N

W W wwww
aprwWwN -

JYACC FORMAKER JPL Programmer's Gui de

Contents

The JYACC Procedural Language .

I ncorporating JPL Procedures Into Your Appl i cat i on
JPL Expressions . e e
Val ues
1 Data Types
2 Constants .
3 Variables .
4 CQccurrences .
5 Substrings

Mat h Expressi ons .
.1 Arithnmetic Operators and Subexpressmn Groupl ng .
String Expressions
Col on Expansi on .

WNRNNNRNNNNNN R
WNN R R R

JPL Conmands by Name

JPL Exanpl es
Exanpl e Screen .
Screen Entry Functlon .
Field Validation Function .
Screen Conpl etion Function
Def ault Val ues Function .

QU WWWNNNRPRPRPRREP PR

28
28
30
31
31
32

1 The JYACC Procedural Language

The JYACC Procedural Language, or JPL, is an interpreted |anguage native to
JYACC FORMAKER. It has been designed to make prototypi ng easier by cutting out
the conpile cycle associated with standard programm ng | anguages, and by
providing shortcuts for operations common in JYACC FORMAKER applications. Its
features include bl ock-structured control flow, named procedures with arguments,
and flexible typing of variables according to context. Fields on the screen
cal l ed occurrences in this chapter, are treated just |ike variabl es.

Every JPL conmmand begins with a keyword, for sinplicity in parsing. Each |ine of
a JPL procedure may only contain one command; comands nmay be extended over nmany
lines by ending internmediate lines with a backslash \. Lines beginning with a
colon : will be treated as coments, i.e. ignored by the interpreter

1.1 Incorporating JPL Procedures Into Your Application

JPL procedures are ordinarily stored in files, one procedure to a file, with the
file nanme serving as the procedure nane. Argunents are declared within the
procedure, in the usual way. To install a JPL procedure as a standard attached
function, use the special function nane jpl followed by a blank, then the name
of the file containing your JPL procedure, as in the figure bel ow. Your
procedure will be called with the standard argument |ist for attached functions.

ELTTTETETTETE R et ettt ettt rerrernt»
o) o)
° validation function jpl nyvall °
° field entry function 0
[0} [0}
BT i i i i i i i i ririmiiniiimiiva

You can al so attach a naneless JPL procedure to a field, using a special edit
provi ded for that purpose. Such a procedure is stored in the screen file rather
than in a separate file, and is executed just after the field validation
function, so you can actually have two JPL procedures executed during field
exit.

Finally, you can call a JPL procedure from application code through the library
function smplcall, q.v.

1.2 JPL Expressions

Expressi ons conposed of nuneric and string operations can occur wthin a nunmber
of JPL commands, including cat and math commands; the logical tests in if,
while, and for commands; and return commands. Such an expression reduces a
conpl ex string of values and operators to a single value, which may then be
tested or stored.

In the followi ng sections, we first define what sort of conponent val ues nay
appear in JPL expressions. There follows a description of how to group val ues
with operators to form expressions.

1.2.1 Val ues
1.2.1.1 Data Types

The type of an expression in JPL is deternmined by context, that is, by how the
expression's value is to be used. If it is to be added to the value of another
expression, it is nuneric; if used to control the execution of a while loop, it
is logical; and so on. All values are stored as character strings; if a
different type is required, the required conversions are performed on the
string.

string Required in cat commands; assumed if the value begins with

one of the quote synmbols *, ', or ". Requires no
conver si on.
numeric Required on the right-hand side of the equal sign in math

conmands and in return commands; assumed if the value
begins with a digit, plus, or mnus sign. Formed by
collecting an optional initial sign, all digits, and a
singl e decimal point, ignoring all other characters, and
converting the result to a floating point nunber.

i nt eger Required for field nunbers and for subscript and substring
i ndi ces. Like numeric, except that collection stops at a
deci mal point, and conversion is to integer

| ogi cal Required in tests in if, while, and for conmands. For
expressions determ ned by other means to be nuneric,
nonzero means true and zero neans false. For string
expressions, if the first character is equal to the first
character of the message file entry SM YES, regardl ess of
case, the value is true; anything el se neans fal se.

1.2.1.2 Constants

A nuneric constant is a string beginning with a digit, a plus sign, or a mnus
si gn.

A string constant begins and ends with one of the three quote characters quote
*, apostrophe ', or double quote ". The enclosing quote character can be
enbedded in the string by escaping it with a backsl ash; other quote characters
may sinply be included. \When using colon expansion (Section 1.3) in quoted
strings, be aware that problems will arise if the itens to be expanded contain

quotes of the type used to delimt the string.
1.2.1.3 Variables

JPL variables are created by the vars command, which may be issued anywhere
within a procedure before they are used, and di sappear when the procedure exits.
Their scope is dynamic (according to the rule just nmentioned), linmted to the
procedure, and unaffected by the block structure of the procedure.

A variabl e name nust begin with a letter, dollar sign, period, or underscore; it
may be followed by any conbination of letters, dollar signs, periods,
underscores or numbers. It is common practice to begin variable names with an
underscore or period to distinguish themfrom occurrences.

JPL determines the type of a variable by its context in an expression, not from
its declaration; every variable's value is stored as a character string. You can
define the size of that string in your declaration. Redeclaring a variable with
a different size obliterates the original declaration.

