
 JAM Configuration and Utilities Guide

 Contents

1 Summary of Configuration Utilities . 1

2 Features and Options Common Among Utilities 1
2.1 Input and Output Files . 2
2.2 File Names and Extensions . 2
2.3 Configuring File Extensions and Rules 3
2.4 Ordering of Options and Other Arguments 4
2.5 Notation . 4

3 bin2c . 4

4 bin2hex . 5

5 dd2asc . 6
5.1 Creating an ASCII File from a Data Dictionary 7
5.2 ASCII File Formatting Rules . 8
5.3 Field Attribute Keywords . 9
5.3.1 Display Attributes . 9
5.3.2 Character Edits . 9
5.3.3 Field Edits . 9
5.3.4 Field Attachments . 10
5.3.5 Miscellaneous Edits . 10
5.3.6 Size . 10
5.3.7 Data Type . 11
5.3.8 Scope . 11

6 dd2r4 . 12

7 dd2struct . 13

8 ddmerge . 15

9 f2struct . 17

10 f2dd . 19

11 f2r4 . 21

12 formlib . 23

13 jamcheck . 26

14 jammap . 28

15 Key translation file . 29
15.1 Key Translation File Format . 30
15.2 Key Mnemonics and Logical Values 31
15.3 ASCII Character Mnemonics . 31

16 key2bin . 32

17 lstdd . 34

18 lstform . 35

19 Message file . 38
19.1 Modifying and Adding Messages . 39
19.2 Embedding Attributes and Key Names in Messages 40

20 modkey . 41
20.1 Introduction . 42
20.1.1 Key Translation . 42
20.2 Executing the Utility . 42
20.3 Control Keys and Data Keys . 43
20.4 Welcome Screen . 44
20.5 Main Menu . 44
20.6 Exiting the Utility . 45
20.7 Help Screen . 45
20.8 Defining Cursor Control and Editing Keys 46
20.8.1 Assigning a Key to a Function 46
20.8.2 Assigning a Sequence of Keys to a Function 47
20.9 Defining Function Keys . 48
20.10 Defining Shifted Function Keys 48
20.11 Defining Application Function Keys 49
20.12 Defining Miscellaneous Keys . 49
20.12.1 Entering the Logical Value . 51
20.12.2 Logical Value Display and Entry Modes 51
20.12.3 Returning to the Main Menu . 52
20.13 Test Keyboard Translation File 52

21 msg2bin . 53

22 Setup file . 54
22.1 The Two Setup Files . 55
22.2 Input File Line Format . 55
22.3 Setup Variables . 56
22.3.1 Configuration File Setups . 56
22.3.2 Setups for Library Routines . 56
22.3.3 Setups for Default File Extensions 58

23 term2vid . 59

24 txt2form . 60

25 var2bin . 61

26 vid2bin . 62

27 Video file . 64
27.1 Introduction to Video Configuration 65
27.1.1 How to Use this Manual . 65
27.1.2 Why Video Files Exist . 65
27.1.3 Text File Format . 66
27.1.4 Minimal Set of Capabilities . 66
27.1.5 A Sample Video File . 67
27.1.6 An MS-DOS Video File . 67
27.2 Video File Format . 68
27.2.1 General Information . 68
27.2.2 Keyword Summary . 69
27.3 Parameterized Character Sequences 70
27.3.1 Summary of Percent Commands . 71
27.3.2 Automatic Parameter Sequencing 72
27.3.3 Stack Manipulation and Arithmetic Commands 72
27.3.4 Parameter Sequencing Commands 73
27.3.5 Output Commands . 73
27.3.6 Parameter Changing Commands . 73
27.3.7 Control Flow Commands . 74
27.3.8 The List Command . 75
27.3.9 Padding . 75
27.4 Constructing a Video File, Entry by Entry 76
27.4.1 Basic Capabilities . 76
27.4.2 Screen Erasure . 77
27.4.3 Cursor Position . 78
27.4.4 Cursor Appearance . 79
27.4.5 Display Attributes . 79
27.4.5.1 Attribute Types . 80
27.4.5.2 Specifying Latch Attributes 81
27.4.5.3 Specifying Area Attributes . 83
27.4.5.4 Color . 84
27.4.6 Message Line . 85
27.4.7 Function Key Labels . 86
27.4.8 Graphics and Foreign Character Support 86
27.4.9 Graphics Characters . 87
27.4.10 Borders . 88
27.4.11 Shifting Field Indicators and Bell 89
27.4.12 jxform Status Text . 90
27.4.13 Cursor Position Display . 90

Appendix A Error Messages .92

28 Run-time Messages . 92

29 Screen and Data Dictionary Editor Messages 98

30 Utility Messages . 104

1 Summary of Configuration Utilities

This manual describes a number of utility programs that fall under the rubric of
configuring JAM itself or applications that use it. One group is for creating
and modifying files that tell JAM how to run on particular computers and
terminals; another group of programs enables you to list, reformat, and
otherwise manipulate screens and data dictionaries.

 Hardware Configuration

 modkey A specialized full-screen editor for inspecting, creating,
 and modifying key translation files.
 Key file Not actually a utility; this section describes how to
 format key translation files by hand.
 key2bin Converts key translation files to binary format.
 Video file Not actually a utility; this section describes how to
 create video configuration files for terminals and
 displays.
 vid2bin Converts video files to binary format.
 term2vid On UNIX and related systems, creates a primitive video file
 from a terminfo or termcap entry.

 Software Configuration

 Message file Not a utility; this section describes how to prepare files
 of messages for use with the msg2bin utility and the JAM
 library.
 msg2bin Converts message text files to binary format.
 Setup file Not actually a utility; this section describes the setup or
 environment variables supported by JAM, and tells how to
 prepare setup files.
 var2bin Converts setup variable files to binary format.
 f2r4 Converts Release 3 screen files to Release 4 format. dd2r4
 Converts Release 3 data dictionaries to Release 4 format.
 bin2c
 Converts binary files to and from C source code, so that
 they may be made memory-resident.
 bin2hex Converts binary files to and from an ASCII format for
 exchange with other computers.
 formlib Collects screen files in a single library file, to simplify
 the management of large numbers of screens.
 lstform Creates a listing telling everything about a screen. lstdd
 Creates a listing telling everything about a data
 dictionary.
 txt2form Creates a read-only screen from a text file, for quick
 construction of help screens and such.

 Data Organization

 f2struct Creates a data structure from a screen file in the
 programming language of your choice.
 dd2struct Creates a data structure from records in a data dictionary
 file, in the programming language of your choice.
 f2dd Creates a data dictionary structure from a screen file.
 jammap Analyzes the links between screens in a directory and
 creates a report.
 dd2asc Converts data dictionaries to and from a text format, so
 that they may be hand-edited.
 ddmerge Combines binary data dictionaries.
 jamcheck Brings screen fields into conformity with their data
 dictionary definitions, and reports discrepancies.

2 Features and Options Common Among Utilities

The following section describes command-line options and file-handling
procedures shared by most or all of the JAM configuration utilities. When a
utility deviates from this standard, as a few do, the section describing that
utility will make it clear.

Command-line options are identified by a leading hyphen. You can always obtain a
usage summary from any JAM utility by invoking it with the -h option, for
instance

 formlib -h

The utility in question will print a brief description of its command line
parameters, including the input files and all command options. Utilities that
can process multiple input files will also support a -v option. It causes them
to print the name of each input file as it is processed.

2.1 Input and Output Files

With a few exceptions, utilities accept multiple input files. Some then combine
information from the inputs to create a listing; others perform some
transformation on each input individually. No utility will ever overwrite an
input file with an identically named output file; if your command calls for such
an action, an error message will be the only result. Most utilities will also
refuse to overwrite an existing output file; you may force the overwrite with
the -f option.

Utilities that create a listing, such as lstform, support a -o option, which
directs the output to a named file. For example:

 lstform -omylist *.frm

lists all the screens in the current directory, and places the listing in a file
named mylist. A special form of this option, -o-, sends the program's output to
the standard output file rather than to a disk file.

Utilities that generate one output file for each input will, by default, give
output files the same name as the corresponding input, but with a different
extension. Each utility has a different default extension (see the next section
for a table); in addition, each one supports a -e option that enables you to
specify the output file extension. For example:

 form2r4 -enew mytop.mnu myscreen.win

converts the Release 3 screens mytop.mnu and myscreen.win to Release 4 format,
and puts the new screens in mytop.new and myscreen.new. The form -e- makes the
output file extension null.

Certain utilities that normally generate multiple output files also support the
-o option; it causes them to place all the output in the file named in the
option. For instance,

 f2struct -oscreenrecs.h screen1.jam screen2.jam

generates C data structures for screen1 and screen2, and places them both in
screenrecs.h. Without the -o option, it would have created two output files,
screen1.h and screen2.h.

By default, if an input filename contains a path component, a utility will strip
it off in generating the output filename; this usually means that output files
will be placed in your default directory. You may supply a -p option to have the
path left on, that is, to create the output file in the same directory as the
input.

2.2 File Names and Extensions

JAM runs on several different operating systems, which deal in rather different
ways with file naming. We must therefore define a few terms for use in the
following sections:

 full name Everything you and the operating system need to know in
 order to identify a file uniquely.
 name The only truly arbitrary part of the full name, identifying
 anything at all. May not be omitted.
 path A prefix to the name that tells where (on what device,
 directory, or user ID) a file resides. If omitted, defaults
 to a location known to the operating system, such as a
 working directory.
 extension A prefix or suffix to the name that tells what sort of
 information is in the file. May be omitted.

JAM does not attempt to understand or alter paths; it just uses them as you
supply them. It knows about a class of path separator characters, and assumes
that the path ends at the rightmost such character in the full name.

JAM, like many other software systems, uses extensions to identify the contents
of a file. (Where proper identification is crucial, it puts "magic numbers" in
the files themselves.) We have tried to make our conventions flexible:
extensions are not required, but are supplied by default, and the default can
always be overridden. There are three distinct operations involving file
extensions:

 1. Finding and modifying files. jxform and the JAM run-time system assume
 that screen files have a common extension, such as jam. They will add
 that extension to any filename that does not already contain one before
 attempting to open it. This rule does not operate if extensions are
 ignored.
 2. Creating new files. Utilities other than jxform transform files of one
 type to another, and must name the output file differently from the
 input. They do it by replacing the input file's extension, or adding
 one if there was none. This rule operates even if extensions are
 ignored, in which case the new extension is always added.
 3. Creating data structures. The utilities f2struct, dd2struct, and bin2c
 create data structures from screen files. They name the structures by
 removing the path and extension from the input filename. If extensions
 are ignored, only the path is removed.

2.3 Configuring File Extensions and Rules

There are three parameters that control how JAM uses file extensions:

 1. A flag telling whether JAM should recognize and replace extensions, or
 ignore them.
 2. Another flag telling whether the extension should go at the beginning
 or the end of the filename.
 3. The character that separates the extension from the name (zero means no
 separator).

The default values for these parameters are recognize, end, and period
respectively. You may alter them using the SMUSEEXT setup variable; but be aware
that people working on the same project should use the same rules, or confusion
is likely to result.

Here is a list of the default extensions used by utility programs.

 Utility Extension

 bin2c language-dependent bin2hex
 none dd2asc
 dic dd2r4
 no change dd2struct
 language-dependent ddmerge
 dic f2dd
 dic f2r4
 no change f2struct
 language-dependent formlib
 none jamcheck
 prv (backup) jammap
 map key2bin
 bin lstdd
 lst lstform
 lst modkey
 keys msg2bin
 bin term2vid
 vid txt2form
 none var2bin
 bin vid2bin
 bin

2.4 Ordering of Options and Other Arguments

Most utilities take as arguments an output file, a list of input files, and some
options. If present, the output file precedes the input file list. Options may
be placed anywhere after the utility name; they may be supplied separately (each
with its own hyphen), or together (all following a single hyphen); the two
commands

 lstform -fti myscreen
 lstform -f -t -i myscreen

are equivalent. Option letters may be either upper- or lower-case. On certain
systems such as VMS and MS-DOS, where the prevalent "switch character" is /
rather than - , both are supported.

2.5 Notation

The rest of this chapter describes each configuration utility individually.
There are also a few sections that tell how to prepare input files for some of
the utilities. Each section contains the following information:

 .
 The name and purpose of the utility.
 .
 A synopsis of its usage, that is, what you type on the command line to
 run it. Here, literal input appears in boldface, and parameters that
 you supply appear in normal type. Optional parameters are enclosed in
 square brackets []. An ellipsis ... indicates that the previous
 parameter may be repeated. Command options are simply listed after a
 hyphen, as -abcdefg; you may select any combination of them.
 .
 A complete description of the utility's inputs, outputs, and
 processing.
 .
 Where applicable, a list of error conditions that may prevent the
 utility from doing what you tell it.

NAME

 bin2c - convert any binary file to C source code

SYNOPSIS

 bin2c [-flv] textfile binfile [binfile ...]

DESCRIPTION

This program reads binary files created by other JAM utilities, and turns each
one into C code for a character array initialized to the contents of the file.
Such arrays may then be compiled, linked with your application, and used as
memory-resident files. This utility combines the arrays from all the input files
in a single output file; each array is given a name corresponding to the name of
the input file, with the path and extension stripped off.

Files that can be made memory-resident include the following types:

 1. screens (created by jxform)
 2. key translation files (key2bin)
 3. setup variable files (var2bin)
 4. video configuration files (vid2bin)
 5. message files (msg2bin)

The command options are interpreted as follows:

 -f Overwrite an existing output file.
 -l Force the array names derived from the input file names to
 lower-case characters.
 -v Print the name of each input file on the terminal as it is
 processed.

ERROR CONDITIONS

Insufficient memory available. Cause: The utility could not allocate enough
 memory for its needs. Corrective action:
 None.

File "%s" already exists; use '-f' to overwrite. Cause: You have specified an
 output file that already exists.
 Corrective action: Use the -f flag to
 overwrite the file, or use another name.

Cannot open "%s" for writing. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Cannot open "%s" for reading. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error reading file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Error writing file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

NAME

 bin2hex - convert binary to and from hex ASCII, for transport

SYNOPSIS

 bin2hex -cx [-flv] hexfile binary [binary ...]

DESCRIPTION

The bin2hex utility translates binary files of any description to and from a
hexadecimal ASCII representation. It is useful for transmitting files between
computers. The utility is very straightforward; no translation of any sort is
attempted.

Either the -c or the -x switch is required; the others are optional. Here is a
summary:

 -c Create a text file from one or more binary files; the text file's
 name is the first file argument, and the rest are binaries.
 -f Overwrite any existing output files.
 -l Force the filename arguments to lower case.
 -v Print the name of each binary on the terminal as it is processed.
 -x Extract all the binary files contained in an ASCII source. Selective
 extraction is not supported.

ERROR CONDITIONS

Error reading %s Error writing %s Cause: The utility incurred an I/O error while
processing an input or output file. This message will usually be accompanied by
a more specific, system-dependent message. Corrective action: Correct the
system-dependent problem, if possible, and retry the operation.

%s already exists %s already exists, it is skipped Cause: The command you have
issued would overwrite an existing output file. Corrective action: If you are
sure you want to destroy the old file, reissue the command with the -f option.

NAME

 dd2asc - convert a data dictionary between text and binary format

SYNOPSIS

 dd2asc -ab [-f] textfile [binfile]

DESCRIPTION

This utility converts a data dictionary, binfile, to or from a human-readable
format in textfile, according to the command options:

 -a Convert binary to ASCII.
 -b Convert ASCII to binary.
 -f Overwrite an existing output file.

One of -a or -b must be present. If binfile is missing, it defaults to data.dic.

5.1 Creating an ASCII File from a Data Dictionary

Running dd2asc with the -a option creates a complete, human-readable listing of
the contents of your data dictionary. Here is an example. Assume that the data
dictionary that you have created with jxform is called data.dic and contains the
following:

 1. Built-in default values designating a simple (non-array) field with a
 length of 10, no character edits, a scope of 2, and display attributes
 of underlined, highlighted and white.
 2. fld1, a shifting and scrolling vertical array with the following
 attributes: length = 8, elements = 3, distance = 2, max shifting length
 = 20, increment = 1, scrolling items = 10, page size = 3, and both the
 circular and isolate options. A help screen is attached to it, named
 help3.jam. It has a status line text of this is a shifting and
 scrolling array. In addition, you have added a comment to it in the
 data dictionary.
 3. fld2, with a length of 15, a scope of 3, and display attributes of
 reverse video, underlined, highlighted and blue. The character edit is
 numeric. The field edits are right-justified and data-required. It has
 a currency format in which you have chosen all 7 options, including a
 fill character of '*' and 2 automatic decimal places. It also has a
 data type of double, with a precision of 2.
 4. fld3, with a length of 10, a scope of 5, and display attributes of
 highlighted and white. It has a time format of hh:mm p.m., based on a
 12-hour clock, and gets the time from the operating system. It is also
 protected from everything except clearing.
 5. fld4, with a length of 2 and a regular expression, [A-Z][0-9], as a
 character edit.
 6. fld5, with a length of 3 and a character edit of digits only. You have
 specified acceptable data entry ranges of 100-500 and 800-999.
 7. A comment in the data dictionary, which is not attached to either a
 field or a record.
 8. A record, with the name outst and a data dictionary comment, and
 consisting of 3 fields: name, with a data type of char string; telnum,
 with a data type of omit from struct; and amount, with a data type of
 float and a precision of 2.

To create an ASCII listing in a new file called asc, the command is as follows:

 dd2asc asc -a data.dic

Here is a listing of the output file asc:

D:
 SCOPE=2 UNFILTERED LENGTH=10 ARRAY-SIZE=1
 WHITE UNDERLINE HILIGHT
F:fld1 this is a comment
 SCOPE=2 UNFILTERED LENGTH=8 ARRAY-SIZE=3 VERT-DISTANCE=2
 MAX-LENGTH=20 SHIFT-INCR=1 MAX-ITEM=10 PAGE-SIZE=3 CIRCULAR ISOLATE
 WHITE UNDERLINE HILIGHT
 TEXT= this is a shifting and scrolling array
 HELPSCR= help3.jam
F:fld2
 SCOPE=3 NUMERIC LENGTH=15 ARRAY-SIZE=1
 BLUE REVERSE UNDERLINE HILIGHT
 RIGHT-JUSTIFIED REQUIRED
 CURR-FORMAT= FLOAT-SIGN, FILL-CHAR= *, RIGHT-JUST, COMMAS, DEC-PLACES=2\
 CLEAR-IF-ZERO, APPLY-IF-EMPTY
 FTYPE=DOUBLE:2
F:fld3
 SCOPE=5 UNFILTERED LENGTH=10 ARRAY-SIZE=1
 WHITE HILIGHT
 PROTECTED FROM DATA-ENTRY TABBING-INTO VALIDATION
 12-HOUR TIMEFLD= hh:mm p.m.
F:fld4
 SCOPE=2 CHAR-MASK LENGTH=2 ARRAY-SIZE=1
 WHITE UNDERLINE HILIGHT
 REG-EXP (CHAR)= [A-Z][0-9]
F:fld5
 SCOPE=2 DIGITS-ONLY LENGTH=3 ARRAY-SIZE=1
 WHITE UNDERLINE HILIGHT
 RANGE 1 = from 100 to 500
 RANGE 2 = from 800 to 999
a comment not associated with any field
R:outst comment on record
 FIELDS= name(CHAR-STR), telnum(OMIT), amount(FLOAT:2)

For purposes of inspection, the listing above is pretty self-explanatory.
However, you can also create a text file yourself and use the -b option to turn
it into a data dictionary. To do that, you will need the rules explained in the
next section.

5.2 ASCII File Formatting Rules

There are four types of entries in the ASCII file, corresponding to the kinds of
information in a data dictionary. They are default field attributes; fields;
records; and stand-alone comments. If present, the default entry must be the
first entry in the file. Fields, records and unattached comments may appear
after that in any order you like.

In general, white space is ignored, including empty lines. Blanks do, however,
serve to separate field and record names from their comments, and to separate
one keyword from another. If an entry is too long to fit on one line, place a
backslash \ at the very end to indicate that it continues onto the next line.

The default field attributes entry begins with D: in the first two columns of
the first line; the rest of that line must be blank. The default attributes
themselves appear on subsequent lines, and consist of keywords draw from the
list presented in the following section.

Each field entry must be introduced by F: in the first two columns, followed by
the name of the field; an optional comment may follow. The field's attributes
must appear on subsequent lines, and are designated by keywords. The following
section contains a complete list of the keywords.

Each record entry must be introduced by R: in the first two columns, followed by
the name of the record; an optional comment may follow. The next line begins

with FIELDS=, followed by the names of the fields, separated by commas. Each
field name may be followed by the keyword for its data type, enclosed in
parentheses.

Each unattached comment entry must be introduced by a # in the first column,
followed by the comment on the same line.

5.3 Field Attribute Keywords

There are two types of keywords for field attributes: flags and values. A flag
keyword stands by itself and needs no other information, like the HILIGHT
display attribute. It may appear on the same line as other primary keywords. A
value keyword must be accompanied by more information; it is followed by an
equals sign, then more keywords or strings. Value keywords must appear alone on
a line, accompanied only by the information attached to them.

Dd2asc usually reads only the first few characters of each keyword, so you can
truncate keywords if you wish. However, the utility itself always generates the
full names, and we recommend that you do so as well, for better documentation.

The following is a list of all keywords, presented in the order in which you
would encounter the attributes in jxform. When the right-hand side of a value
keyword consists of more keywords, they are listed in upper-case; lower-case
words indicate an arbitrary string with the indicated meaning. For explanations
of the semantics of each field attribute, refer to the Author's Guide.

5.3.1 Display Attributes

All of these are flag keywords.

 BLACK BLUE GREEN CYAN RED MAGENTA NON-DISPLAY REVERSE BLINKING
 YELLOW WHITE UNDERLINE HILIGHT DIM

5.3.2 Character Edits

All of these are flag keywords.

 UNFILTERED DIGITS-ONLY YES-NO
 LETTERS-ONLY NUMERIC ALPHANUMERIC
 CHAR-MASK

Note: Choose CHAR-MASK if you have a regular expression. The value keyword
REG-EXP(CHAR) = expression must follow, on a separate line.

5.3.3 Field Edits

Flag keywords:

 RIGHT-JUSTIFIED REQUIRED UPPER-CASE LOWER-CASE MUST-FILL
 RETURN-ENTRY MENU-FIELD CLR-INPUT NO-AUTOTAB WORD-WRAP

If you choose RETURN-ENTRY or MENU-FIELD, you may include the value keyword
RETCODE = integer-value on a separate line. Menu fields may also have a SUBMENU
value keyword.

Value keywords:

 PROTECTED FROM DATA-ENTRY TABBING-INTO CLEARING VALIDATION
 REG-EXP (FIELD)= regular-expression
 SUBMENU= menu-screen-name

If the field is protected from everything, use PROTECTED alone. If it is only
partially protected, use PROTECTED FROM followed by any or all of the four
values listed.

5.3.4 Field Attachments

All of these are value keywords.

 NEXTFLD= field-designation
 NEXTFLD= primary-field-designation OR alternate-field-designation

 HELPSCR= help-screen-name
 HARDHELP= automatic-help-screen-name

 ITEMSCR= item-selection-screen-name
 HARDITEM = automatic-item-selection-screen-name

 TBL-LOOKUP= screen-name

 TEXT=field-status-string

 MEMO1= string
 MEMO2= string
 ...
 MEMO9= string

5.3.5 Miscellaneous Edits

All of these are value keywords.

 FE-CPROG= field-entry-function-name
 VAL-CPROG= field-exit-function-name

 DATEFLD= date-format-string
 USRDATE= date-format-string

 12-HOUR TIMEFLD= date-format-string
 24-HOUR TIMEFLD= date-format-string
 12-HOUR USRTIME= date-format-string
 24-HOUR USRTIME= date-format-string

 CALC= expression
 CALC= expression; expression; expression; ...

 CKDIGIT= sum MIN-DIGITS= count

 RANGE 1= FROM value TO value
 RANGE 2= FROM value TO value
 ...
 RANGE 9= FROM value TO value

 JPLTEXT=jpl-program

 CURR-FORMAT=

 (Any or all of the following value keywords may follow CURR-FORMAT)

 FLOAT-SIGN
 FILL-CHAR= character
 RIGHT-JUST
 COMMAS
 DEC-PLACES= count
 CLEAR-IF-ZERO
 APPLY-IF-EMPTY

5.3.6 Size

Most of these are value keywords, but all may appear on the same line as other
keywords.

 LENGTH= onscreen-length
 ARRAY-SIZE= number-of-onscreen-elements
 VERT-DISTANCE= offset
 HORIZ-DISTANCE= offset
 MAX-LENGTH= shifting-length
 SHIFT-INCR= count
 MAX-ITEM= number-of-occurrences
 PAGE-SIZE= number
 CIRCULAR
 ISOLATE

5.3.7 Data Type

One value keyword, FTYPE, which may take on any one of the following values:

 OMIT CHAR-STR INT UNSIGNED SHORT
 LONG FLOAT:precision
 DOUBLE:precision

If you choose FLOAT or DOUBLE, you may follow it with an optional colon and
number, designating the precision.

5.3.8 Scope

A value keyword, but it may appear on the same line as other keywords. Must be
followed by a number from 1 to 9.

 SCOPE= number

ERROR CONDITIONS

ASCII file syntax errors do not stop the creation of a data dictionary. The
errors and anything following them on the same line are skipped; however, all
valid entries preceding them on the same line, and all entries on lines without
errors, are incorporated into the data dictionary.

Can't read %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions of
 the file in question.

Can't open %s. Cause: An output file could not be created, due to lack of
 permission or perhaps disk space. Corrective action:
 Correct the file system problem and retry the operation.

%s is not a valid data dictionary. Cause: The file you have named in the data
 dictionary parameter does not have the correct magic
 number. Corrective action: Check the file you named with
 the data dictionary editor.

Error writing %s. Cause: The utility incurred an I/O error while processing the
 file named in the message. Corrective action: Retry the
 operation.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file, or use a
 different name.

Bad data in %s. Cause: A binary input file is corrupt. Corrective action: Make
 sure the file is of the correct type.

There are also numerous messages regarding syntax errors in an ASCII input file,
 which are intended to be self-explanatory.

NAME

 dd2r4 - convert Release 3 data dictionaries to Release 4 format

SYNOPSIS

 dd2r4 [-fpx] [-eextension] [-odictionary] [dictionary ...]

DESCRIPTION

This utility reads in JAM Release 3 data dictionaries, converts them to Release
4 format, and writes them out with the same names. It is strongly recommended
that you place your Release 4 data dictionaries in a different directory from
the Release 3 originals.

The command options are interpreted as follows:

 -f Overwrite an existing output file. Use caution; if you use this
 option in a directory containing Release 3 data dictionaries, they
 will be overwritten by the Release 4 versions.
 -p Create the output file in the same directory as the input file. Use
 of this option is not recommended.
 -e Create the output file with the given extension.
 -o Create a named output data dictionary from a single input data
 dictionary.
 -x Delete the extension from the Release 3 data dictionary name.

In general, the Release 4 data dictionary is a superset of the Release 3 type.
The only change made by this conversion involves the scope, which in Release 4
is a number between one and nine. Release 3 scopes are mapped as follows:

 Release 3 Scope Release 4 Scope

 Constant 1 Global
 1 Transaction
 2 Local
 3

ERROR CONDITIONS

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

File %s already exists. Use `-f' to overwrite or '-e' to append an extension to
 the output file. Cause: You have specified an
 existing output file. Corrective action: Use
 the -f option to overwrite the file, or use a
 different name.

%s is a Release 4 file. Cause: You have attempted to upgrade a data dictionary
 that is already in Release 4 format.
 Corrective action: Relax.

Error writing %s. Cause: The utility incurred an I/O error while processing the
 file named in the message. Corrective action:
 Retry the operation.

NAME

 dd2struct - convert data dictionary records to programming language
 data structures

SYNOPSIS

 dd2struct [-fp] [-ooutfile] [-glanguage]
 [dictionary] [record-name ...]

DESCRIPTION

This utility reads in a data dictionary, and creates programming language data
structures corresponding to some or all of the records defined in that data
dictionary. If there are no record-name arguments, all records in the dictionary
will be used; otherwise, only the selected records will be used.

The command options are interpreted as follows:

 -f Directs the utility to overwrite an existing output file.
 -p Creates the output files in the same directory as the data
 dictionary.
 -o Places all the structures in a single output file, whose name is
 supplied with the option.
 -g Creates the structures in the programming language whose name
 follows the option letter. The language name must belong to a table
 compiled into the utility; see below.

The output files will each contain one structure corresponding to a record in
the data dictionary, and named after the record. Fields of the structures will
have the same names as the corresponding fields of the records. The types of the
structure fields are derived from the input field data type and character edits,
according to the following rules.

 1. If a field has one of the following data type edits, it is used.
 C data type mnemonic
 omit from struct
 FT_OMIT
 integer FT_INT
 unsigned integer
 FT_UNSIGNED
 short integer FT_SHORT
 long integer FT_LONG
 floating point FT_FLOAT
 long floating FT_DOUBLE
 character string
 FT_CHAR
 2. If a field has no data type edit but has a digits-only or numeric
 character edit, its type is unsigned int or double respectively.
 3. All other fields are of type character string.

If a field has multiple occurrences, the corresponding structure member will be
declared as an array.

