
JAM 7

JAM/ReportWriter Developers
 Guide

April 1996

This software manual is documentation for JAM/ReportWriter 7. It is as accurate as possible at this time;
however, both this manual and JAM/ReportWriter itself are subject to revision.

JAM is a registered trademark and JAM/ReportWriter are trademarks of JYACC, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a trademark of Electronic Book Technologies.

SYBASE is a registered trademark and SQLServer is a trademark of Sybase, Inc.

Windows is a trademark and Microsoft is a registered trademark of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec-
tive owners, and they are used for identification purposes only.

Send suggestions and comments regarding this document to:
Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038
(212) 267–7722

 1996 JYACC, Inc.
All rights reserved.
Printed in USA.

i

Table of Contents

About this Guide vii.
Conventions viii.
JAM Documentation viii.

Chapter 1 Overview of ReportWriter 1.
Authoring Environment 1.

Editor Extensions 2.
Creating a Report 3.

Laying Out the Report 4.
Defining the Report Structure 12.
Testing the Report 16.

Report Definition: A Composite View 17.
Automatic Calculations 19.
Modular Architecture 19.
Cross-Platform Portability 19.
Automatic SQL Generation 20.
Running Reports 20.

Chapter 2 Creating Reports with the Report Wizard 21.
Invoking the Report Wizard 21.
Report Types 23.

ii JAM/ReportWriter 7 Developers Guide

Record-by-Record 23.
Column 24.
Row 25.
Graph 26.
Matrix 27.
Address Labels 28.

Report Wizard Dialogs 29.
Selecting Report Type 30.
Choosing Data 31.
Grouping Data 32.
Including Totals and Graphs 35.
Finishing Up 37.

How It Looks 39.
Layout Window 39.
Report Structure Window 41.
Property Settings 42.

Including Graphs 43.
Customizing Wizard Reports 45.
Troubleshooting 46.

Creating the Repository 46.
Using Multiple Table Views 46.
Adding the Wizard Prototype to the Repository 46.
Using a Read-Only Repository 47.

Chapter 3 Defining Report Layout 49.
Creating Layout Areas 51.
Managing the Layout Window 51.
Editing Layout Area Properties 52.
Populating Layout Areas 53.

Copying Widgets to a Layout Window 55.
Positioning Widgets 56.

Using Fonts 56.
Setting Fonts 57.
Defining Font Aliases 57.

Chapter 4 Building the Report 59.
Report Structure Window 59.

Node Classes and Types 62.
Node Hierarchy 63.

Table of Contents iii

Editing the Report Structure 64.
Editing Node Properties 66.
Viewing Node Links 68.

Defining a Report 69.
Named and Unnamed Reports 69.
Report Parameters 69.

Setting Page Format 70.
Page Format Properties 71.
Resetting Page Format 71.

Connecting to a Database 72.
Fetching Report Data 73.

Using Database Data 73.
Fetching Bundle Data 76.
Using a Custom Function 77.
Outputting Detail Data 77.

Creating Groups 77.
Sorting Data 79.
Defining Groups 79.
Controlling Break Field Output 80.
Outputting Group Headers and Footers 81.
Outputting Summary Data Only 83.
Grouping All Report Data 84.

Invoking Subreports 84.
Setting Subreport Composition 85.
Using Caller Settings 86.

Calling Functions 88.
Processing One-Time Events 89.
Building Modular Reports 90.

Invoking External Report Files 90.
Including Report Files 90.
Included Versus External Files 92.

Chapter 5 Calculating Report Data 93.
Outputting Derived Values 93.

Totaling 96.
Copying 99.
Collecting 100.
Displaying Page Numbers 102.
Viewing Property Links 103.

iv JAM/ReportWriter 7 Developers Guide

Adding Computed Values 104.
Using Call Nodes 105.

Calculating Widget Output 105.
Controlling Report Execution 109.
Transferring Data from a Report 111.

Grouping Data on Computed Break Fields 112.

Chapter 6 Refining the Look 115.
Controlling Pagination 115.

Allowing Detail Page Breaks 116.
Controlling Group Pagination 116.
Keeping Subreport Output Together 118.
Forcing Page Breaks 118.

Inserting Blank Pages 118.
Generating Title and Trailer Pages 118.
Positioning Output 120.
Reducing White Space 121.

Shrinking Layout Areas 122.
Consolidating Blank Space 126.

Chapter 7 Running Reports 129.
Running Reports from the Report Menu 130.

Viewing Reports Onscreen 130.
Printing Reports 131.

Running Reports Outside the Editor 135.
Defining Invocation Options 136.
Supplying Arguments 139.

Creating Interactive Reports 139.
Debugging Reports 142.

Chapter 8 Library Functions 143.

Chapter 9 Utilities 147.

Appendix A Upgrading To ReportWriter 7 157.
Developing Reports 157.

Layout Window 158.
Report Structure Window 158.
Format and Processing Specifications 159.

Table of Contents v

Converting Existing Reports 160.
Included Files 160.
Widget Name Extensions 161.
Calling Sequences 161.
Errors 161.

New Features in ReportWriter 7 162.

Appendix B Vbizplus Database 163.
Vbizplus Schema 164.

Appendix C Device Configuration Files 173.
File Format 174.
Keywords 174.

Appendix D Output Procedures 179.
Arguments 179.
Return Values 180.
Invoking the Output Procedure 180.

Index 181.

vii

About this Guide
JAM/ReportWriter is an add-on to JAM that lets you define and produce reports
that run with a JAM application or independently. This manual is aimed at
first-time users and more experienced users who have specific questions. It
assumes that you are already familiar with JAM and especially the JAM editing
environment.

If you are new to JAM, you should first refer to the JAM documentation set. In
particular, you can ground yourself in the fundamentals of JAM development by
reading this components:

� Getting Started contains a tutorial that guides you step-by-step through
creation of a JAM application. Refer to page 21.

� Chapter 1 in the Application Development Guide, “JAM Development
Overview,” describes JAM components and the development process.

� Editors Guide describes the screen editor components and the screen and
widget properties.

If you are upgrading from earlier versions of ReportWriter, refer to Appendix A for
information on running the upgrade utility rw6to7 and the new features in
ReportWriter 7.

Conventions

viii JAM/ReportWriter 7 Developers Guide

Conventions

The following typographical and terminological conventions are used in this guide:

Monospace (fixed-spaced) text is used to indicate:

� Code examples.

� Words you’re instructed to type exactly as indicated.

� Filenames, directories, library functions, and utilities.

� Error and status messages.

Uppercase, fixed-space font is used to indicate:

� SQL keywords.

� Mnemonics or constants as they appear in JAM include files.

Italicized helvetica is used to indicate placeholders for information you supply.

Items inside square brackets are optional.

One of the items listed inside curly brackets needs to be selected.

Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

Italicized text is used to indicate defined terms when used for the first time.

JAM Documentation

The JAM documentation set includes the following guides and reference material:

Read Me First — Consists of three sections:

� What’s New in JAM — Briefly describes what’s new in JAM 7.

� Installation Guide — Describes how to install JAM on your specific platform
and environment.

� License Manager Installation — Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

expression

KEYWORDS

numeric-value

[option-list]

{x | y}

x ...

new terms

JAM Documentation

About this Guide ix

Getting Started — Contains useful information for orienting you to JAM. Includes
a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guide — Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen editor, screen wizard, menu
bar editor, and styles editor. The Editors Guide is also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor.

Application Development Guide — Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repository, hook functions, and menu bars,
as well as sections on the SQL executor, SQL generator and the transaction
manager.

Language Reference — Describes JPL, JAM’s proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti-
cally.

Database Guide — Instructions for using JDB, JYACC’s prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver.

Configuration Guide — Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys
and input/output. Also includes information on GUI resource and initialization
files.

Master Index and Glossary — Provides an index into the entire documentation set
and a dictionary of terms used in the documentation set. This is in addition to the
indexes in the individual volumes.

Upgrade Guide — Online only. Information for upgrading from JAM 5.

JAM’s documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynaTextTM browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
DynaText’s read-only browser from the command line or by clicking on the
DynaText icon. For instructions on using DynaText, request Help while you have a
browser window open.

Online
Documentation

JAM Documentation

x JAM/ReportWriter 7 Developers Guide

The following information is also provided with your JAM installation:

� Database Driver Notes — JAM 7 has database drivers for most popular
relational database engines, as well as JDB, JAM’s proprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guide; others are included separately.

� Online help — This guide and the JAM Editors Guide is provided in online
form through the DynaText browser on GUI platforms. It can be accessed by
choosing Help from the screen editor. For instructions on using DynaText,
request Help while you have a browser window open.

� Online README file.

JYACC provides the following product support services; contact JYACC for more
information.

� Technical Support

� Consulting Services

� Educational Services

Collateral
Documentation

Additional Help

1

Overview of
ReportWriter

JAM/ReportWriter is a report authoring tool that is completely integrated into
JAM’s authoring and runtime environment. This chapter offers an overview of the
editing tools that you use to create reports. It also describes creation of a simple
report. The last sections briefly describe other important ReportWriter features.

Authoring Environment

ReportWriter uses JAM’s screen editor to create reports. You can move from
screens to reports during the same editing session, using the same tools to create
and test an entire application. For detailed information about the screen editor,
refer to the Editors Guide.

The report authoring environment is integrated within the screen editor to include
access to these JAM development features:

� Wizard-generated reports — Use the report wizard to create the report types
most often in demand: column, record-by-record, row, matrix, and reports that
output address labels. The wizard creates finished-looking reports that you can
use straight away, or that you can easily edit for further enhancements.

11

Authoring Environment

2 JAM/ReportWriter 7 Developers Guide

� Repositories — Because ReportWriter and JAM share the same repositories,
it’s easy to maintain consistency among reports and applications.

� Multiple font support — Report output can be set to any printing font that your
platform supports, including PostScript and TrueType fonts. Combine different
fonts and font sizes along with italics, bold and underline on a widget-by-wid-
get basis. The graphical editor lets you immediately evaluate font selections as
you make them.

� Graphs and graphics — Display report output as bar and pie graphs, or in any
of the other graph formats that JAM supports. You can also include scanned
input such as photos, or computer-generated drawings.

Editor Extensions

JAM’s screen editor is customized and extended for ReportWriter:

� The File⇒ New and File⇒ Open menus include a Report option:

• New⇒ Report invokes a message asking whether to use the report wizard
to create a report.

• Open⇒ Report invokes a dialog that initially shows files with the default
report file extension *.jrw.

� The Properties window has two categories that are unique to ReportWriter:

• Inclusions contains report file properties—JPL Procedures and Report
Files.

• Composition contains properties that are unique to report widgets and
nodes.

� Create menu options and equivalent tool box icons vary, depending whether a
report or screen has focus. The Create menu for reports contains a subset of
JAM widget types, such as graph and line widgets. The menu also lists several
widget types that are specific to reports.

� The View menu contains a Report Structure option that opens the report
structure window. The report structure schematically depicts specifications for
report generation.

� The Options menu contains a Drag Screen Size option. When this option is
enabled, resizing a screen conforms to previous JAM behavior. When it is
disabled, you can resize a report layout viewport and leave the report’s
Geometry properties unchanged.

Creating a Report

1 Overview of ReportWriterChapter 3

� The menu bar contains a Report menu for report-specific options such as Page
Setup.

Creating a Report
You create a report by selecting from the File menu New⇒ Report. ReportWriter
asks whether you want to use the report wizard:

For information about using the report wizard, refer to the next chapter (page 21).
To build a report manually, choose No. When you make this choice, ReportWriter
opens an unnamed report file and displays its layout window:

The layout window is one of two editing windows that you use to build a report.
The second window shows the report structure and is opened by choosing
View⇒ Report Structure. Both windows offer complementary views into the report
definition:

Layout window
Defines the format and content of report output. It typically contains one or more
layout areas, named spaces whose contents are output at runtime. A layout area is

Creating a Report

4 JAM/ReportWriter 7 Developers Guide

invoked through a print node in the report structure. The timing and sequence of
the layout area’s output depends on execution of its print node.

Report structure window
Schematically shows how a report executes. Stages of report execution are de-
picted in a hierarchy composed of nodes. The topmost node defines a report; when
this report runs, all nodes below and subordinate to it execute in top-down order.

Laying Out the Report

The layout window typically contains several layout areas that define different
components of a report’s output—for example, detail data, column headings, page
header and footer, and group subtotals. A layout area outputs data through the
widgets that populate it. Each widget’s properties determine the source and format
of its data; the widget’s position within the layout area determines where that
output appears in relation to other output from the same layout area.

Most report output is generated through two widget types:

� dynamic output widgets get their data at runtime—for example, from a
database or from other widgets.

� static output widgets have their data set in the editor; their data remains
constant.

For example, the following report outputs order information and contains three
elements—a page header, detail output, and page footer:

output widget types

Creating a Report

1 Overview of ReportWriterChapter 5

page header

page footer

detail data

Figure 1. Report whose output is composed of page header and footer data, and detail data.

Output for each of these elements is defined in its own layout area. The following
sections show how to create each of these layout areas.

Note: To reproduce this sample report, open the vbizplus.dic repository, which
is part of the JAM/ReportWriter distribution.

Detail data is typically derived from a database; the data is output through dynamic
output widgets whose database properties specify the source of their output. You
can easily populate a detail layout area by copying widgets from an open reposito-
ry whose entries were imported from a database; for more information about im-
porting database tables into a repository, refer to page 59 in the Editors Guide.

This report’s detail section is output through a layout area whose widgets are
copied from the vbizplus.dic repository. Creating this layout area is a two-step
process:

� Define the layout area.

� Populate the layout area by copying widgets from the open repository.

Define the detail’s layout area:
1. Give the layout window focus.

2. Choose Create⇒ Layout Area or the corresponding toolbox button.

Detail Layout

Creating a Report

6 JAM/ReportWriter 7 Developers Guide

3. Point and click where you want the new area to appear in the layout window.

ReportWriter creates an unnamed layout area widget, which defines the area
above it:

Note: You can locate a layout area anywhere within the layout window without
regard to its actual output when the report is generated.

4. Name the layout area:

• Select the layout area widget.

• Give focus to the Properties window.

• Under Identity, set the Name property to data.

Creating a Report

1 Overview of ReportWriterChapter 7

Copy repository widgets into the layout area:
1. Open the vbizplus.dic repository.

2. Open two repository screens: orders and order_items.

3. Copy these widgets into the data layout area (either drag and drop or copy
and paste):

• From orders:

distrib_id, order_num, order_date

• From order_items:

 price, qty, and link widget K1order_items

ReportWriter automatically converts all copied widgets (except the link
widget) into dynamic output widgets.

4. Move the link widget below the layout area widget, near the bottom of the
layout window. Widgets that are outside a defined layout area cannot output
any data.

Creating a Report

8 JAM/ReportWriter 7 Developers Guide

5. Rearrange and realign the other copied widgets on the same row—from the
Edit menu, use Align⇒ Bottom and Space⇒ Horizontal.

6. If desired, edit the widgets’ properties to change their format, size, and font.
For example, you can set order_date’s Format Type property to DE-
FAULT DATE.

7. If necessary, close up unnecessary white space within the layout area:

• Select and drag the output widgets closer to the top of the layout area.

• Drag the layout area widget closer to the output widgets.

The layout window should look like this:

The page header output shown earlier contains several static output widgets that
contain column headings, a static output widget that contains the report title, and a
dynamic output widget that contains the system date.

Creating this layout area is two-step process:

� Define a layout area.

� Populate the layout area by creating widgets.

Define the page header’s layout area:
1. Give the layout window focus.

2. Choose Create⇒ Layout Area or the corresponding toolbox button.

Page Header
Layout

Creating a Report

1 Overview of ReportWriterChapter 9

3. Point and click below the data layout area.

4. Name the new layout area page_header.

5. If necessary, resize the layout area by dragging the layout area widget up or
down.

Create the column headings and report title:
1. Give the layout window focus.

2. Choose Create⇒ Static Output or the corresponding toolbox button.

3. Create the widget by pointing and clicking in the page_header area.

4. Edit the widget’s Label property—for example, Distrib ID for the widget
above distrib_id’s output.

5. Repeat steps 2–5 for each column heading and the report’s title.

6. Position the widgets as necessary.

7. If desired, edit the widgets’ properties to change their format, size, and font.
For example, the widget that contains the report’s title has its Bold property set
to Yes and its Font Size property set to 14.

Creating a Report

10 JAM/ReportWriter 7 Developers Guide

Create a date widget:
1. Choose Create⇒ Dynamic Output or the corresponding toolbox button.

2. Create the widget by pointing and clicking in the page_header area.

3. Set these properties under Format/Display:

Date Formatting = Date/Time
Format Type = DEFAULT DATE

If desired, edit other properties. For example, you might want this widget to
have the same font size and attributes as the report title.

4. Align the widget and the report title on the same row.

Finally, create a line widget below the column headings. The layout window now
contains two layout areas that look like this:

Creating a Report

1 Overview of ReportWriterChapter 11

The page footer output shown earlier contains two widgets: a static output widget
whose Label property is set to Page; and a widget that outputs the current page
number.

To define this output:

� Create a layout area below page_header and set the name of the layout area
widget to page_footer.

� Create a static label and set its Label property to Page.

� Create a page number widget.

Create a page number widget:
1. Choose Create⇒ Dynamic Output or the corresponding toolbox button.

2. Create the widget by pointing and clicking in the page_footer area.

3. Under Composition, set the widget’s Value property to Page Number.

4. Close up the space between this widget and the static label and align them
horizontally.

The finished layout window should look like this:

Page Footer
Layout

Creating a Report

12 JAM/ReportWriter 7 Developers Guide

Defining the Report Structure

While layout areas define the physical layouts used by a report, specifications for
report generation are defined in the report structure. To view a report’s structure
window, choose View⇒ Report Structure. A new report has this empty structure:

The initial structure begins with an unnamed report node. This node and the nodes
connected to it define the report. Through their properties, each one defines an
aspect of the report or an action performed during execution. For more about node
types, refer to page 62.

To generate the report shown in Figure 1, you need to modify this structure to
include these nodes:

Creating a Report

1 Overview of ReportWriterChapter 13

� Print nodes that output the page header and footer data.

� A detail node that specifies how the report gets its data.

� A print node that outputs detail data.

� A group node that specifies to group data for each distributor ID.

Print page header and footer data:
1. Give focus to the report structure window.

2. Choose Create⇒ Print or the corresponding toolbox button.

3. Click on the empty page header node (labeled Header).

ReportWriter creates a print node directly below the page format node, which
replaces the empty page header:

Clicking on a node indi-
cator brings the Proper-
ties window forward

4. Bring the Properties window forward by double-clicking on the indicator to
the right of the new print node.

5. Under Identity, set the print node’s Area property to page_header: either
select this layout area from the drop-down list, or enter the name directly.

6. Choose Create⇒ Print or the corresponding toolbox button.

7. Click on the empty footer node.

ReportWriter replaces the empty footer node with a print node.

8. Set this print node’s Area property to page_footer.

The report structure now contains print nodes for page header and footer output:

Creating a Report

14 JAM/ReportWriter 7 Developers Guide

Fetch data from a database:
A report relies on the structure’s detail node to fetch data. Detail node properties
specify how the report fetches its data; the print node attached to a detail node
specifies how this data is presented.

1. Choose Create⇒ Detail or the corresponding toolbox button.

2. Click on the page format node. ReportWriter inserts a detail node beneath the
page format node:

The detail node’s Data Source property (under Identity) is initially set to TM View.
At runtime, this setting specifies that JAM’s transaction manager generates the
SQL needed to fetch the report data. A report created by the report wizard or built
from repository components like this one contains the table views and link widgets
required by the transaction manager.

Creating a Report

1 Overview of ReportWriterChapter 15

To make sure that the fetched data is sorted appropriately, set the root table view’s
Sort Widgets property:

3. Open the Widgets list window (View⇒ Widget List) and select the orders
table view widget.

4. Under Database, set the Sort Widgets property to these widget names:

distrib_id
order_num
order_date

Print detail data:
1. Choose Create⇒ Print or the corresponding toolbox button.

2. Click on the detail node.

ReportWriter creates a print node directly below the detail node.

3. Set this print node’s Area property to data.

The report structure now contains a print node for outputting its detail data:

Group report data:
1. Choose Create⇒ Group or the corresponding toolbox button.

2. Click on the detail node.

ReportWriter creates a group node directly below the detail node.

3. Under Identity, set this group node’s Break On property to distrib_id. This
property specifies how to group data at runtime—in this case, to generate a
group for each distrib_id value.

Creating a Report

16 JAM/ReportWriter 7 Developers Guide

4. Under Composition, set the Print Break Value property to First Use Only. This
setting ensures that only the first instance of each distrib_id value is
output.

The report structure now contains a group node for grouping report data on
distrib_id:

Testing the Report

The editor has its own viewer, which you can use to view report output at any stage
of the editing process. To test the report built in previous sections:

1. Open the vbizplus database.

2. Choose File⇒ Test Mode or the corresponding toolbar button.

The viewer outputs the report, scaled initially to fit in the viewer window. To view
the report scaled to 100 percent, choose View⇒ Actual Size or the corresponding
toolbar button:

Report Definition: A Composite View

1 Overview of ReportWriterChapter 17

Figure 2. The report viewer lets you preview and evaluate report output during an editing
session.

Report Definition: A Composite View

A report’s structure and layouts comprise the essentials of a report definition. The
report defined earlier looks like this:

Report Definition: A Composite View

18 JAM/ReportWriter 7 Developers Guide

Report definition

Format node speci-
fies page dimensions
and orientation

Detail node specifies how
the report fetches its data

Group node controls
how report data is or-
ganized into groups

Layout areas are
invoked through
print nodes

ReportWriter’s unique method of defining a report, which separates layout from
execution, gives you complete control over the format and sequence of output at all
stages of execution. For example, you can call a function at any stage of report
execution by inserting a call node at the corresponding point in the report structure.
This function might change at runtime the layout area that a print node invokes; or
conditionally skip over a portion of the report structure.

You can make reports as simple or complex as you like. Most reports, like the one
shown earlier, require a basic structure with only a few nodes. The real power of
ReportWriter lies in the properties that you can set on individual nodes and
widgets. For example, you can prevent page breaks within groups by setting the

Automatic Calculations

1 Overview of ReportWriterChapter 19

appropriate group node’s Keep on Page property to Yes. Or specify a widget to
output subtotals simply by setting its Value and Value Source properties.

Automatic Calculations

At runtime, ReportWriter can automatically capture data as it is output and use it to
calculate totals. It can also copy output to other locations in the report; or use an
array to collect a series of output values.

You can also write your own functions to process output—for example, to calculate
summary data such as averages, maximums, and minimums, or to control report
execution by changing node properties at runtime.

Modular Architecture

A report file can contain one or more report definitions. These reports are
accessible to each other and to reports in other files. So, you can build a report that
is entirely defined in a single file; or one whose components are partially or
entirely derived from other report files. This is particularly useful for objects that
have the potential for being reused by different reports—for example, layouts for
title and trailing pages, or inserted reports.

A report can access the contents of another report file in two ways:

� A subreport node can invoke a report that is defined in another file by
specifying the file name and the name of the report.

� A report can specify report files to be included through its Report Files
property. All report definitions, layout areas, and widgets in the included files
are accessible to the entire report.

Cross-Platform Portability

You can create and run reports on any platform supported by JAM, including
Windows, Macintosh, Motif, and on various character-mode platforms. Reports
that are created on one platform can be run on another without editing; JAM
handles all cross-platform issues such as font mapping to ensure equivalent output
on all platforms.

Automatic SQL Generation

20 JAM/ReportWriter 7 Developers Guide

Automatic SQL Generation

Reports that get their output from a database can take advantage of JAM’s
transaction manager to generate the appropriate SQL. Wizard-created reports rely
entirely on the transaction manager to fetch their data. The report wizard
automatically creates the necessary widgets, links, and table views. Alternatively,
you can write your own SQL statements. In either case, you can rely on JAM’s
database drivers to interpret the SQL correctly and fetch the data you want.

Running Reports

While you are developing your report, you can preview its output at any time. You
can either view reports at your terminal through the editor’s viewer, or you can
send output to a file or printer. In graphical environments such as Windows, the
viewer accurately shows the output you can expect from printed output. Because
the viewer is integrated within the editor, you can respond immediately to the
viewer output, then run the report to the viewer again to see how your changes
look.

You can also use JAM’s debugger when you run reports in the editor—for
example, to display the current value of an output widget.

When the report is complete, you can run it either from the command line or a
JAM application. You can also set up a report so that users can influence report
output.

ReportWriter supports these options for directing output:

� PostScript — The report is generated in Adobe standard PostScript.

