
New Features in Panther 4.50

Panther 4.50 supports a few new features. Two of these are specific to deployment under Microsoft Windows. A
third also has an impact on web deployments. And one of the features is also supported in character mode and
Motif. These features are:

• Framesets and Splitters (Windows and Web)
• Tooltip support (Windows only)
• New window options (Windows only)
• New status bar functions (Windows, Motif and character mode)

Panther 4.50 also includes a sample application to demonstrate the use of the Frameset and Splitters feature. This
sample application also serves to illustrate how to use the TreeView, ListView and ImageList ActiveX controls.
See the section below entitled “The Frameset Sample Application” for further information.

The following document describes the new features.

Framesets and Splitters

A Splitter is a Microsoft Windows control that divides a window into a number of subareas, each of which is
populated separately. Each subarea is called a "pane". The movable dividing line between two panes is called
a "mullion".

In Panther, support for splitters is implemented by means of a special kind of screen called a frameset. The
number and configuration of the panes into which each frameset is divided is determined in the Panther editor
by placing special widgets called splitters on the frameset. Each pane is itself a Panther widget that has
properties associated with it. The most important property of a pane is the name of a screen that will be
rendered inside the pane at runtime. The screens associated with a frameset's panes are not displayed along
with the splitters in the Panther editor. They must be created and edited separately.

Creating And Editing Framesets

In the Panther editor a new frameset is created by choosing FileÆNewÆFrameset on the editor's main
menu. This will bring up a blank frameset. Such a frameset is much like an ordinary Panther screen, in that it
supports a similar set of properties, is stored in libraries, and is generally worked with in much the same way.
But a frameset can hold only two kinds of widgets: splitters and panes.

Splitter Widgets

A frameset is divided into multiple panes by placing splitter widgets on it. There are three kinds of splitter
widgets – vertical splitters, horizontal splitters and two-way splitters.

• A vertical splitter will divide the frameset into two or columns, and will be represented in the frameset

screen in the editor by one or more vertical mullions.
• A horizontal splitter will divide the frameset into two or more rows, and will be represented in the editor

by one or more horizontal mullions.
• A two-way splitter will divide the frameset into four panes, and will be represented in the editor by one

vertical and one horizontal mullion.

A splitter can be configured to divide the area it was placed in into further rows or columns by changing the
splitter's Number of Rows or Number of Columns property.

New Features for Panther 4.5
©2001 JYACC, Inc.

2

Placing a splitter in an empty frameset divides the whole frameset into panes. Subsequent splitter placements
in that frameset will necessarily have to be placed within previously defined panes. Such splitter placements
will divide the panes the splitter was placed in into smaller panes. That is to say, splitters can be nested.

Splitters are selected in the editor by clicking on one of the mullions that represents the splitter. A splitter can
also be selected from the widget list.

When a splitter widget is selected in the editor, the properties window is updated to display the properties
settable for splitter widgets.

The following are the properties for splitter widgets:

 IDENTITY
 Name
 Comments
 MEMO TEXT
 Memo1

 etc.

 GEOMETRY
 Rows

 Æ Row 1 Height
 Æ Row 2 Height

 etc.
 Columns

 Æ Col 1 Width
 Æ Col 2 Width
 etc.

 WEB OPTIONS
 No Border
 Spacing

 Col 1 Width
 Col 2 Width
 Etc.

 HTML OPTIONS
 Attributes

The Rows and Columns properties determine how many panes each splitter defines. These can have integer
values from 2 to 16. Changing this property will create or destroy panes associated with the splitter. Newly
created panes will be added to the right or below the existing panes. Likewise, panes destroyed by changes to
this property will be removed from the right hand side and from the bottom of the screen.

The height and width properties, for rows and columns respectively, will be used at runtime to render the
frameset. These properties can be set in the editor by dragging one of the mullions associated with a splitter, or
it can be entered in the properties window. The size properties are array-valued, with one occurrence for each
row or column. Note, however, that the height of the bottommost row, and the width of the rightmost column,
cannot be changed. These are computed by the sizes of the other rows or columns, and the height of the
container.

Like the other size-related properties in Panther, the height and width properties for splitter rows and columns
can be specified using a variety of units. The default is grid units. In many cases pixels will be the best unit to
use.

The Web Options and HTML Options are relevant to web deployment of framesets. See “Web Deployment of
Framesets” below.

New Features for Panther 4.5
©2001 JYACC, Inc.

3

Pane Widgets

Unlike other widgets, pane widgets are not explicitly created by Panther users. Pane widgets are implicitly
created when splitter widgets are placed on a Screen.

When a vertical or horizontal splitter is placed on an empty frameset, two panes are created. When another
splitter is placed in a previously defined pane, new panes are added. Previously defined panes are not
destroyed. Panes are added to the top and left, shifting existing panes to the right and down.

