formats, are also taken from the data dictionary.

During screen display, i.e. during execution of sm_r_window or a variant,
sm_allget is called to load named fields with values from the LDB (without
setting their MDT bits). Whenever a screen is removed from the display or is
covered by a window, sm_lstore is first called to update the LDB with screen
values. In between, i.e. while the screen is being processed, certain library
functions requiring data values seek them first in the screen, and search the
LDB if they are not there. This preserves the illusion that named fields in the
LDB are always accessible and always have the latest values in them. Screens
brought up by the run-time system share this feature with those brought up by
your control fields and code, since the run-time system uses sm_r_window too.

The library functions that use the LDB are n_ and i_ variants, plus a few that
reference the LDB explicitly, such as sm_lreset and sm_allget. Functions that
refer to a field by number, namely the o_ variant and the basic function,
obviously cannot access data outside the screen. The e_ functions do refer to
fields by name; however, they are designed specifically for accessing elements
of onscreen arrays, and so do not go to the LDB. Field calculation expressions
and JPL procedures that contain named fields will reference the LDB in the same
way.

If the scope of an LDB entry is 1, or constant, its value cannot be changed by
write-through; only sm_lreset can change the values of constants.

LDB write-through is normally on; you can turn it off (and back on) by calling
sm_dd_able. Care is necessary, though; even the explicit LDB access functions,
such as sm_allget, do not work when write-through is off. As an example, you

could make the LDB read-only in a single screen by putting the following code
fragment in a screen entry function:

 sm_allget (1);
 sm_dd_able (0);

You would then have to call sm_dd_able (1) to re-enable LDB write-through in a
screen exit function, which is called after the sm_lstore; calling it before
then, as in an EXIT control string, would cause the LDB to be updated. If you
want to disable LDB processing for an entire application, simply omit the call
to sm_ldb_init before starting up the run-time system; see Section 1.6.

10 Writing Portable Applications

The following section is an attempt to identify features of hardware and
operating system software that can cause JAM to behave in a non-uniform fashion.
An application designer wishing to create programs that run across a variety of
systems will need to be aware of these factors.

10.1 Terminal Dependencies

JAM can run on screens of any size. On screens without a separately addressable
status line, JAM will steal the bottom line of the display (often the 24th) for
a status line, and status messages will overlay whatever is on that line. A good
lowest common denominator for screen sizes is 23 lines by 80 columns, including
the border (if any).

Different terminals support different sets of attributes. JAM makes sensible
compromises based on the attributes available; but programs that rely
extensively on attribute manipulation to highlight data may be confusing to
users of terminals with an insufficient number of attributes.

Attribute handling can also affect the spacing of fields and text. In
particular, anyone designing screens to run on terminals with onscreen
attributes must remember to leave space between fields, highlighted text, and
reverse video borders for the attributes. Some terminals with area attributes
also limit the number of attribute changes permitted per line (or per screen).

The key translation table mechanism supports the assignment of any key or key
sequence to a particular logical character. However, the number and labelling of
function keys on particular keyboards can constrain the application designer who
makes heavy use of function keys for program control. The standard VT100, for
instance, has only four function keys properly speaking. For simple choices
among alternatives, the library routines sm_menu_proc and sm_choice are probably
better than switching on function keys.

Using function key labels, or keytops, instead of hard-coded key names is also
important to making an application run smoothly on a variety of terminals. Field
status text and other status line messages can have keytops inserted
automatically, using the %K escape. No such translation is done for strings
written to fields; in such cases, you may want to place the strings in a message
file, since your setup file can now specify terminal-dependent message files.

10.2 Items in smmach.h

The header file smmach.h , which is supplied with the JAM library, contains
information that library routines need to deal with certain machine, operating
system, and compiler dependencies. These include:

 .
 The presence of certain C header files and library functions.
 .
 Byte ordering in integers and support for the unsigned character type.

 .
 Path name and command line argument separator characters.
 .
 Pointer alignment and structure padding.

The header file is thoroughly commented, and application designers are
encouraged to make use of the information there.

11 Writing International Applications

11.1 Messages

All messages displayed by the JAM library routines are in the ASCII message
file; this file may be edited to translate the messages into any language.
Further, the screens used by JAM utilities are supplied in libraries; they may
be edited there and their prompts translated.

11.2 Characters Outside the U.S. ASCII Set

Terminals that are capable of displaying characters outside the 7-bit U.S. ASCII
set may do it two ways: either they display 8-bit characters (those in the range
0x80 to 0xff), or they have control sequences for switching among several
character sets. On input, again, the foreign keys may generate either 8-bit
codes or a multi-character sequence.

