
 JYACC FORMAKER JPL Programmer's Guide

 Contents

1 The JYACC Procedural Language . 1
1.1 Incorporating JPL Procedures Into Your Application 1
1.2 JPL Expressions . 1
1.2.1 Values . 1
1.2.1.1 Data Types . 1
1.2.1.2 Constants . 2
1.2.1.3 Variables . 2
1.2.1.4 Occurrences . 2
1.2.1.5 Substrings . 3
1.2.2 Math Expressions . 3
1.2.2.1 Arithmetic Operators and Subexpression Grouping 3
1.2.3 String Expressions . 5
1.3 Colon Expansion . 5

2 JPL Commands by Name . 6

3 JPL Examples . 28
3.1 Example Screen . 28
3.2 Screen Entry Function . 30
3.3 Field Validation Function . 31
3.4 Screen Completion Function . 31
3.5 Default Values Function . 32

1 The JYACC Procedural Language

The JYACC Procedural Language, or JPL, is an interpreted language native to
JYACC FORMAKER. It has been designed to make prototyping easier by cutting out
the compile cycle associated with standard programming languages, and by
providing shortcuts for operations common in JYACC FORMAKER applications. Its
features include block-structured control flow, named procedures with arguments,
and flexible typing of variables according to context. Fields on the screen,
called occurrences in this chapter, are treated just like variables.

Every JPL command begins with a keyword, for simplicity in parsing. Each line of
a JPL procedure may only contain one command; commands may be extended over many
lines by ending intermediate lines with a backslash \. Lines beginning with a
colon : will be treated as comments, i.e. ignored by the interpreter.

1.1 Incorporating JPL Procedures Into Your Application

JPL procedures are ordinarily stored in files, one procedure to a file, with the
file name serving as the procedure name. Arguments are declared within the
procedure, in the usual way. To install a JPL procedure as a standard attached
function, use the special function name jpl followed by a blank, then the name
of the file containing your JPL procedure, as in the figure below. Your
procedure will be called with the standard argument list for attached functions.

 ÉÍÍÍ»
 º º
 º validation function jpl myval1 º
 º field entry function º
 º º
 ÈÍÍÍ¼

You can also attach a nameless JPL procedure to a field, using a special edit
provided for that purpose. Such a procedure is stored in the screen file rather
than in a separate file, and is executed just after the field validation
function, so you can actually have two JPL procedures executed during field
exit.

Finally, you can call a JPL procedure from application code through the library
function sm_plcall, q.v.

1.2 JPL Expressions

Expressions composed of numeric and string operations can occur within a number
of JPL commands, including cat and math commands; the logical tests in if,
while, and for commands; and return commands. Such an expression reduces a
complex string of values and operators to a single value, which may then be
tested or stored.

In the following sections, we first define what sort of component values may
appear in JPL expressions. There follows a description of how to group values
with operators to form expressions.

1.2.1 Values

1.2.1.1 Data Types

The type of an expression in JPL is determined by context, that is, by how the
expression's value is to be used. If it is to be added to the value of another
expression, it is numeric; if used to control the execution of a while loop, it
is logical; and so on. All values are stored as character strings; if a
different type is required, the required conversions are performed on the
string.

 string Required in cat commands; assumed if the value begins with
 one of the quote symbols `, ', or ". Requires no
 conversion.
 numeric Required on the right-hand side of the equal sign in math
 commands and in return commands; assumed if the value
 begins with a digit, plus, or minus sign. Formed by
 collecting an optional initial sign, all digits, and a
 single decimal point, ignoring all other characters, and
 converting the result to a floating point number.
 integer Required for field numbers and for subscript and substring
 indices. Like numeric, except that collection stops at a
 decimal point, and conversion is to integer.
 logical Required in tests in if, while, and for commands. For
 expressions determined by other means to be numeric,
 nonzero means true and zero means false. For string
 expressions, if the first character is equal to the first
 character of the message file entry SM_YES, regardless of
 case, the value is true; anything else means false.

1.2.1.2 Constants

A numeric constant is a string beginning with a digit, a plus sign, or a minus
sign.

A string constant begins and ends with one of the three quote characters quote
`, apostrophe ', or double quote ". The enclosing quote character can be
embedded in the string by escaping it with a backslash; other quote characters
may simply be included. When using colon expansion (Section 1.3) in quoted
strings, be aware that problems will arise if the items to be expanded contain
quotes of the type used to delimit the string.

1.2.1.3 Variables

JPL variables are created by the vars command, which may be issued anywhere
within a procedure before they are used, and disappear when the procedure exits.
Their scope is dynamic (according to the rule just mentioned), limited to the
procedure, and unaffected by the block structure of the procedure.

A variable name must begin with a letter, dollar sign, period, or underscore; it
may be followed by any combination of letters, dollar signs, periods,
underscores or numbers. It is common practice to begin variable names with an
underscore or period to distinguish them from occurrences.

JPL determines the type of a variable by its context in an expression, not from
its declaration; every variable's value is stored as a character string. You can
define the size of that string in your declaration. Redeclaring a variable with
a different size obliterates the original declaration.

