JAM 7

Language Reference

August 1995

This software manual is documentation for JAN. It is as accurate as possible at this time; howeogn

this manual and JAM itself are subject to revision.

JAM is a registered trademark of AQC, Inc.

Macintosh is a registered trademark of Apple Computer

DynaText is a trademark of Electronic Bookdhnologies.

INFORMIX is a registered trademark of Informix Software, Inc.

0S/2 and Presentation Manager are registered trademarks of International Business Machines Corporation.

Windows and ODBC are trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation.

Oracle is a registered trademark of Oracle Corporation.

SYBASE is a registered trademark of Sybase, Inc.

UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec
tive owners, and they are used for identification purposes only

Send suggestions and comments regarding this document to:
Technical Publications Manager

JYACC, Inc.

116 John Street

New York, NY 10038

(212) 2677722

W 1995 JYCC, Inc.
All rights reserved.
Printed in USA.

Table of Contents

About this Guide e IX
Organizatiorof thisGuide. ¢

CONVENLIONS. X

Text CONVENtIONS. . .. oo e X

Keyboard Conventions i X

JAM Documentation. i Xi

Section |1 JPL ... 1
Chapter 1 Programming in JPL 3
JPLModulesand Procedures i 3

Module Structure 3

Parameters. e 4

RetUrn ypeS 5

Procedure Execution. 6

Module TYPES. . . . oo 7

WidgetModules. e 8

ScreenModules. e 9

External Modules. e 9

Module Compilation. 11

Chapter 2

JPLProgram @xtWINdow 12

Using Your OWn Editor. e 13
ReadingandWting Files. i 13
Compilingand Saving. 14
Callsto JPL . .. 14
Calls from Screens andidets. 15
Calls from Control Strings. 16
JPLcallCommand. 17
Inline Calls 17
Precedence of Called Objects. 17
Variables. ... 18
Declaring JPL ¥riables. 18
Declaring Global ®riables. 19
Variable Scope and Lifetime.o i 20
Colon PreproCessing.o v vt 20
CONStaNtS. . . . 23
References to JAM Objects and Properties 24
Object Specification. i e 24
Object \alUES 27
Properties . . . o 28
SelectionGroupData i 31
Traversal Properties. 31
Global Mariables 32
Data Wypes, Operators, and EXpressions.vouun. 32
Data YPeS. . . oot 32
OPEratOrS. . . o oo 33
EXPressions 38
Optimization. e 39
JPL Command OVerviewc.ovuuiinennen.. 41
ProcedureStructure 41
Calls . o 41
Variable Declaration. 41
Control FIOW e 42
TextDisplay. e A2
PublicModules 42
Data Tansfer 42
Database Drivers. 43

JAM 7.0 Language Reference

Chapter 3 JPL Command Reference 45
Section Il: Built-in Functions o ... 79
Chapter 4 Built-in Control Functions 81
Section lll: Library Functions 89
Chapter 5 Library Function Overview coiuin.. 91
Initialization/Reset. 91
Property ACCESS. . ..ottt e 92
Widget Creation/Deletion. 92
Interscreen MesSaging.« oot v 92
Screen andwport Control. 93
Display Terminal /O 94
Field/Array Data ACCESS. . . . o oo oot et e 95
GrOUP ACCESS . . . ettt e e e e e e e 96
Local Data BIoCK ACCESS.o oo 96
Cursor Control. 97
Message Display.o 98
Validation 99
Mass Storageand Retrieval i . 99
Global Data and Changing JAMBehavior. 100
MENUS. . . 100
Database Initialization 101
Database ACCESS.t 101
Database Binaryafiable Access. i i 102
SQL GEeNeration. . ..ot e 102
Transaction Manager ACCESS . . . v v vttt ittt e 103
Transaction Manager Event Processing i, 103
Transaction Manager Error and Message Handling 104
Before-Image Access in theansaction Manager. 104
GUI ACCESS . .ot 105
DDE (Dynamic Data Exchange). 105
File ACCESS. . . . 106
Library ACCESS.t 107

Table of Contents

Chapter 6

Appendix A

Vi

Miscellaneous 107
JAM Library Functions 109
JAM Properties ...t e 519
ApplicationProperties. 520
Screen Properties. . ..o 521
Identity 521
GEOMBEIY. . . 522
ColOr 523
FoNt . . 523
FOCUS. . oo 524
Help . oo 524
Display 524
Transaction. e 525
Widget Properties 526
Identity e 526
GEOMEEIY. . . 528
POSItIONINGo 530
COlOr 531
FONt . . 531
FOCUS. . .o 532
Help . oo 532
INPUL . 533
Validation 534
Format/Display. e 534
Transaction. e 536
Database. 537
Graphs. e 538
Selection GroUpP.ot 546
Identity e 546
GBOMBLTY. . . oo 547
FOCUS. . .o 547
Validation 548
Synchronized Scrolling Group. 548
Identity e 548
GEOMEEIY. . . 548

JAM 7.0 Language Reference

Table of Contents

TableVieWw e 549

Identity e 549
Transaction.ot e 549
Database. 850
Traversal. 550

Link Widgeto e 551
[dentity 551
Transaction. 552
Traversal. 552
.. 553

vii

About this Guide

This manual is a reference tool for JAM users who already have a general
understanding about JAM concepts and design techniques. This ek of
general and specific information on how to use JAM language resources to code
back-end processing for your application. The sections on JPL assume that you
already have general programming experience; while the library function
descriptions assume specific experience with C programming.

The JAM documentation set assumes you are using a mouse in your development

environment. Refer to Appendix A in tislitors Guidefor a listing of keyboard
alternatives and accelerator keys.

Organization of this Guide

This manual is divided into 3 sections:

A two-part section on JPL, ACC's own programming language. The first
part discusses programming concepts; the second contains descriptions of eact
JPL command.

Descriptions of the preinstalled, or built-in, control functions that you can call
from the application.

Descriptions of JAMS library of C functions, which provide precise runtime
control over your application.

Conventions

An appendix that lists in table format all JAM properties that are accessible in
JPL or through calls to properties API functions. Information includes each
propertys JPL mnemonic, valid values, and special requirements.

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

expression Monospacdfixed-spaced) text is used to indicate:
Code examples.
Words you're instructed to type exactly as indicated.
Filenames, directories, library functions, and utilities.
Error and status messages.

KEYWORDS Uppercase, fixed-space font is used to indicate:
SQL keywords.

Mnemonics or constants as they appear in JAM include files.

numeric_value Italicized helvetica is used to indicate placeholders for information you supply

[option_list] Items inside square brackets are optional.

{x |y} One of the items listed inside curly brackets needs to be selected.

X ... Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

new terms Italicized text is used:

To indicate defined terms when used for the first time in the guide.

Occasionally for emphasis.

Keyboard Conventions

XMIT JAM logical keys are indicated with uppercase characters.

X JAM 7.0 Language Reference

Alt+A

JAM Documentation

Physicalkeys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

About this Guide

The JAM documentation set includes the following guides and reference material:
Read Me Firsb Consists of three sections:
W Whats New in JAMD Briefly describes whas new in JAM 7.

W Installation Guideb Describes how to install JAM on your specific
platform and environment.

W License Manager InstallatioP Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

Getting Started Contains useful information for orienting you to JAM. Includes

a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guideb Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen gsliti@en wizard, menu

bar editor and styles editoTheEditors Guideis also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor

Application Development Guid2 Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repositwygk functions, and menu bars,
as well as sections on the SQL execuB®L generator and the transaction
manager.

Language Refenceb Describes JPL, JAMS proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti
cally.

Database Guid® Instructions for using JDB, JXCC's prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver

Configuration Guideb Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys

Xi

JAM Documentation

andinput/output. Also includes information on GUI resource and initialization
files.

Master IndexandGlossaryb Provides an index into the entire documentation set
and a dictionary of terms used in the documentation set. This is in addition to the
indexes in the individual volumes.

Upgrade Guided Online only. Information for upgrading from JAM 5.

Online JAM's documentation set is available online and included with the JAM

Documentation distribution. The books can be viewed through the Dgma™ browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
DynaTexts read-only browser from the command line or by clicking on the
DynaText icon. For instructions on using DyreT, request Help while you have a
browser window open.

Collateral The following information is also provided with your JAM installation:

Documentation Database Driver Notes B JAM 7 has database drivers for most popular

relational database engines, as well as JDB, $4ivbprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guideothers are included separately

Online help B TheEditors Guides provided in online form through the
DynaText browser on GUI platforms. It can be accessed by choosing Help

from the screen editoFor instructions on using Dynedt, request Help while
you have a browser window open.

Online README file.

Additional Help JYACC provides the following product support services; conta8CIY for more
information.

Technical Support
Consulting Services

Educational Services

Xii JAM 7.0 Language Reference

SECTION ONE

JPL

Chapterl Programming inJPL. i 3
Chapter 2 JPL Command Overview.covuiiunen.... 41
Chapter 3 JPL Command Reference. 45

Programming in JPL

JYACC Procedural Language, or JPL, is an interpreted language with a C-like
syntax. Because you can write and edit JPL code within the screen yalitean

write and execute procedures without interrupting your creative work @ow

write JPL in external file modules and call these from hooks provided in the
Properties window of screens and widgets. Use JPL for rapid prototyping, and later
rewrite the procedures in one of the languages that JAM supports, including C. Or
leave the code unchanged; JPL can get most jobs done quicklyfiaimhy.

JPL Modules and Procedures

JPLmodules contain one or more procedures written in JBIlL.C#n create

modules either through the JA84bwn JPL editor (described on page 12) or as
external text files. Wdget and screen modules are created through the screen editor
and are saved in the screen binaries; JAM automatically reads these at the
appropriate stage of program executioou¥an also create external modules that
are stored in files or libraries. For faster access, you can install external modules in
the applicatiors memory-resident list.

Module Structure

A module contains one or more procedures. The first procedure of a module can be
unnamed. All subsequent procedures are named throutgpdél. command. For

JPL Modules and Procedures

Parameters

examplethe following module has two procedures, the first unnamed, the second
namedwarning :

if actual_cost > forecast_cost
call warning()

proc warning()
msg emsg °Value exceeds budget forecast®

Unnamedand named procedures ardeli€nt in two ways:

A modules named procedures must be called expljaitlyile a modules

unnamed procedure is called automatically at specific events of program
execution. Read 2Calls to JPL° on page 14 to learn how JPL calls named and
unnamed procedures.

Variables that you declare in the unnamed procedure are visible to all
procedures in the same module, while variables in a named procedure are
visible only to that procedure o¥ typically declare variables in an unnamed
procedure in order to initialize them and make them accessible to all named
procedures in the same module.

Theproc command can specify parameters that receiyenaents passed by the
procedures caller You specify parameters as a comma-delimitgdraent list

within parentheses. The procedsrealler can pass in constants, global constants,
variables, or colon-expanded variables gsiarents. JAM passesgaiments by
valuebthat is, the called procedure gets its own private copies of the values in the
calling procedure aguments. This means that the called procedure cannot
directly alter a variable in its caller; it can only alter its own copies.

For example, the earli@rarning procedure is modified below; it now expects its
caller to supply two @uments that are copieddotual andforecast . The
colon-expanded values of these variables are used to produce a more informative
message:

if actual_cost > forecast_cost
call warning(actual_cost, forecast_cost)

proc warning (actual, forecast)
vars diff
diff = actual *+ forecast

msg emsg °Value in :actual exceeds budget forecast by $:diff°

JAM 7.0 Language Reference

Passing
Standard
Arguments to
JPL Procedures

Return Types

JPL Modules and Procedures

If a procedure is called as a hook function for a widget or screenbfor example, as
a screers exit functionband omits parentheses, JAM automatically passes
standard gguments to that procedure. Thesguanents indicate the current status

of the widget or screen. Their number and type varybfor example, taumagnts

are passed for screens; four for fields; and three for grid widgets. The prosedure’
proc statement must contain the appropriate number of parameters in order to
receive these guments.

For example, you might define the following procedure in a ssedt module
in order to handle grid data:

proc gridProc(basefld, occ_no, status)

You can segridProc in any of several grid properties; when JAM calls this
procedure at runtime, it sets paramebersfld , occ_no , andstatus with the
three standard guments associated with grids. So, if a gridow Entry Function
property contains the stringidProc , JAM calls the procedure each time the
cursor enters a new row and sets its three parameters to tisebgsd'field
number the number of the current occurrence, and an integer bitmask that
describes why the procedure was called.

Note: Precedence is always given t@aments that & specified in the pperty
string. For example, if a grid widgetEntry Function mperty contains the string
gridEntry(val) , JAM supplies the contentsval to proceduegridEntry . If
arguments a¥ explicitly omitted tlough empty pa&ntheses (), JAM does not
supply the standdrarguments.

The unnamed procedure of the module for a screen or widget module is always
supplied standard gmments that indicate the current status of the screen or widget.
To receive these gmments, the unnamed procedure must haenas statement.

For more information about the standardgLements available for screens and
widgets, refer to page 15 . Tharms command description shows how to declare
parameters in an unnamed procedure; refer to page 64 for details.

An unqualifiedproc command returns an integer valueutan specify to return

a string or double precision value by qualifying phec command with the
keywordsstring ordouble , respectivelyFor example, the following sequence
of statements passes data from variatidesl anddata2 to procedure
process_input , which is defined to return a double precision value. This return
value is used to determine whetherithestatement evaluates to true or false:

Chapter 1 Programming in JPL 5

JPL Modules and Procedures

if process_input(datal, data2) > 0.16667

double proc process_input(d1, d2)
vars retval

[*process d1 and d2 values*/
return retval

Procedure Execution

Control Flow
Statements

null statements

Included
Modules

Procedureexecution begins with the first statement of the procedure and continues
to the end of the procedure, or untieaurn ~ statement executes. If an execution
error occurs, JAM aborts execution of the current procedure, posts an error
message, and returns to the proceduraller In all cases, a procedure returns to

its caller when execution ends.

JAM interprets each physical line as a separate statement, unless the line ends with
the backslash { continuation charactedPL statements can be up to 253
characters in length.

By default, JAM executes JPL procedures sequentially from start to firaarcan
use JPIsif ,else ,for ,while ,break andnext statements to manipulate the
order of statement execution. JPL has no limit to how many levels deep you can
nest control flow statements.

Conditional and loop statemenis (else , for , while) allow curly brace$ } as
blocking characters so you can conditionally execute multiple statements. Each
blocking character must have its own line except to specify a null statef}entb

If you nest multiple blocks, make sure that all block characters are paired correctly

The following example shows #n statement that contains a block of two
statements:

if cost> 1000
{

exceptions = exceptions + 1
msg emsg °The cost is very great.°

}

A left and right brace on the same line indicate a null statement. In the following
example, théor statement keeps count while testing a condition. Because no
other statements are required, fitve block consists of a null statement:

for i=1whilestr(i, 1) I=°°

{}

JAM procedures can contain include statements that specify an external module. At
runtime, JAM compiles and inserts this module within the calling procedure and
executes it. Include statements have the following syntax:

JAM 7.0 Language Reference

Module Types

include module

wheremodule is any JPL file module. The included module can also contain its
owninclude statements. The number of include statements that you can nest is
set by the constatMIT_DEEP_INC, defined insmjpl.h

JAM looks formodule in this order:

1. Memory-resident modules.

2. Library module in an open library

3. The current directory

4. File module in a directory specified by _initcrt
5. File module in a directory specified BMPATH

Note that when JAM compiles JPL, either through the screen editor or through the
jpl2bin utility, it does not check the included module for errors.

Comments You can enter commented text in JPL in three ways:

Prefix the commented string with two slagh) characters. JPL treats all
remaining text on that line as a comment.

Enclose the commented string with the block specifterand*/ . JPL treats
all text within this block as a comment. Use*/ comment characters to
comment contiguous lines of text.

Begin the line with a poundk) characterJPL treats the entire line as a
comment.

Note: The# character must be the first non-blank character of a line deor
to be interpeted as a comment characttrit is embedded within a line, JPL
interprets it as aefeence to a widget by number

Module Types

JAM lets you create several types of modules:

Widget and screen modules that you create through the screen Huites
are saved along with their screen binaries.

External modules whose source code initially resides in text files outside JAM.
You can leave these modules as individual files. Alternatiyely can store

Chapter 1 Programming in JPL 7

Module Types

themin libraries, or convert them to data structures and install them in the
applications memory-resident list.

An applications ability to access the procedures in a JPL module depends on its
type and how it is loaded and called. JAM executes a widget module only during
widget validation. The procedures in this module can call only each other and are
invisible to the rest of the program. Converstig application can call all named
procedures in a screen module while the screen is active.

JAM's ability to access external modulesbfile, libragnd memory-residentbde
pends on how they are loaded and called. If you load an external module into
memory as public module, its named procedures are visible to the entire
application and can be called directfya module is not public, it can only be
called by its file name; this invokes the modsilehnamed procedure. The named
procedures in this module are accessible only through its unnamed procedure.

The following sections describe these module types and how JAM executes them.

Widget Modules

executing

Widgetmodules are modules that are associated with individual widgsits. Y

create and modify widget modules through the widg#®L \Alidation property

This property is available for most widget types, including grids and groups. When
you select this propertyhe JPL Programekt dialog box opens.ou use this

dialog boxs editing window to enter and modify JPL code. For more information
on using this editing windowefer to page 12.

JAM executes a widget module only when it performs validation. In the case of
data-entry widgets such as text widgets, validation occurs when the user exits via
TAB. For push buttons, radio buttons, check boxes, list boxes, and toggle buttons,
validation occurs when the widget is clicked with the mouse or otherwise
activatedbfor example, by the NL keecause a widget module is accessible

only to its widget, use it to perform tasks that are specific only to that widget.

The first procedure of a widget module must be unnamed. A widget module can
include named procedures; howevbese can be called only by other procedures
in the same module.

Because JAM saves the module as part of the widget, you can view and edit this
module only through the screen editdthen you copy this widget to another
screen or to the repositoJAM copies the module along with other widget data.