Vari abl es and occurrences are treated the same in expressions. \Wen the nanme of
one is nmentioned, its value is substituted; no special syntax is required to
dereference a variable. If a variable and an occurrence have the sane nane, the
variable's value will be used. The scope of a variable is strictly limted to
the declaring procedure, while occurrences are available to all JPL procedures;
in other words, variables are local and the screen is gl obal

1.2.1.4 Cccurrences

When a string beginning with a letter or pound sign appears in a JPL expression
it is interpreted as a reference to a variable or occurrence, and replaced by
the value of that thing. There is a field identifier, either name or nunber,
foll owed by an optional index for fields with nultiple occurrences.

field nunber The occurrence nmust be onscreen. Use a pound sign
followed by the field nunber. |If the nunber has a +

or - sign, it is taken relative to the current
field; if it is mssing, the current field itself is
used.
#5 nmeans the fifth field on the screen
#-1 means the field inmediately preceding the
current field
nmeans the current field

field nane Use the occurrence name as it appears in the screen
Zi p_code sal es_tax

bracket - subscri pt Append an occurrence number (not necessarily a
constant) surrounded by square brackets. No blank is
al l owed before the |l eft bracket.
#5[2] #1[i]
cust oner s[23] cust omer s[K]

If the name of an itemw th nmultiple occurrences appears in an expression
wi t hout a subscript, the current occurrence is substituted.

1.2.1.5 Substrings

Wth a substring specifier, you can extract a piece of any string for use in the
surroundi ng expression. It will be treated as a string, numeric or |ogica
dependi ng on the command which operates on it.

A substring specifier follows a variable or occurrence identifier; its syntax is
(mn), where mis the index of the beginning of the substring and nis its

Il ength. The indices count froml;, if nis mssing, the end of the string is
assuned.

The follow ng substring expression extracts the day froma date field naned
today and formatted as MM DD/ YY:

t oday(4, 2)

No bl ank space is pernmitted between the nane and the left parenthesis. If the
begi nning index is greater than the I ength of the string, the value of the
substring expression is the enmpty string; this can be useful in |ooping.

1.2.2 Math Expressions

JPL mat h expressions have a good deal in conmmon with the math edits you can
attach to screen fields using the Screen Editor. The main differences are that
only JPL expressions support substrings, and that the colon formof field
subscripting supported by both is inconvenient to use in JPL prograns because of
col on expansion (see below). Syntactically, JPL expressions bear a strong
resenbl ance to C, but the type conversion rules are quite different.

A math expression nmay begin with an optional precision specifier, %nn . Here m
is the total nunber of characters (significant digits plus sign and deci mal
point) in the expression's value, and n is the nunber of decinmal places. The
rest of the expression is built up fromvalues, unary and binary operators, and
par ent heses for grouping, in the usual way.

1.2.2.1 Arithmetic Operators and Subexpressi on G ouping

The followi ng operators are supported in JPL expressions:

Oper at or Meani ng

+ Add

- Subtract

* Mul tiply

/ Di vi de

A Rai se to power

- Unary negate

@lat e Unary date val ue

@Gum Unary array sum

@bort Test/set abort flag

If any of the first 6 are used with a string operand, an error will result.

@ate converts a date field or string to a number you can then conpare to other
dates or performarithnetic with. The expression

@lat e(t oday) + 7
yi el ds a date one week fromthe present, while
@lat e(12/ 25/ 89) - @lat e(today)
gi ves the nunber of shopping days left till Christrmas. Note that conparisons
done using @ate are independent of the date format, where |exical conparisons
on the date fields are not.
@um gi ves the sumof all occurrences in an array or scroll; the expression
@um(quantities)
yields a total of all the occurrences in the quantities field. @\Wbort, foll owed
by a nunber in parentheses, calls the library function sm.isabort with the
number as a paraneter, causing JYACC FORMAKER to return control to the

application's top |evel

There are al so several relational operators for conparing values, which are
particularly inmportant in |ogical expressions. The operators are these:

Oper at or Meani ng

= or == equal

I = unequal

< | ess than

> greater than

<= | ess or equa

>= greater or equa
& or && conj unction (and)
| or || di sjunction (or)

! unary | ogical not

When two val ues of the sane type are conpared, the result is straightforward.
When the types of the two itens being conpared are different, one of themis
converted before the conparison, according to the follow ng table and the
conversion rules given in section 1.2.1.1. Note that it is an error to conpare a
nunber to a string expression

Operand 1 Operand 2 Conpari son

string string | exi cal string
nunber ERROR string
| ogi cal | ogi cal nunber
nunber nunmeric nunber
| ogi cal | ogi cal 1ogica
| ogi cal | ogi cal

The results of comparisons and unary not are always logical, while the result of
an arithmetic operation is always nuneric. The logical value of a string is true
if the string looks like a yes (begins with the first character of SM YES)

false otherwise; a string enclosed in parentheses is a |ogical expression. A
nuneric expression is false if its value is zero, true otherw se.

1.2.3 String Expressions

String expressions occur in the cat command. All values are treated as strings;
the only operation is concatenation, or splicing, of adjacent strings. Blanks
bet ween val ues are ignored; to get blanks in the expression's value, you nust
encl ose themin quotes.