Variables and occurrences are treated the same in expressions. When the name of
one is mentioned, its value is substituted; no special syntax is required to
dereference a variable. If a variable and an occurrence have the same name, the
variable's value will be used. The scope of a variable is strictly limited to
the declaring procedure, while occurrences are available to all JPL procedures;
in other words, variables are local and the screen is global.

1.2.1.4 Occurrences

When a string beginning with a letter or pound sign appears in a JPL expression,
it is interpreted as a reference to a variable or occurrence, and replaced by
the value of that thing. There is a field identifier, either name or number,
followed by an optional index for fields with multiple occurrences.

 field number The occurrence must be onscreen. Use a pound sign
 followed by the field number. If the number has a +

 or - sign, it is taken relative to the current
 field; if it is missing, the current field itself is
 used.
 #5 means the fifth field on the screen
 #-1 means the field immediately preceding the
 current field
 # means the current field
 field name Use the occurrence name as it appears in the screen.
 zip_code sales_tax
 bracket-subscript Append an occurrence number (not necessarily a
 constant) surrounded by square brackets. No blank is
 allowed before the left bracket.
 #5[2] #1[i]
 customers[23] customers[k]

If the name of an item with multiple occurrences appears in an expression
without a subscript, the current occurrence is substituted.

1.2.1.5 Substrings

With a substring specifier, you can extract a piece of any string for use in the
surrounding expression. It will be treated as a string, numeric or logical
depending on the command which operates on it.

A substring specifier follows a variable or occurrence identifier; its syntax is
(m,n), where m is the index of the beginning of the substring and n is its
length. The indices count from 1; if n is missing, the end of the string is
assumed.

The following substring expression extracts the day from a date field named
today and formatted as MM/DD/YY:

 today(4,2)

No blank space is permitted between the name and the left parenthesis. If the
beginning index is greater than the length of the string, the value of the
substring expression is the empty string; this can be useful in looping.

1.2.2 Math Expressions

JPL math expressions have a good deal in common with the math edits you can
attach to screen fields using the Screen Editor. The main differences are that
only JPL expressions support substrings, and that the colon form of field
subscripting supported by both is inconvenient to use in JPL programs because of
colon expansion (see below). Syntactically, JPL expressions bear a strong
resemblance to C; but the type conversion rules are quite different.

A math expression may begin with an optional precision specifier, %m.n . Here m
is the total number of characters (significant digits plus sign and decimal
point) in the expression's value, and n is the number of decimal places. The
rest of the expression is built up from values, unary and binary operators, and
parentheses for grouping, in the usual way.

1.2.2.1 Arithmetic Operators and Subexpression Grouping

The following operators are supported in JPL expressions:

 Operator Meaning

 + Add
 - Subtract
 * Multiply
 / Divide
 ^ Raise to power
 - Unary negate
 @date Unary date value
 @sum Unary array sum
 @abort Test/set abort flag

If any of the first 6 are used with a string operand, an error will result.
@Date converts a date field or string to a number you can then compare to other
dates or perform arithmetic with. The expression

 @date(today) + 7

yields a date one week from the present, while

 @date(12/25/89) - @date(today)

gives the number of shopping days left till Christmas. Note that comparisons
done using @date are independent of the date format, where lexical comparisons
on the date fields are not.

@Sum gives the sum of all occurrences in an array or scroll; the expression

 @sum(quantities)

yields a total of all the occurrences in the quantities field. @Abort, followed
by a number in parentheses, calls the library function sm_isabort with the
number as a parameter, causing JYACC FORMAKER to return control to the
application's top level.

There are also several relational operators for comparing values, which are
particularly important in logical expressions. The operators are these:

 Operator Meaning

 = or == equal
 != unequal
 < less than
 > greater than
 <= less or equal
 >= greater or equal
 & or && conjunction (and)
 | or || disjunction (or)
 ! unary logical not

When two values of the same type are compared, the result is straightforward.
When the types of the two items being compared are different, one of them is
converted before the comparison, according to the following table and the
conversion rules given in section 1.2.1.1. Note that it is an error to compare a
number to a string expression.

 Operand 1 Operand 2 Comparison

 string string lexical string
 number ERROR string
 logical logical number
 number numeric number
 logical logical logical
 logical logical

The results of comparisons and unary not are always logical, while the result of
an arithmetic operation is always numeric. The logical value of a string is true
if the string looks like a yes (begins with the first character of SM_YES),
false otherwise; a string enclosed in parentheses is a logical expression. A
numeric expression is false if its value is zero, true otherwise.

1.2.3 String Expressions

String expressions occur in the cat command. All values are treated as strings;
the only operation is concatenation, or splicing, of adjacent strings. Blanks
between values are ignored; to get blanks in the expression's value, you must
enclose them in quotes.

See the cat command for examples.

1.3 Colon Expansion

All JPL commands are colon-expanded each time they are executed. In this
process, text following a colon : is interpreted as an occurrence identifier,
and the colon and identifier are replaced by the value of the occurrence. The
syntax of occurrence identifiers is described in Section 1.2.1.4; it allows for
referring to fields by name or number, and for subscripting them. If you place a
colon and asterisk :* before an occurrence identifier, it will be expanded
recursively. The original occurrence will be replaced by its value; if that
begins with : or :* it will in turn be replaced by its value; and so forth. This
is known as double indirection.