ERROR CONDITIONS

Language %s undefined. Cause: The language you have given with the -g option has
 not been defined in the utility's tables.
 Corrective action: Check the spelling of the
 option, or define the language ito the utility.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file,
 or use a different name.

%s has an invalid file format. Cause: An input file is not of the expected type.
 Corrective action: Check the spelling and type of
 the offending file.

'%s' has no data to convert. Cause: An input file is empty, or does not have the
 names you specified. Corrective action: Check the
 names.

Not enough memory to process '%s'. Unable to allocate memory. Cause: The utility
 could not allocate enough memory for its needs.
 Corrective action: None.

NAME

 ddmerge - combine binary data dictionaries

SYNOPSIS

 ddmerge [-f] destination source [source ...]

DESCRIPTION

This utility combines several binary data dictionaries into one. Using it, you
can build up a data dictionary from simpler components in a modular fashion.

The program reads in destination, if it exists. The -f option causes the program
to write source over an existing destination file. If a source entry's name and
characteristics duplicate an entry already in the destination, it is ignored. If
the name matches a destination entry but the characteristics differ, the source
entry is discarded and a warning message is issued.

Since the merging is done in memory, there is a machine-dependent limit on the
total size of the destination data dictionary.

ERROR CONDITIONS

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file, or
 use a different name.

No output written. Warning: merge incomplete. Last input included = %s. Cause:
 Due to another error condition, no output or only
 partial output was produced. Corrective action:
 Correct the other error.

Can't read %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions
 of the file in question.

%s is not a valid data dictionary. Cause: An input file did not have the correct
 magic number. Corrective action: Check the spelling
 and type of the input file.

Bad data in %s. Cause: An input file was corrupted. Corrective action: Try to
 repair the file.

Insufficient memory. Cause: The utility could not allocate enough memory for its
 needs. Corrective action: None.

Default in %s differed from saved default. Default in %s had different edits
 from saved default. Cause: Warning only. The default
 sections of input data dictionaries were different;
 the earliest will be retained. Corrective action:
 None.

Too many entries for LDB. Too many entries for data dictionary. Cause: The
 output dictionary size has reached the maximum.
 Corrective action: Try to shrink or eliminate some
 input dictionaries.

Dropped record "%s" in %s -- same name as earlier Field. Dropped field "%s" in
 %s -- same name as earlier Record. Cause: Warning
 only. There were duplicate items in two or more
 dictionaries. Corrective action: None.

Record "%s" in %s differed from saved record. Record "%s" in %s had different
 data types from saved record. Field "%s" in %s
 differed from saved field. Field "%s" in %s had
 different edits from saved field. Field "%s" in %s has
 different %s. Field "%s" in %s had different edits
 from saved field. Cause: Warning only. An entry in the
 named data dictionary has but different attributes
 from a similarly named entry in an earlier input file;
 the earlier one has been retained. Corrective action:
 None.

NAME

 f2struct - create program data structures from screens

SYNOPSIS

 f2struct [-fp] [-ooutfile] [-glanguage] screen
 [screen ...]

DESCRIPTION

This program creates program source files containing data structure definitions
matching the input files. The output file will contain a single structure
bearing the name of the screen.

The language in which the structures are created, and the extension attached to
output file names, are both selected by the -g option. The name of the desired
language follows the g, and must be in a table compiled into the utility. This
option may be placed between file names in the command line to enable files to
be created in different languages. Indeed, the same input file can be named
twice to create, say, both C and Pascal structures:

 f2struct -gc address.jam -gpascal address.jam

You can modify the conversions or write code to handle more languages, as
described in the utility source code; see below. The other command options are
interpreted as follows:

 -f Directs the utility to overwrite an existing output file.
 -p Directs the utility to create each output file in the same directory
 as the corresponding input file.
 -o Causes all output to be placed in outfile.

When a screen name is given to a structure, the screen file's extention is
stripped off. Each field of the structure will be named after a field of the
screen. If a screen field has no name fldm is used, where m is the field number.
The types of the structure fields are derived from the input field data type and
character edits, according to the following rules.

 1. If a field has one of the following data type edits, it is used.
 C data type mnemonic
 omit from struct
 FT_OMIT
 integer FT_INT
 unsigned integer
 FT_UNSIGNED
 short integer FT_SHORT
 long integer FT_LONG
 floating point FT_FLOAT
 long floating FT_DOUBLE
 character string
 FT_CHAR
 2. If a field has no data type edit but has a digits-only or numeric
 character edit, its type is unsigned int or double respectively.
 3. All other fields are of type character string.

Omit from struct is a special type that prevents the field from being included
in any structure.

If a field has multiple occurrences, the corresponding structure member will be
declared as an array.

ERROR CONDITIONS

Language %s undefined. Cause: The language you have given with the -g option has
 not been defined in the utility's tables.
 Corrective action: Check the spelling of the
 option, or define the language ito the utility.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file,
 or use a different name.

%s has an invalid file format. Cause: An input file is not of the expected type.
 Corrective action: Check the spelling and type of
 the offending file.

'%s' has no data to convert. Cause: An input file is empty, or does not have the
 names you specified. Corrective action: Check the
 names.

Not enough memory to process '%s'. Unable to allocate memory. Cause: The utility
 could not allocate enough memory for its needs.
 Corrective action: None.

At least one form name is required. Cause: You have not given any screen files
 as input. Corrective action: Supply one or more
 screen file names.

)

NAME

 f2dd - create or update a data dictionary from screen files

SYNOPSIS

 f2dd [-v] dictionary screen [screen ...]

DESCRIPTION

This utility reads in the named data dictionary, if it already exists. It then
updates the data in memory from the screen files, and writes out the resulting
data dictionary. The -v option causes it to print out the name of each screen as
it is processed.

Screen names must be entered with their extensions, if they have any, but wild
cards may be used (if interpreted by the operating system), as in

 f2dd newdata.dic *.jam

If a screen has no named fields other than JAM control fields (which are
ignored) the utility just displays a message. Otherwise, it creates a tentative
record named after the screen (stripped of its extensions, if any), containing
all the named fields, plus tentative data dictionary entries for each named
field. Then it searches the data dictionary in memory for a record and fields
with names matching the tentative new ones.

If it finds no match for a record or field, the utility adds it to the data
dictionary in memory. If a match is found, the tentative record or field is
ignored; and if the record contents or field characteristics are different from
the tentative ones, a message is posted.

ERROR CONDITIONS

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

%s is not a valid data dictionary. Bad data in %s. Cause: An input file did not
 have the correct magic number, or is
 corrupted. Corrective action: Make sure the
 input file is of the correct type.

Too many entries for data dictionary. Too many data dictionary entries. Too many
 entries for LDB. Cause: The output file has
 reached the maximum possible size. Corrective
 action: Specify fewer inputs, or remove
 unnecessary fields from them.

Can't read form %s. Bad data in form %s. %s is not a form. Cause: An input file
 was missing, unreadable, or not the right
 kind. Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Form %s has no fields. Form %s has no named fields. Cause: Warning only. The
 screen will make no contribution to the
 output. Corrective action: None.

Can't create record "%s" -- same name as data dictionary Field. Can't add field
 "%s" in %s -- same name as data dictionary
 Record. Cause: A screen or field has a name
 that conflicts with something already in the
 data dictionary. Corrective action: Rename one
 of the items.

Record "%s" in %s differs from data dictionary record. Field "%s" in %s differs
 from data dictionary field. Field "%s" in %s
 has different edits from data dictionary
 field. Cause: Warning only. A screen or screen
 field differs from a similarly named item
 already in the data dictionary. The latter
 will be retained. Corrective action: Rename
 one of the items.

Can't write %s. Can't write destination file. Cause: An output file could not be
 created, due to lack of permission or perhaps
 disk space. Corrective action: Correct the
 file system problem and retry the operation.

NAME

 f2r4 - convert Release 3 screens to Release 4 format

SYNOPSIS

 f2r4 [-ja1udvxfp] [-eext] screen [screen ...]

DESCRIPTION

F2r4 converts Release 3 screens to Release 4 format. It gives each new screen
the same name as the old one. It is strongly recommended that you run this
utility in a different directory from where your original Release 3 forms
reside.

There are a few nontrivial changes involved in this conversion. One is that JAM
control fields may be converted to control strings that do not occupy space on
the screen. Another is that jam_first fields, and jam_pf1 fields on read-only
screens, have been replaced by screen entry functions and AUTO control strings,
respectively. The following options are provided to control the conversion of
JAM control fields to control strings:

 -j Do not convert control fields to control strings.
 -a Do not convert jam_pf1 fields to AUTO control strings.
 -1 Do not convert the jam_first attached function to a screen entry
 function. This is a one, not an ell.
 -u Convert all unprotected fields to menu fields. This is useful for
 Release 3 item selection screens; in Release 4, item selection
 fields must have the MENU bit set.
 -d Do not delete jam_d_dflt and jam_f_dflt fields from the screen.
 These fields were used in earlier releases of JAM to denote default
 field and display characteristics.
 -v Print the name of each screen as it is processed.
 -x Delete the input extension.
 -f Overwrite existing output files. Use cautiously: if you do this in
 the directory where your Release 3 screens reside, the Release 4
 screens will be created successfully but your original screens will
 disappear.
 -e Followed by a character string, makes that string the extension for
 output files.
 -p Create each output file in the same directory as the corresponding
 input file. This option is not recommended.

For further information regarding control strings see the Author's Guide.

ERROR CONDITIONS

%s is not a release 3 form Cause: An input file is not of the correct type (this
 is•determined by a sort of magic number
 check.) Corrective action: Make sure you
 haven't already converted•the file, and that
 it is a screen in the first place.

Unable to allocate memory. Cause: The utility couldn't get enough memory for its
 needs. Corrective action: None.

File %s already exists. Use '-f' to overwrite or '-e' to append an extension to
 the output file. Cause: The output file you
 have named already exists. Corrective action:
 Be cautious in your use of -f. JYACC
 suggests•that you create the Release 4 screens
 in an empty directory, not•in the directory
 where the Release 3 screens reside.

)

NAME

 formlib - screen librarian

SYNOPSIS

 formlib -crdxt [-flv] library [screen ...]

DESCRIPTION

Formlib is a screen librarian. It creates libraries of screens that have been
created with the JAM authoring utility. The representation of the screen in the
library is the original binary version. This utility enables one to store many
screens in a single file and not clutter a directory with many small screen
files.

Exactly one of the unbracketed command options must be given; it controls the
action of the utility, as follows.

 -c Create a new library, placing in it all the screens named.
 -r Add the screens to the named library, replacing any that are already
 there.
 -d Delete the screens named from the library.
 -x extract the screens from the named library, placing them in the
 current directory. If no screens are named, everything in the
 library will be extracted.
 -t List the current contents of the library.

There is also a -l option which may be used in conjunction with any of the
options listed above, and will force the list of screen names to lower case; a
-f option that will cause an existing library to be overwritten; and a -v option
that will cause the utility to print the name of each screen as it is processed.

To create a new library, use the -c option. For example:

 formlib forms -c form1 form2

This creates a new file called forms containing the same binary representations
of form1 and form2 as are in their respective files.

To see what screens are catalogued in the library file, the -t option is used.
For example, on the above file forms:

 formlib forms -t

would list:

 FORMLIB--Librarian for forms created by JYACC FORMAKER.
 Copyright (C) 1988 JYACC, Inc.

 LIBRARY 'forms' contains:
 form1
 form2

If you wish to add a new screen to the library, or replace one already in the
library with a new version, use the -r option. For example, to add the screen
form3 to the library forms:

 formlib forms -r form3

Now if you list the contents of forms using the -t option, you get:

 FORMLIB--Librarian for forms created by JYACC FORMAKER.
 Copyright (C) 1988 JYACC, Inc.

 LIBRARY 'forms' contains:
 form1
 form2
 form3

If you need to obtain one or more of the forms for use by an application or for
modification by the JAM utility, you can extract it from the library file with
the -x option. For example:

 formlib forms -x form2

will create a file called form2 whose contents are the binary representation of
that form just as it was created with jxform.

If a form is no longer needed and you wish to delete it from the library, the -d
option is used. For example:

 formlib forms -d form1

would delete form1 from the library file forms. Now if you list the contents of
forms using the -t option, you get:

 FORMLIB--Librarian for forms created by JYACC FORMAKER.
 Copyright (C) 1988 JYACC, Inc.

 LIBRARY 'forms' contains:
 form2
 form3

ERROR CONDITIONS

Library `%s' already exists; use `-f' to overwrite. Cause: You have specified an
 existing output file.
 Corrective action:
 Use the -f option to
 overwrite the file,
 or use a different
 name.

Cannot open `%s'. Cause: An input file was missing or unreadable. Corrective
 action: Check the
 spelling, presence,
 and permissions of
 the file in question.

Unable to allocate memory. Insufficient memory available. Cause: The utility
 could not allocate
 enough memory for its
 needs. Corrective
 action: None.

File `%s' is not a library. Cause: The named file is not a form library
 (incorrect magic
 number). Corrective
 action: Check the
 spelling and
 existence of your
 library.

`%s' not in library. No forms in library. Cause: A screen you have named is not
 in the library.

 Corrective action:
 List the library to
 see what's in it,
 then retry the
 operation.

Temporary file `%s' not removed. Cause: The intermediate output file was not
 removed, probably
 because of an error
 renaming it to the
 real output file.
 Corrective action:
 Check the permissions
 and condition of the
 files, then retry the
 operation.

NAME

 jamcheck - check screens against a data dictionary

SYNOPSIS

 jamcheck [-acdfgilmopqstvxz] [-eextension]
 dictionary screen [screen ...]

DESCRIPTION

This utility reads a data dictionary into memory, then compares each screen
against it and reports all the discrepancies it finds. It makes two sorts of
comparisons:

 .
 Entire screens are checked against data dictionary records with the
 same names (screen file extensions are discarded), to see if they
 contain the same named fields.
 .
 Screen fields are checked against data dictionary entries with the same
 names. Command options control which of the many field characteristics
 are checked.

This utility can also change the screen fields to being them into conformity
with the data dictionary. It will not change any field characteristics except
those it has been told to check by a command option, and the old screens will be
saved with a different file extension. Here is a list of the command options:

 -a Check field display attributes.
 -c Change screen field characteristics to the values in the data
 dictionary. Will affect only those characteristics selected by other
 options. The old screens will be saved with an extension of prv.
 -d Check field data filters (character edits).
 -e Changes the default extension applied to screen files to the string
 following the option letter.
 -f Allow screen backup files to overwrite existing backups.
 -g Check field characteristics not mentioned in other options.
 -i Request confirmation before making each change to a screen field.
 This option generates lots and lots of prompts, -c must also have
 been specified.
 -l Check field formatting edits, such as date, time, and currency
 format.
 -m Check all field characteristics.
 -p Place the backup screens in the same directory as the originals,
 rather than the current directory.
 -q Check field protection.
 -r Check attached operations, such as field entry and exit functions.
 -s Check field length and number of occurrences.
 -t Check field status text.
 -v List screen names as they are processed.
 -x Extend onscreen length and/or array size of field. By default, a
 screen field is made larger by making it shifting or scrolling.
 -z Check field help and item selection edits.

If no options are given, the utility checks data filters, field format commands,
and field size, as though the options were -lsd.

If you tell jamcheck to expand fields onscreen with -x and the screen cannot
accommodate a larger field, the field will be made shifting or scrolling; fields
will always be extended, offscreen if necessary. Fields can always be made
smaller.

Screens without named fields are listed, but otherwise ignored. Screen and field
names without corresponding data dictionary entries are also ignored.

ERROR CONDITIONS

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Can't read %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and
 permissions of the file in question.

%s is not a valid data dictionary. Bad data in %s. Cause: An input file was of
 the wrong kind, or has been corrupted.
 Corrective action: Check the type of the
 indicated file.

File %s already exists; use '-f' to overwrite. Cause: You have specified an
 existing output file. Corrective action: Use
 the -f option to overwrite the file, or use a
 different name.

Field "%s" in %s has same name as data dictionary Record. Cause: Warning only.
 The indicated field will not be compared.
 Corrective action: None.

There are also many informational messages, which are meant to be
 self-explanatory.

)

NAME

 jammap - list relations among JAM screens

SYNOPSIS

 jammap [-v] [-eextension] [-omapfile] topscreen

DESCRIPTION

Jammap reports on the status of the screens in a JAM directory and the
relationships among them. It should be run in a directory containing related JAM
screens, and you must give it the name of the top-level screen. It scans the
directory and creates several reports, described below. By default, they are
placed in a file with the name of the top-level screen and an extension of .map.
The command options are interpreted as follows:

 -v List input screens and processing steps to the terminal as they
 occur.
 -e Give the map file the extension that follows the option letter.
 -o Place the output listing in the file whose name follows the option
 letter.

The listing produced by jammap contains six sections; there is currently no way
to suppress or select any particular section. They are as follows:

 1. The Linkage Report shows the contents of each JAM control field for
 each screen in the directory. The screens are listed in alphabetical
 order. The top-level screen as well as forms and windows referenced by
 display-form or display-window control strings are included in this
 report. Control strings that reference a screen not in the list will be
 flagged.
 2. The Links Missing Report lists the names of screens that are referenced
 by control links, but are not found in the current directory.
 3. The System Call Report lists programs and commands included in JAM
 control strings beginning with an exclamation point.
 4. The Invoked Function Report provides an alphabetic listing of functions
 called from JAM control strings beginning with a caret.
 5. The List of Parameter Windows contains names of all the parameter
 windows included in JAM control strings via the percent sign ("%")
 option.
 6. Finally, the utility will print a List of All Screens Checked during
 its run.

ERROR CONDITIONS

Exactly 1 form name is required. Cause: The argument to this utility is the
 top-level screen of a JAM application;
 you have supplied extra parameters.
 Corrective action: Retry the command,
 without the excess.

Unable to allocate memory. Insufficient memory for lists, form Cause: The
 utility could not allocate enough memory
 for its needs. Corrective action: None.

Can't find top level form Cause: The input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

NAME

 Key file - keyboard translation table source

DESCRIPTION

JAM uses a key translation table to map keys you type into a
keyboard-independent set of codes, thus relieving applications of the need to
know about different terminals. This section tells how to format a text file
containing a key translation table.

You can also construct a key translation table using the modkey utility, an
interactive program which is documented elsewhere in this chapter. Modkey is
recommended if you are defining a key translation file from scratch, or if you
are new to JAM. After creating a key file, either by hand or with modkey, you
will need to translate it to binary with the key2bin utility (documented
separately) and assign the binary file to the SMKEY setup variable for use by
the run-time system.

15.1 Key Translation File Format

The key translation file contains one line for each key. Each line has the
following components:

 logical-value(label) = character-sequence

Logical-value can either be one of the mnemonics defined in the file smkeys.h ,
or a hexadecimal value. See Section 15.2 for a table. Only modkey differentiates
between the two methods; they operate identically in the run-time system. In
modkey, entries specified with hexadecimal values will all appear on the
miscellaneous key definition screen, while entries specified with mnemonics will
be shown on one of the four screens devoted to specific types of keys. At most
24 entries may be specified in hexadecimal.

The label, which must be enclosed in parentheses, should be a short string that
appears on top of the key on your keyboard. It will be stored in the key
translation file and can be accessed at run-time through various library
functions and the %k escape in status-line messages (see d_msg_line). Key
labels, or keytops as they are sometimes called, can be invaluable in user help
messages and prompts. The label and parentheses are optional; the following
equal sign, however, is required.

The character-sequence is up to six characters that JAM will translate to the
logical value on the left. ASCII control characters may be represented by
mnemonics, listed in Section 15.3, or as hex numbers. Displayable characters
such as letters can just be typed in. Blanks between characters are ignored; if
a space occurs in the sequence, it should be entered as SP.

Lines beginning with a pound sign # will be treated as comments, i.e. ignored,
by key2bin. Some representative key translation file entries follow.

 EXIT(F1) = SOH @ CR
 XMIT(Enter) = SOH O CR
 TAB = HT
 BACK = NUL SI
 BKSP = BS
 RARR = ESC [C
 LARR = ESC [D
 UARR = ESC [A
 DARR = ESC [B
 0x108 = DEL
 PF2(F2) = SOH A CR

If the same mnemonic appears more than once in the file, the last occurrence
will appear in the modkey utility. If duplicate right-hand sides appear with
different logical values, unpredictable results will occur. Incorrectly
formatted lines will cause key2bin to abort.

15.2 Key Mnemonics and Logical Values

The following table lists JAM's logical key values, their mnemonics, and their
actions. Entries followed by "**" are required for jxform to work properly;
those followed by "*" are strongly recommended.

 EXIT 0x103** exit SPF1 0x4101*
 XMIT 0x104** transmit SPF2 0x4201*
 HELP 0x105* help SPF3 0x4301*
 FHLP 0x106 screen-wide help SPF4 0x4401*
 BKSP 0x108* backspace SPF5 0x4501*
 TAB 0x109* tab SPF6 0x4601*
 NL 0x10a* new line SPF7 0x4701
 BACK 0x10b* backtab SPF8 0x4801
 HOME 0x10c* home SPF9 0x4901
 DELE 0x10e* delete character SPF10 0x4a01
 INS 0x10f* insert character SPF11 0x4b01
 LP 0x110 local print SPF12 0X4c01
 FERA 0x111* field erase SPF13 0x4d01
 CLR 0x112* clear unprotected SPF14 0x4e01
 SPGU 0x113 scroll up a page SPF15 0x4f01
 SPGD 0x114 scroll down a page SPF16 0x5001
 LARR 0x118* left arrow SPF17 0x5101
 RARR 0x119* right arrow SPF18 0x5201
 DARR 0x11a* down arrow SPF19 0x5301
 UARR 0x11b* up arrow SPF20 0x5401
 REFR 0x11e* refresh screen SPF21 0x5501
 EMOH 0x11f go to last field SPF22 0x5601
 CAPS 0x110 change shift ind. SPF23 0x5701
 INSL 0x120 insert occurrence SPF24 0x5801
 DELL 0x121 delete occurrence
 ZOOM 0x122 zoom on field APP1 0x6102
 APP2 0x6202
 PF1 0x6101 APP3 0x6302
 PF2 0x6201* APP4 0x6402
 PF3 0x6301* APP5 0x6502
 PF4 0x6401* APP6 0x6602
 PF5 0x6501 APP7 0x6702
 PF6 0x6601* APP8 0x6802
 PF7 0x6701* APP9 0x6902
 PF8 0x6801* APP10 0x6a02
 PF9 0x6901* APP11 0x6b02
 PF10 0x6a01 APP12 0x6c02
 PF11 0x6b01 APP13 0x6d02
 PF12 0x6c01 APP14 0x6e02
 PF13 0x6d01 APP15 0x6f02
 PF14 0x6e01 APP16 0x7002
 PF15 0x6f01 APP17 0x7102
 PF16 0x7001 APP18 0x7202
 PF17 0x7101 APP19 0x7302
 PF18 0x7201 APP20 0x7402
 PF19 0x7301 APP21 0x7502
 PF20 0x7401 APP22 0x7602
 PF21 0x7501 APP23 0x7702
 PF22 0x7601 APP24 0x7802
 PF23 0x7701
 PF24 0x7801

15.3 ASCII Character Mnemonics

This table lists two- and three-letter ASCII mnemonics for control and extended
control characters.

 DLE 0x10 DSC 0x90
 SOH 0x01 DC1 0x11 PU1 0x91
 STX 0x02 DC2 0x12 PU2 0x92
 ETX 0x03 DC3 0x13 STS 0x93
 EOT 0x04 DC4 0x14 IND 0x84 CCH 0x94
 ENQ 0x05 NAK 0x15 NEL 0x85 MW 0x95
 ACK 0x06 SYN 0x16 SSA 0x86 SPA 0x96
 BEL 0x07 ETB 0x17 ESA 0x87 EPA 0x97
 BS 0x08 CAN 0x18 HTS 0x88
 HT 0x09 EM 0x19 HTJ 0x89
 NL 0x0a SUB 0x1a VTS 0x8a
 VT 0x0b ESC 0x1b PLD 0x8b CSI 0x9b
 FF 0x0c FS 0x1c PLU 0x8c ST 0x9c
 CR 0x0d GS 0x1d RI 0x8d OCS 0x9d
 SO 0x0e RS 0x1e SS2 0x8e PM 0x9e
 SI 0x0f US 0x1f SS3 0x8f APC 0x9f

 SP 0x20 DEL 0x7f

NAME

 key2bin - convert key translation files to binary

SYNOPSIS

 key2bin [-pv] [-eextension] keyfile [keyfile ...]

DESCRIPTION

The key2bin utility converts key translation files into a binary format for use
by applications using the JAM library. The key translation files themselves may
be generated by JYACC modkey, which is documented elsewhere in this chapter, or
created with a text editor according to the rules described in the section on
key files in this chapter.

Keyfile is the name of an ASCII key translation file. By convention it is an
abbreviation of the terminal's name, plus a tag identifying it as a key
translation file; for instance, the key translation file for the Wyse 85 is
called W85keys. The utility first tries to open its input file with the exact
name you put on the command line; if that fails, it appends keys to the name and
tries again. The output file will be given the name of the successfully opened
input file, with a default extension of bin.

The command options are interpreted as follows:

 -p Place the binary files in the same directories as the input files.
 -v List the name of each input file as it is processed.
 -e Use the output file extension that follows the option letter in
 place of the default bin.

To make a key translation file memory-resident, first run the binary file
produced by this utility through the bin2c utility to produce a program source
file; then compile that file and link it with your program.

ERROR CONDITIONS

File '%s' not found Neither '%s' nor '%s' found. Cause: An input file was
 missing or unreadable.
 Corrective action: Check
 the spelling, presence,
 and permissions of the
 file in question.

Unknown mnemonic in line: '%s' Cause: The line printed in the message does not
 begin with a logical key
 mnemonic. Corrective
 action: Refer to
 smkeys.h for a list of
 mnemonics, and correct
 the input.

No key definitions in file '%s' Cause: Warning only. The input file was empty or
 contained only comments.
 Corrective action: None.

Malloc error Cause: The utility could not allocate enough memory for its needs.
 Corrective action: None.

Cannot create '%s' Error writing '%s' Cause: An output file could not be
 created, due to lack of
 permission or perhaps
 disk space. Corrective
 action: Correct the file

 system problem and retry
 the operation.

NAME

 lstdd - list the contents of a data dictionary

SYNOPSIS

 lstdd [-cdlrp] [-eextension] [-ooutfile]
 [dictionary]

DESCRIPTION

This utility reads a data dictionary, by default data.dic, and creates a
human-readable listing of the contents. By default, all information in the
dictionary is listed, but you may select certain types using the following
command options:

 -c List comments.
 -d List default field characteristics for new entries.
 -e Give the output file the extension that follows the option letter,
 rather than the default lst.
 -l List field characteristics for all entries.
 -o Place the output in the file whose name follows the option letter.
 The default is the name of the data dictionary with the extension
 lst.
 -p Place the listing in the same directory as the input file.
 -r List the fields belonging to data dictionary records.

ERROR CONDITIONS

Error opening input file. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error opening output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Unable to allocate memory. Can't allocate memory. Cause: The utility could not
 allocate enough memory for its needs.
 Corrective action: None.

Error reading data dictionary file. Error writing list file. Cause: The utility
 incurred an I/O error while processing the file
 named in the message. Corrective action: Retry
 the operation.

Invalid file format or incorrect version. %s is not a valid data dictionary. Bad
 data in %s. Cause: An input file has the wrong
 magic number or is corrupt. Corrective action:
 Make sure all the input files are data
 dictionaries. If you have Release 3 data
 dictionaries, you may need to run dd2r4 to
 update them.

Selection of Records & fields not yet implemented. Cause: At press time, there
 was no provision yet for selecting sections of
 the listing. Corrective action: None.

NAME

 lstform - list selected portions of screens

SYNOPSIS

 lstform [-adijmnpstv] [-eext] [-ooutfile] screen
 [screen ...]

DESCRIPTION

This program lists selected portions of screen files. By default, all the data
about each field in each screen is included. Using command options, however, you
can direct that only some of the display be generated. The command options are
interpreted as follows:

 -a List default field characteristics for the screen.
 -d List display data.
 -e Generate one output file, with the extension following the option
 letter, for each input file.
 -i List initial field data, including offscreen data.
 -j List JAM control strings.
 -m List data relevant to the screen as a whole: border, screen entry
 function, etc.
 -n Include a snapshot of the screen showing underscores in place of
 fields.
 -o Send the output to a single file whose name follows the option
 letter.
 -p Place output files in the same directory as the corresponding
 inputs.
 -s Include a snapshot of screen showing display data and initial
 onscreen contents of fields.
 -t List all field edits.
 -v Print the name of each screen on the terminal as it is processed.

ERROR CONDITIONS

Error opening input file. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error opening output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Unable to allocate memory. Can't allocate memory. Cause: The utility could not
 allocate enough memory for its needs.
 Corrective action: None.

Error reading form file. Error writing list file. Cause: The utility incurred an
 I/O error while processing the file named in
 the message. Corrective action: Retry the
 operation.

EXAMPLE

The following is an annotated example of the output of this
program when run on the summary (PF5) window of jxform.
Ellipses ... indicate abridgements.