See the cat command for exanples.
1.3 Col on Expansion

Al'l JPL commands are col on-expanded each tine they are executed. In this
process, text following a colon : is interpreted as an occurrence identifier

and the colon and identifier are replaced by the value of the occurrence. The
syntax of occurrence identifiers is described in Section 1.2.1.4; it allows for
referring to fields by name or nunber, and for subscripting them If you place a
colon and asterisk :* before an occurrence identifier, it will be expanded
recursively. The original occurrence will be replaced by its value; if that
begins with : or :* it will in turn be replaced by its value; and so forth. This
is known as doubl e indirection.

You can escape a colon by preceding it with a backslash, or with another colon.
No bl anks are all owed between the colon and the followi ng nane. The col on form
of occurrence subscripting (Section 1.2.1.4) will cause errors in colon
expansi on unl ess the colons are escaped; the bracket form of subscripting is
strongly recomended.

The while clause in a for command is col on-expanded only at the first iteration
of the | oop. The test expression of a while command, on the other hand, is
subj ect to col on expansion on every iteration of the | oop

Wthin JPL expressions, occurrences are replaced by their values automatically;
col on expansion constitutes a second, often superfluous, level of indirection
It is useful in JPL commands that do not contain math or | ogical expressions,
such as nmsg. The followi ng are equival ent:

nmsg enmsg <vari abl e- name>
nsg ensg ":<vari abl e- name>"

Col on expansion is useful also for getting values inside quoted strings. The
foll owi ng are equi val ent:

cat result "You have count wi dgets at price each. "

cat result "You have :count wi dgets at :price each.”

If the nane of an itemw th multiple occurrences appears in an expression
preceded by a colon but without a subscript, colon expansion causes al
non- bl ank occurrences to be substituted, with a single blank between each

2 JPL Commands by Nanme

Figure 1 summari zes the JPL commands. Sonme commands have additional qualifying
keywords, which are described along with the conmand.

Conmmand Acti on
atch execute an attached function
bl ock { statenment block }
br eak exit prematurely froma | oop
cal l execut e an invoked function
cat string mani pul ation
el se conditionally execute follow ng bl ock
for i ndexed | oop
if conditionally execute follow ng bl ock
j pl execute a JPL routine
| oad read a file of JPL routines into nenory
mat h numeric cal cul ati ons
nsg di splay a nmessage in various ways
next skip to next iteration of |oop
par s declare paranmeters to a JPL routine
return exit fromJPL routine
retvar declare variable to hold return val ue
system execute a system cal
unl oad free up nenory froml oaded JPL code
vars decl are | ocal variabl es
whi | e general | oop

Figure 1. JPL commands
The pages that follow contain detailed descriptions of all the JPL commands, in
al phabetical order. Each page has the follow ng information
The command nane, and a brief description of what it does.
The syntax of the command. Bold text indicates required keywords.
Normal text denotes paraneters for which you supply val ues; brackets []

i ndicate that a paranmeter is optional

A full description of the command, explaining its paraneters, outputs,
and side effects.

One or nore exanples, normally fragments of JPL code denobnstrating the
useful ness of the command in question.

A list of other, related conmands.

Par anet ers named expression are evaluated as JPL expressions, according to the
rul es defined above.

atch - execute an attached function
SYNOPSI S

atch function-nanme [text]
DESCRI PTI ON

Executes a function which is installed in the attached function list. It
receives the usual four argunents. |If this procedure is not attached to a field,
the argunents are:

field nunber = 0

contents = text

occurrence = 0

flags = K USER (i nvoked by user program VALIDED and MDT bits
bot h 0)

Pl

If this procedure is attached to a field, however, the four argunments received
are those of the field.

If you have designated a return variable with the retvar comuand, the attached
function's return value is stored there.

EXAMPLE
val i date state name field using an attached function

vars not _ok
retvar not_ok
atch val _state state_nane
alternate way of writing previous line: atch val _state
i f not_ok
nmeg err_reset "That state is not one of U S."

:state_nanme"

bl ock - statenent bl ocking

SYNOPSI S
{
any JPL command
}
DESCRI PTI ON

Curly braces, { and }, block together the JPL commands they encl ose, causing
themto be executed as a unit by an inmediately preceding if, else, while, or
for command. (A single JPL command foll owing one of those need not be nmade into
a bl ock; but beware of the if-else ambiguity.)

The curly braces nmust stand alone on a line. An enpty block is equivalent to a
null statenment; it is syntactically |egal and does not hing.

There is no special processing, and no other syntactic significance, associated
with a block. In particular, it does not limt the scope of variables as in C

EXAMPLE

vars not _ok
retvar not_ok
atch val _state :state_nane
Mul tiple statements nust be bl ocked

i f not_ok
{ .
msg err_reset "That state is not one of U S."
return
}
Single statenments need not be bl ocked
el se

nmsg d_nsg "Processing :state"

break - exit prematurely froma | oop
SYNOPSI S

break [count]
DESCRI PTI ON

Ternmi nates execution of one or nore enclosing while or for |oops, and resunes
execution at the command i nmediately following the | ast aborted | oop

Count gives the nunber of loops to break. It nay be either a positive nunber or
a single field value expression; if omtted, it is taken as 1

EXAMPLE

vars i address
for (i =1 while (i <= 10) step 1)

{
cat address cities[i] "," states[i] "," zips[i]
Second term nation condition in niddle of |oop
if address == ""
br eak

call do_address address

call - execute an invoked function
SYNOPSI S
call function-nanme [text]
DESCRI PTI ON
Executes a function which is installed in the invoked function list. The
function receives a single argunent, nanely the command string from

functi on-name onwar d.