� Macintosh/Windows — The report is generated using the printer driver for any
installed printer. This is the default output driver when running Macintosh or
Windows.

� Text — The report is generated in ASCII text.

� Metafile — The report is generated in ReportWriter’s metafile format for
display in the report viewer.

21

Creating Reports with
the Report Wizard

The report wizard helps you design a JAM report that uses JAM’s transaction
manager to fetch data. It collects design information through a series of easy-to-use
dialogs. Though simple to use, the report wizard yields sophisticated reports that
you can use unchanged, or easily edit for added functionality and refinements.

Invoking the Report Wizard

To run the report wizard:
1. Choose File⇒ Open⇒ Repository. The browser that opens lets you choose a

repository. This repository must contain entries for the database tables, views
and/or synonyms that have been imported from the database.

For information on creating repositories, refer to page 55 in the Editors Guide.

2. Choose File⇒ New⇒ Report. The New Report Tool dialog box opens:

22

Invoking the Report Wizard

22 JAM/ReportWriter 7 Developers Guide

3. Choose Yes to use the report wizard.

If you choose No, a blank, untitled layout window opens in the screen editor
workspace. If you choose Cancel, the new report operation is canceled.

4. If your user name is not set in your environment, the wizard asks to enter it:

Your entry is used throughout this JAM session. A user name is required any
time you access a repository or a library, but if SMUSER, LOGNAME, or USER is
set in your environment, JAM uses that setting and omits this step. For
information on setting variables, refer to page 13 in the Configuration Guide.

5. If you used the wizard to create a report earlier in this editing session, this
dialog asks whether to start with your previous settings:

Report Types

2 Creating Reports with the Report WizardChapter 23

Choose one of the following:

• Yes to display previous choices in each dialog box. This lets you modify
your previous report or quickly build a similar report.

• No to make new selections for each wizard dialog.

6. The Table Selection dialog box opens.

From this point, you are guided through several dialog boxes where you make
these choices:

� Report type: record-by-record, column, row, graph, matrix, or address labels.

� Root database table, which provides the basis of the report information.

� Database columns to appear in the report.

� Sort order of the data.

� Columns that are totaled and how those totals appear.

Report Types

The ReportWriter wizard can create six different report types, described in the
following sections.

Record-by-Record

Record-by-record reports present each row in the select set individually. If you
select group fields for the report, the data is sorted according to those groups, and a
heading containing the group value is printed before the data. If any totals are
requested, those totals appear after the data for each group.

In this example, distrib_name and order_num are group fields, and to-
tal_price is a total field.

Report Types

24 JAM/ReportWriter 7 Developers Guide

Figure 3. Record-by-record reports list each row of data individually within group headings.

Column

Column reports present the data in columns. A single heading contains the column
labels; the data is printed below each column label. If totals have been specified,
they appear after the data for each group.

Report Types

2 Creating Reports with the Report WizardChapter 25

Figure 4. Column reports list the data in columns across the page.

Row

Row reports present the data in rows across the page. Column labels are displayed
on the left side of the page. To the right of each label are the values for that
column. If totals are requested, row totals appear at the end of each row, and totals
for higher-level groups appear after each set of row data.

Report Types

26 JAM/ReportWriter 7 Developers Guide

Figure 5. In row reports, the data for each column appears in a row across the page.

Graph

Graph reports display numeric data as pie or bar charts. A single report can contain
a series of graphs depicting the detail section of the report, the totals section, or a
combination of the two.

A graph in the detail section plots a numeric column’s values for an entire group on
one graph. If your report includes two or more numeric data columns, you can plot
them on a single bar graph or plot each separately.

In this example, the detail data is displayed as text and in a graph while the totals
are displayed as text only. The two numeric fields are displayed together in a
multi-series bar graph.

Report Types

2 Creating Reports with the Report WizardChapter 27

Figure 6. Graph reports can present detail data or totals in pie or bar charts.

Matrix

A matrix report presents data in a cross-tab format with totals reported indepen-
dently for each row and each column in the matrix. You can also select a data
group that sorts the data so that the report contains a matrix for each group.
Generally, numeric data is selected to be in the cells of the matrix itself, but the
column and row headings can be any column in the database.

The data items are positional in the appropriate cell; the labels for the data items
appear before the matrix, following the group name. In the following sample
report, the cells report the data for the qty and total_price columns.

Report Types

28 JAM/ReportWriter 7 Developers Guide

For each fetch, a cell contains the fetch’s values for the database columns that label
the matrix. If more than one fetch has data for a given cell, the cell shows their
total.

Figure 7. Matrix reports total the values both horizontally and vertically for each cell
column.

Address Labels

Address label reports produce formatted output for label sheets. The wizard aligns
the widgets vertically, one widget per line. After the wizard is finished creating this
report, edit the layout window and move widgets to new positions if you want
more than one per line.

Report Wizard Dialogs

2 Creating Reports with the Report WizardChapter 29

Figure 8. Address label reports lets you choose the number of columns per page and the
number of rows per page.

Report Wizard Dialogs
The report wizard guides you through a variety of dialog boxes, prompting you for
information it needs to create the appropriate presentation for your report. All
dialogs provide these push buttons:

Next/Back
Traverse dialogs and their settings forwards and backwards. Choose Next to tell the
report wizard that you are done with the current dialog and want to proceed to the
next one. Choose Back to revisit a dialog to review its settings and make changes.

Preview
View the output from the report that is being built at any time. Acknowledge the
preview display to return to the report wizard.

Help
Get information about the current dialog.

Report Wizard Dialogs

30 JAM/ReportWriter 7 Developers Guide

Selecting Report Type
The first dialog displayed by the report wizard, Table Selection, asks you to select
the report type and root table view—the database table that forms the basis of the
report:

Figure 9. On the Table Selection dialog, you choose the basic structure of the report.

1. Select the type of report:

• Record-by-record — Creates a simple report comprised of a row-by-row
representation of the data. To view a sample report, refer to page 24.

• Column — (default) Creates a report where the data appears in columns
down the page with the column totals following each group. To view a
sample report, refer to page 25.

• Row — Creates a report where the data appears in rows across the page.
The totals for the primary group follow the group information. The totals
for the lower-level data groups appear at the end of each row. To view a
sample report, refer to page 26.

• Graph — Creates a report that displays numeric data in a pie or bar chart.
(Graph options are also available with other report types.) To view a
sample report, refer to page 27.

Report Wizard Dialogs

2 Creating Reports with the Report WizardChapter 31

• Matrix — Creates a multi-column report with both horizontal and vertical
totals. To view a sample cross-tab report, refer to page 28.

• Address Labels — Creates a report with formatted output for label sheets.
To view a sample report, refer to Figure 29.

2. Select one of the database tables as the root table view.

The root table view is the database table that forms the basis of the report. For
example, a report that shows orders for each distributor can use a table view
that contains distributor names for its root table view. Your report can contain
data from the root table view and any table view related to it.

3. When you are done, choose Next.

Choosing Data
In the Column Selection dialog, you specify the columns to appear in the report.
When the dialog opens, it lists all table views that are related to the root table view.
The list is organized according to the link relationships in the repository. The root
table view you selected earlier is at the top of the list. Levels of indentation
indicate how all other tables are linked to the root table view and to each other:

Figure 10. The Column Selection dialog displays a list of tables views in the open repository.

Report Wizard Dialogs

32 JAM/ReportWriter 7 Developers Guide

To specify columns for the report:
1. From Tables to Pick From, select a table view.

When you select a table view, the adjoining list is populated with the names of
columns in the selection.

2. To include columns in the report:

• From Columns to Pick From, select one or more columns. Click+drag or
Shift+click to select contiguous items, and Ctrl+click to select non-contig-
uous items.

• Add the selections to the rightmost list, Columns Already Chosen, by
choosing the > button; add all columns by choosing the >> button.

The contents of Columns Already Chosen tells the report wizard which
columns to include in the report and the order in which to display them.

3. Add or remove items from Columns Already Chosen as desired.

4. To add more tables and their columns to the report, repeat steps 1–3.

5. To change the display order of columns, reorder the items in Columns Already
Chosen:

• Select the columns that you want to move.

• Use the Up or Down reposition buttons. The highlighted items shift up or
down one position at a time.

6. When done, choose Next.

Grouping Data

In the Data Group Order dialog, you specify which columns to use for grouping
data. Groups can help clarify relationships among data; they also let you subtotal
data. For some types of reports such as matrix reports, you must also select row
and column headings.

This dialog contains two list boxes. The bottom list box contains the columns
chosen in the previous dialog. The list box above it, initially empty, shows the
columns selected to define data groups. The first item in this box defines the
primary group. Each subsequent item defines another group that is subordinate to
the one listed above it.

Report Wizard Dialogs

2 Creating Reports with the Report WizardChapter 33

Figure 11. In the Data Group Order dialog, select the columns that will sort the data.

To specify columns for grouping data:
1. Select a column from the bottom list box. Click+drag or Shift+click to select

contiguous items, and Ctrl+click to select non-contiguous items.

2. Move the columns to the list box above by choosing .

3. Define the group hierarchy by reordering items in the top list box:

• Select the columns from the list that you want to move.

• Use the Up or Down reposition buttons. The selected items shift up or
down one position at a time.

4. When done, choose Next.

To create matrix reports, you must select labels for the data displayed in the matrix
in addition to any group fields. For each group field, the report generates a separate
matrix.

Matrix Data
Groups

Report Wizard Dialogs

34 JAM/ReportWriter 7 Developers Guide

By default, the wizard lists all numeric columns in the bottom list box (Show in
Matrix Cells):

Figure 12. For matrix reports, choose row and column headings along with the data groups.

To specify columns for grouping data:
1. Select one or more columns from the bottom list box to be a data group or a

column or row label.

2. Move the selection up to Label Matrix Columns Using by choosing .

3. Select the next column from bottom list box and move it up by choosing

.

The previous selection moves up to the Label Matrix Rows Using list box.

4. Repeat step 3 until all groups and labels are selected.

5. Reorder selections so that the labels and group fields are in the desired order.
Use the Up or Down reposition buttons to move items within a list.

Report Wizard Dialogs

2 Creating Reports with the Report WizardChapter 35

In the final report, a separate matrix is created for the entry in the Group Data
Into Matrices By list box. If more than one entry is listed, the first item in the
group list specifies the primary group. Items below it specify subordinate
groups in descending order.

Within each matrix, the cell entries are determined by the column label and the
row label. When choosing the column label, you might want to consider the
number of unique entries for that database column. The amount of space
needed to report on each unique entry might exceed the width of the report. If
this occurs, ReportWriter inserts ellipses to indicate missing entries.

6. Reorder the items in Show In Matrix Cells:

• Select the items that you want repositioned.

• Use the Up or Down reposition buttons to to shift highlighted items up or
down one position at a time.

When this report executes, row and column totals appear for each numeric
column.

7. When done, choose Next.

Including Totals and Graphs

In the Graphs and Running Totals dialog, you decide which data to total and how
to present the data. After numeric columns are selected, the default choices specify
the display of all detail data with group totals. You can choose to view only the
totals or only the detail data. You can also view data in graphs. The options that
you can access in this dialog depend on the report type.

Report Wizard Dialogs

36 JAM/ReportWriter 7 Developers Guide

Figure 13. The Graphs and Running Totals dialog lets you decide how to present report data.

To include running totals in your report:
1. From the Numeric Columns list box, select one or more columns. Each

column that you select has subtotals calculated for all data groups.

Click+drag or Shift+click to select contiguous items, and Ctrl+click to select
non-contiguous items.

2. The options available for this report type become active.

To specify the report’s presentation format:
1. In Presentation, select one of these check boxes:

• All data — Include both detail data and the totals.

• Detail only — Include only detail data.

• Totals only — Include only totals. This option is only available for
Column and Graph reports.

2. In Show Detail, specify whether the data appears as text, graphs, or both.

Report Wizard Dialogs

2 Creating Reports with the Report WizardChapter 37

3. In Show Totals, specify whether the totals appear as text, graphs, or both.

For matrix reports, Show Totals is the only available option because each cell
in the report already totals all database rows matching the cell’s row and
column headings.

4. For graphs, you can specify additional graph options:

Use graph type

• Pie chart — The data is displayed in a pie chart.

• Simple bar — The data is displayed in a bar chart.

• Multi–series bar — Sets of data are displayed using multiple bar charts for
each set.

Graph multiple columns

• Together in one graph — The values for all columns are in one graph.

If you choose Pie Chart or Simple Bar, each graph shows the data of one
fetch. If you choose Multi–series Bar, the graph plots the history of all
fetches for the innermost group.

• In separate graphs — The values for each data set are in separate graphs.
Each one shows the history of the data column’s values for all fetches in
the innermost group.

5. When done, choose Next.

Finishing Up

In the Final Report Settings dialog, you set some final presentation options. The
content of this dialog varies for each report type:

Report Wizard Dialogs

38 JAM/ReportWriter 7 Developers Guide

Figure 14. Add the final touches to your report on the Final Report Settings dialog.

To add final touches to your report:
1. Edit the Report Title entry. This title appears in the page headers.

2. For row reports, specify how to handle data overflow—that is, when the
length of the row exceeds the width of the report.

Choose Wrap or Elide:

• Wrap — Wrap the overflow data wrap to the next line.

• Elide — Display one line of data and enter ellipses to indicate overflow.

3. For matrix reports, select a style from this list box:

How It Looks

2 Creating Reports with the Report WizardChapter 39

• Box Data — Place a box around the detail data.

• Box Totals — Place separate boxes around the data and the totals.

• Full Grid — Display the data in a grid.

4. For address label reports, select the print order and dimensions:

• Print Order determines if each set of data, after it is sorted, is printed
across the page first or down the page first.

• Dimensions determines the number of labels both across and down.

5. Choose Done.

ReportWriter returns to the screen editor and displays the layout window for
the completed report. To test the report output, connect to a database and
choose either Report⇒ Preview Report or File⇒ Test Mode.

How It Looks
When the report wizard is complete, the layout window for your report appears in
the editor workspace. You can save it and use it immediately; or you can continue
to work on it—rearrange widgets, add decorations, or change property settings.

Layout Window
The layout window contains the layout areas created for the report. A horizontal
line across the entire window defines the end of each layout area; the name of each

How It Looks

40 JAM/ReportWriter 7 Developers Guide

layout area appears at the center of this line. The order of the layout areas is
independent how they appear in the report, which is determined by the report
structure.

Figure 15. The layout view contains the layout areas formatted as they will appear in the
report.

Generally, the layout window for wizard-created reports contains layout areas for
these report components:

� Page header — Contains a pixmap with JYACC’s logo, the report title, and the
current date.

� Page footer — Contains the page number.

� Group header labels — Depending on the report type, there are one or more
label areas. Most reports have a separate label area for each group level,
named after the database column that defines the group.

� Detail output — Contains the format of the detail data section.

How It Looks

2 Creating Reports with the Report WizardChapter 41

� Chart — Contains a graph widget. Note that the properties that determine data
sources for this graph are set at runtime.

� Group totals — Depending on the report type, there are one or more total areas
used to output group footers. A total area is created for each column selected
in the Graphs and Running Totals dialog. The layout area total_selec-
tion_set outputs grand totals.

All widgets that output data are located in layout areas. The unnamed area of a
layout window—that is, the space below all named layout areas—contains widgets
that do not output data. The wizard places link widgets and history widgets in this
area. They are needed to calculate and fetch data for the report, but they are not
needed in the report layout itself.

Report Structure Window
The report structure window displays a diagram of the report structure. Each report
element—format, data groups, detail data, and the report itself—has a correspond-
ing node in the structure:

Figure 16. The report structure window schematically shows how a report executes.

The main report node appears at the top of the report structure; its page format
node is directly below it. The detail node specifies how the data is fetched for the

How It Looks

42 JAM/ReportWriter 7 Developers Guide

report. Each data group level has a corresponding group node whose footer
performs the calculations for the group totals. The print nodes attached to the detail
and group notes have associated layout areas to provide the report output.

Property Settings

A number of properties, both on the report file itself and on individual widgets, are
automatically assigned values. This section briefly describes some of the properties
that are set by the report wizard.

Report file
The report wizard defines and sets the following properties for the report file:

� Under Inclusions, the JPL Procedures property makes public the prototype JPL
file rwwizard.jpl.

� Under Transaction, the Root property is set to the table view selected on the
Table Selection dialog box.

Page orientation
If the width of the report exceeds 8.5 inches, the Orientation property is set to
Landscape. Otherwise, the property value is set to Portrait.

Data fetching
For each detail node, the Data Source property is set to TM View. This indicates
that the transaction manager executes VIEW and CONTINUE commands to fetch the
report data. When the transaction manager executes these commands, data is
fetched for any dynamic output widget that is a member of the current transaction.

Table views
For the root table view, the Sort Widgets property contains the names of widgets
not included in the report totals. If you delete a widget from the report, you also
must delete the widget from the Sort Widgets property. Otherwise, you get an error.

Data grouping
For each group node, the Break On property is set to a database column chosen in
the Data Group Order dialog box. The hierarchy of group nodes corresponds to the
order selected on that dialog.

Output
For each print node, the Area property is set to the appropriate layout area.

Including Graphs

2 Creating Reports with the Report WizardChapter 43

Including Graphs

Numeric data in your report can be presented as a graph. Both pie and bar charts
are available and can be specified in the Graphs and Running Totals dialog.

The selection of data groups determines which column values are selected to
appear in the graph. The graph is created for the innermost data group.

�
��
��
��

���
���
���
���
���

	���������
����������� ������������� ��������

name

Order_num 1006
price (98.49) total_price (365.93) Graphs are generated

for each value in the in-
nermost group.
This group name and its
current value become
the graph title.

The first text field is used
to generate the data for
the graph.
Its values become the tick
mark labels for the X axis.

Other text fields will not
appear in the graphs, just
in the text portion of the
detail data.

Figure 17. This graph, which is for an order in the vbizplus database, shows the film titles
that are included in the order and the price and total price for each film title.

Because graphs display numeric data, text columns in the data set are discarded if
only graphing options are chosen for the detail data section.

If your report includes two or more numeric data columns, you have a choice of
graphing options. You can choose to plot them on a single graph. Alternatively, you

Including Graphs

44 JAM/ReportWriter 7 Developers Guide

can graph each separately, and so plot the column’s values for an entire group in
one graph.

�
��
��
��

���
���
���
���
���

	���������
����������� ������������� ��������

name

Order_num 1006
price (98.49) total_price (365.93)

Use Graph Type deter-
mines whether it is a
pie chart, a bar chart,
or a multi–series bar.

Totals for the
selected col-
umns appear
in the graphs.

Other numeric
fields will not
appear in the
graphs, just in
the text ver-
sion of the de-
tail data.

Select whether totals and graphs
appear in the report output.

The value
of each
item de-
termines
the height
of the bar.

The value
of each
item de-
termines
the height
of the bar.

Figure 18. In this report, the detail section of the report will contain text output and business
graphs while the totals section will contain only business graphs

Note: A report that runs on Macintosh or in in character mode omits display of
graphs. However, a layout area is created for the graph, which displays on other
platforms.

Customizing Wizard Reports

2 Creating Reports with the Report WizardChapter 45

Customizing Wizard Reports

There are a variety of things you can do to enhance the screen created by the report
wizard. The following is a list of suggestions:

Modify repository prototype
The report wizard stores and uses a prototype in the repository—smwizrw. This
report contains prototypes for two report areas, page header and page footer, and
for widgets such as lines, labels, and graphs.

You can modify this report to customize the report wizard’s output; these changes
are propagated to new and existing reports through inheritance. Note that existing
reports are affected only when you bring them into the editor and resave them.

Change fonts
The wizard sets the Font Name property to match smwizrw: for the report file,
JAM Times Roman; and for widgets in page header and footer areas, JAM Helveti-
ca. For widgets in all other layout areas, the Font Name property is set to Default.

By using JAM fonts, you can easily change their mapping to platform-specific
fonts by simply editing the configuration file. For more information about report
fonts and configuration file settings, refer to page 56.

Because font settings affect the placement and spacing of widgets in reports, you
might want to change the Font Name setting in your smwizrw repository entry to
use the fonts available in your environment.

Modify the JPL file
The report wizard’s prototype JPL code resides in an editable ASCII file
rwwizard.jpl, which is in the JAM config directory. For faster loading,
compile this file with the jpl2bin utility (refer to page 11 in the Language
Reference).

Customize repository widgets
Widgets in JAM repository entries obtain their original property settings during the
importing process. Because wizard-created reports copy widgets from these
repository entries, you might want to change the property values set by the
importer to more useful values. For example:

� Edit the Label property of the static labels.

� Edit the Length property of dynamic output widgets.

Troubleshooting

46 JAM/ReportWriter 7 Developers Guide

� Change the Format properties for widgets with numeric and date/time output.

� Create a widget that contains a derived or computed value (refer to page 104).

Change the pixmap
To change the pixmap displayed in the page header of the reports, select the
pixmap, open the Format/Display category, and change the name in the Active
Pixmap property. The pixmap must be located either in the local directory or in a
library that is open when the report executes.

Troubleshooting

Refer to this section for additional guidance in using the report wizard.

Creating the Repository
To create a report, the report wizard copies widgets from a repository. Consequent-
ly, the repository must be set correctly to ensure that the wizard works properly.

The repository must contain at least one table view that inherits from @DATABASE,
specified in the objects’ Inherit From property. This tells the wizard that widget
definitions are from an existing database. If the wizard cannot find this setting, it
displays an an error. For more on creating repositories, refer to page 55 in the
Editors Guide.

You can import the desired database objects—tables, views, and synonyms—to the
open repository. Each imported object becomes a separate entry in the repository.
For more on importing, refer to page 59 in the Editors Guide.

Using Multiple Table Views
When you import the database objects, foreign key definitions are also imported to
the repository as link widgets. If foreign keys are not defined for the database (or
not supported by the DBMS), you must manually create the link widgets in each
repository entry in order to have more than one table view in the report. For more
information on link widgets, refer to page 343 in the Editors Guide.

Adding the Wizard Prototype to the Repository
When you run the report wizard for the first time, it automatically creates a
prototype report—smwizrw—in your open repository. The report wizard uses this
prototype to set inherited properties in reports.

Troubleshooting

2 Creating Reports with the Report WizardChapter 47

If the prototype report in the repository is from an old version of the report wizard,
you are asked whether to replace it. If you made changes or additions to the
prototype screen, first back it up, then let the report wizard overwrite it. Later, you
can restore your changes to the new prototype.

Note: If the report wizard needs to add or update its prototype screen, make sure
you can write to the open repository. If the repository already contains a valid
prototype screen, write permissions are not necessary to run the report wizard.

Using a Read-Only Repository

If a read-only repository does not contain a valid version of smwizrw, you cannot
use it with the report wizard. You must have write permission for the repository in
order to run the report wizard the first time. The person who administers the
repository for the development team can run the report wizard after importing the
database tables; thereafter, others can run the report wizard without having write
permission.

49

Defining Report
Layout

ReportWriter’s layout window defines the format and content of report output. It
typically contains one or more layout areas, named spaces whose contents are
output at runtime. A layout area can only by invoked through a print node in the
report structure; the timing and sequence of the layout area’s output depends on
execution of its print node.

A layout area outputs data through the widgets that populate it. Each widget’s
properties determine the source and format of its data; the widget’s position within
the layout area determines where that output appears in relation to other output
from the same layout area.

A layout area is defined by a layout area widget, which set the area’s boundary and
name. The layout area spans the width of the layout window and extends to the
layout area widget above it or to the window’s border. The layout window also
contains an unnamed area whose contents are not subject to output.

For example, the following layout window contains three layout areas for detail,
page header, and page footer output, defined as data, page_header, and
page_footer, respectively:

33

50 JAM/ReportWriter 7 Developers Guide

Named
layout areas

Unnamed
layout area

Figure 19. A layout window contains layout areas and an unnamed area.

The following report structure contains three print nodes that specify when to
output the layout areas shown earlier:

print detail
data

print page
header

print page
footer

Figure 20. Print nodes specify which layout areas to output, and when.

Creating Layout Areas

3 Defining Report LayoutChapter 51

Creating Layout Areas

You define a layout area by creating a layout area widget:

1. Give the layout window focus.

2. Choose Create⇒ Layout Area or the corresponding toolbox button.

3. Point and click where you want the new area to appear in the layout window.

ReportWriter creates an unnamed layout area widget, which defines the area
between it and the layout area widget above it.

Because layout areas can only be invoked by name, you should always set a new
layout area’s Name property (under Identity). Like other widgets, layout area
names within the same report file must be unique. For information about JAM
naming conventions, refer to page 299 in the Editors Guide.