A pane widget is selected in the editor by clicking on a frameset screen that contains at least one splitter
widget. You can also use the widget list to select a pane.

Note that if a frameset contains at least one splitter, it might not be clear how to select the frameset itself.
Clicking on one of the mullions between two panes will select a splitter. Clicking on the background of the
frameset will select one of the panes. The frameset will be selected when it has focus, and none of the widgets
on the frameset screen is selected. A quick way to do that is to click on a pane, and then shift-click on the
same pane again. The first click selects the pane, and deselects everything else. The shift-click
deselects the pane, leaving the frameset itself selected. You can also select the frameset using the widget list.

Pane widgets display the following properties in the properties window when selected:

 IDENTITY

 Name
 Comments

 MEMO TEXT
 Memo1
 etc.

 FORMAT/DISPLAY
 Form Name

 WEB OPTIONS
 No Border
 Scrolling

 No Resize
 Margin Height
 Margin Width

 HTML OPTIONS
 Attributes

The Form Name property is used to designate which screen to render inside the pane at runtime. This can be
the name of any Panther screen, or the name of another frameset. It is possible to nest framesets within one
another.

The Web Options and HTML Options are relevant to web deployment of framesets. See “Web Deployment of
Framesets” below.

Frameset Properties

A frameset supports a set of properties much like that of an ordinary screen. When a frameset is selected in the
editor, the Properties window displays the following properties:

 IDENTITY

 Title
 Inherit From

 Comments
 Dialog

 Æ Keep In Frame

New Features for Panther 4.5
©2001 JYACC, Inc.

4

 Æ etc.
 3D

 Mnemonic Position
 Java tag
 MEMO TEXT
 Memo1

 etc.

 GEOMETRY
 Height

 Width
 Resizable
 Resize Function

 Startup
 Max/Min
 Grid Height

 Grid Width

 COLOR
 Color Type

 etc.

 FONT

 Font Name
 etc.

 FOCUS
 Entry Function
 Exit Function

 JPL Procedures
 Control Strings

 Menu Name
 Menu Script File

 DISPLAY
 System menu

 Title bar
 Pointer
 Icon

 Wallpaper Pixmap

 WEB OPTIONS
 Display Window

 HTML OPTIONS
Head Markup

 NOFRAMES Markup
 BROWSER OPTIONS
 JavaScript
 VBScript

 On Load
 On Unload

These properties are used in the same way as the corresponding properties of screens. The properties under the
Web Options heading and the HTML Options and Browser Options headings are relevant to web deployment
of framesets.

Many of the properties of screens aren't relevant to framesets. The corresponding properties of the screens
displayed in the frameset's panes would be the ones relevant at runtime.

The wallpaper and color properties deserves special mention. The specified wallpaper or color will only be
seen in an empty pane, that is, a pane that has no screen associated with it. A pane that has a screen associated
with it will display the background color or wallpaper of that screen.

New Features for Panther 4.5
©2001 JYACC, Inc.

5

Programming With Framesets

At runtime, the frameset and the screens displayed in its panes all act as sibling windows. Focus can move
from window to window within a frameset, and whatever other windows might be open, as among sibling
windows in a Panther application that doesn't use framesets. The frameset itself cannot normally get focus
after it has been opened.

Opening a frameset

A frameset is opened like any other screen. When a frameset is opened, it goes through the usual set of screen
entry operations (unnamed JPL, screen entry function, etc.) Note, however, that all of these operations take
place before the screens designated to be opened in the frameset's panes have been opened. This means that
processing associated with the frameset’s entry procedures cannot reference fields on the screens that will be
opened in the frameset's panes.

After the frameset's entry procedures, the screens designated to be opened in the frameset's panes will be
opened. They will be opened from bottom to top, and from right to left. So the pane in the lowest and
rightmost position will be populated first, and the pane in the topmost and leftmost position will be populated
last. Each screen opened in a pane will itself go through the normal screen entry events. The screens are
opened in the reverse or Panther's usual left-to-right, top-to-bottom order so that the screen in the upper left
corner will be the last screen opened and will be the one to retain focus. In this manner none of the screens
placed in the panes undergo two entry events while opening the frameset.

Once all of the frameset's panes have been populated by their designated screens, the screen in the topmost
and leftmost pane will gain focus. Focus will go to the first available field in that screen. Only at this point
will the keyboard stack be opened. Any logical keys ungotten by any of the screen entry procedures, including
that of the frameset itself will be read by the first screen to get focus.