You can escape a colon by preceding it with a backslash, or with another colon.
No blanks are allowed between the colon and the following name. The colon form
of occurrence subscripting (Section 1.2.1.4) will cause errors in colon
expansion unless the colons are escaped; the bracket form of subscripting is
strongly recommended.

The while clause in a for command is colon-expanded only at the first iteration
of the loop. The test expression of a while command, on the other hand, is
subject to colon expansion on every iteration of the loop.

Within JPL expressions, occurrences are replaced by their values automatically;
colon expansion constitutes a second, often superfluous, level of indirection.
It is useful in JPL commands that do not contain math or logical expressions,
such as msg. The following are equivalent:

 msg emsg <variable-name>
 msg emsg ":<variable-name>"

Colon expansion is useful also for getting values inside quoted strings. The
following are equivalent:

 cat result "You have " count " widgets at " price " each."
 cat result "You have :count widgets at :price each."

If the name of an item with multiple occurrences appears in an expression
preceded by a colon but without a subscript, colon expansion causes all
non-blank occurrences to be substituted, with a single blank between each.

2 JPL Commands by Name

Figure 1 summarizes the JPL commands. Some commands have additional qualifying
keywords, which are described along with the command.

 Command Action

 atch execute an attached function
 block { statement block }
 break exit prematurely from a loop
 call execute an invoked function
 cat string manipulation
 else conditionally execute following block
 for indexed loop
 if conditionally execute following block
 jpl execute a JPL routine
 load read a file of JPL routines into memory
 math numeric calculations
 msg display a message in various ways
 next skip to next iteration of loop
 parms declare parameters to a JPL routine
 return exit from JPL routine
 retvar declare variable to hold return value
 system execute a system call
 unload free up memory from loaded JPL code
 vars declare local variables
 while general loop

 Figure 1: JPL commands

The pages that follow contain detailed descriptions of all the JPL commands, in
alphabetical order. Each page has the following information:

 .
 The command name, and a brief description of what it does.
 .
 The syntax of the command. Bold text indicates required keywords.
 Normal text denotes parameters for which you supply values; brackets []
 indicate that a parameter is optional.
 .
 A full description of the command, explaining its parameters, outputs,
 and side effects.
 .
 One or more examples, normally fragments of JPL code demonstrating the
 usefulness of the command in question.
 .
 A list of other, related commands.

Parameters named expression are evaluated as JPL expressions, according to the
rules defined above.

NAME

 atch - execute an attached function

SYNOPSIS

 atch function-name [text]

DESCRIPTION

Executes a function which is installed in the attached function list. It
receives the usual four arguments. If this procedure is not attached to a field,
the arguments are:

 1. field number = 0
 2. contents = text
 3. occurrence = 0
 4. flags = K_USER (invoked by user program; VALIDED and MDT bits
 both 0)

If this procedure is attached to a field, however, the four arguments received
are those of the field.

If you have designated a return variable with the retvar command, the attached
function's return value is stored there.

EXAMPLE

: validate state name field using an attached function

vars not_ok
retvar not_ok
atch val_state state_name
: alternate way of writing previous line: atch val_state ":state_name"
if not_ok
 msg err_reset "That state is not one of U.S."

NAME

 block - statement blocking

SYNOPSIS

 {
 any JPL command
 ...
 }

DESCRIPTION

Curly braces, { and }, block together the JPL commands they enclose, causing
them to be executed as a unit by an immediately preceding if, else, while, or
for command. (A single JPL command following one of those need not be made into
a block; but beware of the if-else ambiguity.)

The curly braces must stand alone on a line. An empty block is equivalent to a
null statement; it is syntactically legal and does nothing.

There is no special processing, and no other syntactic significance, associated
with a block. In particular, it does not limit the scope of variables as in C.

EXAMPLE

vars not_ok
retvar not_ok
atch val_state :state_name
: Multiple statements must be blocked
if not_ok
{
 msg err_reset "That state is not one of U.S."
 return
}
: Single statements need not be blocked
else
 msg d_msg "Processing :state"

NAME

 break - exit prematurely from a loop

SYNOPSIS

 break [count]

DESCRIPTION

Terminates execution of one or more enclosing while or for loops, and resumes
execution at the command immediately following the last aborted loop.

Count gives the number of loops to break. It may be either a positive number or
a single field value expression; if omitted, it is taken as 1.

EXAMPLE

vars i address
for (i = 1 while (i <= 10) step 1)
{
 cat address cities[i] "," states[i] "," zips[i]
: Second termination condition in middle of loop
 if address == ""
 break
 call do_address address
}

NAME

 call - execute an invoked function

SYNOPSIS

 call function-name [text]

DESCRIPTION

Executes a function which is installed in the invoked function list. The
function receives a single argument, namely the command string from
function-name onward.

If you have designated a return variable with the retvar command, the invoked
function's return value is stored there.

If function-name is jpl, this command behaves just like the jpl command (q.v.).