JAM calls a widget module after it executes the widgedlidation function, if any
exists. JAM first executes the modglennamed procedure and passes the
standard @yuments associated with widget processing. For widgets such as single
line text fields, four aguments are passed that describe the widget and its current

JAM 7.0 Language Reference

Module Types

statusits widget numbercontents, occurrence numpand a set of context-sensi
tive flags. The unnamed procedure must hagaras statement in order to
receive these guments. For more information abougaments for dierent
widget types, refer to page 15.

Screen Modules

executing

Screermmodules are associated with specific screens. All named procedures in a
screen module are available to the application while the screen remains amtive. Y
create and modify screen modules through the sedét’' Procedures property
When you select this properthe JPL Programekt dialog box opens.otl use

this dialog boxs editing window to enter and modify JPL code. For more
information on using this editing windowefer to page 12.

The first procedure of a screen module can be unnamed; an unnamed procedure is
optional. All subsequent procedures must be named. When you save the module,
the screen editor automatically compiles it. If an error prevents compilation, JAM
issues a message and returns you to the JPL Procedures witadewhat

included external modules are not checked for compile errors.

Because JAM saves the module as part of the screen, you can view and edit this
module only through the screen editéryou save the screen to another file or as a
repository entryJAM copies the module along with all other screen data.

When you open a screen, JAM loads all its named procedures into mértioey
executes the screen modslennamed procedure, if aAM passes the two
standard ayuments associated with screen processing to this procedure: the name
of the screen and the ENTRYbit. The unnamed procedure must haypearans
statement in order to receive thesguanents. For more information about these
arguments, refer to page 15.

While the screen is activebthat is, displayed on topbevery named procedure in its
JPL module can be calledolY can use these procedures to perform any task
required by the screen.

Note that JAM executes the unnamed procedure only when the screen first opens.
JAM does not execute a screen modulginamed procedure on subsequent
exposures of an already open screenbfor example, when a child or sibling screen
closes. Also note that JAM executes the unnamed procedure only after it executes
the global screen function and this screamitry function, if any

External Modules

Externalmodules are modules saved to disk, either as files or in libranasan
also install an external module in an applicasanemory-resident list. Unlike

Chapter 1 Programming in JPL 9

Module Types

compilationand

conversion

File Modules

Library Modules

10

widgetand screen modules, external modules are available to the entire application
at any time. JAM finds external modules in memamopen libraries, and on disk.
For details on the search order for external modules, refer to page 17.

External modules are accessible to the application in two ways:

Call the module by name. JAM compiles the module, if necesbary

executes its first, unnamed procedure. If an external module is not loaded
through thepublic command, you must call it by name. An unloaded module
has only one entry pointbits unnamed procedure.

Call the named procedures in a public modulebthat is, a module loaded
through JPIspublic command. When JAM loads a public module, it
compiles the module, if necessaltythen loads the module procedures into
memory and executes its unnamed procedure, ifldrgapplication can call
any named procedure in a public module until it is removed from memory

You can create external modules with any text edvimun can also write the

contents of widget and screen JPL modules to disk. External module names should
conform to operating system conventions. JAM does not append an extension to
ASCII JPL files.

JAM compiles an external module at runtime unless it is precompiled, either by the
jpl2bin utility or by being loaded as public. When JAM compiles an external
module at runtime, it issues error messages for all syntax errors that it encounters.
If compilation fails, JAM issues an error message and returns to the nsodule'
caller.

The following sections describe each type of external module.

File modules can be stored in ASCII or binary format. Modules that are stored in
ASCII files are easy to modify and are available to the entire application. However
because JAM must recompile the module each time it is called, an ASCII file
module also incurs more processing time than screen or widget modules. T
improve performance, precompile the module jittbin . Because file

modules are stored outside the JAM executable, you should protect them from
deletion or accidental editing.

Using libraries reduces I/O time and the number of files to distribotecadn store
a module in an application library in these steps:

1. Compile the module witpl2bin . For a description of of this utilityefer to
page 1.

2. Add the module to the library with thermlib utility.

You can call a library module only if its library is already open through
sm_|_open . JAM loads the module into memory each time you call it.

JAM 7.0 Language Reference

Memory-Resi-
dent Modules

Module Types

You can add a JPL module to an applicasamemory-resident list. Making a JPL
module memory-resident reduces I/O time and makes it a part of the JAM
executable. The module is held in memory during the life of the application.

You add a module to the memory-resident list in these steps:
1. Compile the module witfpl2bin

2. Convert the binary file to source with the appropriate utilitybfor example, for
programs written in C, convert the binary to a character arraybimizh .

3. Install the array with the library functiamn_formlist

Note that you must recompile your application after creating or editing a
memory-resident list. For more information on memory-resident lists, refer to page
522 in theApplication Development Guide

Module Compilation

Runtime
Compilation of
Modules

Precompilation
of Modules

If you create screen or widget modules in the screen eiiitbt compiles each
module when you save it to the screen binkithe compiler finds any syntax
errors, it issues a warning and returns you to the editor

If you use external modules, you can leave them as ASCII text. When JAM
executes any procedure in an external module, it first checks whether the module is
compiled. If not, the compiler performs syntax checking on command words,
replaces command words with tokens, and partitions the module into procedures.
During the syntax check, JAM displays error messages for invalid command

words, or missing guments. If compilation is successful, JAM loads the module

into memory

You can precompile the source module into binary format witjpibien
utility. You can then store the precompiled module in a lib@argonvert it to
source with the appropriate utilitybfor example, C data structures hinittc .

jpl2bin is a command-line utility that lets you compile external modules before
runtime. This saves the overhead incurred by runtime compilation. If the
application platform has limited memoigompile all file modules witfpl2bin

then stub out the runtime JPL compiler

Note that JAM always performs colon preprocessing at runtime; therefore, a
module is fully compiled only when it executes.

jpl2bin saves the file module to a file of the same name withim extension,
unless you specify a d#rent extension. & invoke this utility from the command
line as follows:

Chapter 1 Programming in JPL 11

JPL Program Text Window

jpl2bin [tfpv] [e extension] filename ...

*f
Permitthe output file to overwrite an existing file.

1p
Put the binary file in the same directoryfisame.

tv
List the name of each file as it is processed.

teextension

Appendextension to the binary file name insteadin . Do not insert any spaces
between thee switch and the extension name. dmit an extension, supply a
value of+ (dash) forextension. For exampletet.

filename
The name of the JPL file module to compile.

JPL Program Text Window

12

Widgetand screen modules are accessed through theiraliltlatibn and JPL

Procedures properties, respectiv8glection of either property invokes the JPL
Program &xt dialog box, where you can examine and edit the JPL code currently
stored with that property:

JAM 7.0 Language Reference

JPL Program Text Window

Public getFileHandle, jpl
return

F' oc
unl Handle, jpl
return

Figure 1. JPL code ented into the JPL Rigram Ext dialog box

Using Your Own Editor

You can type your JPL directly into the dialog box, or you can use your local editor
to enter and edit JPL codebfor example, Notepad inddws; vi in UNIX. The

local editor is set by the configuration variaBMEDITOR To use your local editor
choose the Editor button. When you exit the editou are returned to the JPL
Program &xt dialog box, which contains your latest edits.

Note: If you exceed the maximum line length of 253 characters, JAM issues an
error message when you try teturn to the dialog box an@turns you to your
editor to make the necessary amtions.

Reading and Writing Files

You can also write and read code to and from disk files by choosing the Read file
and Save file buttons. These invoke the Read JPL file and Save JPL file dialog
boxes, respectivelyWhen you read a module, JAM copies its contents to the
cursors current position. Any previous text at or below the cursor is overwritten.
When the read operation is complete, the cursor returns to its original position.

The dialog box accepts line lengths of up to 253 characters. If you try to read from
a file that contains longer lines, JAM copies all text preceding the erroneous line
into the editing windowthen issues an error message.

Chapter 1 Programming in JPL 13

Calls to JPL

Compiling and Saving

Whenyou choose OK, JAM compiles and saves the module. If an error prevents
compilation, the editor issues a message and returns you to the dialog box. Note
that included external modules are not checked for compilation errors.

Calls to JPL

An application can call JPL modules and their named procedures from various
screen and widget hooks, and from control strings. JAM provides several ways of
calling JPL modules and procedures:

Enter the names of the modules or procedures to execute in the Properties
window of a screen or widgetoW can specify JPL to execute on screen and
widget entry and exit, and on widget validation.

Call JPL from a control string.
Explicitly call a module or named procedure throughctiile command.

Issue arinline call, where the name of the procedure or module name to call is
embedded inside a JPL expression and is evaluated to its return value.

You can also call JPL from C or another language supported by JAM through the
library functionsm_jplcall

A screen module'named procedures can be called from outside the module while
the screen is active. Named procedures in external modules are accessible if the
module is public; otherwise, the procedures can be called only by the nsodule'
unnamed procedure. Named procedures in a widget module can be called only by
the modules unnamed procedure.

arguments All calls to JPL can supply comma-delimitedjaments to their corresponding
parameters. Enclose thegaments in parentheses. If the procedure takes no
arguments, use the voidgarment specifief) . You can pass the following as
arguments:

Variables, including those declared by thes command, widget nhames, and
LDB entries.

String and numeric constants.
Global constants.

Colon-expanded variables.

14 JAM 7.0 Language Reference

returns

Calls to JPL

As noted earlierJAM passes guments by value, so changes to the receiving
parametes value leave its corresponding cabesigument unchanged. Note that
if you call an installed C function, you must prepare it for installation with the
correct macro¥M_INTENG SM_STRFNCSM_DBLFNCor SM_ZROFNKIn order to
pass aguments by value to that function. Refer to pab@ih theApplication
Development GuidBr more information about installing functions.

A procedure always returns to its caller with a return valuebeither intsgérg,

or double, according to the procedure definition. If the procedure lacks an explicit
return statement, or theeturn statement omits a returngaiment, the

procedure returns to its caller with a value of 0 or an empty string. If an execution
error causes the procedure to return prematutelbturns with 1.

Calls from Screens and W idgets

Table 1.

You can specify JPL modules and procedures in various properties of screens and
widgetsbfor example, in a screenExit Function propertyf no aguments are
supplied, JAM automatically passegaments that describe the state of the calling
screen or widget. The called procedure must define the parameters needed to
receive these guments. @ble 1 describes the properties that can specify calls to a
procedure and the defaulgaments passed:

Default aguments passed to JPLogedure

Caller Property Arguments

Screen Entry Function screen-name, flag
Exit Function

Field widget Entry Function widget-number, widget-contents,
Exit Function occurrence-number, flags
Validation Function

Grid widget Entry Function base-field-number, occurrence-number,
Exit Function flags
Row Entry Function
Row Exit Function
Validation Function

Group Entry Function group-name, flag
Exit Function

For example, if a widget'Exit Function property specifies the procedisrext
and no aguments are specified, JAM automatically passes in fgunaents to

Chapter 1 Programming in JPL 15

Calls to JPL

this procedure; the second of thesguaments is the widget'current value.
fid_xt gets this value in parametetl and tests it as follows:

proc fld_xt (num, val, occ, flg)

if val = 'MR'
sex ='M'
else
sex ='F'
return

Notethat the flag or flags that JAM passes are bit values, which you manipulate
through JPIs bitwise operator& (AND),| (OR), and- (ones complement). du

can test these flags for conditional processing when you use the same procedure to
handle diferent execution stages of a JAM objectbfor example, entry and exit of

a widget. For information on flags that are set for a screen, refer to page 122 in the
Application Development Guidéor a field widget, page 126; for a grid widget,

page 129; and for a group, page 132.

memory-resident If a screen is memory-resident, JAM passes a null string to the called procedure
screens instead of the screemhame.

Calls from Control Strings

You can use control strings to call JPL procedures on specific inputbfor example,
keyboard input or menu choicesowrissue calls from a control string as follows:

A[(target-string [; target-string])]jpl-name [(arg-spec)]

wherejpl-name can be the name of a procedure or module aegdpec is one or
more comma- or space-delimitedjaments to pass to parameterfpimame. The
control string can optionally test the return value against one or more semicolon-
delimited taget strings. Each tget string has this syntax:

[test-value =] control-string

JAM comparegpl-name's return value to eadbst-value, reading from left to

right. If it finds a match, it executes the specified control string. If you omit a test
value, JAM executes the control string unconditiondllye control string can

itself contain a JPL call with its own tgat strings; you can thereby nest multiple
control strings with recursive calls.

For example, given this control string for a push button:
Nx1=A("Njm_exit)cleanup; 1=&welcome_scr)process

JAM calls the JPL module or procedwrecess when the user selects this push
button; it then evaluates the return value frwotess to determine its next

16 JAM 7.0 Language Reference

Calls to JPL

action:either to calkleanup , or to invoke thavelcome_scr screen. Note that on
return fromcleanup , JAM unconditionally calls the built-in functigm_exit

Refer to page 109 in thpplication Development Guider more detailed
information about control string syntax.

JPL call Command

Inline Calls

You call a JPL procedure or module throughd¢hlé command from other
procedures or modules. Thall command uses this syntax:

call executable ([arg-spec])

whereexecutable can be the name of a JPL procedure or external module, or
installed C function, andrg-spec is one or more comma-delimitedyaments
optionally to pass to parametersiecutable. The entire gzument list is enclosed
in parentheses. For more information about installing C functions, refer to page
119 in theApplication Development Guide

BecauselPL evaluates a procedure call to its return value, you can embed a
procedure call within any expression. The following statement embeds a call to the
credit_eval procedure:

if credit_eval()==1

msg emsg °Creditworthy applicant®
else if credit_eval() == 0

msg emsg °Reject application®

You can also specify a procedure as guarent to another procedure. In the
following statement, JPL first calisobar , then passes its return value ifdo
as that procedurg'second gument:

ret =foo(a, foobar(b), c)

Precedence of Called Objects

WhenJAM processes a call, it cannot know whether the called object is a JPL
module, a JPL procedure, or an installed function. JAM attempts to execute a JPL
call by searching for functions and JPL modules or procedures in this order:

1. Aninstalled or built-in function.

Chapter 1 Programming in JPL 17

Variables

Variables

2. If the call is issued from a JPL module, a named procedure in that module.
3. A named procedure in the current screenbdule.

4. A named procedure in a public module. If the procedure name exists in more
than one public module, JAM uses the procedure in the most recently loaded
module.

5. A memory-resident module.

6. A library module in an open library

7. A file module in the current directary

8. Afile module in a directory specified by the library functinm_initcrt

9. Afile module in a directory specified ISMPATH

JPL recognizes three kinds of variables:
JPL module variables declared by thes , proc , orparms commands.
Global JPL variables declared by tiiebal command.
Screen variablesbwidgets, groups, and LDB entries.

This chapter shows how to declare and reference variables in JPL.

Declaring JPL Variables

18

Earliersections in this chapter showed how JPL declares parameter variables
through theproc andparms commands. §u can also declare a JPL variable with
thevars command. JPL variables are not typed; you can assign a variable any
string or numeric value. All values are stored as strings.

Thevars command declares one or more JPL variables:
vars vartspec [, varzspec]
vartspec specifies the variablge'hame and properties as follows:

var-name [[num-occurs]] [(size)] [= inittvalue]

JAM 7.0 Language Reference

Variables

Thefollowing sections describe required and optional elements in a variable
declaration.

vartname

The name of the variable, wher+name is a string that contains up to 31
characters. JPL variable names can use any combination of letters, digits, or
underscores, where the first character is not a digit. JAM also allows usage of two
special characters, the dollar sign &4nd period.().

[num-occurs]

Optionally declaresartname as an array afum-occurs occurrences. The default
number of occurrences is 1. For example the following statement declares
dependents as an array of ten occurrences:

vars dependents[10]
(size)
Optionally specifies the number of bytes allocated for this variable; JAM allocates

an extra byte for the terminating null charactdre default size is 255 bytes. For
example, the following statement declares the variaplewith a size of 10 bytes:

vars zip (10)
= initxvalue
Optionally initializes the variable fait-value, whereinit-value can be any string or

numeric value less than or equal to the varialdege. If no value is assigned, JAM
initializes the variable to null string°().

If the variable is declared as an arngyu can initialize its occurrences. For
example:

vars ratings[5] = {°G°, °PG°, °PG+13°, °R°, °NC+17°}

Occurrencevalues can be space-or comma-delimited, and can be string or numeric
constants, or variables that are in scope, including global variables and widget
names.

Declaring Global V ariables

You can declare global variables that are recognized throughout the application
with the following syntax:

global vartspec [, vartspec]

Chapter 1 Programming in JPL 19

Variables

wherevartspec specifies the variable'name and properties as follows:
var-name [[num-occurs]] [(size)] [= inittvalue]

Like thevars commandglobal can declare multiple comma-delimited
variables; each declaration can optionally declare the global as ansaeayy its
size (1 to 255 bytes), and assign its initial value.

To reinitialize or clear a global variable, declare it again.

Variable Scope and Lifetime

modulevariables

JPL's ability to reference a variable depends on the var@b@pe and lifetime.

LDB entries, widgets, and groups can be referenced by any module. LDB entries
are available as long as their LDB remains loaded in meriddgets and groups

are available as long as their screen is in men@lgbal variables are available

for the duration of the application.

Variables declared in an unnamed procedure are accessible to all procedures in the
module; those declared in a named procedure are known only to that procedure.

Variables declared inside a procedure remain in memory until the procedure
returns, while variables declared in the unnamed procedure remain in memory until
the module returns.Wio exceptions apply: variables declared in a screen msdule'
unnamed procedure remain in memory until the screen exits; variables in a public
modules unnamed procedure remain in memory until the module itself is removed
from memory

Colon Preprocessing

20

JPL's colon preprocessor expands any colon-prefixed variable to its literal value.
This lets you reference variables in any JPL statement whose syntax otherwise
excludes variablesbfor example, you can embed variables in a stiingcah also
supply JPL variables asgarments for several JPL commands that take only literal
values as gumentsdbms, sql , andpublic

The preprocessor expands colon-prefixed variables to their literal values before
JPL executes the statement. For example, you can reference the \atimble in
amsg command, even though the command takes only a string value. For example:

msg emsg °l cannot find account number :acctno.°

Thecolon preprocessor expandsctno to its assigned value before execution.
Thus, ifacctno has a value of 91956, JAM executes the statement by displaying
this message:

JAM 7.0 Language Reference

Syntax

syntaxfor database
interface

Expansion

Controlling

Expansion with
Parentheses

Variables

I cannot find account number 91956.
Converselythe following statement:

msg emsg °l cannot find account number acctno.®
yieldsthis message:

I cannot find account number acctno.