If the terminal's keyboard generates 8-bit codes and its display can display
them, there is little the application needs to do except set the GRTYPE entry
in the video file. However, some caution is necessary, because JAM reserves the
range 0x100 to 0x1ff for its logical operations (tab, field erase, scroll,
etc.). Applications should avoid mapping keys into this range. Alternate
character sets require more work. First a logical value for the character in
question must be selected; the range 0xa0 to 0xfe is good. Next, the control
sequences for switching character sets must be defined in the video file as
MODEx. MODE0 is the normal character set; JAM supports up to 6 alternate
character sets (MODE1 to MODE6). Finally, the GRAPH entry in the video file must
be set up. It consists of any number of sub-entries whose format is

 logical-value = mode physical-character

where mode is 1 to 3 and logical-value is the value that gives the desired
output in the appropriate mode. (See Section 6.1 for more details on alternate
character sets, and the Video Manual for how to create and use video files.)

12 Writing Efficient Applications

12.1 Memory-resident Screens

Memory-resident screens are much quicker to display than disk-resident screens,
since no disk access is necessary to obtain the screen data. There are two ways
of using the JAM library functions with memory-resident screens; but in either
case, the screens must first be converted to source language modules with bin2c
or a related utility (see the Configuration Guide), then compiled and linked
with the application program.

sm_d_form and related library functions can be used to display memory-resident
screens; each takes as one of its parameters the address of the global array
containing the screen data, which will generally have the same name as the file
the original screen was originally stored in.

A more flexible way of achieving the same object is to use a memory-resident
screen list. Bear in mind that the JAM utility can only operate on disk files,
so that altering memory-resident screens during program development requires a
tedious cycle of test - edit - reinsert with bin2c - recompile. The JAM library
maintains an internal list of memory-resident screens that sm_r_window and

related functions examine. Any screen found in the list will be displayed from
memory, while screens not in the list will be sought on disk. This means that
the application can be coded to use one set of calls, the r-version, and screens
can be configured as disk- or memory-resident simply by altering the list.

The screen list is pointer to an array of structures:

struct form_list
{
 char *form_name;
 char *form_ptr;
} *sm_memforms;

To initialize it, an application would use code like the following:

#include "smdefs.h"
extern char mainform[], popup1[];
extern char popup2[], helpwin[];

struct form_list mrforms[] =
{
 "mainform.jam",mainform,
 "popup1.jam", popup1,
 "popup2.jam", popup2,
 "helpwin.jam", helpwin,
 "", (char *)0

};
...
sm_formlist(mrforms);

Note the last entry in the screen list: an empty string for the name and a null
pointer for the screen data. This marks the end of the list, and is required.
The call to sm_formlist adds the screrens in your list to JAM's internal list.

Using memory-resident screens (and configuration files, see the next section)
is, of course, a space-time tradeoff: increased memory usage for better speed.

The naming of screens in the screen list presents a few problems. First of all,
the name of the character array for a screen must not conflict with the name of
any other global data item or function; for instance, a memory-resident screen
with the name of a function could not be installed with a program. Secondly, the
filename extension must be removed from the array name, which means that screens
with the same name but different extensions will conflict. If your application
code structure permits, you can minimize the foregoing problems by making the
screens in question local in scope to a particular source file.

JAM will append the extension found in the setup variable SMFEXTENSION to screen
names (e.g. in control fields) that do not already contain an extension; you
must take this into account when creating the screen list. JAM may also convert
the name to uppercase before searching the screen list; this is governed by the
SMFCASE variable.

12.2 Memory-resident Configuration Files

Any or all of the three configuration files required by JAM can be made memory
resident. First a C source file must be created from the text version of the
file, using the bin2c utility; see the Configuration Guide. The source files
created are not intended to be modifiable, or even understandable, any more than
the binary files are; each defines some data objects which are of no concern to
us. Each file contains one data object that is globally known. The following
fragment makes all three files memory-resident:

 /* Memory-resident message, key, and video files */
 extern char msg_file[];
 extern char key_file[];
 extern char video_file[];

 /* ...more declarations... */

 sm_msginit (msg_file);
 sm_keyinit (key_file);
 sm_vinit (video_file);
 sm_initcrt ("");

 /* ...possibly initialize function and form lists */

 /* ...application code */

If a file is made memory-resident, the corresponding environment variable or
SMVARS entry can be dispensed with.

12.3 Message File Options

If you need to conserve memory and have a large number of messages in message
files, you can make use of the MSG_DSK option to sm_msgread. This option avoids
loading the message files into memory; instead, they are left open, and the
messages are fetched from disk when needed. Bear in mind that this uses up
additional file descriptors, and that buffering the open file consumes a certain
amount of system memory; you will gain little unless your message files are
quite large.