If you have designated a return variable with the retvar comuand, the invoked
function's return value is stored there.

If function-name is jpl, this command behaves just |ike the jpl conmand (q.v.).

EXAMPLE
vars i line
Call a C function that stores lines of text in a file

math i =1

whil e nanes[i] !=""

{
cat line nanes[i] ", " addresses[i] ", " cities[i] ", " states[i]
call saveline :line
mthi =i + 1

cat - string manipul ation
SYNCPSI S

cat occurrence [string-expression]
DESCRI PTI ON

Eval uat es string-expression, according to the rules given in Section 1.2, and
stores it in occurrence.

OQccurrence may be a JPL variable or a screen field. Note that it is used as a
name for assignnent; if you want to assign to an occurrence whose nanme is stored
i n another variable, you must use col on expansion

If string-expression is nissing, occurrence will be cleared.

If your destination utilizes substring notation, only that portion of the
destination is affected. If you do not specify substring notation for the
destination, the destination is replaced by the string expression

EXAMPLE

This is faster than math i = 1
cat i "1"

This conbines sone field data with constants. Note that cat
does NOT autommtically |eave bl anks between itens!

cat sons_name first " " last ", Jr."
Thi s does the sane thing

cat sons_nane ":first :last, Jr."

:This tacks on a four-digit zip code extension
cat zip(6,5) "-" zip_extension

To append sonething to a field or variable, you can use it
as both a source and destination

cat zip zip "-" zip_extension
or

cat zip ":zip-:zip_extension"
Thi s | ast exanple works because hyphens are not acceptable
characters in variabl e nanes

el se - conditionally execute foll ow ng bl ock
SYNOPSI S

el se
si ngl e command or bl ock

else if
singl e command or bl ock

DESCRI PTI ON

This command is only valid i mediately after an if. The body of the else (the
command or bl ock of conmands following) will be executed only when the condition
following the if is false

When you want to check for a nunber of possible conditions, you can use an
"else-if chain," like the one in the exanple. This is the only circunstance in
whi ch two JPL commands nmy appear on a single |ine.

EXAMPLE

Figure out a person's sex,

if title = "MR'

cat sex "Ml e"

based on his or

msg err_reset "Please supply a title"

else if title = "M"
cat sex "Femal e"
else if title = "MRS"
cat sex "Femal e"
else if title = "MSS"
cat sex "Femal e"
el se
{
cat sex "Unknown"
}

Beware of misplaced braces and ambi guous "el ses"

Exanpl es #1 and #2 give the same results,
which are different from #3
Exanpl e #1
if x =1
ify=2
cat fld3 "yes"
el se
cat fld4 "no"
Exanpl e #2
if x =1
{
ify=2
cat fld3 "yes"
el se
cat fld4 "no"
}
Exanmpl e #3
if x =1
{
ify=2
cat fld3 "yes"
}
el se
cat fld4 "no"
SEE ALSO

bl ock
i f

title.

for - indexed | oop
SYNOPSI S

for index-var = value while (condition) \
step [-] increnent
singl e command or bl ock

DESCRI PTI ON

This command provides an indexed |oop. It has three clauses, the initial step

| oop condition, and index step, which control the repeated execution of the

| oop's body (the follow ng statenment or block). The three clauses (respectively)
set an index variable to an initial value, test it against a limting condition,
and increnent it, as when accessing all occurrences of an onscreen array in
turn.

The initial-step assigns value, which nust be a nuneric constant or a single
vari able, to index-var, which nmust be a JPL variable (and not an occurrence). It
is executed once, at entry to the |oop

The increment is a numeric constant or single variable which is added to
i ndex-var on each iteration, after the body of the |oop but before eval uation of
the condition. It nmay be positive or negative.

The condition can be any JPL expression; its value is treated as logical. It is
eval uated on each iteration, before the body of the loop; if it is false after
the initial step, the I oop body will never be executed.
EXAMPLE
vars i
Change each el ement of an array to its absol ute val ue
for i =1 while (i < 10) step 1
{

if amounts[i] =
cat anounts[i] "O"
else if amounts[i] < O

mat h amounts[i] = -anmounts[i]

}

. Compute the length of a string variable
for i = 1 while (string(i) !="") step 1
{

}

SEE ALSO

bl ock

whi | e

if - conditionally execute follow ng bl ock
SYNOPSI S

if condition
single statenent or bl ock
[el se single statement or bl ock]

DESCRI PTI ON

This command provides for the conditional execution of other JPL comrmands.
Condition may be any JPL expression; if its logical value is true, the follow ng
statenment or block (called the body of the if) will be executed. If the
condition is false, the body will not be executed; if there is an else clause
(g.v.), its body will be executed instead.

EXAMPLE

Supply a default value for an enmpty field
if amount = ""
cat amount "N A"

Condition can test a nuneric variable
vars x
math x=#5 - #4
if x
cat recfld srcfld

:Condition can test a string

vars nore
msg query "Wbuld you like to see another?" nore
if nore

return O
el se

return 1
SEE ALSO

bl ock

el se

NANME

jpl - execute a JPL routine
SYNOPSI S

jpl routine [argunment ...]
DESCRI PTI ON

Calls another JPL routine, optionally with argunents. The file nanmed routine is
| oaded into nmenory, if necessary, and the conmands therein are executed. Contro
returns to the conmand followi ng the jpl comand when the called routine
executes a return conmmand.