FORM 'fm_summ_wi'

FORM DATA:

form size 12 lines; 78 columns
Border style 0 REVERSE VIDEO HIGHLIGHTED BLUE
Background color WHITE
Form help screen 'fm_sum0hlp'

Snapshot with initial data

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
--

Field Data Summary

Name Char Edits unfilter
Length (Max) Onscreen Elems Offset (Max Items)

Display Att:
Field Edits:
Other Edits:

Snapshot with underscores

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
--

Field Data Summary

Name _______________________________ Char Edits ________ _
Length ___ (Max ___) Onscreen Elems ___ Offset ___ _ (Max Items ____)

Display Att: ___
Field Edits: ___
Other Edits: ___

--

FIELD DATA:

Field number 1 (line 4, column 8, length = 31)
Display attribute UNDERLINED HIGHLIGHTED YELLOW
Field edits MENU-FIELD; RETURN-ENTRY;
Help fm_nam1hlp

Field number 2 (line 4, column 52, length = 8)
Scrolling values max items = 7; increment = 1; circular;
Display attribute UNDERLINED HIGHLIGHTED YELLOW
Field edits PROTECTED FROM: ENTRY OF DATA; CLEARING; VALIDATION;
Help fm_chr1hlp

initial data:
item 1: unfilter
...
item 7: reg exp

...

Field number 4 (line 5, column 10, length = 3)
Display attribute UNDERLINED HIGHLIGHTED YELLOW
Character edits DIGITS-ONLY
Field edits RIGHT-JUSTIFIED; DATA-REQUIRED;
Range 1 TO 255
Help fm_len1hlp

...

Field number 15 (line 9, column 17, length = 60)
Vertical array 2 elements; offset between elements = 1
Array field numbers : 15 16
Display attribute HIGHLIGHTED YELLOW
Field edits WORD-WRAP; PROTECTED FROM: ENTRY OF DATA; TABBING INTO;
CLEARING; VALIDATION;

DISPLAY DATA:

Display text Field Data Summary
Position line = 2; column = 31; length = 18
Display attribute CYAN

Display text Name
Position line = 4; column = 3; length = 4
Display attribute CYAN

...

NAME

 Message file - JAM error message file format

DESCRIPTION

During initialization, the binary message file identified by the environment
variable SMMSGS is read into memory. It contains error messages and other text
used by the JAM library, such as the 3-letter abbreviations used for month and
day of week names; it can also contain user messages. The binary message file is
created by msg2bin, q.v., from a text file. This section describes the text
file.

Each line of the message file should have the form

 tag = message

The tag is a single word; system message tags have standard prefixes, listed
below, and matching identifiers defined in smerrors.h . You may use any tag for
your messages that does not begin with a system prefix. The equal sign is
required, and the message to its right is completely arbitrary, except that it
may not contain newlines (carriage returns). If you have a long message, you may
end the first line or lines with a backslash \ and continue it on the next. A
pound sign # at the beginning of a line makes it a comment; msg2bin ignores
comments.

System messages are identified by one of the following reserved tag prefixes,
and have identifiers defined in the system include file smerror.h :

 SM Denotes messages and strings used by the JAM run-time library.
 FM Identifies messages issued by the screen editor.
 JM More run-time messages.
 DD Messages from the data dictionary editor.

Appendix A contains a list of all the system messages as distributed by JYACC,
plus explanations and actions recommended for recovery.

The msg2bin utility uses tags only to distinguish user messages from system
messages; all user entries are assigned consecutive numbers starting from 0,
regardless of their tags. It is the responsibility of the application programmer
to maintain the ordering of messages and the assignment of identifiers (manifest
constants) for them. Some typical entries are shown below.

 SM_RENTRY = Entry is required. SM_MUSTFILL = Must fill field. SM_CKDIGIT =
 Check digit error. SM_NOHELP = No help text available. US_INSUF =
 Insufficient funds. RESERVED = US_SUPV = See supervisor.

19.1 Modifying and Adding Messages

The ASCII version of the message file can be modified using a text editor. For
example, if the file was modified as follows:

 SM_CKDIGIT = Invalid check digit.

the above message would appear in the case of a check digit error, instead of
Check digit error. If an application program were to be compiled with the
following definitions:

#define US_INSUF 0
#define RESERVED 1
#define US_SUPV 2

it could issue the calls:

 sm_quiet_err (sm_msg_get (US_INSUF));

 sm_err_reset (sm_msg_get (US_SUPV));

If a decision were made later to change the message text, the change could be
made by modifying the message file only, without any need to modify and
recompile the application code.

If any message is missing from the message file, and a call is made to display
the message, only the message number will be shown. Thus, if the file had no
entry for SM_RENTRY, and an operator failed to enter data in a field in which an
entry was required, the status line would simply display the number
corresponding to SM_RENTRY in smerror.h .

User messages may also be placed in separate message files, loaded with calls to
msgread, and accessed in the same way as above.

19.2 Embedding Attributes and Key Names in Messages

Several percent escapes provide control over the content and presentation of
status messages. They are interpreted by sm_d_msg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character following the percent sign must be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%W, for instance; see below) must appear at the
beginning of the message, i.e. before anything except perhaps another percent
escape.

 .
 If a string of the form %Annnn appears anywhere in the message, the
 hexadecimal number nnnn is interpreted as a display attribute to be
 applied to the remainder of the message. The table below gives the
 numeric values of the logical display attributes you will need to
 construct embedded attributes. If you want a digit to appear
 immediately after the attribute change, pad the attribute to 4 digits
 with leading zeroes; if the following character is not a legal hex
 digit, leading zeroes are unnecessary.
 .
 If a string of the form %KKEYNAME appears anywhere in the message,
 KEYNAME is interpreted as a logical key mnemonic, and the whole
 expression is replaced with the key label string defined for that key
 in the key translation file. If there is no label, the %K is stripped
 out and the mnemonic remains. Key mnemonics are defined in smkeys.h ;
 it is of course the name, not the number, that you want here. The
 mnemonic must be in upper-case.
 .
 If %N appears anywhere in the message, the latter will be presented in
 a pop-up window rather than on the status line, and all occurrences of
 %N will be replaced by newlines.
 .
 If the message begins with a %B, JAM will beep the terminal (using
 sm_bel) before issuing the message.
 .
 If the message begins with %W, it will be presented in a pop-up window
 instead of on the status line. The window will appear near the bottom
 center of the screen, unless it would obscure the current field by so
 doing; in that case, it will appear near the top. If the message
 begins with %MU or %MD, and is passed to one of the error message
 display functions, JAM will ignore the default error message
 acknowledgement flag and process (for %MU) or discard (for %MD) the
 next character typed.

Note that, if a message containing percent escapes - that is, %A, %B, %K, %N or
%W - is displayed before sm_initcrt or after %W is called, the percent escapes
will show up in it.

 Attribute Hex value

 BLACK 0 BLUE
 1 GREEN
 2 CYAN
 3 RED
 4 MAGENTA
 5 YELLOW
 6 WHITE
 7

 B_BLACK 0 B_BLUE
 100 B_GREEN
 200 B_CYAN
 300 B_RED
 400 B_MAGENTA
 500 B_YELLOW
 600 B_WHITE
 700

 BLANK 8 REVERSE
 10 UNDERLN
 20 BLINK
 40 HILIGHT
 80 DIM
 1000

If the cursor position display has been turned on (see sm_c_vis), the end of the
status line will contain the cursor's current row and column. If the message
text would overlap that area of the status line, it will be displayed in a
window instead.

Note that the processing of percent escapes in messages is done only when the
message is displayed on the status line; they will not be expanded simply by
virtue of having been retrieved from the message file. Also, at present, msg2bin
does no syntax checking.

NAME

 modkey - key translation file editor

SYNOPSIS

 modkey [keyfile]

DESCRIPTION

20.1 Introduction

The modkey utility provides a convenient mechanism for specifying how keys on a
particular keyboard should operate in the JAM environment. It provides for
defining the function, editing, and cursor control keys used by JAM, as well as
keys that produce foreign or graphics characters. Finally, modkey can store
label text corresponding to your keys, for use in prompts and help messages.

The output of modkey is a text file called the key translation file. After being
converted into a binary table by the key2bin utility, it is used to translate
physical characters generated by the keyboard into logical values used by the
JAM library. By dealing with logical keys, programs can work transparently with
a multitude of keyboards.

Refer to the Author's Guide for a table explaining the functions of the cursor
control and editing keys. The format of the key translation file generated by
modkey is explained in the section of this chapter on key files.

20.1.1 Key Translation

The ASCII character set is comprised of eight-bit characters in the range 0 to
256 (hex FF). It defines characters in the ranges hex 20 to hex 7E and hex A0 to
hex FE as data characters, and the rest as control characters. Control
characters have mnemonic names; the character hex 1B, for instance, is usually
called ESC or escape. See section 15.3 for a list. Note that certain computers,
such as PRIME, "flip" the high bit of ASCII characters; on such computers, ESC
would be hex 9B and the letter A would be hex C1. In this document, standard
ASCII values will be used.

When you press a key, the keyboard generates either a single ASCII data
character, or a sequence of characters beginning with an ASCII control code. JAM
converts these characters into logical keys before processing them. Logical keys
are numbers between zero and 65535. Logical values between 1 and hex FF
represent displayable data; values between hex 100 and hex 1FF are cursor
control and editing keys; values greater than hex 1FF are function keys. Zero is
never used. For a list of logical values, see Section 15.2.

Data characters received from the keyboard are not translated. Sequences
beginning with a control character are translated to a logical value,
representing a data character or function key, according to the following
algorithm.

When a control character is received, we search the key translation table for a
sequence beginning with that character. If there is one, we read additional
characters until a match with an entire sequence in the table is found, and
return the logical value from the table. If the initial character is in the
table but the whole sequence is not, the whole is discarded, on the assumption
that it represents a function key that is missing from the table. Finally, if a
control character does not begin any sequence in the table, it is returned
unchanged; this is useful for machines such as IBM PCs that use control codes
for displayable characters. The Programmer's Guide contains a detailed
discussion of key translation.

ÉÍÍ»
º WELCOME TO JYACC MODKEY UTILITY º
º º
º º
ºUsing this utility you can edit a previously created KEY TRANSLATION file º
ºor create a new one. º
º º
ºEnter the name of the file you would like to create or modify in the field º
ºbelow and then press the "+" key. File names should be in the form "tttkeys" º
ºwhere ttt is a mnemonic for the type of terminal you are using. For example º
º"vt100keys" might be used for a vt100 terminal. º
º º
ºTo exit the MODKEY utility without proceeding further, press the "-" key. º
º º
º º
º File Name: ____________________ (Enter '<' to BACKSPACE º
º Enter "+" to ENTER º
º Enter "-" to EXIT) º
º º
º º
ºNote: Control keys are not active in this utility. Instead, data keys are º
º used for control purposes. º
ÈÍÍ¼

 Figure 1: Welcome Screen

20.2 Executing the Utility

You execute modkey by typing its name on the command line, optionally followed
by the name of the key file you want to examine or change. If you supply a key
file name, the main menu (Figure 2) appears at once. If you do not give a
filename, the welcome screen (Figure 1) appears, and you may enter one there.

20.3 Control Keys and Data Keys

Since modkey is used to define the cursor control, editing, and function keys,
these keys do not operate in the utility. Instead, displayable data keys are
used for these purposes. For example, the TAB key is usually used to move the
cursor from one field to the next. But since TAB is one of the keys being
defined with this utility, it cannot first be recognized; the data key t is used
instead.

Using data keys for control purposes poses no problem since, in this utility,
data keys may not begin a control sequence. This will become clearer when the
screens in subsequent sections are described. The control functions that are
supported in the modkey utility and the keys that are used to provide them are
given in the following table:

 Control function Key

 TRANSMIT + EXIT
 - HELP
 ? REDRAW SCREEN
 ! BACKSPACE
 < BACKTAB
 b FIELD ERASE
 d ENTER KEYTOP
 k TAB
 t ERASE ALL UNPROTECTED
 z

ÉÍÍ»
º º
º º
º JYACC MODKEY UTILITY MAIN MENU º
º º
º º
º º
º 0. Exit º
º 1. Help º
º 2. Define Cursor Control and Editing Keys º
º 3. Define Function Keys º
º 4. Define Shifted Function Keys º
º 5. Define Application Function Keys º
º 6. Define Miscellaneous Keys º
º 7. Test Key Translation File º
º º
º º
º Enter the desired option (0 - 7): _ º
º º
º º
º º
º º
ÈÍÍ¼

 Figure 2: Main Menu

The k key, or ENTER KEYTOP, causes a small window to appear under the cursor in
which you may enter the label found on the key in question on your keyboard.
This label will be stored in the key translation file; it can be accessed by
library functions and in status line messages, and is very useful in help
messages telling an operator which key to press. It operates in all the screens
below the main menu that are actually used for defining keys.

20.4 Welcome Screen

When you invoke modkey without supplying a key file name, the welcome screen
(Figure 1) is displayed. Here you specify the key translation file to be created
or modified, by entering it in the field labeled File Name. If you make a
mistake, backspace over it using the < key. When finished, complete the screen
by pressing the + key.

Key translation file names should begin with a mnemonic for the type of terminal
you are using, and end with keys. For example vt100keys might be used for a
vt100 terminal. This convention, while not mandatory, helps avoid confusion with
video files and with other key translation files; all files distributed by JYACC
adhere to it.

If the file already exists, it is read into memory and may be modified;
otherwise, you start from scratch. All modifications are made in memory, and
file updates are performed only at the conclusion of the program and at your
explicit request.

To exit the modkey utility while the welcome screen is displayed, press the "-"
key (EXIT).

20.5 Main Menu

The main menu shown in Figure 2 is displayed at entry to the utility, and
whenever you return from a lower-level screen. You select an option by typing
the corresponding number. For example, to test the key translation file, press
"7". If you make an invalid selection, an error message will appear; acknowledge
it by pressing the space bar. The functions on the main menu are described in

ÉÍÍ»
º º
º JYACC MODKEY UTILITY EXIT SCREEN º
º º
º º
º º
º º
º º
º Enter: _ 'S' to save data in a file º
º 'E' to exit the utility without saving data º
º '-' to return to the main menu º
º º
º º
º º
º File Name: ____________________ º
º º
º º
º Special Keys: + ENTER (save changes in file) º
º - EXIT (return to main menu) º
º < BACKSPACE º
º º
º º
ÈÍÍ¼

 Figure 3: Exit Screen

subsequent sections.

20.6 Exiting the Utility

To exit modkey, press 0 on the main menu. This causes the exit screen (Figure 3)
to be invoked. This screen initially contains a single field into which you
enter s, e, or -. To save the key translation file on disk, enter "S" or "s".
When this is done, the file name entered in the Welcome Screen appears; you may
change it if you wish, and press + to write it to disk. To exit the utility
without saving the file, enter e. If you press -, the main menu will reappear,
and you may make additional changes to the key translation file.

20.7 Help Screen

The help screen may be selected from the main menu by pressing "1"; it appears
in Figure 4. In addition to displaying useful information, this screen may be
used to test out the kinds of keystroke entry that will be required on
subsequent screens in this utility. There are two types of keys: those that
generate a single ASCII character, and those that generate a sequence of
characters. When a sequence is generated, the first character is always an ASCII
control character. To see the characters generated by a particular key, type
that key twice while the help screen is displayed. (Different keys generate
different numbers of characters; when you press the key twice, the program can
sense the pattern.)

When the key is pressed the first time, the characters produced will be shown
following CHARACTERS GENERATED. When the key is pressed the second time and
recognized, the sequence representing the key will appear following KEY STROKE.

It is sometimes desirable to designate a sequence of keystrokes to serve a
particular purpose. For example, on a system with a small number of function
keys, one may choose to implement the function keys F1 through F9 with the
sequence control-F n where n is a single digit. This sequence of keystrokes can
be interpreted by JAM as a single key.

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - HELP SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
ºThere are two types of keys on your keyboard--Data keys and Control keys. Dataº
ºkeys will generate a single printable character when pressed. Control keys º
ºwill generate a sequence of one or more characters, the first of which is non- º
ºprintable. º
º º
ºIn subsequent screens, you will be asked to designate the control keys that º
ºshould be used for various functions. For example, one control key will be º
ºdesignated as EXIT, another as PF1. To assign a key to a function, the key º
ºmust be pressed twice in succession. Try this in the field below. º
º º
º Press key twice: º
º CHARACTERS GENERATED ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ º
º KEY STROKE ___ ___ ___ ___ ___ ___ º
º º
º Use the "+" or "-" keys to exit to the main menu º
º º
ºWhen done correctly, the characters generated by the key will be shown in º
ºthe KEY STROKE field. As each key is typed, its characters are shown in the º
ºCHARACTERS GENERATED field. º
º º
ºIf you get out of sync. press the space bar repeatedly until a message appears.º
ÈÍÍÍ¼

 Figure 4: Help Screen

To demonstrate this, type control-F 1 into the help screen, by pressing the F
key while holding the CTRL key down, releasing both, and then pressing the 1
key. The sequence ACK 1 will appear following CHARACTERS GENERATED. Repeating
the sequence will duplicate the ACK 1 after CHARACTERS GENERATED column, and
also display ACK 1 following KEY STROKE.

If a printable ASCII character is pressed as the first key in a sequence, modkey
immediately displays it in the KEY STROKE column. If a non-printable character
is pressed and then a second, different character is pressed, modkey will assume
that a sequence is being tried and will continue displaying these characters in
the CHARACTERS GENERATED field. However, if the sequence gets to be longer than
six characters without starting to repeat, modkey will display Sequence too
long. You must acknowledge this message by pressing the space bar. If you
realize you have made a mistake in entering a key or key sequence and do not
wish to duplicate it, press any key repeatedly until you see Sequence too long.
After acknowledging the message, you can start over.

To exit from the help screen and return to the main menu, press the "-" key
(EXIT) as the first character in a sequence.

20.8 Defining Cursor Control and Editing Keys

This function allows the operator to specify the keys that should be used for
the various cursor control and editing operations. When 2 is selected from the
main menu, the screen shown in Figure 5 appears. This screen has a field for
each of the cursor control and editing functions supported by JAM. Each function
has a logical value defined in the file smkeys.h . The purpose of this screen is
to allow the operator to specify a sequence of characters for each function key.
20.8.1 Assigning a Key to a Function

To designate a key for a particular cursor control or editing function, position
the cursor after that function's name and press the key twice. For example, to
designate a key as the EXIT key, press it twice in succession while the cursor
is in the EXIT field. When modkey recognizes the second keystroke, the sequence

ÉÍÍÍ»
º JYACC MODKEY - CURSOR CONTROL AND EDITING KEY DEFINITION SCREEN º
º º
ºEXIT ___ ___ ___ ___ ___ ___ LEFT ARROW ___ ___ ___ ___ ___ ___ º
ºTRANSMIT ___ ___ ___ ___ ___ ___ RIGHT ARROW ___ ___ ___ ___ ___ ___ º
ºHELP ___ ___ ___ ___ ___ ___ UP ARROW ___ ___ ___ ___ ___ ___ º
ºFORM HELP ___ ___ ___ ___ ___ ___ DOWN ARROW ___ ___ ___ ___ ___ ___ º
ºLOCAL PRINT ___ ___ ___ ___ ___ ___ CHAR DELETE ___ ___ ___ ___ ___ ___ º
ºNEW LINE ___ ___ ___ ___ ___ ___ INSERT MODE ___ ___ ___ ___ ___ ___ º
ºTAB ___ ___ ___ ___ ___ ___ FIELD ERASE ___ ___ ___ ___ ___ ___ º
ºBACK TAB ___ ___ ___ ___ ___ ___ ERASE ALL ___ ___ ___ ___ ___ ___ º
ºHOME ___ ___ ___ ___ ___ ___ INSERT LINE ___ ___ ___ ___ ___ ___ º
ºBACK SPACE ___ ___ ___ ___ ___ ___ DELETE LINE ___ ___ ___ ___ ___ ___ º
ºLAST FIELD ___ ___ ___ ___ ___ ___ ZOOM ___ ___ ___ ___ ___ ___ º
ºSCROLL UP ___ ___ ___ ___ ___ ___ REFRESH ___ ___ ___ ___ ___ ___ º
ºSCROLL DOWN ___ ___ ___ ___ ___ ___ º
º º
º Each key or sequence of keys must be pressed twice in succession. º
º º
º Special Keys: + ENTER t TAB z ERASE ALL º
º - EXIT b BACKTAB ! REDRAW SCREEN º
º ? HELP d DELETE ENTRY k SET KEYTOPS º
ÈÍÍÍ¼

 Figure 5: Cursor Key Screen

of characters generated by the key will be displayed, and the cursor will move
to the next field.

It is not permissible to define a printable ASCII character as a cursor control
or editing key. This means that the sequence of characters generated by the key
must start with an ASCII control character. If this is not the case, an error
will be displayed. An error will also be displayed if the sequence of characters
matches a sequence assigned to another function.

When a field is left empty, its corresponding function will not operate in
programs using the Keyboard Translation file being defined. If your program has
no use for a particular key (such as GO TO LAST FIELD), you may leave that entry
blank on this screen. However, certain keys are required for the proper
operation of jxform, and should be specified if you are creating a table for use
with it. A list of the required keys is given in Section 15.2.

Situations may arise in which you do not press the same key twice in succession.
This will be evident because modkey will not display the characters that were
generated. To recover, press the space bar repeatedly until the message Sequence
too long appears. Then, after acknowledging the message with the space bar, you
may enter the correct keystrokes.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

20.8.2 Assigning a Sequence of Keys to a Function

It is sometimes desirable to designate a sequence of keystrokes to serve a
particular purpose. For example, on a keyboard with few function keys, one might
implement the function keys PF1 through F9 with the sequences control-F 1
through control-F 9.

ÉÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - PROGRAM FUNCTION KEY DEFINITION SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º PF1 ___ ___ ___ ___ ___ ___ PF13 ___ ___ ___ ___ ___ ___ º
º PF2 ___ ___ ___ ___ ___ ___ PF14 ___ ___ ___ ___ ___ ___ º
º PF3 ___ ___ ___ ___ ___ ___ PF15 ___ ___ ___ ___ ___ ___ º
º PF4 ___ ___ ___ ___ ___ ___ PF16 ___ ___ ___ ___ ___ ___ º
º PF5 ___ ___ ___ ___ ___ ___ PF17 ___ ___ ___ ___ ___ ___ º
º PF6 ___ ___ ___ ___ ___ ___ PF18 ___ ___ ___ ___ ___ ___ º
º PF7 ___ ___ ___ ___ ___ ___ PF19 ___ ___ ___ ___ ___ ___ º
º PF8 ___ ___ ___ ___ ___ ___ PF20 ___ ___ ___ ___ ___ ___ º
º PF9 ___ ___ ___ ___ ___ ___ PF21 ___ ___ ___ ___ ___ ___ º
º PF10 ___ ___ ___ ___ ___ ___ PF22 ___ ___ ___ ___ ___ ___ º
º PF11 ___ ___ ___ ___ ___ ___ PF23 ___ ___ ___ ___ ___ ___ º
º PF12 ___ ___ ___ ___ ___ ___ PF24 ___ ___ ___ ___ ___ ___ º
º º
º º
º Each key or sequence of keys must be pressed twice in succession º
º º
ºSpecial keys: + ENTER ? HELP k SET KEYTOPS º
º - EXIT d DELETE ENTRY ! REDRAW SCREEN º
º t TAB z ERASE ALL º
º b BACKTAB º
ÈÍÍ¼

 Figure 6: Function Key Screen

One assigns a sequence of keystrokes to a function in much the same way as one
assigns individual keys. The sequence is entered once in its entirety and is
then repeated. Upon successful completion, the characters generated on behalf of
the sequence are displayed.

If you do not press the same key sequence twice, modkey will not display the
generated characters. To recover, press the space bar repeatedly until the
message Sequence too long appears. At this point, you may enter the correct
keystrokes.

20.9 Defining Function Keys

This function allows the operator to specify the keys that should be used as the
function keys (PF1 - PF24). When 3 is selected from the main menu, the screen of
Figure 6 appears. This function works exactly like its counterpart for defining
the cursor control and editing keys described in Section 20.8. You designate a
key or key sequence as a function key by pressing it twice, with the cursor in
the field to which the sequence applies. For example, to define control-F as the
PF2 key, position the cursor to the PF2 field using t and b, and type control-F
twice in succession.

To save the changes made in this screen and return to the main menu, press the +
key. To return to the main menu without saving changes, use the "-" key.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

20.10 Defining Shifted Function Keys

This function allows the operator to specify the keys that should be used as the
shifted function keys (SPF1 - SPF24). When 4 is selected from the main menu, the
screen depicted in Figure 7 appears.

ÉÍÍÍÍÍÍÍÍÍJYACC MODKEY - SHIFTED PROGRAM FUNCTION KEY DEFINITION SCREENÍÍÍÍÍÍÍÍ»
º º
º SPF1 ___ ___ ___ ___ ___ ___ SPF13 ___ ___ ___ ___ ___ ___ º
º SPF2 ___ ___ ___ ___ ___ ___ SPF14 ___ ___ ___ ___ ___ ___ º
º SPF3 ___ ___ ___ ___ ___ ___ SPF15 ___ ___ ___ ___ ___ ___ º
º SPF4 ___ ___ ___ ___ ___ ___ SPF16 ___ ___ ___ ___ ___ ___ º
º SPF5 ___ ___ ___ ___ ___ ___ SPF17 ___ ___ ___ ___ ___ ___ º
º SPF6 ___ ___ ___ ___ ___ ___ SPF18 ___ ___ ___ ___ ___ ___ º
º SPF7 ___ ___ ___ ___ ___ ___ SPF19 ___ ___ ___ ___ ___ ___ º
º SPF8 ___ ___ ___ ___ ___ ___ SPF20 ___ ___ ___ ___ ___ ___ º
º SPF9 ___ ___ ___ ___ ___ ___ SPF21 ___ ___ ___ ___ ___ ___ º
º SPF10 ___ ___ ___ ___ ___ ___ SPF22 ___ ___ ___ ___ ___ ___ º
º SPF11 ___ ___ ___ ___ ___ ___ SPF23 ___ ___ ___ ___ ___ ___ º
º SPF12 ___ ___ ___ ___ ___ ___ SPF24 ___ ___ ___ ___ ___ ___ º
º º
º º
º Each key or sequence of keys must be pressed twice in succession º
º º
ºSpecial keys: + ENTER ? HELP k SET KEYTOPS º
º - EXIT d DELETE ENTRY ! REDRAW SCREEN º
º t TAB z ERASE ALL º
º b BACKTAB º
ÈÍÍ¼

 Figure 7: Shifted Function Key Screen

This function works exactly like its counterpart for defining the function keys
described in Section 20.9. You designate a key (or key sequence) as a shifted
function key by pressing it twice with the cursor in the field to which the
sequence applies. For example, to define the sequence of keys control-B 2 as the
shifted PF2 key, position the cursor to the SPF2 field, using t and b, and type
control-B 2 twice.

To save changes made in this screen and return to the main menu, press the + key
as the first character in a sequence. To return to the main menu without saving
the changes, use the "-" key.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

20.11 Defining Application Function Keys

This function allows the operator to specify the keys that should be used as the
application function keys (APP1 - APP24). When 5 is selected from the main menu,
the screen of Figure 8 appears. This function works exactly like its
counterpart for defining the function keys described in Section 20.9.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

20.12 Defining Miscellaneous Keys

On this screen, you can specify logical keys not present on the other screens,
and define alternate control sequences for keys defined elsewhere. When 6 is
selected from the main menu, the screen of Figure 9 displayed. This function
works in a similar manner to its counterpart for defining the cursor control and

ÉÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - APPLICATION KEY DEFINITION SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º APP1 ___ ___ ___ ___ ___ ___ APP13 ___ ___ ___ ___ ___ ___ º
º APP2 ___ ___ ___ ___ ___ ___ APP14 ___ ___ ___ ___ ___ ___ º
º APP3 ___ ___ ___ ___ ___ ___ APP15 ___ ___ ___ ___ ___ ___ º
º APP4 ___ ___ ___ ___ ___ ___ APP16 ___ ___ ___ ___ ___ ___ º
º APP5 ___ ___ ___ ___ ___ ___ APP17 ___ ___ ___ ___ ___ ___ º
º APP6 ___ ___ ___ ___ ___ ___ APP18 ___ ___ ___ ___ ___ ___ º
º APP7 ___ ___ ___ ___ ___ ___ APP19 ___ ___ ___ ___ ___ ___ º
º APP8 ___ ___ ___ ___ ___ ___ APP20 ___ ___ ___ ___ ___ ___ º
º APP9 ___ ___ ___ ___ ___ ___ APP21 ___ ___ ___ ___ ___ ___ º
º APP10 ___ ___ ___ ___ ___ ___ APP22 ___ ___ ___ ___ ___ ___ º
º APP11 ___ ___ ___ ___ ___ ___ APP23 ___ ___ ___ ___ ___ ___ º
º APP12 ___ ___ ___ ___ ___ ___ APP24 ___ ___ ___ ___ ___ ___ º
º º
º º
º Each key or sequence of keys must be pressed twice in succession º
º º
ºSpecial keys: + ENTER ? HELP k SET KEYTOPS º
º - EXIT d DELETE ENTRY ! REDRAW SCREEN º
º t TAB z ERASE ALL º
º b BACKTAB º
ÈÍÍ¼

 Figure 8: Application Key Screen

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - MISCELLANEOUS KEY DEFINITION SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º KEY STROKE LOGICAL VALUE KEY STROKE LOGICAL VALUE º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º º
º LOGICAL VALUE DISPLAY MODE IS:________ º
º º
ºSpecial keys: + ENTER ? HELP v TAB TO VALUE FIELD º
º - EXIT ! REDRAW SCREEN k SET KEYTOPS º
º t TAB d DELETE ENTRY < BACKSPACE IN VALUE FIELD º
º b BACKTAB z ERASE ALL c CHANGE MODE º
ÈÍÍÍ¼

 Figure 9: Miscellaneous Keys Screen

editing keys described in Section 20.8. However, on this screen you must define
the logical values as well as the sequences that produce them. (On all other
screens, the logical value was implicitly determined by the field with which the
sequence was associated.)