EXAMPLE

vars i line
: Call a C function that stores lines of text in a file
math i = 1
while names[i] != ""
{
 cat line names[i] ", " addresses[i] ", " cities[i] ", " states[i]
 call saveline :line
 math i = i + 1
}

NAME

 cat - string manipulation

SYNOPSIS

 cat occurrence [string-expression]

DESCRIPTION

Evaluates string-expression, according to the rules given in Section 1.2, and
stores it in occurrence.

Occurrence may be a JPL variable or a screen field. Note that it is used as a
name for assignment; if you want to assign to an occurrence whose name is stored
in another variable, you must use colon expansion.

If string-expression is missing, occurrence will be cleared.

If your destination utilizes substring notation, only that portion of the
destination is affected. If you do not specify substring notation for the
destination, the destination is replaced by the string expression.

EXAMPLE

: This is faster than math i = 1
cat i "1"

: This combines some field data with constants. Note that cat
: does NOT automatically leave blanks between items!
cat sons_name first " " last ", Jr."
: This does the same thing
cat sons_name ":first :last, Jr."

:This tacks on a four-digit zip code extension
cat zip(6,5) "-" zip_extension

: To append something to a field or variable, you can use it
: as both a source and destination
cat zip zip "-" zip_extension
: or
cat zip ":zip-:zip_extension"
: This last example works because hyphens are not acceptable
: characters in variable names

NAME

 else - conditionally execute following block

SYNOPSIS

 else
 single command or block

 else if
 single command or block

DESCRIPTION

This command is only valid immediately after an if. The body of the else (the
command or block of commands following) will be executed only when the condition
following the if is false.

When you want to check for a number of possible conditions, you can use an
"else-if chain," like the one in the example. This is the only circumstance in
which two JPL commands may appear on a single line.

EXAMPLE

: Figure out a person's sex, based on his or her personal title.
if title = "MR"
 cat sex "Male"
else if title = "MS"
 cat sex "Female"
else if title = "MRS"
 cat sex "Female"
else if title = "MISS"
 cat sex "Female"
else
{
 cat sex "Unknown"
 msg err_reset "Please supply a title"
}

: Beware of misplaced braces and ambiguous "elses"
: Examples #1 and #2 give the same results,
: which are different from #3

: Example #1
if x = 1
if y = 2
 cat fld3 "yes"
else
 cat fld4 "no"

: Example #2
if x = 1
{
if y = 2
 cat fld3 "yes"
else
 cat fld4 "no"
}

: Example #3
if x = 1
{
if y = 2
 cat fld3 "yes"
}
else
 cat fld4 "no"

SEE ALSO

 block
 if

NAME

 for - indexed loop

SYNOPSIS

 for index-var = value while (condition) \
 step [-] increment
 single command or block

DESCRIPTION

This command provides an indexed loop. It has three clauses, the initial step,
loop condition, and index step, which control the repeated execution of the
loop's body (the following statement or block). The three clauses (respectively)
set an index variable to an initial value, test it against a limiting condition,
and increment it, as when accessing all occurrences of an onscreen array in
turn.

The initial-step assigns value, which must be a numeric constant or a single
variable, to index-var, which must be a JPL variable (and not an occurrence). It
is executed once, at entry to the loop.

The increment is a numeric constant or single variable which is added to
index-var on each iteration, after the body of the loop but before evaluation of
the condition. It may be positive or negative.

The condition can be any JPL expression; its value is treated as logical. It is
evaluated on each iteration, before the body of the loop; if it is false after
the initial step, the loop body will never be executed.

EXAMPLE

vars i
: Change each element of an array to its absolute value
for i = 1 while (i < 10) step 1
{
 if amounts[i] = ""
 cat amounts[i] "0"
 else if amounts[i] < 0
 math amounts[i] = -amounts[i]
}

: Compute the length of a string variable
for i = 1 while (string(i) != "") step 1
{
}

SEE ALSO

 block
 while

NAME

 if - conditionally execute following block

SYNOPSIS

 if condition
 single statement or block
 [else single statement or block]

DESCRIPTION

This command provides for the conditional execution of other JPL commands.
Condition may be any JPL expression; if its logical value is true, the following
statement or block (called the body of the if) will be executed. If the
condition is false, the body will not be executed; if there is an else clause
(q.v.), its body will be executed instead.

EXAMPLE

: Supply a default value for an empty field
if amount = ""
 cat amount "N/A"

: Condition can test a numeric variable
vars x
math x=#5 - #4
if x
 cat recfld srcfld

:Condition can test a string
vars more
msg query "Would you like to see another?" more
if more
 return 0
else
 return 1

SEE ALSO

 block
 else

NAME

 jpl - execute a JPL routine

SYNOPSIS

 jpl routine [argument ...]

DESCRIPTION

Calls another JPL routine, optionally with arguments. The file named routine is
loaded into memory, if necessary, and the commands therein are executed. Control
returns to the command following the jpl command when the called routine
executes a return command.

The length and lexical content of routine names are subject to the operating
system's file naming conventions. JYACC FORMAKER searches for the named file in
(1) memory (for routines read in with the "load" command), (2) the
memory-resident form list, (3) the current directory, and (4) the directories
listed in the SMPATH setup variable. It does not append a default extension.