Cursor movement and window management using framesets

If a frameset is the only window open, cursor movement will behave much as though the screens in each of the
panes were in separate sibling windows. Tabbing order in each pane will be governed by the usual rules. If
you want a TAB from a field in one pane to lead to a field in another pane, you will have to write a routine that
calls sm_wselect, and then perhaps sm_gofield to put focus where you want it.

When focus leaves one pane, the screen in that pane undergoes a screen exit event, with the K_HIDE flag set.
Likewise when focus enters a pane, the screen in that pane undergoes a screen entry event with the K_EXPOSE
flag set.

If a frameset is not the only screen open, things get more complicated. To understand how things work, it's
best to think in terms of the window stack, and to remember that the frameset itself is a window on the stack,
as are the screens in the frameset's panes.

When a frameset is first opened it is the active window while it opens the screens that are to populate its
panes. Imagining a simple scenario of opening a frameset with three panes, the sequence of entry and exit
events would be as follows:

• frameset enter (K_ENTRY)
• frameset exit (K_EXIT | K_EXPOSE)
• pane3 enter (K_ENTRY)
• pane3 exit (K_EXIT | K_EXPOSE)
• pane2 enter (K-ENTRY)
• pane2 exit (K_EXIT | K_EXPOSE)

New Features for Panther 4.5
©2001 JYACC, Inc.

6

• pane1 (K_ENTRY)

at this point the window stack would look like:

• pane1 (active)
• pane2
• pane3
• frameset

After its initial entry the frameset itself will not, under normal circumstances, get focus, or undergo entry or
exit events. Thus the frameset will tend to linger at the bottom of the window stack.

If the user clicks a button on the first pane that opens another window, a sibling to the frameset itself, the
following entry and exit events would occur:

• pane1 exit (K_EXIT | K_EXPOSE)
• otherwindow enter (K_ENTRY)

at which point the window stack would then look like this:

• otherwindow (active)
• pane1
• pane2
• pane3
• frameset

Let's suppose a user now clicks on pane3 in the frameset. The following entry and exit events would occur:

• otherwindow exit (K_EXIT | K_EXPOSE)
• pane3 entry (K_ENTRY)

and the window stack would end up looking like:

• pane3 (active)
• otherwindow
• pane1
• pane2
• frameset

Other much more complicated scenarios could be envisioned. Things would get very complicated in the case
where framesets are nested. In general, most people will probably not want to do anything on screen hide
events (K_EXIT | K_EXPOSE) for screens that are in framesets.

Closing framesets

A screen in Panther is typically closed in one of three ways:

• by the user clicking on the 'x' control on the screen's title bar
• programmatically, with the function sm_jclose
• by means of the logical key EXIT

A frameset is closed in the same manner.

New Features for Panther 4.5
©2001 JYACC, Inc.

7

Clicking on the 'x' control on the title bar will cause the logical key EXIT to be issued, and so the first and
third of these methods will be same.

When a screen gets the logical key EXIT from the key stack, it calls sm_jclose. So really all three of these
methods are fundamentally the same.

The function sm_jclose is one of those that implicitly operates on the screen that currently has focus. If the
screen that currently has focus is in a frameset, then a call to sm_jclose will close the whole frameset.

Closing a screen that is in a frameset will cause the whole frameset to be closed. The screens in the frameset
will all be closed, in the order in which they are found in the window stack. This list of screens includes the
screens in the panes of any other framesets that are nested in the frameset being closed. After all the screens in
all of the panes of the framesets have been closed, the framesets themselves will be closed. The outermost
frameset will always be the last to close.

As an example, consider the following scenario. The window stack looks like this:

• pane1 (active)
• pane2
• otherwindow
• pane3.1
• pane3.2
• pane3.3
• pane3 (nested frameset)
• frameset

(This means to indicate that pane3 in the frameset is itself a frameset, containing three panes. The panes in that
nested frameset are the ones designated 3.1, 3.2, and 3.3.)

If a call to sm_jclose is now issued, the window stack is reordered to place all the panes contained in the
frameset (including those in the panes of the nested frameset) on the top, followed by all the framesets.

• pane1 (active)
• pane2
• pane3.1
• pane3.2
• pane3.3
• pane3 (nested frameset)
• frameset
• otherwindow

And the screens will be closed in order, from the top down. Until the outermost frameset that the screen that
had been active when sm_jclose was called is closed.

When closing the screens contained in the frameset, normal screen events would occur, just as though a series
of sibling windows were being closed one after another. In this case, the event sequence would be:

New Features for Panther 4.5
©2001 JYACC, Inc.