The miscellaneous key definition screen has two columns for each key being
defined, labeled KEY STROKE and LOGICAL VALUE. You enter a key or key sequence
into these fields twice in succession, and modkey displays the generated

characters; then the cursor moves to the LOGICAL VALUE column for that key.
Here, you must enter the logical value to be returned when JAM recognizes the
sequence of characters you have just entered. You may get to the logical value
field directly by pressing v in the corresponding KEY STROKE field.

20.12.1 Entering the Logical Value

Logical values are numbers, so you will be entering printable ASCII data into
this field. This is unlike most other fields, where data characters are not
allowed or are given special meaning (such as "b" representing BACKTAB). When
entering logical values, three keys are allowed in addition to the data keys
necessary to enter the value:

 .
 The + key (TRANSMIT) signifies that the logical value just typed is
 correct and should be used. When it is pressed, modkey will first check
 the logical value for errors. If no errors are detected, the cursor
 will tab to the next field; otherwise, an error message will appear.
 .
 The - key (EXIT) means that the logical value just typed is incorrect
 and should be ignored. The cursor will go to the next field and the
 logical value will be reset to what existed before the field was
 entered. If the logical value field was previously empty, it will be
 set to zero.
 .
 The < key (BACKSPACE) backs up the cursor one position at a time, so
 that corrections to the logical value can be made. It erases previously
 entered data as it moves.

20.12.2 Logical Value Display and Entry Modes

Logical values are displayed, and may be entered, in any of four modes. The
current mode is displayed on the screen following the label LOGICAL VALUE
DISPLAY MODE. It may be changed by typing c as the first character of a sequence
while the cursor is in any of the KEY STROKE fields on the screen. When the
miscellaneous keys screen is first invoked, the mode is hexadecimal. It cycles
through all four modes when you press the c key. The four modes are:

 decimal In decimal mode, you enter logical values as decimal numbers.
 If a non-digit is entered or the logical value is zero, an
 error will be displayed.
 octal In octal mode, you enter logical values as octal numbers (base
 8). If a non-octal digit is entered or the logical value is
 zero, an error will be displayed.
 hexadecimal In hexadecimal mode, you enter logical values as hexadecimal
 (base 16) numbers. If a non-hex digit is entered or the
 logical value is zero, an error will be displayed. The error
 must be acknowledged by pressing the space bar.
 mnemonic In mnemonic mode, you enter the mnemonic associated with any
 of the logical values stored in the file smkeys.h . For
 example, if EXIT is entered into the Logical Value field, the
 logical value of the EXIT key, hex 103, will be used. If an
 incorrect mnemonic is entered, an error will be displayed
 which must be acknowledged by pressing the space bar. For a
 list of valid mnemonics, press the "?" key while the cursor is
 in a logical value field.

Entering the logical value as a mnemonic is preferable, as you are less likely
to mistake the value you want. Using the numeric modes, it is possible to define
logical key values other than those present in smkeys.h , but this should be
done cautiously. You should avoid the range 100 hex through 1FF hex, which is
reserved for future use by JYACC. Also, for portability's sake, the values
should be small enough to fit in a two-byte integer, i.e. less than 65536 (10000
hex).

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - TEST KEY TRANSLATION FILEÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º This screen is used to test out the Key Translation file being defined. º
º º
º To do this, press any key in the field below. The characters generated by the º
º key will be displayed along with its logical value. º
º º
º º
º KEY STROKE LOGICAL VALUE KEYTOP º
º º
º ___ ___ ___ ___ ___ ___ _____________ ________________ º
º º
º LOGICAL VALUE DISPLAY MODE IS: ________ º
º º
ºIf a multiple key sequence has been defined, the entire sequence must be enteredº
ºfor the logical value to be displayed. Once the sequence is started, the cursorº
ºwill be turned off until it is completed. º
º º
ºIf you get out of sync. press the space bar repeatedly until a message appears. º
º º
º Special Keys: + ENTER º
º - EXIT º
º c CHANGE MODE º
ÈÍÍ¼

 Figure 10: Test Screen

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

20.12.3 Returning to the Main Menu

To save changes made in this screen and return to the main menu, press the + key
as the first character in a sequence while the cursor is in a KEY STROKE field.
To discard the changes and return to the main menu, use the - key.

20.13 Test Keyboard Translation File

This function allows you to test out your new key translation file. When 7 is
selected from the main menu, the screen of figure 10 is displayed. This screen
has two fields labeled KEY STROKE and LOGICAL VALUE. You enter a keystroke (or
sequence of keystrokes) that has been defined in another screen, and modkey will
display the logical value of that key. The key or keys need only be pressed
once, since the table is being tested for how it will behave when used in a real
application. If a key sequence forms only part of a previously specified
sequence, modkey will wait for another key until a sequence is matched, or until
it determines that no match is possible. In the latter case, the message Key not
defined will appear.

The logical value can be displayed in any of the four modes (decimal, octal,
hexadecimal, or mnemonic). To change modes, press c as the first character in a
sequence. To exit the screen and return to the main menu, use -. Help text can
be obtained by pressing "?".

ERROR CONDITIONS

Invalid entry. Cause: You have typed a key that is not on the menu. Corrective
 action: Check the instructions on the screen and try
 again.

Key sequence is too long. Cause: You have typed more than six keys wihout
 repeating any. Corrective action: Key sequences for
 translation may be at most six characters long. Choose a
 shorter sequence.

Invalid first character. Cause: A multi-key sequence must begin with a control
 character. Corrective action: Begin again, using a control
 character.

Invalid mnemonic - press space for list Cause: In the miscellaneous keys screen,
 you have typed a character string for logical value that
 is not a logical key mnemonic. Corrective action: Peruse
 the list, then correct the input.

Invalid number - enter <decimal>, 0<octal> or 0x<hex> Cause: In the
 miscellaneous keys screen, you have typed a malformed
 numeric key code. Corrective action: Correct the number,
 or use a mnemonic.

Cannot create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry the
 operation.

Key sequence does not repeat. Cause: You have typed a key sequence that failed
 to repeat a string of six characters or less. Corrective
 action: Retry the sequence, or use a shorter one.

Cannot accept NUL as a key. Cause: The ASCII NUL character (binary 0) cannot be
 used in a key translation sequence, because it is used
 internally to mark the end of a sequence. Corrective
 action: Use another key.

Key previously defined as %s Key conflicts with %s Cause: You have typed a key
 sequence that has already been assigned to another key, or
 that is a substring of a previously assigned sequence.
 Corrective action: Use a different key or sequence, or
 reassign the other.

NAME

 msg2bin - convert message files to binary

SYNOPSIS

 msg2bin [-pv] [-eextension] [-ooutfile]
 messages [messages ...]

DESCRIPTION

The msg2bin utility converts ASCII message files to a binary format for use by
JAM library routines. The command options are interpreted as follows:

 -e Give the output files the extension that follows the option letter,
 rather than the default bin.
 -o Place all the output in a single file, whose name follows the option
 letter.
 -p Place each output file in the same directory as the corresponding
 input file.
 -v Print the name of each message file as it is processed.

The input to this utility files are text files containing named messages, either
distributed by JYACC for use with the JAM library or defined by application
programmers. For information about the format of ASCII message files, see the
section on message files in this chapter.

The message file and msg2bin utility provide three different services to
application designers. First, the error messages displayed by JAM library
functions may be translated from English to another language, made more verbose,
or altered to suit the taste of the application designer. Second, error messages
for use by application routines may be collected in a message file and retrieved
with the msg_get library function; this provides a centralized location for
application messages and saves space. Finally, the standard library messages
(and user messages) may be made memory-resident, to simplify and speed up the
initialization procedure (at some added cost in memory). The bin2c utility
converts the output of this utility to a source file suitable for inclusion in
the application program.

ERROR CONDITIONS

File '%s' not found. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and
 permissions of the file in question.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Bad tag in line: %s Cause: The input file contained a system message tag unknown
 to the utility. Corrective action: Refer to
 smerror.h for a list of tags, and correct the
 input.

Missing '=' in line: %s Cause: The line in the message had no equal sign
 following the tag. Corrective action: Correct the
 input and re-run the utility.

NAME

 Setup file - JAM configuration variables

DESCRIPTION

JAM supports a number of configuration or setup variables, which provide a
convenient way for you to control many operating parameters of the JAM run-time
system and utilities. They include all the environment variables supported in
Release 3. The library function smsetup, which is automatically called from
initcrt, reads in binary setup files and sets up the run-time environment to
correspond.

You can use configuration variables by creating a text file of name-value pairs
as described in this section, and then running the var2bin utility to convert it
to a binary format.

22.1 The Two Setup Files

There are two files in which you may place setup variables. The first is named
by the system environment variable SMVARS. If your operating system does not
support an environment, this file will be in a hard-coded location; SMVARS
itself may not be put in a setup file. The second file is named by the SMSETUP
configuration variable, which may be defined in the SMVARS file or in the system
environment.

Any setup variable may occur in either file. If a variable occurs in both, the
one in SMSETUP takes precedence. Certain variables may also be specified in the
system environment, which takes precedence over any values found in the files;
they are noted in the table of Section 22.3. It is possible to specify all the
variables necessary to run JAM in the environment, without constructing a setup
file.

Typically, the SMVARS file will contain installation-wide parameters, while the
SMSETUP file will contain parameters belonging to an individual or project.

22.2 Input File Line Format

Each line of the input file has the form

 name = value

where name is one of the keywords listed below, the equal sign is required, and
value depends on the name. If a line gets too long, it may be continued onto the
next by placing a backslash \ at the end. Lines beginning with a pound sign #
are treated as comments, i.e. ignored.

Certain variables, notably the JAM hardware configuration files, have values
that depend on the type of terminal you are using. For those variables, there
may be many entries in the input file, of the form

 name = (term1:term2:...:termN)value

This signifies that name has value for terminals of type term1, term2, etc. It
is not necessary to give terminal names if you are only interested in one file.
You may also provide, along with a number of terminal-qualified entries, one
entry that is not terminal-qualified; this will serve as the default. It must
come last. Variables that are terminal-dependent are noted below.

Certain variables, particularly those that provide parameters for library
functions, have keywords to the right of the equal sign. When these keywords are
all distinct, they may be separated by blanks, commas, or semicolons, just as
you please. But when a certain keyword may appear more than once, so that
parameter position is important, then blanks or commas separate the list of

keywords constituting one parameter, while semicolons separate parameters. The
semicolon has higher precedence than blank or comma.

22.3 Setup Variables

Broadly speaking, setup variables fall into three classes: those that specify
other configuration files; those that are essentially parameters to library
routines; and those that specify default file extensions.

Three variables are required: SMMSGS, SMVIDEO, and SMKEY. They specify,
respectively, the error message, video configuration, and keyboard translation
files that the JAM run-time system requires in order to function. In the
following list, an explanation and example is given for each variable.

22.3.1 Configuration File Setups

SMKEY Pathname of the binary file containing a key translation table
 for your terminal, used by the JAM run-time system. Refer also to
 the key2bin and modkey utilities, and the library functions
 keyinit and getkey.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It may not be omitted.
 SMKEY=(vt100:x100)/usr/jyacc/config/vt100keys.bin
SMLPRINT Operating system command used to print the file generated by the
 local print key (LP). It must contain the string %s at the place
 where the filename should go.
 This variable may be overridden by the system environment. It is
 optional.
 SMLPRINT = print %s
SMMSGS Pathname of the binary file containing error messages and other
 printable strings used by the JAM run-time system and utilities.
 Refer also to the msg2bin utility and the library functions
 msg_read and msg_get.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It may not be omitted.
 SMMSGS =/usr/jyacc/config/msgfile.bin
SMPATH List of directories in which the JAM run-time system should
 search for screens and JPL procedures. Place a vertical bar |
 between directory paths. Refer to the library procedure r_window.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It is optional.
 SMPATH=/usr/app/forms|/usr/me/testforms
SMSETUP Gives the pathname of an additional binary file of setup
 variables.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It is optional.
 SMSETUP = mysetup.bin
SMVIDEO Pathname of the binary file containing video control sequences
 and parameters used by the JAM run-time system. Refer also to the
 vid2bin utility, the Video section of this chapter, and the
 library function vinit.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It may not be omitted.
 SMVIDEO=(vt100:x100)/usr/jyacc/config/vt100vid.bin

22.3.2 Setups for Library Routines

Many of the variables in this class have display attributes as parameters. Here
is a table of display attribute keywords:

 RED BLUE HILIGHT BLINK
 YELLOW GREEN UNDERLN DIM
 MAGENTA CYAN BLANK
 BLACK WHITE REVERSE

For a single display attribute, you may select from this table one color and any
number of other attributes. If a variable has more than one display attribute
parameter, separate the parameters with semicolons, but separate the ored
attributes for each parameter with blanks or commas. See SMCHEMSGATT, below, for
an example.

The explanations of keywords in this section are terse; full details are
available on the page in the Programmer's Guide dedicated to the function in
question. Mnemonics are the same in both places, except that prefixes may have
been deleted for the setup keywords. All these variables are optional, and most
cannot be overridden in the system environment.

 SMCHEMSGATT Supplies two display attributes for error messages; see
 ch_emsgatt. Two parameters, each consisting of one color
 and any number of other attributes, from the table above.
 SMCHEMSGATT = RED; RED, REVERSE
 SMCHQMSGATT Supplies a default display attribute for query messages;
 see ch_qmsgatt. One parameter consisting of one color and
 any number of other attributes, from the table above.
 SMCHQMSGATT = CYAN, HILIGHT
 SMCHUMSGATT Supplies a border style and three default display
 attributes for certain FORMAKER windows. The first border
 style parameter is a number between 1 and 9; the next three
 are display attributes. See ch_form_atts.
 SMCHUMSGATT = 0; HILIGHT REVERSE BLUE; WHITE; 0
 SMCHFORMATTS Supplies a border style and three default display
 attributes for certain JAM windows. The border style,
 first, is a number between 1 and 9; the next three are
 display attributes. See ch_form_atts.
 SMCHFORMATTS = 2; BLUE; BLUE REVERSE; YELLOW
 SMCHSTEXTATT Supplies a default display attribute for field status text;
 see ch_stextatt. A single display attribute.
 SMCHSTEXTATT=WHITE REVERSE
 SMDICNAME Gives the pathname of the application's data dictionary.
 See the library function dicname. May be overridden in the
 system environment.
 SMDICNAME=/usr/app/dictionary.dat
 SMDWOPTIONS Turns delayed write on or off; passed to the library
 function dw_options, q.v. Value is either ON or OFF.
 SMDWOPTIONS=OFF
 SMEROPTIONS Error message acknowledgement options, as documented at
 er_options. First comes an acknowledgement character, which
 you may put in single quotes or as an ASCII mnemonic. Next
 is the discard keyboard input flag, either DISCARD or
 USE_KEY. Finally comes the reminder window flag, either
 YES_WIND or NO_WIND.
 SMEROPTIONS=' '; DISCARD; YES_WIND
 SMFCASE Controls the case-sensitivity of filename comparisons when
 the run-time system searches for files named in JAM control
 strings. The keyword INSENS means case will be ignored, and
 SENS means the search is case-sensitive. The default is
 SENS. See fcase.
 SMFCASE=INSENS
 SMFLIBS A list of pathnames of screen libraries that are to remain
 open while JAM is active. The names are separated by
 blanks, commas, or semicolons. See r_window and l_open.
 SMFLIBS=/usr/app/genlib /usr/me/mylib
 SMINDSET Scrolling and shifting indicator options, as for the
 library function sm_ind_set. The first parameter tells
 which indicators should be displayed: NONE, SHIFT, SCROLL,
 or BOTH. The second controls the style of scrolling
 indicators: FLDENTRY, FLDLEFT, FLDRIGHT, or FLDCENTER.
 SMINDSET = BOTH FLDCENTER

 SMINICTRL May occur many times. Each occurrence binds a function key
 to a control string, which the JAM run-time system will use
 in the absence of a control string in the screen. To
 disable a JYACC-supplied default function key, bind it to a
 caret function that does nothing.
 SMINICTRL= PF2 = ^toggle_mode
 SMINICTRL = PF3 = &popwin(3,28)
 SMINICTRL = XMIT = ^commit all
 SMININAMES Supplies a list of local data block initialization file
 names for use by ldb_init, like the library function
 ininames. The names are separated by commas, blanks, or
 semicolons; there may be up to ten of them.
 SMININAMES=tables.ini,zips.ini,config.ini
 SMMPOPTIONS Supplies parameters for the library function mp_options,
 q.v. These parameters control the behavior of the cursor
 within menu_proc. Here they are:
 Arrow key wrapping: WRAP or NOWRAP
 Up- and down-arrow control: UD_TAB, UD_FREE, UD_RESTRICT,
 UD_COLM, UD_SWATH, UD_NEXTLINE, UD_NEXTFLD
 Left- and right-arrow control: LR_TAB, LR_FREE,
 LR_RESTRICT, LR_COLM, LR_SWATH, LR_NEXTLINE, LR_NEXTFLD
 SMMPOPTIONS = WRAP; UD_RESRICT,\
 UD_NXTLINE; LR_RESTRICT, LR_NXTFLD;
 SMMPSTRING Controls the menu item matching actions of menu_proc, by
 supplying parameters for mp_string; refer to those
 functions. The single parameter is either STRING or
 NOSTRING.
 SMMPSTRING = NOSTRING
 SMOKOPTIONS The right-hand side has six parameters, corresponding to
 those of the library function ok_options, (q.v.). They are,
 in turn:
 Cursor style: BLOCK or NOBLOCK
 Arrow key wrapping: WRAP or NOWRAP
 Field reset flag: RESET or NORESET
 Up- and down-arrow control: UD_TAB, UD_FREE, UD_RESTRICT,
 UD_COLM, UD_SWATH, UD_NEXTLINE, UD_NEXTFLD
 Left- and right-arrow control: LR_TAB, LR_FREE,
 LR_RESTRICT, LR_COLM, LR_SWATH, LR_NEXTLINE, LR_NEXTFLD
 Always-validate flag: VALID, NOVALID
 Beep on overstriking last character of no-autotab field:
 ENDCHAR
 SMOKOPTIONS = BLOCK; WRAP; RESET;\
 UD_RESRICT, UD_NXTLINE; LR_RESTRICT,\
 LR_NXTFLD; VALID; ENDCHAR
 SMZMOPTIONS Zoom key options, as documented nunder the library function
 zm_options. The first parameter controls the first step of
 zooming, and may be either NOSHIFT, SCREEN, ELEMENT, or
 ITEM. The second controls the subsequent step, and may be
 NOSCROLL, SCROLL, PARALLEL, or 1STEP.
 SMZMOPTIONS = ITEM PARALLEL

22.3.3 Setups for Default File Extensions

These variables control the default file extensions used by utilities, which are
listed below.

 SMFEXTENSION Screen file extension, used by the JAM run-time system and
 various utilities. The default in Release 4.0 is none; the
 default in Release 3 was jam. May be overridden in the
 system environment. See fextension.
 SMFEXTENSION=f
 SMUSEEXT This variable controls the file extension rules described
 in Section 2.2. The first parameter is the extension
 separator character, which may be a quoted character,

 number, or ASCII mnemonic. The second controls whether JAM
 attemptes to recognize and replace extensions, and is
 either RECOGNIZE or IGNORE. The last determines whether
 extensions are placed before or after the filename, and is
 either FRONT or BACK.
 SMUSEEXT = '-'; RECOGNIZE; FRONT

NAME

 term2vid - create a video file from a terminfo or termcap entry.

SYNOPSIS

 term2vid [-f] terminal-mnemonic

DESCRIPTION

Term2vid creates a rudimentary screen manager video file from information in the
terminfo or termcap database. Terminal-mnemonic is the name of the terminal
type, the value of the system environment variable TERM, which is used by the C
library function tgetent to access that database.

The output file will be named after the mnemonic. The -f option tells the
utility it's OK to overwrite an existing output file.

ERROR CONDITIONS

No cursor position (cm, cup) for %s Cause: An absolute cursor positioning
 sequence is required for JAM to work,
 and the termcap or terminfo entry you
 are using does not contain one.
 Corrective action: Construct the
 video file by hand, or update the
 entry and retry.

Cannot find entry for %s Cause: The terminal mnemonic you have given is not in
 the termcap or terminfo database.
 Corrective action: Check the spelling
 of the mnemonic.

File %s already exists; use '-f' to overwrite. Cause: You have specified an
 existing output file. Corrective
 action: Use the -f option to
 overwrite the file, or use a
 different name.

)

NAME

 txt2form - Converts text files to JAM screens

SYNOPSIS

 txt2form [-fv] textfile screen [height width]

DESCRIPTION

This program converts textfile to a read-only JAM screen, named screen. It
creates display data sections from the input text. It preserves blank space, and
expands tabs to eight-character stops; other control characters are just copied
to the output. Text that extends beyond the designated maximum output height or
width is discarded; if the last two parameters are missing, a 23-line by
80-column screen is assumed.

Txt2form puts no borders, fields, or display attributes in the output screen.
However, underscores (or other, user-designated field definition characters) in
the input are copied to the screen file; if you subsequently bring the screen up
in jxform and compile it, those characters will be converted to fields.

The -f option directs the utility to overwrite an existing output file. The -v
prints the name of each screen as it is processed.

ERROR CONDITIONS

Warning: lines greater than %d will be truncated Warning: columns greater than
%d will be truncated Cause: Your input text file has data that reaches beyond
 the limits you have given (default 23 lines by 80
 columns) for the screen. Corrective action: Shrink
 the input, or enlarge the screen.

Unable to create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry
 the operation.

NAME

 var2bin - convert files of setup variables to binary

SYNOPSIS

 var2bin [-pv] [-eext] setupfile [setupfile ...]

DESCRIPTION

This utility converts files of setup variables to binary format for use by the
run-time system. See pages 5-55ff for a full description of how to prepare the
ASCII file.

The -v prints the name of each screen as it is processed. The -p option causes
the output file to be created in the same directory as the input file, and the
-e option supplies a file extension different from the default of bin.

ERROR CONDITIONS

Error opening %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions
 of the file in question.

Missing '='. Cause: The input line indicated did not contain an equal sign after
 the setup variable name. Corrective action: Insert the
 equal sign and run var2bin again.

%s is an invalid name. Cause: The indicated line did not begin with a setup
 variable name. Corrective action: Refer to the
 Configuration Guide for a list of variable names,
 correct the input, and re-run the utility.

%s may not be qualified by terminal type. Cause: You have attached a terminal
 type list to a variable which does not support one.
 Corrective action: Remove the list. You can achieve the
 desired effect by creating different setup files, and
 attaching a terminal list to the SMSETUP variable.

Unable to set given values. %s conflicts with a previous parameter. %s is an
 invalid parameter. Cause: A keyword in the input is
 misspelled or misplaced, or conflicts with an earlier
 keyword. Corrective action: Check the keywords listed
 in the manual, correct the input, and run the utility
 again.

Error reading smvars or setup file. Cause: The utility incurred an I/O error
 while processing the file named in the message.
 Corrective action: Retry the operation.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

At least one file name is required. Cause: You have failed to give an input file
 name. Corrective action: Retype the command, supplying
 the file name.

Entry size %d is too large. String size %d is too large. Cause: The indicated
 right-hand side is too long. Corrective action: Reduce
 the size of the entry.

NAME

 vid2bin - convert video files to binary

SYNOPSIS

 vid2bin [-vp] [-eext] terminal-mnemonic

DESCRIPTION

The vid2bin utility converts an ASCII video file to binary•format for use by
applications with the JAM library •routines. The video files themselves must be
created with a text•editor, according to the rules listed in the video
manual•(q.v.).

Terminal-mnemonic is an abbreviation for the name of the terminal •for which the
ASCII video file has been constructed. That file,•whose name is conventionally
the mnemonic followed by the suffix•vid, is the input to vid2bin. (When opening
its input,•vid2bin first tries them mnemonic, then the mnemonic followed•by
vid.)

To make a video file memory-resident, run the bin2c utility•on the output of
vid2bin, compile the resulting program•source file, link it with your
application, and call the library•routine vinit.

The -v option prints the name of each screen as it is processed. -p creates each
output file in the same directory as the corresponding input file. The use of
the -p option is not recommended.

For information about the format of the ASCII video file, refer•to the video
manual and the Programmer's Guide.

ERROR CONDITIONS

Neither %s nor %s exists. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

A cursor positioning sequence is required. An erase display sequence is
 required. Cause: These two entries are required
 in all video files. Corrective action:
 Determine what your terminal uses to perform
 these two operations, and enter them in the
 video file; then run the utility again.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Error writing to file '%s'. Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Invalid entry: '%s'. Entry missing '=': '%s'. Cause: The input line in the
 message does not begin with a video keyword and
 an equal sign. Corrective action: Correct the
 input and re-run the utility. You may have
 forgotten to place a backslash at the end of a
 line that continutes onto the next one.

Invalid attribute list : '%s'. Invalid color specification : '%s'. Invalid
 graphics character specification (%s):'%s'.
 Invalid border information (%s):'%s'. Invalid
 graphics type : '%s'. Invalid label parameter :

 '%s'.%s Invalid cursor flags specification :
 '%s'. Cause: You have misspelled or misplaced
 keywords in the input line in the message.
 Corrective action: Correct the input, referring
 to the Configuration Guide, and run vid2bin
 again.

NAME

 Video file - video configuration manual

DESCRIPTION

27.1 Introduction to Video Configuration

JAM is designed to run on many displays with widely differing characteristics.
These characteristics greatly affect JAM's display of screens and messages. For
example, some displays are 80 columns wide, while others have 132; again, the
control sequences used to position the cursor and highlight data on the display
are hardly the same for any two models. JAM obtains display characteristics from
a video file.

27.1.1 How to Use this Manual

This manual has two purposes. The first is to explain the entries in the JAM
video file, and the concepts used in interpreting them. Although you may well
never need to modify or construct a video file, you may wish to know what it
does. The second purpose is to provide instructions for modifying existing video
files, or constructing new ones, to handle new terminal characteristics.

Creating a video file is not trivial; neither is it a major effort. The easiest
way is to use one of the many supplied with JAM. There are fifty or so as of
this writing; you may find a list in an appendix to Chapter One of this manual.
It is not much harder to begin with one of the files supplied and modify it, if
you can determine that your terminal is similar; this is very often possible
because so many terminals emulate others. If your system has a terminfo or
termcap database, you can use the term2vid utility (q.v.) to make a functional
video file from that information. Finally, if you must start from scratch, you
should start with the minimal subset defined in Section 27.1.4, and add entries
one at a time.

 .
 Most of this manual should be used for reference only. The sample video
 file in Section 27.1.5 is suitable for a large number of terminals, and
 may be all that you need.
 .
 Section 27.1.2 describes the concept of the video file.
 .
 Section 27.1.3 describes the text file format.
 .
 Section 27.1.6 is a must for users on a PC using MS-DOS. It contains a
 listing of an appropriate video file and special caveats.
 .
 Section 27.2.2 summarizes the keywords. Sections 27.3ff explain
 parameterized control sequences, which support cursor positioning,
 attribute setting, etc.
 .
 A separate section of this chapter describes the vid2bin utility, which
 translates your video file into a binary format the JAM library can
 understand.

Details and examples are in Sections 27.4.1ff; the first four are plenty to get
you started. Next look at Sections 27.4.5 and 27.4.5.1 for a general description
of attributes. Section 27.4.5.2 discusses latch attributes, the most common
kind, and Section 27.4.5.3 area attributes. Using color is described in Section
27.4.5.4. The remaining sections discuss less essential topics, such as borders,
graphics, help text, etc. The vid2bin utility supplies reasonable defaults for
these entries, so worry about them last of all.

27.1.2 Why Video Files Exist

Differences among terminal characteristics do not affect programs that are line
oriented. They merely use the screen as a typewriter. Full-screen editors, like
emacs or vi, use the screen non-sequentially; they need terminal-specific ways
to move the cursor, clear the screen, insert lines, etc. For this purpose the
termcap data base, and its close relative terminfo, were developed. Although
closely associated with UNIX, termcap and terminfo are also used on other
operating systems. They list the idiosyncrasies of many types of terminals.

Text editors use visual attributes sparingly, if at all. Thus termcap contains
minimal information about handling them. Usually there are entries to start and
end "stand-out" and sometimes entries to start and end underline. Notably
missing are entries explaining how to combine attributes (i.e. reverse video and
blinking simultaneously). Terminfo can combine attributes; in practice,
unfortunately, the appropriate entries are usually missing.

JAM makes extensive use of attributes in all combinations, and supports color.
Rather than extending termcap with additional codes, which might conflict with
other extensions, JYACC decided to use an independent file to describe the
terminal specific information.

Termcap uses a limited set of commands; notably missing are conditionals.
Terminfo uses an extensive set of commands, however the resulting sequences are
excessively verbose (103 characters for the ANSI attribute setting sequence
without color). Therefore, JYACC developed a set of commands that extend both
termcap and terminfo. Both syntaxes are supported with only minor exceptions.
All the commands needed in the video file can be written using terminfo syntax;
many can be written using the simpler termcap syntax; and a few can benefit by
using the extended commands.