12.4 Avoiding Unnecessary Screen Output

Several of the entries in the JAM video file are not logically necessary, but
are there solely to decrease the number of characters transmitted to paint a
given screen. This can have a great impact on the response time of applications,
especially on time-shared systems with low data rates; but it is noticeable even
at 9600 baud. To take an example: JAM can do all its cursor positioning using
the CUP (absolute cursor position) command. However, it will use the relative
cursor position commands (CUU, CUD, CUF, CUB) if they are defined; they always
require fewer characters to do the same job. Similarly, if the terminal is
capable of saving and restoring the cursor position itself (SCP, RCP), JAM will
use those sequences instead of the more verbose CUP.

The global flag sm_do_not_display may also be used to decrease screen output.
While this flag is set, calls into the JAM library will cause the internal
screen image to be updated, but nothing will be written to the actual display;
the latter can be brought up to date by resetting the flag and calling
sm_rescreen. With the implementation of delayed write in JAM Release 4, this
sort of trick is necessary much less often than it was under Release 3.

12.5 Stub Functions

Certain screen manager facilities can be omitted from an application if they are
not used, by defining certain literals in the application. This can result in
substantial memory savings; however, it requires that the screen manager
libraries not be pre-linked or pre-bound, i.e. is not supported on all systems.
The following facilities may be stubbed out:

 subsystem #define

 the math package NOCALC scrolling functions
 NOSCROLL time and date functions
 NOTIMEDATE help screens
 NOHELP shifting fields
 NOSHIFT range checking functions
 NORANGE word wrap
 NOWRAP field zoom expansion
 NOZOOM regular expressions
 NOREGEXP form libraries
 NOFORMLIB JYACC procedural language
 NOJPL read/write data structure
 NOSTRUCT save/restore screen data
 NOSRD local print
 NOLPR area attributes
 NOAREA window selection
 NOWSEL keytop translation
 NOLKEYLAB setup parameter file
 NOSETUP shift/scroll indicators
 NOINDICATORS

To omit any one or combination of the above, first #define the appropriate
literal in your application, then #include the stubs file. This need only be
done once, for instance in the application's main routine. For example, if the
application is not going to use scrolling fields, the scrolling functions could
be omitted, and the application source might look like the following:

#define NOSCROLL
#include "smdefs.h"
#include "sm_stubs.c"

main ()
{
 /* ...the application code... */
}

The effect of defining the literal and including sm_stubs.c is to declare stub
routines in the application; this causes the linker not to add the real routines
from the screen manager library to the application. The bulk of the savings will
be in code space. The stubbing technique does not work on systems where the
library is itself a linked entity, such as a shareable library.

If range, math, and JPL support are all stubbed out, you can also omit linking
the C math library (-lm flag on UNIX systems, math library on MS-DOS systems).

 Index

 In this Index, library functions are displayed in
 boldface, without the prefixes specific to the
 language interface. Video and setup file entries
 appear in ELITE CAPS, while utility programs and JPL
 commands are in elite lower-case. Function key names
 are in ROMAN CAPS.

 1clear_array 3-11, 3-18 beep 3-30, 3-55, 3-72, 3-76,
 1protect 3-15, 3-19, 3-20, 3-162
 3-25, 3-27, 3-83, 3-158 bel 3-15, 3-30, 3-55, 3-72,
 1unprotect 3-15, 3-19, 3-20, 3-76, 3-162
 3-220 BELL video parameter 3-30
 bin2c utility 3-51, 3-53,
 A 3-57, 3-113, 3-222,
 a_bitop 3-31 3-253, 3-254
 ABORT key 3-87, 3-104, 3-247 bitop 3-4, 3-5, 3-15, 3-31
 achg 3-11, 3-21, 3-42 BUFSIZ video parameter 3-67
 allget 3-13, 3-23, 3-251
 amount field 3-193 C
 amt_format 3-11, 3-24, 3-66, c_off 3-12, 3-33
 3-68, 3-93, 3-144, c_on 3-12, 3-34
 3-149 c_vis 3-12, 3-35, 3-56,
 APP1 key 3-247 3-73, 3-77, 3-138,
 application 3-163, 3-213, 3-248
 efficiency 3-253 calc 3-11, 3-36, 3-186
 international 3-253 cancel 3-10, 3-37
 main routine 3-7 case sensitivity 3-78, 3-134
 space saving 3-255 ch_emsgatt 3-14, 3-38, 3-76
 application Portability ch_form_atts 3-14, 3-39
 3-252 ch_qmsgatt 3-14, 3-40, 3-161
 aprotect 3-15, 3-19, 3-20, ch_stextatt 3-14, 3-41
 3-25, 3-27, 3-158 ch_umsgatt 3-14
 array ch_umsgatts 3-218
 size of 3-190 chg_attr 3-11, 3-21, 3-42
 ascroll 3-14, 3-26 choice 3-12, 3-16, 3-43,
 asynchronous function 3-200 3-104, 3-252
 attached function 3-3 ckdigit 3-203
 parameters 3-3 cl_all_mdts 3-15, 3-45
 return value 3-4 cl_everyfield 3-11, 3-46
 aunprotect 3-15, 3-25, 3-27, cl_unprot 3-11, 3-47
 3-220 CLEAR ALL key 3-47
 clear_array 3-11, 3-14,
 B 3-18, 3-48
 background status 3-248 close_window 3-5, 3-6, 3-9,
 BACKSPACE key 3-154 3-11, 3-49
 backtab 3-12, 3-28 COF video parameter 3-33,
 BACKTAB key 3-3, 3-4, 3-135, 3-34
 3-153, 3-154 CON video parameter 3-33,
 base_fldno 3-15, 3-29 3-34