This command enables you to code commonly performed tasks in subroutines, which
can be called from many places. Commonly used subroutines can be pre-loaded,
using the load command, for greater efficiency. Note that parameters are passed
by value.

EXAMPLE

vars i r
retvar r
: Loop through a group of parallel arrays, calling a JPL subroutine
: to assemble an address from each "line," and a C subroutine to
: store the result in a file.
for i = 1 while (i < 10) step 1
{
 jpl getaddr.jpl whole :name[i] :street[i] :city[i]\
 :state[i] :zip[i]
 if r > 0
 call store whole
}

: In the file "getaddr.jpl"
: Note the use of colon expansion for the first parameter,
: which is the name of an occurrence in which to store
: the result of this routine.
vars .result_name .name .street .city .state .zip
parms .result_name .name .street .city .state .zip
cat :.result_name ""
if .name = "" | .street = "" | .city = "" | .state = ""
 return 0
cat :.result_name .name ", " .street ", " .city ", "\
 .state ", " .zip
return 1

SEE ALSO

 load
 parms
 return
 retvar

NAME

 load - read a JPL routine into memory

SYNOPSIS

 load routine [routine ...]

DESCRIPTION

Reads a file of JPL statements into memory. Pre-loading routines that are
frequently called with the jpl command can make them execute much more quickly.
The memory used to hold them can later be released, using the unload command.

A routine is executed in exactly the same way, whether it is pre-loaded or read
from disk. Note that if you are debugging a JPL procedure it is best not to
pre-load it.

EXAMPLE

: Load three subroutines into memory for future use.
load validname.jpl defaultname.jpl blank.jpl

: Example of a loop that calls one of these subroutines
for i=1 while (i<10) step 1
 jpl validname.jpl name[i]

SEE ALSO

 unload

NAME

 math - numeric calculations

SYNOPSIS

 math [%precision] occurrence = expression

DESCRIPTION

Evaluates a JPL expression, and assigns its value to a variable or occurrence.
See Section 1.2 for a long discussion of JPL expressions; the expression's value
is treated here as numeric.

Occurrence may be a JPL variable, a screen field or an LDB entry. Note that it
is used as a name for assignment; if you want to assign to an occurrence whose
name is stored in another variable, you must use colon expansion.

The optional precision controls the number of digits and decimal places in the
result. Its format is %n.m, where n is the total number of digits in the result
and m is the number of decimal places. If precision is omitted, the default is
unlimited width and two decimal places; however, if occurrence is a entry with a
real data type or currency format edit, that default will be used instead.

Note that string operations, such as substring, are available in math
expressions.

EXAMPLE

: Simple initialization
math k = 0
math %9.4 total = @sum (subtotals)
: Computing the cost of an item
vars cost
math cost = (price * (1 - discount)) * (1 + tax_rate)

SEE ALSO

 cat

NAME

 msg - display a message in various ways

SYNOPSIS

 msg mode text [!] [response-var]
 where mode is one of
 d_msg
 emsg
 err_reset
 query
 qui_msg
 quiet
 setbkstat

DESCRIPTION

Displays text on the terminal's status line, in one of several modes. The modes
correspond to a number of JYACC FORMAKER library routines, and are explained
briefly here; see the Programmer's Guide for more details. The optional
response-var is a JPL variable or occurrence, and is allowed only for mode
query.

 d_msg Displays text on the status line and leaves it there, until
 cleared or replaced by another message. It may be temporarily
 replaced by a msg command with another mode (except
 setbkstat).
 emsg Displays text as an error message, until you acknowledge it
 with a keystroke. Acknowledgement is controlled by the
 SMEROPTIONS setup variable, or the library routine
 sm_er_options. Cursor is not forced to be turned on.
 err_reset Like emsg, but forces the cursor to be turned on at its
 current position.
 query Displays text as a question, and sets response-var to true if
 the answer is yes, or false otherwise. If response-var is
 preceded by an exclamation point, that logic is reversed (true
 = no). If there is no response-var and the answer is no, the
 JPL procedure exits immediately; a lone exclamation point
 reverses that too.
 qui_msg Displays text as an error message until it is acknowledged.
 The text will be preceded by the SM_ERROR string from the
 message file, which is normally "ERROR:". Cursor is not forced
 to be turned on.
 quiet Like qui_msg, but forces the cursor to be turned on at its
 current position.
 setbkstat Installs text as the background status line. It will be
 displayed when no other message is active.

EXAMPLE

: Indicate that the field called state is invalid
msg err_reset ":state is not one of U.S."

: Indicate that the current entry is being processed
: Note that d_msg overrides delayed write and flushes text
: to the screen immediately
msg d_msg "Processing :name"

: Ask whether the user wants to quit the current screen
vars quit
msg query "Are you ready to quit?" quit
if quit
 return EXIT

NAME

 next - skip to next iteration of loop

SYNOPSIS

 next

DESCRIPTION

This command is valid only within the body of a for or while loop. It causes
commands between itself and the end of the loop body to be skipped, so that the
next things that happen are the increment step (in a for) and the loop condition
test. The next command applies only to the innermost enclosing loop.