A summary of the commands used to process parameters is in Section 27.3; details
and examples follow. Refer to those sections if you have trouble understanding
the examples elsewhere in the manual.

27.1.3 Text File Format

The video file is a text file that can be created using any text editor. It
consists of many instructions, one per line. Each line begins with a keyword,
and then has an equal sign (=). On the right of the equal sign is variable data
depending on the keyword. The data may be a number, a list of characters, a
sequence of characters, or a list of further instructions.

Comments can be entered into the file by typing a hash # as the first character
of the line; that line will be ignored by vid2bin. All the video files
distributed by JYACC are documented with comments; we recommend that you do
likewise, as many of the entries are necessarily cryptic.

It is essential that the instruction formats listed in this guide be followed
closely. In order to make run-time interpretation as efficient as possible, no
error checking at all is done then. The vid2bin utility checks for things like
missing, misspelled, and superfluous keywords, but not for things like
duplicated or conflicting entries.

27.1.4 Minimal Set of Capabilities

The only required entries in the video file are for positioning the cursor (CUP)
and erasing the display (ED).

In the absence of other entries, JAM will assume a 24-line by 80-column screen.
The 24th line will be used for status text and error messages, and the remaining
23 will be available for forms. It will assume that no attributes are supported
by the terminal. Since non-display is supported by software, that attribute will
be available. The underline attribute will be faked by writing an underscore

wherever a blank appears in an underlined field. Clearing a line will be done by
writing spaces. Borders will be available, and will consist of printable
characters only.

Although JAM will function with those two entries, it will have limited
features. The most glaring shortcoming will be the lack of visual attributes.
Speed may also be a problem; the sole purpose of many entries in the video file
is to decrease the number of characters transmitted to the terminal.

27.1.5 A Sample Video File

The following video file is for a basic ANSI terminal, like a DEC VT-100.

 # Display size (these are actually the default values)
 LINES = 24
 COLMS = 80

 # Erase whole screen and single line
 ED = ESC [2 J
 EL = ESC [K

 # Position cursor
 CUP = ESC [%i %d ; %d H

 # Standard ANSI attributes, four available
 LATCHATT = REVERSE = 7 UNDERLN = 4 BLINK = 5 HILIGHT = 1
 SGR = ESC [0 %9(%? %t ; %c %; %) m

This file contains the basic capabilities, plus control sequences to erase a
line and to apply the reverse video, underlined, blinking, and highlighted
visual attributes. The entries for CUP and SGR are more complicated because they
require additional parameters at run-time. The percent commands they contain are
explained meticulously in Section 27.3.

27.1.6 An MS-DOS Video File

By default, JAM displays data on the console by directly accessing the PC's
video RAM. On machines that are not 100% IBM-compatible, it will use BIOS calls
instead; use the entry INIT = BIOS to effect that. Under no circumstances does
JAM use DOS calls or the ANSI.SYS driver. Video files for both monochrome and
color displays are included with JAM.

Because JAM contains special code for the PC display, most of the entries that
contain control sequences are irrelevant, and are given a value of PC in the
video files distributed by JYACC. You should leave these entries alone, since
their presence is required but their values are irrelevant. Entries that don't
contain control sequences, such as LINES, GRAPH, and BORDER, can be changed as
usual. The PC video file, as distributed, follows.

 LINES = 25
 COLMS = 80
 ED = PC
 EL = PC
 EW = PC
 CUP = PC
 CUU = PC
 CUD = PC
 CUB = PC
 CUF = PC
 CON = PC
 COF = PC
 SCP = PC
 RCP = PC
 REPT = PC

 # Next 2 lines give display attributes for monochrome only
 # The INIT line specifies a blinking block cursor
 LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
 INIT = C 0 13 2

 # Next 3 lines give display attributes for color only
 # The INIT line specifies a blinking block cursor
 LATCHATT = HILIGHT = 1 BLINK = 5
 COLOR = RED = 1 BLUE = 4 GREEN = 2 BACKGRND
 INIT = C 0 7 2

 SGR = PC
 CURPOS = 1
 GRTYPE = PC
 ARROWS = 0x1b 0x1a 0x1d
 BORDER = SP SP SP SP SP SP SP SP \
 0xda 0xc4 0xbf 0xb3 0xb3 0xc0 0xc4 0xd9 \
 0xc9 0xcd 0xbb 0xba 0xba 0xc8 0xcd 0xbc \
 0xd5 0xcd 0xb8 0xb3 0xb3 0xd4 0xcd 0xbe \
 0xd6 0xc4 0xb7 0xba 0xba 0xd3 0xc4 0xbd \
 0xdc 0xdc 0xdc 0xdd 0xde 0xdf 0xdf 0xdf \
 \
 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 \
 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 \
 0xdb 0xdb 0xdb 0xdb 0xdb 0xdb 0xdb 0xdb

Here the INIT specifies the cursor style; refer to the section on INIT.

27.2 Video File Format

27.2.1 General Information

All white space (spaces and tabs) is skipped, except where noted below. A
logical line may be continued to the next physical line by ending the first line
with a backslash. (Do not leave a space between the backslash and the newline.)
To enter a backslash as the last character of the line, use two backslashes
(without spaces). Thus

 text \ means a continuation line
 text \\ ends with a backslash
 text \\\ has a backslash and a continuation

A double quote " starts a string. The quote itself is skipped; text between it
and the next double quote (or the end of the line) is taken literally, including
spaces. To include a double quote in a quoted string, use backslash quote \"
with no space between. For example,

 "stty tabs" has an embedded space
 stty tabs does not.

The percent sign is a control character; to enter a literal percent sign, you
must double it (i.e. %%).

There are three ways to put non-printing characters, such as control characters,
in the video file:

 1. Any character at all can be entered as 0x followed by two hexadecimal
 digits. For example, 0x41 can be used for A, 0x01 for control-A, etc.
 This method is particularly useful for entering codes in the range 0x80
 to 0xff.
 2. Control characters in the range 0x01 to 0x1f can be represented by a
 caret ^ followed by a letter or symbol. Either ^A or ^a can represent
 SOH (0x01). The symbols are ^[for ESC, ^\ for FS, ^] for GS, ^^ for RS
 and ^_ for US.

 3. More control characters can be represented by two- or three-character
 ASCII mnemonics. This method is particularly useful for entering
 control sequences to the terminal, since the manuals often list such
 sequences using mnemonics. Here is a list:

 DLE 0x10 DSC 0x90
 SOH 0x01 DC1 0x11 PU1 0x91
 STX 0x02 DC2 0x12 PU2 0x92
 ETX 0x03 DC3 0x13 STS 0x93
 EOT 0x04 DC4 0x14 IND 0x84 CCH 0x94
 ENQ 0x05 NAK 0x15 NEL 0x85 MW 0x95
 ACK 0x06 SYN 0x16 SSA 0x86 SPA 0x96
 BEL 0x07 ETB 0x17 ESA 0x87 EPA 0x97
 BS 0x08 CAN 0x18 HTS 0x88
 HT 0x09 EM 0x19 HTJ 0x89
 NL 0x0a SUB 0x1a VTS 0x8a
 VT 0x0b ESC 0x1b PLD 0x8b CSI 0x9b
 FF 0x0c FS 0x1c PLU 0x8c ST 0x9c
 CR 0x0d GS 0x1d RI 0x8d OCS 0x9d
 SO 0x0e RS 0x1e SS2 0x8e PM 0x9e
 SI 0x0f US 0x1f SS3 0x8f APC 0x9f

 SP 0x20 DEL 0x7f

The rightmost two columns are extended ASCII control codes, which can be
transmitted only if the communication line and terminal use eight data bits. If
this is not possible, the 8-bit code may be replaced by two 7-bit codes: the
first code is ESC (0x1b), the second 0x40 less than the desired 8-bit control
character. For example, CSI (0x9b) would be replaced by ESC 0x5b, or ESC [. If a
video file contains extended ASCII control codes, JAM will assume they can be
used; it will not transmit the two-character sequence automatically.

Note: PRIME computers, and some others, internally toggle the high bit of a
character; ESC on a PRIME is 0x9b and CSI is 0x1b, not vice versa. The numbers
given in this document are always standard ASCII.
27.2.2 Keyword Summary

All the video file entry keywords are listed here, arranged by function.
Subsequent sections explain each one in detail.

 basic capabilities
 LINES number of lines on screen
 COLMS number of columns on screen
 INIT initialization sequence
 RESET undoes initialization sequence
 REPT repeat following character
 REPMAX maximum number of repeated characters
 BOTTRT last position of screen may be written without
 scrolling the display
 BUFSIZ number of characters to accumulate before flushing
 erasure commands
 ED erase entire display
 EL erase to end of current line
 EW erase window
 cursor appearance
 CON turn cursor on
 COF turn cursor off
 SCP save cursor position and attribute
 RCP restore cursor postion and attribute
 INSON insert-mode cursor
 INSOFF overstrike-mode cursor
 cursor position
 CUP absolute cursor position
 CUU cursor up

 CUD cursor down
 CUF cursor forward
 CUB cursor backward
 CMFLGS allowed cursor-motion shortcuts
 display attributes
 COLOR list of colors
 LATCHATT list of available latch attributes
 SGR set graphics rendition (latch)
 AREAATT list of available area attributes
 ASGR set graphics rendition (area)
 ARGR remove are attribute
 message line
 OMSG open message line
 CMSG close message line
 MSGATT message line attributes
 softkey labels
 KPAR function key labels description
 KSET load function key label
 graphics
 MODE0 normal character set sequence
 MODE1 locking shift to alternate character set 1
 MODE2 locking shift to alternate character set 2
 MODE3 locking shift to alternate character set 3
 MODE4 non-locking shift to alternate character set 1
 MODE5 non-locking shift to alternate character set 2
 MODE6 non-locking shift to alternate character set 3
 GRAPH graphics character equivalences
 GRTYPE shortcut for defining graphics characters
 ARROWS shift indicator graphics characters
 BELL "visible bell" alarm sequence
 borders
 BORDER characters that make up the 10 border styles
 BRDATT available border attributes
 jxform help
 JFMTOP navigation mode function keys
 JFMKDS draw-screen mode function keys
 JFMKTM test-screen mode function keys
 FMKRCP copy-field function key
 FMKRMV move-field function key
 JDAMOD data dictionary modification mode keys
 JDFIND data dictionary find mode text
 JDDCHG data dictionary update mode
 JDTPLT data dictionary template
 JDMTCH data dictionary match scan
 CURPOS status line cursor position display

27.3 Parameterized Character Sequences

Certain control sequences cannot be completely specified in advance. An example
is the cursor position sequence, which requires the line and column to move to.
The commands using these sequences must be passed extra parameters. The
following keywords take the indicated number of parameters:

 REPT repeat sequence (2)
 character and number of times to repeat
 EW erase window (5)
 start line, start column, number of lines, number of columns,
 background color
 CUP cursor position (2)
 line and column (relative to 0)
 CUU cursor up (1)
 line increment
 CUD cursor down (1)
 line increment

 CUF cursor forward (1)
 column increment
 CUB cursor backward (1)
 column increment
 SGR set latch graphics rendition (11)
 see section 27.4.5
 ASGR set area graphics rendition (11)
 see section 27.4.5.1

27.3.1 Summary of Percent Commands

Parameters are encoded in sequences by percent commands, sequences starting with
the % symbol. This is superficially similar to the way the C library function
printf handles parameters. Some percent commands cause data to be output; others
are used for control purposes. Every parameter that is to be output requires a
percent command. JAM uses a stack mechanism as does terminfo; it is described in
the next secion. Percent commands are summarized in the list that follows.
Examples and more complete descriptions are in subsequent sections.

Since all sequences go through the same processing, even those that do not use
run-time arguments, percent signs must be used with care. In particular, to
enter a percent sign as a literal, you must use %%.

In the following list, each command is tagged with C, I, or E to indicate
whether it is a termcap, terminfo, or JYACC extended command.

Output commands

 %% output a percent sign (C and I)
 %. output a character (C)
 %c output a character (I)
 %d output a decimal (C and I)
 %#d output a #-digit decimal, blank filled (I)
 %0#d output a #-digit decimal, zero filled, like the termcap
 %2 which is not supported (I)
 %+ add and output a character (C)
 %#z output # (decimal number) binary zeroes (E)
 %#w wait (sleep) # seconds (E)

Stack manipulation and arithmetic commands

 %p# push parameter # (1 - 11 allowed) (I)
 %'c' push the character constant c (I)
 %{#} push the integer constant # (I)
 %+ %- %* %/ %m add, subtract, multiply, divide, modulus (I)
 %| %^ %& bit-wise or, exclusive or, and (I)
 %= %> %< logical conditionals (I)
 %! %~ logical not, one's complement (I)

Parameter sequencing and changing commands

 %#u discard # parameters (E)
 %#b back up # parameters (E)
 %i increment the next two parameters (C and I)
 %r reverse the next two parameters (C)

Control flow commands

 %? expr %t then-part %e else-part %;
 conditionally execute one of two command sequences (I)
 expr %t then-part %e else-part %;
 same effect as previous (E)
 %#(... %) repeat the sequence # times (E)
 l(... %) select operations from a list (E)

Terminfo commands not supported

 %s strings
 %P, %g letter variables
 $<#> padding (use %#z instead)

27.3.2 Automatic Parameter Sequencing

A stack holds all the parameters being processed. It is four levels deep;
anything pushed off the end is lost. There are commands that push a parameter or
constant onto the stack, but no explicit pop commands. Output commands transmit
the value on top of the stack, then remove it. Arithmetic and logical operations
take one or two operands from the top of the stack, and replace them with one
result; thus they perform an implicit pop.

Arithmetic and logical operations all use postfix notation: first the operands
are pushed, then the operation takes place. Thus %p1 %p2 %p3 %+ %* leaves x * (y
+ z) on the stack, where x, y, and z are parameters 1, 2 and 3. This mechanism
is identical to that used by terminfo, so its commands can be used freely.

The simpler termcap commands do not use a stack mechanism. To support them, JAM
uses an automatic parameter sequencing scheme. A current index into the
parameter list is maintained. Whenever a parameter is needed on the stack, the
current parameter is pushed and the index is incremented. In particular, if an
output command is encountered and there is nothing on the stack to output, an
automatic push is performed using the current index. The commands %d %d output
two decimals; the sequence %p1 %d %p2 %d does the same thing.

The effect of this scheme is that termcap style commands are automatically
translated into terminfo style. Most of the examples in this document give both
styles. Although it is possible to use automatic sequencing and explicit
parameter pushes in the same sequence, this practice is strongly discouraged.
Explicit pushes of constants with automatic parameter sequencing, however, is a
useful combination, as will be seen.

27.3.3 Stack Manipulation and Arithmetic Commands

Commands are available to push parameters and constants. Only four levels of
stack are supported, and anything pushed off the end is discarded without
warning.

 %p2 push the second parameter
 %p11 push parameter 11
 %'x' push the character x
 %{12} push the number 12
 %{0} push binary 0
 %'0' push ASCII 0

Various arithmetic and logical operations are supported. They require one or two
operands on the stack. If necessary an automatic push will be generated, using
the next parameter.

 %'@' %| %| %| %c or three parameters with @, then
 output the result.
 %'@' %p1 %| %p2 %| %p3 %| %c same as above

The automatic parameter sequencing mechanism works well in the above example.
Since or requires two parameters and there is only one on the stack, a push is
performed. Note that no push is required to process %c as an entry already
exists on the stack. Thus only three parameters are consumed and the result of
the bitwise or is output.

 %'SP' %+ %c output the parameter added to the value of a
 space. See the next section for an alternate.

 %p1 %'SP' %+ %c same as above

The example above first pushes the first parameter, then pushes a space
character (0x20). The %+ command adds these values and puts the answer on the
stack. %c then pops this value and transmits it to the terminal.

27.3.4 Parameter Sequencing Commands

With automatic sequencing of parameters, it is occasionally necessary to skip a
parameter. The %u command uses up one parameter, by incrementing the parameter
index. The %b command backs up, by decrementing the parameter index. Both can be
given with counts, as %2u.

 %d %b %d output the same parameter twice
 %p1 %d %p1 %d same as above
 %p2 %d %p1 %d output in reverse order
 %u %d %2b %d same as above

27.3.5 Output Commands

Because the percent sign is a special character, it must be doubled to output a
percent sign. %c and %. output a character, like printf; the latter is supplied
for termcap compatibility. %d outputs a decimal. It has variations that allow
for specifying the number of digits, and whether blank or zero fill is to be
used.

%#z outputs the specified number of NUL characters (binary zero). It is usually
used for padding, to insert a time delay for commands such as erase screen.

 %% output a percent sign
 %d output a decimal, any number of digits, no fill
 %3d output at most 3 digits with blank fill
 %03d output at most 3 digits with zero fill
 %100z 100 pad bytes of 0 are sent to the terminal

%S(string %) issues a system command; the string following %S is passed to the
command interpreter fpr execution. Since vid2bin strips spaces, this text should
usually be enclosed in quotes.

 %S("stty tabs"%) System call: stty tabs
 %S(stty SP tabs%) System call: stty tabs
 %S(stty tabs %) Mistaken version of above
 %S("keyset \"\""%) System call: keyset ""
 %S("keyset """%) Mistaken version of above.

%#w waits (sleeps) the specified # of seconds. It is not supported on systems
where the sleep library routine is unavailable. It is often used as a time delay
for INIT and RESET sequences.

 %2w sleep 2 seconds

Because termcap and terminfo are inconsistent, %+ is implemented in two ways. As
described in the section above, %+ can be used to add two operands on the stack
and leave the sum on the stack. If the stack has only one entry, an automatic
push is generated. However, a special case occurs if the stack is empty: the
character following %+ is added to the next parameter, the sum is output as a
character, and the parameter index is incremented. This usage occurs often in
termcap cursor positioning sequences.

 %+SP output parameter added to the value of space
 %'SP' %+ %c same as above
 %'SP' %p1 %+ %c same as above

27.3.6 Parameter Changing Commands

%i increments the next two parameters. It is used almost exclusively in termcap
cursor positioning sequences. The parameters passed are line and column, with
the upper left being (0, 0). Many terminals expect the line and column to be
relative to (1, 1); %i is used to increment the parameters. Note that no output
is performed, and no parameters are consumed.

%r reverses the next two parameters. It is unnecessary if explicit parameter
pushes are used; in fact, it should be avoided in that case since the numbering
of the parameters will be reversed. This command is often used in cursor
positioning sequences, where the terminal requires that column be given first
and then the line (the default being the other way around).

 ESC [%i %d ; %d H Add 1 to each parameter and send out as
 decimals
 FS G %r %c %c output column first, then line
 FS G %p2 %c %p1 %c same as above

27.3.7 Control Flow Commands

The general if-then-else clause is %? expr %t then-part %e else-part %; . It can
be abbreviated by omitting the if, thus: expr %t then-part %e else-part %; . The
expression expr is any sequence, including the empty sequence. %t pops a value
from the stack and tests it, executing then-part if it is true (non-zero) and
else-part otherwise. Then-part and else-part may be any sequence, including the
empty sequence. If else-part is empty, %e may be omitted as well; but %t is
always required, even if then-part is empty.

If %t finds that the stack is empty, it will generate an automatic push of the
next parameter as usual. %t consumes one parameter; however, the incrementing of
the parameter index is delayed until after the entire conditional has been
executed. A conditional always consumes exactly one parameter, regardless of
which branch is taken or of the content of then-part or else-part. If either of
those use automatic parameter sequencing, they use a local index; thus even if
they consume, say, two parameters, at the end of the conditional the parameter
index is reset. When the next command is reached, only one parameter has been
consumed.

In each of the following examples, one parameter is consumed, even in the last
one where no parameter is output.

 %t ; %c %; output ; and a character if the parameter is
 non-zero, otherwise skip the parameter.
 %p1 %t ; %p1 %c %; same
 %? %p1 %t ; %p1 %c %; same
 %? %p1 %t ; %c %; same
 %t ; 5 %; output ; and 5 if the parameter is non-zero.

In the following two examples, the constant (binary) 1 is pushed, the parameter
is compared with 1, and the boolean value is left on the stack. If the value is
true, nothing is done; otherwise the parameter is output as a decimal.

 %? %{1} %p1 %= %t %e %p1 %d %;
 %{1} %= %t %e %d %;

The following sequence exhibits a simple "either-or" condition that is sometimes
used to toggle an attribute on or off. It outputs ESC (if the parameter is
non-zero, and ESC) otherwise.

 ESC %t (%e) %;

The then-part and else-part may themselves contain conditionals, so else-if can
be implemented. This practice is not recommended as it can produce

undecipherable sequences. Also, because of the way automatic parameter
sequencing is done, the results might be unexpected. It is provided only for
terminfo compatibility. The list command, described below, is an alternative.

The repeat command is used to perform the same action for several parameters. It
is designed to be used with automatic parameter sequencing, and is almost
useless if explicit parameter pushes are used. The count is specified after the
percent sign. All the commands between %#(and %) are executed # times.

 %3(%d %) output 3 decimals
 %p1 %d %p2 %d %p3 %d same as previous
 %3(%t %d %; %) output whichever of the first three
 parameters are non-zero.
 %p1 %t %p1 %d %; %p2 %t %d %; %p3 %t %p3 %d %;
 same as previous
 ESC 0 %9(%t ; %c %; %) m usual ANSI sequence for SGR.
 ESC 0 %? %p1 %t ; 7 %; %? %p2 %t ; 2 ...
 same as above, assuming that parameter
 1 is 7 and parameter 2 is 2

27.3.8 The List Command

The list command is needed very rarely, but is available as an alternate to a
complicated if-then-elseif construct. It implements a simple "select" or "case"
conditional. The general format is %l(value1: expr1 %; value2: expr2 %; ... %)

The values are single character constants representing the various cases. The
expression is executed if the value matches the top of stack. At most one
expression is executed, i.e. each case contains a "break". If the value is
missing the expression is evaluated as a default. For correct operation, the
default case must occur last in the list. Note that the colons do not have a
leading percent sign, so no selector may be a colon. The %; after the last
element of the list is not required.

The parameter on the stack (automatically pushed, if necessary) is popped and
tested against the various cases. The parameter index is incremented by 1 after
the entire list is processed, even if the expressions use parameters. The
following examples are a bit contrived; see the section on color for a live
example.

 %l(0:%; 1:ESC%; :FS %) output nothing if the parameter is
 '0'; ESC if it is '1'; FS otherwise.
 %'0' %= %t %e %'1' %= %t ESC %e FS %; %;
 same result, using "else-if"
 %l(1:2%; 2:1%; %) output '1' if the parameter is '2',
 '2' if the parameter is '1'; otherwise
 do nothing

27.3.9 Padding

Certain terminals (or tty drivers) require extra time to execute instructions.
Sometimes the terminal manual specifies the delay required for each command, but
more often than not it is silent on the subject. If random characters appear on
the screen, particularly characters that are part of command sequences, time
delays may be required.

Delays can be introduced in two ways. %#w will cause a wait (sleep) for the
specified number of seconds; %#z will output the specified number of zeros. The
wait command is usually only required in terminal initialization or reset
sequences. A "hard reset" of a terminal sometimes requires a sleep of 1 or 2
seconds. The zero command is occasionally needed on the erase display or erase
line commands. Very rarely the cursor positioning sequence requires padding. The
number of zeros to send range from about 5, for very short delays, to several
thousand for longer delays. Usually 100 or so is enough for any terminal.

termcap indicates padding by using a number at the beginning of a sequence,
which is the number of milliseconds of pad required. terminfo uses the syntax
$<#>. In either case it is easy to convert to the %#z notation, using the fact
that, at 9600 baud, one character takes one millisecond to output.

 ESC c %2w sleep 2 seconds after terminal reset
 ESC [J %100z 100 pad zeros after clear screen
 ESC [H %1000z long delay of 1000 pad zeros

27.4 Constructing a Video File, Entry by Entry

27.4.1 Basic Capabilities

LINES indicates the number of lines on the display. The default value is 24. In
general one line will be reserved for status and error messages so the maximum
form size will usually be one less than the number specified here. (See OMSG,
below, for exceptions.) COLMS gives the number of columns on the display. The
default value is 80.

 LINES = 25 24 lines for the form, 1 for messages
 COLMS = 132 wide screen
 LINES = 31 SUN workstation

INIT is a terminal initialization sequence, output by the library function
initcrt. There is no default; this keyword may be omitted. It is typically used
to change the mode of the terminal, to map function keys, select attribute
styles, etc. Padding is sometimes required, either with %#z or %#s.

RESET is a reset-terminal sequence, output by the library function resetcrt.
There is no default. If given, this keyword should undo the effects of INIT. For
many terminals a "hard reset" that resets the terminal to the state stored in
non-volatile memory is appropriate.

 # map 2 function keys, then wait 2 seconds
 INIT = %S("/etc/keyset f1 ^a P ^m" %) \
 %S("/etc/keyset f2 ^a Q ^m" %) \
 %2w

 # load alternate character sets
 INIT = ESC)F ESC*| ESC+}

 # hard reset, delay, then set tabs
 RESET = ESC c %1000z %S("stty tabs"%)

On MS-DOS systems only, the INIT and RESET sequences (which are normally not
used) may be given a special value to specify the cursor style. With ASCII
terminals, escape sequences for setting the cursor style may be included in the
INIT and RESET strings in the normal fashion. The format is

 INIT = C n1 n2 n3
 RESET = C n1 n2 n3

The first two numbers, n1 and n2, specify the top and bottom scan lines for the
cursor block; line 0 is at the top. The optional n3 gives the blink rate, as
follows:

 1 no cursor
 2 fast blink (the default)
 3 slow blink
 0 fast blink (Not always valid on non-IBM systems)

The standard sequences, for a blinking block cursor, are INIT = C 0 13 0 for a
monochrome monitor, and INIT = C 0 7 0 for a CGA monitor (with lower

resolution). If RESET is not specified, JAM saves and restores the original
cursor style.

A scan line is the smallest vertical unit on your display (it is one pixel
wide).

Two additional special keywords may be used with INIT on MS-DOS systems. BIOS
specifies that JAM should use BIOS calls to do display output rather than
writing the video RAM directly. XKEY actually controls keyboard input; it
directs JAM to use a different BIOS interrupt for keyboard input, one that
recognizes the F11 and F12 keys on an extended keyboard.

REPT is a repeat-character sequence. There is no default, since most terminals
do not support character repeat. If it is available, it should be given as it
can substantially speed up clearing of windows, painting of borders, etc. This
sequence is passed two parameters; the character to be repeated and the number
of times to display it. The repeat sequence will be used whenever possible,
usually for borders and for clearing areas of the screen. If borders do not
appear correctly, this sequence may be wrong. A repeat sequence is never used to
repeat a control character, and will never extend to more than one line.

REPMAX gives the maximum number of characters REPT can repeat. To check the
proper value of REPMAX, first omit it; then, in jxform, draw a field that
extends the entire width of the screen, and hit the TRANSMIT key. If the whole
field changes to the underline attribute, REPMAX is not needed. If it doesn't,
experiment by gradually shortening the field to determine the largest possible
value of REPMAX.

 REPT = %c ESC F %+? output character, then ESC F
 and the count with 0x3f (the
 ASCII value of '?') added
 REPMAX = 64 maximum count for above.
 Anything over this count will
 be split into more sequences
 REPT = %p1 %c ESC F %'?' %p2 %+ %c same as previous

BOTTRT is a simple flag, indicating that the bottom right-hand corner of the
display may be written to without causing the display to scroll. If this flag is
not present, JAM will never write to that position.

BUFSIZ sets the size of the output buffer used by JAM. If it is omitted, JAM
calculates a reasonable default size, so you should include it only if special
circumstances warrant. If you make extensive use of a screen-oriented debugger,
you may want to set BUFSIZ to a large value; that effectively disables the
delayed-write feature, which may prove troublesome during debugging.

27.4.2 Screen Erasure

ED gives the control sequence that erases the display. It is required, and must
clear all available display attributes, including background color. The correct
command can be found in the terminal manual, or in termcap as "cl". Some
terminals require padding after this command.

 ED = ESC [J common for ANSI terminals
 ED = CSI J ANSI terminals, 8 bit mode
 ED = ESC [H ESC [J "home" may be required too
 ED = ESC [2 J another variation
 ED = ESC [2 J %100z with padding
 ED = ^L videotex terminals
 ED = FF same as above

EL gives a sequence that erases characters and attributes from the cursor to the
end of the line. If it is not given, JAM erases the line by writing blanks. The

sequence can be found in termcap as "ce". Padding may be required. EL = ESC [K
is common for ANSI terminals; to include padding, use EL = ESC [0 K %100z .

EW gives a sequence that erases a rectangular region on the screen, to a given
background color if available. The only known terminal where this is available
is a PC using MS-DOS. Five parameters are passsed: start line, start column,
number of lines, number of columns, and background color. (If color is not
available, the last parameter can be ignored.) On a PC using MS-DOS, EW should
be specified as ESC [%i %d; %d; %d; %d; %c w .

27.4.3 Cursor Position

CUP, absolute cursor position, is required to run JAM. This sequence appears in
termcap as "cm". It takes two parameters: the target line and the target column,
in that order and relative to 0. %i (increment) can be used to convert them to
be relative to 1. ANSI terminals need the line and column as decimals. Other
terminals add a fixed value to the line and column to make them printable
characters; %+ is used to implement this. Some typical descriptions follow; all
are ANSI standard.