8

• pane1 exit (K_EXIT)
• pane2 enter (K_ENTRY | K_EXPOSE)
• pane2 exit (K_EXIT)
• pane3.1 enter (K_ENTRY | K_EXPOSE)
• pane3.1 exit (K_EXIT)
• pane3.2 enter (K_ENTRY | K_EXPOSE)
• pane3.2 exit (K_EXIT)
• pane3.3 enter (K_ENTRY | K_EXPOSE)
• pane3 exit (K_EXIT)
• pane3 enter (K_ENTER | K_EXPOSE)
• pane3 exit (K_EXIT)
• frameset enter (K_ENTRY | K_EXPOSE)
• frameset exit (K_EXIT)
• otherwindow enter (K_ENTRY | K_EXPOSE)

Which would leave the window stack as:

 otherwindow (active)

The reordering of the window stack prior to closing the screens is not accompanied by screen events, except in
the unusual circumstance that sm_jclose is issued when a frameset has focus. Let's consider such a scenario.
If the window stack looks like:

• frameset
• pane1
• otherwindow
• pane2
• pane3

And sm_jclose is called, the window stack will be reordered to place all the screens in the frameset at the
top, followed by all the framesets contained in the outermost frameset. In this case, the following events would
occur:

• frameset exit (K_EXIT | K_EXPOSE)
• pane1 enter (K_ENTRY | K_EXPOSE)

The rest of the reordering, to place the frameset after all the screens in its panes, occurs without any screen
events taking place, and will leave the window stack as:

• pane1 (active)
• pane2
• pane3
• frameset
• otherwindow

And the screens will close, with CLOSE and EXPOSE events occurring as described in the previous scenario.

Note that this latter scenario is very unusual. Under normal circumstances a frameset will only gain focus
when it is first opened, and will not be in focus when user-written code is being executed. The only way to
force a frameset to gain and retain focus is by explicitly giving it focus with a call to sm_wselect or
sm_n_wselect.

New Features for Panther 4.5
©2001 JYACC, Inc.

9

Runtime properties

Screen and Frameset properties

Screens and framesets have a property called PR_FRAMESET that returns a handle to the frameset the screen or
frameset is inside, just as the PR_GRID property returns a handle to the grid a particular field is in. If a screen
or frameset is not in a frameset PR_FRAMESET returns "".

Additionally, screens and forms have a PR_SPLITTER property that returns a handle to the splitter that defines
the pane in which the form is contained. If the screen is not in a frameset, this property will return "".

Screens and forms also have a PR_PANE property that returns a handle to the pane that contains the form. If the
screen is not in a frameset, this property will return "".

Splitter Properties

A splitter will return PV_SPLITTER when PR_WIDGET_TYPE is queried.

The PR_SPLITTER_ROWS and PR_SPLITTER_COLS properties of splitter widgets are read-only at runtime.
Since these properties are read-only, you cannot change a frameset's pane configuration on the fly. To change
the number of subwindows in a frameset, you will have to nest framesets.

PR_SPLITTER_ROWS returns the number of rows in the splitter. This will be an integer from 1 to 16, but it
cannot be 1 if the number of columns is 1.

PR_SPLITTER_COLS returns the number of columns in the splitter. This will be an integer from 1 to 16, but it
cannot be 1 if the number of rows is 1.

The PR_SPLITTER_ROW_HEIGHT property gets or sets the height of each row. This is a multi-occurrence
property, indexed from 1 to PR_SPLITTER_ROWS. The height of the bottommost row cannot be set. It is
computed based on the sum of the other row heights and the size of the container.

The PR_SPLITTER_COL_WIDTH property gets or sets the width of each column. This is a multi-occurrence
property, indexed from 1 to PR_SPLITTER_COLS. The width of the rightmost column cannot be set. It is
computed based on the sum of the other column widths and the size of the container.

The PR_MEMBER property is an indexed property that will return handles for the panes in the splitter. The pane
in the first row, first column will have the index 1. The pane in the first row, second column will have index 2.
The pane in the second row, first column will have index PR_SPLITTER_COLS +1. In general the formula to
determine a pane’s index is:

 index = (row - 1) + PR_SPLITTER_COLS + column

PR_FRAMESET will return a handle to the frameset that the splitter is contained in.

If a splitter is contained in a pane defined by another splitter, the property PR_SPLITTER will return a handle
to that other splitter and the property PR_PANE will return a handle to the pane in which the splitter is
contained.

Pane Properties

The PR_PANE_FORM property of pane widgets can be changed at runtime. Changing the screen associated with
a pane at runtime should close the screen currently in that pane, and then open the newly specified screen in its
place. Clearing the PR_PANE_FORM property of a pane will leave the pane empty. Since issuing sm_jclose

New Features for Panther 4.5
©2001 JYACC, Inc.

10

will close the whole frameset, clearing the PR_PANE_FORM property of a pane is the only way to close a single
screen in a frameset.

The PR_PANE_ROW property gets the row number of the pane.

The PR_PANE_COL property gets the column number of the pane.