Managing the Layout Window

You can modify the view of report layouts by collapsing some or all of the layout
areas, or by changing their relative positions. This can help maximize the amount
of working space available for a given area and lets you rearrange the window’s
contents in a way that makes sense to you. You can also manipulate a layout area
widget in order to change the area’s size.

To collapse and expand layout areas:
1. Select the layout areas that you want to collapse or expand.

2. From the Edit menu, bring up the Arrange submenu and choose the desired
option:

• Collapse — Reduces each selected area to a single line and hides its
contents.

• Expand — Restores the selected layout areas to their full dimensions.

• Collapse All — Reduces all layout areas to a single line; the unnamed
area at the window’s bottom is unaffected.

• Expand All — Restores all layout areas to their full dimensions.

Note: When you save or preview a report, ReportWriter automatically restores all
collapsed layout areas to full view.

Editing Layout Area Properties

52 JAM/ReportWriter 7 Developers Guide

To move layout areas:
1. Select the desired layout area widgets.

2. From the Edit menu, bring up the Arrange submenu and choose the desired
option:

• Move Up moves the selected areas above the areas previously above
them.

• Move Down moves the selected areas below the areas previously below
them.

Note: Rearranging layout areas in the layout window has no effect on report
output.

To change layout area dimensions:
� To enlarge a layout area, select the layout area widget and drag it down as far

as needed.

� To reduce a layout area, select the layout area and drag it up. You can move
the layout area widget up only as far as the first widget inside that area. To
reduce the area further, you must first move up the widgets inside it.

In both cases, changing the dimensions of one layout area has no effect on the
others.

Note: You can only change a layout area’s height; all layout areas occupy the
entire width of the report page.

Editing Layout Area Properties

Each layout area has a set of properties that are described below. These properties
set format and behavior parameters for the entire layout area. Select the layout area
widget and bring the Properties window into focus.

Name
Only named layout areas can be specified for output in the report. Layout area
names must be unique among all other named widgets and nodes in the report file.
Refer to page 299 in the Editors Guide for more information about widget naming
conventions and requirements.

Memo Text
Provides up to nine lines of text for comments or programmatic use. For
information, refer to page 116 in the Editors Guide.

Populating Layout Areas

3 Defining Report LayoutChapter 53

Inherit From
Defines the source of inheritance—the name of the repository report followed by
the name of the parent object in this format:

repository_entry!widget_name

For more information about inheritance, refer to page 63 in the Editors Guide.

Start Row
Specifies the layout area widget’s position relative to the layout window’s grid. For
more information, refer to page 47 in the Editors Guide.

Font properties
Sets the default font properties—Font Name, Point Size, and so on—for all
widgets in this layout area. If the layout area’s font properties are set to Default, at
runtime JAM resolves which fonts to apply according to what is set at a higher
level. For more information about how fonts are set, refer to page 56.

Vertical Anchor
Specifies how the layout area widget aligns itself to the layout window’s grid when
you choose Edit⇒ Grid Align or Options⇒ Snap To Grid:

� Middle (default) — The layout area widget snaps to the middle of the nearest
vertical coordinate.

� Top — The layout area snaps to the top of the nearest vertical coordinate.

� Bottom — The layout area snaps to the bottom of the nearest vertical
coordinate.

Populating Layout Areas

In general, ReportWriter outputs the data of all widgets in an invoked layout area.
Two widget types are responsible for most report output:

� dynamic output widgets get their data at runtime—for example, from a
database or from other widgets.

� static output widgets have their data set in the editor; their data remains
constant.

For example, the following layout window contains three layout areas—
page_header, page_footer, and data:

Populating Layout Areas

54 JAM/ReportWriter 7 Developers Guide

� page_header is output as the report’s page header. It contains two dynamic
output widgets for the report title and system date. It also contains static output
widgets that at runtime appear over columns of data; their values are fixed.

� page_footer is output as the report’s page footer. It includes a widget that
outputs page numbers.

� data contains dynamic output widgets that at runtime display the film
data—name, genre, and so on; these widgets are initially empty and get their
data at runtime, usually from a database.

A report that uses this layout might yield the following output:

Populating Layout Areas

3 Defining Report LayoutChapter 55

A layout area’s output includes white space. The height of the layout area
determines the amount of space the layout area uses. White space is reduced or
eliminated only in the case of shrinkage (page 122) and consolidation (page 126).

A layout area can also include other widgets: graph widgets let you present data as
a pie or bar graph; box and line widgets can be used to enhance a report’s
appearance. For example, page_header contains a horizontal line that underlines
the column labels in the actual report.

Refer to the Editors Guide for more information on these widget types: page 259
for lines and boxes; page 121 for graph widgets. For information about presenting
report data in a graph, refer to page 101.

Copying Widgets to a Layout Window
You can create widgets directly from the Create menu or toolbox; or you can copy
them from the layout window of another open report or a JAM screen. When
ReportWriter copies widgets from a JAM screen, it checks their type and makes the
following adjustments:

� Line, box, and graph widgets are copied directly to the target layout window
with no changes.

white space

Using Fonts

56 JAM/ReportWriter 7 Developers Guide

� Static labels are converted to static output widgets.

� Grid frame widgets cannot be copied to a report.

� All other widget types are converted to dynamic output widgets.

When you copy widgets from a repository entry, ReportWriter sets the widget’s
Inherit From property and applies JAM’s rules of inheritance to the copied widgets.
A widget that is copied directly from a repository entry inherits the properties of its
source. If you copy an object from a screen or from another report, any properties
that it inherits are propagated to the copy.

Inheritance helps ensure a widget is consistent in its appearance and behavior
wherever it appears in the report or elsewhere in the application. For example, you
might want all monetary values to conform to the same format. Setting the
appropriate properties in repository objects lets you propagate this format to output
widgets in your reports.

For more information about inheritance, refer to Chapter 4 in the Editors Guide.

Positioning Widgets
By default, a widget’s position is fixed in relation to its layout area. If widgets that
are on the same line are wider than the data that they actually output, you can
eliminate the unused space and thereby make their data contiguous. Set their
Placement property (under Composition) to one of these values:

� Float Left — Trim the width of the previous widget to its actual output; float
this widget’s start position left by the number of trimmed characters.

� Float Right — Trim leading blanks from the next widget; float this widget’s
start position right by the number of trimmed characters.

ReportWriter floats widgets only to the extent that their own widths are trimmed.
The actual amount of white space between widgets remains unaffected.

Note: To make sure that widgets float towards each other, align them horizontally
so that their Start Row properties have the same value. If Start Row properties are
not the same, ReportWriter might use their absolute (fixed) positions.

JAM’s screen editor provides a number of options for aligning and spacing widgets
within the layout window—for example, Edit⇒ Align and Options⇒ Snap to Grid.
For more information about arranging widgets, refer to page 46 in the Editors
Guide.

Using Fonts
You can format all widget output by applying different fonts and font sizes and
setting one or more attributes—bold, italics, and underlined. Fonts can be chosen
from these categories, listed in descending order of universality:

inheritance

Using Fonts

3 Defining Report LayoutChapter 57

� PostScript fonts, either by name or through the aliases that are defined in the
configuration file’s [Postscript Fonts] section. PostScript fonts are
available to all platforms.

� TrueType fonts, available only to reports run on Windows and Macintosh.

� All Macintosh fonts, available only to reports run on Macintosh.

If you specify a font that is undefined for a given environment, the device driver
determines the actual output.

Although the editor lets you choose any GUI-resident font and font alias, you
should use only those fonts that are valid for report output —or printable fonts. If
you intend to run reports on multiple platforms, use font aliases to ensure the
desired output in each environment.

Setting Fonts
When you create a report, a default font is applied to all layout areas and output
widgets. This default is derived from the configuration file. Under the Font
heading in the Properties window, all font-specific properties are initially set to
Default for the report file, layout areas, and output widgets. Only objects that
inherit their font properties from a repository or were copied from another source
have their own font assignments.

You can set fonts at several levels in a report, listed below in order of precedence:

1. Individual widgets — Each output widget can have its own font settings.
These override any defaults that are set at a higher level. The widget adjusts in
size according to the font specification.

2. Layout area — The font properties set for the layout area are used by all
widgets in that area that lack their own settings.

3. Report file — The font properties set for the report file are used by all layout
areas that lack their own settings. To access report file font properties, give
focus to the layout window and bring the Properties window into view.

4. Application — The applicable section in the configuration file sets default
printing font properties for all reports generated by this executable.

Defining Font Aliases
You can define GUI-independent printing font aliases in the configuration file with
the following format:

alias-name [(font-qualifier...)] = font-spec
 [[(font-qualifier...)] = font-spec]...

Using Fonts

58 JAM/ReportWriter 7 Developers Guide

The default configuration file defines four aliases:

JAM Courier
JAM Times Roman
JAM Helvetica
JAM Symbol

The default configuration file maps each of these aliases to a valid font for a given
platform. For example, the default configuration file defines font alias
JAM Times Roman in the [Windows]/[Macintosh], [Postscript Fonts],
and [Text Fonts] sections:

[Windows Fonts]
JAM Font Name Qualifiers Windows font
––––––––––––– –––––––––– ––––––––––––
JAM Times Roman = Times New Roman

[PostScript Fonts]
JAM Font Name Qualifiers PostScript font
––––––––––––– –––––––––– –––––––––––––––
JAM Times Roman (italic bold) = Times–BoldItalic
 (italic) = Times–Italic
 (bold) = Times–Bold
 = Times–Roman
[Text Fonts]
JAM Font Name Qualifiers Text Font
––––––––––––– –––––––––– –––––––––
JAM Times Roman = Times–Roman

Given this definition, JAM can resolve usage of JAM Times Roman in a report,
regardless of the platform that it runs on. For more information on how JAM
resolves font aliases, refer to page 148 in the Configuration Guide.

Note: All aliases that are defined in the Text Fonts section are resolved via the
device configuration file. For more information, refer to page 175.

59

Building the Report
ReportWriter offers two views into a report file: the physical layouts used by a
report are shown in the layout window, while specifications for report generation
are schematically rendered in the report structure window.

This chapter focuses on report structure components and their properties, and how
to manipulate these to modify report execution.

Report Structure Window

The report structure window schematically shows how a report executes. Stages of
report execution are depicted in a vertical hierarchy composed of nodes. The
topmost node defines a report; when this report runs, all nodes below and
subordinate to it execute in top-down order.

For example, the following column report sorts orders from video store outlets by
distributor name and order number:

44

Report Structure Window

60 JAM/ReportWriter 7 Developers Guide

Report Structure Window

4 Building the ReportChapter 61

Figure 21 shows how execution of this report is viewed through the report structure
window and its corresponding layout window. The two windows offer complemen-
tary views into the same report definition:

Report definition

Format node speci-
fies page dimensions
and orientation

Detail node specifies
the report data

Group nodes control
how report data is or-
ganized into groups

Layout areas are
invoked through
print nodes

Figure 21. Structure of report that outputs video outlet orders.

Report Structure Window

62 JAM/ReportWriter 7 Developers Guide

Figure 21 shows a report structure composed of these node types:

� The topmost unnamed node is a report node; it represents the desired report;
all nodes attached to it comprise the report’s definition. The report structure
window can contain multiple reports, each beginning with a report node and
representing separate report definitions. Of these, only the first report can be
unnamed.

� A page format node follows the report node; it specifies page dimensions and
orientation. Attached to it are two print nodes, which specify the layout areas
to use for page header and footer output—page_header and page_footer,
respectively. Because page headers and footers are above and below all other
page output, these two nodes enclose the detail and group nodes.

� A detail node specifies the source of report data. In this case, the report relies
upon JAM’s transaction manager to use the table views and link widgets
stored with this report to fetch the required data. Attached to this node is a
single print node, which outputs each instance of the detail data.

� Three group nodes are attached to the detail node; these tell ReportWriter how
to organize data in the report. Each group node has a print node in its footer
section, which outputs subtotals for its group.

Node Classes and Types
Nodes belong to one of two classes—structure nodes and action nodes:

� Each structure node determines an aspect of the report definition—for
example, a page format node sets page dimensions and orientation, while a
detail node determines how the report gets its data.

� Action nodes are attached to a structure node and determine report output and
processing for that structure node—for example, a print node that is attached
to a group node’s footer section specifies the layout area to print after a break
occurs within that group; a call node specifies a function to call; and so on.

Table 1 lists the different node types and summarizes their purpose:

Table 1. Report structure node types.

Type Purpose More...

Structure nodes:

 Report Defines a report. p. 69

 Page Format Specifies page format and orientation. p. 70

Report Structure Window

4 Building the ReportChapter 63

Type More...Purpose

 Instance Provides an all-purpose hook for one-time exe-
cution of the attached action nodes.

p. 89

 Detail Specifies the source of report data and actions
to perform at each fetch.

p. 73

 Group Specifies how to group data and the processing
to perform when a new group is generated.

p. 77

Action nodes:

 Print Outputs a layout area. p. 77

 Call Calls a function. p. 88

 Subreport Invokes a subreport. p. 84

 End Page Forces a page break and starts a new page. p. 118

You can attach any number and type of action nodes to all structure nodes except a
report node. Action nodes can be attached in any order.

Node Hierarchy

The order of a report’s structure nodes is summarized in this formula:

Report Page Format
Instance

Detail [Group]...
... ...

A report structure conforms to these rules:

� The first node in a structure must be a report node.

� A report node must be followed by a page format node, whose properties set
page dimensions and orientation. A report can have multiple page format
nodes; this lets you change a report’s format at different stages of execution.

� After the page format node, a report can contain one or more instance and
detail nodes in any order. Each detail node can have one or more group nodes.
Typically, a report uses one set of data and has only one detail node.

� Each structure node except a report node can have one or more action nodes
attached to it. Action nodes can be of any type and placed in any order.

Report Structure Window

64 JAM/ReportWriter 7 Developers Guide

The flexibility offered by report structures lets you create almost any flavor of
report with as many levels of complexity as needed.

Editing the Report Structure
You can modify the report structure by adding, removing, and moving nodes. You
can also control the amount of detail shown by collapsing and expanding portions
of the structure’s hierarchy.

To add a node:
1. Select the node type from either of the following:

• Create menu — Select a node type from the list.

• Tool box — Select the desired icon.

Report

Page format

Instance

Detail

Group

Print

Call

End page

Subreport

2. Select the node that is above the position desired for the new node.

To delete or remove a node:
Select a node. Do either of the following:

� Choose Edit⇒ Cut or the Cut button from the toolbar.

This places the removed node and its attachments in the structure’s clipboard.
You can then paste the node wherever its placement is valid in the report

Report Structure Window

4 Building the ReportChapter 65

structure. The cut node remains in the clipboard until it is overwritten by the
next Cut or Copy operation.

� Choose Edit⇒ Delete or press the Delete key.

The selected node and its attachments are removed from the structure and
from memory; they can only be restored by choosing Undo.

To copy a node:
Select the node to copy and choose Edit⇒ Copy or the Copy button from the
toolbar.

This places a copy of the node and its attachments in the structure’s clipboard. You
can then paste the copy anywhere its placement is valid in the report structure. The
copy remains in the clipboard until it is overwritten by the next Cut or Copy
operation.

To paste a node:
1. Choose Edit⇒ Paste or the Paste button from the toolbar.

2. Select the node that is above the position desired for the pasted node.

To move a node:
Select the node that you want to move. Do either of the following:

� From the Edit menu, choose Arrange Nodes⇒ Move Up or Arrange
Nodes⇒ Move Down.

� Press the Move Up or Move Down key.

Note: You can move a node up and down only within its current level in the report
structure hierarchy. For example, a call node that is subordinate to an instance
node can be moved above or below other action nodes that belong to the same
instance node; it cannot be moved anywhere else in the report structure. To move a
node elsewhere in the hierarchy, use Cut and Paste.

To collapse and expand the structure view:
Click on a node’s type ID button to toggle all attached nodes in and out of view; or
from the Edit menu, choose Arrange⇒ Expand or Arrange⇒ Contract. Figure 22
shows how you can collapse and expand portions of the report structure.

Report Structure Window

66 JAM/ReportWriter 7 Developers Guide

Click on the detail
node’s ID button to
collapse all subordi-
nate nodes

Figure 22. Click on a node’s type ID button to collapse and expand the view of its subordinate
nodes.

You can also collapse or expand the entire structure. From the Edit menu, bring up
the Arrange submenu and choose the desired option:

� Collapse All — Hides all nodes in the structure window except report nodes.

� Expand All — Restores view of all nodes in the structure window.

Editing Node Properties

Through the Properties window, you can edit the properties of any selected node.
To bring the Properties window into focus for the current node, give focus to the
node. An arrow marks the selection; you can bring the Properties window forward
by double-clicking on this arrow.

Each node type has one or more properties that are unique to it; these are discussed
in later sections. Nodes also share a common set of Identity properties; these are
discussed below.

Name
A node’s Name property identifies it for programmatic access. Named nodes can
be accessed at runtime in order to change their properties. For example, naming a
print node lets you access its area property and set it according to the runtime
context:

Report Structure Window

4 Building the ReportChapter 67

if amount < 0
{
 detail_output–>area = ”debit_entry”
}
else
{
 detail_output–>area = ”credit_entry”
}

Report nodes must be named in order to be explicitly invoked—for example, by
another report or from the command line.

Refer to page 299 in the Editors Guide for more information about widget naming
conventions and requirements.

Inherit From
Defines the source of inheritance for this report—the name of the repository report
followed by the name of the parent object in this format:

repository-entry!widget-name

A node can inherit any properties that are set in its source, such as Break On and
Orientation. However, nodes cannot inherit their relationships to each other as
specified by their relative order in the repository entry’s report structure.

For more information about inheritance, refer to page 63 in the Editors Guide.

Comments
By including a brief description of a node, you can save information about this
node and its purpose:

1. Select the node.

2. Under Identity, select the Comments property. The Comments dialog box
opens.

3. Enter or edit text through one of these actions:

• Type the text directly in the text area.

• Choose Editor to access your local editor as defined by setup variable
SMEDITOR (page 17 in the Configuration Guide).

• Choose Read File to read in an external file located on your system.

• Choose Save File to save the comments to an external file.

4. Choose OK save the comments and return to the Properties window.

Report Structure Window

68 JAM/ReportWriter 7 Developers Guide

Viewing Node Links

You can review dependencies between a node and widgets in the layout window by
selecting that node and choosing Report⇒ Show Property Links. ReportWriter
displays the Property Links dialog, which contains two types of entries:

� prop-name –> widget-name shows that this node’s prop-name property is set
to widget-name. For example, the links for a print node might include this
entry:

Area –> distrib_name_footer

This entry shows that the print node’s Area property specifies to output layout
area distrib_name_footer.

� prop-name <– widget shows that a widget in the layout window specifies this
node in its prop-name property. If widget is an unnamed widget, it is identified
as Field #n, where n is its field number. For example, the links for a detail
node might include this entry:

Update In <– Tdistrib_name_qty

This entry shows that the detail node is referenced by total widget Tdis-
trib_name_qty’s Update In property.

Note that group and detail nodes can be linked to a total or history widget’s
Initialize In and Update In properties even when those properties are blank.
ReportWriter infers the default for these properties from the node in which the
widget is output.

For example, this dialog shows the links for a group node:

show links for group

Figure 23. Property Links dialog shows the widgets that are specified in a node’s properties.

Defining a Report

4 Building the ReportChapter 69

Note: The Property Links dialog only shows links to existing widgets; if a property
specifies a widget or node that does not exist—either because it is not yet created
or it is included at runtime—the dialog omits this link.

When you display the Property Links dialog, you can give focus to the widget or
node specified in the selected entry by choosing Go To, or by double-clicking on
the entry. If the widget is in the layout window, ReportWriter brings this window
forward.

Defining a Report

A report file contains one or more reports. Each report begins with a report node,
which can name the report and specify its parameters. This node and its descen-
dants comprise a single report.

Named and Unnamed Reports
The report structure window can contain multiple reports. Of these, only the first
can be unnamed. Unnamed reports can be invoked through the name of the report
file. For example, this runreport command runs the first report in report file
expense_report, without regard to its Name property:

runreport expense_report

Alternatively, the following runreport command runs report summary_rpt in
report file expense_reports:

runreport expense_reports!summary_rpt

An unnamed report can serve only as a main report; other reports in the same
report file are typically invoked as subreports by the main report and by each other.
Named reports can also be invoked externally—as main reports, or as subreports
by reports in other files.

Report Parameters
A report can define one or more parameters, which allows its caller to supply a
corresponding number of arguments. This can be useful for setting a report’s
properties at runtime. For example, an argument that sets the WHERE clause in a
report’s SQL statement lets you modify database access each time you run the
report. Or you can alternate different layout areas for the report’s title page, where
the desired layout area is set through a command-line argument.

Going to a
Property Link

Setting Page Format

70 JAM/ReportWriter 7 Developers Guide

When you select the Parameters property, a dialog box opens. Enter the names of
the parameters, one per line. You can enter the name of any dynamic output widget
in the layout window or JPL global variable that is declared in the report file’s
unnamed procedure. Each parameter so named receives an argument when the
report is run. The order in which parameters are specified determines the order in
which arguments must be passed to the report.

If the report receives fewer arguments than the the number of defined parameters,
the values of the leftover parameters remain unchanged. If the report receives more
arguments than the number of defined parameters, the extra arguments are ignored.

Setting Page Format

Page layout properties—the size and orientation of the page and footer place-
ment—are set by the page format node. The layout areas for the page header and
footer are output through two print nodes that are attached to the page format
node’s header and footer sections, respectively.

Figure 24. Specify page header and footer output through page format print nodes.

Setting Page Format

4 Building the ReportChapter 71

Page Format Properties
A page format node has three properties:

Floating Footer
Specifies whether the page footer’s position is fixed at the bottom of the page, or
allowed to float directly below the output of each page.

Orientation
Sets the report’s page orientation to portrait or landscape. If you set this property to
Default, ReportWriter uses the orientation that is set in the report invocation string
(via the supplied option), the Page Setup dialog, or (on Windows) by the print
driver.

Page Size
Specify the dimensions of the output area on report pages. If these properties are
left blank, ReportWriter uses the page size that is set in the report invocation string
(via the supplied option) or in the Page Setup dialog. You can select one of the
predefined page sizes from the drop-down list, or specify your own page size in
this format:

width x height [unit-spec]

Units of measurement (unit-spec) can be specified in inches (in), millimeters (mm),
or characters (c—the default). For example, 7 x 9 in specifies a page width of 7
inches and a length of 9 inches. 80 x 40 specifies a page that is 80 characters
wide by 40 lines long.

If you specify dimensions in character (c) units, ReportWriter uses the average
character size in the report’s default font to calculate a character unit’s width and
height.

Resetting Page Format
You can change the report’s page format at any stage of report execution by
inserting a new page format node in the report structure. The new node’s properties
supersede the previous page format property settings. These properties take effect
on the first page to output after execution of the new page format node. To enforce
new page format properties immediately, insert an end page node after the page
format node.

Note: Execution of a new page format node does not by itself force a page break.
If the node is executed before the current page is full, ReportWriter continues to
use the previous page properties through completion of that page.

Connecting to a Database

72 JAM/ReportWriter 7 Developers Guide

Connecting to a Database

If the report gets its data from a database, a database connection must be
established before the report’s detail node is executed. How the connection is made
depends on the report is run. A stand-alone report should specify the desired
connection in the report structure through a call node that executes before detail
processing begins. Alternatively, if the report is run through a JAM application, the
application can require users to specify the connection before it lets them run the
report.

Figure 25 shows a typical stand-alone report, which sets the database connection
through a call node attached to the the main report’s page format node; this call
node’s function contains the DBMS DECLARE CONNECTION command. Required
arguments for the connection are supplied to the report when it is invoked and
made accessible to the procedure through report parameters user, pword, and db.
The call node is attached to an instance node, so it is called only once:

proc open_db()
DBMS DECLARE session1 CONNECTION FOR \
 USER user \
 PASSWORD pword \
 DATABASE db
return

Figure 25. A stand-alone report connects to a database through a call node that executes
before detail processing begins.

If a report sets its own report connection, it should also close the connection before
terminating. The report structure shown in Figure 25 closes its database connection
through a call node that is called at the report’s end. This call node also is attached
to an instance node, so it is called only once.

disconnecting from a
database

Fetching Report Data

4 Building the ReportChapter 73

Fetching Report Data

The detail node’s Data Source property specifies how to fetch report data. Data can
come from one of the following sources:

� One of the databases that JAM supports (Sybase, Oracle, Informix, and
others). Wizard-created reports can access the data in any of these databases
through transaction manager-generated SQL.

� A send bundle created in the JAM application that invokes the report.