 CUP = ESC [%i %d;%d H
 CUP = ESC [%i %d;%d f
 CUP = ESC [%i %p1 %d ; %p2 %d f
 CUP = CSI %i %d; %d H

Another common scheme is to output the line and column as characters, after
adding SP. Terminal manuals tend to obscure this method, as the following
excerpt shows:

 Address or load the cursor by transmitting ESC = r c where r is an
 ASCII character from the table for the row (line) and c is an ASCII
 character from the table for the column:

 row/column ASCII code

 1 Space
 2 !
 3 "

Examples of coding in the video file follow.

 CUP = FS C %+SP %+SP
 CUP = FS C %'SP' %p1 %+ %c %'SP' %p2 %+ %c
 CUP = ESC = %+SP %+SP

CUU, CUD, CUF and CUB perform relative cursor movement. CUU moves the cursor up
in the same column; CUD moves it down. CUF moves the cursor forward in the same
row and CUB moves it back. All take as a parameter the number of lines or
columns to move. If sequences exist to move the cursor by one line or column but
not more, do not specify them.

 CUU = ESC [%d A ANSI cursor up
 CUD = ESC [%d B cursor down
 CUF = ESC [%d C cursor forward
 CUB = ESC [%d D cursor back
 CUU = CSI %d A using 8 bit codes
 CUU = ESC [%{1} %= %t %e %d %; A
 omit the parameter if it is 1

The CMFLGS keyword lists several shortcuts JAM can use for cursor positioning.
They are as follows:

 CR Carriage return (0x0d, or ^M) moves the cursor to the first
 column of the current line.
 LF Linefeed (0x0a, or ^J) moves the cursor down one line, in the
 same column.
 BS Backspace (0x08, or ^H) moves the cursor one position to the
 left, without erasing anything.
 AM Automatic margin: the cursor automatically wraps to column 1
 when it reaches the right-hand edge of the display.

Most terminals are capable of the first three. The fourth can frequently be
found in termcap, as am.

27.4.4 Cursor Appearance

CON turns the cursor on in the style desired. Since an underline cursor is
difficult to see in an underlined field, we recommend a blinking block cursor.
Note that the INIT and RESET sequences can be used to switch between the cursor
style used in JAM applications and that used on the command line.

COF turns the cursor off. If possible this sequence and CON should be given.
Menus (using a block cursor) look better with the regular cursor off. Also JAM
often must move the cursor around the screen to put text in fields, to scroll
arrays, etc.; if the cursor is off during these operations, the user is not
disturbed by its flickering all over the screen.

Many terminals have no ability to turn the cursor on and off. Although JAM
attempts to minimize cursor movement, some flickering is unavoidable.

CON and COF can sometimes be found in the terminal manual as "cursor attributes"
and in termcap as CO and CF. Here are some examples.

 CON = ESC [cursor on for videotex terminal
 COF = ESC] cursor off for videotex
 CON = ESC [>5l cursor on for some ANSI terminals
 COF = ESC [>5h and off
 CON = ESC [?25h another possibility for ANSI terminals
 COF = ESC [?25l
 CON = ESC [3 ; 0 z
 COF = ESC [3 ; 4 z

SCP and RCP save and restore the cursor position, respectively. JAM must often
move the cursor temporarily, as to update the status line. Beforehand, it saves
the current cursor position and attribute, and restores them afterwards. Some
terminals offer a pair of sequences that perform these two actions, producing
less output than the cursor position and attribute setting sequences together.
Thus, if they are available, JAM can run faster. Terminal manuals refer to these
sequences in many ways, the most obscure being "cursor description." Here is an
example, commonly found in ANSI terminals.

 SCP = ESC 7
 RCP = ESC 8

The INSON and INSOFF sequences are issued to the terminal when you toggle JAM's
data entry mode between insert and overstrike, using the INSERT key. They should
change the cursor style, so that you can easily see which mode you are in. On
many terminals, changing the cursor style also turns it on; in this case, INSOFF
should be the same as COF, or you can omit it altogether. If the cursor style
can be changed without turning it on or off, you should give both INSON and
INSOFF.

27.4.5 Display Attributes

JAM supports highlight, blink, underline and reverse video attributes. If either
highlight or blink is not available, low intensity is supported in its place.

The keywords LATCHATT and AREAATT in the video file list the attributes
available in each style and associate a character with each attribute.

The set graphics rendition sequences (SGR and ASGR) are each passed eleven
parameters. The first nine are the same as used by terminfo; only five of them
are actually used by JAM. The last two specify foreground and background color,
and are omitted if color is not available. The parameters, in order, represent:

 1. standout not supported, always 0
 2. underline
 3. reverse video
 4. blink
 5. dim (low intensity)
 6. highlight (bold)
 7. blank supported by software, always 0
 8. protect supported by software, always 0
 9. alternate charsupported in other sequences, 0
 10. foreground color
 (if available)
 11. background color
 (if available)

If an attribute is desired, the parameter passed is the character associated
with the attribute, as explained below. If the attribute is not desired, the
parameter passed is (binary) 0. If the video file contains LATCHATT = REVERSE =
7 HILIGHT = 1 BLINK = 5 UNDERLN = 4 , and a field is to be highlighted and
underlined, the SGR sequence will be passed (0, '4', 0, 0, 0, '1', 0, 0, 0) .
The second and sixth parameters respresent underline and highlight; they are set
to the corresponding values from LATCHATT. The rest are zero. To make the field
reverse video and blinking, SGR would be passed (0, 0, '7', '5', 0, 0, 0, 0, 0)
.

If no attributes are specified in the video file, JAM will support just two
attributes: non-display (done in software anyway) and underline (using the
underscore character).

27.4.5.1 Attribute Types

JAM supports three different kinds of attribute handling. The first is called
latch attributes, and is the most common today. The position of the cursor is
irrelevant when the attribute setting sequence is sent. Any characters written
thereafter take on that attribute. Attributes require no space on the screen.
ANSI terminals use this method.

The second is called area attributes. The cursor position is very important at
the time the sequence to set the attribute is sent to the terminal. Indeed, all
characters from the cursor position to the next attribute (or end of line or end
of screen) immediately take on that attribute. Attributes do not occupy a screen
position (they are "non-embedded" or "no space"). In this style, JAM will
position the cursor to the end of the area to be changed, set the ending
attribute, then position the cursor to the beginning of the area and set its
attribute.

The third is called onscreen attributes. They act like area attributes, but
occupy a screen position. (They are "embedded" or "spacing".) This style of
attribute handling imposes the condition on the screen designer that fields
and/or display areas cannot be adjacent, since a space must be reserved for the
attribute. Display of windows may be hampered by lack of space for attributes.

A terminal may have several user-settable modes. It is quite common for a
terminal to support both area and onscreen attributes. If so, you should select
area ("non-embedded" or "no space") over onscreen ("embedded" or "spacing").
Some terminals support one latch attribute and several area attributes
simultaneously.

If a terminal has only one attribute style available, it is often user
selectable. We recommend that reverse video be selected, since it is attractive
in borders. JAM supports non-display in software, so that attribute need not be
available. Underlines will be faked (by writing an underscore character) if that
attribute is not available.

Usually attribute information is available only in the terminal manual. However
some clues can be found in the termcap data base. The codes "so", "ul" and "bl"
specify standout (usually reverse video), underline and bold respectively. The
codes "se", "ue" and "be" give the sequence to end the attributes. The standard
ANSI sequences are

 so=\E[7m:se=\E[0m:ul=\E[4m:ue=\E[0m:bl=\E[1m:be=\E[0m

If you find something like these you can be quite sure that ANSI latch
attributes are available. If you find entries ug#1:sg#1 you can be sure that
onscreen attributes are in use.

27.4.5.2 Specifying Latch Attributes

The LATCHATT keyword is followed by a list of attributes equated to their
associated character. The possible attributes are:

 REVERSE reverse (or inverse) video
 BLINK blink or other standout
 UNDERLN underline
 HILIGHT highlight (bold)
 DIM dim (low intensity)

The format is LATCHATT = attribute = value attribute = value etc. If the equal
sign and value are missing, the attribute is given the value (binary) 1.

Most ANSI terminals use latch attributes and the codes are fairly standardized.
The only question is which attributes are supported and how attributes can be
combined, if at all. Some ANSI terminals support color, either foreground only
or foreground and background. The sequences for color are far less standard.

Terminal manuals often describe the sequence as "set graphics rendition." A
common description reads:

 ESC [p1 ; p2 ; ... m
 where pn = 0 for normal
 1 for bold
 5 for blink
 ...

Thus ESC [0 m is normal, ESC [1 m is bold, ESC[1 ; 5 m is bold and blinking.
Often setting an attribute does not "erase" others, so it is best to reset to
normal first, using ESC[0; 1 m for bold, ESC[0;1;5m for blinking bold, etc. The
coding in the video file is as follows:

 LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
 SGR = ESC [0 %9(%t ; %c %; %) m

The meaning of the above SGR sequence is as follows. The sequence is passed 11
parameters, each 0 (if the attribute is not to be set) or the character in the
LATCHATT list. First, ESC [0 is output. The %t test, repeated 9 times, causes
the zero parameters to be skipped. A non-zero parameter causes a semicolon and
the parameter to be output. Finally, the character m is output. If normal
attribute is wanted, all parameters will be 0, and the output sequence will be
ESC [0 m. If only underline is wanted, it will be ESC [0 ; 4 m. If
highlighted, blinking, and reverse video are desired, the output will be ESC [
0; 7 ; 5 ; 1 m.

Some terminals (or emulators) will not accept the method of combining
attributes used above. In that case, one sequence followed by the next might
work, e.g. ESC [1 m ESC [7 m. Some terminals cannot combine attributes at all.
Here are some more ANSI and near-ANSI examples:

 LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
 "standard" ANSI terminal

 LATCHATT = DIM = 2 REVERSE = 7 UNDERLN = 4 BLINK = 5
 ANSI with low intensity but no highlight

 LATCHATT = REVERSE = 7
 only one attribute available

 SGR = ESC [0 %9(%t ; %c %; %) m
 repeat of previous example

 SGR = ESC [0 m %9(%t ESC [%c m %; %)
 attributes not combinable

 SGR = %u ESC [0 %5(%t ; %c %; %) m
 skip parameters that are always 0

In the next LATCHATT/SGR example we will use explicit pushes to select the
appropriate parameter. The second pair is the same as the first, but the
attribute is treated as a boolean. The first uses the optional %?, the second
omits it.

 LATCHATT = DIM = 2
 SGR = ESC [m %? %p5 %t ESC [2 m %;

 LATCHATT = DIM
 SGR = ESC [m %t ESC [2 m %;

The following is suitable for terminals that support all attributes but cannot
combine them. It selects one attribute giving preference to REVERSE, UNDERLN,
BLINK and HILIGHT in that order. It uses a complicated
"if-then-elseif-elseif-elseif" structure. Automatic parameter sequencing cannot
be relied on, so explicit parameter pushes are used.

 LATCHATT = HILIGHT BLINK UNDERLN REVERSE
 SGR = ESC [%p3 %t 7 %e %p2 %t 4 %e %p4 %t 5 %e\
 %p6 %t 1 %; %; %; %; m

Some terminals use bit-mapped attributes. Terminal manuals are not usually
explicit on this. Often they use tables like the following:

 n Visual attribute

 0 normal
 1 invisible
 2 blink
 3 invisible blink
 4 reverse video
 5 invisible reverse
 6 reverse and blink
 7 invisible reverse and blink
 8 underline
 9 invisible underline
 : underline and blink
 ; invisible underline and blink
 < reverse and underline
 = invisible reverse and underline
 > reverse, underline and blink

 ? invisible reverse, underline and blink

After poring over the ASCII table for a while, it becomes clear that this is
bit-mapped, with the four high-order bits constant (0x30) and the four low-order
bits varying, like this:

 x x x x x x x x
 0 0 1 1 | | | |___ invisible
 | | |_____ blink
 | |_______ reverse
 |_________ underline

This can be coded in the video file as follows. The attributes are ored with a
starting value of '0' (0x30).

 LATCHATT = BLINK = 2 REVERSE = 4 UNDERLN = 8
 SGR = ESC G %'0' %9(%| %) %c

The following gives an example for use with a videotex terminal. All are
equivalent: the bits are ored together with a starting value of 0x40, or @, and
the result is output as a character.

 LATCHATT = UNDERLN = DLE BLINK = STX REVERSE = EOT HILIGHT=SP
 LATCHATT = UNDERLN = ^P BLINK = ^B REVERSE = ^D HILIGHT = SP
 LATCHATT = UNDERLN = 0x10 BLINK = 0x02 REVERSE = 0x04 \
 HILIGHT = 0x20
 SGR = FS G %u %'%5(%| %) %c

 LATCHATT = UNDERLN = P BLINK = B REVERSE = D HILIGHT = `
 SGR = FS G %'%9(%| %) %c

Some terminals that use area attributes will support a single latch attribute.
It is often called "protected" and is used to indicate protected areas when the
terminal is operated in block mode. The following example switches between
protected and unprotected modes in order to use low intensity. (Be aware that a
terminal might become very slow when using the protect feature.) The SGR
sequence depends only on the attribute being non-zero, so no value is necessary:

 LATCHATT = DIM
 SGR = ESC %?%t) %e (%;

27.4.5.3 Specifying Area Attributes

Area or onscreen attributes are specified like latch attributes. The AREAATT
keyword lists the area or onscreen attributes that are available and associates
a character with each. As for latch attributes, REVERSE, BLINK, UNDERLN, HILIGHT
and DIM are available. In addition, several flags are available to specify how
the attributes are implemented by the terminal. The flags are:

 ONSCREEN the attribute uses a screen position
 LINEWRAP the attribute wraps from line to line
 SCREENWRAP the attribute wraps from bottom of screen to top
 REWRITE must rewrite attribute when writing character
 MAX = # maximum number of attributes per line

Area and onscreen attributes modify all characters from the start attribute to
the next attribute or to an end, which ever is closer. If there is no end, use
SCREENWRAP. If the end is the end of screen, use LINEWRAP. If end is the end of
the line, omit both wrap flags. Some terminals allow the user to select the
style. For onscreen attributes, screen wrap is best and line wrap a good second
best; for area attributes the choices are about the same. If the attribute takes
up a screen position, use the ONSCREEN flag.

 AREAATT = REVERSE = i UNDERLN = _ BLINK = b DIM = l

 ASGR = ESC s r %u %5(ESC s %c %)

 AREAATT = BLINK = 2 DIM = p REVERSE = 4 UNDERLN = 8 \
 ONSCREEN LINEWRAP
 ASGR = ESC G %u %'0' %5(%| %) %c

Some terminals have the following misfeature: writing a character at the
position where an attribute was set can remove the attribute. Immediately after
placing the attribute the character may be written with no problems; however,
the next time a character is written there, the attribute will disappear. In
this case, use the REWRITE flag to tell JAM to reset the attribute before
writing to that position. The following example is for the Televideo 925:

 AREAATT = REVERSE = 4 UNDERLN = 8 BLINK = 2 REWRITE
 ASGR = ESC G %'0' %9(%| %) %c

Yet other terminals restrict the number of attributes that are available on a
given line. If so, include MAX = #, where # represents the maximum. If possible,
also give a "remove attribute" sequence, ARGR. Changing an attribute to normal
is not the same as removing it: a normal attribute will stop the propogation of
a previous attribute, but a removed attribute will not. If the maximum number of
attributes is small, JAM's performance may be limited.

If there is a remove attribute sequence, JAM will use it to remove repeated
attributes, to avoid exceeding the maximum number of attributes on a line. If
there is no maximum, the remove attribute sequence can be omitted. Indeed it
often makes the screen "wiggle," which is very unpleasant for the viewer.

 AREATT = REVERSE = Q UNDERLN = ` MAX = 16
 ASGR = ESC d %u %'%5(%| %) %c
 ARGR = ESC e

27.4.5.4 Color

JAM supports eight foreground and background colors. The COLOR keyword is used
to associate a character with each color, just as LATCHATT associates a
character with each attribute. The CTYPE entry has flags that tell JAM that
background color is available. Only the three primary colors need be specified
in the video file. If the other colors are not there, they will be generated
according to the following rule:

 BLACK = BLUE & GREEN & RED
 BLUE must be specified
 GREEN must be specified
 CYAN = BLUE | GREEN
 RED must be specified
 MAGENTA = RED | BLUE
 YELLOW = RED | GREEN
 WHITE = RED | GREEN | BLUE

The tenth parameter to SGR or ASGR is the character representing the foreground
color; the eleventh is that representing the background color (it is 0 if
background color is not available). Many ANSI terminals set foreground color
with the sequence ESC [3x m, where x ranges from 0 for black to 7 for white.
Background color is often set with ESC [4x m. The order of the colors varies
from terminal to terminal.

On color terminals, REVERSE often means black on white. If background color is
available, JAM can do better if REVERSE is not specified in the video file: it
will use the specified color as the background, and either black or white as the
foreground. The following is often suitable for a color ANSI terminal:

 LATCHATT = HILIGHT = 1 BLINK = 5
 COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND

 SGR = %3u ESC [0 %3(%?%t ; %c %; %) ; %3u 3%c ; 4%c m
 or
 SGR = %3u ESC [0 %5(%?%t ; %c %; %) m ESC [3%c;4%c m
 or
 LATCHATT = HILIGHT BLINK
 SGR = ESC [0 %?%p4%t ;5 %; %?%p6%t ;1 %; m \
 ESC [3%p10%c; 4%p11%c m

If the terminal has a unique sequence for each color, a list command works well.
In the following example, the ANSI attribute sequence (ESC [0 ; p1 ; p2 ; ...
m) is used and the values for the colors are:

 cyan >1
 magenta 5
 blue 5 ; > 1
 yellow 4
 green 4 ; > 1
 red 4 ; 5
 black 4 ; 5 ; > 1

 LATCHATT = REVERSE = 7 HILIGHT = 2
 COLOR = CYAN = 0 MAGENTA = 1 BLUE = 2 YELLOW = 3 GREEN = 4\
 RED = 5 BLACK = 6 WHITE = 7
 SGR = ESC [0 %p3%t;7%; %p6%t;2%; \
 %l(0:;>1%; 1:;5%; 2:;5;>1%; 3:;4%; \
 4:;4;>1%; 5:;4;5%; 6:;4;5;>1 %) m

Some terminals use ESC [2 ; x ; y m to set color and other attributes. Here x
is the foreground color and y is the background color; both numbers range from 0
to 7. If highlight is desired in the foreground, 8 should be added to x. If
blink is desired, 8 should be added to y. The following video entries satisfy
these requirements:

 LATCHATT = HILIGHT = 8 BLINK = 8
 COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND
 SGR = ESC [2 ; %p10 %p6 %+ %d ; %p11 %p4 %+ %d m

27.4.6 Message Line

JAM usually steals a line from the screen to display status text and error
messages. Thus a 25-line screen (as specified in the LINES keyword) will have 24
lines for the form itself, and one for messages. This use of a normal screen
line for messages is the default.

Some terminals have a special message line that cannot be addressed by normal
cursor positioning. In that case, the OMSG sequence is used to "open" the
message line, and CMSG to close it. All text between these sequences appears on
the message line. No assumption is made about clearing the line; JAM always
writes blanks to the end of the line.

 OMSG = ESC f
 CMSG = CR ESC g

If the OMSG line keyword is present, JAM uses all the lines specified in the
LINES keyword for forms.

Terminals that use a separate message line may use different attributes on the
status line than on the screen itself. JAM provides some support for this
circumstance; for very complicated status lines, the programmer must write a
special routine and install it with the statfnc call. (See the Programmer's
Guide for details.) The keyword MSGATT lists the attributes available on the
message line. This keyword takes a list of flags:

 REVERSE reverse video available

 BLINK blink available
 UNDERLN underline available
 HILIGHT highlight (bold) available
 DIM dim (low intensity) available
 LATCHATT all latch attributes can be used
 AREAATT all area attributes can be used
 NONE no attributes on message line
 ONSCREEN area attributes take a screen position

The attribute for the message line must have been specified as either a latch or
area attribute, and the sequence to set it must be given in the SGR or ASGR
keyword. For example, if REVERSE is listed in MSGATT and REVERSE is a latch
attribute, then SGR is used to set it. Attributes that appear in MSGATT and
don't appear in either LATCHATT or AREAATT are ignored.

JAM must determine the correct count of the length of the line. Thus it is
important to know whether area attributes are onscreen or not. It is not
uncommon for area attributes to be non-embedded on the screen but embedded on
the status line. The keyword ONSCREEN may be included in MSGATT to inform JAM of
this condition.

 LATCHATT = DIM
 AREAATT = REVERSE UNDERLN BLINK
 MSGATT = REVERSE UNDERLN BLINK ONSCREEN
 MSGATT = AREAATT ONSCREEN

The two MSGATT entries are equivalent. They show a case where only area
attributes are available on the message line and they take a screen position.
The area attributes in the normal screen area do not.

27.4.7 Function Key Labels

Certain terminals set aside areas on the screen, typically two lines high and
several characters wide, into which descriptive labels for the terminal's
function keys may be written. The KPAR entry gives the number and width of the
function key label areas, and looks like KPAR = NUMBER = number of labels LENGTH
= width of area The KSET entry gives the character sequence for writing text
into a label area. It is passed three parameters:

 1. The number of the area to be written.
 2. Twice the width of the area (LENGTH parameter of KPAR).
 3. The label text, as a null-terminated string.

Here is an example, for the HP-2392A:

 KPAR = NUMBER = 8 LENGTH = 8
 KSET = ESC & f 0 a %d k %d d 0 L %s ESC & j B

27.4.8 Graphics and Foreign Character Support

JAM has support for eight-bit ASCII codes as well as any graphics that the
terminal can support in text mode. Bit-mapped graphics are not supported. Just
as the key translation tables give a mapping from character sequences to
internal numbers, the GRAPH table in the video file maps internal numbers to
output sequences. The only character value that may not be sent is 0.

Some terminals have a special "compose" key, active in eight-bit mode.
Generally, you would press the compose key followed by one or two more keys,
generating a character in the range 0xa0 to 0xff. JAM can process such
characters as normal display characters, with no special treatment in the video
file.

Other terminals have special keys that produce sequences representing special
characters. The modkey utility can be used to map such sequences to single

values in the range 0xa0 to 0xfe. (See the Programmer's Guide for a way to use
values outside that range.) The video file would then specify how these values
are output to the terminal.

Often, to display graphics characters, a terminal must be told to "shift" to an
alternate character set (in reality, to address a different character ROM). The
video file's GRAPH table tells which alternate set to use for each graphics
character, and how to shift to it. Whenever JAM is required to display a
character, it looks in the GRAPH table for that character. If it is not there,
the character is sent to the terminal unchanged. The following section describes
what happens if it is in the table.

27.4.9 Graphics Characters

JAM supports up to three alternate character sets. The sequences that switch
among character sets are listed below. Modes 0 through 3 are locking shifts: all
characters following will be shifted, until a different shift sequence is sent.
Modes 4 through 6 are non-locking or single shifts, which apply only to the next
character. You may need to use the INIT entry to load the character sets you
want for access by the mode changes.

 MODE0 switch to standard character set
 MODE1 alternate set 1
 MODE2 alternate set 2
 MODE3 alternate set 3
 MODE4 ...
 MODE5
 MODE6

Different modes can be used to support foreign characters, currency symbols,
graphics, etc. JAM makes no assumption as to whether the mode changing sequences
latch to the alternate character set or not. To output a character in alternate
set 2, JAM first outputs the sequence defined by MODE2, then a character, and
finally the sequence defined by MODE0 (which may be empty, if the others are all
non-locking). Here are three examples; the second one is ANSI standard.

 MODE0 = SI
 MODE1 = SO
 MODE2 = ESC n
 MODE3 = ESC o

 MODE0 = ESC [10 m
 MODE1 = ESC [11 m
 MODE2 = ESC [12 m
 MODE3 = ESC [13 m

 MODE0 =
 MODE1 = SS1
 MODE2 = SS2

Any character in the range 0x01 to 0xff can be mapped to an alternate character
set by use of the keyword GRAPH. The value of GRAPH is a list of equations. The
left side of each equation is the character to be mapped; the right side is the
number of the character set (0, 1, 2, 3), followed by the character to be
output. Any character not so mapped is output as itself. For example, suppose
that 0x90 = 1 d appears in the GRAPH list. First the sequence listed for MODE1
will be sent, then the letter d, and then the sequence listed for MODE0.

In the following example, 0x81 is output as SO / SI, 0xb2 as SO 2 SI, and 0x82
as ESC o a SI. LF, BEL and CR are output as a space, and all other characters
are output without change. This output processing applies to all data coming
from JAM. No translation is made for direct calls to printf, putchar, etc. Thus
\n and \r will still work correctly in printf, and putchar (BEL) still makes a
noise on the terminal.

 MODE0 = SI
 MODE1 = SO
 MODE2 = ESC n
 MODE3 = ESC o
 GRAPH = 0x81 = 1 / 0xb2 = 1 2 0x82 = 3 a LF = 0 SP\
 BEL = 0 SP CR = 0 SP

For efficiency, we suggest that you use single shifts to obtain accented
letters, currency symbols, and other characters that appear mixed in with
unshifted characters; graphics characters, especially for borders, are good
candidates for a locking shift.

It is possible, though not recommended, to map the usual display characters to
alternates. For example, GRAPH = y = 0z will cause the y key to display as z.
Graphics characters are non-portable across different displays, unless care is
taken to insure that the same characters are used on the left-hand side for
similar graphics, and only for a common subset of the different graphics
available.

The GRTYPE keyword provides a convenient shortcut for certain common graphics
sets, each denoted by another keyword. The format is GRTYPE = type. An entry in
the GRAPH table is made for each character in the indicated range, with mode 0.
If the mode is not 0, you must construct the GRAPH table by hand. The GRTYPE
keywords are:

 ALL 0xa0 through 0xfe
 EXTENDED same as ALL.
 PC 0x01 through 0x1f and 0x80 through 0xff
 CONTROL 0x01 through 0x1f, and 0x7f
 C0 same as CONTROL
 C1 0x80 through 0x9f, plus 0xff

The GRTYPE keywords may be combined.

27.4.10 Borders

Ten different border styles may be selected when a form is designed. They are
numbered 0 to 9, with style 0 being the default (and the one all the JAM
internal forms use). It is usually reverse video spaces, but is replaced by I's
if reverse video is not available. Border styles may be specified in the video
file. Otherwise the following defaults are used:

 0. IIIII 1. ___
 I I | |
 IIIII |___|

 2. +++++ 3. ===
 + + | |
 +++++ ===

 4. %%%%% 5.
 % % : :
 %%%%% :...:

 6. ***** 7. \\\\\
 * * \ \
 ***** \\\\\

 8. ///// 9. #####
 / / # #
 ///// #####

The keyword BORDER specifies alternate borders. If fewer than 9 are given, the
default borders are used to complete the set. The data for BORDER is a list of 8

characters per border, in the order: upper left corner, top, upper right corner,
left side, right side, lower left corner, bottom, lower right corner. The
default border set is:

 BORDER = SP SP SP SP SP SP SP SP \
 SP _ SP | | | _ | \
 + + + + + + + + \
 SP = SP | | SP = SP \
 % % % % % % % % \
 . . . : : : . : \
 * * * * * * * * \
 \ \ \ \ \ \ \ \ \
 / / / / / / / / \
 # # # # # # # #

Another example, using the PC graphics character set:

 BORDER = SP SP SP SP SP SP SP SP \
 0xda 0xc4 0xbf 0xb3 0xb3 0xc0 0xc4 0xd9 \
 0xc9 0xcd 0xbb 0xba 0xba 0xc8 0xcd 0xbc \
 0xd5 0xcd 0xb8 0xb3 0xb3 0xd4 0xcd 0xbe \
 0xd6 0xc4 0xb7 0xba 0xba 0xd3 0xc4 0xbd \
 0xdc 0xdc 0xdc 0xdd 0xde 0xdf 0xdf 0xdf \
 . . . : : : . . \
 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 \
 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 \
 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd

If there is a GRAPH entry in the video file, you can use the graphics character
set of the terminal for borders. Choose some numbers to represent the various
border parts. The GRAPH option can be used to map these numbers to a graphics
character set. The numbers chosen are arbitrary, except that they should not
conflict with ordinary display characters. Even if the extended 8 bit character
set is used, there are unused values in the ranges 0x01 to 0x1f and 0x80 to
0x9f.

The keyword BRDATT can be used to limit the attributes available in the border.
Normally HILIGHT (or DIM) and REVERSE are used; however, if the terminal uses
onscreen attributes or can hold only a few attributes per line, it may be better
to prohibit attributes in borders. This is accomplished by BRDATT = NONE.

The flags used in MSGATT can also be used with BRDATT; however, the only
attributes available are HILIGHT, DIM, and REVERSE.

27.4.11 Shifting Field Indicators and Bell

Shift indicators (ARROWS keyword) are used to indicate the presence of
off-screen data in shifting fields. The default characters for this purpose are
<, > and X. (The last character is used when two shifting fields are next to
each other; it represents a combination of both < and >.) The shift indicators
can be changed to any three characters desired.

 ARROWS = . . .