The PR_PANE_INDEX property gets the index of this pane. The indices are the same as those used by the
PR_MEMBER property of framesets. The JPL code

 index = mypane->pane_index

is equivalent to:

 index = (mypane->PR_PANE_ROW - 1) + \
 (@widget(mypane->PR_SPLITTER)->PR_SPLITTER_COLS + \

mypane->PR_PANE_COL

The PR_MEMBER property of a pane will return an object id for the pane's contents. This will either be the id of
a form (a screen or another frameset), or a splitter, or nothing.

The PR_FRAMESET property returns an object id for the frameset in which the pane is contained.

The PR_SPLITTER property returns an object id for the splitter that contains the pane.

Web Deployment of Framesets

If a frameset is brought up in a jserver, HTML to represent the frameset will be generated and sent to the
browser.

The properties in the Web Properties sections of the Properties window control various options relevant to
HTML generation of framesets.

Frameset Web Properties

Framesets support the NOFRAMES Markup property. The text entered here will be retured to the browser in
the event that the frameset is accessed by a browser that does not support frames. The value of this property is
indexed (like the JavaScript and VBScript properties). If no value is provided for the NOFRAMES Markup
property, the following text will be returned to browsers that do not support frames:

 This Page Requires Frames.

The NOFRAMES Markup property is accessible at runtime, its C constant name is PR_FRAME_NOFRAMES and
its JPL mnemonic is frame_noframes.

Splitter Web Properties

Splitter Widgets display the following properties under the WEB OPTIONS heading in the properties window:

No Border
Spacing
Row 1 Height
Row2 Height
…
Col 1 Width

New Features for Panther 4.5
©2001 JYACC, Inc.

11

Col 2 Width
…

The No Border property defaults to No. Hence by defaults borders will be shown. If No Border is set to Yes
the HTML output is FRAMEBORDER=”0”. The No Border property is referred to at runtime as
PR_FRAME_NOBORDER in C and as frame_noborder in JPL.

Spacing is the width of the mullions between panes. In MSIE this is the FRAMESPACING attribute. In Netscape
this is the BORDER attribute. Setting Spacing = 0 has the same effect as setting No Border = Yes. The
Spacing property is referred to at runtime as PR_FRAME_SPACING in C and as frame_spacing in JPL.

The height and width properties in the WEB OPTIONS section can be used to override the similar properties
in the GEOMETRY section. The latter are used for GUI display, and will be used for HTML generation as
well, unless height and width properties are explicitly specified in the WEB OPTIONS section.

There will be one height shown for each row, and one width for each column. If there is only one row, then no
heights will be shown, and if there is only one column, then no widths will be shown.

The WEB heights and widths can be either given as percentages or in pixels. They also accept the special
value *. Omitted entries default to *, which tells the browser to choose whatever size it wants. Typically it will
divide the available space equally among the regions specified with stars.

For example:

 Row 1 Height = 25%
 Row 2 Height =
 Row 3 Height = 25%
 Row 4 Height = *

will be output as ROWS=”25%,*,25%,*”. The browser will allocate half the available space to the two
specified rows, and divide the remaining space equally among the rows specified with stars. In this case, that
would result in four rows of equal size.

Heights and widths should either be given in percentages or in pixels. Do not mix units.

Pane Web Propeerties

Like Splitters, panes each have the No Border property. As noted above, it defaults to No. If set to Yes the 3-D
border around the pane may be removed (or it may not be, this is browser-dependent behavior). Setting No
Border to Yes for some panes and No for other panes can yield strange and unsightly results. It is
recommended that you use the Splitter-level No Border property if possible.

The Scrolling property supports three values: Auto, No and Yes. It defaults to Auto. If set to Auto, scroll bars
will appear only when needed. If set to No, scroll bars will never appear and if set to Yes scroll bars will
always appear. The Scrolling property is referred to at runtime as PR_FRAME_SCROLLING in C and as
frame_scrolling in JPL.

The Margin Height and Margin Width properties control the space between the splitter lines and the HTML
inside the pane. It defaults to 13 or 14 pixels. However, if you set one and not the other, the unspecified one
will default to 0. These are referred to at runtime as PR_FRAME_MARGIN_HEIGHT and
PR_FRAME_MARGIN_WIDTH in C and as frame_margin_height and frame_margin_width in JPL.

New Features for Panther 4.5
©2001 JYACC, Inc.

12

Tooltip Support

Tooltip support has been implemented for screens displayed on Microsoft Windows. A tooltip is a pop-up
containing a text message that appears next to a widget in response to a mouse hover event. A mouse hover
event occurs when the mouse pointer remains over a widget for approximately one-and-a-half seconds.
Tooltips can be specified for most widgets. The exceptions are lines, boxes, grid frames and tab decks.