The I ength and | exical content of routine nanmes are subject to the operating
systenis file nam ng conventions. JYACC FORMAKER searches for the naned file in
(1) menmory (for routines read in with the "l oad" command), (2) the
menory-resident formlist, (3) the current directory, and (4) the directories
listed in the SMPATH setup variable. It does not append a default extension

Thi s command enabl es you to code conmonly performed tasks in subroutines, which
can be called from many places. Conmonly used subroutines can be pre-1|oaded,
using the load command, for greater efficiency. Note that parameters are passed
by val ue.

EXAMPLE

vars i r

retvar r
Loop through a group of parallel arrays, calling a JPL subroutine
to assenbl e an address fromeach "line," and a C subroutine to

: store the result in a file.

for i =1 while (i < 10) step 1

{

jpl getaddr.jpl whole :nane[i] :street[i] :city[i])\
cstate[i] :zip[i]

ifr>0
call store whole

In the file "getaddr.jpl"
Note the use of colon expansion for the first paraneter,
which is the name of an occurrence in which to store
the result of this routine.
vars .result_name .name .street .city .state .zip
parns .result_name .name .street .city .state .zip
cat :.result_name ""
if .name = "" |
return O
cat :.result_name .name ", " .street ", " .city ", "\
.State ", " .zip
return 1

.Street = | .city =

.State =

SEE ALSO

| oad
par s
return
retvar

load - read a JPL routine into nmenory

SYNOPSI S
load routine [routine ...]
DESCRI PTI ON

Reads a file of JPL statenents into nmenory. Pre-loading routines that are
frequently called with the jpl conmand can nmake them execute much nore quickly.
The nmenory used to hold themcan | ater be rel eased, using the unload conmand.

A routine is executed in exactly the sane way, whether it is pre-loaded or read
fromdisk. Note that if you are debugging a JPL procedure it is best not to

pre-load it.
EXAMPLE

Load three subroutines into nmenmory for future use.
| oad validnane.jpl defaul tnane.jpl blank.jpl

Exanpl e of a |oop that calls one of these subroutines
for i=1 while (i<10) step 1
jpl validnane.jpl nanme[i]
SEE ALSO

unl oad

math - numeric cal cul ations
SYNCPSI S

mat h [%oreci sion] occurrence = expression
DESCRI PTI ON

Eval uates a JPL expression, and assigns its value to a variable or occurrence.
See Section 1.2 for a long discussion of JPL expressions; the expression's val ue
is treated here as nuneric.

Occurrence may be a JPL variable, a screen field or an LDB entry. Note that it
is used as a nane for assignnent; if you want to assign to an occurrence whose
nane is stored in another variable, you nust use col on expansion

The optional precision controls the nunber of digits and decinmal places in the
result. Its format is %M. m where n is the total nunber of digits in the result
and mis the nunber of decimal places. If precision is omtted, the default is
unlimted width and two deci mal places; however, if occurrence is a entry with a
real data type or currency format edit, that default will be used instead.

Note that string operations, such as substring, are available in math
expressi ons.

EXAMPLE

: Sinple initialization
math k = 0
math 99.4 total = @um (subtotals)
Computing the cost of an item
vars cost
math cost = (price * (1 - discount)) * (1 + tax_rate)

SEE ALSO

cat

nsg - display a nmessage in various ways
SYNOPSI S

msg nmode text [!] [response-var]
where node is one of

d_nsg

ensg

err_reset

query

qui _msg

qui et

set bkst at

DESCRI PTI ON

Di splays text on the termnal's status line, in one of several nopdes. The nodes
correspond to a nunber of JYACC FORMAKER |ibrary routines, and are expl ai ned
briefly here; see the Programer's CGuide for nmore details. The optiona
response-var is a JPL variable or occurrence, and is allowed only for node

query.

d_nsg Di splays text on the status line and | eaves it there, unti
cl eared or replaced by another nmessage. It may be tenporarily
replaced by a msg command wi th anot her node (except
set bkstat).

ensg Di spl ays text as an error message, until you acknow edge it
with a keystroke. Acknow edgenment is controlled by the
SMEROPTI ONS setup variable, or the library routine
smer_options. Cursor is not forced to be turned on

err_reset Li ke ensg, but forces the cursor to be turned on at its
current position.

query Di spl ays text as a question, and sets response-var to true if
the answer is yes, or false otherwise. If response-var is
preceded by an exclamation point, that logic is reversed (true
= no). If there is no response-var and the answer is no, the
JPL procedure exits immedi ately; a |one exclamati on point
reverses that too.

qui _nsg Di spl ays text as an error nessage until it is acknow edged
The text will be preceded by the SM ERROR string fromthe
nmessage file, which is normally "ERROR ". Cursor is not forced
to be turned on.

qui et Li ke qui _msg, but forces the cursor to be turned on at its
current position.

set bkst at Installs text as the background status line. It will be

di spl ayed when no other nessage is active.
EXAMPLE

Indicate that the field called state is invalid
nmseg err_reset ":state is not one of U S."