Next is more similar to the continue statement in C than to the next statement
in BASIC.

EXAMPLE

vars k
: Process all the males in a list of people
for k = 1 while (sex[k] != "") step 1
{
 if sex[k] != "Male"
 next
: Print mailing label for sports car brochure, or whatever...
}

SEE ALSO

 for
 while

NAME

 parms - declare parameters in a called JPL routine

SYNOPSIS

 parms variable [variable ...]

DESCRIPTION

Associates variable names with the arguments to a JPL routine supplied in a jpl
command. The variables must already have been declared, using the vars command.

If you declare more parameters than were actually passed, the excess variables
will be uninitialized. If you declare fewer, the undeclared parameters will be
inaccessible.

EXAMPLE

: This routine returns the value 1 if the given array contains
: a certain string, and 0 otherwise.

vars array_name pattern k
parms array_name pattern

for k = 1 while (:array_name[1][k]) step 1
{
 if :array_name[1][k] == pattern
 return 1
}

: Note that we need the [1] because we want to colon-expand
: array_name and access the kth element of the expanded value.
: If we specified only :array_name[k], it would try to colon-
: expand the kth element of array_name, and not the first.

return 0

SEE ALSO

 jpl
 vars

NAME

 return - exit from JPL routine

SYNOPSIS

 return [value]

DESCRIPTION

This command causes a JPL procedure to exit. Control is returned to the
procedure that called it, if any, or to the JYACC FORMAKER run-time system.

If the optional value is supplied and the calling procedure has established a
return variable with the retvar command, that variable is set to value. The
return value must be a numeric constant or a single variable or occurrence.

If the routine was called from other than a JPL procedure, the returned value
must be an integer.

Return is also accomplished automatically by coming to the end of a JPL file.
This is dangerous with memory-resident procedures, however, because there is no
way to tell when they end if they have no null terminators!

EXAMPLE

see parms

SEE ALSO

 retvar

NAME

 retvar - establish a variable to hold return values

SYNOPSIS

 retvar [variable]

DESCRIPTION

Variable is the name of a JPL variable, which will be set to the return value of
the called function in subsequent call, atch, and jpl commands. The variable
must previously have been created with the vars command. (However, it could be a
global variable instead -- i.e., a field or LDB entry.)

If variable is omitted, the return values of called functions are unavailable.

EXAMPLE

vars r
retvar r
call validname :name
if !r
 return
: Process the validated name...

: A return variable can also be colon-expanded, if it
: contains the name of a variable into which the return
: value is to be placed

vars r
cat r "name"
retvar :r
call getname
...

SEE ALSO

 atch
 call
 jpl

NAME

 system - execute a system call

SYNOPSIS

 system text

DESCRIPTION

Text is sent to the operating system as a program to be executed. The screen is
cleared, and the output of the program (if any) is displayed; when it exits, the
JYACC FORMAKER screen is refreshed and screen processing resumes.

If you have established a return value variable with the retvar command, the
program's exit status is available there.

If you want text to contain the values of occurrences, you must colon-expand
them.

EXAMPLE

: On a UNIX system, check whether a file exists
vars status
retvar status
system test -f :filename
if !status
 return
: process the file...

SEE ALSO

 retvar

NAME

 unload - free up memory from loaded JPL code

SYNOPSIS

 unload procedure

DESCRIPTION

Releases the memory used to hold a JPL procedure loaded by a previous load
command. If the procedure is subsequently called again, it will be read in from
disk.

EXAMPLE

: unload three subroutines
unload validname.jpl defaultname.jpl blank.jpl

SEE ALSO

 jpl
 load

NAME

 vars - declare local variables

SYNOPSIS

 vars variable [variable ...]

DESCRIPTION

Creates a variable or variables local to the current JPL procedure. The names so
created will not be visible to any other JPL procedure. If a variable has the
same name as an occurrence, it will hide the occurrence. For this reason it is
sometimes useful to establish a naming convention to prevent conflicts;
beginning variable names with a period, underscore, or dollar sign will work,
since field names must begin with a letter.

Vars may occur anywhere within a JPL procedure. It is an executed statement --
i.e., the declaration occurs when the statement is executed. If a variable name
is redeclared with a different size, it erases the old declaration and value;
hence it is not a good idea to place a vars command inside a loop. The initial
value of a newly declared variable is the empty string, zero, or false,
depending on context.

Variables may have any number of occurrences, which you place after the name,
enclosed in square brackets []. You may also specify the size in bytes of a
variable, placing it after the name (and occurrences if present), enclosed in
parentheses. If a variable is to be used for a string parameter, it is best not
to specify a size. No blanks may occur between the name and following left
bracket or parenthesis.

EXAMPLE

vars name(50) flag(1) widget
vars address[3](50) abbrevs[10]

NAME

 while - general loop

SYNOPSIS

 while condition
 single command or block

DESCRIPTION

The while command provides for repeated execution of the commands within its
body (the following command or block). The body is executed as long as
condition, which is an arbitrary JPL expression treated as logical, remains
TRUE.

Condition is evaluated before every iteration of the loop, so that if it is
initially false, the body will never be executed.