Adding Tooltips in the Editor

The property Tooltip Text is found in the HELP category in the Properties Window in the editor. This is a
string valued property that simply holds the text to be shown in the tooltip for a widget. If no tooltip text is
specified for a widget, it will not display a tooltip at runtime. It is not possible to have a widget display an
empty tooltip.

Tooltip Text is not a multi-valued property. All the occurrences of an array will show the same tooltip at
runtime.

The Tooltip Text property can be changed at runtime. Its value in C is PR_TOOLTIP_TEXT and its JPL
mnemonic is tooltip_text.

Controlling Tooltip Appearance

Tooltip appearance is, in general, determined by Windows desktop settings. There is, however, a property
called tooltip_style (PR_TOOLTIP_STYLE in C) that can be used to get and set the Windows tooltip style
bits.

The tooltip_style property is of application scope. It applies to the tooltips associated with all widgets and
to the tooltips associated with the toolbar.

The following table lists the bits that can be set with the tooltip_style property, the Windows bits they
correspond to, and the values so defined.

Panther bit Windows bit Value
PV_TOOLTIP_ALWAYS TTS_ALWAYSTIP 0x01
PV_TOOLTIP_NOPREFIX TTS_NOPREFIX 0x02
PV_TOOLTIP_NOANIMATE TTS_NOANIMATE 0x10
PV_TOOLTIP_NOFADE TTS_NOFADE 0x20
PV_TOOLTIP_BALLOON TTS_BALLOON 0x40

Some of these bits are relevant only to the latest versions of the Windows operating system. Other bits are
undefined, but may be defined in future releases of Windows.

PV_TOOLTIP_ALWAYS is set by default. This means that the tooltip will be displayed even when the Panther
application is not active. Clearing this bit will prevent tooltips from being displayed when the Panther
application is inactive. However, tooltips will always display on an inactive form within an active Panther
application.

PV_TOOLTIP_NOPREFIX is off by default and is irrelevant to Panther applications.

PV_TOOLTIP_NOANIMATE and PV_TOOLTIP_NOFADE are off by default. They are used to override Windows
2000 desktop settings. If a user’s desktop is set up with the tooltip animation and fading features enabled
tooltips will display those behaviors. Setting these bits will override the desktop preferences and turn off
animation or fading, respectively, for tooltips in the Panther application.

New Features for Panther 4.5
©2001 JYACC, Inc.

13

PV_TOOLTIP_BALLOON is off by default. It is defined only in Windows 2000 or if Microsoft Internet Explorer
5 is installed on an earlier version of Windows. Setting this bit will cause tooltips to be displayed in a
“balloon,” like the voice balloon used in comic strips, rather than the usual plain rectangle.

Examples of use:

This JPL code will turn off the TOOLTIP_ALWAYS bit and prevent tooltips from being displayed for Panther
widgets when the Panther application is not active:

 @app()->tooltip_style = @app()->tooltip_style & ~ PV_TOOLTIP_ALWAYS

This will set both the BALLOON bit and the NOANIMATE bit:

 @app()->tooltip_style = @app()->tooltip_style | \

PV_TOOLTIP_BALLOON | PV_TOOLTIP_NOANIMATE

New Features for Panther 4.5
©2001 JYACC, Inc.

14

New Window Styles

Panther 4.5 supports some new options for opening windows under the Windows operating system. Previously
windows could either be opened as MDI windows, or as dialogs. An MDI window cannot be moved outside
the MDI frame. A dialog can be moved outside the MDI frame, but blocks access to the MDI frame – when a
dialog is opened, focus cannot be given to any MDI windows, nor can the MDI menu be accessed until the
dialog is closed.

The new options are implemented by the properties Keep in Frame and Topmost. These are screen-level
properties and are found under the IDENTITY section in the Properties Window.

The Keep In Frame Property

The Keep in Frame property is a subproperty of the Dialog property. If a window is specified as a dialog, the
new option doesn’t apply.

The default value for Keep in Frame is Yes. A non-dialog window with Keep In Frame set to Yes will behave
exactly like the MDI windows Panther has always supported. Setting Keep In Frame to No will make the
screen open as a non-MDI window, that is not a modal dialog. Such a screen can be moved outside the MDI
frame, but does not block access to the MDI windows, or to the MDI’s menu bar.

When Keep in Frame is set to No, two further properties appear in the Properties window. These are Keep On
Top and Parent Window. The Parent Window property is relevant only to windows that have Keep in Frame
set to No, and Keep On Top also set to No. The Parent Window property will not appear in the Properties
window if the Keep On Top property is set to Yes.

Unlike dialogs, screens that have Keep in Frame set to No can be minimized or maximized. The behavior
when they are minimized is determined by the Parent Window property.