Note: The colon peprocessor always expands a variable to a string valog. Y
can use this in aler to foce treatment of numeric values as strings.

A colon variable begins with a colon and ends with any non-expandable character
such as a blank or newline, as shown in the following syntax:

vartname

JAM has two variations of colon variable syntax for applications that use its
database interface; and:=. For more information on these, refer to page 239 in
the Application Development Guide

To prevent expansion of variables that contain colons, prefix the colon with
another colon:() or backslash\(), or follow it with a space. In the first two

cases, the colon preprocessor discards the first colon or the backslash. In the third
case, the colon and following space are preserved.

After JAM compiles and loads a JPL module, the colon preprocessor scans each
statement from right to left for colons. When it finds one, it starts expansion:

1. Checks for a left parenthesis immediately after the colon, then begins to
accumulate characters from left to right.

2. If a left parenthesis exists, the preprocessor accumulates characters until it
encounters a right parenthesis. Otherwise, it continues until it encounters a
character that cannot be expanded, such as space or a quote character

3. Tries to identify this string as a variable according to the precedence rules
described earlier: refer to page 17.

4. Expands the variable to its current value, then returns control to JPL for
statement execution.

Parentheses explicitly delimit the scope of expansion. For example:

vars ref x4
vars alpha[3] = {bits®, °centuri®, °rays°®}

ref = %alpha®
x4 = :(ref)[3] /*Now x4 = rays*/

Chapter 1 Programming in JPL 21

Variables

Substring
Expansion

Array Expansion

22

Thecolon preprocessor expan@ef) toalpha . JPL then assigns the value of
alpha[3] D rays Bto the variablex4 .

If a substring specifier immediately follows a variable name, the colon preproces
sor gets the specified characters from the expanded value. If you enclose the
variable name with parentheses, the colon preprocessor ignores the spedfier
JPL uses the specifier when it executes the statement.

For example, given these variables and assignments:

vars xyz = °Belgium®
vars xy = °New Zealand®
vars abc = °xyz°

vars m

thefollowing statement assigns the vaNevZealand to variablem
m=:abc(1,2)

Thecolon preprocessor expandbc(1,2) to the first two characters of the
expanded valuebthat is, it expandtc toxyz , then extractgy from that value.
After the expansion, JPL assignsrithe value oky, which isNewZealand

By contrast, examine the following statement, where the expanded variable is
enclosed by parentheses:

m=:(abc)(1,2)

Thistime, the colon preprocessor exparade toxyz . After the expansion, JPL
executes the substring specifier on the valugob Belgium Pand assigns its
first two characterBe tom

For more information about substring specifiers, refer to page 36.

Colon preprocessing recognizes the subscript, or index, of an array reference as
part of the variable and expands it accordintjlgn array reference omits the
array's occurrence humhehe colon preprocessor concatenates all the non-blank
array occurrences and inserts a space between each pair of occurrence values.

The following examples show how JAM expands array references, given these
variable declarations and assignments:

vars xyz[3] = {°alpha®, °beta®, ° gamma’}
vars alpha[3] = {°bits®, °centuri®, °rays°®}
vars v = °alpha®

vars w = °xyz°

vars x1 x2 x3 x4 x5

x1 = xyz[3] /*x1 = gamma*/

JAM 7.0 Language Reference

Constants

1. Thecolon preprocessor expanedgz[1] toalpha . Thus,xyz[1][3]
becomeslpha[3] . JPL changes the valuexsf torays :

x2 =:xyz[1][3] /*x2 = alpha[3] = rays */

2. Thecolon preprocessor expandso alpha . x3 then equals the third
occurrence oélpha , which israys . The parentheses enclosingrevent the
colon preprocessor from trying to expand the third occurrenee of

x3 =:(V)[3] /*x3 = alpha [3] = rays */

3. Thecolon preprocessor tries to replagg@] with the third occurrence of
Because has only one occurrence, JAM displays an error message:

x5 =:v[3] /*error occurs because Vv[3] does not exist*/

4. Thecolon preprocessor concatenates all non-blank occurrenggs,of
separating the occurrences with single blank spages. must be enclosed in
quotes; otherwise, JAM displays an error message bebetaseandgamma
are not variables:

x4 =0%:xyz°
[* x4 = °:xyz[1] :xyz[2] :xyz[3]° = °alpha beta gamma®*/

Reexpansion By default, the colon preprocessor evaluates colon-expanded text only once, even
if the expanded text itself contains another colon reference. For example, the
following code vyields display of the messat@ank Goodness, it's :day

vars day = °Friday°®
vars period = °\:day®
msg emsg °Thank goodness it's :period®

To display the messagaank goodness it's Friday , append an asterisk)(
to the colon:

msg emsg °Thank goodness it's :*period®

Whenthe colon preprocessor finds a reexpansion operatepeats expansion
from the rightmost character of the expanded texti dan nest reexpansion
operators to reexpand the same text more than once.

Constants

JPL has the following constant types:

Numeric: an optionally signed sequence of digits with an embedded decimal
point. If the string has a leading= or 0X, JPL interprets it as a hexadecimal

Chapter 1 Programming in JPL 23

References to JAM Objects and Properties

“valueand processes it according@nly hexadecimal and decimal formats
are recognized. Because JPL performs data type conversions when necessary
you can represent a numeric constant without decimals.

Date: a literal date enclosed in parentheses. Date constants must use the date
format specified in the message file eréy_CALC_DATEThe default in the
message file i%m/%d/%4ybthat is, MON/DATE/YR4

String: Zero or more characters enclosed by single or double quotation
characters.

quotedstring constants String constants are widely used in JPL, especiallysinand invocation
statements. At runtime, JPL strip$ tife quote characterso¥ can use single or
double quote symbols; howeyéne same symbol must open and close the string
constant:

°55 Baker St.°
'(212) 555+1212'

A guoted constant with no character®sbor" Bis a null string.
To reference variable values in a string constant, use the colon preprocessor:
°The amount is :total®

To use a special character in a quoted constantbcolon, quote chacacter
backslashbprefix the character with a backslash.

References to JAM Objects and Properties

JAM objects and their properties can be referenced through JPL. For example, this
if statement conditionally unhides a widget at runtime by changing its Hidden
property to No:

if (login == °super°)
emp_salary +>hidden = PV_NO

Thebasic JPL syntax for referencing a JAM object and, optigreatly of its
properties is as follows:

object-spec| +> property-spec]

The following sections describe syntactical elements and options.

Object Specification

You specify a JAM object either by its name or with object modifiers as follows:

24 JAM 7.0 Language Reference

References to JAM Objects and Properties

object-name
@bject-modifier(object-identifier)

Forexample, you can refer to the widgsestt name as follows:

last_name
@widget(°last_name®)

Object Modifiers Object modifiers make explicit the type of object required; JAM provide® an

modifier for each type of JAM object (except JPL variabl@syidget for widgets,
@screen for screens, and so on. Use these modifiers to avoid nhame conflictsbfor
example, between a screen that is being used simultaneously for data input and as
an LDB. They are also useful for referencing objects whose names are otherwise
considered illegalbfor example, a screen whose name begins with a nurhbey

you can reference a screen with the naotd.jam as follows:

@screen(°1001.jam®)
Each object modifier takes either a string or integguent; the gument can be

a constant or variable, or an expression that evaluates to a string or. ifabte
lists the available modifiers and validgaments for each.

Table 2. Object type modifiers in JPL

Modifier Argument Examples

@app Always @jam The string identifier gui = @app(°@jam®)+>in_gui
@app(C@jame always refers to the current pro ms_fld = @jam+>mouse_field
gram and allows access to application-wide
properties. ¥u can omit the@appmodifier and
use@jamdirectly to reference the application.

@id An integer handle that uniquely identifies an apsendH=@screen_num(0)!msg+>id
plication object. This integer can be obtained recvH=@screen_num(+1)!msg+>id
from an objecsid property or by calling send DATA @id(sendH)
sm_prop_id . receive DATA @id(recvH)
Because each objestt property is unique, you
can use®@id to reference objects that have the
same namebfor example, multiple instances of
the same screen, or widgets orfatiént screens
that have the same name.

@screen Thename of a JAM screen that is on the windo@screen(°custlist.jam®)

stack. To specify the active window, supply @screen(°@current®)
@current as a string.

Chapter 1 Programming in JPL 25

References to JAM Objects and Properties

Modifier

Argument Examples

@screen_num

@Idb
@widget

@field_num

Thenumber of a JAM screen that is on the -win @screen_num(0)
dow stack, where 0 is the active window, *1 is @screen_num(sm_wcount())
the window below it, and so on.

Positive numbers number from the bottom of the
window stack: 1 is the base window, 2 refer to
the window above it, and so on.

The name of an LDB screen. @Idb(°sales_data.jam°)

The name of a widget or group on a screen tha@iwidget(°city®)

on the window stack or in an active LDB. To @widget(°@current®)
specify the current widget, supp@current as

a string.

The field number of a widget on a screen that igdfield_num(1)

on the window stack or in an active LDB. JAM @field_num(numflds +n)
consecutively numbers all widgets except static

labels from top to bottom and from left to right.

Array Subscripts If a widget or JPL variable is an arrggu can reference occurrences and elements

Precedence of

within that arrayOccurrences are specified with the following syntax:

object-name[n]
@bject-modifier(object-identifier)[n]

Array elements are specified with the following syntax:

object-name[[n]]
@bject-modifier(object-identifier)[[n]]

The subscriptgn] and[[n]] indicate the occurrence and element to reference,
respectivelywheren evaluates to an integer value greater than 0. For example, if

customers is a list box@widget(°customer°)[3] refers to its third
occurrence@widget(°customer®)[[1]] refers to the widget'first element.

Obiject Types the following JAM types, in this order:

26

1. Local variables already declared in the current JPL procedure
2. \Variables that are global to the current JPL module
3. Widgets or groups on the current screen

4. Widgets in an active LDB (local data block)

JAM 7.0 Language Reference

If a named object' type is not made explicit, JAM searches for that object among

Compound
Object Strings

Object Values

References to JAM Objects and Properties

5. Globalvariables
6. Screens in the window stack, starting with the active screen

7. Active LDBs

You can join multiple object strings ircampound object stringith the!
characterCompound object strings have this syntax:

object-string ! object-string [! object-string]...

For example, the following object string specifiesdigomer widget on the
active window:

@screen(°@current®)! @widget(°customer®)

Compound object strings let you make the context of a JAM object as specific as
you like and avoid possible ambiguity amondatiént objects that share the same
name. For example, if two screens on the window stacikBry.jam and
custeditjam Bboth have acust_id widget, you can uniquely identify each

one as follows:

custqgry.jam!cust_id
custedit.jam!cust_id

You can achieve even greater specificity within a compound object string by
including object modifiers. For example, all of the following object strings are
variants ofcustqry.jam!cust_id

custgry.jam!@widget(°cust_id°)
@screen(°custqry.jam®)!cust_id
@screen(®custqry.jam®)!@widget(°cust_id°)

Note: You can efeence objects timugh their object IDs with th@id modifier;
these unique handlesquide another context-independent way to diffitiate
objects that sharthe same name.

An objects value is implicit in all references to it. In practice, this applies only to
widgets that can have values. For example, you can get and set the contents of a
text widget or a push buttanlabel; widgets such as lines and boxes have no
equivalent values that you can access.

In the case of arrays, subscripted references return the value of the specified
occurrence or element; non-subscripted references return the first element. Thus,
these two statements put the same data into vatiadtle

Chapter 1 Programming in JPL 27

References to JAM Objects and Properties

Properties

Editor Properties

Runtime and
Application
Properties

28

cust = @widget(°customer®)[[1]]
cust = @widget(°customer®)

You can get portions of an objestalue by appending substring specifiers to the
objects reference. For example, this statement gets the first eight characters from
customer 's second occurrence:

cust = @widget(°customer?)[2](1,8)

For more information about substrings, refer to page 36.

All JAM objects have properties that can be accessed with this syntax:
object-spec +>property-spec

The string that you supply feroperty-spec contains at a minimum the JPL
mnemonic for the desired properBor example, you can reference the current
screers title as follows:

@screen(°@current®)x>title

If a property can be set to multiple valugsperty-spec can specify one of them;
for more information, refer to page 2%uwcan also specify a portion of a string
propertys setting; this is described on page 29.

If property-name is accessible through the screen egditu value is usually a

variant of the name used in the properties windelaere all characters are in

lower case, and non-alpha characters such as spaces, dashes, and slashes are
replaced with underscores. For example, the Menu Name property is referenced as
menu_name.

A number of exceptions exist, usually for properties that share the same label in the
properties windowFor example, if you set a widgefG Color Y¥pe and BG Caol

or Type properties to Basic, both properties get Color Name as a subprdperty
differentiate these two properties, their runtime namefgatelor_name and
bg_color_name , respectivelyFor a full list of property names, refer to page 517.

Note: Several poperties that ag visible in the pperties window & not
accessible at runtimebfor example, the InheribFrand Columns pperties.

JAM also provides access to a number of properties that are not available in the
screen editgreither because they are accessible only at runtime or because they are
application-wide @jam) properties. For examplselected is a runtime property
property that returns true or false for a specified occurrence in a list box or

JAM 7.0 Language Reference

Multi-item
Properties

control string
assignments

Property

Substrings

Property Value
Types

References to JAM Objects and Properties

selectiongroup;in_gui is an application property that returns true if the
application is running on a GUI platform and false if in character mode.

Some properties have an array of valuesbfor example, the DropzDown Data
property of combo boxes and option menusr&ference multi-item properties,
specify the dket into that propertg'values as follows:

object-spec +>propertytname [prop-item]

For example, the following code changes the selected item in an option menu that
has its Drop-Down Source property set to constant data:

#replace current item with contents of °substitute®
vars count
for count=1\

while flavorst>drop_down_data[count] != flavors
{}

flavorst>drop_down_data[count] = substitute
flavors = flavors+>drop_down_data[count]

To access control string assignments for a screen or for the application, use the
desired logical key as thentrol_string propertys offset. For example, the
following statement gets the screen-level control string assigned to the PF5 key:

ctristr = @screen(°@current®)+>control_string[PF5]

You can get and set a portion of a string propsnglue with the following syntax:

object-spec +>propertytname(offset, length)
object-spec +>propertytname [prop-item](offset, length)

For example, the following code conditionally assigns the first eight characters of a
widget's name to itsolumn_title property:

if @field_num(i)x>column_title = %
@field_num(i)x>column_title = @field_num(i)x>name(1,8)

Propertiexan be grouped into three general categories according to the types of
values that they take:

Literal Pr operties

Literal properties take any valuebstring, integer numeric, depending on the
property For example:

@widget(°customers®)+>first_occurrence =1
@screen(°@current®)+>control_string[XMIT] = °*verify_acct®

Someproperties have implied or explicit rangesbfor example, you cannot set an
array'sfirst_occurrence property to a value greater than the number of
occurrences in the array

Chapter 1 Programming in JPL 29

References to JAM Objects and Properties

Implicit
Properties

Table 3.

Properties of
Elements and
Occurrences

30

Logical Properties
Logical properties take a value®¥_YES(1) orPV_NO(0). For example:

@widget(°salary®)+>focus_protection =PV_YES

Enumerated Properties

Enumerated properties can only be set to one of several predefined integer
constants. For example, a widgetidden property can be set to one of three
constantsPV_YES PV_NQ or PV_ALWAYS

For a full listing of JPL property names and valid values, refer to page 517.

All widgets that contain data have a property that let you set its initial valuebIni
tial Text for text widgets, Label for push buttons and check boxes, and so on. For
most widget types, these properties cannot be referenced explicitlgcess a
widget's data, refer to the widget itself. For example, the following statements
change the labels of check boxiegl throughday7 to the values found in
successive elements of arfayg :

for count =1 while count <=7
@widget(°day°##count) = @widget(lang)[count]

Table3 shows which widget types are referenced directly in order to change their
data, and the screen editor properties that set their initial data:

Sceen editor poperties that set a widgstinitial data, accessible at runtime as
implicit properties.

Property name Widget types

Initial Text single line and multiline text, list box, combo box, option
(Format/Display) menu

Initial Value scale

(Input)

Label push button, check box, radio button, toggle button
(Identity)

Note: Graph widget data is set by italMe Souce pioperty; this multi-item
property must be explicithefelencedbfor example,
@widget(°sales®)+>y value_source[1]

Properties of an array'occurrences and elements can be accessed by subscripting
the array referenceba single pair of square brackets refer to occurfgnces

double square brackets to elemdfils . For example, this statement toggles the
reverse property of an arrag'first element:

JAM 7.0 Language Reference

References to JAM Objects and Properties

salaries[[1]]x>reverse = Isalaries[[1]]x>reverse

Selection Group Data

In the screen editpyou can group together multiple radio buttons, check boxes or
toggle buttons into a selection group. JPL identifies a selection group name as an
array whose number of occurrences is equal to the number of selections from the
group. Each array occurrence contains the number of the selected itembthe first
element contains the number of the first-selected item, the second element contains
the number of the next selection, and so on.

Groups can be set up to accept one, multiple, or no selections. If the group allows
only one selection, its corresponding JPL variable is an array with one occurrence
of data, whergroup-name [1] contains the number of the selected item. Because
single-selection groups have only one occurrence, JPL lets you omit the subscript.
Thus,group-name[1] andgroup-name are equivalent.

For exampledays is a selection group that allows multiple selections. It contains
seven check box widgets with these labels:

[JMON []TUE [JWED []THU []FRI []SAT []SUN

JAM numbers widgets in this group in order of their placement on the ssteah:
has a value of TTUEa value of 2, and so on. If the user selgetsandSUN
days[1] has a value of 4, whildays[2] has a value of 7.