Indicate that the current entry is being processed
Note that d_nmsg overrides delayed wite and fl ushes text
to the screen i medi ately

msg d_nsg "Processing : nane"

Ask whether the user wants to quit the current screen
vars quit
nmseg query "Are you ready to quit?" quit
if quit
return EXIT

next - skip to next iteration of |oop
SYNOPSI S

next
DESCRI PTI ON
This command is valid only within the body of a for or while loop. It causes
comands between itself and the end of the |oop body to be skipped, so that the
next things that happen are the increnment step (in a for) and the | oop condition

test. The next command applies only to the innernmpst enclosing |oop

Next is nbre simlar to the continue statenent in C than to the next statenent
in BASIC.

EXAMPLE
vars Kk
: Process all the males in a |ist of people
for k =1 while (sex[k] !'="") step 1
{

if sex[k] !'= "Male"

next

. Print mailing | abel for sports car brochure, or whatever..
}
SEE ALSO

f or
whi |l e

parns - declare parameters in a called JPL routine
SYNOPSI S

parms variable [variable ...]
DESCRI PTI ON

Associ ates variable nanmes with the argunents to a JPL routine supplied in a jp
command. The vari abl es nust al ready have been declared, using the vars comand.

If you declare nore paranmeters than were actually passed, the excess variabl es
will be uninitialized. If you declare fewer, the undecl ared paraneters wll be
i naccessi bl e.

EXAMPLE

This routine returns the value 1 if the given array contains
a certain string, and 0O otherwi se.

vars array_nane pattern k
parnms array_name pattern

for k =1 while (:array_name[1][k]) step 1
{
if :array_nanme[1l][k] == pattern
return 1

Note that we need the [1l] because we want to col on-expand
array_name and access the kth element of the expanded val ue.
If we specified only :array_nanme[k], it would try to col on-
expand the kth el ement of array_name, and not the first.

return O
SEE ALSO

ipl
vars

return - exit fromJPL routine
SYNOPSI S

return [val ue]
DESCRI PTI ON

This command causes a JPL procedure to exit. Control is returned to the
procedure that called it, if any, or to the JYACC FORMAKER run-time system

If the optional value is supplied and the calling procedure has established a
return variable with the retvar conmand, that variable is set to value. The
return val ue nust be a numeric constant or a single variable or occurrence.

If the routine was called fromother than a JPL procedure, the returned val ue
must be an integer.

Return is also acconplished automatically by coming to the end of a JPL file.
This is dangerous with menory-resident procedures, however, because there is no
way to tell when they end if they have no null terninators!

EXAMPLE

see parns

SEE ALSO

retvar

retvar - establish a variable to hold return val ues
SYNOPSI S

retvar [variable]

DESCRI PTI ON

Variable is the name of a JPL variable, which will be set to the return val ue of
the called function in subsequent call, atch, and jpl conmands. The variabl e
must previously have been created with the vars command. (However, it could be a
gl obal variable instead -- i.e., a field or LDB entry.)

If variable is omtted, the return values of called functions are unavail abl e.
EXAMPLE

vars r
retvar r
call validnanme :nanme
if !r
return
Process the validated nane...

A return variable can al so be col on-expanded, if it
contains the nanme of a variable into which the return
value is to be placed

vars r
cat r "name"
retvar :r

call getname

SEE ALSO

atch
call

jpl

system - execute a system cal
SYNOPSI S

system t ext
DESCRI PTI ON

Text is sent to the operating systemas a programto be executed. The screen is
cleared, and the output of the program (if any) is displayed; when it exits, the
JYACC FORMAKER screen is refreshed and screen processing resumnes.

If you have established a return value variable with the retvar conmand, the
program s exit status is available there.

If you want text to contain the values of occurrences, you must col on-expand
t hem

EXAVPLE

On a UNI X system check whether a file exists
vars status
retvar status
systemtest -f :filenane
if I'status
return
process the file..

SEE ALSO

retvar

unload - free up nenory from |l oaded JPL code
SYNOPSI S

unl oad procedure

DESCRI PTI ON

Rel eases the nmenory used to hold a JPL procedure | oaded by a previous |oad
command. |If the procedure is subsequently called again, it will be read in from
di sk.

EXAMPLE

unl oad t hree subroutines
unl oad val i dnane. jpl defaul tname.jpl blank.jpl

SEE ALSO

jpl
| oad

vars - declare |ocal variables

SYNOPSI S

vars variable [variable ...]
DESCRI PTI ON
Creates a variable or variables local to the current JPL procedure. The nanes so
created will not be visible to any other JPL procedure. |If a variable has the
same nane as an occurrence, it will hide the occurrence. For this reason it is

sonmetimes useful to establish a nami ng convention to prevent conflicts;
begi nni ng variable nanes with a period, underscore, or dollar sign will work,
since field names nust begin with a letter.

Vars may occur anywhere within a JPL procedure. It is an executed statenent --
i.e., the declaration occurs when the statement is executed. If a variable name
is redeclared with a different size, it erases the old declaration and val ue;
hence it is not a good idea to place a vars conmmand inside a | oop. The initial
value of a newWy declared variable is the enpty string, zero, or false,
dependi ng on context.

Vari abl es may have any nunber of occurrences, which you place after the nane,
encl osed in square brackets []. You may al so specify the size in bytes of a
vari able, placing it after the nane (and occurrences if present), enclosed in
parent heses. If a variable is to be used for a string parameter, it is best not
to specify a size. No blanks may occur between the name and follow ng | eft
bracket or parenthesis.