� Your own function.

Using Database Data

Reports typically get their data from a database. ReportWriter uses one of JAM’s
database drivers to connect to the desired database and fetch report data. The
layout window should contain a dynamic output widget for each database column
whose data you wish to use in the report—either for output or for calculations.
When the query is executed, the database driver pairs the report widgets to
database columns and reads data into the report widgets accordingly.

If no widget corresponds to a fetched database column, the data in that column is
ignored. No error is reported. For more information on how JAM pairs database
columns to its own widgets, refer to page 224 in the Application Development
Guide.

A report can fetch database data in one of three ways:

� Execution of VIEW by the transaction manager.

� A SQL query that you specify.

� Execution of a previously declared database cursor.

If you set Data Source to TM View, ReportWriter uses the transaction manager to
generate the SQL statements required to fetch data. The transaction manager
fetches report data through its VIEW and CONTINUE commands. When VIEW
executes, the transaction manager fetches data for any widget belonging to a table
view that is included in the transaction. CONTINUE is repeatedly executed until all
data is fetched for the report.

Wizard-created reports rely on the transaction manager to fetch data. The report
wizard automatically creates the widgets, links, and table views that might be
needed.

Transaction
Manager

Fetching Report Data

74 JAM/ReportWriter 7 Developers Guide

If you create a report manually and want the transaction manager to supply the
report’s data, copy some or all of the layout widgets from a repository entry that is
imported from a database. Using repository components automatically sets the
properties needed by the transaction manager. Specifically, copy these objects:

� All widgets to output fetched data. Copy these to the detail’s layout area.
(ReportWriter automatically changes the widgets to dynamic output widgets.)

� Link widgets that describe the relationship between required table views, if the
query includes more than one database table. Copy these links to the unnamed
area of the layout window. The transaction manager uses these links to
determine which table views are a part of the current transaction. You might
also need to change the Type or Parent/Child property settings of the copied
link widgets. Server links are always suitable for use in reports.

To fetch data using the transaction manager:
1. Select a detail node.

2. Under Identity, set the Data Source property to TM View. The Root
subproperty is displayed.

3. Set the Root subproperty to the name of the root table view. The root table
view forms the basis of the transaction manager transaction and is the parent
of any links. If this property is blank, ReportWriter gets the root table view
from one of these two sources (in this order):

• The report file’s Root property (accessible when the layout window has
focus).

• The link widgets’ Parent/Child properties.

For more information about table views, refer to page 354 in the Application
Development Guide. For general information about the transaction manager, refer
to page 309.

Set Data Source to SQL Query if you want to use your own SQL to fetch report
data. The SQL statement must conform to the syntax of the database in use.

In order to set Data Source to SQL Query, the report must contain a dynamic
output widget for each database column in the query, and the widget and column
names should be identical. If the database column and the JAM widget have
different names, your SQL statement must map between the two; otherwise, you
can write your own SQL statement only by setting Data Source to Predefined
Cursor (refer to page 75).

To fetch data using a SQL SELECT statement:
1. Select a detail node.

SQL SELECT
Statement

Fetching Report Data

4 Building the ReportChapter 75

2. Under Identity, set the Data Source property to SQL Query. Related
subproperties are displayed.

3. In the SQL Statement subproperty, enter the SQL string.

4. Set the Default Cursor subproperty:

• Yes — Execute the statement on the default select cursor.

• No — Open a dedicated cursor to execute the statement so that any
database operation on the default cursor is not interrupted.

For example, this SQL statement generates an order list for the specified customer:

SELECT orders.order_num, order_date, title_id, price, qty
FROM orders, order_num
WHERE distrib_id = :+distrib_id
ORDER BY order_num, title_id

ReportWriter executes this statement, then repeatedly executes DBMS CONTINUE
until all the data is fetched into the report.

For Sybase, you can also fetch report data using the EXEC command to execute a
stored procedure. For example, this statement executes procedure fetch_order,
passing the value in order_num as an argument to that procedure.

EXEC fetch_order :+order_num

For more information about how JAM’s database drivers fetch data from a
database, refer to Chapters 14 and 15 in the Application Development Guide.

Named cursors are useful for fetching data to subreports that are invoked
repeatedly. The cursor is declared just once—typically, at startup of the application
or the parent report—then executed each time a subreport is invoked. Because the
statement is already parsed, ReportWriter can execute it faster than an equivalent
SQL query.

For this option, a cursor is declared and associated with the SQL SELECT statement
that fetches the report data. For more information about declaring cursors in JAM,
refer to Chapter 13 in the Application Development Guide.

To fetch data using a named cursor:
1. Declare the cursor before detail output begins, either in the report itself or in

the calling application. To declare the cursor within the report:

• Write a JPL procedure that uses DBMS DECLARE CURSOR to declare the
cursor with bind parameters, if any. If any column and widget names do

Named Cursor

Fetching Report Data

76 JAM/ReportWriter 7 Developers Guide

not match, the procedure must also explicitly map the relationship
between all non-matching pairs with DBMS ALIAS.

• In the report’s structure, insert an instance node that executes before the
detail node, and attach a call node to it. This call node’s function calls the
desired JPL procedure.

2. Select a detail node.

3. Set the Identity⇒ Data Source property to Predefined Cursor. The Cursor and
Using subproperty is displayed.

4. Set Cursor and Using to the name of the cursor, followed by the JAM
variables corresponding to bind parameters, if any. At runtime, ReportWriter
executes DBMS EXECUTE and appends the bind variable names to the
command’s USING clause. DBMS CONTINUE is repeatedly executed until all
data is fetched for the report.

ReportWriter reserves the following naming convention for its own use:

_RWC_xxxx

xxxx is a four-digit hexadecimal number that uniquely identifies the cursor.

Fetching Bundle Data
JPL’s receive command can process bundle data transmitted by a send command
previously executed in the calling JAM application. When the detail node first
executes, ReportWriter fetches as much bundle data as the receiving widgets
require; each successive fetch continues where the last fetch left off, until no more
bundle data remains to be read. This method is appropriate for transferring limited
amounts of data from a screen to a report.

To fetch bundle data:
1. Select a detail node.

2. Under Identity, set the Data Source property to Receive Bundle. Related
subproperties are displayed.

3. Set the Receive Widgets subproperty to the names of the widgets to receive
the data. The order of the widget names must match the order in which data is
specified in the send command.

4. Set the Bundle Name subproperty to the bundle name specified in the send
command. If no bundle name was specified, leave this property blank;
ReportWriter uses the unnamed bundle.

Creating Groups

4 Building the ReportChapter 77

For more information on send and receive, refer to page 191 in the Application
Development Guide.

Using a Custom Function

If you set the detail node’s Data Source property to TM View or SQL Query,
ReportWriter uses JAM’s database interface to fetch data. If your report requires
data from flat files, wire services, or other sources not directly supported by JAM,
you might need to set Data Source to Custom Function and specify your own
function to fetch data. This function must fetch the desired data and place the data
into the target widgets in layout window.

You can write a custom function in either JPL or C. If you call a C function, it must
be installed on the prototyped function list and linked into ReportWriter. For
information on installing prototyped functions, refer to page 121 in the Application
Development Guide.

For information about ReportWriter return codes, refer to page 109.

To fetch data using a JPL procedure or C function:
1. Select a detail node.

2. Under Identity, set the Data Source property to Custom Function. The
Function Call subproperty is displayed.

3. In the Function Call subproperty, enter the function or procedure name.

Outputting Detail Data

The print nodes that you attach to a detail node are executed after every fetch; the
specified layout determines the format and content of detail data. You can avoid
outputting detail data by omitting this print node—for example, to produce reports
that contain summary data only (refer to page 83). For information about print
node composition properties, refer to Chapter 6.

Creating Groups

Reports can visually separate groups of detail output and display introductory and
summary data for each group. Groups can be nested; their summary data, such as
totals and averages, can be used in graphs and displayed as bar or pie charts.

Creating Groups

78 JAM/ReportWriter 7 Developers Guide

Report data can be grouped according to the values of any sort widget. If report
data is sorted on more than one widget, you can group data at multiple levels. For
example, the following report is sorted on distributor IDs and order numbers:

Repeating values under the distrib_name and order_num columns show how
data in this report might be grouped. The next report eliminates repeating values to
clarify groupings:

Creating Groups

4 Building the ReportChapter 79

Sorting Data
Data should be grouped in the same order in which it is sorted. For example, the
root table view for the previous report specifies its sort widgets as distrib_name,
order_num, and name, in that order. Given this sort order, data can be grouped
first by distributor IDs, then by order numbers, and finally by film names.

If you rely on the transaction manager to fetch data, you can sort report data
through the root table’s Sort Widgets property. For information about this property,
refer to page 352 in the Editors Guide. A SELECT statement can also sort widgets
as desired. If the report fetches data from a send/receive bundle or through your
own function, make sure that the data you supply is appropriately sorted.

Defining Groups
A report structure’s group nodes and their respective Break On properties
determine how data is grouped. The Break On property specifies a named dynamic

Creating Groups

80 JAM/ReportWriter 7 Developers Guide

output widget, or break field, whose values define a single level of data grouping.
Each grouping can contain data from one or more detail fetches; the group grows
as long as the break field’s value remains unchanged. When the break field’s value
changes, ReportWriter ends the previous grouping and begins a new one.

On each fetch, before outputting the current detail, ReportWriter checks whether
this widget’s current value differs from the previous fetch; if it does, ReportWriter
begins break group processing with these actions:

1. Executes the footer actions for this group and all lower-level groups,
beginning with the lowest-level group.

2. Executes the header actions for this group and all lower-level groups,
beginning with this group.

3. Resumes detail processing.

Insert group nodes below the detail node in the desired order. For example, the
report structure in Figure 26 yields the output shown earlier:

primary group

secondary group

Figure 26. Group nodes in a report structure specify how to group report data.

The first group node’s Break On property is set to distrib_name; for the second,
it is set to order_num. In order to suppress repeating values within sort columns,
both group nodes have their Print Break Value property set to First and Page Top.

A report that groups data can also generate totals and other calculated values from
numeric columns; for more information, refer to Chapter 5.

Controlling Break Field Output

By default, ReportWriter outputs the values in all dynamic output widgets with
each detail fetch. You can control frequency of output in a group’s break field by
setting the group’s Print Break Value to one of these values:

Creating Groups

4 Building the ReportChapter 81

� Each Use — Output the break field’s values on each detail line of the group.

� First Use Only — Output the break field’s value only in the first detail line of
the group.

� First and Page Top (default) — Output the break field’s value in the first detail
line of the group; if the group output spans multiple pages, reproduce the
break field’s value in the first detail line of each new page.

Outputting Group Headers and Footers

When you create a group node, ReportWriter automatically inserts header and
footer sections to indicate all processing and output that takes place before and
after a group’s detail output. Group’s header and footer sections can contain print
nodes that output text at the beginning and end of the group’s detail output. Typical
header output in a column report includes column titles and the break field’s
current value; footer output often contains group totals for one or more columns.

For example, in the following report structure, group node distrib_name’s
header and footer sections each contain a print node that specifies a layout area,
distrib_name_label and distrib_name_total, respectively. The footer
layout area includes dynamic output widget Tdistrib_name_qty, which totals
values in column qty for the current group:

Creating Groups

82 JAM/ReportWriter 7 Developers Guide

When this report runs, ReportWriter outputs the two layout areas at the beginning
and end of each group of video distributors. Total widget Tdistrib_name_qty
contains the subtotal of qty values for each group. For more information about
totaling group values, refer to page 96.

Several group node properties control how ReportWriter outputs its headers and
footers:

Running Header
If a group’s output spans one or more page breaks, you can ensure that header
output is repeated at the top of each new page by setting this property to Yes. The
default for this property is No.

Note: Setting this property has no effect on printing group headers and footers
when a break occurs in the group.

Local Header Only
This property determines whether to suppress header output for a group when the
next-higher group also outputs its own header:

� Yes — Output this group’s header only if no break occurs in the next-higher
group; if this group and the next one above it break simultaneously, Report-
Writer outputs only the higher group’s header.

For example, you might set this property to Yes when column labels in the
lower group’s header are a subset of those in the group above it. In this case, it
is redundant to output headers from both groups.

� No (default) — Output this group’s header together with the higher group’s
header.

One-Detail Footer
Determines whether to suppress footer output if a group contains only one line of
detail or none:

� Yes (default) — Always output the group footer regardless of the detail
content. Be sure to set this property to Yes for summary-only reports.

� No — Output the group footer only when the group contains more than one
detail line; suppress footer output for groups that contain only one or no detail
line. If footer output is suppressed, ReportWriter uses the value in the Custom
Space subproperty to determine how much space to substitute, if any.

Custom Space
If footer output is suppressed because the group contains only one or no detail, this
property sets the amount of blank space to output in place of the footer. If this

Creating Groups

4 Building the ReportChapter 83

property is left blank (the default), ReportWriter inserts an amount of white space
that is equivalent to the white space output by the footer.

You can set the amount of space in inches (in), millimeters (mm), or characters
(c—the default). For example, 1in inserts 1 inch of blank space after a one-detail
group, while 2 specifies to insert the height of 2 characters. If the value is in
character (c) units, ReportWriter uses the average character size in the report’s
default font to calculate a character unit’s height.

Outputting Summary Data Only

A report that outputs summary data in group footers can easily be modified to omit
detail data. To create a summary-only report:

1. Remove or omit from the report structure the detail’s print node. Usually, it
makes sense also to remove or omit any group header print nodes whose
output label the detail columns.

2. Set the One-Detail Footer property to Yes for all groups that output summary
data.

Note: Whether or not the report outputs detail data, the layout window must
contain dynamic output widgets that receive the fetched data, either in an unused
layout area or in the layout window’s unnamed area.

Figure 27 shows the structure of a summary-only report and its output:

Invoking Subreports

84 JAM/ReportWriter 7 Developers Guide

Detail node without attached print node
fetches but does not output detail data

Group footers output summary data

Figure 27. Summary-only report structure and its output.

Grouping All Report Data

In order to process data for the entire report—for example, to calculate grand
totals—ReportWriter can view all detail output as a single group. To give this
group primacy over all other groups, its group node must be topmost in the report
structure. No breaks occur in this group, so its Break On property is left empty. For
more information on generating grand totals, refer to page 96.

Invoking Subreports

ReportWriter lets you invoke a subreport at any stage of report execution. In gener-
al, you can use any named report as a subreport. How you use a report can deter-
mine where you store it. If a report is intended to be invoked as a subreport by dif-

Invoking Subreports

4 Building the ReportChapter 85

ferent reports, it probably makes sense to define it in a separate file where it can be
accessed equally by all its users. Alternatively, if a subreport is invoked only by
one report, you can define both in the same file.

To invoke a subreport:
1. Create a subreport node in the report structure. Attach the subreport node at

the point in the structure where you want its output to appear.

2. Identify the desired report in the subreport node’s Report Invocation property.
The name that you enter must be defined in a report node’s Name property.
The report to invoke can be in one of three locations:

• The current report file — A named report in the current file can be
invoked by any other report in the same file.

• An included report file — If the report file’s Inclusions property specifies
other files, any named report from the included files can be invoked as a
subreport.

• Another report file — To invoke an external report—that is, a report
defined in a non-included file—qualify the report name with the name of
the file that stores it:

report-filename!report-name

For more information about invoking external and included subreports, refer to
page 90.

Setting Subreport Composition

Three Composition properties control how ReportWriter outputs the contents of a
subreport:

Indent
Shifts right all subreport output from the caller’s leftmost margin by the amount of
space specified. Relative spacing within the subreport’s output remains unchanged.
Specify the amount of space to indent in this format:

indent-space [unit-spec]

Units of measurement (unit-spec) can be specified in inches (in), millimeters (mm),
or characters (c—the default). If you specify dimensions in character (c) units,
ReportWriter uses the average character size in the report’s default font to calculate
a character unit’s width.

Invoking Subreports

86 JAM/ReportWriter 7 Developers Guide

Keep on Page
Determines whether subreports are split across pages. If you set this property to
Yes, ReportWriter keeps all output of the specified subreport together and
unbroken. If the subreport can fit in the space remaining on the current page, it is
output immediately; otherwise, ReportWriter starts a new page.

If Keep on Page is set to No (the default), subreport output begins on the current
page and continues on the following pages if needed.

Reserve Space
Sets the amount of space that the subreport occupies. This property must be set for
subreports invoked from page footers; it is optional otherwise. This property is
especially useful for printing on forms with a fixed-length space for the subreport
data.

The default value is blank, which specifies to use only the amount of space
required to output the entire report. You can set the amount of reserved space in
inches (in), millimeters (mm), or characters (c—the default). For example, 5in
reserves 5 inches to output the report, while 40 specifies to reserve 40 characters.
If the value is in character (c) units, ReportWriter uses the average character size in
the report’s default font to calculate a character unit’s height.

If Reserve Space is set to a value, ReportWriter assumes that the subreport
occupies the stated area and computes page breaks accordingly. If the subreport
contains less area than specified, ReportWriter appends blank output to achieve the
required size. If the subreport contains more than the specified number of lines, the
output is truncated and an appropriate warning message is issued.

If Reserve Space is blank, ReportWriter consolidates a subreport’s leading and
trailing blank lines with the adjacent output. Refer to page 126 for an explanation
of blank line consolidation.

Note: Use Reserve Space only for page footer subreports and fixed-length
subreports. To keep a subreport from being split across pages, set Keep on Page to
Yes.

Using Caller Settings
Two properties, Use Caller Groups and Use Caller Format, let you decide whether
the subreport should use the calling report’s group and page format node settings.

Note: A subreport that lacks its own group nodes always uses the caller’s settings.

Use Caller Groups
Controls whether a subreport uses the caller’s groups or its own:

Invoking Subreports

4 Building the ReportChapter 87

� No (default) — The subreport begins with no groups in effect; the first group
node encountered in the subreport begins a new group hierarchy.

� Yes — Groups set in the calling report remain in effect for the subreport;
groups specified in the subreport are added to the existing hierarchy. The
subreport also inherits the parent report’s current break level to prevent
duplication of break headers in the subreport.

Execution of a detail node normally forces an initial break for all groups. If a
subreport has a detail node and detail processing is already underway in the calling
report, you can avoid redundant break processing by setting Use Caller Groups for
the subreport node to Yes. The subreport inherits the caller’s break hierarchy and
the current break level. When the first fetch of a detail node is executed in the
subreport, initial breaks are forced only for break levels subordinate to the calling
report’s current level.

The report structure location of a subreport node that uses its caller’s groups
determines which group levels are affected:

Invoked from: Affected group levels in subreport:

detail node None.

group header/
footer

Lower levels only.

page format/
instance node

The subreport inherits the break level current in the parent
when the calling subreport node is processed. The subreport’s
detail node forces initial breaks at all lower levels. If no break
level is active, the detail statement forces breaks at all levels.

Use Caller Format
Controls whether a subreport uses the caller’s page format node or its own:

� No (default) — The subreport uses the property settings of its own page
format node—Page Size, Orientation, and Floating Footer; it also uses the
actions attached to its own page header and footer sections. If any page format
properties in the subreport are left empty, the subreport uses the caller’s
settings.

� Yes — ReportWriter uses the caller’s page format node and ignores the one in
the subreport.

When User Caller Format is set to No, ReportWriter processes page footer actions
differently for internal and external subreports:

Calling Functions

88 JAM/ReportWriter 7 Developers Guide

� If the subreport is internal—that is, stored in the caller’s report file or included
at runtime—ReportWriter executes the subreport’s page footer actions on the
current page.

� If the subreport is external, ReportWriter continues to execute the caller’s page
footer actions for the current page; the subreport’s page headers and footers
execute only on the first new page that the subreport itself generates. When
control returns to the caller, ReportWriter restores its page header and footer
actions only when the current page ends.

To ensure that ReportWriter processes an external subreport’s page header and
footer actions immediately after it is invoked, force a page break before the
subreport starts. To restore its caller’s page header and footer actions right after the
subreport ends, force a page break before the caller resumes control.

Note: A subreport that is invoked from a report’s page header or footer always
uses the primary report’s Page Size and Orientation properties. The subreport’s
header and footer sections and their actions are ignored.

Calling Functions

Insert a call node wherever you want to execute a function written in JPL or C. A
call node specifies the desired function through its Function Call property. A call
node can invoke a JPL procedure or installed C function. For a description of
specific uses of call nodes, refer to page 105.

The string that you enter in the Function Call property must use the syntax of JPL’s
call command (page 47 in the Language Reference). For example, a call node
can invoke function myproc and pass string arguments hello and world by
setting its Function Call property to this value:

myproc(”hello”, ”world”)

You can call any JPL procedure that is in the current report file, an included report
file, or a public file—that is, a file whose procedures are made accessible via the
public command (refer to page 68 in the Language Reference).

You can also call a C function if it is installed on the prototyped function list and
linked into ReportWriter. For information on installing prototyped functions, refer
to page 121 in the Application Development Guide.

To create or edit JPL procedures in a report file:
1. Give focus to the report’s layout window.

Processing One-Time Events

4 Building the ReportChapter 89

2. Under Inclusions, select the JPL Procedures property. The JPL Program Text
dialog box opens.

3. Enter or edit the JPL procedures with one of these methods:

• Type the code directly in the JPL Program Text window.

• Choose the Editor button to invoke your local text editor.

• Read in an existing file by choosing the Read File button. The Select File
dialog box opens where you can identify the file.

4. Choose OK to accept your changes and exit the window. Or discard your
changes by choosing Cancel.

Processing One-Time Events

An instance node provides an all-purpose hook for one-time execution of the
attached action nodes. For example, compare the page format nodes shown in
Figure 28. The header sections of both contain a call node that calls function init.
However, in one case, the call node is attached directly to the page format node; at
runtime, the ReportWriter calls init before each page is output, including the first
one. In the second, the call node is attached to an instance node; in this case,
ReportWriter calls init only once, before the first page is created:

calls procedure init
for each page

calls procedure
init only once

Figure 28. An instance node’s actions are executed only once.

You can attach any number and type of action nodes to an instance node;
ReportWriter performs these actions in order of appearance. Instance nodes are
typically used to perform these tasks:

Building Modular Reports

90 JAM/ReportWriter 7 Developers Guide

� Invoke initialization and clean-up procedures such as opening and closing a
database connection (page 72).

� Produce a title and trailer pages (page 118).

Building Modular Reports
You can build a report whose components are partially or entirely derived from
other report files. This is particularly useful for objects that have the potential for
being reused by different reports—for example, layouts for title and trailing pages
or inserted reports.

A report can access the contents of another report file in two ways:

� A subreport node can invoke a report that is defined in another file by
specifying the file name and the name of the report—for example,
title.jrw!main.

� A report can specify report files to be included through its Report Files
property. All report definitions, layout areas, and widgets in the included files
are accessible to the entire report.

Invoking External Report Files
A report can invoke a subreport that is stored in another file; the subreport node’s
Report Invocation property names the desired report with this syntax:

report-filename !report-name

ReportWriter looks for the specified file in the following locations in this order:

1. The application’s memory-resident list; Refer to page 522 in the Application
Development Guide for more information about memory-resident files.

2. All open libraries.

3. On disk in the current directory.

4. Along the path supplied to sm_initcrt.

5. Along all paths in the setup variable SMPATH. If any path exceeds 80
characters, it is skipped.

Including Report Files
A report file can specify to include one or more other files. At runtime, Report-
Writer views the file and its inclusions as a single virtual file. Consequently,

Building Modular Reports

4 Building the ReportChapter 91

reports in one file can reference components in any of the other files. For example,
if report file x.jrw specifies to include y.jrw, at runtime ReportWriter views the
two files as one. Thus, subreport nodes in x.jrw can specify reports in y.jrw;
similarly, print nodes in y.jrw can name layout areas that are in x.jrw.

To include report files:
1. Give focus to the layout window of the primary report file.

2. Under Inclusions, select the Report Files property. ReportWriter displays the
Report Files dialog box:

3. In the dialog box, enter the names of the report files you want to include. Each
inclusion must be on a separate line. You can either type in the names directly
or read in the contents of another file by pressing Read File.

An included file can itself specify to include other files. For example, the following
diagram illustrates a possible inclusions structure, where file a includes b and c,
and c includes files d and e:

a

b c

d e

primary report file

included report files

All names that might be cross-referenced among the primary file and its inclu-
sions—for example, layout areas, reports, and nodes—should be unique; if redun-
dant names occur, ReportWriter resolves the ambiguity by using the first compo-
nent that it finds among the child report files. For example, if files d, c and a all
contain layout areas named page_header, ReportWriter uses the layout area in d.

resolution of name
ambiguity

Building Modular Reports

92 JAM/ReportWriter 7 Developers Guide

Multiple nesting levels contain the potential for circular references. A file should
never include one of its predecessors.