Windows outside the MDI frame do not appear in the Windows menu list in the standard MDI application
menu. And they cannot be accessed by function keys like Ctrl+F6. They can, however be accessed by
Windows shortcuts such as Alt+F6.

The Parent Window Property

Windows that have the Keep in Frame property set to No and are not designated as Topmost windows can
either have no parent or they can be parented by the MDI frame. If the parent is designated as None then the
screen can be hidden by the MDI frame when the latter is given focus. If the screen is designated as parented
by the MDI frame, then the screen will always appear on top of the MDI frame. In this case, even if focus is
given to the MDI frame, or one of the windows inside the MDI frame, the non-Keep in Frame window will
always be displayed, and will not be obscured behind the MDI frame. Note that a non-Keep in Frame window
whose parent is the MDI frame can still be hidden behind other windows that are not part of the Panther
application. To designate that a window should never be obscured behind another window, whether that other
window be part of the Panther application or not, use the Keep on Top property.

When a non-Keep In Frame window is minimized, the location of the icon representing ot depends on the
window’s parent. A non-Keep In Frame window with no parent will be represented by an item on task bar. A
non-Keep in frame window whose parent is the MDI frame will be represented by an icon in the desktop’s
lower left, just above the taskbar.

The Keep On Top Property

A non-Keep in Frame window can be designated as a Topmost window by setting the Keep On Top property
to Yes. A Topmost window will generally be rendered on top of any other window on the desktop, no matter

New Features for Panther 4.5
©2001 JYACC, Inc.

15

which application is active. The only windows that can be placed on top of a Topmost window are other
Topmost windows.

Runtime Access to the Window Options Properties

At runtime the properties PR_KEEP_IN_FRAME, PR_KEEP_ON_TOP, and PR_WINDOW_PARENT are read only.
Once a window has been opened, its status with regard to these settings cannot be changed.

New Features for Panther 4.5
©2001 JYACC, Inc.

16

The Frameset Sample Application

In the directory $SMBASE\samples\frameset there are three files: a .lib file, a database file and a
README file. These constitute the sample application provided to illustrate the use of framesets. This
application uses ODBC to access its database. To run the frameset sample application you must have the
ODBC database driver installed.

This application also provides examples of code to manipulate a few common ActiveX controls: the TreeView
control, the ListView control and the ImageList control. The code for all the application’s functionality is in
the screens that are found in the library Biblio.lib. The JPL that manipulates the ActiveX controls has been
commented and written in such a way that it can easily be re-used.

See the samples\frameset\README file for more information, regarding installing and running the frameset
sample.

New Features for Panther 4.5
©2001 JYACC, Inc.

17

New Status Bar Functions

This section describes several new functions that can be used to create and manipulate subsections of the status bar.

New Features for Panther 4.5
©2001 JYACC, Inc.

18

sm_sb_insert
Inserts a status bar section

int sm_sb_insert(int sectno, int type, int length);

sectno The index, in the array of sections, of the section to be added.

type The type of the new section, one of the following constants:

 SBS_TEXT
 SBS_SEPARATOR
 SBS_SYSTEM_TIME
 SBS_ELAPSED_TIME
 SBS_OVERLAY
 SBS_CAPS
 SBS_NUM
 SBS_SCROLL

length The length of the section to be added.

Returns • The section number given to the new section
 -1 Failure

Description This function inserts a new section on the status bar. When the status bar is initially created it

contains a single section of type SBS_MSGLINE. This initial section is the one written to by the
various Panther functions that send messages to the status line. The initial SBS_MSGLINE section
occupies the 0 position in the array of status bar sections. Newly added sections must be placed to
the right of the initial section, hence the value of the first argument to sm_sb_insert cannot be 0. If
you supply a negative value to the first parameter, the newly added section will be the rightmost, no
matter how many sections already exist.

 The newly added section must be one of several pre-defined types, as specified by the second

argument to sm_sb_insert. You cannot add a second section of type SBS_MSGLINE. Hence, the
valid values for the second argument are as follows:

SBS_TEXT This type of section is used to display text. Text is written to such a

section using the funtion sm_sb_settext.

SBS_SEPARATOR This type of section is used to mark a boundary between two other

sections. In character mode, it is equivalent to SBS_TEXT, and you can
write whatever character you wish to it, to mark the section boundary. In a
GUI SBS_SEPARATOR sections aren’t displayed in a recessed style.

SBS_SYSTEM_TIME This type of section displays the system time. The format for the time

displayed is set by the function sm_sb_format. The default format shows
the time in a 12-hour clock, with an AM/PM indicator.