You can programmatically evaluate and manipulate the contents of the group array
For example, the following code returns the number of items selectedidgam
then passes each selection to the routiys_off

occurs = days+> num_occurrences
for count = 1 while count <= occurs

call days_off(days[count])

}

You can change group selections by setting group array occurrences to the desired
values. The following code selects members 6 angABandSUNDIn group
days :

days[l] =6
days[2] =7

Traversal Properties

Whenyou use the transaction managebuilds a tree of all table views that are
linked to the root table viewlt traverses this tree to issue transaction manager

Chapter 1 Programming in JPL 31

Data Types, Operators,

and Expressions

commanddo each table view or server vieMou can query traversal properties to
get information about the table views, server views, and links that are a part of the
current transaction.

The following JPL queries the property to ascertain the server view for the
current field on field entryit then executes thdEW command to specify that
server view:

proc get_sv_query
if K ENTRY
{

vars valuel
valuel = namex>sv
call sm_tm_command(°VIEW :value1°)

}

return O

If the specified property references an object that does not participate in the current
transaction, JAM returns an erréior more information on traversal properties,
refer to page 380 in thipplication Development Guide

Global Variables

A

Data Types,

Data Types

32

You can reference any JPL variable declared bylftiel command at any time
during the application. JPL also recognizes global variables defined in JAM header
filesbfor example, logical key names suchX@@€IT andeXIT, and bit mask

settings such a EXPOSEandK_ENTRY You can reference these variables in any
JPL expression and pass them asiarents to another procedure or function.

Because JAM uses these variables internallgid changing their values; doing so
can yield unpredictable and possibly harmful results.

Operators, and Expressions

Datatypes describe how JPL uses the values of variables and constants. Operators
specify what to do or how to manipulate variables and constants. Expressions
combine variables and constants to produce new values.

JPLdetermines the data type of a variable or expression according to its value or
usage. All variable values are stored as character strings; JPL converts those values
when required.

JAM 7.0 Language Reference

Data Types, Operators, and Expressions

JPL recognizes four data types:

String: zero or more characters. Because all variable values are stored as
character strings, no conversion is required. Maximum string lengths are
system-dependent.

Integer: a sequence of digits with no decimal point; the value can be signed or
unsigned. JPL converts values of this type to integers. If a numeric value
contains a decimal point followed by zeros, JPL treats it is an integer

Float: a sequence of digits, either signed or unsigned, that contains a decimal
point. JPL converts values of this type to floating point.

Logical: a string, integeor numeric that evaluates to a logical valuebthat is,
either true or false. If a string, it evaluates to true if it starts with the value of
message entr$M_YE®for example,y or Y. The string evaluates to false if it
starts with any other charact&rnumeric or integer evaluates to a logical
false if it is O, and a logical true for all other numbers.

Operators

The following sections summarize JPL operators, their operands, and the data type
of the value after the operation. Associativity is left to right except for expenenti
ation, where it is right to left.

String
JPL string operators evaluate to a string. Operands must also be strings.

0 substring specifier
concatenation
Numeric

Evaluate to an integer or float. Operands must be either an integer or float.

@date date calculation

@length string length calculation

@sum array sum

A exponentiation
/ division
* multiplication

Chapter 1 Programming in JPL 33

Data Types, Operators, and Expressions

+ addition

I+

subtraction

Assignment=

Evaluates to numeric or string, according to the operand types. Both operands must
be of the same data type.

Relational
Evaluate to true or false; both operands must be of the same data type.

> greater than

>= greater than or equal to
< less than

<= less than or equal to

== equal to

I= not equal to

Logical

Evaluate to true or false; operands must be logical values.

! NOT (unary operator)
&& Logical AND
I Logical OR

Bitwise
Evaluate to integer; operands must be integer types:

~ one's complement
& bitwise AND
[bitwise OR

34 JAM 7.0 Language Reference

Operator
Precedence

Conversion of
Operands

Table 4.

Concatenation

Data Types, Operators, and Expressions

JPL operators have the following precedence, in decreasing order:

0 [] @date @length @sum
@ @@
H#H#

Someoperators require operands of specific data types. If the opedatd' type

is different, JPL tries to convert it; otherwise an error occurs. In the case of
relational and logical operators, JPL checks whether the operand data types are the
same; if they are diérent but compatiblebfor example, integer and numericBJPL
converts them to one or the other; if they are incompatible, an error occurs.

Table 4 shows the data type that JPL uses for operands of compatible data types in
relational and logical expressions:

Data type conversion irelational and logical exm@ssions

Operand | String Float Integer Logical
type

String string error error logical
Float error float float logical™
Integer | error float integer logical
Logical | logical logical™ logical™ logical

* A string evaluates to a logical true or false if it begins with the value of SM_YES or SM_NO.
** A numeric or integer evaluates to a logical true if it is non+zero or or to a logical false if O.

Usethe concatenation operator ## to join multiple values into a single string. For
example, these statements concatenate the BltiagMoon into variablea.

vars a=°Blue?®
vars b = °Moon®
a = a#ttb

Chapter 1 Programming in JPL 35

Data Types, Operators, and Expressions

Substring Substringspecifiers let you reference any part of a string that is in a variable or
Specifiers property Specify a substring with the following syntax:

obj-name (offset, length)

objxname
Thename of a JPL variable, widget, or LDB entya property that takes string
values.

offset

The ofset of the first character of the substring to get fobfmame, where the
first character imbj-name is 1. A value fowffset is required, and can be an integer
or integer expression.

length

An integer expression that evaluates to the subsdrleggth. Iflength exceeds the
substrings actual length, JPL reads only up to the last byte of data. A value for
length is optional: if no agument is supplied, JPL operates on all characters from
offset to the end of the string.

The following examples show some common uses for substring specifiers:
Extract a country code from an international phone number

if int_phone(1,3) ==°039°
country = °ltaly°®

Find the first blank in a string.

for i=1 while string(i, 1) !=°°

{}
Appenda zip code extension.

zip(6) = °+°#Htextension

@date The @date operator lets you compare and perform arithmetic on dates. This
operator uses a date as its operandbeither a widget with a date format, or a date
string constant or expressiag@date converts a date constant to a numeric by
counting the number of days between the date constant and January 1, 1753bthe
standard for date calculations.

For example, if widgetsrdertdate andshipzdate have date edits, you can
add 30 days tordertdate 's value and assign it thiptdate

shiptdate = @date(ordertdate) + 30

36 JAM 7.0 Language Reference

@length

@sum

Bitwise
Operators

Data Types, Operators, and Expressions

In the next examplegday is a widget with the current date, adwys is a
variable that gets the number of days betweéday and 4/1/96:

days = @date(°4/1/1996°) + @date(today)

If an operand includes a time valuebfor examp®22/94 10:15 D @date
ignoresthe time value and outputs only a date value.

The@length operator counts the number of characters in one or more string
arguments. 6u can supply string constants or variables ggraents. ¥u can use
a substring specifier on anygaiment that is a variable.

@length counts all characters and embedded blanks. Leading blanks in right-justi
fied widgets and trailing blanks in left-justified widgets are ignored. In quoted
string constants, leading blanks are counted but trailing blanks are ignored.

For example, the following statement gets the total number of charactexséin
andlname :

vars In
In = @length(@widget(°fname®), @widget(°lname®))

The @sunoperator calculates the sum of all non-blank occurrences in anlarray
the next statememjuantities is an array antbtal is a widget that gets the
sum of occurrences muantities

total = @sum(quantities)

JPL provides three operators for bit manipulation: ANI), OR (), and ones
complement~). Bitwise operators let you examine and set the flags that are set on
bit masks.

For example, this procedure tests the value of widget statukfl&ysRYand
K_EXIT to determine whether the widget is being entered or exited:

proc field_func (hnumber, data, occ, flags)
if flags & K_ENTRY
jpl do_process
else if flags & K_EXIT
jpl do_exit_process
return

The next procedure examines the settingk KEYSto determine which key the
user pressed to exit a widget:

proc field_func2(num, dat, occ, flags)
if (flags & K_KEYS) == K_NORMAL
return
else if (flags & K_KEYS) == K_ARROW
msg emsg °Please use the tab key to move between fields.°
return

Chapter 1 Programming in JPL 37

Data Types, Operators, and Expressions

For more information on the flag settings that JAM passes into widget and screen
modules and hook functions, refer to page 15.

Expressions

An expression produces a new value by combining constants, variables, and
operators. In all statements, JAdolon preprocessor evaluates colon-expanded
variables. In all expressions, JRIstatement processor replaces variable names

with values. JPL evaluates an expression as one of four data types: string, numeric,
bitwise, or logical. The following sections discuss these data types.

String A string expression combines one or more quoted string constants or values of
string variables. Substring specifiers and ## are string operators. The following
examples are all string expressions:

'Montreal’

°Processed :iitems®
fname##t' '##lname
telephone(1, 3)

Numeric A numeric expression combines variables and numeric constants with one or more
of the numeric operators. The following examples are numeric expressions:

y+tz

@sum(quantities)
@length(fname,lname)
XNy +y*(z7°3/4 + 1) £ x/2
86

If the setup variablIBECIMAL_PLACESS set to a numbgdPL rounds the value of
a numeric expression to that number of decimal placasc#n change this with a
format specifier to declare the total length and the number of decimal places.

Format specifiers have this syntax:

%t][m][.n] var-name

wherem andn are integer constants or variabl@sspecifies the total number of
characters, including leading spaces, sign, digits, and decimal place. If yau,omit
orm is too small to output the variabderalue, JPL uses the variaklsizen

specifies the number of digits after the decimal place. If yourgndRL uses 2
decimal places.

For example, the following statement assigns 1.667 to
%6.3 i = 10/6 /* rounds value to 1.667 */

t overrides rounding and truncates to the specified number of decimal places, if
any. For example, the following statements truncate the values assigned to
variables andn:

38 JAM 7.0 Language Reference

Bitwise

Logical

evaluationof boolean
expressions

Optimization

%t1.2 i=10/6 /*truncatesito 1.66 */
%t1.0 n =10/6 /*truncatesntol */

If var-name is a widget or LDB entryyou can define its floating point precision by
setting Data Formatting to Numeric and setting its Forrgpée propertyAt
validation, JAM uses this property to format the widgetlue.

A bitwise expression uses variables or constants which have the data type integer
and any of the bitwise operators. The following examples are bitwise expressions:

flagl &flag2
X | mask

A logical expression uses logical and relational operators to evaluate variables,
numeric constants, integer constants, string expressions, numeric expressions, or
integer expressions. Operands must be of the same data type; otherwise, JPL tries
to convert them according t@ble 4. For example, you can compare a numeric
literal to a variable or expression only if JPL can evaluate the variable or
expression to a numeric. Otherwise, it displays an error message.

The following examples are logical expressions:

y

x =7

(total * (1 + tax)) <= max_value
flag > ~flag

In contrast to C, the JPL interpreter always fully evaluates a boolean expression. In
the following example, JPL calisyFunc even though the expression already
evaluates to true:

vars a=1
if (a || myFunc())

Optimization

You can improve performance of JPL procedures in several ways:

Precompile external procedures. Once converted to biyauycan add the
procedure to a library with tfermlib utility. Or convert the binary to

source language with the appropriate utilitybfor example, convert to a C data
structure witthin2c Band add it to JAMS memory-resident list with

sm_formlist . For information abouiin2c , refer to page 563 in the
Application Development Guide

Chapter 1 Programming in JPL 39

Optimization

40

Loadan external module into memory@slic . JAM compiles the module
(if necessary) and keeps its procedures in menwogules thus loaded incur
some memory overhead, but execute mdieieftly than file modulesbeven
if precompiledbthat must be reloaded for each call.

Execute loops witlor instead ofwvhile . For example, thifor construct
executes more #iently than thewhile construct that follows it:

for i=1whilei<10

{
=
while i < 10
{
i=i+1
}

Preventexpansion of a string that contains colons by appending a space to the
colon. Using a space is mordigEnt than prepending a backslash ¢r an

extra colon () because JAM avoids copying thgament to a buiér to

remove extra characters.

JAM 7.0 Language Reference

JPL Command
Overview

Belowis a summary of the JPL commandganized according to categoAll
JPL statements begin with one of these commands.

Procedure Structure

parms

proc

Calls

call

Variable Declaration

global

vars

Declareparameters in an unnamed JPL procedure

Begins a named procedure

Executes an installed function or JPL procedure

Declaregglobal JPL variables

Declares JPL variables in a procedure

41

Control Flow

Control Flow

break

for

if ..else if ..else
next

return

while

Text Display

flush

msg

Public Modules

public

unload

Data Transfer

receive

send

42

Exits a loop

Executes an indexed loop
Conditionallyexecutes statements
Skips to next iteration of loop
Exits a JPL procedure

Repeatedly executes statements while a condition is true

Flusheshuffered output to the display

Displays a message to the terminal

Readsa JPL module into memory and enables access to
its named procedures

Unloads modules loaded through thwlic command
and releases the memory associated with them.

Receiveglata sent by a previous invocation of ¢ked
command

Sends data to a Haf for retrieval by theeceive com
mand

JAM 7.0 Language Reference

Database Drivers

Database Drivers

dbms Executesa command available in JABIdatabase driv
ers.

Chapter 2 JPL Command Overview 43

JPL Command
Reference

This section lists JPL commands in alphabetical ofddserves as a reference for
users who already have a working knowledge of JPL. Each command description
tells you what the command does, and where and how to use it.

Command descriptions areganized into the following components:
Command name and brief description.
Syntax line and parameter descriptions.
Description of the command.
Example.

Related commands.

45

break

break

Stops loop execution

break [int-constant]

int-constant

Description

Example

See Also

46

The number of nested loops to stop, where a value of 1 specifies the current loop.
If you omit this agumentbreak exits the current loop.

Thebreak command stops execution of the cursghite orfor loop. If the cur

rent loop is nested inside one or more other loopsinadnstant is greater than

1, break stops execution of the specified number of outer loojps-dbnstant is
greater than or equal to the number of loops currently being executed, JPL stops
each loop until it exits the outermost one.

Concatenate address and execute function for 100 entries.
If cities[i] is empty stop executing the loop.
#
vars i address total
fori=1 while i <=100
{
if cities[i] == ©°
break
address = cities[i]##°, °##states[i|##° °##zipsi]
call do_process (address)
}
total=ix1
msg emsg °Done! :total addresses processed.®

for , next , while

JAM 7.0 Language Reference

call

call

Executes an installed function or JPL procedure

call executable[(arg-list)]

executable

arg-list

Description

The name of an installed function or JPL module or procedure. Refer to page 17
for more information on how JAM resolves thigament.

One or more comma- or space-delimiteguanents optionally to pass to
parameters iexecutable. Enclose the entire gument list in parentheses.

You can pass the following aggaments:

Variables, including those declared by thes command, field names, and
LDB entries.

String and numeric constants.
Global constants.

Colon-expanded variables.

Thecall command can call one of the following executables:

Built-in and installed functions. Installed functions can include JAM library
functions and your own functions.

JPL modules and procedures.

When JAM gets aall command, it must ascertain whether the executable is a
JPL module or procedure, or an installed function. JAM looksxecutable's

name first among all built-in and installed functions, then among JPL modules and
procedures. Refer to page 17 for more information on how JAM searches among
JPL modules and procedures. If no match is found, JAM issues an error message.

JAM evaluates theall statement to its return valuebeither integstring, or
double, according to the procedure definition. Therefore, you can implicitly call a
function within an expression and gets its return value as follows:

vars i
i = myproc (a,b)

Chapter 3 JPL Command Reference 47

call

48

JAM assumes that the executable has the same number and type of parameters.
JAM passes guments by value, so changes to the receiving pardsetdue

leave its corresponding callsragument unchanged. If the executable is an
installed function, you can pass it hex, binary or octal numbers.

You can install C functions so thagaments can be passed by value. Refer to page

119 in theApplication Development Guider information about installation
options.

If you pass a variable’'name, you can use JAM library functions to change the

contents of the variable. For example, if you pass a field name to a prototyped
function, the function can change the figsldontents by usingm_n_putfield

JAM 7.0 Language Reference

dbms

dbms

Executes a command available in JAM's database drivers

dbms dbms-stmt

dbms-stmt

Description

Example

The DBMS command to execute, whettams-stmt can include one of the
following:

SQL statements preceded by the keywsed.

Directives that are not standardized across dialects of SQL, such as commit
transaction.

Directives that are a part of JAMUatabase driversbfor example, fetch the
next 10 rows.

dbms executes the specified DBMS command after colon expansion and syntax
checking. These commands control the connections to database engines and pro
cessing of information fetched in SGELECTstatements. For more information

on all of the available commands, refer to page 131 iD#tabase Refence

There are two methods of passing SQL statements to the databasedtmgine.
SQL passes the statement directly to the database edpyineDECLARE CURSOR
createsa named cursor to use for executing the SQL statement. For more
information on using SQL statements, refer to page 223 iAfhécation
Development Guide

Because each database engine has unique featuregjmsosrmmmands are
described in the Engine Notes section oflatabase Refence

Additional forms of colon expansionbcolon plus processing and colon equal
processingbare available with tltbms command to help format information

before passing it to the database engine. For more information, refer to page 239 in
the Application Development Guide

Fetch next set of rows
dbms continue

Commit transaction
dbms commit

SQL statement
dbms SQL select * FROM titles WHERE title_id = :+title_id

Chapter 3 JPL Command Reference 49

flush

flush

Flushes buffered output to the display

flush

Description

Example

50

Theflush command performs delayed writes and flushes afebed output to
the display JAM automatically performs this operation when the keyboard is open
and the input queue is empiyhis command calls the library functiem_flush

Because JAM uses a delayed-write feature, JAM does not immediately display
output from assignments antgg statements. Instead, it updates the screen image
in memory When the keyboard is opened or flash command is called, JAM
updates the display from this image.

Frequent calls to this command and its library equivaientlush can
significantly slow execution. JAM always cadis:_input when the keyboard
opens, so the display is always up to date before data entry occurs. Use this
command when your procedure requires timed output or non-interactive
displaybfor example, to update a time field.