Included Versus External Files

ReportWriter opens and closes external subreports as needed at runtime, so you can
invoke as many subreports from the main report as desired. The maximum number
of inclusions for a single report is limited to 254 lines in the primary and included
reports.

93

Calculating Report
Data

At runtime, ReportWriter can automatically capture data as it is output and use it to
calculate totals. It can also copy output to other locations in the report; or use an
array to collect a series of output values. You can also write your own functions to
process output—for example, to calculate summary data such as averages,
maximums, and minimums, or to control report execution by changing node
properties at runtime.

Outputting Derived Values

A dynamic output widget’s Value property controls how it gets its output value.
You can set this property so that a widget gets its value from previous report
output—for example, totals of column values within a given group. You can reset
the widget’s Value property to one of these options:

� Total — Get the total of all output in a widget. Totaled values are taken from a
segment of report output—for example, all values in a given group.

� Copy — Get the same value as another dynamic output widget. Use this
setting to repeat pertinent information—for example, the current value in a
group’s break field alongside subtotals for that group.

55

Outputting Derived Values

94 JAM/ReportWriter 7 Developers Guide

� History — Collect output from a widget. Values are collected from a specified
segment of output—for example, all values in a group. You can use this data to
supply the data series required by a graph widget.

� Page Number — Get the current page number, typically for output in page
headers or footers.

Unless set to Page Number, the Value property has one or more subproperties:

Value Source
Specifies the dynamic output widget whose values you want to total, copy, or
collect. The property’s combo box lists all named dynamic output widgets in the
current layout window. You can choose or type in one of these; or you can enter the
name of a widget to be created later.

Initialize In
Available only when the widget’s Value property is set to History or Total, this
subproperty is set to the name of a group or detail node. ReportWriter initializes
the widget’s contents each time the specified node executes. The property’s combo
box lists all named group and detail nodes in the structure window. You can choose
or type in one of these; or you can enter the name of a node to be created later.

Usually, you should leave this property blank. ReportWriter sets it to the same
group node that outputs the widget’s layout area.

Set this property only in two cases:

� The widget is not output—either because it is in an unused layout area or in
the layout window’s unnamed area.

� The widget’s layout area is specified for the print node at runtime.

Update In
Available only when the widget’s Value property is set to History or Total, this
subproperty is set to the name of a group or detail node. ReportWriter updates the
widget’s contents each time the specified node executes. The property’s combo box
lists all named group and detail nodes in the structure window. You can choose or
type in one of these; or you can enter the name of a node to be created later.

Usually, you should leave this property blank. ReportWriter updates the widget as
follows:

� For total widgets, ReportWriter updates the widget’s cumulative value from
each detail output.

Outputting Derived Values

5 Calculating Report DataChapter 95

� For history widgets, it updates the collected values from the group immediate-
ly below the group in which the widget is initialized. If no lower group node
exists, it updates the widget’s collected values with each detail.

Set this property only in two cases: the widget is not output—either because it is in
an unused layout area or in the layout window’s unnamed area; or the widget’s
layout area is specified for the print node at runtime.

Context
If Context remains set to Default, ReportWriter uses the value that is consistent
with the context of the widget’s output—that is, the page, group, or detail in which
it appears. For example, a total widget that is output in a group footer gets the
totals for that group; while a total widget that is in a page footer gets the totals for
the page.

Reset this property in these cases:

� The widget is not output—either because it is in an unused layout area or in
the layout window’s unnamed area.

� The widget’s layout area is specified for the print node at runtime.

� The output context defined by a print node is different from the one that is
actually required. This can occur when a subreport performs group footer
output. In this case, each output widget’s Context property should be set to
Group.

In either case, ReportWriter might be unable to determine the widget’s default
context, so you should explicitly set its context with one of these values:

� Current — Use the latest value as this widget’s context. Because ReportWriter
buffers as much output as necessary in order to determine when to generate a
new group or page, the latest output and current value for a widget are
sometimes different.

� Group — Use the latest group output as this widget’s context.

� Page — Use the latest page output as this widget’s context.

For example, an investment firm might use a report to calculate total payments due
to a set of clients. The report then calls a program that transfers the money
electronically. This report has no actual output of its own; the group node that
breaks on clients has a footer section that only has a call node. This calls a function
that is passed two arguments that identify the client and amount due:

example of setting
context

Outputting Derived Values

96 JAM/ReportWriter 7 Developers Guide

Function call:

 payout
 (total_due, client_id)

Given this structure, the report requires its layout window to contain three widgets:
client_id, payment_dtl, and total_due. Values in payment_dtl are totaled
in total_due, whose Value property is set to Total and its Value Source property
to payment_dtl. The report has no output of its own, so it requires no layout area.
Because client_id and total_due have no output context in the report
structure, ReportWriter needs to be told explicitly their correct context. Thus, both
widgets have their Context property set to Group.

Totaling

You can create widgets that automatically calculate and display totals for a
column’s values. These totals can be for a given group, for a specific page, or for
the entire report.

Reports typically generate subtotals for one or more columns within each group,
and a grand total for all values. Figure 29 shows a report whose output is grouped
on distrib_name and order_num. Each group ends with a subtotal of qty
values; the end of the report also contains a grand total for qty:

Group and
Grand Totals

Outputting Derived Values

5 Calculating Report DataChapter 97

order_num
subtotals

distrib_name
subtotals

grand total

Figure 29. Report that generates group subtotals and grand total.

To generate this output, the report relies on three components:

� Group nodes for each group that requires totaling. These include a group node
that defines all detail output as a single group and enables grand totals.

� Layout areas for each group that outputs totals. Each layout area contains a
total widget—that is, a dynamic output widget whose Value property is set to

Outputting Derived Values

98 JAM/ReportWriter 7 Developers Guide

Total. The Value Source subproperty of each total widget is set to the name of
the widget whose values are totaled.

� A print node in each group node’s footer section for outputting group totals;
this print node specifies the appropriate layout area.

Figure 30 shows how to define a report that generates the output shown earlier:

Group nodes control
how report data is or-
ganized into groups

Total widgets
calculate subtotals
for their groups

Subtotals are output in
layout areas invoked by
group footer print nodes

Figure 30. Layout areas and report structure for generating group and grand totals.

You can also generate totals at the page level: create a layout that includes a total
widget and output this layout from the page format node’s footer section.

Page Totals

Outputting Derived Values

5 Calculating Report DataChapter 99

Copying
Reports sometimes need to reproduce data that has already been output. For
example, it can be helpful to identify a group’s totals by reproducing the output of
the widget on which the group broke. Figure 31 shows a report fragment where
subtotals for distributors and orders are each accompanied by a dynamic output
widget; these widgets each repeat the output from their respective break fields:

Output from
copy widgets

Value source widgets

Figure 31. Use copy widgets to repeat output from other widgets.

To reproduce output from one widget in another, create a copy widget—that is, a
dynamic output widget whose Value property is set to Copy. The Value Source
subproperty must be set to the name of the widget whose values you wish to
reproduce. For example, the layout areas for the group footers shown earlier
contain copy widgets whose Value Source is set to the groups’ break fields,
distrib_name and order_num:

Outputting Derived Values

100 JAM/ReportWriter 7 Developers Guide

Copy widgets

The previous example copies group-level output. You can also copy data into page
headers and footers. For example, you might want the page header to show the first
value that is output by a group’s break field, or the footer to show the last value
that is output by that field.

Collecting
You can set a dynamic output widget to collect the values that are output in another
widget. A widget that collects data from another—or history widget—can be used,
for example, to collect totals for a given group and present these in a graph.

To create a history widget:
1. Create a dynamic output widget in the unnamed area of the layout window.

2. Under Geometry, make the widget a scrolling array by setting these properties:

• Scrolling = Yes

• Max Occurrences = blank (unlimited number of occurrences)

3. Under Composition, set these properties:

Outputting Derived Values

5 Calculating Report DataChapter 101

• Value = History

• Value Source = widget-name — The name of the widget whose values
you want to collect.

• Initialize In = node-name — The name of a group node for which data is
collected. When ReportWriter executes this node’s header section, it
clears all occurrences in the history array before it executes any of the
group’s header actions.

• Update In = node-name — The name of the group or detail node at which
the Value Source widget’s value is appended to the history widget. When
ReportWriter executes node-name, it allocates a new occurrence in the
history array and fills it with the current data in the Value Source widget.
If node-name is a group node, the update occurs immediately after the
group’s footer section execute.

Figure 32 shows a report that calculates and displays totals for each distributor in
the vbizplus database. It then displays these totals in a graph:

Figure 32. Outputting report values in a bar graph.

Using Historical
Data in Graphs

Outputting Derived Values

102 JAM/ReportWriter 7 Developers Guide

The data required to draw this graph is derived from two history widgets:

� Tdistrib_qty_hist collects the output from Tdistrib_qty, which totals
qty values for each group of distributors.

� distrib_name_copy_hist collects the output from distrib_name_copy,
a copy widget that gets distrib_name’s value for each group.

Two graph properties are set to the two history widgets: the Value Source property
for Data Series #1, which populates the bar data, is set from Tdis-
trib_qty_hist; and the Label Source property for X Tick Marks, which sets the
labels under each bar along the X axis, is set by distrib_name_copy_hist.

Displaying Page Numbers

To display page numbers in a report:

1. Create a dynamic output widget in the desired layout area—typically, an area
that is output as the page header or footer.

2. Set this widget’s Value property to Page Number.

By default, ReportWriter sets a page number widget to 1 at the beginning of a
report and increments its value at each page break. Page numbering is continuous
throughout a report. You can ensure that a subreport inherits the calling report’s
page number by setting the subreport node’s Use Caller Format property to Yes.
Otherwise, page numbering restarts for that subreport.

You can programmatically reset a page number widget’s value at any stage of
report execution. Simply insert a call node in the portion of the report structure
where you want to restart page numbering. This call node’s function resets the page
number widget to the desired value.

For example, Figure 33 shows the structure of a report with a single group node;
the report restarts page numbering for each iteration of that group. The group’s
header section contains a call node whose function init_page initializes page
number widget pagenum to 1. So, each time the report processes a break in this
group, pagenum is reinitialized to 1; successive page breaks automatically
increment pagenum’s value until the next group break occurs:

Outputting Derived Values

5 Calculating Report DataChapter 103

proc init_page
pagenum = 1
return

Figure 33. Report that restarts page numbering on each group break.

Viewing Property Links
To review dependencies between a dynamic output widget that processes another
widget’s data, and other widgets and nodes:

1. Select the widget.

2. Choose Report⇒ Show Property Links.

ReportWriter displays the Property Links dialog:

The Property Links dialog can contain two types of entries:

� prop-name –> obj-name shows that this widget’s prop-name property is set to
obj-name, either another widget or a node. If obj-name is an unnamed node, it
is identified by its node type. For example, the links for a total widget might
include these entries:

Adding Computed Values

104 JAM/ReportWriter 7 Developers Guide

Value Source –> qty
Initialize In –> Group #2
Update In –> Detail #1

These entries shows that this widget totals values in qty and updates the
accumulated total on each detail fetch.

Note that group and detail nodes are linked to a total or history widget’s
Initialize In and Update In properties even when these properties are blank.
ReportWriter infers the default for these properties from the node in which the
widget is output.

� prop-name <– obj-name shows that a node or another widget specifies this
widget in its prop-name property. If obj-name is an unnamed node, it is
identified by its node type. For example, the links for a widget node might
include these entries:

Value Source <– distrib_name_copy
Break On <– Group #2

This entry shows that copy widget distrib_name_copy uses this widget as
its data source; and an unnamed group node specifies it as the group’s break
field.

Note: The Property Links dialog only shows links to existing widgets; if a property
specifies a widget or node that does not exist—either because it is not yet created
or it is included at runtime—the dialog omits this link.

When you display the Property Links dialog, you can give focus to the widget or
node specified in the selected entry by choosing Go To, or by double-clicking on
the entry. If the widget is in the structure window, ReportWriter brings this window
forward; if the structure window is closed, ReportWriter opens it.

Adding Computed Values

You can take advantage of your database’s aggregate or mathematical functions to
calculate column values. The transaction manager fetches these values as part of
the report data. To do this, create a dynamic output widget and set its properties as
described below. You can create this widget either in the report itself or in a
repository entry. If you add the widget to your repository, it is available for
selection when you create reports through the report wizard.

Set these widget properties:

� If you are creating the widget in a repository entry, set its Name property. This
value identifies the widget as a column name in report wizard dialogs.

Going to a
Property Link

Using Call Nodes

5 Calculating Report DataChapter 105

� If the widget contains numeric values, change C Type to the appropriate value,
such as Int or Float.

� In the Database category, change Use In Select to Yes.

� Set Use In Select to a database expression that calculates the widget’s value.

After you set the widget’s properties, update the members of the table view to
include the new widget.

Note: Add the widget to a repository entry in order to make it available for
selection when you create reports through the report wizard.

Using Call Nodes

By using call nodes to call your own functions, there is no limit to the types of
operations that you can perform on report data. You can insert a call node
anywhere in the report structure, giving you access to data at every level of report
execution. The functions that you write can be written in either C or JPL; you can
store them in the report file itself or on disk in a file or library.

Calculating Widget Output

You can call functions that compute typical summary data such as average,
minimum, or maximum values. Summaries can be calculated for any given group,
for each page, and for the entire report. The following report shows the largest
video order from each distributor:

Using Call Nodes

106 JAM/ReportWriter 7 Developers Guide

Figure 34. Maximum order quantities for each distributor.

A report can generate and display calculated data through three components:

� A calculation widget that collects and optionally displays the calculated data.
Use a dynamic output widget that has its Value property set to Normal, and
place it in the layout area where you want the calculated data to appear. For

Using Call Nodes

5 Calculating Report DataChapter 107

example, to display a column’s minimum value within a group, create a
calculation widget in the layout area used for that group’s footer.

� A call node that initializes the calculation widget. Position this node so that it
executes before calculations for the widget data begin. For example, if you
want to calculate the average value of a column within a given group, insert
the call node directly below the group node as a header action. Thus
positioned, the call node executes on each iteration of the group and
reinitializes the calculation widget before the first fetch of group data.

� A call node that updates the calculated data. Place this node below the report’s
detail node as a detail action. ReportWriter calls this function each time it
fetches a new row.

A report that generates the kind of output shown earlier might use the following
layout area and report structure:

Using Call Nodes

108 JAM/ReportWriter 7 Developers Guide

proc update_max_distrib_qty()
if Mxdistrib_qty < qty
{
 Mxdistrib_qty = qty
 Mxdistrib_film = name
}
return

proc init_max_distrib_qty()
Mxdistrib_qty = 0
return

Figure 35. Report that calculates maximum output.

Using Call Nodes

5 Calculating Report DataChapter 109

A calculation widget acquires and optionally outputs calculated data. To show
calculated data, place the calculation widget in a layout area that is output. To hide
calculation widget data, place the widget in the layout window’s unnamed area
(below all layout areas), or set its Hidden property to Yes or Always.

The report defined in in Figure 35 defines a single group whose break field is
distrib_name; the layout area for the group’s footer contains calculation widget
Mxdistrib_qty . During detail processing, this widget get the maximum qty
value that is calculated for the group; when the group breaks and its footer area is
output, Mxdistrib_qty contains this value.

Before any detail data is output, the function called from the group node’s header
section initializes Mxdistrib_qty to 0:

proc init_max_distrib_qty()
Mxdistrib_qty = 0
return

This initialization function is called each time a break in distrib_name generates
a new group.

After fetching and outputting each row of data, ReportWriter executes the call node
that is attached to the detail node. This call node’s function compares the fetched
data in qty and compares it to Mxdistrib_qty; if the data in qty is greater, the
function puts this value into Mxdistrib_qty; it also updates the value in the
group footer widget Mxdistrib_film:

proc update_max_distrib_qty()
if Mxdistrib_qty < qty
{
 Mxdistrib_qty = qty
 /* if updating max, also get film name */
 Mxdistrib_film = name
}
return

Controlling Report Execution

You can programmatically control report execution through JPL return codes that
affect subsequent processing; you can also modify execution by setting report node
properties at runtime—for example, a print node’s Area property.

The JPL procedures that you call during report execution can return with values
that influence subsequent processing. Table 2 lists these return codes and how they
affect report execution.

Creating a
Calculation
Widget

Initializing
Calculated Data

Updating
Calculated Data

Using JPL
Return Codes

Using Call Nodes

110 JAM/ReportWriter 7 Developers Guide

Table 2. ReportWriter JPL return codes

Return code Action

SM_RW_OK Continue normal report processing.

SM_RW_SKIP Skip over all remaining action nodes that are attached
to the current structure node. If the call node is attached
to a detail node, begin the next fetch.

SM_RW_ENDDETAIL Stop fetching data and skip over all nodes attached to
the current detail node.

SM_RW_ENDREPORT Silently terminate current report. If this is the main re-
port, finish outputting the current page before quitting.

SM_RW_ENDRUN Silently terminate main report. Finish outputting the
current page if necessary.

SM_RW_ERROR Immediately stop execution of all reports and post an
error message.

For example, you can conditionally execute a report’s title page, generated by a
print node and end page node, if both are preceded by a call node that calls this
procedure:

proc set_area

if draft_arg == 1 /* draft distribution */
 @widget(”title_pg_print”)–> area = ”draft_title”

else if draft_arg == 0 /* final distribution title */
 @widget(”title_pg_print”)–> area = ”final_title”

else /* no distribution, no title page */
 return SM_RW_SKIP /* skip print/end page nodes */

return SM_RW_OK /* process print node */

The previous example shows JPL code that sets a print node’s Area property at
runtime. A number of node properties, listed in Table 3, are accessible at runtime.
You can read and change these properties using JPL or equivalent calls to JAM
library functions. For example, this JPL statement gets the name of the report
invoked by subreport node qtr_summary:

vars sub_rpt
sub_rpt = @widget(”qtr_summary”)–>report_invocation

Setting Node
Properties at
Runtime

Using Call Nodes

5 Calculating Report DataChapter 111

Only named nodes are accessible at runtime; their object class is @widget. For
more information about accessing widget properties, refer to page 28 in the
Language Reference.

Table 3. ReportWriter properties that are accessible at runtime.

JPL property mnemonic Values More... Constraints

Detail node:

 root str — root table view 73 Data Source = TM

 sql_statement str — SELECT statement 74 Data Source = SQL Query

 cursor_and_using str — cursor name and argu-
ments

75 Data Source = Predefined Cursor

Group node:

 break_on str — break field name 79

Call node:

 function_call str — call string 88

Print node:

 area str — layout area name 52

Subreport node:

 report_invocation str — invocation string 85

Transferring Data from a Report

You can use JAM’s send command to send data back to its caller. If the caller is a
JAM application, it can retrieve this data through a corresponding receive
command; otherwise, it can use JAM library functions such as sm_receive or
sm_get_bundle_data. The send command can send data from report widgets
and global variables, or any valid expression.

The call node whose function contains the send command can be placed anywhere
in the report structure; so you can send data back to the caller at any stage of report
execution. Use send and receive as vehicles for return values when the report
returns to its caller; or for sending data during report execution—for example, to
save status or error messages.

Grouping Data on Computed Break Fields

112 JAM/ReportWriter 7 Developers Guide

Grouping Data on Computed Break Fields

In previous examples, groups are defined through break fields that obtain their
values from the report’s data source—typically, a database. You can also set a
group node’s Break Field property to a widget whose value is computed by a
function written in JPL or C.

Computed breaks can be used to group data in a number of ways. For example:

� Start a new group every n detail lines and output a group footer that consists of
blank lines, in order to improve readability of the report.

� Start a new group whenever data in the fetched row meet certain criteria—for
example, an invoice value exceeds a specified amount—and output a warning.

� Group fetched rows into categories derived from the fetched data, such as
dated transactions grouped into three-month periods.

In each of these cases, the group’s break field is a widget or global variable whose
value is computed. The function that sets the break field’s value must be set in the
report detail node’s Pre-Break Call property. ReportWriter performs this function
after it fetches the detail data but before it checks for break field changes and
begins break group processing.

In the following example, the break field’s value is derived from fetched data. The
report fetches tape rental data and groups it in ranges of times rented —over 80,
between 61 and 80, and 41 and 60. The report must order the fetched rows by the
times_rented field in descending order, and contains these components:

� In the layout window’s unnamed area, dynamic output widget rent-
al_group. This widget serves as the group’s computed break field.

� A layout area that serves as a group header; this area contains dynamic output
rental_range_label. This widget’s content is set at runtime to show the
range of rentals in the current group.

� A JPL procedure that computes the value of break field rental_group for
each fetched row; the report’s detail node must specify this function in its
Pre-Break Call property.

� In the structure window, a single group node whose Break Field property
specifies rental_group.

When you run this report, ReportWriter executes set_rental_group each time a
row is fetched:

Grouping Data on Computed Break Fields

5 Calculating Report DataChapter 113

proc set_rental_group

/* check the fetched value in widget times_rented
 * and determine which group this record belongs
 * in, set widgets rental_group and rental_range_label
 * accordingly.
 *
 * the ranges are: 1: 41 – 60
 * 2: 61 – 80
 * 3: over 80
 *
 * the variable rental_group is a non–output widget
 * in the layout window’s unnamed area
 */

if times_rented >= 81
{
 rental_group = 3
 rental_range_label = ”Number of rentals: over 80”
}
else if times_rented >= 61
{
 rental_group = 2
 rental_range_label = ”Number of rentals: 61 – 80”
}
else if times_rented >= 41
{
 rental_group = 1
 rental_range_label = ”Number of rentals: 41 – 60”
}
else if times_rented < 41
/* don’t bother to check any further */
{
 return SM_RW_ENDDETAIL
}

This procedure sets the break field rental_group before break group checking
occurs, so ReportWriter can correctly determine whether to start a new group.
When you run this report, it yields this output:

Grouping Data on Computed Break Fields

114 JAM/ReportWriter 7 Developers Guide

Figure 36. Report with groups generated by computed break field.

115

Refining the Look
Usually, you want a report to do more than just present data; you also want it to
organize and present information efficiently and attractively. For example, you
might want page numbers along with descriptive text to appear at the top or bottom
of each page. Reports often begin with a cover page that displays a title, the date,
and other introductory material.

This chapter shows how to improve your report’s appearance by:

� Controlling pagination.

� Inserting title and trailing pages.

� Managing the format of group output.

� Setting justification and indentation within a layout area.

� Eliminating extra white space.

Controlling Pagination

By default, ReportWriter allows page breaks wherever it can do so without
splitting output of a layout area. If the next area to be output can fit on the current
page, ReportWriter outputs it to that page; otherwise, ReportWriter begins a new
page.

66

Controlling Pagination

116 JAM/ReportWriter 7 Developers Guide

You can override this behavior and control page breaks in several ways:

� Allow page breaks within or between detail rows.

� Control pagination within a group.

� Keep all output within a subreport on the same page.

� Force page breaks at specific stages of report execution.

� Make page breaks conditional.

Allowing Detail Page Breaks
By default, detail print nodes have their Keep on Page property set to Yes. This
keeps the output for each detail row on the same page; it also ensures that group
header and footer output are accompanied with at least one detail row.

If the detail’s print node has Keep on Page set to No, output for a detail row can be
split across pages. Setting this property to No also allows ReportWriter to output
group headers and footers without being accompanied by a detail row. So, group
headers can print at the bottom of a page, before the group data is output; and
group footers can be at the top of a new page.

You can also print each detail on its own page by setting the detail node’s One per
Page property to Yes.

Controlling Group Pagination
By default, ReportWriter prints as many groups on a single page as space allows,
and splits groups across pages. Group headers and footers are printed intact and
with at least one detail row. You can override this behavior in several ways:

� Keep group output together on a single page.

� Start a group on a new page.

� Allow page breaks between a group’s detail output and its headers and footers.

To keep group data together on the same page:
1. Give focus to the group node.

2. In the Properties window, set Keep on Page to Yes.

When you set a group node’s Keep on Page property to Yes, ReportWriter keeps
the specified group’s header, detail, and footer data on the same page, if possible. If

Controlling Pagination

6 Refining the LookChapter 117

the entire group, including its header and footer, can fit on the current page, it is
output immediately; otherwise, ReportWriter starts a new page.

To start a group on its own page:
1. Give focus to the group node that identifies the desired group.

2. In the Properties window, set One per Page to Yes.

When you set a group node’s One per Page property to Yes, ReportWriter starts a
new page for each group generated by that node. The new page begins after
ReportWriter outputs the footers of the previous group.