 configuration
 determination at runtime E
 3-244 e_ 3-9, 3-14
 configuration files 3-244 e_1protect 3-67
 memory-resident 3-254 e_1unprotect 3-67
 control path 3-237, 3-238, e_amt_format 3-67, 3-68
 3-239 e_bitop 3-67
 control string 3-1 e_chg_attr 3-67
 target list 3-1 e_dblval 3-67
 control strings 3-1 e_dlength 3-67
 CURPOS video parameter 3-35 e_dtofield 3-67
 cursor e_fldno 3-68, 3-69
 locating 3-189 e_fptr 3-68
 position 3-85 e_fval 3-68
 position display 3-35 e_getfield 3-68
 turn off 3-33 e_gofield 3-68
 turn on 3-34 e_intval 3-68
 cursor motion 3-90, 3-92, e_is_yes 3-68
 3-123, 3-146, 3-198 e_itofield 3-68
 control 3-152 e_lngval 3-68
 cursor style 3-204 e_ltofield 3-68
 e_mdt_clear 3-68
 D e_mod_test 3-68
 d_ 3-10, 3-16 e_novalbit 3-68
 d_at_cur 3-11, 3-51 e_off_gofield 3-68
 d_form 3-5, 3-11, 3-53, e_protect 3-68
 3-253 e_putfield 3-68
 d_msg_line 3-13, 3-55, 3-72, e_unprotect 3-68
 3-76, 3-132, 3-138, edit_ptr 3-12, 3-70, 3-186,
 3-143, 3-161, 3-162, 3-192, 3-250
 3-164, 3-187, 3-188, 8-bit ASCII 3-253
 3-213, 3-248 element number 3-68
 d_window 3-6, 3-11, 3-57, emsg 3-13, 3-72, 3-74, 3-76,
 3-165, 3-167, 3-232 3-162, 3-248
 data dictionary environment
 and LDB 3-251 system 3-244
 data length 3-63 use at startup 3-244
 data links 3-251 environment variables 3-255
 data structure access 3-171, environment variables: see SMKEY,
 3-172, 3-225, 3-228 SMVARS, etc.
 dblval 3-13, 3-59 er_options 3-14, 3-72, 3-74,
 dd2struct utility 3-179, 3-76, 3-162, 3-164
 3-224 ERASE key 3-154
 dd_able 3-14, 3-23, 3-60, err_reset 3-9, 3-13, 3-14,
 3-251 3-38, 3-55, 3-72, 3-74,
 delayed write 3-67, 3-247 3-76, 3-164, 3-187,
 DELETE CHAR key 3-87 3-188, 3-248
 DELETE LINE key 3-65 error message 3-76, 3-161,
 dicname 3-14, 3-61, 3-125 3-164, 3-245
 disp_off 3-12, 3-62, 3-189 translation 3-253
 display attribute EXIT key 3-1, 3-2, 3-43,
 embedded in status line 3-49, 3-51, 3-57, 3-87,
 3-55, 3-72, 3-76, 3-162 3-91, 3-115, 3-120,
 of field 3-42 3-134, 3-154, 3-165,
 of inquiries 3-40 3-169, 3-237, 3-252
 of messages 3-38 exit processing 3-174
 of prompts 3-41
 of windows 3-39 F
 dlength 3-13, 3-63, 3-127 f2struct utility 3-171,
 do_region 3-15, 3-64 3-172, 3-225, 3-228,
 doccur 3-11, 3-65, 3-102 3-230
 dtofield 3-11, 3-66 fcase 3-78
 dw_options 3-14, 3-67 fextension 3-10, 3-79