/*If this procedure is called as a screen entry function,
*t prints text one character at a time in field
* banner when the screen is opened.
*

proc welcome

vars wii

for i = 1 while w(i,1) I=%° step 1

banner(i) = w(i,1)
flush
call delay

}

proc delay

Lengthen the interval between flushes.
vars i

fori=1whilei<5step 1

{}

JAM 7.0 Language Reference

for

for

Executes one or more JPL statements the specified number of times

for counter = init-value while logical-expr [step step-value]

[statement block]

counter

init-value

logical-expr

step step-value

statement-block

Description

A variable whose value is tested as a condition for continuing or efading
execution.

The initial value otounter.

Specifies the condition for continuiigy execution. Execution remains inside the
for loop untillogical-expr evaluates to false.ov can specify multiple conditions
with the logical operators ANIX&) and OR ||).

Optionally specifies the value by whichunter is incremented or decremented,
wherestep-value is a positive or negative integer constant or variable. The default
step value is 1. Btep-value is a variable, JPL evaluates it only once, before the
first evaluation ofogical-expr. Subsequent changes in the value okthg-value
variable during loop execution have nfeef onstep processing.

One or more JPL statements to execute as lohugiasl-expr evaluates to true. If
statement-block has multiple statements, enclose them with open and close
blocking characterg0 } on the lines before and aftéfrthere is no statement to
execute, enter a null statemént

Thefor command starts a loop whose iterations increment a counter variable.
Eachfor statement contains up to three clausesbinitialization of the counter vari
able, a logical expression whose evaluation determines whether to reenter the loop,
and optionallythe number by which to increment the counter variable. JAM
executes or statement as follows:

1. |Initializescounter to the value ofit-value.
2. Evaluatestep-value.
3. Evaluatesogical-expr:

W If logical-expr evaluates to false, stop execution of the loop and exit.

Chapter 3 JPL Command Reference 51

for

Example

See Also

52

W If logical-expr evaluates to true, execute the statement or block;
incrementounter by step-value; repeat step 3 (evaludtgyical-expr).

When the value dbgical-expr is false, JPL stops loop execution. In the simplest
case, it compareunter to a value that specifies the number of times that JPL
executes the loop.ot can use other values to decide when loop execution ends.
For example, you can useunter to evaluate array occurrences and use the value
of an occurrence, like a null string, to the end the loop.

Keep the entirfor command on the same physical line. Using continuation
characters\() to split a for command across several lines can yield unpredictable
results.

Change each element of an array to its absolute value.
vars i
fori=1whilei<=10step 1
{
if amounts|[i] == ©°
amounts][i] = °0°
else if amounts[i] < 0
amountsl[i] = xamountsi]

next , break , while

JAM 7.0 Language Reference

global

global

Declares global JPL variables

global

var-spec

var-spec]...

Specifiesthe global variable'name and properties as follows:

var-name [[num-occurs]] [(size)] [= init-value]

var-name

The name of the variable, whersr-name is a string that contains up to 31

characters. Global names can use any combination of letters, digits, or underscores
where the first character is not a digit. JAM also allows usage of two special
characters, the dollar sigh)(and period.().

[num-occurs]

Optionally declaresar-name as an array afum-occurs occurrences. The default
number of occurrences is 1. For example the following statement declares
dependents as an array of ten occurrences:

global dependents[10]

(size)

Optionally specifies the number of bytes allocated for this variable; JAM
automatically allocates an extra byte for the terminating null charatterdefault
size is 255 hytes. For example, the following statement declares the vaigiable
with a size of 10 bytes:

global zip (10)
= init-value
Optionally initializes the variable fait-value, whereinit-value can be any constant

or variable less than or equal to the variab$ze. If no value is assigned, JAM
initializes the variable to null string°()

If the variable is declared as an arnayu can initialize its occurrences. For
example:

global ratings[5] = {°G®°, °PG®, °PG+13°, °R°, °NC+17°}

Chapter 3 JPL Command Reference 53

global

Description

54

Occurrencesalues can be space- or comma-delimited, and can be any constants or
variables that are in scope, including other global variables and widget names.

Theglobal command creates one or more global JPL variables. These variables
are visible to the entire application and can be referenced at any time.

Avoid using names already in use by JAM itselfbfor example, logical key names
such axXMIT andeXIT, and bit mask settings suchkasEXPOSEandK_ENTRY
Because JAM uses these variables internadipitializing them can yield
unpredictable and possibly harmful results.

JAM 7.0 Language Reference

if

Conditionally executes one or more JPL statements

if logical-expr
statement-block

[else if logical-expr

statement-block]
0
[else
statement-block]

logical-expr

statement-block

else if
logical-expr

else

Description

Example

Specifiesthe condition under which JPL execusegement-block, where
logical-expr can be any logical expression. For more information on logical
expression construction, refer to page 39.

One or more statements that JPL executes if the predediceg-expr evaluates to
true. If statement-block has more than one statement, enclose the block with open
and close blocking charactgr@ } on the lines before and after

Optionally specifies the statement block to execute if all previowmndelse if
conditionsevaluate to false andgical-expr evaluates to true.

Optionally specifies the statement block to execute if all previowsndelse if
conditionsevaluate to false. Eagtse must be paired with afi statement and
follow all else if statements associated with that

Theif commandspecifies conditional execution of other JPL statements. Each

if can be followed by one or mogise if commands to create a chain of cendi
tional processing. JPL executes edictandelse if inthe chain until it evalu

ates one of the conditions to true; JPL then executes the statement block and exits
the chain.

If all conditions in arf chainevaluate to false and the chain ends witklsa
command, JPL executes tfise statement block. If thi&¢ chain omits arlse
command, JPL simply exits the chain and continues module execution.

#Determine a person's sex, based on personal title.
if title =="'MR"

sex = 'Male'
else if title == 'MS'

sex = 'Female’

Chapter 3 JPL Command Reference 55

56

else if title == 'MRS'
sex = 'Female’
else if title == 'MISS'
sex = 'Female’
else
{
sex = 'Unknown’
msg err_reset 'Please supply a title.'

}

JAM 7.0 Language Reference

include

include

Interpolates the contents of another module at the current statement line

include module

module The name of the module to include.

Description Theinclude command replaces the curréntude statement with the contents
of the specified file modulénclude lets you write and maintain JPL in separate
modules. ¥u can thereby avoid hard-coding the same procedure across several
modules, or allocating memory for public modules. The included module can itself
contain its owninclude statements. The number of include statements that you
can nest is set by the constamIT_DEEP_INC . The default setting is 8.

JAM looks formodule among available modules in this order:
1. Memory-resident modules.

2. Library module in an open library

3. The current directory

4. File module in a directory specified by _initcrt

5. File module in a directory specified BMPATH

At runtime, JPL compiles and loads the included module as needed. Compilation
occurs before JPL executes the primary module or procedure that contains the
include statement. Consequentbompilation errors in the included module
prevent execution of the primary module.

Chapter 3 JPL Command Reference 57

msg

msg

Writes a message to the terminal

msg mode message

mode

message

58

Specifiesthe messags'format and behavior with one of thesguaments:

emsg
Displaysmessage as an error message and awaits user acknowledgement.

err_reset

Identical toemsg except when the message is displayed on the status line: in that
caseerr_reset forces the cursor on at its current position.

qui_msg

Displaysmessage as an error message and awaits user acknowledgement.
message is preceded by theM_ERRORtring from the message filebfor example,
ERRORINn GUIs, thesM_ERROMReXt is also preceded by the stop icon.

quiet
Identical toqui_msg except when the message is displayed on the status line: in
that casequiet forces the cursor on at its current position.

setbkstat

Installsmessage as the background status line, which displays when no other
message is active.

d_msg

Displaysmessage aguments on the status line and leaves it there until cleared or
replaced by another messagexfldisplayed using_msg is bufered. You can

clear the buer by anothemsgd_msg command that supplies an empty

string®). msgd_msg displaces the status line message displayed by
msg_setbkstat

One or more comma-delimitedgaiments that comprise the message to display
Each agument can be a string or numeric constant, or a variable. Note that
msg query allows only one ayjument. All other ajuments fomode allow
multiple aguments.

JAM 7.0 Language Reference

msg

Description Themsg command displays messages on the status line or in a pop-up window in
one of several modes. Each mode correspond to a JAM library funatidisplay
messages in a dialog box with standard command buttonspcatlessage _box .

Windowversus Status By default, GUI versions of JAM always display messages in a pop-up window
Line Display with an OK button. Charactenode JAM always displays messages in a window
only if the configuration variabI®IESSAGE_WINDQ®Vset toALWAYSIf you set
this variable toVHEN_REQUIRE(@he default), charactenode JAM displays
messages on the status line except when these conditions occur:

The message overflows the status line. Note that JAM prevents the message
from overlapping the cursor row/column displéyt is turned on.

The message wraps to multiple lines.

You specify window display with thes\Wormat option.
Note: You can foce display of a message to the status line on all GUI and
charactermode platforms,agadliess oMESSAGE_WIND®/getting, if the

message contains theMwption, or the setup variabER_KEYUSHS set to
ER_USE Also, thesetbkstat andd_msg modes always display messages on the

status line.
Message Users can dismiss the error message by pressing the acknowledgembnakey
Acknowledgement window-displayed message, OK and space bar also serve to dismiss the error

message. The acknowledgement keybby default, space barbcan be set through
the setup variablER_ACK_KEYIf the user acknowledges the message through the
keyboard, JAM discards the kegou can modify this behavior for individual
messages through tkeMuwption, described later

Message Appearance Several setup variables determine default message presentation and bEbavior
and Behavior more information about these variables, refer to page 26 @dhfiguration
Guide You can change these defaults at runtime thrgagloption .

You can change message behavior and appearance for individual messages by
embedding percent escape options in the message text. Use these options after the
call tosm_initcrt ; otherwise, the percent characters appear as literals.

%A attr-value

Change the display of the subsequent string tatthealue-specified attribute,
whereattr-value is a fourdigit hexadecimal value. If the string to get the attribute
change starts with a hexadecimal digit.f), padattr+value with leading zeros to
four digits. Refer to page 58 in tlnfiguration Guiddor valid attribute values.

This option is valid only for messages that display on the status line. JAM ignores
this option if the message displays in a window

Chapter 3 JPL Command Reference 59

msg

60

%B

Beepthe terminal before the message displays. This option must precede the
message text.

%K key-logical

Display key label for logical kewherekey-logical is a logical key mnemonic or
hex value. When JAM displays the message, it replagelsgical with the key

label string defined for that key in the key translation file. If there is no label, the
%Kis stripped out and the constant remains. Key constants are defined in
smkeys.h

Note: If %Kis used in a status line message, the user can push tkesponding
logical key onto the input queue by mouse-clicking on the key label text.

%Md

Force the user to press the acknowledgmentikRyACK_KEYin order to dismiss
the error message. JAM discards the key that is pressed. If the user presses any
other key JAM displays an error message or beeps, depending on how setup
variableER_SP_WINDOs set. The&sMdoption corresponds to the default message
behavior when setup variali#R_KEYUSHS set tcER_NO_USE

This option must precede the message text.

%Mt [time-out]

Force temporary display of message to the status line. JAM automatically

dismisses the message after the specified timeout elapses and restores the previous

status line displaylimeout specification is optional; the default timeout is one
second. ¥u can specify another timeout in units of 1/10 second with this syntax:

#(n)

wheren is a numeric constant that specifies the timadetigth. Ifn is more than
one digit, the value must be enclosed with parentheses. For example, this statement
displays a message for 2 seconds:

msg emsg °%Mt(20)°Changes have been saved to database.®

Theuser can dismiss the message before the timeout by pressing any key or mouse
clicking. JAM then processes the keyboard or mouse input.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement k&xM then discards any keyboard input.

This option must precede the message text.

JAM 7.0 Language Reference

Example

msg

%Mu

Forcemessage display to the status line and permit any keyboard or mouse input to
serve as error acknowledgment. JAM then processes the keyboard or mouse input.
This option must precede the message text.

If the message is too long to fit on the status line, JAM displays the message in a
window: In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement ké&xM then discards any keyboard input.

%N
Insert a line break. This option is invalid &mtbkstat ~andd_msg modes .

%W

Forcesdisplay of the message in a winddWhis option is ignored bsetbkstat
andd_msg modes .

/* Indicate that the entry to the field state is invalid.*/
msg err_reset ":state is not a U.S. state'

[* Indicate that the current entry is being processed. */

/* Note that d_msg overrides delayed write and immediately*/
/* flushes text to the screen. */

msg d_msg 'Processing :name'

/* Ask whether the user wants to quit the current screen.*/
vars quit
quit = sm_message_box \
(‘Are you ready to quit?' ,°°,SM_MB_OKCANCEL,)
if quit = SM_ID_OK
return O

vars fieldl message
field1l = °message®
message = °Quick brown fox®

[* This will display 'message’ on the status line.*/
msg emsg field1l

[* This will also display 'message'.*/
msg emsg °:field1°

* This will display ‘field1'". */
msg emsg °field1°

[* This will display 'Quick brown fox'.*/
msg emsg :field1

Chapter 3 JPL Command Reference 61

msg

See Also

62

/* These messages use percent escapes.*/
/* Print message in red */
msg emsg °%A004Stop now.°

msg emsg °The menu toggle is %KMTGL®

msg emsg °Enter value.%NPress XMIT.°

msg qui_msg °%WInvalid password.°

msg err_reset °%MdPlease enter a positive value.®

sm_message_box

JAM 7.0 Language Reference

next

next

Skips to the next iteration of a loop

next

Description Thenext command is valid in anfpr orwhile loop.next terminates the cur
rent iteration of the loop and starts the next iteration. Whexta statement
executes, JPL skips all subsequent statements until the end of the loop. If the loop
is controlled by dor statement, JPL increments the lsogtep value. It then tests
the loop condition; if the condition evaluates to true, JPL executegilee or
for statement block.

next resembles theontinue statementin C.

Example # Process all the engineers in a list of people.
vars k
for k = 1 while job[k] !=%° step 1

if job[k] != °engineer®

next
[*process mailing label for engineers...*/

}

See Also break , for , while

Chapter 3 JPL Command Reference 63

parms

parms

Declares parameters in the unnamed procedure of a JPL module

parms [deref]param-name[, param-name]...

deref

param-name

Description

Example

64

Specifiesto pass in the values of the calfeaguments. If you omit thderef
qualifier, JPL passes in the literal value of the cadlaguments. In the case of a
variable, JPL passes in the name of the variable instead of its value. Omit this
argument if you use thgarms command to get the standardaments passed in
by a field, group, or screen.

The name of the parametarhereparam-name is a string that contains up to 31
characters. JPL parameter names can use any combination of letters, digits, or
underscores, where the first character is not a digit. JAM also allows usage of two
special characters, the dollar sig) &nd period.().

Theparms command declares one or more parameters in a JPL nodotemed
procedure. An unnamed procedure must be the first procedure in a JPL module;
because this procedure omits fhec statement, you must use th@ms com

mand to receive anyguments that are passed in by its calddso use it in a

field's validation module or in an external non-public JPL module to get the stan
dard aguments passed by screens, groups, and fields. For more information about
the standard guments available for screen modules, refer to page 122 Apthe
plication Development Guigléor widget modules, refer to page 126 .

A parms statement can declare up to twenty comma-delimited parameters. If you
declare more parameters than are actually passed, JAM initializes the extra
parameters to empty strings. If you declare fewer undeclared parameters are
inaccessible.

Like variables, parameters that are declared in a maduhgiamed procedure are
accessible to all procedures in that module.

/* call module calculate*/
call calculate(subtotal, state)

[*first unnamed procedure in module calculate*/
parms amt, st

JAM 7.0 Language Reference

if st=="CA'
tax = 0.0725
else if st == 'NY"
tax = 0.085
else
tax = 0.00
total = amt * (1 + tax)

See Also vars, proc

Chapter 3 JPL Command Reference

parms

65

proc

proc

Starts a JPL procedure definition

[return-type] proc proc-name [([param[, param]...])]

return-type

proc-name

param

Description

66

Specifies the data type of the procedsireturn value. An unqualifiggtoc
command returns an integer valueuYtan specify to return a string or double
precision value by qualifying th@#oc command with the keywordsring or
double , respectively

A character string that specifies the JPL procedure to call. Procedure names can be
up to 31 characters long and contain any keyboard character except a blank space.
When naming procedures in screen and public modules, be sure to avoid nhame
conflicts, especially with any external modules that you wish to call by name.

A parameter to receive the correspondirguarent passed by this procedsre'
caller You specify parameters as a comma- or space-delimgediant list within
parentheses. JAM passeguaments by valuebthat is, the called procedure gets its
own private copies of the values in the calling procediaguments. This means
that the called procedure cannot directly alter a variable in its caller; it can only
alter its own copies.

Theproc command names a procedure and optionally specifies its parameters and
return values data type. If a module contains multiple procedures, gachstate

ment serves to end the previous procedure. Only named procedures can be called
from other procedures, and from application hooks such as control strings-and Fo
Cus properties.

In the following example, the call to procedprecess_input passes data from
variablesdatal anddata2 to the procedurs'corresponding parameters. The
procedure is defined to return a double value. This return value is used to
determine whether the statement evaluates to true or false:

if process_input(datal, data2) > 0.16667
double proc process_input(d1, d2)
vars retval

[*process d1 and d2 values*/
return retval

JAM 7.0 Language Reference

proc

Becauseproc statement marks the end of one procedure and the start of another
you cannot embed one procedure definition inside another

Refer to page 3 for more information on procedure structure and execution.

See Also call

Chapter 3 JPL Command Reference 67

public

public

Reads JPL modules into memory and makes their procedures available to application

public module-name[module-name]...

module-name

Description

68

Specifies the module to read into memaviieremodule-name is a string constant
or colon-expanded variable that names a file module, library module, or
memory-resident module.