For example, given a report that shows video orders grouped by film names, dis-
tributors, and order numbers, you can force a page break after each break on name;
set One Per Page to Yes for name’s group node. This yields the following output:

To allow breaks in group headers and footers:
By default, the print nodes that output group headers and footers have Keep on
Page set to Yes. This prevents page breaks within the header or footer output; it

Inserting Blank Pages

118 JAM/ReportWriter 7 Developers Guide

also ensures that group headers and footers are output with at least one detail row
from the group. So, if a new group begins and the current page lacks enough space
to fit all of the header output and at least one detail row, a new page begins before
the header data. Similarly, ReportWriter reserves enough space to print on the same
page all footer output along with one detail row.

If Keep on Page to set to No for the print node of a group header or footer, its
output can end, span, or begin a page.

Keeping Subreport Output Together
To keep subreport output on the same page, set the subreport node’s Keep on Page
property to Yes. If the subreport can fit in the space remaining on the current page,
it is output immediately; otherwise, ReportWriter starts a new page.

If Keep on Page is set to No (the default), subreport output begins on the current
page and continues on the following pages if needed.

Forcing Page Breaks
Inserting an end page node in the report structure forces a page break at that stage
of report execution. A forced page break closes the current page and executes the
page footer nodes; if more output follows, ReportWriter begins a new page and
executes the page header nodes. Typical uses include outputting title and trailer
pages, separating sections within a report, and generating blank pages.

Note: To start group or detail output on a new page, use the One per Page
property for their corresponding nodes.

Inserting Blank Pages
Execution of an end page node forces a page break whether or not there is output
on the current page. Thus, you can insert successive end page nodes to create blank
pages.

Blank pages are not always entirely blank—they typically carry over any page
headers and footers that are in effect. To output a page that is truly blank, clear the
existing page specifications by inserting a new page format node before blank page
output begins; if no layout areas are specified for the page header and footer, the
end page nodes that follow generate text-free pages.

Generating Title and Trailer Pages
Reports often begin with a cover, or title page; they can also end with a separate
page that contains summary information. Reports that contain multiple sections

Generating Title and Trailer Pages

6 Refining the LookChapter 119

also might require title pages for each section. You can add each of these
components by creating a layout area and modifying the report structure.

To create a title page:
1. In the layout window, create a layout area that contains the output required for

the title page.

2. In the report structure window, attach an instance node to the report structure’s
page format node.

3. Below the instance node, attach a print node and specify the title page’s layout
area.

4. Below the print node, attach an end page node. This forces a page break
between the title page and detail data.

Note: If you want the title page to omit the header and footer output of the report’s
main body, insert a new Page Format node immediately below the Report node;
attach to it the instance node and title page’s print node.

To create a trailer page:
1. In the layout window, create a layout area that contains the output required for

the trailing page.

2. In the report structure window, create a page format node below the last page
format node.

3. Below the new page format node, attach an instance node.

4. Below the instance node, attach an end page node. This forces a page break
between the detail data and the trailing page.

5. Attach a print node to the instance node and specify the trailing page’s layout
area.

Positioning Output

120 JAM/ReportWriter 7 Developers Guide

title page

trailing
page

main body
of report

print title page
layout area

force page break

print trailing page
layout area

force page break

Figure 37. Report structure that specifies title and trailing pages.

Positioning Output

Ordinarily, the layout of a print node’s output is determined by the position of the
widgets within its layout area. A print node has two Composition properties,
Justification and Indent, that generally override widget positions and determine
where to place the print node’s output at runtime.

Justification
Setting a print node’s Justification property to Center, Left, or Right shifts all
widgets in the print node’s layout area as specified. Spacing between widgets
remains unchanged. If set to Normal (the default), ReportWriter uses each widget’s
Start Row and Start Column positions to output its data.

For example, Figure 38 shows layout area page_header, which is specified by the
report header’s print node. In the layout window, the first widget’s position is flush

Reducing White Space

6 Refining the LookChapter 121

left. You can center the actual header output by setting its print node’s Justification
property to Center:

Figure 38. To center the contents of a print node’s layout area, set the print node’s Justifica-
tion property to Center.

Indent
Shifts right all widgets in the print node’s layout by the amount of space specified.
Spacing between widgets remains unchanged. Units of measurement (unit-spec)
can be specified in inches (in), millimeters (mm), or characters (c—the default). If
you specify dimensions in character (c) units, ReportWriter uses the average
character size in the report’s default font to calculate a character unit’s width.

Reducing White Space

You can optimize use of the specified page dimensions in two ways:

� Eliminate, or shrink out, blank lines within a layout area.

� Consolidate white space that lies between contiguous layout areas.

Note that ReportWriter always outputs vertical white space between widgets,
whether they are empty or not.

Reducing White Space

122 JAM/ReportWriter 7 Developers Guide

Shrinking Layout Areas

Sometimes, a layout area must anticipate variable amounts of data to output. This
typically happens for two reasons:

� One line in a detail’s output is blank because all fields in the corresponding
record are empty.

� The layout area contains an array with a fixed number of elements, but the
number of these that actually contain data varies at runtime.

You can eliminate this white space by setting a print node’s Shrink property to Yes.
This tells ReportWriter to condense the layout area vertically when some of the
allocated fields and array elements are empty.

A detail’s layout area can include fields that are sometimes empty, depending on
the data in a given record. For example, a report that lists customer addresses
contains two fields from the customers table that stores street and apartment/floor
numbers: address1 and address2. The report’s layout screen looks like this:

address1

address2

address1 always contains data; address2 is frequently empty. To close up the
empty space otherwise created by address2, the print node that calls layout area
data should have its Shrink property set to Yes. This yields the following output:

Shrinking Out
Empty Lines

Reducing White Space

6 Refining the LookChapter 123

ReportWriter eliminates only lines that contain empty widgets, and only if all
widgets on a line are empty.

Note: To make sure that that all adjoining widgets are on the same line, align them
horizontally so that their Start Row properties have the same value.

The detail layout used in the earlier output contains a line for credit card
information. This line contains dynamic output widget cc_label, which precedes
the customer’s credit card data—cc_code and cc_number. Not all customer
records contain this information; but because cc_label’s Label property is set to
Credit Card, ReportWriter outputs this line whether or not the rest of the line is
empty. To output this line only when credit card data exists, modify the report to
call a function that checks whether data exists in cc_number; if not, it sets
cc_label to an empty string:

Reducing White Space

124 JAM/ReportWriter 7 Developers Guide

proc check_cc_data
if cc_number == ””
{
 cc_label = ””
}
return

Figure 39 shows how this function is called through a call node that precedes the
detail’s print node:

proc check_cc_data
if cc_number == ””
{
 cc_label = ””
}
else
{
 cc_label = ”Credit Card:”
}
return

Figure 39. Shrink out a line from the detail output by setting widgets on that line to an empty
string.

When cc_label is set to an empty string, ReportWriter perceives the entire line as
empty and removes it from the detail output. The call node that follows the print
node resets cc_label to its previous content. When you run this report, it yields
the following output:

Reducing White Space

6 Refining the LookChapter 125

Note: Setting the Shrink property has no effect on blank space—that is, lines that
contain no widgets. For information about consolidation of blank space, refer to
page 126.

Reports can also contain arrays that are not always fully populated each time they
are output. For example, you might produce an report that uses an array to show
film descriptions. The amount of descriptive data varies for each film, so one or
more occurrences in this array are often empty .

To ensure that the report shows only the populated rows in this array and shrinks
out the remaining elements, follow these guidelines:

� Set the array’s Array Size property so there are enough elements (on-screen
rows) for the longest possible description.

Shrinking Arrays

Reducing White Space

126 JAM/ReportWriter 7 Developers Guide

� Do not put any other fields on the same lines as array elements that might be
empty. The presence of any non-empty field forces ReportWriter to output a
line that it might otherwise shrink out.

� In the print node that outputs the array, set the Shrink property to Yes.

When the report is generated, the empty array occurrences are shrunk out, so the
amount of space between all film descriptions is consistent:

Figure 40. Eliminate empty occurrences in an array by setting the print node’s Shrink property
to Yes.

Note: Setting the Shrink property to Yes removes null fields only if the null
character is a blank space.

Consolidating Blank Space
ReportWriter consolidates trailing and leading blank space of adjacent layout areas.
The amount of blank space that is actually output equals the amount of trailing

Reducing White Space

6 Refining the LookChapter 127

blank space in the first layout area or leading blank space in the second area,
whichever is greater.

Note: ReportWriter recognizes an area as blank only if it is completely empty—
that is, unoccupied by widgets of any kind. An area that contains empty fields is
affected only by the Shrink property.

This behavior is especially useful in reports where group headers and footers can
appear anywhere on the page—that is, the group nodes have their One Per Page
property set to No. Headers can include leading blank lines to achieve natural
spacing when printed immediately after the previous group footer. Blank space
consolidation ensures that these blank lines do not exaggerate the amount of blank
space produced when the group headers appear after a page break and immediately
follow the page header. So, if the page header ends with two blank lines, and the
group header begins with a single blank line. ReportWriter consolidates the amount
of blank space between these areas to two lines only.

129

Running Reports
While you are developing your report, you can preview its output at any time. You
can either view reports at your terminal through the editor’s viewer; or you can
send output to a file or printer. In graphical environments such as Windows, the
viewer accurately shows the output you can expect from printed output. Because
the viewer is integrated within the editor, you can respond immediately to the
viewer output, then run the report to the viewer again to see how your changes
look.

You can also use JAM’s debugger to track down problems while you run reports in
the editor—for example, trace the value of a widget in your report layout window.

When the report is complete, you can run it either from the command line or a
JAM application. You can also set up a report so that users can influence report
output.

ReportWriter supports these options for directing output:

� PostScript — The report is generated in Adobe standard PostScript.

� Macintosh/Windows — The report is generated using the printer driver for any
installed printer. This is the default output driver when running Macintosh or
Windows.

� Text — The report is generated in ASCII text.

� Metafile — The report is generated in ReportWriter’s metafile format for
display in the report viewer.

77

Running Reports from the Report Menu

130 JAM/ReportWriter 7 Developers Guide

Running Reports from the Report Menu

The editor’s Report menu contains several options that let you generate output for
any report currently displayed in the editor. This menu is also available in a JAM
application that uses the default JAM menu bar. You can send output to one of
these destinations:

� The report viewer

� The printer specified in the Page Setup dialog

� A file

Viewing Reports Onscreen

While developing a report, you can preview its output through the report viewer:

1. If necessary, open the database required by this report: from the File menu
choose Open⇒ Database and select the desired database.

2. From the Report menu, choose Preview Report (from the editor) or Run
Report (from a JAM application). The Run Report dialog box opens.

Figure 41. The Run Report dialog box lets you view reports onscreen or send reports to a
printer or file.

3. If the report you want to run is not the first one in the report structure window,
select the name of the desired report from the Report option menu.

4. To inhibit display of ReportWriter warnings, select the Suppress Warnings
check box.

Running Reports from the Report Menu

7 Running ReportsChapter 131

5. Choose Arguments to enter argument values for predefined report parameters.
For more information, refer to page 139.

6. Choose Page Setup to change the the page size, the page orientation, or the
page margins. Choose OK when finished.

7. Choose OK to generate the report and display it in the report viewer.

As each page on the report is complete, it is available for display in the report
viewer.

The report viewer has its own menu and toolbar. The View menu lets you navigate
through the report and determine the size of the report display. The File menu lets
you print the current output; it also lets you save the output to a metafile for later
viewing.

While in the viewer, you can save report output to metafile format by choosing
File⇒ Save. After you enter a filename, choose OK. The report is saved to a file
with a default .rwm extension in ReportWriter’s metafile format. The output saved
to this file can be displayed at any time through the report viewer.

To view report output saved in a metafile:
1. From the Report menu, choose Output Viewer.

2. From the viewer’s File menu, choose Open. The file browser dialog displays
available files.

3. Select or enter the name of the desired metafile and choose OK. The viewer
displays the output saved to this file.

4. When your viewing session is complete, return to the editor by choosing
File⇒ Exit.

Printing Reports

You can use the Report menu to send output to a printer or file:

1. From the Report menu, choose Preview Report (from the editor) or Run
Report (from a JAM application).

2. Choose the File or Printer option in the Output To box.

3. If the report you want to run is not the first report in the report structure
window, select the name of the desired report from the Report option menu.

Saving Viewer
Output

Running Reports from the Report Menu

132 JAM/ReportWriter 7 Developers Guide

4. To inhibit display of ReportWriter warnings, select the Suppress Warnings
check box.

5. Choose Arguments to enter argument values for predefined report parameters.
For more information, refer to page 139.

6. Choose Print Setup to change the printing options. The Print Setup dialog is
different for each platform. Variations of this dialog and its options are
described later.

7. Choose Page Setup to change the the page size, the page orientation, or the
page margins. This dialog’s options are described later. If there is a conflict
between the settings in the report’s properties and in the Page Setup dialog
box, the settings in the report have precedence.

8. Choose OK.

The Page Setup dialog specifies page size, orientation, and margins. On UNIX
systems, the initial settings for the Page Setup dialog box come from the
rwviewpr.ini file, if available. This file is created by selecting the Save On Exit
check box on the Print Setup dialog box for UNIX. On Windows and Macintosh,
the paper size and orientation are derived from the system’s settings.

Figure 42. On the Page Setup dialog box, set additional margins, change the page size, and
change the page orientation.

Page Setup

Running Reports from the Report Menu

7 Running ReportsChapter 133

Paper Size
Specify the dimensions of the output area on report pages. You can select one of
the predefined page sizes from the drop-down list, or specify your own page size in
this format:

width x height [unit-spec]

Refer to page 71 for valid units of measurement.

Orientation
Select Portrait to use the shorter page measurement as the width of the report.
Select Landscape to use the longer page measurement as the width.

Margins
If you want to add space to the report’s margins, enter the additional margins here.
Specify the amount of space in this format:

margin-space [unit-spec]

Units of measurement (unit-spec) can be specified in inches (in), millimeters (mm),
or characters (c—the default). If you specify dimensions in character (c) units,
ReportWriter uses the average character size in the report’s default font to calculate
a character unit’s width.

In Windows, choosing Print Setup from the editor displays the Windows Print
Setup dialog box:

Printer
The default printer is automatically selected, but you can change it to any printer
available in your Windows Print Manager.

Windows Print
Setup

Running Reports from the Report Menu

134 JAM/ReportWriter 7 Developers Guide

Page Orientation
Select Portrait to use the shorter page measurement as the width of the report.
Select Landscape to use the longer page measurement as the width.

Paper Size
Specify the dimensions of the output area on report pages. You can select one of
the predefined page sizes from the drop-down list, or specify your own page size in
this format:

width x height [unit-spec]

Refer to page 71 for valid units of measurement.

On UNIX systems, choosing Print Setup displays a dialog box that lets you control
the print driver, the spool command, and the device file for the report:

Select Driver
Choose the output driver to use for the file:

� PostScript Printer generates PostScript output.

� Generic Printer uses the text driver for ASCII report output.

Spool File
Enter the name of the file to hold the report output before it is sent to the printer.
For this option to be active, the Pipe Output option must be inactive.

Spool Command
Enter the print command used in your operating system. For Motif and character
mode, if Pipe output is selected, the report is sent directly to the printer. Otherwise,

UNIX Print
Setup

Running Reports Outside the Editor

7 Running ReportsChapter 135

the report is stored in the spool file and the command should include the spool file
name.

Pipe output
On UNIX systems, this option will automatically send the report output to the
printer using the command in Spool Command.

Device File
Enter the name of the device file to use in printing an ASCII report with the
Generic Printer driver. Each device file is a binary file, compiled from ASCII, that
enables printing options. For more information on creating device files, refer to
page 173.

Save on exit
If selected, Page Setup and Print Setup dialog settings on UNIX platforms are
saved to rwviewpr.ini in the current directory.

Running Reports Outside the Editor

You can run a report outside the editor in three ways:

� From the command line with the rwrun utility.

� Call the JPL command runreport.

� Call the library function sm_rw_runreport.

All of these invocation options use the same report invocation string:

filename [!reportname] [(arg[, ...])] [option]...

filename [!reportname]

filename is the name of a binary report file. If reportname is supplied, the specified
report in this file is invoked. If reportname is omitted, the first report defined in the
file is used.

arg

Supply one or more arguments. Refer to page 139 for more information.

option

Specify one or more options to specify the output file or report format specifica-
tions. For descriptions of available options, refer to page 136.

Running Reports Outside the Editor

136 JAM/ReportWriter 7 Developers Guide

To invoke a report from the command line:
Use rwrun to run reports from the command line or in a batch file. rwrun has this
syntax:

rwrun filename [!reportname] [(arg[, ...])] [option]...

For example, the following UNIX invocation runs the custinfo.jrw report and
writes the report to the file custinfo.txt. The invocation string contains an
argument, 11, which is the customer ID number to use in the report.

rwrun custinfo.jrw \(11\) output=custinfo.txt

For more information about this utility, refer to page 155.

Note: Any punctuation that has special usage in the operating system, such as
parentheses (), must be prefixed with an escape character (\).

To invoke a report from a JPL procedure:

runreport filename [!reportname] [(arg[, ...])] [option]...

The following JPL procedure runs the the custinfo.jrw report for customer ID
11 and writes the report to the file custinfo.txt.

proc make_report
runreport custinfo.jrw (11) output=custinfo.txt
return

To invoke a report from a C function:
sm_rw_runreport (char *invocation-string)

For example:

int retcode;
retcode = sm_rw_runreport
 (”custinfo.jrw (11) output=custinfo.txt”);

For more information about this function, refer to page 146.

This invocation string can also be used for subreports. For more information on
subreports, refer to page 84.

Defining Invocation Options
The following options are available for rwrun, runreport, and
sm_rw_runreport.

Running Reports Outside the Editor

7 Running ReportsChapter 137

output = output-file

Direct the finished report to the named file. If this option is omitted, and if no
spool command or output procedure is specified in the device file, the report is sent
to standard output.

overwrite

The overwrite option allows report output to overwrite the current contents of
the file named in the output option.

driver = driver-name

Generate the report according to the specified output driver, where driver-name can
have one of these values:

� postscript generates the report in Adobe PostScript.

� text generates the report in ASCII text.

� windows generates the report in the format needed by the specified Windows
printer.

� macintosh generates the report in the format needed by the Macintosh
system.

� rwmetafile generates the report in ReportWriter’s metafile format.

printer = printer-name

(Windows driver only) Direct the finished report to the named printer.

device = device-file

(Text driver only) Use the capabilities in the named device configuration file to
control report output. Refer to page 173 for a detailed description of the device file.

spool = spool-command

(UNIX only) Spool the output using the specified command. For example:

rwrun custhist.jrw spool=”lpr –Pljet”

showwarnings | nowarnings

If showwarnings is specified, warning messages are displayed on the screen or
sent to the standard destination for error messages in your configuration. If
nowarnings is specified, warning messages are ignored. showwarnings and
nowarnings are mutually exclusive.

Output Options

Running Reports Outside the Editor

138 JAM/ReportWriter 7 Developers Guide

If neither is specified, the default depends on whether the report is invoked as a
primary report or as a subreport:

� Primary report — warning messages are displayed.

� Subreport — warning messages are ignored.

paper_size = dimensions

Generate the report using the paper size specified in the following format:

width x height [unit-spec]

margin-type = margin-space [unit-spec]

You can specify four margins for the page, where margin-type can be one of these
mnemonics:

leftmargin
rightmargin
topmargin
bottommargin

Units of measurement (unit-spec) can be specified in inches (in), millimeters (mm),
or characters (c—the default). If you specify dimensions in character (c) units,
ReportWriter uses the average character size in the report’s default font to calculate
a character unit’s width. The default value for all margins is 0.

For example, this string specifies a left margin of 1 inch:

leftmargin = 1 in

portrait | landscape

The portrait keyword denotes output printed with paper in an upright position:
the longest edges are vertical. The landscape keyword directs the device in use to
print with paper in the sideways position: the longest edges are horizontal. The two
keywords are mutually exclusive; portrait is the default.

When the text driver is in use (the default on all platforms except Windows),
ReportWriter seeks the capabilities landscapeon and landscapeoff in the
device file in use. It outputs the control string given by landscapeon at the
beginning of each page printed in landscape mode, and follows each such page
with the string given by landscapeoff. Refer to page 176 for details.

The postscript and windows drivers require no additional support for landscape
output.

The following examples use the rwrun command to generate the report found in
custhist.jrw directly from the command line:

Format Options

Examples

Creating Interactive Reports

7 Running ReportsChapter 139

Generate the report and display the output on the terminal screen
Enter the following at the command line:

rwrun custhist.jrw

Generate output using a device file
The following command suppresses any warning messages and uses the device file
printfile to generate the output of custhist.jrw and to specify the printer for
the output:

rwrun custhist.jrw nowarnings device=printfile

Send PostScript output to a file
Generate the report in PostScript and save it to the file c.ps, even if the file
already exists:

rwrun custhist.jrw driver=postscript output=c.ps overwrite

Supplying Arguments

Reports can be invoked with arguments. Each argument must be a valid JPL
expression—either a string within quotation marks, a number, or the name of a
JAM variable to evaluate when the report is run. Typically, these arguments
contain data that define the scope of the report. In order to process these argu-
ments, the following conditions must be met:

� A parameter corresponding to the argument must be declared in the report
node’s Parameters property (refer to page 69).

� Arguments must be supplied in the same order as their corresponding
parameters are defined.

� Each declared parameter variable must exist in the report as a widget, a JPL
global variable, or an LDB variable.

Figure 43 shows a sample report invocation that uses arguments

Creating Interactive Reports

You can design a report to give its user considerable control over the actual output.
For example, a report can accept user input to determine report composition, such
as which layout areas to use (refer to page 110). The following example shows an

Creating Interactive Reports

140 JAM/ReportWriter 7 Developers Guide

application that invokes a report and asks the user to enter information that
determines the data fetched for the report. In Figure 43, a user enters the customer
code for which they want data:

JPL
Validation

runreport custinfo.jrw \
 (’vbizplus’, cust_num) \
 output=cust.out overwrite

Figure 43. Query screen asks for the customer ID number, which the application supplies to
the report as an invocation argument.

After the code is entered in the cust_num widget, the JPL Validation property for
the widget is used to generate a report with the customer data. In this example, the
database name and the customer code are passed as arguments, the database name
as a string and the customer code as a JPL variable:

runreport custinfo.jrw \
 (’vbizplus’, cust_num)\
 output=cust.out overwrite

The report has two parameters defined in its report node’s Parameters property,
db_name and cust_id, which are dynamic output widgets:

Creating Interactive Reports

7 Running ReportsChapter 141

db_name cust_id

Parameters:

Figure 44. The values are then stored in the widgets named in the Parameters property.

db_name, the first parameter, receives the value of the first invocation argument,
which is a database name. The report uses this database name in a call node to
connect to the database.

The second parameter cust_id receives the value of the second invocation
argument, cust_num. A call node executes this JPL procedure to declare the
cursor:

proc make_cursor
DBMS DECLARE sel_cursor CURSOR FOR \

SELECT cust_id, first_name, last_name, \
address1, address2, city, state_prov, postal_code, \
phone, cc_code, cc_number, cc_exp_month, cc_exp_year, \
member_date, member_status, num_rentals, rent_amount
FROM customers
WHERE cust_id = ::cust_id

The detail node has its Data Source property set to Predefined Cursor and executes
the following entry in the Cursor and Using property to fetch data for the report:

sel_cursor cust_id

Debugging Reports

142 JAM/ReportWriter 7 Developers Guide

Debugging Reports

The JAM debugger is just as useful in debugging reports as in analyzing JAM
applications. The debugger’s Data Watch window, for instance, can display the
current value of any widget in your report layout window, as well as JPL variables
and LDB entries.

When a report is running, the debugger’s Source Code window lists the report
structure with the current node highlighted. You can step through execution of the
report, set breakpoints, and animate the display exactly as you would in a JPL
program. JPL appears in the Source Code window if you are tracing it, whether it
is called directly by your application—say, from a control string—or from within a
report.

Report events are displayed in the debugger’s Status window. These events include
node execution, area output, subreport invocation, and page processing. Because
they might cause other report events, and non-report events such as execution of a
JPL procedure, each report event remains displayed in the debugger’s Event Stack
window until it completes.

Refer to page 495 in the Application Development Guide for information about
JAM’s debugger.

143

Library Functions
This chapter contains descriptions of library functions supplied with JAM/Report-
Writer. Each function description tells what the function does, and where and how
to use it. Information about each function is organized into the following sections:

� Syntax lines that are patterned after C function declarations. Syntax lines are
preceded by include statements that are specific to the function.

� Parameter descriptions.

� Return values.