 field TRANSMIT, 3-91
 changing display TRANSMIT. 3-91
 attribute 3-42 XMIT 3-1
 current 3-85 ZOOM 3-234
 date 3-186 function key labels 3-55,
 time 3-192 3-72, 3-76, 3-162
 field length 3-127 function keys
 field name 3-144, 3-145 labeling 3-122
 field number 3-85, 3-145 routing of 3-247
 field validation 3-147, undefined 3-246
 3-182 function list 3-1, 3-7
 order of 3-182 fval 3-3, 3-4, 3-15, 3-83
 flush 3-15, 3-80, 3-132,
 3-173, 3-208, 3-232, G
 3-247 getcurno 3-12, 3-85
 foreign language support getfield 3-12, 3-16, 3-63,
 3-253 3-82, 3-86, 3-159,
 form list 3-254 3-232
 formlib utility 3-115, getkey 3-10, 3-11, 3-12,
 3-118, 3-119, 3-120 3-17, 3-87, 3-89,
 formlist 3-10, 3-51, 3-53, 3-104, 3-111, 3-154,
 3-57, 3-81, 3-178, 3-173, 3-200, 3-202,
 3-254 3-204, 3-205, 3-208,
 fptr 3-12, 3-16, 3-43, 3-82, 3-212, 3-219, 3-246
 3-103 gofield 3-9, 3-12, 3-90
 function key graphics characters 3-247,
 ABORT 3-87, 3-104, 3-247 3-253
 APP1 3-247 graphics modes 3-247
 BACKSPACE 3-154 GRTYPE video parameter 3-253
 BACKTAB 3-3, 3-4, 3-135, gtchar 3-200
 3-153, 3-154
 CLEAR ALL 3-47 H
 DELETE CHAR 3-87 HELP key 3-87, 3-91, 3-154
 DELETE LINE 3-65 help screen 3-91
 ERASE 3-154 hlp_by_name 3-11, 3-15, 3-91
 EXIT 3-1, 3-2, 3-43, home 3-12, 3-92, 3-123
 3-49, 3-51, 3-57, 3-87, HOME key 3-4
 3-91, 3-115, 3-120, hook
 3-134, 3-154, 3-165, field attachment 3-3
 3-169, 3-237, 3-252 invoked function 3-1
 HELP 3-87, 3-91, 3-154
 HOME 3-4 I
 INSERT 3-87, 3-154, 3-204 i_ 3-9
 INSERT LINE 3-102 i_achg 3-21, 3-93
 LOCAL PRINT 3-87, 3-91, i_amt_format 3-93
 3-154 i_bitop 3-31, 3-93
 PAGE DOWN 3-16 i_dblval 3-93
 PAGE UP 3-16, 3-154 i_dlength 3-93
 PF1 3-1, 3-87, 3-247 i_doccur 3-93
 PF10 3-239, 3-242 i_dtofield 3-93
 PF24 3-87 i_fptr 3-93
 RESCREEN 3-87, 3-91, i_fval 3-93
 3-154, 3-173 i_getfield 3-93
 RETURN 3-3, 3-146, 3-153 i_gofield 3-90, 3-93
 SPF1 3-87, 3-238, 3-247 i_intval 3-93
 SPF2 3-39, 3-242 i_ioccur 3-93, 3-102
 SPF24 3-87 i_itofield 3-93
 SPF3 3-39, 3-239 i_lngval 3-93
 TAB 3-3, 3-135, 3-153, i_ltofield 3-93
 3-154, 3-198 i_mdt_clear 3-93
 TRANSMIT 3-2, 3-3, 3-4, i_mod_test 3-93
 3-43, 3-87, 3-134, i_novalbit 3-93
 3-154, 3-182, 3-241, i_off_gofield 3-93
 3-242 i_putfield 3-93, 3-159