 GRAPH = 0x1b = 0 0x1b 0x1a = 0 0x1a 0x1d = 0 0x1d
 ARROWS = 0x1b 0x1a 0x1d

 MODE0 = SI
 MODE1 = SO
 GRAPH = 0x80 = 1a 0x81 = 1x 0x82 = 1&
 ARROWS = 0x80 0x81 0x82

The BELL sequence, if present, will be transmitted by the library function bel
to give a visible alarm. Normally, that routine rings the terminal's bell. Such
a sequence can sometimes be found in the termcap file under vb.

27.4.12 jxform Status Text

The JAM authoring utility will display help text on the status line if so
desired. There are several different "states" in the utility, each with its own
status text; the text to be displayed in each state is listed in the video
file. (Logically it belongs in the message file; however, the text mentions keys
to use and uses visual attributes. Since the keys and attributes are
terminal-dependent, we store the text in the video file.)

Since vid2bin strips spaces, embedded spaces should be entered with the SP
mnemonic, or the whole text enclosed in quotes. Attributes can be embedded in
the text by using %a as a lead-in; up to four hex digits following define the
attribute, using the codes defined in smdefs.h . See d_msg_line in the library
manual for a fuller explanation of embedded attributes.

The following is a sample without embedded attributes. Function keys 2 to 9 are
used.

 JFMKDS = "2: DRAW/test 3: form 4: field 5: tmplt "\
 "6: del 7: move 8: copy 9: rept"
 JFMKTM = "2: TEST/draw 3: form 4: field 5: tmplt "\
 "6: del 7: move 8: copy 9: rept"
 FMKRMV = "MOVE: use arrow keys to position, F7 to release"
 FMKRCP = "COPY: use arrow keys to position, F8 to release"

The next group is similar except that the numbers are given the reverse video
blue attribute. The text is given the normal (i.e. white) attribute. (The color
is ignored on monochrome terminals.) The text listed here is the default.

 FMKRDS = %a11 2: %a07 SP DRAW/test SP \
 %a11 3: %a07 SP form SP \
 %a11 4: %a07 SP field SP \
 %a11 5: %a07 SP tmplt SP \
 %a11 6: %a07 SP del SP \
 %a11 7: %a07 SP move SP \
 %a11 8: %a07 SP copy SP \
 %a11 9: %a07 SP rept

 FMKRTM = %a11 2: %a07 SP TEST/draw SP \
 %a11 3: %a07 SP form SP \
 %a11 4: %a07 SP field SP \
 %a11 5: %a07 SP tmplt SP \
 %a11 6: %a07 SP del SP \
 %a11 7: %a07 SP move SP \
 %a11 8: %a07 SP copy SP \
 %a11 9: %a07 SP rept
 FMKRMV = %a11 7: %a07 \
 " MOVE: use arrow keys to position, F7 to release"
 FMKRCP = %a11 8: %a07 \
 " COPY: use arrow keys to position, F8 to release"

27.4.13 Cursor Position Display

The utility will display the current cursor position on the status line if
desired. When possible, JAM uses nonblocking keyboard reads. If no key is
obtained within a specified time, the cursor position display is updated. This
allows fast typists to type at full speed; when the typist pauses, the cursor
position display is updated. The keyword CURPOS specifies the timeout delay, in
tenths of a second. If the keyword is omitted, or is 0, there will be no cursor
position display. Many terminals display the cursor position themselves.

The delay depends on the baud rate and the terminal itself; it should be chosen
so that typing is not slowed down. If the terminal has its own display, CURPOS
should be omitted.

If there is no non-blocking read, a non-zero value of CURPOS enables the
display and zero disables it.

 CURPOS = 1 - update display every .1 sec
 (use on fast systems)
 CURPOS = 3 - every .3 sec (reasonable for most)
 CURPOS = 7 - at low baud rates
 CURPOS = 0 - no display, same as omitting keyword

Appendix A Error Messages

In this Appendix, all the error messages issued by the JAM run-time system and
utilities appear. Each message is listed, with its tag, as it appears in the
message file distributed by JYACC; even if you change the wording of these
messages, the tag will remain the same. If you modify the message file
extensively, you may want to keep the original around for correlation with this
list. Some messages have slots for information determined at run-time; these
appear as printf percent escapes, commonly %s for character strings and %d for
numbers.

Each message is followed by a less terse description of the error condition and
the contexts in which it can arise. If recovery is necessary and possible, you
will also find recommendations on how to recover from the error.

The run-time and screen editor messages are currently in message file order,
which is perhaps not the most useful. Utility messages are alphabetical by
utility.

28 Run-time Messages

SM_BADTERM = Unknown terminal type. SM_ENTERTERM = Please enter terminal type or
%KNL to exit. Cause: The library function sm_initcrt cannot find the
 configuration files it needs to talk to your terminal.
 Corrective action: Check your SMVIDEO, SMKEY, SMTERM, and
 SMVARS setup variables. You can proceed by typing the name
 of your terminal in response to this message, but that's
 tedious.

SM_MALLOC = Insufficient memory available. Cause: The screen manager uses the C
 library function malloc() to get memory when needed. It has
 exhausted the area reserved for dynamic allocation, or
 perhaps the area has been corrupted. Corrective action:
 Exit the program.

SM_KEYENV = SMKEY not found. Cause: The file named in the SMKEY setup variable
 cannot be opened. This will cause initialization to be
 aborted. Corrective action: Correct the environment
 variable. Perhaps you need to re-run the key2bin utility.

SM_VIDENV = SMVIDEO not found. Cause: The file named in the SMVIDEO setup
 variable cannot be opened. This will cause initialization
 to be aborted. Corrective action: Correct the environment
 variable. Perhaps you need to re-run the vid2bin utility.

SM_FNUM = Bad field # or subscript. Cause: A field number (following #) or
 occurrence number (in []'s following a field name or
 number) is out of range. Corrective action: Correct the
 math edit or JPL program that contains the errant number.

SM_DZERO = Divide by zero. Cause: Your math expression has caused division by
 zero. Corrective action: Find the zero. You may need to
 make a field data-required, as blank fields have a numeric
 value of zero.

SM_EXPONENT = Exponentiation invalid. Cause: Your math expression has attempted
 to raise zero to a negative power, or to raise a negative
 number to a fractional power. Corrective action: Fix the
 exponential expression.

SM_DATE = Invalid date. Cause: The date in a date field is not formatted
 according to the field's date edit string. Corrective
 action: Re-enter the date.

SM_MATHERR = Math error - Cause: Used as a prefix to other math error messages.
 Corrective action: None.

SM_FORMAT = Invalid format. Cause: The precision expression that precedes a math
 expression is malformed. Corrective action: It should be
 %m.n, where m is the total width of the result and n is the
 number of decimal places.

SM_DESTINATION = Invalid destination. Cause: The destination field expression
 that begins a math expression is not followed by an equal
 sign. Corrective action: Supply the equal sign.

SM_INCOMPLETE = Expression incomplete. SM_ORAND = Operand expected. SM_ORATOR =
 Operator expected. SM_EXTRAPARENS = Right parenthesis
 unexpected. SM_MISSPARENS = Right parenthesis expected.
 Cause: The right-hand side of a math expression is missing
 or malformed. Corrective action: Correct the expression.

SM_DEEP = Formula too complicated. Cause: The internal stack used to store
 intermediate results in math expression evaluation has
 overflowed. Corrective action: Simplify the expression, or
 use an intermediate.

SM_FUNCTION = Invalid function. Cause: The name following the @ in a math
 expression is not "date", "sum", or "abort". Corrective
 action: Use one of the built-in functions.

SM_ARGUMENT = Invalid argument. Cause: The argument to @abort in a math
 expression is not a number. Corrective action: The
 meaningful arguments to @abort are -2, -1, 0, and 1. Use
 one of those.

SM_MISMATCH = Type mismatch. Cause: A comparison between numeric and string
 variables has been attempted in a math expression.
 Corrective action: Check the types or character edits of
 the data elements involved.

SM_NOTMATH = Not a math expression. Cause: JAM couldn't get to first base trying
 to evaluate a math expression edit. Corrective action:
 Check the Author's Guide for a description of math
 expression syntax.

SM_QUOTE = Missing quote character. Cause: A math or string expression contains
 an unclosed quote. Corrective action: Supply the missing
 quote.

SM_SYNTAX = Syntax error. Cause: Extra characters at the end of a math
 expression, or a malformed relational operator. Corrective
 action: Correct the indicated problem.

SM_FRMDATA = Bad data in form. Cause: A file you have attempted to open as a JAM
 screen is not a screen file, or was created with a
 different release version of JAM, or has been corrupted.
 Corrective action: Check the screen name, then try to bring
 it up in the screen editor.

SM_NOFORM = Cannot find form. Cause: JAM cannot open the form file you have
 requested. Corrective action: Check that the file exists,
 and/or that proper entries have been made in the SMPATH
 directory list, the memory-resident form list, and the
 SMFLIBS library list.

SM_FRMERR = Error while reading form. Cause: This refers to I/O errors in
 reading a form file from disk. Corrective action: Retry the
 operation.

SM_BIGFORM = Form has fields that extend beyond screen size. Cause: You have
 tried to display a form that won't fit on your terminal.
 Corrective action: Reduce the screen's size, using the
 screen editor.

SM_SP1 = Please hit the space bar SM_SP2 = after reading this message. Cause:
 These two lines appear in a prompt window when an error
 message has been displayed and you have not acknowledged it
 by pressing the space bar, but by pressing some other key.
 Corrective action: Press the space bar. If you don't want
 to acknowledge the message, set the SMEROPTIONS setup
 variable.

SM_RENTRY = Entry is required. Cause: You have failed to enter data in a
 required field. Corrective action: Enter something. In
 digits-only fields, you must enter at least one digit.

SM_MUSTFILL = Must fill field. Cause: You have failed to fill a must-fill field.
 No blanks whatever are allowed there. Corrective action:
 Fill out the field.

SM_AFOVRFLW = Amount field overflow. Cause: You have typed a number that is too
 big for the field's currency format to accommodate.
 Corrective action: Reduce the number or increase the
 precision.

SM_TOO_FEW_DIGITS = Too few digits. SM_CKDIGIT = Check digit error. Cause: A
 number has failed check-digit validation. Corrective
 action: Re-enter the number.

SM_FMEM = Insufficient memory for data entry field. Cause: In trying to
 construct a field for data entry in a help screen,
 available memory was exhausted. Corrective action: Exit the
 program.

SM_NOHELP = No help text available. Cause: You have pressed the HELP key in a
 field where no help was available. Corrective action:
 Define a help screen for the field or screen.

SM_MAXHELP = Five help levels maximum. Cause: You have nested help windows too
 deeply. Corrective action: Restructure the help windows.

SM_FRMHELP = No form-level help text available. Cause: You have pressed the FORM
 HELP key in a screen with no form-wide help. Corrective
 action: Define a help screen for the form.

SM_OUTRANGE = Out of range. Cause: The string or number you have entered
 violates a range edit. Corrective action: Enter a correct
 value, or relax the range restrictions.

SM_SYSDATE = Use clear for system date or enter in format: Cause: The date in a
 system date field is not formatted according to the field's
 date edit string. Corrective action: Re-enter the date, or
 clear the field to get the current date.

SM_DATFRM = Invalid format; enter date in format: Cause: The date in a date
 field is not formatted according to the field's date edit
 string. Corrective action: Re-enter the date.

SM_DATCLR = Invalid date; clear gets system date. Cause: The date in a system
 date field is not formatted according to the field's date
 edit string. Corrective action: Re-enter the date, or clear
 the field to get the current date.

SM_DATINV = Invalid date; enter a valid date. Cause: The date in a date field is
 not formatted according to the field's date edit string.
 Corrective action: Re-enter the date.

SM_SYSTIME = Use clear for system time or enter in format: Cause: The time in a
 system time field is not formatted according to the field's
 time edit string. Corrective action: Re-enter the time, or
 clear the field to get the current time.

SM_TIMFRM = Invalid format; enter time in format: Cause: The time in a time
 field is not formatted according to the field's time edit
 string. Corrective action: Re-enter the time.

SM_TIMCLR = Invalid time; clear gets system time. Cause: The time in a system
 time field is not formatted according to the field's time
 edit string. Corrective action: Re-enter the time, or clear
 the field to get the current time.

SM_TIMINV = Invalid time; enter a valid time. Cause: The time in a time field is
 not formatted according to the field's time edit string.
 Corrective action: Re-enter the time.

SM_MOREDATA = No more data. Cause: You have attempted to scroll past the
 beginning or end of a non-circular scrolling field.
 Corrective action: Warning only.

SM_SCRLMEM = Insufficient memory for scrolling. Cause: Ran out of memory for
 scroll buffers. Corrective action: Exit the program.

SM_NOTEMP = Cannot open temporary file. Cause: The local print function failed
 to open its scratch file. Corrective action: Check write
 permissions in your directory.

SM_NOFILE = '"%s" not found' Cause: A file needed by the screen manager was
 missing. Corrective action: Supply the file, or correct the
 environment variable that points to it.

SM_NOENV = "'%s' missing" SM_NOSECTOR = section '%2.2s' not found SM_FFORMAT =
 bad file format in "%s" SM_FREAD = file read error in "%s"
 Cause: There was a problem initializing one of the
 configuration files (the key file, video file, msgfile,
 smvars or setup). Corrective action: Check the contents of
 the text file, compile it again (with key2bin, vid2bin,
 msg2bin or var2bin), and try again.

SM_RX1 = Invalid character. Cause: The character you have typed is not allowed
 by the field's regular expression. Corrective action: Type
 an allowed character, or relax the expression.

SM_RX2 = Incomplete entry. Cause: The field's regular expression demands more
 data than you have entered. Corrective action: Supply the
 missing characters.

SM_RX3 = No more input allowed. Cause: The opposite problem: the field's
 regular expression demands fewer characters than you have
 entered. Corrective action: Shorten your input.

SM_TABLOOK = Invalid entry. Cause: The contents of a field have failed the
 table-lookup validation. Corrective action: Correct the

 input (perhaps through item selection), or add the missing
 item to the table-lookup screen.

SM_ILLELSE = Illegal Else Cause: In a JPL program, an else has appeared without
 a preceding if. Corrective action: Correct the program's
 syntax.

SM_EOT = unexpected End Of File Cause: At the end of JPL program text, there are
 unclosed blocks. Corrective action: Supp;ly the missing
 right curly braces.

SM_BREAK = BREAK not within loop Cause: A JPL program contains a break command
 that is not inside a for or while loop. Corrective action:
 Remove the break.

SM_NOARGS = Verb needs arguments Cause: A JPL command that requires arguments
 has been given none. Corrective action: Supply the
 arguments; see the JPL Programmer's Guide.

SM_HASARGS = Illegal arguments Cause: A JPL command has excess arguments.
 Corrective action: Remove the excess.

SM_EOL = Source line too long Cause: A JPL program contains a logical line that
 is too long (currently, a couple of thousand characters).
 Corrective action: Figure out how to do it in multiple
 lines.

SM_EXCESS = Extra data at end of line Cause: In certain JPL commands, there is
 superfluous stuff following the command. Corrective action:
 Get rid of it.

SM_FILEIO = System File I/O error Cause: An I/O error has occurred while reading
 a JPL program file. Corrective action: Exit the program.

SM_FOR = USAGE: FOR varname = Value WHILE (expression) STEP [+-]value Cause: A
 JPL for command has a syntax error. Corrective action:
 Recast the command according to the given format.

SM_LINE_2_LONG = Line too long after expansion Cause: A line of a JPL program is
 too long after colon expansion (more than about 2000
 characters). Corrective action: Check for missing
 subscripts: a name with multiple occurrences but no
 subscript in the expression is replaced by all the
 occurrences.

SM_NOFILE = Could not open file Cause: A JPL program source file was missing or
 unreadable. Corrective action: Create the file, correct its
 spelling in the program, or add its directory to your
 SMPATH.

SM_NONAME = Expected variable name Cause: An entry in a JPL vars command does
 not begin with a letter, $, ., or _. Corrective action: Fix
 the name.

SM_NOTARGET = Target does not exist Cause: The field to be assigned to in a JPL
 math or cat command is not in the screen or LDB. Corrective
 action: Create the field or change the command.

SM_NUMBER = Illegal Number Cause: The argument to a JPL return statement was
 invalid. Corrective action: It must be an integer constant,
 variable name, or LDB name - no expressions.

SM_RCURLY = Ended block not begun Cause: A JPL program has too many right
 curlies. Corrective action: Remove some.

JM_BIGPARAM = Parameter list is too big Cause: A parameter list to a caret
 function exceeds 128 characters. Corrective action: Figure
 out a way to make the list shorter.

JM_OVFORM = Form stack overflow Cause: You have progressed through too many
 (currently 100) screens without re-visiting any, thus
 blowing JAM's control stack. Corrective action: Consider
 breaking your application into sub-processes.

JM_LONGNAME = Form name '%s' is too long Cause: The form name in a control
 field, plus extension if any, exceeds the limit for
 filenames (currently over 80). Corrective action: Rename
 the screen. You must be tired of typing it, anyway.

JM_INVENTRY = Invalid entry Cause: The form name you have entered in the
 go-to-form window (SPF3) begins with one of the reserved
 characters ^ ! or &. Corrective action: Change the form
 name.

JM_NODD = Bad or missing Data Dictionary file Cause: The data dictionary file
 (by default 'data.dic') can't be opened successfully.
 Corrective action: If you didn't want a data dictionary,
 ignore this message. If you did, check your SMDICNAME setup
 variable to make sure it matches the filename, and check
 SMPATH to see if it includes all the directories it should.

JM_NONDX = Can't initialize index Cause: The library function sm_ldb_init() has
 failed to create the local data block, either because the
 data dictionary is missing or because it is out of memory.
 Corrective action: Restore the data dictionary or get more
 memory. Bear in mind that buggy programs that corrupt the
 malloc() area can cause this symptom.

JM_READERR = Error reading %s file Cause: JAM has incurred an I/O error reading
 an LDB initialization file, whose name appears in the
 message. Corrective action: Check your program for other
 bugs; this is a straight text file, and format errors are
 unlikely.

JM_INVFILE = Error: initialization file %s is invalid Cause: The quotes in an
 LDB initialization file don't match up. Corrective action:
 Check the file for missing double quotes.

JM_BIGNAME = Warning: name %s too long Cause: A field name and occurrence
 expression in an LDB initialization file is longer than 35
 characters. Corrective action: Fix the name or subscript.

JM_NOITEM = Item %s does not exist in Data Dictionary Cause: The item named in
 an LDB initialization file is not in the LDB. Corrective
 action: These files consist of name/value pairs; make sure
 there isn't one missing somewhere.

JM_BIGELE = Warning: element number %d exceeds occurrences for %s Cause: The
 subscript on the item name in an LDB initialization file is
 greater than the actual number of occurrences in the LDB.
 Corrective action: Take out the offending entry or increase
 the number of occurrences.

JM_BIGINIT = Warning: init string for %s too long; truncated Cause: The data
 string supplied after the item name is longer than the
 item's size in the LDB. Corrective action: Shorten the data
 or lengthen the occurrence.

JM_BADDATA = Warning: bad data, no %s initialization Cause: Because of format or
 other errors flagged separately, no values from the named
 file were loaded. Corrective action: Correct the other
 errors.

JM_NOINI = Warning: Initialization file %s not found. Cause: An LDB
 initialization file mentioned in a call to sm_lreset() or
 in the SMININAMES setup variable can't be opened.
 Corrective action: Create the file. If you know it exists,
 check your SMPATH directories and your SMININAMES list.

29 Screen and Data Dictionary Editor Messages

FM_BADENTRY = Bad entry. Cause: In the field size window, you have specified a
 vertical array without giving an offset.
 Corrective action: Supply the offset.

FM_MXSCRN = Maximum number of %s on the screen is %d. Cause: You have tried to
 make your screen bigger than the display, using
 the PF3 window; the maximum possible values are
 in the message. Corrective action: Specify a
 smaller screen.

FM_MNBRDR = Minimum number of %s to hold form data and a border is %d. Cause: In
 the PF3 window, you have tried to make the
 screen smaller than the existing data plus
 border. Corrective action: Make the screen
 larger, or move or delete some of the contents.

FM_MNFORM = Minimum number of %s to hold form data is %d. Cause: In the PF3
 window, you have tried to make the screen
 smaller than the existing data. Corrective
 action: Make the screen larger, or move or
 delete some of the contents.

FM_NOOPEN = Cannot create form %s. Cause: The editor was unable to create the
 file whose name is in the message, probably for
 lack of permission or space. Corrective action:
 Write the screen to a different file, or escape
 to the command interpreter and correct the
 problem.

FM_WRFORM = Error writing form '%s'. Cause: The editor incurred an I/O error
 while writing out the screen file. Corrective
 action: Try writing to a different file.

FM_NOFROOM = Insufficient memory for new fields. Cause: No fields can be added
 because the editor has run out of memory.
 Corrective action: Write the screen out at once,
 exit the editor, and re-edit the screen.

FM_ARHROOM = No room for horizontal array. Cause: In the field size window, you
 have specified a horizontal array that will fall
 outside the screen. Corrective action: Make the
 screen bigger, or the array smaller.

FM_ARVROOM = No room for vertical array. Cause: In the field size window, you
 have specified a vertical array that will fall
 outside the screen. Corrective action: Make the
 screen bigger, or the array smaller.

FM_ARHVSEL = Enter v or h. Cause: I'm not sure this error message is correct.
 Corrective action:

FM_AROVERLAP = Overlaps existing field. Cause: You have specified an array that
 would overlay part of an existing field.
 Corrective action: Change the array size or move
 the field.

FM_UCSET = Set upper or lower case. Cause: You have specified both upper- and
 lower-case in the field edits window. Corrective
 action: Type 'n' for one or the other.

FM_SHRNG = The shifting increment must be at least 1, but no more than %d.
 Cause: You have specified a shifting increment
 of zero, or greater than the onscreen width of
 the field. Corrective action: Change the shift
 increment to a value in the proper range,
 indicated in the message.

FM_FLDLEN = Length must be non-zero and no greater than %d. Cause: In the field
 size or summary window, you have tried to make a
 field so long that it reaches out of the screen.
 Corrective action: Make the field shorter or
 move its origin to the left.

FM_GRNONE = Graphics not available on this terminal. Cause: You have pressed the
 graphics key (PF10 or SPF5), but your display's
 video file contains no definitions for graphics
 characters. Corrective action: Put the
 appropriate entries (GRAPH, GRTYPE, MODE1-6) in
 your video file.

FM_OVERLAP = Overlaps field or border. Cause: In creating a JAM control field or
 moving an ordinary field, you have placed it so
 that it would overlap another field or the
 screen's border. Corrective action: Reposition
 the new field.

FM_NAMEINUSE = Name already assigned to another field. Cause: You have tried to
 give a field a name that already belongs to
 another field. Corrective action: Rename one of
 the fields.

FM_FLDNO = Invalid field number. Cause: In specifying a next-field edit, you
 have given a target field number (using #) that
 is out of range for the screen. Corrective
 action: Change the field number to refer to an
 existing field.

FM_INCR = Invalid increment. Cause: In specifying a next-field edit, you have
 given a field increment (using + or -) that
 results in an occurrence number out of range for
 the field. Corrective action: Reduce the
 increment.

FM_FNUMB = Field number must start with #. Cause: In specifying a next-field
 edit, you have typed # for field number but have
 not put a number after it. Corrective action:
 Supply the field number.

FM_ELEMENT = Invalid element. Cause: In a next-field edit, your element
 specification contains a syntax error.
 Corrective action: The proper syntax is
 field-id[element].

FM_1FMT = Enter one format only. Cause: You have entered both a date and a time
 format string. Corrective action: Remove one of
 them; a field can be either date or time, but
 not both.

FM_CLCMIN = Minimum digits should not exceed length of field, which is %d.
 Cause: In the math/check digit window, you have
 specified a minimum number of digits for the
 check-digit that is too large. Corrective
 action: Reduce the minimum below the number in
 the message, or make the field longer.

FM_AZNAME = Name must start with letter. Cause: You have typed a field name that
 does not begin with a letter. Corrective action:
 Change the field name.

FM_A9NAME = Must be alpha, number or '_'. Cause: You have typed a character
 elsewhere in a field name that is neither
 alphanumeric nor an underscore. Corrective
 action: Remove the offending character from the
 name.

FM_INBORDER = Bad entry -- field in prospective border. Cause: You have
 requested a border on a screen that has fields
 at the very edge of the screen, where the border
 should go. Corrective action: Move the offending
 field or fields.

FM_DUPDRAW = Duplicate draw character. Cause: In the draw-field/field defaults
 window, you have specified a draw-field
 character twice. Corrective action: Pick another
 character.

FM_IFORMAT = Invalid format. Cause: In specifying a window name and coordinates
 for a help screen, sub-menu, or other edit, you
 have deviated from the prescribed format
 screen-name (line, column) Perhaps you have left
 out a parenthesis, or omitted the comma.
 Corrective action: Correct the format.

FM_INVRC = Invalid menu return code. Cause: You have specified a menu return
 code that does not evaluate to an integer.
 Corrective action: Allowable return codes are:
 decimal numbers; hexadecimal numbers; quoted
 printable ASCII characters, as 'q'; ASCII
 control character mnemonics, as ESC; and JAM
 logical key mnemonics from smkeys.h.

FM_WRMSK = A word wrap field may not have a regular expression edit. Cause: You
 have attempted to create a field with both word
 wrapping and a regular expression edit. Because
 word wrap interprets certain characters
 specially, this is not allowed. Corrective
 action: Choose one. As word-wrapped fields are
 generally used for large quantities of text,
 they are best left unfiltered.

FM_RX1 = Regular expression too long. Cause: When compiled, the regular
 expression you have typed is to long to be
 stored as a special edit. Corrective action: Try
 to simplify the expression.

FM_RX2 = Unbalanced '[' bracket. Cause: A left bracket that begins a character
 class has no matching right bracket. Corrective

 action: If you want a literal left bracket,
 quote it: \[. If you really wanted a character
 class, insert the corresponding right bracket.

FM_RX3 = Too many '(' brackets. FM_RX4 = Too many ')' brackets. FM_RX8 = Closing
 '}' brace expected. FM_RX11 = Previous '('
 bracket not yet closed. Cause: Various cases of
 bracket imbalance. Corrective action: As above,
 the usual cause is forgetting to quote a
 bracketing character when you want it literally.

FM_RX5 = Expecting number between 0-9 or '\}'. Cause: You have put something
 other than a number inside a subexpression
 repeat count. Corrective action: Remove it.

FM_RX6 = Range may not exceed 255. Cause: You have specified a repeat count
 greater than what will fit in a field (fields
 are limited to 255 characters in width).
 Corrective action: Reduce the count.

FM_RX7 = Too many commas in specifying range. Cause: You have put two
 consecutive commas in a range expression.
 Corrective action: Remove one.

FM_RX8 = Closing '}' brace expected. Cause: You have followed a comma in a range
 expression with a closing curly brace.
 Corrective action: Remove the comma, or put
 another number after it.

FM_RX9 = First number exceeds second in specifying range. Cause: You have got
 the range of a range backwards. Corrective
 action: Reverse or correct the range limits.

FM_RX10 = \digit out of range. Cause: You have entered a backslash followed by a
 number to re-match a subexpression, but the
 number exceeds the number of parenthesized
 subexpressions. Corrective action: Reduce the
 number or parenthesize the correct
 subexpressions.

FM_RX12 = Unexpected end of regular expression. Cause: Your regular expression
 ends with a backslash. Corrective action: If you
 want a literal backslash, double it.

JX_JCSEXISTS = '"%s" field already exists.' Cause: You have attempted to create
 a JAM control string or field when there is
 already one such in your screen. Corrective
 action: Use a different function key for the
 control string, or remove the existing one.

JX_NOTFIELD = Cursor is not in a field. Cause: You have pressed SPF4 to add a
 data dictionary entry equal to a named field,
 but the cursor is not in a field. Corrective
 action: Move the cursor to a named field.

JX_NONAME = Field has no name. Cause: You have pressed SPF4 to add a data
 dictionary entry equal o a named field, but the
 cursor is in a field with no name. Corrective
 action: Move the cursor to a named field, or
 give the current field a name.

JX_ENTEXIST = Entry already exists. Cause: You have pressed SPF4 to add a data
 dictionary entry equal to a named field, but
 that name is already in the data dictionary.

 Corrective action: Delete the old data
 dictionary entry, or use SPF6 to modify it.

JX_DDDATA = Bad data in data dictionary file. Cause: JAM has attempted to read
 in the data dictionary to add an entry to it,
 and the dictionary is corrupt. Corrective
 action: Exit JXFORM and fix or delete the data
 dictionary.

JX_DDLIMIT = Cannot update; new element count exceeds %d limit. Cause: Adding
 another element would make the local data block
 too big to fit in a malloc'ed area. Corrective
 action: None, really. Delete some elements, or
 buy a non-segmented, demand-paged machine.

JX_DDEREAD = Error reading data dictionary file. Cause: JAM has encountered a
 file I/O error, or the data dictionary is
 corrupt. Corrective action: Exit JXFORM and
 repair or remove the offending file.

JX_DDCREATE = Cannot create data dictionary. Cause: You do not have permission
 or room to create a data dictionary in your
 current directory. Corrective action: Exit
 JXFORM (or escape to the command interpreter)
 and correct the file system problem.

JX_DDUPDATE = Cannot update data dictionary. Cause: You do not have permission
 to update the data dictionary file, or a file
 system error has occurred. Corrective action:
 Exit JXFORM and correct the file system problem.