EXAMPLE

vars name(50) flag(1l) w dget
vars address[3] (50) abbrevs[10]

NAMVE
while - general |oop
SYNOPSI S

whil e condition
si ngl e command or bl ock

DESCRI PTI ON

The whil e conmand provides for repeated execution of the commands within its
body (the followi ng command or block). The body is executed as |ong as
condition, which is an arbitrary JPL expression treated as |ogical, renains
TRUE.

Condition is evaluated before every iteration of the loop, so that if it is
initially false, the body will never be executed.

EXAMPLE

vars k anot her
cat k "1"
cat anot her
while k

{

a

nmsg query "Do you want to do :another wi dget?" k
if 'k

return
j pl do_wi dget

cat anot her "anot her"

3 JPL Exanpl es
3.1 Exanple Screen

The exanples in this section will make use of a cal endar screen, whose picture
and screen listing follow The purpose of the code is to paint a nonth's

cal endar on the screen and to accept a code letter for each day describing
sonmeone' s wher eabout s.

ELLTETEEEr e et et ettt et e ettt et e ettt et bttt et
0 's schedule for the nonth of . 0
[0} [0}
° Sunday Monday Tuesday Wednesday Thursday Fri day Sat ur day °
o o
o o)
o - __ - - - - __ o
o o)
o T - T T T T - o
[0} [0}
[0} - __ - - - - __ [0}
[0} [0}
[0} - = - - = - = - = - = - [0}
o o
o - = __ - = - = - = - = __ (o)
o) o)
o) o)
o o
[0} [0}
BT T T i i i i i i iiiiiriiiiiiiiva
FORM ' cal endar'
FI ELD DATA:
Field nunber 1 (line 2, colum 6, length = 15)

Field name
Display attribute
Field edits

Fi el d nunmber
Fiel d nane
Display attribute
Date field data

Fi el d nunmber
Fi el d nanme
Vertical array

Array field nunbers :

Display attribute
Field edits

Amount field data
Data type

Fi el d number
Fiel d name
Vertical array

who
UNDERLI NED HI GHLI GHTED WHI TE
Rl GHT- JUSTI FI ED; DATA- REQUI RED; CLEAR- ON- | NPUT;

2 (line 2, colum 50, length = 5)
t oday

UNDERLI| NED HI GHLI GHTED WHI TE
SYSTEM DATE; FORMAT = MM YY

3 (line 6, colunmm 8, length = 2)

sunday_num

5 elenents; distance between

elenents = 2
3 17 31 45 59

VWHI TE

Rl GHT- JUSTI FI ED; PROTECTED FROM ENTRY OF DATA
TABBI NG | NTO, CLEARI NG, VALI DATI ON

Rl GHT-JUST; 0 DEC. PLACES; DON' T APPLY | F EMPTY;

| NT

4 (line 6, colum 11, length = 1)
sunday

5 el enents; distance between

el enents = 2

Array field nunbers : 4 18 32 46 60

Display attribute : UNDERLI NED HI GHLI GHTED WHI TE
Field edits . UPPER_CASE
Val i dation func. : 'jpl calval.jpl’

...anal ogous fields for Monday through Friday have been omtted..

Fi el d nunber : 15 (line 6, colum 68, length = 2)
Fiel d name . saturday_num
Vertical array : 5 elements; distance between

el ements = 2
Array field nunbers : 15 29 43 57 71

Display attribute : WHI TE

Field edits : RIGHT- JUSTI FI ED; PROTECTED FROM ENTRY OF DATA
TABBI NG | NTO, CLEARI NG, VALI DATI ON

Amount field data : RIGHT-JUST; 0 DEC. PLACES; DON' T APPLY |F EMPTY;

Field nunber . 16 (line 6, colum 71, length = 1)

Field name . saturday

Vertical array : 5 elements; distance between

el ements = 2
Array field nunbers : 16 30 44 58 72

Di splay attribute : UNDERLI NED HI GHLI GHTED WHI TE

Field edits : UPPER_CASE;

Val i dation func. : 'jpl calval.jpl’

Field nunmber : 73 (line 17, colum 1, length = 9)

Fi el d nane : dow

Hori zontal array . 7 elements; distance between
elements = 1

Array field nunbers : 73 74 75 76 77 78 79

Di splay attribute : NON- DI SPLAY VWHI TE

Field nunber . 80 (line 18, colum 1, length = 2)

Field name : nonth_l ength

Hori zontal array . 12 elenents; distance between

elenments = 1
Array field nunbers : 80 81 82 83 84 85 86 87 88 89 90 91

Di splay attribute : NON- DI SPLAY WHI TE

Field nunber : 92 (line 19, colum 1, length = 35)
Field name . schedul e

Display attribute : NON- DI SPLAY VWHI TE

Fi el d number : 93 (l'ine 20, colum 1, length = 10)
Field name . firstname

Di splay attribute : NON- DI SPLAY VWHI TE

Date field data . NO SYSTEM DATE; FORMAT = dow

There is also a short driver program which brings up the screen, reads the
keyboard, and dispatches to the appropriate function bel ow.

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Driver program for the cal endar JPL exanpl e.
* This just brings up the screen, then | oops readi ng keys.
* It recognizes TRANSM T, PF1, and EXIT.

*/
mai n()
{
int key;
sminitcrt ();
if (smr_form("calendar") < 0)
exit (-1);
while ((key = smopenkeybd ()) != EXIT)
{
switch (key)
case XM T:
smplcall ("calstore.jpl");
br eak;
case PF1:
smplcall ("caldefs.jpl")
br eak;
defaul t:
sm bel ();
br eak;
}
}
smresetcrt ();
exit (0);
}

3.2 Screen Entry Function

Here is the JPL screen entry function. It determ nes what day of the week the
first of the nmonth falls upon, then fills in dates in the appropriate slots. (At
present, no provision is made for |eap Februaries.)