 inbusiness 3-94 keyfilter 3-14, 3-111
 ind_set 3-15, 3-95 keyhit 3-12, 3-112, 3-202
 inictrl 3-10 keyinit 3-10, 3-113, 3-245
 INICTRL setup variable 3-160 keylabel 3-15, 3-114
 ininames 3-96, 3-125, 3-129 keys
 initcrt 3-9, 3-10, 3-37, cursor motion 3-135
 3-81, 3-94, 3-97, keytops 3-55, 3-72, 3-76,
 3-113, 3-119, 3-141, 3-162
 3-165, 3-167, 3-174, KPAR video parameter 3-122
 3-191, 3-214, 3-222, KSET video parameter 3-122
 3-244, 3-245, 3-248
 INSERT key 3-87, 3-154, L
 3-204 l_ 3-10, 3-16
 INSERT LINE key 3-102 l_at_cur 3-11, 3-115
 INSOFF video parameter 3-204 l_close 3-11, 3-117
 INSON video parameter 3-204 l_form 3-11, 3-118
 install 3-7, 3-10, 3-87, l_open 3-11, 3-115, 3-117,
 3-97, 3-98, 3-99, 3-118, 3-119, 3-120
 3-200, 3-203, 3-204, l_window 3-11, 3-119, 3-120,
 3-205, 3-213, 3-214, 3-165, 3-167
 3-215, 3-216, 3-250 label_key 3-15, 3-122
 international applications last 3-12, 3-123
 3-253 lclear 3-11, 3-124, 3-125
 intval 3-13, 3-101 LDB 3-23, 3-251
 invoked function 3-1 write-through 3-60, 3-251
 chaining 3-1 LDB merge 3-23
 parameters 3-1 ldb_init 3-11, 3-61, 3-96,
 return value 3-1 3-125, 3-252
 target list 3-1 leave 3-10, 3-94, 3-126,
 ioccur 3-11, 3-65, 3-102 3-173, 3-177
 is_yes 3-13, 3-103 length 3-15, 3-127
 isabort 3-12, 3-87, 3-104 library functions
 item_id 3-14 categories 3-10
 itofield 3-11, 3-105 naming conventions 3-9
 stubs 3-255
 J typical use 3-9
 jam_auto 3-5 lngval 3-13, 3-128
 jam_menu 3-241 LOCAL PRINT key 3-87, 3-91,
 jclose 3-106 3-154
 jform 3-107 logical keys 3-245, 3-246
 ^jm_exit 3-237, 3-238 lreset 3-11, 3-96, 3-125,
 ^jm_goform 3-239 3-129, 3-251
 ^jm_gotop 3-238 lstore 3-13, 3-49, 3-130,
 ^jm_keys 3-240 3-251, 3-252
 ^jm_mnutogl 3-241 ltofield 3-11, 3-131
 ^jm_system 3-242
 ^jpl 3-243 M
 jwindow 3-109 m_flush 3-15, 3-132
 math edit 3-36
 K max_occur 3-15, 3-133, 3-148
 key processing 3-245 MDT bit 3-3, 3-4, 3-5, 3-23,
 key routing 3-154 3-45, 3-159, 3-199,
 algorithm 3-246 3-251
 to change 3-247 memo edits 3-70, 3-250
 key translation memory-resident
 algorithm 3-245 configuration files 3-254
 initialization 3-113 screen 3-51
 key translation file 3-55, screens 3-253
 3-72, 3-76, 3-162 menu 3-43
 key2bin utility 3-113 cursor motion control
 keyboard input 3-87, 3-112, 3-135
 3-152, 3-154 MENU bit 3-43, 3-91, 3-241
 keyboard mapping: see key menu_proc 3-10, 3-12, 3-14,
 translation 3-16, 3-17, 3-43,