EXAMPLE

vars k another
cat k "1"
cat another "a"
while k
{
 msg query "Do you want to do :another widget?" k
 if !k
 return
 jpl do_widget

 cat another "another"
}

3 JPL Examples

3.1 Example Screen

The examples in this section will make use of a calendar screen, whose picture
and screen listing follow. The purpose of the code is to paint a month's
calendar on the screen and to accept a code letter for each day describing
someone's whereabouts.

 ÉÍÍ»
 º _______________'s schedule for the month of _____ ___ º
 º º
 º Sunday Monday Tuesday Wednesday Thursday Friday Saturday º
 º º
 º __ _ __ _ __ _ __ _ __ _ __ _ __ _ º
 º º
 º __ _ __ _ __ _ __ _ __ _ __ _ __ _ º
 º º
 º __ _ __ _ __ _ __ _ __ _ __ _ __ _ º
 º º
 º __ _ __ _ __ _ __ _ __ _ __ _ __ _ º
 º º
 º __ _ __ _ __ _ __ _ __ _ __ _ __ _ º
 º º
 º º
 º º
 º º
 º º
 ÈÍÍ¼

 FORM 'calendar'

FIELD DATA:

Field number : 1 (line 2, column 6, length = 15)
Field name : who
Display attribute : UNDERLINED HIGHLIGHTED WHITE
Field edits : RIGHT-JUSTIFIED; DATA-REQUIRED; CLEAR-ON-INPUT;

Field number : 2 (line 2, column 50, length = 5)
Field name : today
Display attribute : UNDERLINED HIGHLIGHTED WHITE
Date field data : SYSTEM DATE; FORMAT = MM/YY

Field number : 3 (line 6, column 8, length = 2)
Field name : sunday_num
Vertical array : 5 elements; distance between
 elements = 2
Array field numbers : 3 17 31 45 59
Display attribute : WHITE
Field edits : RIGHT-JUSTIFIED; PROTECTED FROM: ENTRY OF DATA;
 TABBING INTO; CLEARING; VALIDATION;
Amount field data : RIGHT-JUST; 0 DEC. PLACES; DON'T APPLY IF EMPTY;
Data type : INT

Field number : 4 (line 6, column 11, length = 1)
Field name : sunday
Vertical array : 5 elements; distance between
 elements = 2

Array field numbers : 4 18 32 46 60
Display attribute : UNDERLINED HIGHLIGHTED WHITE
Field edits : UPPER_CASE;
Validation func. : 'jpl calval.jpl'

...analogous fields for Monday through Friday have been omitted...

Field number : 15 (line 6, column 68, length = 2)
Field name : saturday_num
Vertical array : 5 elements; distance between
 elements = 2
Array field numbers : 15 29 43 57 71
Display attribute : WHITE
Field edits : RIGHT-JUSTIFIED; PROTECTED FROM: ENTRY OF DATA;
 TABBING INTO; CLEARING; VALIDATION;
Amount field data : RIGHT-JUST; 0 DEC. PLACES; DON'T APPLY IF EMPTY;

Field number : 16 (line 6, column 71, length = 1)
Field name : saturday
Vertical array : 5 elements; distance between
 elements = 2
Array field numbers : 16 30 44 58 72
Display attribute : UNDERLINED HIGHLIGHTED WHITE
Field edits : UPPER_CASE;
Validation func. : 'jpl calval.jpl'

Field number : 73 (line 17, column 1, length = 9)
Field name : dow
Horizontal array : 7 elements; distance between
 elements = 1
Array field numbers : 73 74 75 76 77 78 79
Display attribute : NON-DISPLAY WHITE

Field number : 80 (line 18, column 1, length = 2)
Field name : month_length
Horizontal array : 12 elements; distance between
 elements = 1
Array field numbers : 80 81 82 83 84 85 86 87 88 89 90 91
Display attribute : NON-DISPLAY WHITE

Field number : 92 (line 19, column 1, length = 35)
Field name : schedule
Display attribute : NON-DISPLAY WHITE

Field number : 93 (line 20, column 1, length = 10)
Field name : firstname
Display attribute : NON-DISPLAY WHITE
Date field data : NO SYSTEM DATE; FORMAT = dow

There is also a short driver program, which brings up the screen, reads the
keyboard, and dispatches to the appropriate function below.

#include "smdefs.h"
#include "smkeys.h"

/* Driver program for the calendar JPL example.
 * This just brings up the screen, then loops reading keys.
 * It recognizes TRANSMIT, PF1, and EXIT.
 */

main()
{
 int key;

 sm_initcrt ();
 if (sm_r_form ("calendar") < 0)
 exit (-1);

 while ((key = sm_openkeybd ()) != EXIT)
 {
 switch (key)
 {
 case XMIT:
 sm_plcall ("calstore.jpl");
 break;
 case PF1:
 sm_plcall ("caldefs.jpl");
 break;
 default:
 sm_bel ();
 break;
 }
 }

 sm_resetcrt ();
 exit (0);
}

3.2 Screen Entry Function

Here is the JPL screen entry function. It determines what day of the week the
first of the month falls upon, then fills in dates in the appropriate slots. (At
present, no provision is made for leap Februaries.)