Thepublic command reads the procedures contained in one or more JPL mod
ules, compiles them if necessargnverts them to an internal data structure, and
puts them in memoryt also executes the first procedure if it is unnamed. Al pro
cedures beginning with@oc statement are available until the application exits or
you remove their module from memory witharnoad statement.

public lets you store generic procedures in external modules that are easy to edit
and available to any application. For example, these procedures handle user exits:

proc quit
vars ans
ans = sm_message_box \
(°Are you ready to quit?°, ©°, SM_MB_YESNO, %)
if ans = SM_IDYES
return 1
else
return O

proc end
msg emsg 'Program exit.'

Giventhat these procedures are in external moekitehandler , you can make
them available to the application by entering thislic command in the opening
screers Entry Function property:

public exit_handler

You can now calbuit from any available application hookbfor example, from a
control string that is associated with the EXIT key:

EXIT=7(0=&nextscreen; 1="end)quit

JAM 7.0 Language Reference

public

You can issue thpublic command on a module only once. JAM igngreislic
commands on a module that is already public.

Note: If you test an application that loads a public module, that modu&ms in
memory until you explicitly unload it or exit JAM. If you subsequently edit the

module after exiting test modemember in the next test session to unload the
modules earlier version andaload the new one in@er to see your changes.

See Also unload

Chapter 3 JPL Command Reference 69

receive

receive

Receives data sent by an earlier send command

receive [bundle bundle-name][item item-no] [keep]data field-expr

bundle bundle-name Optionally names the bigr, or bundle from which to receive data, where

item item-no

keep

data field-expr

70

bundle-name can be a string constant or variable. Bundle data is writtearay
statements; if theend statement supplies a bundle name, JAM creates a bundle
with that name. JAM can maintain up to ten bundles of send data in meéfmary
name is supplied, JAM gets data from the unnamed bundlebthat is, a bundle
whose data is sent from the lashd command that omitted a bundle name.

Specifies the bundle st from which to start reading data, where item numbering
begins at 1. If you omit thisgumentyreceive starts getting bundle data from the
first item.receive counts data items in the same order as they were sent. Each
item in the bundle can contain one or more occurrences; because an array is
regarded as a single data item, JAM disregards its occurrences when it evaluates
item-no.

Specifies to leave the bundle data intact aftegsive completes execution. This
lets multiple receive statements specify the same bundle of data. By default,
receive destroys the bundle and frees the memory allocated for it after it
completes execution.

Specifies the fields or occurrences to receive the bundle data. Refer to page 24 for
more information about valid field expressionsuYan specify multipléeld-expr
amguments delimited by commas.

If field-expr is a non-subscripted arragceive reads the bundle data into all of
the array$ occurrences.od can specify a single occurrence or range of eccur
rences within an array by subscripting it with this format:

array[int-expr[.. [int-expr]]]

whereint-expr evaluates to an integéf you omit the last occurrence specifier
receive reads into all occurrences from the one specified to the end of the array
The following examples show @frent subscripts that are valid:

receive data @widget(°empnao®)[1] //read only occurrence 1

receive data empno[1..10] // read into occurrences 1+10
receive data empnofct..] //read all occurrences from ct

JAM 7.0 Language Reference

Description

Overflowand
Underflow

Errors

See Also

receive

receive reads data from a bundle that was written by an eadier statementb
typically, from another screereceive reads the data into ifield-expr aguments
in the same order that it was sent. Unless you suppketire agument, the
bundle data is discarded afteceive completes execution.

receive sequentially pairs eadield-expr agument to a data item in the bundle. If
the data item contains multiple occurrencesgive reads as many occurrences
into field-expr as the field allows, or as many as fibkl-expr expression specifies.

If any occurrences remain unreaskeive ignores them and reads the next data
item into its corresponding @et.

You can use thiem argument to start reading data from a specifidgetfin the
bundle.receive starts reading data from thidsst.

If a bundle item has more occurrences than are currently allocated foigtte tar
array JAM allocates new occurrences for the overflow data. If the incoming data
overflows the arrag maximum number of occurrences or a specified range,
receive ignores the extra occurrences.

If a bundle item has fewer occurrences than currently allocated for gle¢ aaray
receive writes to the array as follows:

If no range is specified, JAM overwrites the array with the bundle data and
discards previous data in remaining occurrences.

If a range is specified, JAM writes only to those occurrences. Data in other
occurrences remains intact. If the range has more occurrences than the
incoming data, JAM discards previous data in the remaining occurrences.

If an unbounded range is specifiedbfor exam@&,TA empno[4..] DBJAM
overwrites the array from the specified occurrence and discards previous data
in remaining occurrences. Data in occurrences that precede the range remains
intact.

If adata amgument is invalidbfor example, the et field does not exist, or the
range of occurrences is invalid, tieeeive command aborts data transfer
prematurely and posts an error message. JAM ignores remaining bundle data and,
unlesskeep was specified, destroys the bundle.

send

Chapter 3 JPL Command Reference 71

return

return

Exits a JPL procedure

return [retval]

retval

Description

Example

72

The value to return to this procedwealler where the datatype oftval depends

on the procedure definition. Supply either a constant or variable, or an expression
that evaluates to a string or numeric value. If muarent is supplied, JAM returns

a value of 0 or null string, depending eival's datatype.

Thereturn command causes a JPL procedure to exit. Control is returned to the
procedures caller if any, or to the JAM runtime system.

JPL automatically returns with either 0 or null string to a proceslgadler when it
reaches the end of the called module or angttver statement. Use theturn
statement to exit before the end of a procedure, or to return a value other than zero.

[* Call procedure checknum to evaluate value of num
* field. Based on its value, return an integer that

* determines the next procedure to call

*/

vars ret
ret = checknum()
if ret ==

call lownum_process()
else if ret ==

call midnum_process()
else

call hinum_process()

proc checknum()
ifnum<0
return 1
else if num < 500
return 2
else
return 3

JAM 7.0 Language Reference

send

send

Sends data to a buffer for retrieval by the receive command

send [bundle bundle-name] [append]data data-expr|, ...]

bundle bundle-name Optionallynames the béér, orbundle in which to store the send data, where

append

data data-expr

Description

bundle-name can be a string constant or variable. Bundle names can be up to 31
characters long. By using names, you can maintain up to ten bundles of send data
in memory

If an existing bundle is already namachdle-name, JAM frees the existing bundle
and replaces it with the new one. If ten bundles already are in mehAdy
removes the oldest bundle from memory

If no name is supplied, JAM stores the data in an unnamed bundlebthat is, a
bundle whose name is an empty string. JAM uses the unnamed bundle for
receive calls that specify no bundle name.

Optionally appends the send data to the specified or unnamed bundle.

Specifies the data to send from this screen, witegeeexpr can be a constant, JPL
variable, or field expression. Refer to page 24 for more information about valid
field expressions. & can specify multipldata arguments delimited by commas.

If data-expr is a non-subscripted arragnd writes all its occurrences oY can
specify a single occurrence or range of occurrences within an array by subscripting
it with this format:

array[int-exprl[.. [int-expr]]]

whereint-expr evaluates to an integef you omit the last occurrence specifier
send writes all occurrences from the one specified to the end of the @hay
following examples show d#rent subscripts that are valid:

send data @widget(°empno®)[1] //get only occurrence 1
send data empno[1..10] //get occurrences 1+10
send data empnolct..] //get all occurrences from ct to end

send writes screen data to a berfthat is accessible to other screens through a
receive Statementsend can send one or more values from fields and array oc

Chapter 3 JPL Command Reference 73

send

currence®n a screen. It can also send constant values and JPL variables, as well as
parts of arrays or the current occurrence of an array

JAM writes the send data to a temporanféurbundle which you can

optionally name. JAM can maintain up to ten named and unnamed bundles. If you
omit a bundle name, JAM writes the data to an unnamed bundle; this data is
accessed by the next callrtmeive that also omits a bundle namgament or
specifies it as an empty string.

The bundle retains no information about its data soureesve gets data in the
same order as it was sent. For example, the folloggnd statement sends to an
unnamed bundle the valuedredit_acctno , the valuel000, and all values in
occurrences of the arrayedit . Thereceive statement expects to receive this
data in the same order:

send data credit_acctno, 1000, credit
receive data acctno, amount, references

See Also receive

74 JAM 7.0 Language Reference

unload

unload

Frees the memory allocated for a public module

unload module-name[module-name]...

module-name The name of the public module to remove from memory

Description Theunload command releases the memory used to hold one or more JPL modules
previously loaded into memory as public modules. After you uniaaitile-name,
subsequent calls to that module read it from disk, the memory-resident list, or an
open library The named procedures in that module are inaccessible to the applica
tion except through its unnamed procedure.

Avoid unloading a module that is ungeing execution.

Example * load afile, callitin aloop, */
/* then unload it after exiting the loop */

load validname
fori=1whilei<1lstepl

call validname (name[i])
unload validname

See Also public

Chapter 3 JPL Command Reference 75

vars

vars

Declares JPL variables

vars var-spec [,

var-spec

76

var-spec]...

Specifiesthe variables name and properties as follows:

var-name [[num-occurs]] [(size)] [= init-value]

var-name

The name of the variable, whersr-name is a string that contains up to 31
characters. JPL variable names can use any combination of letters, digits, or
underscores, where the first character is not a digit. JAM also allows usage of two
special characters, the dollar sig) &nd period.().

[num-occurs]

Optionally declaresar-name as an array afum-occurs occurrences. The default
number of occurrences is 1. For example the following statement declares
dependents as an array of ten occurrences:

vars dependents[10]
(size)
Optionally specifies the number of bytes allocated for this variable; JAM allocates

an extra byte for the terminating null charactére default size is 255 bytes. For
example, the following statement declares the variaplewith a size of 10 bytes:

vars zip (10)
= init-value
Optionally initializes the variable fait-value, whereinit-value can be any constant

or variable less than or equal to the new variald&e. If no value is assigned,
JAM initializes the variable to null string()

If the variable is declared as an arnayu can initialize its occurrences. For
example:

vars ratings[5] = {°G°, °PG°, °PG+13°, °R°, °NC+17°}

Occurrencevalues can be space-or comma-delimited, and can be any constants or
variables that are in scope, including global variables and widget names.

JAM 7.0 Language Reference

vars

Description Thevars command creates one or more JPL variablasables declared within a
procedure are local to the procedurarigbles declared in a modidainnamed
procedure are available to all procedures in the same module. JPL executes the
vars statements in the unnamed procedure of screen and public modules when the
module is activatedbon screen open and when the module is made public; respec
tively.

Example vars name(50), flag(1)
vars address[3](50), abbrevs[10]

vars zip(5) = 02138

Chapter 3 JPL Command Reference 77

while

while

Repeatedly executes a block while a condition is true

while logical-expr
statement-block

logical-expr

statement-block

Description

Example

See Also

78

Specifiesthe condition that JPL uses to determine whether to reiterate execution of
thewhile block.

One or more statements that JPL executesiifal-expr evaluates to true. If
statement-block has more than one statement, enclose the block with open and
close blocking charactef® } on the lines before and after

Thewhile statement repeatedly executes a block of one or more statements as
long as the value dfgical-expr is true. JPL evaluatésgical-expr before each it
eration of the loop.

/* do do_proc as often as user wants */
vars ans
ans = sm_message_box \
(°Start processing?°,°°,SM_MB_YESNO,)
while ans

call do_proc
ans = sm_message_box \
(°Repeat processing?°,°°,SM_MB_YESNO,)
}

break, for, next

JAM 7.0 Language Reference

SECTION TWO

Built-in Functions

Chapter4 Built-in Control Functions 81

Built-in Control
Functions

This chapter describes control functions supplied with JAbU ¥an use these
functions in control strings and in Jie&ll statements. Unlike other control hook
functions, these functions are installed internally and cannot be deinstalled.

Note: Built-in control functions ae internally installed. Unlike JAM library
functions, they can only be calledrin within JAM.

81

jm_exit

jm_exit
Ends processing and leaves the current screen

jm_exit

Description jm_exit closes the current form or window and returns to the previous one. If the
form is the applicatios' base form and and the setup vari@l@SELAST_OPTis
set toOK_CLOSELASTIJAM asks the user whether to exit the application.

By default, EXIT invokes this function at runtime.

Example /* The following control string invokes a function
named process . If it returns 0, another function is
invoked to reinitialize the screen. If it returns 1,
the screen closes.
*/
MNx1="jm_exit; O="reinit)process
[* This control string replaces a form or a window with
another
form or a window
*/

N0=&w2)jm_exit

82 JAM 7.0 Language Reference

jm_gotop

jm_gotop

Returns to form stack's base screen

jm_gotop

Description jm_gotop returns to the form stackbase screenbtypicallyhe first screen that

the application displays at startup. JAM closes all other forms and windows and
removes them from their respective stacks.

By default, SPF1 invokes this function at runtime.

Chapter 4 Built-in Control Functions

83

jm_goform

jm_goform

Invokes a dialog box that prompts for the name of a screen to display

jm_goform

Description jm_goform invokes an Open Screen dialog box that asks the user to enter the
name of a screen to open. By default, JAM opens the screen as a form; however
users can specify to open a screen as a a stacked or sibling wiintthesscreen
opens as a form, JAM closes all previously open windows before it displays the
specified screen.

By default, the SPF3 key invokes this function at runtime.

Example The following line in your setup file causes PF10 to inviokegoform .

SMINICTRL= PF10="jm_goform

84 JAM 7.0 Language Reference

jm_keys

jm_keys

Simulates keyboard input

jm_keys input[, input]O

input A logical key or string to push onto the input queugyuiinents can be space- or
comma-delimited. Logical keys are definedinkeys.h . Strings are enclosed by
single or double quote characters.

Becausgm_keys passes its guments tem_ungetkey in reverse ordefist them
in their actual input sequenceolYcan specify up to 20@rments.

Description jm_keys queues the specified characters and function keys for input to the runtime
system through successive callsto ungetkey . The runtime system then-be
haves as though you had typed the keys or strings.

Example Enter the name of your favorite béollowed by a tab and the name of its owner:
Ajm_keys 'Steinway Brauhall', TAB

Am_keys °James O'Shaughnessy®

Chapter 4 Built-in Control Functions 85

jm_system

jm_system

Prompts for and executes an operating system command

jm_system

Description

Example

See Also

86

jm_system invokes a dialog box in which you can enter an operating system
command. By default, the SPF2 key invokes this function at runtime.

The following line in your setup file causes PF10 to invejsem .

SMINICTRL= PF10 = Ajm_system

sm_shell

JAM 7.0 Language Reference

jm_winsize

jm_winsize
Lets users manipulate a screen's viewport from the keyboard

jm_winsize

Description Valid only in character modé@m_winsize invokes the system menu and selects
the Move option. Cursor keys are enabled to change the wigsgosition, size,
and the dket of its contents. & can also change focus to a sibling window
XMIT accepts the changes; EXIT cancels them.

The initial mode is resize.ot can change the mode through one of these function
keys:

F2: Move the screen.
F3: Resize the screen.
F4: Change déet of the screea'contents within its window

F5: Change focus to a sibling window

See Also sm_winsize

Chapter 4 Built-in Control Functions 87

SECTION THREE

Library Functions

Chapters Library Function Overview. 91
Chapter 6 JAM Library Functions., 109
Appendix A JAM Properties. 519

Library Function
Overview

This chapter summarizes the JAM library functions and lists them by category
Groups of closely related variant functions are listed under a single root name. The
functionssm_r_form , sm_d_form , andsm_|_form , for example, are all grouped
under the headingm_form .

Functions marked with an asterisk (*) are not installed in the distribution and
cannot be directly called from JPL. All other functions can be called from JPL.

Initialization/Reset

The following library functions are called in order to initialize or reset certain
aspects of the JAM runtime environment. Those that are necessary for the proper
operation of JAM are called from within the suppliedin routine source modules
jmain.c andjxmain.c

sm_cancel Resets the display and exits
sm_do_uinstalls * Installs an applicatios'hook functions

sm_inimsg * Creates a displayable error message on failure of an ini
tialization function

91

Property Access

sm_initert * Initializesthe display and JAM data structures
sm_install * Installs application hook functions

sm_jtop * Starts the JAM executive

sm_leave * Prepares to leave a JAM application temporarily
sm_resetcrt * Resets the terminal to the operating syssesefault state
sm_return * Prepares for return to JAM application

sm_vinit Initializes video translation tables

uinstall Installs an application function

Property Access

Setand get properties of JAM objectsbfor example, screens, widgets, and the
application itself:

sm_prop_error Gets the last value returned by a properties function call
sm_prop_get Gets a property setting

sm_prop_id Returns an integer handle for an application component
sm_prop_set Sets a property

Widget Creation/Deletion

sm_obj_copy Copiesa widget

sm_obj_delete Deletes a widget

Interscreen Messaging

Sendand receive data from one screen to another:

sm_append_bundle_data Sends data to a bundle item
sm_append_bundle_done Optimizes memory allocated for a send
bundle

92 JAM 7.0 Language Reference

Screen and Viewport Control

sm_append_bundle_item

sm_create_bundle

sm_free bundle

sm_get_bundle_data

sm_get_bundle_item_count

sm_get_bundle_occur_count

sm_get_next_bundle_name

sm_is_bundle
sm_receive

sm_send

Addsa data item to a bundle
Creates a send bundle
Destroys a send bundle

Reads an occurrence of bundle item
data

Counts the number of data items in a
bundle

Counts the number of occurrences in a
data item

Gets the name of the bundle created
before the one specified

Checks whether a bundle exists
Executes a JPL receive command

Executes a JPL send command

Screen and Viewport Control

Controlviewports, the display of screens, and the form and window stacks:

sm_at_cur *
sm_close_window
sm_form

sm_issv

sm_jclose

sm_jform

sm_jwindow

sm_message_box

sm_setsibling

sm_shrink_to_fit

Displays a window at the cursor location
Closes the current window

Displays a screen as a form

Checks whether a screen is in the saved list

Closes the current window or form under JAM executive
control

Displays a screen as a form under JAM control

Displays a window at a given position under JAM-con
trol

Displays a message in a dialog box.