 3-134, 3-135, 3-137, o_achg 3-21, 3-149
 3-241, 3-252 o_amt_format 3-149
 message file 3-248 o_bitop 3-31, 3-149
 modkey utility 3-245 o_chg_attr 3-149
 mp_options 3-14, 3-43, o_dblval 3-149
 3-134, 3-135, 3-152 o_dlength 3-149
 mp_string 3-14, 3-16, 3-43, o_doccur 3-149
 3-134, 3-137 o_dtofield 3-149
 MS-DOS 3-256 o_fptr 3-149
 msg 3-13, 3-138, 3-248 o_fval 3-149
 msg2bin utility 3-139 o_getfield 3-149
 msg_get 3-13, 3-139, 3-140, o_gofield 3-90, 3-149
 3-141, 3-142, 3-248 o_intval 3-149
 msgfind 3-13, 3-140, 3-141, o_ioccur 3-102, 3-149
 3-142 o_itofield 3-149
 msginit 3-244 o_lngval 3-149
 msgread 3-10, 3-139, 3-141, o_ltofield 3-149
 3-255 o_mdt_clear 3-149
 mwindow 3-13, 3-143 o_mod_test 3-149
 o_novalbit 3-149
 N o_off_gofield 3-149
 n_ 3-9 o_putfield 3-149
 n_1clear_array 3-144 occur_no 3-15, 3-150
 n_1protect 3-144 occurrence 3-149
 n_1unprotect 3-144 occurrence number
 n_amt_format 3-144 obtaining 3-150
 n_aprotect 3-144 off_gofield 3-12, 3-90,
 n_aunprotect 3-144 3-151
 n_bitop 3-144 offscreen data 3-18
 n_chg_attr 3-144 ok_options 3-3, 3-14, 3-97,
 n_clear_array 3-144 3-135, 3-152, 3-154
 n_dblval 3-144 op_mdt 3-199
 n_dlength 3-144 openkeybd 3-3, 3-5, 3-9,
 n_dtofield 3-144 3-10, 3-12, 3-14, 3-17,
 n_edit_ptr 3-144 3-83, 3-104, 3-152,
 n_fldno 3-15, 3-144, 3-145 3-154, 3-182, 3-241,
 n_fptr 3-144 3-246
 n_fval 3-144 oshift 3-14, 3-156
 n_getfield 3-144
 n_gofield 3-144 P
 n_intval 3-144 PAGE DOWN key 3-16
 n_is_yes 3-144 PAGE UP key 3-16, 3-154
 n_itofield 3-144 PF1 key 3-1, 3-87, 3-247
 n_length 3-144 PF10 key 3-239, 3-242
 n_lngval 3-144 PF24 key 3-87
 n_ltofield 3-144 pkptr 3-12, 3-16
 n_max_occur 3-144 plcall 3-15, 3-157
 n_mdt_clear 3-144 portability 3-252
 n_mod_test 3-144 program initialization 3-244
 n_novalbit 3-144 prompt 3-55, 3-72, 3-76,
 n_num_items 3-144 3-162
 n_off_gofield 3-144 protect 3-15, 3-19, 3-20,
 n_protect 3-144 3-25, 3-27, 3-158
 n_putfield 3-144, 3-159 PROTECT bits 3-158, 3-220
 n_size_of_array 3-144 protected field 3-158, 3-220
 n_unprotect 3-144 putfield 3-3, 3-5, 3-9,
 n_wselect 3-144, 3-232 3-11, 3-24, 3-45, 3-86,
 nl 3-12, 3-146 3-147, 3-148, 3-159,
 novalbit 3-15, 3-147 3-232
 num_items 3-14 putjctrl 3-15, 3-160
 num_occurs 3-12, 3-148

 O
 o_ 3-9

 screen validation 3-182
 Q scroll 3-181
 query_msg 3-12, 3-13, 3-14, scrolling array 3-48
 3-40, 3-161, 3-187, maximum item count 3-133,
 3-248 3-185
 qui_msg 3-13, 3-72, 3-74, scrolling field
 3-162, 3-164, 3-248 number of items in 3-148
 quiet_err 3-13, 3-14, 3-38, sdate 3-15, 3-186
 3-74, 3-76, 3-162, setbkstat 3-13, 3-187,
 3-164, 3-187, 3-248 3-188, 3-248
 setstatus 3-14, 3-55, 3-187,
 R 3-188, 3-248
 r_ 3-9, 3-16 SETUP video parameter 3-177
 r_at_cur 3-11, 3-51, 3-53, sh_off 3-15, 3-62, 3-189
 3-57, 3-81, 3-143, size_of_array 3-15, 3-190
 3-165 sm_do_not_display 3-170,
 r_form 3-5, 3-9, 3-11, 3-81, 3-173
 3-167 SMCHEMSGATT setup variable
 r_window 3-5, 3-9, 3-11, 3-38
 3-78, 3-79, 3-81, 3-97, SMCHFORMATTS setup variable
 3-115, 3-118, 3-119, 3-39
 3-120, 3-169, 3-178, SMCHQMSGATT setup variable
 3-251, 3-253 3-40
 rd_part 3-13, 3-171, 3-225 SMCHSTEXTATT setup variable
 rdstruct 3-13, 3-171, 3-172, 3-41
 3-179, 3-225 SMDICNAME setup variable
 rescreen 3-11, 3-15, 3-173, 3-61
 3-177, 3-255 SMDWOPTIONS setup variable
 RESCREEN key 3-87, 3-91, 3-67
 3-154, 3-173 SMEROPTIONS setup variable
 RESET video parameter 3-126, 3-74
 3-174 SMFCASE setup variable 3-254
 resetcrt 3-9, 3-10, 3-37, SMFEXTENSION setup variable
 3-94, 3-174, 3-215 3-79, 3-254
 resize 3-15, 3-175 SMFLIBS setup variable 3-16,
 restore_data 3-13, 3-176, 3-119
 3-180, 3-184, 3-194 SMINDSET setup variable 3-95
 return 3-10, 3-94, 3-177 SMINICTRL setup variable
 RETURN key 3-3, 3-146, 3-153 3-238
 rmformlist 3-10, 3-178 SMININAMES setup variable
 routing table 3-154 3-96
 rrecord 3-13, 3-179, 3-224 SMKEY setup variable 3-113,
 rs_data 3-13, 3-180, 3-194 3-244
 rscroll 3-14, 3-181 SMMPOPTIONS setup variable
 3-135
 S SMMPSTRING setup variable
 s_val 3-3, 3-4, 3-15, 3-182 3-137
 sample programs 3-8 SMMSGS setup variable 3-141,
 save_data 3-13, 3-176, 3-244
 3-184, 3-195 SMOKOPTIONS setup variable
 sc_max 3-14, 3-102, 3-133, 3-153
 3-185 SMPATH setup variable 3-61,
 screen 3-97, 3-119, 3-129,
 memory-resident 3-253 3-157, 3-165, 3-167
 display 3-51, 3-53, smsetup 3-10, 3-191, 3-221
 3-57 SMSETUP setup variable 3-97,
 screen display 3-165, 3-167, 3-191, 3-244
 3-169 SMTERM setup variable 3-97,
 screen entry function 3-5 3-244
 screen initialization 3-97 SMUSEEXT setup variable 3-79
 screen library 3-115, 3-117, SMVAGS setup variable 3-97
 3-118, 3-119, 3-120 SMVARS setup variable 3-191,
 screen output 3-244, 3-255
 optimization 3-255