File calup.jpl

: This is the screen entry function.
: It figures out what day of the week the first of the month
: falls on, then writes the appropriate dates into the columns
: 'sunday_num', 'monday_num', etc.

vars _scr _j _k _day(2) _fld
vars _firstday _lastday

: Get ordinal of first day.
: Make sure the field "today" contains the date.
if today = ""
 cat today ""
cat _scr today(1,2) "/1/" today(4,2)
math firstname = @date (_scr)
for _firstday = 1 while (_firstday <= 7) step 1
{
 if (dow[:_firstday](1,3) == firstname)
 break
}

: Get ending limit.
cat _scr today(1,2)
cat _lastday month_length[_scr]

: Using the limits, display the month's dates.
math %2.0 _day = 1
for _k = 1 while (_k <= 5) step 1
{
 for _j = 1 while (_j <= 7) step 1
 {
 if _k == 1 && _j < _firstday
 next
 if _day > _lastday
 next
 cat _fld dow[_j] "_num[:_k(1,1)]"
 math :_fld = _day
 math _day = _day + 1
 }
}

: Present a prompt
msg d_msg "Press %KPF1 for default data."

3.3 Field Validation Function

File calval.jpl

: This is a field validation function for the enterable
: columns 'sunday', 'monday', etc. It blanks invalid entries
: and reminds you that help is available.

: Standard parameter list: field number, contents, occurrence #,
: and validation information.

vars _num _content _occur _bits
parms _num _content _occur _bits

if (_content != "H" && _content != "V" && _content != "W" &&\
 _content != "")
{
 msg err_reset "Please enter H, V, or W; press %KHELP for help."
 cat #:_num ""
 return -1
}
return 0

3.4 Screen Completion Function

The function below is bound to the TRANSMIT key. It make use of a subroutine,
listed after it.

File calstore.jpl

: This function is bound to the TRANSMIT key. It just
: calls a subroutine to store and display the packed schedule.
jpl calpack.jpl schedule

File calpack.jpl

: This function takes the name of a variable in which to store
: the packed schedule, and stores it there (one character per day).
: It then displays the result.

vars _packname
parms _packname
vars _packed
vars _day _week _i _fld

math _i = 1
: Loop through the screen
for _week = 1 while (_week <= 5) step 1
{
 for _day = 1 while (_day <= 7) step 1
 {
 cat _fld dow[_day] "[:_week(1,1)]"
 cat _packed(_i,1) :_fld
 math _i = _i + 1
 }
}

cat :_packname _packed
msg err_reset "Schedule stored as -> :_packed <-"

3.5 Default Values Function

File caldefs.jpl

: This function is bound to the PF1 key.
: It installs default values in the LDB, and calls a subroutine
: to expand the default schedule on the screen.

cat who "President Fred"
cat today ""
cat schedule "HWWWWWHHWWWWWHHWWWWWHHWWWWWHHWWWWWH"
jpl calunp.jpl :schedule

File calunp.jpl

: This function takes a packed schedule as argument, and
: unpacks each character into the appropriate screen field.

vars _packed
parms _packed
vars _day _week _i _fld

math _i = 1
for _week = 1 while (_week <= 5) step 1
{
 for _day = 1 while (_day <= 7) step 1
 {
 cat _fld dow[_day] "[:_week(1,1)]"
 cat :_fld _packed(_i,1)
 math _i = _i + 1
 }
}

 Index

 In this Index, library functions are
 displayed in boldface, without the
 prefixes specific to the language
 interface. Video and setup file
 entries appear in ELITE CAPS, while
 utility programs and JPL commands
 are in elite lower-case. Function
 key names are in ROMAN CAPS.

 colon expansion
 A 4-5
 atch JPL command comments 4-1
 4-23 constants 4-2
 data types 4-1
 C expression
 call JPL command syntax 4-1
 4-23 operators 4-3
 cat JPL command substrings 4-3
 4-1, 4-5 variables 4-2
 colon expansion jpl JPL command
 4-5 4-10, 4-16,
 comments 4-17, 4-21,
 in JPL 4-1 4-23

 D L
 double indirection load JPL command
 4-5 4-16, 4-25

 E M
 else JPL command math JPL command
 4-8, 4-12, 4-1, 4-2
 4-15 msg JPL command
 4-5, 4-19
 F
 for JPL command N
 4-1, 4-2, next JPL command
 4-5, 4-8, 4-20
 4-9, 4-20
 function key R
 TRANSMIT 4-31 return JPL command
 4-1, 4-2,
 I 4-16
 if JPL command retvar JPL command
 4-1, 4-2, 4-7, 4-10,
 4-8, 4-12, 4-22, 4-24
 4-15
 S
 J sm_er_options 4-19
 JPL 4-1 sm_isabort 4-4

 sm_plcall 4-1 in JPL 4-2
 SMEROPTIONS setup vars JPL command
 variable 4-19 4-2, 4-21,
 substrings 4-23, 4-26
 in JPL 4-3
 W
 T while JPL command
 TRANSMIT key 4-31 4-1, 4-2,
 4-5, 4-8,
 U 4-9, 4-20,
 unload JPL command 4-27
 4-17

 V
 variables