Specifies the next screen to open to be a sibling of the
current window

Removes trailing empty array elements and shrinks the
screen

Chapter 5 Library Function Overview

93

Display Terminal I/O

sm_unsvscreen *

sm_wcount
sm_wdeselect
sm_window *
sm_winsize
sm_wrotate

sm_wselect

Removescreens from the save list

Obtains the number of currently open windows
Restores the previously active window

Displays a window at a given position

Lets users interactively move and resize a window
Rotates the display of sibling windows

Activates a window

Display Terminal 1/O

94

Setthe interface to JAM terminal 1/O:

sm_bel
sm_bkrect
sm_flush
sm_getkey
sm_input
sm_key_integer
sm_keyfilter
sm_keyhit
sm_keyinit
sm_keylabel
sm_keyoption
sm_m_flush
sm_rescreen
sm_resize

sm_ungetkey

Issues a beep from the terminal
Sets the background color of a rectangle
Flushes delayed writes to the display

Gets the logical value of the key hit

Opens the keyboard for data entry and menu selection

Gets the integer value of a logical key mnemonic
Controls keystroke record/playback filtering
Tests whether a key is typed ahead

Initializes a key translation table

Gets the printable name of a logical key

Sets cursor control key options

Flushes the status line

Refreshes the data displayed on the screen
Notifies JAM of a change in the display size

Pushes back a translated key on the input

JAM 7.0 Language Reference

Field/Array Data Access

Field/Array Data Access

Accessdata in fields and arrays:

sm_amt_format
sm_calc
sm_cl_unprot
sm_clear_array
sm_copyarray
sm_dblval *
sm_dlength
sm_doccur
sm_dtofield *
sm_fptr *
sm_getfield *
sm_intval *
sm_ioccur
sm_is_no
sm_is_yes
sm_itofield *
sm_Ingval *
sm_ltofield *
sm_null
sm_pultfield
sm_sdtime
sm_strip_amt_ptr
sm_udtime *
sm_upd_select *

sm_ww_length

Writes formatted data to a field

Executes a math edit style expression
Clears all unprotected fields

Clears all data in an array

Copies the contents of one array to another
Gets the value of a field as a real number
Gets the length of a fielsl'contents

Deletes occurrences from a field

Writes a real number to a field

Gets the contents of a field

Copies the contents of a field

Gets the integer value of a field

Inserts blank occurrences into an array
Tests a field for no

Tests a field for yes

Writes an integer value to a field

Gets the long integer value of a field

Places a long integer in a field

Tests whether a field is null

Puts a string into a field

Gets the formatted system date and time
Strips amount editing characters from a string
Formats a usesupplied date and time
Updates the contents of an option menu or combo box

Gets the number of characters in a word wrap field

Chapter 5 Library Function Overview

95

Group Access

sm_ww_read* Getsword-wrapped text from a multiline text widget

sm_ww_write Puts text into a wordwrap field

Group Access

The following functions access groups. Groups are made up of fields that have
attributes and data in them. The value of a group indicates the set of selected
constituent fields, although it is not recommended that that value ever be accessed
or modified directly with any of the field access functions discussed in the
preceding sections.

sm_deselect Deselects a checklist occurrence

sm_ftog * Converts field references to group references

sm_i_gtof * Converts a group name and group occurrence into a field
number and occurrence

sm_n_gval Forces execution of a grogpralidation function

sm_select Selects an occurrence in a selection widget group

Local Data Block Access

Thefollowing functions access local data blocks, or LDBs. Note that if a field data
access function references a field by namebfor exangplen andsm_i_
variantsband the name field does not exist on the active screen, it looks in an
active LDB for an entry of the same name.

sm_allget Loads data from the active LDBs to the-cur
rent screen

sm_dd_able Turns LDB write-through on or bfor all
LDBs

sm_ldb_getfield Gets the contents of an LDB entry

sm_ldb_get_active Gets the handle of the most recently activated
LDB

96 JAM 7.0 Language Reference

Cursor Control

sm_ldb_get_inactive Getsthe handle of the most recently inacti
vated LDB

sm_ldb_get_next_active Gets the LDB activated before the one speci
fied

sm_ldb_get_next_inactive Gets the LDB inactivated before the one-spe
cified

sm_ldb_handle Gets the handle of an LDB

sm_ldb_init * Initializes or reinitializes local data blocks

sm_ldb_is_loaded Tests whether an LDB is loaded

sm_ldb_load Loads an LDB into memory

sm_ldb_name Gets the name of an LDB of the specified
handle

sm_ldb_next_handle Gets the handle of previously loaded LDB
with the same name as the specified LDB

sm_lIdb_pop Pops LDBs dfthe LDB save stack

sm_lIdb_push Pushes all LDBs onto a save stack

sm_ldb_state_get Gets the current state of the LDB

sm_ldb_state_set Changes the state of the LDB

sm_ldb_unload Unloads LDBs from memory

sm_lstore Copies everything from screen to LDB

Cursor Control

Controlthe positioning and display of the cursor on the active screen:

sm_backtab Backtabs to the start of the last unprotected field
sm_c_off Turns the cursor 6f

sm_c_on Turns the cursor on

sm_c_vis Turns the cursor position display on of of
sm_disp_off Gets the cursés offset in the current field
sm_gofield Moves the cursor into a field

Chapter 5 Library Function Overview 97

Message Display

sm_home
sm_last

sm_nl

sm_off_gofield

sm_sh_off

sm_tab

Homesthe cursor
Positions the cursor in the last field

Positions the cursor to the first unprotected field beyond
the current line

Moves the cursor into a field,fe&t from the left

Gets the cursor location relative to the start of a shifting
field

Moves the cursor to the next unprotected field

Message Display

98

Accessand display runtime application messages:

sm_d_msg_line

sm_femsg **

sm_ferr_reset

sm_fqui_msg **

sm_fquiet_err

sm_hlp_by name

sm_message_box

sm_msg
sm_msg_get
sm_msgfind

sm_msgread
sm_setbkstat

sm_setstatus

Displays a message on the status line

Displays an error message and awaits user acknowledge
ment

Displays an error message and awaits user acknowledge
ment

Displays an error message preceded by a constant tag
Displays an error message preceded by a constant tag
Displays a help window

Displays a message in a dialog box.

Displays a message at a given column on the status line
Finds a message

Finds a message given its number

Reads a message file into memory

Sets background text for status line

Turns alternating background status message orf or of

** |n JPL, error messages are handled by the msg command.

JAM 7.0 Language Reference

Validation

Validation

Thefollowing functions provide an application interface to the field and group
validation processes:

dm_val_relative Sets bits for validation

sm_ckdigit Validates a check digit

sm_cl_all_mdts Clears all MDT bits

sm_fval Forces field validation

sm_n_gval Forces execution of a grogpralidation function
sm_s_val Validates the current screen

sm_tst_all_ mdts * Finds the first modified occurrence on the current screen

Mass Storage and Retrieval

Move data to or from sets of fields in the screen or LDB:

sm_restore_data * Restores previously saved data to the screen

sm_rs_data * Restores saved data to some of the screen
sm_save_data * Saves screen contents

sm_sv_data * Saves partial screen contents

sm_sv_free * Frees a bdiér that contains saved screen data
sm_svscreen * Registers a list of screens on the save list

Chapter 5 Library Function Overview 99

Global Data and Changing JAM's Behavior

Global Data and Changing JAM's Behavior

Getaccess to global data and manipulate their settings:

sm_delay_cursor Changes the state of the mouse pointer
sm_inquire Gets the value of a global integer variable
sm_iset Changes the value of a global integer variable
sm_ms_inquire Gets information about the mouse&urrent state
sm_mus_time * Gets the system time of the last mouse click
sm_occur_no Gets the current occurrence number
sm_option Sets a setup variable

sm_pinquire Gets the value of a global string

sm_pset Modifies the value of a global string
sm_soption Sets a string option

Menus

Get and change properties of menus and menu items:

sm_menu_bar_error Returns the error generated by the last call to get a
menu or menu item property

sm_menu_change* Sets a mens'properties

sm_menu_create Defines a menu at runtime

sm_menu_delete Removes a menu from the specified script

sm_menu_get Gets a meng' property

sm_menu_install Makes a menu bar available for display

sm_menu_remove Removes a menu from display

sm_mnitem_change ** Sets a menu item'property

** Wrapper functions fosm_mnitem_change are prototyped in funclist.c and callable from JPL.
For a list of these functions and their parameter declarations, refer to page 373.

100 JAM 7.0 Language Reference

Database Initialization

sm_mnitem_create * Insertsa new item into a menu

sm_mnitem_delete Removes an item from a menu

sm_mnitem_get Gets a menu itera'property

sm_mnscript_load Loads a menu script into memory and makes its me
nus available for installation

sm_mnscript_unload Removes a script from memory and destroys all me
nus installed from it

sm_mncrinit * Initializes the menu subsystem

sm_popup_at_cur Invokes the current widgstpop-up menu

** Wrapper functions fosm_mnitem_change are prototyped in funclist.c and callable from JPL.
For a list of these functions and their parameter declarations, refer to page 373.

Database Initialization

dm_dbi_init * Initializes JAM for database interaction.
dm_init * Initializes JAM to access a specific database engine.
dm_reset * Disables support for a named engine.

Database Access

dm_dbms Executesa DBMS command directly from C.

dm_dbms_noexp* Executes a DBMS command without colon prepreces
sing.

dm_exec_sql Generates and executes SQL statements

dm_expand * Formats a string for an engine.

dm_free_sql_info Frees memory associated with an SQL statement

dm_gen_sql_info Generates SQL

dm_getdbitext * Gets the text of the last executed dbms command.

Chapter 5 Library Function Overview 101

Database Binary Variable Access

dm_is_connection \erifies a connection
dm_is_cursor Checks to see if a cursor exists
dm_is_engine * Verifies that a database engine is initialized

Database Binary Variable Access

dm_bin_create_occur * Getsor allocates an occurrence in a binary variable.
dm_bin_delete_occur * Deletes an occurrence in a binary variable.

dm_bin_get_dlength * Gets the length of an occurrence in a binary-vari

able.
dm_bin_get occur * Gets the data in an occurrence of a binary variable.
dm_bin_length * Gets the maximum length of an occurrence in a

binary variable.

dm_bin_max_occur * Gets the maximum number of occurrences in a
binary variable.

dm_bin_set_dlength * Sets the length of an occurrence in a binary variable.

SQL Generation

102

dm_gen_change_execute_using Modifies the SQL generation for the
EXECUTHRJSING command

dm_gen_change_select_from Modifies the SQL generation for the
FROMclause in 8ELECTstatement

dm_gen_change_select_group_by Modifies the SQL generation for the
GROUMBY clause in SELECTstate
ment

dm_gen_change_select_having Modifies the SQL generation for the
HAVING clause in &ELECTstatement

dm_gen_change_select_list Modifies the SQL generation for the
select list

JAM 7.0 Language Reference

Transaction Manager Access

dm_gen_change_select_order_by Modifies the SQL generation for the

ORDERY clause in SELECTstate
ment

dm_gen_change_select_suffix Appends text to the end of a SELECT

statement for automatic SQL genera
tion

dm_gen_change_select_where Modifies the SQL generation for the

dm_gen_get_tv_alias

WHERECclause in SELECTstatement

Gets the correlation name, or alias,
generated for a table view

Transaction Manager Access

sm_tm_clear
sm_tm_command
sm_tm_event
sm_tm_event_name

sm_tm_inquire

sm_tm_iset

sm_tm_pcopy *

sm_tm_pinquire

sm_tm_pset

Clearsall fields in the table view

Executes a transaction command

Gets the event number for the specified event name
Gets the event name for the specified event number

Retrieves the value of an integerzvalued attribute of the
current transaction

Sets the value of an integerzvalued transaction attribute

Retrieves the value of a stringzvalued attribute of the
current transaction

Obtains the value of a stringtvalued attribute of the cur
rent transaction

Sets the value of a string+valued transaction attribute

Transaction Manager Event Processing

sm_tm_clear_model_events Emptiesthe transaction event stack

sm_tm_continuation_validity * Checks whether CONTINUE events are

permitted for the current table view

Chapter 5 Library Function Overview

103

Transaction Manager Error and Message Handling

sm_tm_pop_model_event

sm_tm_push_model_event

Popsan event from the transaction event
stack

Pushes an event onto the transaction
event stack

Transaction Manager Error and Message Handling

sm_tm_command_emsgset

sm_tm_command_errset

sm_tm_dbi_checker

sm_tm_error *
sm_tm_errorlog
sm_tm_failure_message

sm_tm_msg_count_error

sm_tm_msg_emsg

sm_tm_msg_error

Initiatesemsg processing foraM_TM_ERR_XXX
code

Initiates error processing fort_TM_ERR_XXX
code

Tests for common database errors during trans
action manager processing

Reports an error condition
Controls error log processing
Specify an error message for a failed event

Reports a transaction manager error of severity
ERROR

Reports error of emsg severity with message

Reports error

Before-Image Access in the Transaction Manager

104

sm_bi_compare Comparedields in the current table view with their-be
foretimage values

sm_bi_copy Copies current values of a range of occurrences to the
beforetimages

sm_bi_initialize Initializes beforetimage data for fields in the current
table view

JAM 7.0 Language Reference

GUI Access

GUI Access

Thefollowing functions are applicable for JAM under a GUI. Those that contain
_mw_or_xm_ are specific to Widows or Motif only

sm_adjust_area * Recalculates widget positions

sm_attach_drawing_func * Associates a drawing function with a widget

sm_delay_cursor Changes the state of the mouse pointer

sm_drawingarea * Gets a handle to the current screen that can be
passed to the window manager

sm_mw_get_instance * Gets a handle to the current instance ofia-W
dows program

sm_translatecoords * Translates screen coordinates to display ceordi
nates

sm_widget * Gets a handle to a widget

sm_xm_get_base_window * Gets the Wdget ID of the base window

sm_xm_get_display * Gets the Wdget ID of the current display

DDE (Dynamic Data Exchange)

Exchangedata between JAM Wdows applications and otheridows applica

tions.
sm_dde_client_connect_cold Creates a cold DDE link to a server
sm_dde_client_connect_hot Creates a hot DDE link to a server
sm_dde_client_connect_warm Creates a warm DDE link to a server
sm_dde_client_disconnect Destroys a DDE link to a server
sm_dde_client_off Disables DDE client activity
sm_dde_client_on Enables DDE client activity
sm_dde_client_paste_link_cold Creates a cold DDE paste link between

a JAM field and a server

sm_dde_client_paste_link_hot Creates a hot DDE paste link between

a JAM field and a server

Chapter 5 Library Function Overview 105

File Access

File Access

106

sm_dde_client_paste_link_warm

sm_dde_client_request

sm_dde_execute

sm_dde_install_notify

sm_dde_poke

sm_dde_server_off

sm_dde_server_on

Createsa warm DDE paste link be
tween a JAM field and a server

Requests data from a DDE server

Sends a command to a DDE server
* Installs a callback function

Pokes data into a DDE server

Disables DDE server activity

Enables DDE server activity

sm_fi_open *
sm_fi_path
sm_filebox *
sm_filetypes *
sm_fio_a2f
sm_fio_close
sm_fio_editor

sm_fio_error

sm_fio_error_set
sm_fio_f2a
sm_fio_getc
sm_fio_gets
sm_fio_handle *

sm_fio_open

sm_fio_putc

Findsa file and opens it in binary read-only mode
Returns the full path name of a file

Opens a file selection dialog box.

Adds an option to the file type option menu.
Writes the contents of an array to a file

Closes an open file stream

Invokes an external text editor for an array

Gets the error returned by the last call to a file I/O
function

Sets the file /O error

Writes a files contents to an array

Reads the next byte from the specified file stream
Reads a line from a file

Gets a handle to an open file

Opens the specified file and returns a handle to the
JPL caller

Writes a single byte to an open file

JAM 7.0 Language Reference

Library Access

sm_fio_puts Writesa line of text to an open file

sm_fio_rewind Resets the file stream to the beginning of a file

Library Access

sm_|_close Closesa library and frees all memory associated with it
sm_|_open Opens a library
sm_slib_error Gets the system return for the last cakro slib_load
sm_slib_install Installs a function from a DLL into a JAM application
sm_slib_load Loads a DLL and makes its functions available for instal
lation

JPL
sm_jplcall Executes a JPL procedure
sm_jplpublic Executes JPk public command
sm_jplunload Executes JPk unload command

Miscellaneous

sm_formlist * Updates the list of memory-resident files
sm_shell Executes a system call
sm_isabort Tests and sets the abort control flag

sm_pm_add_res_map * Installs tables that map string resource identifiers to
integer identifiers

sm_rmformlist ~ * Empties the memory-resident form list

Chapter 5 Library Function Overview 107

JAM Library
Functions

This chapter contains descriptions of JAM library functions arranged alphabetical
ly. Each function description tells what the function does, and where and how to
use it. Information about each function igamnized into the following sections:

Syntax lines that are patterned after C function declarations. A syntax line is
given for each variant of this function. Syntax lines are precedexatlbge
statements that are specific to the function.

Parameter descriptions.

Platforms on which the function is valid. If the function is available on all
platforms, this section is omitted.

Return values, if anyf the function returns no meaningful value, this section
is omitted.

Description of the functionBtypical usage, prerequisites, results, and potential
side-effects.

An example that shows how to use the function.
Listing of related functions.

Note: Because alloutines that call JAM library functions must include

smdefs.h , syntax sections omit amclude statement for this file. If the function
requires inclusion of other header files, the syntax section coriteinge
statements for them.

109

dm_bin_create_occur

dm_bin_create occur

Gets or allocates an occurrence in a binary variable

#include <dmuproto.h>

char *dm_bin_create_occur(char *variable, int occurrence);

variable Thebinary variable that contains the occurrence to get.
occurrence The occurrence imariable to get.
Returns W 0: The variable is not found or the occurrence number is not valid.

W A pointer to an occurrence in a binary variable.

Description dm_bin_create_occur gets the specified occurrence from the variable if the
application has created a binary variable RBMSBINARY . If the occurrence has
not been allocated, this function will allocate it. Note tiwatirrence must be
less than or equal to the number of occurrences specified BMEBINARY
statement.