 SMVIDEO setup variable u_ckdigit 3-98, 3-203, 3-249
 3-222, 3-244 u_inscrsr 3-98, 3-204, 3-249
 SMZMOPTIONS setup variable u_keychange 3-87, 3-249
 3-235 u_keychg 3-98, 3-205
 special edits 3-70 u_play 3-87, 3-98, 3-202,
 check digit 3-203 3-205, 3-208, 3-212,
 SPF1 key 3-87, 3-238, 3-247 3-249
 SPF2 key 3-39, 3-242 u_record 3-87, 3-98, 3-202,
 SPF24 key 3-87 3-208, 3-212, 3-249
 SPF3 key 3-39, 3-239 u_statfnc 3-98, 3-213, 3-249
 status line 3-55, 3-76, u_uinit 3-97, 3-98, 3-214,
 3-138, 3-161, 3-164, 3-244, 3-249, 3-250
 3-187, 3-213, 3-248 u_ureset 3-98, 3-215, 3-249,
 embedded attribute 3-55, 3-250
 3-72, 3-76, 3-162 u_vproc 3-98, 3-216, 3-249
 status text 3-55, 3-72, ungetkey 3-12, 3-87, 3-212,
 3-76, 3-162 3-219, 3-240
 status window 3-55, 3-72, UNIX 3-256
 3-76, 3-162 unprotect 3-220
 stime 3-15, 3-192 unsetup 3-10, 3-191, 3-221
 strip_amt_ptr 3-12, 3-59,
 3-193 V
 stub functions 3-255 VALIDED bit 3-3, 3-4, 3-147,
 sv_data 3-13, 3-180, 3-194, 3-159
 3-195 var2bin utility 3-244
 sv_free 3-184, 3-195 vid2bin utility 3-222
 vinit 3-10, 3-97, 3-222,
 T 3-245
 t_bitop 3-31
 t_scroll 3-14, 3-196 W
 t_shift 3-14, 3-197 wdeselect 3-11, 3-223, 3-232
 tab 3-12, 3-83, 3-198 window 3-49, 3-57
 TAB key 3-3, 3-135, 3-153, display 3-165, 3-169
 3-154, 3-198 wrecord 3-13, 3-179, 3-224
 target list 3-1 wrt_part 3-13, 3-171, 3-225
 TERM 3-244 wrtpart 3-225
 terminal dependencies 3-252 wrtstruct 3-13, 3-171,
 terminal setup 3-245 3-172, 3-225, 3-228
 TRANSMIT key 3-2, 3-3, 3-4, wselect 3-11, 3-51, 3-57,
 3-43, 3-87, 3-134, 3-109, 3-115, 3-120,
 3-154, 3-182, 3-241, 3-165, 3-169, 3-223,
 3-242 3-232
 TRANSMIT, key 3-91
 TRANSMIT. key 3-91 X
 tst_all_mdts 3-15, 3-199 XMIT key 3-1

 U Z
 u_async 3-98, 3-200, 3-249 zm_options 3-14, 3-234
 u_avail 3-98, 3-202, 3-208, ZOOM key 3-234
 3-212, 3-249