� Description of the function—typical usage, prerequisites, results, and potential
side-effects.

� An example that shows how to use the function.

88

sm_rw_play_metafile

144 JAM /ReportWriter 7 Developers Guide

sm_rw_play_metafile
Displays or prints a report which is in metafile format

#include <rwdefs.h>

int sm_rw_play_metafile(char *report_string);

A string composed of the metafile name and one or more arguments:

filename { driver_option... | viewer_option } output_option...

filename

The metafile’s file name.

driver-option

Specify one or more driver options with the following strings:

Driver specifier Description

device=device-file Name of a compiled device configuration file
(text driver only).

driver=driver-name One of the following drivers: postscript,
text, macintosh, windows, or rwmetafile.

printer=printer-name Name of the printer (Windows driver only).

viewer-option

One of the viewer options listed in the following table. Viewer specifiers are only
available in interactive mode.

Viewer specifier Description

view Display the output in the viewer.

print Print the output using the current settings for the
Print Setup and Page Setup menu options.

printtofile Save the output to a file using the current set-
tings for the Print Setup and Page Setup menu
options.

report_string

sm_rw_play_metafile

1458 Library FunctionsChapter

output-option

Specify one or more output options with the following strings:

Output specifier Description

output=output_file Name of the output file.

overwrite Overwrite the output file if it already exists. If
this keyword is not specified, ReportWriter asks
if you want to overwrite the file.

frompage=startpage Positive integer specifying the starting page.

topage=endpage Positive integer specifying the ending page.

0 Success.
–1 A syntax error occurred or the specified file is not in metafile format.

sm_rw_play_metafile takes an existing metafile and processes it according to
the output specifications.

#include <rwdefs.h>
int retcode;
/* Display the report output in the viewer */
retcode = sm_rw_play_metafile (”report1.rwm view”);

/*
 * Print the output to a user–specified file using the
 * driver and printer currently selected in the Print
 * Setup dialog box
 */
retcode = sm_rw_play_metafile (”report1.rwm printtofile”);

/* Save the metafile as a PostScript file.*/
retcode = sm_rw_play_metafile (”report1.rwm driver=postscript
 output=report1.ps overwrite”);

/* Save the first two pages of the metafile to a
 * PostScript file
 */
retcode = sm_rw_play_metafile (”report1.rwm driver=postscript
 output=report1.ps overwrite topage=2”);

Returns

Description

Example

sm_rw_runreport

146 JAM /ReportWriter 7 Developers Guide

sm_rw_runreport
Invokes the report generator from a user-written function

#include <rwdefs.h>

int sm_rw_runreport (char *report_string);

A string that contains the name of the report to be invoked, arguments passed to the
report, and output and page layout options. The format of the string is identical to
the invocation string for the JPL command runreport:

”filename [!reportname] [(’arg’[, ...])] [option]...”

For a description of invocation arguments and options, refer to page 136.

0 Success.
–1 Failure.

sm_rw_runreport invokes the report generator from a user-written function
linked into a JAM/ReportWriter application. It is the C equivalent of the JPL com-
mand runreport.

sm_rw_runreport is intended for use within a JAM/ReportWriter application. It
must be called after the JAM initialization normally performed by jmain.c or
jxmain.c.

#include <rwdefs.h>

if (sm_rw_runreport(”rptfile!myreport
(’myarg1’, ’myarg2’) output=myoutput”) == –1)

{
sm_n_putfield (”myrwstatus”, ”failure”);

}

report_string

Returns

Description

Example

147

Utilities
This chapter describes the utilities supplied with ReportWriter. Each description
contains a synopsis of the command, including a listing of available keywords and
arguments, and a description of the utility’s operation.

Typographical conventions used here are listed in the Preface.

The following utilities are supplied with ReportWriter:

� dev2bin — Compile a device configuration source file.

� r2asc — Obtain an ASCII printout of a report file.

� rinherit — Update inheritance for screens and reports.

� rw6to7 — Update a ReportWriter6 file to ReportWriter7 format.

� rwrun — Run ReportWriter.

Your distribution includes these executables and jamdev, the JAM development
environment with JDB and ReportWriter linked in.

Source code is provided for rwrun in rwmain.c so you can customize this utility.
The makefile supplied with your JAM distribution or database driver makes both
rwrun (the stand–alone ReportWriter) and jamdev (JAM with ReportWriter and
the screen editor). Use this makefile also if you want to make jam, the application-
mode executable, with ReportWriter linked in. Each makefile includes instructions.

99

dev2bin

148 JAM /ReportWriter 7 Developers Guide

dev2bin
Compiles a device configuration file

dev2bin [–e ext] filename

Specifies the name of the device configuration file. If the name does not include an
extension, dev2bin looks first for filename.dev. If that file cannot be opened, it
attempts to open filename (with no extension).

Specifies the extension for the device binary file. If the –e option is omitted, the
resulting file is named filename.bin.

dev2bin produces a device binary file from the device configuration file identified
by filename. The output of dev2bin is a binary file named filename.bin or file-
name.ext if the –e option is specified.

A report accesses a device configuration file it by specifying it as an invocation
option.

Device configuration files specify formatting options for reports generated in
ASCII text format. For more information on these formatting options, refer to
Appendix C.

filename

–e ext

Description

r2asc

1499 UtilitiesChapter

r2asc
Produces an ASCII file of the report binary

r2asc –a[cf] ascii-file [–i header-file] report...

r2asc –b[f] ascii-file

With the –a option, ascii-file is the name of the file to receive the ASCII version of
report. With the –b option, ascii-file is the name of the file to convert into a report
file.

Specifies the file name of a report to convert to ASCII.

Creates an ASCII listing of one or more reports.

Creates or extracts all binary reports from an ASCII listing. Note that this option
does not accept an output file name.

Do not generate comment lines (–a option only).

Overwrites an existing file.

Includes header-file at the beginning of the ASCII output.

r2asc produces either an ASCII listing of an existing report file or a binary report
file from the ASCII file, depending on which options are specified. With r2asc,
either the –a or –b option must be used. With –a, you must specify the name of at
least one report (or use wildcard characters). With –b, report names are ignored.
The –b option automatically extracts all report files from ascii–file.

The text file generated by r2asc describes the contents of the report—the widgets
that compose it and their respective properties. It is broken into sections by object
type, starting with the report itself, then any table views, followed by the fields of
the screen in numerical order, and finally the labels, boxes, and areas in the layout
window. Nodes are listed within the R: (report) section). Each object within the
object types begins with its own header:

R: reportname
T: tableviewname
F: fieldname
L: labelname
B: boxname
A: areaname

ascii-file

report

–a

–b

–c

–f

–i header-file

Description

ASCII output

r2asc

150 JAM /ReportWriter 7 Developers Guide

The report structure is listed following the RW–SCRIPT keyword. Comments
appear in lines beginning with the # character.

There are two types of keywords describing object properties, flags and values:

� A flag keyword is by itself and requires no other information—for example
the NUMERIC keyword represents the numeric field type property and needs no
value. A flag keyword can appear on the same line as other keywords.

� A value keyword must be accompanied by more information—it is followed
by an equals sign (=) and a value represented by another keyword or a number
or string. For example, WIDGET_TYPE=OUTPUT–ONLY indicates that this
object is a dynamic output widget. Value keywords that begin with PI describe
graphical properties of an object; ones that begin with DBI describe properties
used by the database driver or by transaction manager.

The following list describes possible errors, their causes, and the corrective action
to take:

File already exists; use ’–f’ to overwrite.

Cause: The specified output file already exists in the current directory.
Action: Add the –f option in order to overwrite the file.

Invalid file format

Cause: The file specified as the report is not a binary file.
Action: Specify the ASCII file first, followed by the name of the report binary

file.

Line #, token = <string>: unknown keyword.

Cause: The keyword listed in the warning message cannot be processed by
r2asc.

Action: Edit the ASCII file to the correct value and regenerate the binary report
file.

Must use option –a or option –b.

Cause: ReportWriter could not determine whether you wanted ASCII or binary
output.

Action: Specify either the –a or the –b option.

Unrecognized section

Cause: The sections must be identified by one of the specified labels.
Action: Edit the ASCII file to the correct value and regenerate the binary report

file.

Errors

rinherit

1519 UtilitiesChapter

rinherit
Updates or reports on the inheritance of properties for screens and reports

rinherit [–r repository] [–vlevel] [–u] filename...

rinherit [-rrepository] [-vlevel] [–u] –llibrary member...

Specifies the name of a JAM screen or report; more than one filename can be
included. If the filename does not exist or is not of the correct type, it is skipped.

Specifies the name of the screen library when updating or reporting on individual
library members.

Specifies the member of a screen library; more than one member can be included.
If the library member does not exist, it is skipped.

Specifies the name of the repository. If –r is not specified on the command line,
rinherit looks first for the value of SMDICNAME, then for the repository
data.dic in the current directory. If it cannot find a repository, rinherit reports
an error.

Updates the files in addition to listing the differences.

Specifies the level of reporting desired when running the utility, where level can be
one of the following values:

0 No reporting.

1 List screens and reports as they are processed (the default setting).

2 List screens, reports, and widgets as they are processed.

3 List screens, reports, widgets, and properties as they are processed.

rinherit updates the inheritance of properties for reports, application screens or
a JAM library. When specified with the –u option, rinherit updates properties in
the reports and screens to match the values in the repository. If specified without
the –u option, rinherit only reports on the differences in property values
between the screens and the repository.

filename

–l library

member

–r repository

–u

–v level

Description

rinherit

152 JAM /ReportWriter 7 Developers Guide

Inheritance is updated each time you open a report or screen in the editor and then
save it. rinherit –u performs this operation in batch mode, opening the
specified files and saving them.

When rinherit opens the specified file, it looks for widgets having the Inherit
From property set to a repository entry, for example, titles!title_id. For
those widgets, it compares the inherited property values with the values in the
repository. The properties that have inheritance disabled are ignored.

It also checks the Inherit From property for each screen and report to see if
inheritance is designated. If it is, it compares the values in the inherited properties
with the corresponding values in the repository.

The following list describes possible errors, their causes, and the corrective action
to take:

No repository is open.

Cause: The SMDICNAME variable is not set, or the data.dic repository cannot be
found in the current directory.

Action: Verify the directory location, set the repository on the command line, or
set the SMDICNAME variable.

Not a JAM repository.

Cause: File specified after the –r option was incorrect.
Action: Check the spelling and location of the specified repository.

Unable to inherit property property_name for object_id

Cause: The object listed in the Inherit From property cannot be found in the
current repository.

Action: Make sure the correct repository was specified.

Unable to open JAM library.

Cause: Unable to find the specified library.
Action: If the library is not in the current directory, include the pathname.

Unable to open JAM repository.

Cause: Unable to find the specified repository.
Action: Check the spelling and location of the specified repository. If the

repository is not in the current directory, include the pathname.

Verbosity (–v) must be 0, 1, 2, or 3

Cause: An invalid value followed the –v option.
Action: Supply one of the listed values in the command line.

Errors

rw6to7

1539 UtilitiesChapter

rw6to7
Updates a report binary file to ReportWriter 7 format

rw6to7 [–fm] rw6-file rw7-file

The output file can overwrite an existing file.

Merges included files into the main report.

rw6to7 updates a ReportWriter6 report file to ReportWriter7 format.

For detailed information about upgrading, refer to Appendix A.

The following list describes possible errors, their causes, and the corrective action
to take:

Found use of AUTO_KEY in source report. Ignoring.

Found screen entry function in source report. Ignoring.

Found screen exit function in source report. Ignoring.

Cause: Under ReportWriter 6, reports are JAM screens, but under ReportWriter 7
they are not. The AUTO key definition and screen entry and exit
functions, which might have been used in ReportWriter 6 report format
screens, are not applicable to the resulting report module.

Action: If these functions contain processing required for the report, use call
nodes to invoke the desired functions at appropriate points during report
generation.

Translating FLOAT keyword to the group node property
’Floating Footer = Yes’. The change in scope might affect
output.

Cause: The float keyword is applied inconsistently to two or more page footer
areas in the source report. rw6to7 has set the Floating Footer property to
Yes for the corresponding page format node, thus applying this format to
all layout areas associated with the page footer.

Action: ReportWriter 7 does not support both floating and non-floating footers on
the same page. Make adjustments to the content of the associated layout
areas. For additional information setting on page format properties, refer
to page 71.

–f

–m

Description

Errors

rw6to7

154 JAM /ReportWriter 7 Developers Guide

Translating NODUPL keyword to the group node property ’Local
Header Only = Yes’. The change in scope might affect output.

Cause: The nodupl keyword is applied inconsistently to two or more break
header areas in the source report. rw6to7 has set the Local Header Only
property to Yes for the corresponding group node, thus applying this
format to all layout areas associated with the header.

Action: If this is not the desired behavior, create separate group nodes and apply
the desired properties to each individually. For additional information,
refer to page 82.

Translating NOORPHANBREAK keyword to the group node property
’Footer Has Totals = Yes’. The change in scope might affect
output.

Cause: The noorphanbreak keyword is applied inconsistently to two or more
break footer areas in the source report. rw6to7 has set the One Detail
Footer property to No for the corresponding group node, thus applying
this format to all layout areas associated with the footer.

Action: If this is not the desired behavior, create separate group nodes and apply
the desired properties to each individually. For additional information,
refer to page 82.

Translating SHOWATTOP keyword to the group node property
’Running Header = Yes’. The change in scope might affect
output.

Cause: The showattop keyword is applied inconsistently to two or more break
header areas in the source report. rw6to7 has set the Running Header
property to Yes for the corresponding group node, thus applying this
format to all layout areas associated with the header.

Action: If this is not the desired behavior, create separate group nodes and apply
the desired properties to each individually. For additional information,
refer to page 82.

rwrun

1559 UtilitiesChapter

rwrun
Runs ReportWriter

rwrun filename [!reportname] [(arg[, ...])] [option]...

Specifies the name of a report file.

If reportname is supplied, the specified report in this file is invoked. If reportname
is omitted, the first report in the file is generated.

You can supply one or more arguments to the report. Each argument can be either a
string within quotation marks, a number, or the name of a JAM variable to be
evaluated when the report is run. Each argument must also have a parameter
defined in the report node’s Parameter property, and the order of the arguments in
this command must match the order specified in that property.

Note that any punctuation having a special usage in the operating system such as
parentheses (), must be prefixed with an escape character (\)

You can specify one or more options for report generation. Table 4 lists available
options. For more detailed descriptions, refer to page 136.

Table 4. Report invocation options.

Invocation option Description

output = output-file Name of the output file.

driver = driver-name Type of report output, where driver-name can
be one of the following:

 postscript
 text
 windows
 macintosh
 rwmetafile.

device = device-file Name of the device configuration file (text
driver only).

printer = printer-name Name of the printer (Windows driver only).

papersize = papersize Size of the paper to use for the report, for
example papersize = 8.5inx11in

filename

reportname

arg

option

rwrun

156 JAM /ReportWriter 7 Developers Guide

Invocation option Description

leftmargin = margin
rightmargin = margin
topmargin = margin
bottommargin = margin

The amount of space reserved for the re-
port’s margins. Specify the amount of space
in this format:

margin-space [unit-spec]

For valid units of measurement (unit-spec),
refer to page 133.

spool = spool-command Command to use to send the report to an out-
put device (UNIX only).

overwrite Overwrite the output file if it exists.

portrait | landscape Determines the page orientation of the re-
port.

showwarnings | nowarnings Determines if warning messaged are dis-
played.

rwrun invokes ReportWriter to execute the specified report. The following
requirements apply when using rwrun:

� Set the output file on the command line. Otherwise, the report is displayed in
standard output on the screen. Generally, the output file is specified as one of
the invocation options.

� Control the database connection within the report file. Generally, a call node
attached to an instance node calls the JPL procedure or C function which
connects to the database, and a final call node calls the procedure or function
which disconnects from the database.

The following example runs the custinfo.jrw report for customer ID 11 and
writes the report to the file custinfo.txt.

rwrun custinfo.jrw \(11\) output=custinfo.txt

Description

157

Upgrading To
ReportWriter 7

With ReportWriter 7, the binary file that defines the report can now be edited
directly. The editing environment provides two views into the report:

� The layout window defines the format and content of report output, replacing
the report format screen of earlier versions. Report areas are called layout
areas and area name tags are phased out completely and replaced by layout
area widgets.

� The report structure window provides a graphical representation of the report
structure, replacing the report script. Processing and formatting options
previously specified by script keywords are now properties of the applicable
nodes in the Report Structure window.

The rw6to7 utility converts existing ReportWriter 6 reports to ReportWriter 7
format. Refer to page 153 for a description of this utility. This appendix describes
the editing environment, conversion issues, and new functionality.

Developing Reports

ReportWriter’s development environment takes full advantage of the JAM user
interface. To familiarize yourself with the JAM screen editor, refer to the JAM
Editors Guide.

AA

Developing Reports

158 JAM/ReportWriter 7 Developers Guide

The sections below highlight major innovations that ReportWriter 7 provides in
report development. Refer to the main body of this manual for more complete
information.

Layout Window

The layout window defines the format and content of report output. Three widget
types are unique to this window: layout area widgets, dynamic output widgets, and
static output widgets.

The layout window can also include other widgets: graph widgets let you present
data as a pie or bar graph; box and line widgets can be used to enhance a report’s
appearance. Table view and link widgets can also be included to enable JAM’s
transaction manager to fetch report data.

All other JAM widget types are disallowed. rw6to7 converts invalid types such as
single line text and static labels to dynamic or static output widgets, depending on
their type. For more information about type conversions, refer to page 55.

Layout Area Widgets
Report areas are now known as layout areas. Each layout area widget serves as a
boundary for its corresponding area and also specifies that area’s name.

For more information on layout area widgets, refer to page 51.

Output Widgets
Two widget types are responsible for most report output:

� Dynamic output widgets get their data at runtime—for example, from a
database or from other widgets.

� Static output widgets have their data set in the editor; their data remains
constant.

For more information on report output widgets, refer to page 53 .

Report Structure Window

The report script of earlier versions is replaced by a graphical representation in the
report structure window. This window shows the report structure schematically,
using various types of nodes to represent report elements and processing.

Developing Reports

Appendix 159A Upgrading To ReportWriter 7

The table below shows how these nodes correspond to ReportWriter 6 script
components.

ReportWriter 7
node type

Corresponding ReportWriter 6 state-
ment, clause, or keyword

More...

Structure nodes:

 Report <<begin report>> p. 69

 Page Format page p. 70

 Instance insert p. 89

 Detail detail p. 73

 Group break p. 77

Action nodes:

 Print area p. 77

 Call call p. 88

 Subreport report p. 84

 End Page forcepage p. 118

For more information, refer to page 59.

Format and Processing Specifications
In ReportWriter 6, various formatting and processing options were specified in the
report script as clauses or keywords. In ReportWriter 7, these options are specified
as properties of the applicable report nodes.

In general, you create a node that corresponds to the script statement or clause you
would have used under ReportWriter 6. Then set the properties of the node to
specify further levels of detail, such as the data source for a detail node, formatting
options for a print or subreport node, or the invocation string for a call node.

For example:

� To use the transaction manager to fetch data, create a detail node and set its
Data Source property under Identity to TM View. This is equivalent to using
the tm clause in a detail statement under previous ReportWriter versions.

� To specify the query for a data fetch, create a detail node and set its Data
Source property under Identity to SQL Query. Enter the desired SQL

Converting Existing Reports

160 JAM/ReportWriter 7 Developers Guide

statement in the SQL Statement subproperty. In ReportWriter 6, this is
equivalent to using the query clause in a detail statement.

� To eliminate excess blank lines in a report area, set the Shrink property of the
corresponding print node to Yes. This is equivalent to using the shrink
keyword in an area statement.

� To keep data for a break group together on one page, set the Keep on Page
property of the corresponding group node to Yes. This is equivalent to using
the nosplitgroup keyword in a break statement.

When reports developed under ReportWriter 6 are converted by the rw6to7 utility,
node properties are set to correspond to the keywords and values specified in the
script. In a few instances, an exact conversion cannot be performed automatically.
rw6to7 displays a warning message when this occurs. Refer to page 161 for more
information.

Converting Existing Reports

Use the rw6to7 utility to convert reports developed under version 6 of Report-
Writer. The output of this utility is a ReportWriter 7 report file, which is both
executable and editable. Refer to page 153 for a description of rw6to7.

Included Files

ReportWriter 6 processed inclusions in its compiler, rprt2bin. ReportWriter 7
processes inclusions at runtime. Reports that contain included files can be
converted in either of the following ways:

Convert the main report and its inclusions into separate files.
Locate the main report and all its included files and convert each one with rw6to7.
Then modify the main report file in one of two ways:

� Edit the Report Files property (refer to page 90) to include the names of each
included report file.

� In the report structure, edit each subreport node’s Report Invocation property
so that it names the desired report and the file that stores it with this syntax:

report-filename !report-name

Refer to page 90 for more information about invoking external files as
subreports.

Converting Existing Reports

Appendix 161A Upgrading To ReportWriter 7

Merge the main report and its inclusions into a single report file.
� rw6to7’s –m option automatically searches SMPATH to find inclusions. The

utility converts included subreports into internal subreports; these appear in
the layout and structure views of the report file.

Widget Name Extensions
rw6to7 automatically converts all alias widgets that use the ReportWriter 6 widget
naming convention of base-name.extension. rw6to7 converts each alias widget
to a copy widget—that is, dynamic output widget whose Value property is set to
Copy—and sets its Value Source property to base-name. ReportWriter no longer
supports this naming convention as a means copying output from one widget into
another. For more information, refer to page 99.

Calling Sequences
ReportWriter complies with JAM 7 syntax conventions for calling functions (refer
to page 47 in the Language Reference). However, the syntax of report invocations
in earlier versions continues to be supported. For future development, you should
use current syntax conventions.

Errors

Conversion errors fall into two general categories:

� Header or footer area clauses in the original report contain mutually
inconsistent formatting keywords.

� An AUTO control string, a screen entry function, or a screen exit function is
associated with the original report format screen.

In each case rw6to7 displays a warning message to alert you to a possible
problem.

Header and Footer Area Properties
If the header or footer contains multiple area clauses and these are not all
modified by the same formatting keywords—showattop, nodupl, noorphan-
break and float—the resulting output might be different than anticipated, and
ReportWriter issues an appropriate error message. This occurs because ReportWrit-
er 6 applies these formatting keywords to individual output areas, but ReportWriter
7 applies the corresponding properties to the group node or page layout node as a
whole, and, therefore, to all output associated with that node.

New Features in ReportWriter 7

162 JAM/ReportWriter 7 Developers Guide

In the case of break headers or footers, you might want to split the group node into
two, each with its own properties. In the case of page footers, you will probably
need to make adjustments to the content of the associated layout areas.

Screen Functions and the AUTO Control String
If an AUTO control string, a screen entry function, or a screen exit function is
associated with the original report format screen, it is ignored when the report is
converted. rw6to7 displays an appropriate warning message.

New Features in ReportWriter 7

Although the user interface has a completely new look, all the functionality of
ReportWriter 6 has been retained in ReportWriter 7. In addition, the following new
features have been added:

� Wizard-generated reports. Refer to page 21.

� Total (page 96) and history widgets (page 100).

� Context–sensitive summary data. Refer to page 96 for information on
automatically calculating and resetting column and other totals.

� External subreports. Refer to page 84. Note that external, internal, and
included subreport invocations can be intermixed within a report.

� Output viewer that is fully integrated with the editing environment.

� Full integration with JAM, including support for:

• Business graphics

• Pixmaps

• Fine control over widget placement

• Fonts

163

Vbizplus Database
The vbizplus database extends and modifies the JAM videobiz database. This
appendix describes the tables in the vbizplus database by listing the following
information for each table:

� Column names.

� Data type of each column.

� Length of character columns.

� Status of column detailing whether it is a primary or foreign key and whether
it can accept null values.

� Description of the data to be entered into the column.

� Sample entry.

BB

Vbizplus Schema

164 JAM/ReportWriter 7 Developers Guide

Vbizplus Schema

The following tables outline the database tables in the vbizplus database. A
diagram of the schema appears in Figure 45 on page 172.

Table 5. Actors table.

Column Name Data Type Length Status Sample Description

actor_id integer primary key
not null

87 Unique number code for each actor.

last_name char 25 not null Ullmann Actor’s last name or only name.

first_name char 20 Liv Actor’s first name.

Table 6. Codes table.

Column Name Data Type Length Status Sample Description

code_type char 32 primary key
not null

genre_code Type of code. Corresponds to column
name.

code char 4 primary key
not null

ADV Code value.

dscr char 40 Adventure Description of code value.