JX_DDWRITE = Failure in writing data dictionary. Cause: JAM incurred a file
 system error while writing a new entry to the
 data dictionary. The new entry is lost, and the
 data dictionary itself may be corrupted.
 Corrective action: Exit JXFORM and inspect the
 data dictionary with dd2asc. If it's bad, remove
 it; otherwise retry the operation.

JX_NOUPDATE = Can't update file. LATEST is '%s'; '%s' is backup Cause: JXFORM
 has incurred a file system error attempting to
 add a data dictionary entry. The message gives
 the names of the latest dictionary (with
 previous updated from this session) and the
 original, presumably intact one. Corrective
 action: Inspect the newerdictionary with lstdd
 or dd2asc to make sure it's intact. If it is,
 copy it over the other; otherwise, remove it.

JX_NOREBUILD = Cannot rebuild index. Cause: JXFORM has incurred an error writing
 out the data dictionary, preparatory to
 rebuilding the LDB. Corrective action: Try just
 writing out the dictionary. If that fails too,
 escape to the command interpreter and try to
 determine the reason.

JX_NORECORD = No record deleted or already undeleted. Cause: You have attempted
 to undelete an entry with PF6 without first
 deleting an entry, or have pressed PF6 twice in
 succession. Corrective action: Delete a record.

JX_NOROOM = No room in data dictionary. Cause: Undeleting an entry would cause
 the LDB or data dictionary to exceed available

 memory. Corrective action: Delete unneeded
 entries, if possible.

JX_RECMANY = Cannot add record; total records = %d limit. Cause: Adding an entry
 would cause the LDB or data dictionary to exceed
 available memory. Corrective action: Delete
 unneeded entries, if possible.

JX_TMPOPEN = Can't open %s; try writing %s. Cause: The editor is unable to open
 a temporary file. Corrective action: Try writing
 the real data dictionary, using the exit window.

JX_OPENFATAL = Can't open %s; please exit DD editor. Cause: The editor is unable
 to open the data dictionary for writing.
 Corrective action: None, really, since you can't
 shell-escape within the DD editor.

JX_LGOPEN = Can't write %s; delete some items and try again. Cause: JXFORM has
 incurred an I/O error writing the data
 dictionary, perhaps due to lack of disk space.
 Corrective action: Make the dictionary smaller
 and write it out again.

JX_READ = Cannot read %s. Cause: The data dictionary cannot be read in.
 Corrective action: This is only a warning; but
 if you really have a data dictionary, check your
 SMDICNAME setup variable to make sure it's what
 you expected.

JX_BADDATA = Bad data in %s. Cause: The file JXFORM has opened as a data
 dictionary is not one, or it is corrupt.
 Corrective action: Exit JXFORM and inspect the
 file in question. Run dd2r4 to convert your
 Release 3 dictionary to Release 4 format, if you
 haven't already.

JX_LDBMANY = Too many entries for ldb index. Same as JX_DDLIMIT.

JX_CHGTOTAL = Total fields = %d limit; can only %s %s. Cause: There is no more
 room in the dictionary for named entries;
 however, you may still change comments or add
 records. Corrective action: Restrict yourself to
 the activities suggested, or delete some
 unwanted entries.

JX_ITMEXIST = Item exists. Cause: You are trying to add an item that is already
 in the dictionary. Corrective action: Rename one
 of the items.

JX_NOFIELDS = Data dictionary has no fields. Cause: The data dictionary was
 successfully read in, but it was empty.
 Corrective action: Enter the data dictionary
 editor and add some entries.

JX_ITMNOTFOUND = Item not found. Cause: The item you are searching for, using
 PF7 or PF8 in the data dictionary editor, was
 not between the cursor and the end of the
 dictionary. Corrective action: Modify the search
 string, go back to the beginning of the
 dictionary (since search does not wrap), or try
 searching on comments.

JX_NOSEARCH = Don't know what to search. Cause: You have pressed the repeat
 search key (PF8) before ever pressing PF7 and

 supplying a search string. Corrective action:
 Press PF7 instead.

30 Utility Messages

These messages are also listed in the Configuration Guide with their utilities;
they are repeated here for convenience.

bin2c Messages

Insufficient memory available. Cause: The utility could not allocate enough
 memory for its needs. Corrective action:
 None.

File "%s" already exists; use '-f' to overwrite. Cause: You have specified an
 output file that already exists.
 Corrective action: Use the -f flag to
 overwrite the file, or use another name.

Cannot open "%s" for writing. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Cannot open "%s" for reading. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error reading file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Error writing file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

b2hex Messages

Error reading %s Error writing %s Cause: The utility incurred an I/O error while
processing an input or output file. This message will usually be accompanied by
a more specific, system-dependent message. Corrective action: Correct the
system-dependent problem, if possible, and retry the operation.

%s already exists %s already exists, it is skipped Cause: The command you have
issued would overwrite an existing output file. Corrective action: If you are
sure you want to destroy the old file, reissue the command with the -f option.

dd2asc Messages

Can't read %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions of
 the file in question.

Can't open %s. Cause: An output file could not be created, due to lack of
 permission or perhaps disk space. Corrective action:
 Correct the file system problem and retry the operation.

%s is not a valid data dictionary. Cause: The file you have named in the data
 dictionary parameter does not have the correct magic

 number. Corrective action: Check the file you named with
 the data dictionary editor.

Error writing %s. Cause: The utility incurred an I/O error while processing the
 file named in the message. Corrective action: Retry the
 operation.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file, or use a
 different name.

Bad data in %s. Cause: A binary input file is corrupt. Corrective action: Make
 sure the file is of the correct type.

There are also numerous messages regarding syntax errors in an ASCII input file,
 which are intended to be self-explanatory.

dd2r4 Messages

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

File %s already exists. Use `-f' to overwrite or '-e' to append an extension to
 the output file. Cause: You have specified an
 existing output file. Corrective action: Use
 the -f option to overwrite the file, or use a
 different name.

%s is a Release 4 file. Cause: You have attempted to upgrade a data dictionary
 that is already in Release 4 format.
 Corrective action: Relax.

Error writing %s. Cause: The utility incurred an I/O error while processing the
 file named in the message. Corrective action:
 Retry the operation.

dd2struct Messages

Language %s undefined. Cause: The language you have given with the -g option has
 not been defined in the utility's tables.
 Corrective action: Check the spelling of the
 option, or define the language ito the utility.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file,
 or use a different name.

%s has an invalid file format. Cause: An input file is not of the expected type.
 Corrective action: Check the spelling and type of
 the offending file.

'%s' has no data to convert. Cause: An input file is empty, or does not have the
 names you specified. Corrective action: Check the
 names.

Not enough memory to process '%s'. Unable to allocate memory. Cause: The utility
 could not allocate enough memory for its needs.
 Corrective action: None.

ddmerge Messages

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file, or
 use a different name.

No output written. Warning: merge incomplete. Last input included = %s. Cause:
 Due to another error condition, no output or only
 partial output was produced. Corrective action:
 Correct the other error.

Can't read %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions
 of the file in question.

%s is not a valid data dictionary. Cause: An input file did not have the correct
 magic number. Corrective action: Check the spelling
 and type of the input file.

Bad data in %s. Cause: An input file was corrupted. Corrective action: Try to
 repair the file.

Insufficient memory. Cause: The utility could not allocate enough memory for its
 needs. Corrective action: None.

Default in %s differed from saved default. Default in %s had different edits
 from saved default. Cause: Warning only. The default
 sections of input data dictionaries were different;
 the earliest will be retained. Corrective action:
 None.

Too many entries for LDB. Too many entries for data dictionary. Cause: The
 output dictionary size has reached the maximum.
 Corrective action: Try to shrink or eliminate some
 input dictionaries.

Dropped record "%s" in %s -- same name as earlier Field. Dropped field "%s" in
 %s -- same name as earlier Record. Cause: Warning
 only. There were duplicate items in two or more
 dictionaries. Corrective action: None.

Record "%s" in %s differed from saved record. Record "%s" in %s had different
 data types from saved record. Field "%s" in %s
 differed from saved field. Field "%s" in %s had
 different edits from saved field. Field "%s" in %s has
 different %s. Field "%s" in %s had different edits
 from saved field. Cause: Warning only. An entry in the
 named data dictionary has but different attributes
 from a similarly named entry in an earlier input file;
 the earlier one has been retained. Corrective action:
 None.

f2dd Messages

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

%s is not a valid data dictionary. Bad data in %s. Cause: An input file did not
 have the correct magic number, or is
 corrupted. Corrective action: Make sure the
 input file is of the correct type.

Too many entries for data dictionary. Too many data dictionary entries. Too many
 entries for LDB. Cause: The output file has
 reached the maximum possible size. Corrective

 action: Specify fewer inputs, or remove
 unnecessary fields from them.

Can't read form %s. Bad data in form %s. %s is not a form. Cause: An input file
 was missing, unreadable, or not the right
 kind. Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Form %s has no fields. Form %s has no named fields. Cause: Warning only. The
 screen will make no contribution to the
 output. Corrective action: None.

Can't create record "%s" -- same name as data dictionary Field. Can't add field
 "%s" in %s -- same name as data dictionary
 Record. Cause: A screen or field has a name
 that conflicts with something already in the
 data dictionary. Corrective action: Rename one
 of the items.

Record "%s" in %s differs from data dictionary record. Field "%s" in %s differs
 from data dictionary field. Field "%s" in %s
 has different edits from data dictionary
 field. Cause: Warning only. A screen or screen
 field differs from a similarly named item
 already in the data dictionary. The latter
 will be retained. Corrective action: Rename
 one of the items.

Can't write %s. Can't write destination file. Cause: An output file could not be
 created, due to lack of permission or perhaps
 disk space. Corrective action: Correct the
 file system problem and retry the operation.

f2struct Messages

Language %s undefined. Cause: The language you have given with the -g option has
 not been defined in the utility's tables.
 Corrective action: Check the spelling of the
 option, or define the language ito the utility.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file,
 or use a different name.

%s has an invalid file format. Cause: An input file is not of the expected type.
 Corrective action: Check the spelling and type of
 the offending file.

'%s' has no data to convert. Cause: An input file is empty, or does not have the
 names you specified. Corrective action: Check the
 names.

Not enough memory to process '%s'. Unable to allocate memory. Cause: The utility
 could not allocate enough memory for its needs.
 Corrective action: None.

At least one form name is required. Cause: You have not given any screen files
 as input. Corrective action: Supply one or more
 screen file names.

formlib Messages

Library `%s' already exists; use `-f' to overwrite. Cause: You have specified an
 existing output file.
 Corrective action:
 Use the -f option to
 overwrite the file,
 or use a different
 name.

Cannot open `%s'. Cause: An input file was missing or unreadable. Corrective
 action: Check the
 spelling, presence,
 and permissions of
 the file in question.

Unable to allocate memory. Insufficient memory available. Cause: The utility
 could not allocate
 enough memory for its
 needs. Corrective
 action: None.

File `%s' is not a library. Cause: The named file is not a form library
 (incorrect magic
 number). Corrective
 action: Check the
 spelling and
 existence of your
 library.

`%s' not in library. No forms in library. Cause: A screen you have named is not
 in the library.
 Corrective action:
 List the library to
 see what's in it,
 then retry the
 operation.

Temporary file `%s' not removed. Cause: The intermediate output file was not
 removed, probably
 because of an error
 renaming it to the
 real output file.
 Corrective action:
 Check the permissions
 and condition of the
 files, then retry the
 operation.

jamcheck Messages

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Can't read %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and
 permissions of the file in question.

%s is not a valid data dictionary. Bad data in %s. Cause: An input file was of
 the wrong kind, or has been corrupted.
 Corrective action: Check the type of the
 indicated file.

File %s already exists; use '-f' to overwrite. Cause: You have specified an
 existing output file. Corrective action: Use

 the -f option to overwrite the file, or use a
 different name.

Field "%s" in %s has same name as data dictionary Record. Cause: Warning only.
 The indicated field will not be compared.
 Corrective action: None.

There are also many informational messages, which are meant to be
 self-explanatory.

jammap Messages

Exactly 1 form name is required. Cause: The argument to this utility is the
 top-level screen of a JAM application;
 you have supplied extra parameters.
 Corrective action: Retry the command,
 without the excess.

Unable to allocate memory. Insufficient memory for lists, form Cause: The
 utility could not allocate enough memory
 for its needs. Corrective action: None.

Can't find top level form Cause: The input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

key2bin Messages

File '%s' not found Neither '%s' nor '%s' found. Cause: An input file was
 missing or unreadable.
 Corrective action: Check
 the spelling, presence,
 and permissions of the
 file in question.

Unknown mnemonic in line: '%s' Cause: The line printed in the message does not
 begin with a logical key
 mnemonic. Corrective
 action: Refer to
 smkeys.h for a list of
 mnemonics, and correct
 the input.

No key definitions in file '%s' Cause: Warning only. The input file was empty or
 contained only comments.
 Corrective action: None.

Malloc error Cause: The utility could not allocate enough memory for its needs.
 Corrective action: None.

Cannot create '%s' Error writing '%s' Cause: An output file could not be
 created, due to lack of
 permission or perhaps
 disk space. Corrective
 action: Correct the file
 system problem and retry
 the operation.

lstdd Messages

Error opening input file. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error opening output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Unable to allocate memory. Can't allocate memory. Cause: The utility could not
 allocate enough memory for its needs.
 Corrective action: None.

Error reading data dictionary file. Error writing list file. Cause: The utility
 incurred an I/O error while processing the file
 named in the message. Corrective action: Retry
 the operation.

Invalid file format or incorrect version. %s is not a valid data dictionary. Bad
 data in %s. Cause: An input file has the wrong
 magic number or is corrupt. Corrective action:
 Make sure all the input files are data
 dictionaries. If you have Release 3 data
 dictionaries, you may need to run dd2r4 to
 update them.

Selection of Records & fields not yet implemented. Cause: At press time, there
 was no provision yet for selecting sections of
 the listing. Corrective action: None.

lstform Messages

Error opening input file. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error opening output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Unable to allocate memory. Can't allocate memory. Cause: The utility could not
 allocate enough memory for its needs.
 Corrective action: None.

Error reading form file. Error writing list file. Cause: The utility incurred an
 I/O error while processing the file named in
 the message. Corrective action: Retry the
 operation.

modkey Messages

Invalid entry. Cause: You have typed a key that is not on the menu. Corrective
 action: Check the instructions on the screen and try
 again.

Key sequence is too long. Cause: You have typed more than six keys wihout
 repeating any. Corrective action: Key sequences for
 translation may be at most six characters long. Choose a
 shorter sequence.

Invalid first character. Cause: A multi-key sequence must begin with a control
 character. Corrective action: Begin again, using a control
 character.

Invalid mnemonic - press space for list Cause: In the miscellaneous keys screen,
 you have typed a character string for logical value that
 is not a logical key mnemonic. Corrective action: Peruse
 the list, then correct the input.

Invalid number - enter <decimal>, 0<octal> or 0x<hex> Cause: In the
 miscellaneous keys screen, you have typed a malformed
 numeric key code. Corrective action: Correct the number,
 or use a mnemonic.

Cannot create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry the
 operation.

Key sequence does not repeat. Cause: You have typed a key sequence that failed
 to repeat a string of six characters or less. Corrective
 action: Retry the sequence, or use a shorter one.

Cannot accept NUL as a key. Cause: The ASCII NUL character (binary 0) cannot be
 used in a key translation sequence, because it is used
 internally to mark the end of a sequence. Corrective
 action: Use another key.

Key previously defined as %s Key conflicts with %s Cause: You have typed a key
 sequence that has already been assigned to another key, or
 that is a substring of a previously assigned sequence.
 Corrective action: Use a different key or sequence, or
 reassign the other.

msg2bin Messages

File '%s' not found. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and
 permissions of the file in question.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Bad tag in line: %s Cause: The input file contained a system message tag unknown
 to the utility. Corrective action: Refer to
 smerror.h for a list of tags, and correct the
 input.

Missing '=' in line: %s Cause: The line in the message had no equal sign
 following the tag. Corrective action: Correct the
 input and re-run the utility.

term2vid Messages

No cursor position (cm, cup) for %s Cause: An absolute cursor positioning
 sequence is required for JAM to work,
 and the termcap or terminfo entry you
 are using does not contain one.
 Corrective action: Construct the
 video file by hand, or update the
 entry and retry.

Cannot find entry for %s Cause: The terminal mnemonic you have given is not in
 the termcap or terminfo database.
 Corrective action: Check the spelling
 of the mnemonic.

File %s already exists; use '-f' to overwrite. Cause: You have specified an
 existing output file. Corrective
 action: Use the -f option to
 overwrite the file, or use a
 different name.

txt2form Messages

Warning: lines greater than %d will be truncated Warning: columns greater than
%d will be truncated Cause: Your input text file has data that reaches beyond
 the limits you have given (default 23 lines by 80
 columns) for the screen. Corrective action: Shrink
 the input, or enlarge the screen.

Unable to create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry
 the operation.

var2bin Messages

Error opening %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions
 of the file in question.

Missing '='. Cause: The input line indicated did not contain an equal sign after
 the setup variable name. Corrective action: Insert the
 equal sign and run var2bin again.

%s is an invalid name. Cause: The indicated line did not begin with a setup
 variable name. Corrective action: Refer to the
 Configuration Guide for a list of variable names,
 correct the input, and re-run the utility.

%s may not be qualified by terminal type. Cause: You have attached a terminal
 type list to a variable which does not support one.
 Corrective action: Remove the list. You can achieve the
 desired effect by creating different setup files, and
 attaching a terminal list to the SMSETUP variable.

Unable to set given values. %s conflicts with a previous parameter. %s is an
 invalid parameter. Cause: A keyword in the input is
 misspelled or misplaced, or conflicts with an earlier
 keyword. Corrective action: Check the keywords listed
 in the manual, correct the input, and run the utility
 again.

Error reading smvars or setup file. Cause: The utility incurred an I/O error
 while processing the file named in the message.
 Corrective action: Retry the operation.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

At least one file name is required. Cause: You have failed to give an input file
 name. Corrective action: Retype the command, supplying
 the file name.

Entry size %d is too large. String size %d is too large. Cause: The indicated
 right-hand side is too long. Corrective action: Reduce
 the size of the entry.

vid2bin Messages

Neither %s nor %s exists. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

A cursor positioning sequence is required. An erase display sequence is
 required. Cause: These two entries are required
 in all video files. Corrective action:
 Determine what your terminal uses to perform
 these two operations, and enter them in the
 video file; then run the utility again.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Error writing to file '%s'. Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Invalid entry: '%s'. Entry missing '=': '%s'. Cause: The input line in the
 message does not begin with a video keyword and
 an equal sign. Corrective action: Correct the
 input and re-run the utility. You may have
 forgotten to place a backslash at the end of a
 line that continutes onto the next one.

Invalid attribute list : '%s'. Invalid color specification : '%s'. Invalid
 graphics character specification (%s):'%s'.
 Invalid border information (%s):'%s'. Invalid
 graphics type : '%s'. Invalid label parameter :
 '%s'.%s Invalid cursor flags specification :
 '%s'. Cause: You have misspelled or misplaced
 keywords in the input line in the message.
 Corrective action: Correct the input, referring
 to the Configuration Guide, and run vid2bin
 again.

skipsomething

 Index

 In this Index, library functions are displayed in
 boldface, without the prefixes specific to the
 language interface. Video and setup file entries
 appear in ELITE CAPS, while utility programs and JPL
 commands are in elite lower-case. Function key names
 are in ROMAN CAPS.

 ch_emsgatt 5-57
 A ch_form_atts 5-57
 ALL video parameter 5-88 ch_qmsgatt 5-57
 AM video parameter 5-79 ch_stextatt 5-57
 area attributes 5-80, 5-83 CMFLGS video parameter 5-70,
 AREAATT video parameter 5-78
 5-70, 5-80, 5-83, 5-86 CMSG video parameter 5-70,
 ARGR video parameter 5-70, 5-85
 5-84 COF video parameter 5-69,
 ARROWS video parameter 5-70, 5-79
 5-89 COLMS video parameter 5-69,
 ASGR video parameter 5-70, 5-76
 5-71, 5-80, 5-84, 5-86 color
 background 5-84
 B implementation 5-84
 b2hex utility 5-104 COLOR video parameter 5-70,
 beep 5-40 5-84
 bel 5-40, 5-89 comments
 BELL video parameter 5-70, in key file 5-30
 5-89 in message file 5-39
 bin2c in setup file 5-55
 utility 5-1, 5-3, 5-5, in video file 5-66
 5-33, 5-54, 5-104 CON video parameter 5-69,
 bin2hex utility 5-1, 5-6 5-79
 BIOS video parameter 5-77 configuration files 5-30,
 BLINK video parameter 5-81, 5-39, 5-55, 5-65
 5-86 configuration utilities
 border summary 5-1
 implementation 5-88 CONTROL video parameter 5-88
 BORDER video parameter 5-67, CR video parameter 5-78
 5-70, 5-88 CTYPE video parameter 5-84
 BOTTRT video parameter 5-69, CUB video parameter 5-70,
 5-77 5-71, 5-78
 BRDATT video parameter 5-70, CUD video parameter 5-70,
 5-89 5-78
 BS video parameter 5-79 CUF video parameter 5-70,
 BUFSIZ video parameter 5-69, 5-71, 5-78
 5-77 CUP video parameter 5-66,
 5-69, 5-70, 5-78
 C CURPOS video parameter 5-70,
 C0 video parameter 5-88 5-90, 5-91
 C1 video parameter 5-88 cursor
 c_vis 5-41 position display 5-90

 turning off 5-79 formlib utility 5-1, 5-24,
 turning on 5-79 5-107
 cursor positioning function key
 absolute 5-78 EXIT 5-46, 5-51
 relative 5-78 F9 5-47
 cursor style INSERT 5-79
 PC 5-76 LP 5-56
 CUU video parameter 5-69, PF1 5-47
 5-70, 5-78 PF2 5-48
 TAB 5-43
 D TRANSMIT 5-77
 d_msg_line 5-30, 5-40, 5-90 function key labels 5-40,
 dd2asc utility 5-1, 5-7, 5-44, 5-47, 5-48, 5-49,
 5-104 5-52
 dd2r4 utility 5-1, 5-13, function keys
 5-35, 5-105, 5-110 defining 5-42
 dd2struct utility 5-1, 5-3, labeling 5-86
 5-14, 5-105
 ddmerge utility 5-1, 5-16, G
 5-105, 5-117 getkey 5-56
 dicname 5-57 GRAPH video parameter 5-67,
 DIM video parameter 5-81, 5-70, 5-86, 5-87, 5-88,
 5-86 5-89
 display attribute graphics characters 5-87
 area 5-80 mapping 5-87
 bit-mapped 5-83 GRTYPE video parameter 5-70,
 embedded in status line 5-88
 5-40
 implementation 5-80 H
 latch 5-80 HILIGHT video parameter
 onscreen 5-80 5-81, 5-86
 parameters 5-80
 dw_options 5-57 I
 ininames 5-58
 E INIT video parameter 5-68,
 ED video parameter 5-66, 5-69, 5-73, 5-76, 5-77,
 5-69, 5-77 5-79, 5-87
 8-bit ASCII 5-69 initcrt 5-55, 5-76
 EL video parameter 5-69, INSERT key 5-79
 5-77 INSOFF video parameter 5-69,
 er_options 5-57 5-79
 error message INSON video parameter 5-69,
 to change 5-39 5-79
 EW video parameter 5-69,
 5-70, 5-78 J
 EXIT key 5-46, 5-51 jamcheck utility 5-1, 5-27,
 EXTENDED video parameter 5-108
 5-88 jammap utility 5-1, 5-29,
 5-109
 F JDAMOD video parameter 5-70
 f2dd utility 5-1, 5-20, JDDCHG video parameter 5-70
 5-106 JDFIND video parameter 5-70
 f2r4 utility 5-1, 5-22 JDMTCH video parameter 5-70
 f2struct utility 5-1, 5-3, JDTPLT video parameter 5-70
 5-18, 5-107 JFMKDS video parameter 5-70
 F9 key 5-47 JFMKTM video parameter 5-70
 fcase 5-57 JFMTOP video parameter 5-70
 fextension 5-58
 FMKRCP video parameter 5-70 K
 FMKRMV video parameter 5-70 key file 5-33
 foreign language support comments 5-30
 5-86 format 5-30
 formlib 5-24 testing 5-52

 key mnemonics 5-31 mp_options 5-58
 key translation mp_string 5-58
 algorithm 5-42 MS-DOS 5-76
 creating table 5-42 video file 5-67
 key translation file 5-30, msg2bin utility 5-1, 5-5,
 5-40 5-39, 5-41, 5-54, 5-56,
 key2bin utility 5-1, 5-5, 5-111
 5-30, 5-31, 5-33, 5-42, msg_get 5-54, 5-56
 5-56, 5-109 msg_read 5-56
 keyinit 5-56 MSGATT video parameter 5-70,
 keytops 5-40, 5-44, 5-47, 5-85, 5-86, 5-89
 5-48, 5-49, 5-52 msgread 5-40
 KPAR video parameter 5-70,
 5-86 N
 KSET video parameter 5-70, NONE video parameter 5-86
 5-86
 O
 L ok_options 5-58
 l_open 5-57 OMSG video parameter 5-70,
 latch attributes 5-80 5-76, 5-85
 LATCHATT video parameter onscreen attributes 5-80,
 5-70, 5-80, 5-81, 5-82, 5-83
 5-84, 5-86 ONSCREEN video parameter
 ldb_init 5-58 5-83, 5-86
 LENGTH video parameter 5-86
 LF video parameter 5-79 P
 LINES video parameter 5-67, PC video parameter 5-88
 5-69, 5-76, 5-85 PF1 key 5-47
 LINEWRAP video parameter PF2 key 5-48
 5-83 PRIMOS 5-69
 logical keys 5-42 prompt 5-40
 mnemonics 5-31
 LP key 5-56 R
 lstdd utility 5-1, 5-35, r_window 5-56, 5-57
 5-109 RCP video parameter 5-69,
 lstform utility 5-1, 5-2, 5-79
 5-36, 5-110 REPMAX video parameter 5-69,
 5-77
 M REPT video parameter 5-69,
 MAX video parameter 5-83 5-70, 5-77
 MENU bit 5-22 RESET video parameter 5-69,
 menu_proc 5-58 5-73, 5-76, 5-79
 message file 5-39, 5-54 resetcrt 5-76
 MODE0 video parameter 5-70, REVERSE video parameter
 5-87 5-81, 5-85
 MODE1 video parameter 5-70, REWRITE video parameter
 5-87 5-83, 5-84
 MODE2 video parameter 5-70,
 5-87 S
 MODE3 video parameter 5-70, SCP video parameter 5-69,
 5-87 5-79
 MODE4 video parameter 5-70, screen library 5-24
 5-87 SCREENWRAP video parameter
 MODE5 video parameter 5-70, 5-83
 5-87 setup file 5-55
 MODE6 video parameter 5-70, SGR video parameter 5-70,
 5-87 5-71, 5-80, 5-81, 5-82,
 modkey utility 5-1, 5-30, 5-83, 5-84, 5-86
 5-31, 5-33, 5-42, 5-43, shifting indicator 5-89
 5-44, 5-45, 5-46, 5-51, sm_ind_set 5-57
 5-56, 5-86, 5-110 SMCHEMSGATT setup variable
 control keys 5-43 5-57
 display modes 5-51 SMCHFORMATTS setup variable
 invoking 5-43 5-57

 SMCHQMSGATT setup variable statfnc 5-85
 5-57 status line 5-85
 SMCHSTEXTATT setup variable embedded attribute 5-40
 5-57 status text 5-40
 SMCHUMSGATT setup variable status window 5-40
 5-57
 SMDICNAME setup variable T
 5-57 TAB key 5-43
 SMDWOPTIONS setup variable term2vid utility 5-1, 5-60,
 5-57 5-65, 5-111
 SMEROPTIONS setup variable TRANSMIT key 5-77
 5-57 txt2form utility 5-1, 5-61,
 SMFCASE setup variable 5-57 5-112
 SMFEXTENSION setup variable
 5-58 U
 SMFLIBS setup variable 5-57 UNDERLN video parameter
 SMINDSET setup variable 5-57 5-81, 5-86
 SMINICTRL setup variable
 5-57 V
 SMININAMES setup variable var2bin utility 5-1, 5-5,
 5-58 5-55, 5-62, 5-112
 SMKEY setup variable 5-30, vid2bin utility 5-1, 5-5,
 5-56 5-56, 5-63, 5-64, 5-65,
 SMLPRINT setup variable 5-56 5-66, 5-73, 5-90, 5-113
 SMMPOPTIONS setup variable video control sequences 5-70
 5-58 video file 5-63, 5-65
 SMMPSTRING setup variable comments 5-66
 5-58 format 5-66, 5-68
 SMMSGS setup variable 5-39, keywords 5-69
 5-56 minimal 5-67
 SMOKOPTIONS setup variable rationale 5-66
 5-58 sample 5-67
 SMPATH setup variable 5-56 vinit 5-56, 5-63
 smsetup 5-55
 SMSETUP setup variable 5-55, X
 5-56 XKEY video parameter 5-77
 SMUSEEXT setup variable 5-3,
 5-58 Z
 SMVARS setup variable 5-55 zm_options 5-58
 SMVIDEO setup variable 5-56
 SMZMOPTIONS setup variable
 5-58