File calup.jpl

This is the screen entry function.

It figures out what day of the week the first of the nmonth
falls on, then wites the appropriate dates into the colums
"sunday_num , 'nonday_num, etc.

vars _scr _j _k _day(2) _fld
vars _firstday _I astday

Cet ordinal of first day.
Make sure the field "today" contains the date.
if today = ""
cat today
cat _scr today(1,2) "/1/" today(4,2)
math firstname = @late (_scr)
for firstday = 1 while (_firstday <= 7) step 1

if (dow :_firstday](1,3) == firstnane)
br eak

Get ending limt.
cat _scr today(1,2)
cat _lastday nmonth_l ength[_scr]

Using the limts, display the nonth's dates.
math %2.0 _day =1
for _k =1 while (_k <= 5) step 1

{
for j =1 while (j <=7) step 1
{
if _k==1&%&% j < _firstday
next
if _day > _|astday
next
cat _fld dow _j] "_nuni:_k(21,1)]"
math : _fld = _day
math _day = _day + 1
}
}

Present a pronpt
msg d_nmsg "Press %KPF1 for default data."

3.3 Field Validation Function

File calval.jpl
This is a field validation function for the enterable
colums 'sunday', 'nonday', etc. It blanks invalid entries

and rem nds you that help is avail able.

Standard parameter list: field nunmber, contents, occurrence #,
and validation information.

vars _num _content _occur _bits
parms _num _content _occur _bits

if (_content !="H' & & _content !="V' & & _content != "W &&\
_content = "")

{
msg err_reset "Please enter H, V, or W press %HELP for help."
cat # _num""
return -1

}

return O

3.4 Screen Conpl etion Function

The function below is bound to the TRANSM T key. It nake use of a subroutine,
listed after it.

File cal store.jpl

This function is bound to the TRANSM T key. It just

calls a subroutine to store and display the packed schedul e.
j pl cal pack.jpl schedule
Fil e cal pack.j pl

This function takes the name of a variable in which to store

t he packed schedule, and stores it there (one character per day).
It then displays the result.

vars _packnanme

parnms _packnane

vars _packed

vars _day _week _i _fld

math i =1
Loop through the screen
for _week = 1 while (_week <= 5) step 1

{
for _day = 1 while (_day <= 7) step 1
{
cat _fld dow _day] "[:_week(1,1)]"
cat _packed(_i,1) :_fld
math i = i + 1
}
}

cat :_packname _packed
nmsg err_reset "Schedule stored as -> : _ packed <-"

3.5 Default Values Function

File cal defs.jpl
This function is bound to the PF1 key.
It installs default values in the LDB, and calls a subroutine
to expand the default schedule on the screen.

cat who "President Fred"

cat today ""

cat schedul e " HWANANHHWANNNHHVWANANNHHVAWANHHWANNAH

jpl calunp.jpl :schedule

File cal unp.jpl

This function takes a packed schedul e as argunent, and
unpacks each character into the appropriate screen field.

vars _packed
parnms _packed

vars _day _week _i _fld
math _i =1
for _week = 1 while (_week <= 5) step 1
{
for _day = 1 while (_day <= 7) step 1
{
cat _fld dow _day] "[:_week(1,1)]"
cat : _fld _packed(_i,1)
math i = i + 1
}

I ndex

In this Index, library functions are

di spl ayed in boldface, wthout the
prefixes specific to the |anguage
interface. Video and setup file
entries appear in ELITE CAPS, while
utility programs and JPL commands
are in elite |ower-case. Function

key nanmes are i n ROVAN CAPS

A

atch JPL command
4-23

()

call JPL command
4-23

cat JPL command
4-1, 4-5

col on expansi on
4-5

comment s

in JPL 4-1

D

doubl e i ndirection
4-5

E

el se JPL command
4-8, 4-12,
4-15

F

for JPL command
4-1, 4-2,
4-5, 4-8,
4-9, 4-20

function key
TRANSM T 4-31

|
if JPL command

4-1, 4-2,
4-8, 4-12,
4-15

J
JPL 4-1

col on expansi on
4-5
coments 4-1
constants 4-2
data types 4-1
expression
syntax 4-1
operators 4-3
substrings 4-3
vari abl es 4-2

j pl JPL conmand
4-10, 4-16,
4-17, 4-21,
4-23

L

| oad JPL command
4-16, 4-25

M

mat h JPL commmand
4-1, 4-2

nmsg JPL conmmand
4-5, 4-19

N

next JPL command
4-20

R

return JPL conmand
4-1, 4-2,
4-16

retvar JPL conmand
4-7, 4-10,
4-22, 4-24

S

sm er_options 4-19
sm.isabort 4-4

smplcall 4-1
SMEROPTI ONS set up
variable 4-19
substrings
in JPL 4-3

T
TRANSM T key 4-31

U
unl oad JPL conmand
4-17

\
vari abl es

in JPL 4-2
vars JPL conmand

4-2, 4-21,
4-23, 4-26

W

while JPL conmand
4-1, 4-2,
4-5, 4-8,
4-9, 4-20,
4-27