Vbizplus Schema

Appendix 165B Vbizplus Database

Table 7. Customers table.

Column Name Data Type Length Status Sample Description

cust_id integer primary key
not null

10 Unique number code for each cus-
tomer.

last_name char 25 not null Stephens Customer’s last name.

first_name char 20 not null Darrin Customer’s first name.

address1 char 40 937 Brewster Customer’s address.

address2 char 40 Additional address information.

city char 25 Geneva City customer lives in.

state_prov char 10 NY State/Province.

postal_code char 10 10234 Postal code.

phone char 15 515–555–5668 Customer’s telephone number.

cc_code char 4 MAST Code for type of credit card. List in
codes table.

cc_number char 16 5000... Number on credit card.

cc_exp_month integer 10 Month of credit card expiration.
1=January, 12=December.

cc_exp_year integer 1997 Year of credit card expiration (4
digits).

member_date datetime 1996/01/19
00:00:00

Date when customer became a
member.

member_status char 1 not null A Current status of membership. Val-
ues include: (A)ctive, (I)nactive,
(F)requent renter.

num_rentals integer not null 4 Total number of rentals customer
has made.

rent_amount float not null 11.50 Total amount of money paid by
customer.

notes char 254 Notify for
ADV videos.

Comments about customer.

Vbizplus Schema

166 JAM/ReportWriter 7 Developers Guide

Table 8. Distributors table.

Column Name Data Type Length Status Sample Description

distrib_id integer primary key
not null

1 Unique number code for each dis-
tributor.

distrib_name char 20 Geneva Distributor’s name.

address1 char 40 4201 Washing-
ton Street

Distributor’s street address.

address2 char 40 NULL Additional address information.

city char 25 Geneva City in which the distributor is lo-
cated.

state_prov char 10 NY State/Province.

postal_code char 10 10234 Postal code.

phone char 15 515–555–7232 Distributor’s telephone number.

Table 9. Orders table.

Column Name Data Type Length Status Sample Description

order_num integer primary key
not null

1001 Unique number code for each or-
der.

distrib_id integer foreign key
not null

1 Distributor who placed the order.

order_date datetime 1996/01/29
00:00:00

Date the distributor placed the or-
der.

ship_date datetime NULL Date the order is shipped to the
distributor.

po_num char 15 D1456 Purchase order number for the or-
der.

Vbizplus Schema

Appendix 167B Vbizplus Database

Table 10. Order_items table.

Column Name Data Type Length Status Sample Description

order_num integer primary key
foreign key
not null

1001 Unique number code for each or-
der.

title_id integer primary key
foreign key
not null

78 Unique number code for each vid-
eo title.

price float 23.50 Price of the video.

qty integer not null 8 Quantity ordered.

order_flag char 1 O Flag indicating the status of the or-
der: O)rdered, B)ack-ordered,
C)ataloged, S)hipped

Table 11. Pricecats table.

Column Name Data Type Length Status Sample Description

pricecat char 1 primary key
not null

N Unique letter code for each category.

pricecat_dscr char 40 New
Release

Category description.

rental_days integer 2 Number of rentals days available in
this category.

price float 2.50 Amount to be paid for rentals in this
category.

late_fee float 2.00 Amount of late fee for rentals in this
category.

Vbizplus Schema

168 JAM/ReportWriter 7 Developers Guide

Table 12. Rentals table.

Column Name Data Type Length Status Sample Description

cust_id integer primary key
foreign key
not null

3 Code identifying the customer for
this rental.

title_id integer primary key
foreign key*
not null

69 Code identifying the video title for
this rental.

copy_num integer primary key
foreign key
not null

2 Copy of this video being rented.

rental_date datetime primary key
not null

1996/02/07
19:56:00

Date/time the video was rented.

due_back datetime not null 1996/02/09
00:00:00

Date the video is due back to avoid
late fee.

return_date datetime NULL Actual date/time the video was re-
turned; NULL until then.

price float not null 2.50 Rental fee for video at time rental
was made.

late_fee float not null 2.00 Late fee per day for video at time
rental was made.

amount_paid float not null 2.50 Total amount paid on this rental as of
current date.

rental_status char 1 not null C Status of rental. Values include
(C)urrently out, Back and (P)aid,
(B)alance is due.

rental_com-
ment

char 76 NULL Comments about rental, if any.

modified_date datetime not null 1996/02/07
19:56:00

Date this record was last modified.

modified_by integer foreign key
not null

2 Last user who modified record.

*title_id is a foreign key from the tapes table, in combination with copy_num.

Vbizplus Schema

Appendix 169B Vbizplus Database

Table 13. Roles table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
foreign key
not null

33 Unique number code for each video
title.

actor_id integer primary key
foreign key
not null

87 Unique number code for each actor.

role char 40 Marianne Role the actor plays in the video.

Table 14. Tapes table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
foreign key
not null

33 Unique number code for each video
title.

copy_num integer primary key
not null

1 Number identifying the copy of this
video.

status char 1 not null O Code specifying the current status of
this copy. Values include (A)vailable,
(R)eserved, (O)ut, (I)nactive.

times_rented integer not null 53 Number of times this copy has been
rented.

Vbizplus Schema

170 JAM/ReportWriter 7 Developers Guide

Table 15. Titles table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
not null

33 Unique number code for each video
title.

name char 60 not null Scenes from
a Marriage

Video title.

genre_code char 4 CLAS Code specifying the video category.
Values include: ADLT, ADV, CHLD,
CLAS, COM, HORR, MUS, MYST,
SCFI, TV, VID. See codes table.

dir_last_name char 25 Bergman Director’s last name.

dir_first_name char 20 Ingmar Director’s first name.

film_minutes integer 168 Length of the video.

rating_code char 4 PG Rating code given the film by the
Motion Picture Association of Amer-
ica. Values include: G, PG, PG13, R,
NC17. See codes table.

release_year integer 1974 Year the film was released to movie
theatres.

pricecat char 1 foreign key
not null

G Code taken from the pricecats
table specifying the price category.

order_price float 28.00 Price to use to order the video.

quantity_avail integer 2 Number of video copies available.

Table 16. Title_dscr table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
foreign key
not null

33 Unique number code for each video
title.

line_no integer primary key
not null

1 Line number of the video description.

dscr_text char 76 Relationship
of a couple...

Description of the video.

Vbizplus Schema

Appendix 171B Vbizplus Database

Table 17. Users table.

Column Name Data Type Length Status Sample Description

user_id integer primary key
not null

3 Unique number code for each em-
ployee/system user.

logon_name char 8 jack User’s logon name.

password char 8 go User’s password.

last_name char 25 Ryan User’s last name.

first_name char 20 Jack User’s first name.

customer_flag char 1 Y Y allows access to customer subsys-
tem.

admin_flag char 1 N Y allows access to administrative
subsystem.

marketing_flag char 1 Y Y allows access to marketing subsys-
tem.

frontdesk_flag char 1 Y Y allows access to front desk subsys-
tem.

Vbizplus Schema

172 JAM/ReportWriter 7 Developers Guide

rentals

orders

distrib_id
order_date
ship_date
po_num

tapes
title_id
copy_num

title_dscr
title_id
line_no

roles

titles

pricecats actors

title_id
actor_id last_name

first_name
address1
address2
city
state_prov
postal_code
phone
cc_code
cc_number
cc_exp_month
cc_exp_year
member_date
member_status
num_rentals
rent_amount
notes

name
genre_code
dir_last_name
dir_first_name
film_minutes

pricecat_dscr
rental_days
price
late_fee

last_name
first_name

rating code
release_year
pricecat
order_price
quantity_avail

amount_paid
rental_status
rental_comment
modified_date
modified_by

status
times_rented

dscr_text role

title_id

actor_idpricecat

cust_id
title_id
copy_num
rental_date

due_back
return_date
price
late_fee

order_num

customers
cust_id

logon_name
password
last_name
first_name
customer_flag
admin_flag
marketing_flag
frontdesk_flag

users
user_id

distrib_name
address1
address2
city
state_prov
postal_code
phone

distributors
distrib_id

codes
code_type
code

dscr

order_items

price
qty
order_flag

order_num
title_id

Figure 45. Diagram of the vbizplus database.

173

Device Configuration
Files

ReportWriter’s support for ASCII text output can be enhanced and customized
through device configuration files. These files can define control sequences for the
following capabilities of an output device:

� Initialization and reset strings.

� Font specifications.

� On/off strings for bold, italic, and underline attributes.

� Directives for enabling landscape mode.

� Characters for printing lines and boxes.

The device configuration file also can provide information to ReportWriter about
the device itself:

� Left margin.

� The file name or process to which output is spooled.

� Name of the developer-written output function and the size of its output buffer.

Some of these settings can be specified as properties within the report or as
arguments to the report’s invocation string. Properties and invocation arguments

CC

File Format

174 JAM/ReportWriter 7 Developers Guide

always have precedence over their equivalent settings in the device configuration
file.

Device configuration files are created and edited as ASCII source files. After
editing the file, compile it with the dev2bin utility (refer to page 148). You
specify the desired device configuration file in the report invocation string (refer to
page 129).

File Format

The ASCII source for a device configuration file contains one of more statements
in this format:

key-word clause = value

For example:

init = ESC P
reset = ESC Q
lines = 55
columns = 80
spool = lp

The following section describes each device file keyword and its possible values.

Keywords

init/reset

Specify the initialization and reset strings for the output device in this format:

init = init-str
reset = reset–str

If an init string is specified, ReportWriter prefaces the report with the string. If a
reset string is specified, ReportWriter appends it to the report.

These strings follow the conventions of JAM video file capability strings: the
capabilities are given byte-by-byte, separated by spaces. Non-printable bytes and
the space character are represented by their respective ASCII names—for example,
NUL, NL, ESC, and SP. Any byte can instead be represented by its octal value
\ddd, where d is an octal digit. Refer to Chapter 7 in the Configuration Guide for
more information on how to format these capabilities.

Keywords

Appendix 175C Device Configuration Files

FontOn/FontOff

Resolve font aliases that are defined in the configuration file’s [Text Fonts]
section as follows:

FontOn fontname = escape-sequence
FontOff fontname = escape-sequence

Refer to Chapter 7 in the Configuration Guide for information about JAM escape
sequences.

For example, given these font alias definitions:

JAM Font Name Qualifiers = Text font
––––––––––––– –––––––––– –––––––––
JAM Times Roman 18 = TimesRomanBig
JAM Times Roman = TimesRoman
JAM Courier = Courier

The device file requires these corresponding statements:

FontOn TimesRoman = ESC m t f 1
FontOff TimesRoman = ESC m t f 0
FontOn TimesRomanBig = ESC m t h 1
FontOff TimesRomanBig = ESC m t h 0
FontOn Courier = ESC m c f 1
FontOff Courier = ESC m c f 0

text-attr = string

The output device turns italics, boldface, and underlining on and off through these
command strings:

ItalicOn = ital-on-str
ItalicOff = ital-off-str
BoldOn = bold-on-str
BoldOff = bold-off-str
UnderlineOn = under-on-str
UnderlineOff = under-off-str

spool = spool-cmd

spool-cmd is the name of a program or file. On UNIX systems, output is piped to
the specified program. On other operating systems, the output is written to the
specified file.

procedure = outproc

outproc is the name of a user-written procedure that writes or filters output. For
more information about writing output procedures, refer to page 179.

Keywords

176 JAM/ReportWriter 7 Developers Guide

obuffsize = bufsize
bufsize is the size of the output buffer, in bytes, used by the function outproc. If not
specified, the default size is 256 bytes.

leftmargin = nblanks
nblanks specifies the number of blank spaces to left-indent all output. These spaces
must be included in the line length ncols. This parameter can also be specified in
the Indent property of a print or subreport node. The default setting is 0.

feedlines = nflines
nflines is the number of line feed characters that should be used to separate pages.
If specified, nflines plus nlines must equal the physical length of the page.

If nflines has a value less than 0 or this statement is absent, ReportWriter outputs a
form feed to begin the next page. If the value of nflines is greater than or equal to 0,
the form feed is suppressed. The default value of nflines is –1.

The feedlines parameter can also be specified in the report invocation string.

landscapeon/landscapeoff

These keywords enable landscape mode on an output device:

landscapeon = landscapeon-str
landscapeoff = landscapeoff-str

� landscapeon-str is output at the beginning of a page printed in landscape
mode.

� landscapeoff-str is output at the end of a page printed in landscape mode.

Note: The presence of these capabilities does not by itself enable landscape mode
in a report. To print a report in landscape mode, either the report invocation or the
report itself (through its Page Format node) must specify landscape orientation.

graphic-type = char-spec
Use the following keywords to specify the characters used to print lines and boxes:

Graphic type keyword Usage

horizseg Horizontal line segment.

vertseg Vertical line segment.

topright Top right box corner.

topleft Top left box corner.

bottomright Bottom right box corner.

bottomleft Bottom left box corner.

Keywords

Appendix 177C Device Configuration Files

fixedlength

Specifies to pad the end of each line with enough spaces to produce output of
uniform width., based on the number of columns specified for report width. If
fixedlength is not specified, ReportWriter outputs variable-length lines.

179

Output Procedures
This appendix explains how to write your own procedure to write or filter
ReportWriter output to a text driver. This function must be installed as a prototyped
function; for more information on installation, refer to page 121 in the Application
Development Guide.

To use an installed output function, specify it in the device file’s procedure
statement. Use the obuffsize statement to specify a buffer size greater than the
default of 256 bytes. Refer to page 173 for more information on device configura-
tion files.

Arguments

The output function is declared with two parameters in this order: an integer-type
code, and an output buffer.

Integer type code
This parameter can be supplied one of the following arguments:

RW_P_OPEN
RW_P_CLOSE
RW_P_WRITE

ReportWriter calls the function once with RW_P_OPEN, once per line of output with
RW_P_WRITE, and once with RW_P_CLOSE.

DD

Return Values

180 JAM/ReportWriter 7 Developers Guide

Output buffer
The second argument is an output buffer:

� When the type code is RW_P_WRITE, the buffer contains a line of output,
terminated by the NEWLINE and NULL characters. Your procedure can
modify the contents of the buffer.

� When the type code is RW_P_OPEN, the buffer contains the initialization string,
as specified in the device file; the string is terminated by the NULL character.

� When the type code is RW_P_CLOSE, the buffer contains the reset string, as
specified in the device file; the string is terminated by the NULL character.

Note: Because the initialization and reset strings are terminated with the NULL
character when passed to the output function, neither can contain this character as
part of the string.

Return Values

Custom output procedures should return one of the codes listed in the following
table.

Return code Effect

SM_RW_OK ReportWriter should output the buffer; the developer-
written procedure has only filtered or analyzed the
data.

SM_RW_DIDOUTPUT ReportWriter should not output the buffer; the devel-
oper-written procedure has handled this step.

SM_RW_ERROR Request for ReportWriter to abort the rest of the re-
port.

Invoking the Output Procedure

To use a custom output procedure with ReportWriter, specify the procedure’s name
in the procedure parameter of the device configuration file. The default size for
the output buffer is 256 bytes. You can specify a different size through the
obuffsize parameter of the device configuration file.

181

Index
A

Action nodes, 62

Address label reports, 28
setting dimensions, 39

Arguments, supplying to report, 69, 139

Array, shrinking out empty elements, 125

B
Bar chart, specifying in report wizard, 37

Blank lines
consolidating from adjacent layout areas, 126
shrinking out, 122

Blank pages, inserting, 118

Break field
checking data for changes, 80
computing data for, 112
controlling frequency of output, 80
defining group with, 79

Break group processing, 80
pre–break check function call, 112

Break On property, 79

Bundle, fetching report data from, 76

Bundle Name property, 76

C
C language functions. See Library functions

Calculating report output, 93–114
initializing data, 109
resetting page number, 102–114
through call node, 105–111
through database properties, 104
totaling, 96–98
updating data, 109

Call node, 88
using, 105–111

Centering output, 120

Collecting data, 94, 100–102
initializing, 94
setting context, 95
specifying value source, 94
updating, 94
using in graph, 101

Column reports, 24

182 Index

Comments property, report node, 67

Computed break field, 112

Computing data. See Calculating report output

Context property, 95

Copying data, 93, 99–100
setting context, 95
specifying value source, 94

Creating reports, with the report wizard, 21–47

Cursor
fetching report data with, 75
reserved cursor names, 76

Cursor and Using property, 76

Custom function, fetching report data with, 77

D
Data. See Calculating report output; Fetching data;

Report data

Data groups. See Groups

Data Source property, 73

Database
closing connection, 72
fetching report data from, 73
opening connection, 72

Database columns, choosing in report wizard, 32

Debugger, 142

Default Cursor property, 75

Detail node, 73–77

Detail output, 73–77
keeping together on page, 116
starting new page for, 116

Detail–only report, 36

dev2bin, 148

Device configuration file, 173–174
compiling, 148

Device file
specifying in Print Setup dialog, 135
specifying on invocation, 137

Driver, specifying on invocation, 137

Dynamic output widget, defined, 53

E
End page node, 118

End user, controlling report composition, 139

F
Fetching data, 73–77

from database, 73
with named cursor, 75
with SQL statement, 74
with transaction manager, 73

from receive bundle, 76
with custom function, 77

Floating footer property, 71

Floating widgets, 56

Fonts
defining aliases, 57
precedence of settings, 57
report wizard settings, 45
setting in editor, 56

Footer
outputting for single–detail group, 82
positioning on page, 71
specifying for group, 81
specifying for page, 70

Function Call property, 77

Functions
calling before break check, 112
calling from call nodes, 88, 105
return codes, 109
stored in prototype JPL file rwwizard.jpl, 45

G
Grand totals

creating group for, 84
generating, 96

Graphs, including in report, 43, 101
via report wizard, 26, 37

Group node
defining group, 79

Index 183

Group node (continued)
for grand totals, 84
inserting, 80

Groups, 77–84
break group processing, 80
controlling break field output, 80
controlling page breaks in, 116
generating totals, 96
outputting headers and footers, 81
repeating header on new page, 82
setting hierarchy, 80
specifying in report wizard, 33
starting new page for, 117
suppressing footer output, 82
suppressing header output, 82

H
Header

specifying for group, 81
specifying for page, 70

I
Included reports, 90

maximum number, 92
nesting, 91
resolving name ambiguity, 91

Indent property
for layout area, 121
for subreport, 85

Inherit From property
layout area, 53
report node, 67
report widgets, 56

Inheritance
setting for layout area, 53
setting for nodes, 67
setting for report widgets, 56
updating (rinherit), 151

Initialize In property, 94

Instance node, 89
using to create a title and trailer pages, 118

J
JPL procedures. See Functions

JPL Procedures property, 88

Justification property, 120

K
Keep on Page property

detail print node, 116
group, 116
group header/footer print node, 117
subreport, 86

L
Landscape page orientation

setting in report file, 71
specifying on invocation, 138

Layout area
changing dimensions, 52
collapsing, 51
creating, 51
defined, 49
editing properties, 52
expanding, 51
including white space, 55
indenting output, 121
moving, 52
populating with widgets, 53

Layout area widget, 49
moving, 52
naming, 51

Layout window, unnamed area, 49

Library functions, 143–146
sm_rw_play_metafile, 144
sm_rw_runreport, 136, 146

Lines, shrinking out when empty, 122

184 Index

Local Header Only property, 82

M
Margins

specifying in Page Setup dialog, 133
specifying on invocation, 138

Matrix reports, 27
setting the matrix style, 38
specifying headings, 34
wrapping text overflow, 38

Metafile, executing with C function, 144

N
Name property

layout area, 52
report node, 66

Node. See Report node

O
One Per Page property

detail, 116
group, 117

One–Detail Footer property, 82

Orientation
setting in Page Setup dialog, 133
setting in Print Setup dialog, 134
setting on invocation, 138

Orientation property, 71

Output. See Report data

Output parameters, device configuration file, 173–174

Output driver
specifying in Print Setup dialog, 134
specifying on invocation, 137

Output file
overwriting, 137
specifying on invocation, 137

Output function
arguments, 179–180

invoking, 180
return values, 180

P
Page breaks, 118

alllowing in
group header/footer, 117
groups, 116
subreport, 118

allowing in, detail, 116
forcing before each detail, 116
forcing before new group, 117

Page data, generating totals, 98

Page footer, 70
positioning, 71

Page format
resetting, 71
setting properties, 71

Page format node, defined, 70

Page header, 70

Page number
outputting, 94, 102
resetting value, 102

Page Size property, 71

Pagination, 115–118

Paper size
specifying in Page Size dialog, 133
specifying in Print Setup dialog, 134
specifying on invocation, 138

Parameters, specifying for report, 69

Pie chart, specifying in report wizard, 37

Pixmaps, adding to report, 46

Placement property, 56

Portrait page orientation
setting in report file, 71
specifying on invocation, 138

Pre–Break Call property, 112

Previewing report, in report wizard, 29

Print Break Value property, 80

Print node, justifying output, 120

Print setup dialog, saving settings, 135

Index 185

Printers
directing output to, 137
directing output to under Windows, 133

Property links
for dynamic output widget, 103
for node, 68

R
r2asc

converting report file to/from ASCII, 149
error messages, 150

Receive Widgets property, 76

Record–by–record reports, 23

Report data
calculating, 93
displaying only detail data, 36
displaying only summary data, 36, 83
fetching, 73–77

from database, 73
from receive bundle, 76
with custom function, 77
with named cursor, 75
with SQL statement, 74
with transaction manager, 73

grouping, 77–84
processing for calculated output, 105
sorting, 79

Report files
converting to/from ASCII, 149
including in another report, 90
updating inheritance, 151
upgrading from ReportWriter 6, 153–154, 157–162

Report Files property, 90

Report name, 69

Report node, 69
adding, 64
copying, 65
cutting, 64
deleting, 64
editing properties, 66
moving, 65
pasting, 65

Report parameters, 69

Report structure
action nodes, 62
adding node, 64
collapsing, 65
copying node, 65
cutting node, 64
defined, 59
deleting node, 64
editing, 64
expanding, 65
hierarchy of node types, 63
moving node, 65
node types, 62
pasting node, 65
structure nodes, 62

Report title, specifying in screen wizard, 38

Report types, 23–29
address labels, 28
column, 24
graphs, 26
matrix, 27
row, 25
specifying in report wizard, 30

Report wizard
choosing database columns, 32
grouping data, 33
including graphs, 36
JPL file, 45
property settings, 42
prototype screen, 45, 46
resulting definition, 39–42
specifying report type, 30
totaling data, 36
starting, 21
troubleshooting, 46–47

Repository
and the report wizard, 45, 46, 47
inheriting layout area properties, 53
inheriting node properties, 67
inheriting report node properties, 67
inheriting report widget properties, 56

Reserve Space property, 86

Return codes, in call node functions, 109

rinherit
error messages, 152
updating inheritance, 151

Root property, 74

186 Index

Root table view, specifying in the report wizard, 31

Row reports, 25
wrapping text overflow, 38

Running Header property, 82

Running reports
dynamic selection, 139
from command line, 136
in report viewer, 130
invocation options, 136–139
setting invocation string, 135
through C function, 136, 146
through JPL, 136
with stand–alone utility, 155–156

runreport command, 136

rw6to7, 153–154

rwrun utility, 136, 155–156

rwwizard.jpl, 45

S
Send data, 111

sm_rw_play_metafile, 144

sm_rw_runreport, 136, 146

smwizrw screen, 45

Sorting report data, 79

Spooling output
specifying command in Print Setup dialog, 134
specifying command on report invocation, 137
specifying file in Print Setup dialog, 134
specifying printer in Print Setup dialog, 135

SQL statement, fetching report data, 74

Static output widget, defined, 53

Structure nodes, 62

Subreport
controlling output, 85
indenting output, 85
invoking, 84–88
invoking from header or footer, 88
invoking in external file, 90
keeping output on same page, 86
setting maximum lines of output, 86

using caller settings, 86
groups, 86
page format, 87

Summary–only report, 83
creating with report wizard, 36

T
Title page, 119

Totaling data, 96–98
for groups, 96
for page, 98
initializing, 94
setting context, 95
specifying in report wizard, 36
specifying value source, 94
summary–only reports, 36, 83
updating, 94

Trailer page, 119

Transaction manager, fetching report data, 73

U
Unnamed area, 49

Update In property, 94

Upgrading from ReportWriter 6, 157–162
rw6to7 utility, 153–154

Use Caller Format property, 87

Use Caller Groups property, 86

V
Value property, 93

Value Source property, 94

vbizplus database, 163–172

W
Warning messages, output options, 137–138

White space
in layout area, 55
reducing, 121

Index 187

Widgets
copying to layout window, 55
reducing space between, 56

Wizard. See Report wizard