SBS_ELAPSED_TIME This type of section displays the time elapsed since the section was

created. The format for the time displayed is set by the function
sm_sb_format. The default format shows the time in the form
’00:00:00’.

New Features for Panther 4.5
©2001 JYACC, Inc.

19

SBS_OVERLAY This type of section displays the state of Panther’s insert/overstrike mode.
The length parameter is ignored if this is the type specified. In character
mode the length defaults to 3, and will either display ‘OVR’ or be blank.
In a GUI the ‘OVR’ indicator may be grayed out rather than blanked.

SBS_CAPS This type of section displays the CAPS LOCK state of the keyboard. The

length parameter is ignored if this is the type specified. This type is not
supported in character mode.

SBS_NUM This type of section displays the NUM LOCK state of the keyboard. The

length parameter is ignored if this is the type specified. This type is not
supported in character mode.

SBS_SCROLL This type of section displays the SCROLL LOCK state of the keyboard.

The length parameter is ignored if this is the type specified. This type is
not suported in characted mode.

Other than for SBS_TEXT and SBS_SEPARATOR, you can have only one section of each type on the
status bar. Calls to sm_sb_insert that specify a type that already exists on the status bar will have
no effect. You can insert any number of SBS_TEXT or SBS_SEPARATOR sections.

The length parameter is the length, in characters, of the section to be added. The length specified
should be greater than or equal to the lenth of any text that might be placed in that section. This
parameter is ignored for some section types, as noted above.

Note that the length of the status bar as a whole remains constant, and that the message line section
initially occupies all of it. In Motif, the message line section is always 255 characters long, so any
sections placed after it will appear displaced by 255 character positions. As a result, in Motif sections
added to the status bar will probably not be visible unless the window containing the status bar is
very wide. To compensate for this you can, in Motif, add a trailing SBS_SEPARATOR section that’s
wide enough to force the section to the right of the message line section to become visible.

Since in the GUIs the screen space allocated to status line sections is font-dependent, you may need
to experiment with different lengths to get the status line sections to appear the way you want them.

See Also sm_sb_delete, sm_sb_format, sm_sb_gettext, sm_sb_settext

New Features for Panther 4.5
©2001 JYACC, Inc.

20

sm_sb_delete
Deletes a status bar section

int sm_sb_delete(int sectno);

sectno The number of the section to be deleted.

Returns 0 Success
 -1 Failure

Description This function deletes a section of the status bar as specified by its index in the array of staus bar

sections. The initial section, the message line, always has section number 0 and cannot be deleted.
Hence, the argument to this function must always be >=1.

New Features for Panther 4.5
©2001 JYACC, Inc.

21

sm_sb_format
Sets a format string for a status bar section

int sm_sb_format(int sectno, char* format)

sectno The number of the section for which to specify a format string.

format A format string for a section.

Returns 0 Success
 -1 Failure

Description This function sets the format string for a status bar section. This is relevant only for sections of type

SBS_SYSTEM_TIME and SBS_ELAPSED_TIME, as descibed above.

 The second argument, format, represents a format string. Valid date/time format strings are

described in the documentation for the function sm_sdtime. Note that an SBS_ELAPSED_TIME
section displays a clock that starts at midnight when the section is created. So a format string for a
section of that type should be chosen so that it is meaningful in that context.

New Features for Panther 4.5
©2001 JYACC, Inc.

22

sm_sb_gettext
Get contents of a status bar section

char* sm_sb_gettext(int sectno);

sectno The number of the section being queried.

Returns • The section’s contents
 -1 Error

Description This function gets the contents of a status bar section. The text returned is as shown on the status bar,

and may differ from the text set with sm_sb_settext if that text contained formatting tokens.

New Features for Panther 4.5
©2001 JYACC, Inc.

23

sm_sb_settext
Set contents of a status bar section

int sm_sb_settext(int sectno, char* text);

sectno The number of the section to update

text The text to place in that section

Returns 0 Success
 -1 Failure

Description This function assigns contents to a section of the status bar. The text specified as the second argument

to this function may contain formatting tokens such as %A and %K. See the section entitled “Providing
Status Line Help Text” in the Editors Guide and the description of the JPL command msg for
descriptions of the valid formatting and key value display tokens.

	Framesets and Splitters
	Creating And Editing Framesets
	Programming With Framesets
	Runtime properties
	Web Deployment of Framesets

	Tooltip Support
	Adding Tooltips in the Editor
	Controlling Tooltip Appearance

	New Window Styles
	The Keep In Frame Property
	The Parent Window Property
	The Keep On Top Property
	Runtime Access to the Window Options Properties
	The Frameset Sample Application

	New Status Bar Functions
	sm_sb_insert
	sm_sb_delete
	sm_sb_format
	sm_sb_gettext
	sm_sb_settext