See Also dbms BINARY

110 JAM 7.0 Language Reference

dm_bin_delete_occur

dm_bin_delete occur

Deletes an occurrence in a binary variable

#include <dmuproto.h>

void dm_bin_delete_occur(char *variable, int occurrence);

variable Thebinary variable that contains the occurrence to delete.
occurrence The occurrence imariable to delete.
Description dm_bin_delete_occur frees the specified occurrence and sets the pointer to the

occurrence to 0 if the application has created a binary variabl ®2iiSBINARY
andthe occurrence has been allocated. If the occurrence has not been allocated, the
function does nothing.

See Also dbms BINARY

Chapter 6 JAM Library Functions 111

dm_bin_get_dlength

dm_bin_get_dlength

Gets the length of an occurrence in a binary variable

#include <dmuproto.h>

unsigned int dm_bin_get_dlength(char *variable, int occurrence);

variable Thebinary variable that contains the occurrence to measure.
occurrence The occurrence imariable ~ whose length you want to get.
Returns W 0: The variable or occurrence is not found.

W The length of the occurrence.

Description If the application has created a binary variable WBMSBINARY and the occur
rence has been allocated, this function returns the length of the contents in the spe

cified occurrence.

See Also dbms BINARY , dm_bin_set_dlength

112 JAM 7.0 Language Reference

dm_bin_get_occur

dm_bin_get_occur

Gets the data in an occurrence of a binary variable

#include <dmuproto.h>

char *dm_bin_get_occur(char *variable, int occurrence);

variable Thebinary variable that contains the occurrence to get.
occurrence The occurrence imariable ~ whose data you want to get.
Returns W 0: The variable or occurrence is not found.

W A pointer to an occurrence in the variable.

Description If the application has created a binary variable WBMSBINARY and the occur
rence has been allocated, this function gets the specified occurrence from-the vari
able.

See Also dbms BINARY

Chapter 6 JAM Library Functions 113

dm_bin_length

dm_bin_length

Gets the maximum length of an occurrence in a binary variable

#include <dmuproto.h>

unsigned int dm_bin_length(char *variable);
variable The variable whose maximum occurrence length you want to ascertain.
Returns W 0: The variable is not found.

W The length of the variable.

Description If the application has created a binary variable WBMSBINARY, this function
gets the maximum length of a single occurrence in the variablgetlthe length
of an occurrence'contents, usdém_bin_get_dlength

See Also dbms BINARY

114 JAM 7.0 Language Reference

dm_bin_max_occur

dm_bin_max_occur

Gets the maximum number of occurrences in a binary variable

#include <dmuproto.h>

int dm_bin_max_occur(char *variable);

variable Thevariable whose maximum number of occurrences you want to ascertain.
Returns W 0: The variable is not found.
W The number of occurrences in the variable.

Description If the application has created a binary variable WBMBINARY, this function
gets the maximum number of occurrences in the variable.

See Also dbms BINARY

Chapter 6 JAM Library Functions 115

dm_bin_set_dlength

dm_bin_set dlength

Sets the length of an occurrence in a binary variable

#include <dmuproto.h>

void dm_bin_set_dlength(char *variable, int occurrence, unsigned int length);

variable Thevariable that contains the occurrence to set.

occurrence The occurrence imariable ~ whose length is to be set.

length The length to set fasccurrence

Description If the application has created a binary variable WBMBINARY, this function

sets the length of a single occurrence in the binary variabtgh can be less
than or greater than the varialsleleclared length.

See Also dbms BINARY , dm_bin_get_dlength

116 JAM 7.0 Language Reference

dm_dbi_init

dm_dbi_init

Initializes for database interaction

#include <dmuproto.h>

void dm_dbi_init(void);

Description JAM must be initialized for use with the database drivers. This function tells JAM
the class of error messages used with the database drivers and how to handle the
JPL commandbms.

JAM calls this function in the source filgsain.c andjxmain.c . If you modify
these files or if you write your own executive, you can call this function at another
time. Howeverit should be called befoeen_initcrt ~ so that the message file

loads properly

Chapter 6 JAM Library Functions 117

dm_dbms

dm_dbms

Executes a DBMS command directly from C

#include <dmuproto.h>

int dm_dbms(char *dbms_cmd);

dbms_cmd Pointsto a bufer with the DBMS command to execute. Refer to Chatén the
Database Guidéor detailed descriptions of each DBMS command.

Returns W 0: Success.
W An error code from the default or installed error handler

Description dm_dbmslets you execute ariyBMScommand directly from C. This function
executes in the following steps:

1. dbms_cmdis examined for th&/ITHENGINE or WITHCONNECTIONclause.
If it is not useddm_dbmsassumes the default engine and connection.

2. The colon preprocessor examinidsns_cmd for colon variables and performs
the indicated expansion.

3. dbms_cmdis passed to the appropriate function for han@ByScommands.
After executing the requested command, JAM updates all global status and
error variables@dm

If the application has installed an entry function vVbBMSONENTRY an exit
function withDBMSONEXIT, or an error handler witbhBMSONERRORthe
installed function is called for commands executed thrauughlbms

Example i{nt start_up ()

int retcode;
retcode = dm_dbms (°ONERROR CALL do_error°);
if (retcode)

sm_emsg(°Cannot install application error handler.°)

118 JAM 7.0 Language Reference

dm_dbms

return O;

}
dm_dbms (°DECLARE c1 CONNECTION FOR USER ":user' PASSWORD

":password™);
return O;

Chapter 6 JAM Library Functions 119

dm_dbms_noexp

dm_dbms_noexp

Executes a DBMS command without colon preprocessing

#include <dmuproto.h>

int dm_dbms_noexp(char *dbms_cmd);

dbms_cmd Pointsto a bufer that contains the DBMS command to execute.
Returns W 0: Success.
W A return code from an installed or default error handler

Description dm_dbms_noexp is identical tadm_dbmsexcept that no colon preprocessing is
performed ordbms_cmd.

See Also dm_dbms dm_expand

120 JAM 7.0 Language Reference

dm_exec_sql

dm_exec_sql

Generates and executes SQL statements

#include <tmusubs.h>

int dm_exec_sql(int type, char *cursor_name);

type Typeof SQL statement specified by one of the constants listealile .
cursor_name Name of the cursor associated with the SQL statement.
Returns 0 Success.

W A nonzzero value returned from @NENTRYONEXIT or ONERRORunction
resulting from a generated SQL statement having executed.
W One of theDM_TM_ERR_xxxeturn values listed itmusubs.h

Description dm_exec_sql is called from a transaction model or a user hook function to
generate and execute SQL statements according to one of the following constants
supplied for theype parameter:

Table 5. SQL statement types

Argument Description

BUILD_SELECT Examines screen properties and builds structures for sSEQECTstatement
including a distinct string, if specified, a select list (column names and/or ex
pressions), and\WHERElause.

BUILD_VALIDATE Examines screen edits and builds structures §#l&CTstatement used to
process a validation link.

DECLARE_DELETE_NBR Builds and executes the following statement for database deletions:
DECLARE_DELETE_OCC
DBMSDECLARE cursor CURSOR FOR DELETE FROMcurrent-table-view
WHERE primary-key-column = :w_ primary-key-column ...

DECLARE_INSERT Builds and executes the following statement for database insertions:

DBMSDECLARE cursor CURSOR FOR INSERT INTO current-table-view
(column-name ...)
VALUES (:v_ column-name...)

Chapter 6 JAM Library Functions 121

dm_exec_sql

Argument Description

DECLARE_UPDATE Builds and executes the following statement for database updates:

DBMSDECLARE cursor CURSOR FOR UPDATEcurrent-table-view
SET column-name =:s_ widget-name ...
WHERE primary-key-column =:w_ primary-key-column ...

EXEC_DELETE_NBR Builds and executes the following statement for database deletions:
EXEC_DELETE_OCC
DBMSWITH CURSOR cursor EXECUTE USING
w_ primary-key-column = @bi(primary-key-widget)[occ] ...

EXEC_INSERT Builds and executes the following statement for database insertions:

DBMSWNITH CURSOR cursor EXECUTE USING
V_ column-name = widget-name[occ] ...

EXEC_UPDATE Builds and executes the following statement for database updates:

DBMSNITH CURSOR cursor EXECUTE USING
s_ column-name = widget-name[occ] ...
w_ primary-key-column = @bi(primary-key-widget)[occ] ...

PERFORM_SELECT Executeghe following statements for database queries:

DBMSDECLARE cursor CURSOR FOR SELECT [DISTINCT] select-list
FROM tables-in-current-server-view
[WHERH join-clause] [AND search-condition]]
[GROUBY column-list]
[HAVING search-condition]
[ORDERBY column-position { ASC|DESC }, ...]

DBMSWITH CURSOR cursor ALIAS widget-list

DBMS WITH CURSORcursor <EXECUTE
[USING [join-values] [where-values] [having-values]]

PERFORM_VALIDATE Executes the following statements for validation links:

DBMSDECLARE cursor CURSOR FOR
SELECT {1 | lookzup list} FROM child-table-view WHERE ...
DBMS WITH CURSORcursor ALIAS ...
DBMS OCCUR
DBMS WITH CURSORcursor EXECUTE
DBMS CLOSE CURSORursor

SelectingData dm_exec_sql(BUILD_SELECT) anddm_exec_sql(BUILD_VALIDATE) should
not be called without a prior call ttn_gen_sql_info to initialize the statement

122 JAM 7.0 Language Reference

dm_exec_sql

structureslin the standard transaction models, exec_sql and other related
functions are called by the following requests:

Request

dm_exec_sql (and related) calls

TM_SEL_GEN

TM_SEL_BUILD_PERFORM

TM_VAL_GEN

TM_VAL_BUILD_PERFORM

TM_VAL_CHECK

dm_gen_sql_info(SELECT, cursor)

dm_exec_sq(BUILD_SELECT, cursor)
dm_exec_sql (PERFORM_SELECT, cursor)
dm_free_sql_info(SELECT)

dm_gen_sql_info (VALIDATE, cursor)

dm_exec_sq(BUILD_VALIDATE, cursor)
dm_exec_sql (PERFORM_VALIDATE, cursor)

dm_free_sql_info(VALIDATE)

Modifying Data
sm_bi_initialize

dm_exec_sql(DECLARE_xxx)
. The transaction manager calls_bi_initialize

should not be called without a prior call to

automatically whesm_tm_command(®NEW®) or sm_tm_command(°SELECT?)
is executed. In the standard transaction modeisexec_sgl and other related
functions are called by the following requests:

Request

dm_exec_sql calls

TM_DELETE_DECLARE

TM_DELETE_EXEC

TM_INSERT_DECLARE
TM_INSERT_EXEC
TM_UPDATE_DECLARE
TM_UPDATE_EXEC

dm_exec_sql(DECLARE_DELETE_NBR)
dm_exec_sql(DECLARE_DELETE_OCC)

dm_exec_sql(EXEC_DELETE_NBR)
dm_exec_sql(EXEC_DELETE_OCC)

dm_exec_sql(DECLARE_INSERT)
dm_exec_sql(EXEC_INSERT)
dm_exec_sql(DECLARE_UPDATE)
dm_exec_sql(EXEC_UPDATE)

Chapter 6 JAM Library Functions

123

dm_expand

dm_expand

Formats a string for an engine

#include <dmuproto.h>

int dm_expand(char *engine, char *data, int type, char *buf, int buflen,
char *edit);

engine Thename of an initialized engine. If thisgament is null, JAM uses the default
engine.

data The string to format. Use JAM library functions suckmasgetfield to get the
value of a field or LDB entry

type A JAM data type, specified by one of the following constants defined in
smedits.h

FT_CHAR FT_DOUBLE FT_LONG
DT_CURRENCY FT_FLOAT FT_SHORT
DT_DATETIME FT_INT DT_YESNO

buf A buffer provided by the program. The program is responsible for allocating a
buffer lage enough for the formatted string.

buflen Points to the size of the Haf. Upon return fromim_expand, the value contained
in the integer will be the length of the formatted text. The program can compare
this value with the allocated length to ensure that truncation did not occur

edit A date-time edit string describinfata . It is required when type BT_DATETIME

Returns 0 Success.
-1 engine is invalid.
-2 Arguments are invalidbillegal JAM typéyuflen 3 O, buf not allocated, or
DT_DATETIMEwas used without a datetime edit.
-3 Formatting function failed.

Description dm_expand lets you format a string for a particular engine and JAM type. The
function copies the formatted string to afeufprovided by the program.

124 JAM 7.0 Language Reference

dm_expand

Example #include °smdefs.h®
#include °smedits.h®
#include °dmuproto.h®

char *
formatter (src_name, jamtype)
char *src_name;

int jamtype;

char src_buf[256]; [* For widget contents */
char *edit=0; [* For datetime edit */
char dst_buf[256]; int dst_len=256; [* For formatted string*/

strcat (dst_buf, ©);

/* Get contents of nonzxnull widget. */
if ((sm_n_null (src_name) ==0) &&
('sm_n_getfield (src_buf, src_name) > 0))

/* If no type was supplied, get it from the source
field.*/
if jamtype == 0)
{

jamtype = sm_n_ftype(src_name, (int*)0) & DT_DTYPE;
}

/* If type is DT_DATETIME get format from source field. */
if jamtype == DT_DATETIME)

edit = sm_n_edit_ptr (src_name, UDATETIME);
/* If there is no user format, check for
system format. */
if (edit == 0)
{
edit = sm_n_edit_ptr (src_name, SDATETIME);

}
edit = edit +2;
}

/* Format text for the current engine. */
dm_expand (°°, src_buf, jamtype, dst_buf, &dst_len, edit);

return dst_buf;

See Also dm_dbms_noexp

Chapter 6 JAM Library Functions 125

dm_free_sql_info

dm_free _sql info

Free memory associated with an SQL SELECT statement

#include <tmusubs.h>

int dm_free_sql_info(int type);

type Thetype of SQLSELECTstatement, eithe3ELECTor VALIDATE. When this
function is called by the standard transaction models, the type isS&tEGTfor
the transaction commang8&LECTandVIEW, and the type is set WALIDATE for
the transaction commanehLIDATE_LINK .

Returns 0

Description dm_free_sql_info is used to free data that is associated SbECTor
VALIDATE statements. If the type 8ELECT it should follow theBUILD_SELECT
or PERFORM_SELEQarocessing performed dm_gen_sql .

If the type iSVALIDATE, it should follow theBUILD_VALIDATE andPER-
FORM_VALIDATBorocessing performed dm_gen_sgl as well as any call to
dm_val_relative

Example int retcode;
char *sel_cursor;

retcode = dm_exec_sql(BUILD_SELECT, sel_cursor);
if (‘retcode)

retcode = dm_exec_sql(PERFORM_SELECT, sel_cursor);
dm_free_sql_info(SELECT);

See Also dm_gen_sql_info

126 JAM 7.0 Language Reference

dm_gen_change_execute_using

dm_gen_change_execute using
Add or replace a bind value in a DBMS EXECUTE statement for SQL generation

#include

<tmusubs.h>

int dm_gen_change_execute_using(char *arg, char *bind_parm, char *bind_val,
int occ, int relative, int flag);

arg

bind_parm

bind_val

occ

relative

flag

Reservedor future use.

Specifies the bind parametérthis is a null pointer or an empty string, the clause
is not built.

Specifies the bind value. If this is a null pointer or an empty string, the clause is not
built.

Specifies the occurrence number
Specifies how to use the occurrence number with one of the following values:

DM_GEN_ABSOLUTE_OCCUR
DM_GEN_RELATIVE_TO_PARENT
DM_GEN_RELATIVEO CHILD

Specifiesthe type of change to make with one of the following constants:

DM_GEN_APPEND

Whenflag is set to this valuanind_val is added to end of tHéSING clause.
This produces the following statement;

DBMSWNITH CURSOR cursor EXECUTE USING existing_parentTV_binds,
existing_childTV_binds, bind_parm = bind_val[occ]

DM_GEN_PREPEND

Whenflag is set to this valudind_val is added to the beginning of thSING
clause. This produces the following statement:

DBMSWITH CURSOR cursor EXECUTE USING bind_parm = bind_val[occ],
existing_parentTV_binds, existing_childTV_binds

DM_GEN_REPLACE_ALL

Whenflag is set to this valueyind_val replaces the previolsSING clause.
This produces the following statement:

Chapter 6 JAM Library Functions 127

dm_gen_change_execute_using

Returns

Description

Example

128

DBMSNITH CURSOR cursor EXECUTE USING bind_parm = bind_val[occ]

If flag is set to this value and the othegumnents are empty strings, thsING
clause is removed.

0 Success.
+1 Error:dm_gen_sql_info was not called.
+2 Error: Invalid flag.

dm_gen_change_execute_using lets you edit th&SING clause of DBMS
EXECUTESstatement. The data structure for g ECTstatement, which is built by

a call todm_gen_sql_info (generally in th@M_SEL_GEMNevent), must already
exist before this function is called. Note that this function must be called once for
each bind value you wish to change.

This function can be implemented as part of a transaction manager hook function
that processes theM_SEL_BUILD_PERFORMvent. If you are modifying the select
processing for a server vieaall thedm_gen_change_execute_using function

from a hook function attached to the first parent table view in the server view

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide

The settings forelative ~ andoccurrence determine the value farcc, the
occurrence number used in the statement.

If relative is set todODM_GEN_RELATIVE_TO_PARENY DM_GEN_REL-
ATIVE_TO_CHILD, the current occurrence in the parent or child table view is used
as the basis for the occurrence numbien, the setting farccurrence is

checked. lbccurrence is 0, the current occurrence in that table view is used in
the statement. dccurrence is greater than O, the occurrence is calculated by
adding the specified occurrence to the current occurrence.

If you only need to substitute an occurrence number in the statement processing,
setrelative ~ to DM_GEN_ABSOLUTE_OCC&Md sebccurrence to be greater
than O.

JPL Procedure:
Generate IN clause using binding parameters.
Function property is set to titles_exec.

proc titles_exec (event)

JAM 7.0 Language Reference

dm_gen_change_execute_using

if (event==TM_SEL_BUILD_PERFORM)
vars retval(5), occ(3), i(3), in_buffer(255), comma(1)
occ = @widget(°gbe_titleid®)+>num_occurrences

If the array °gbe_titleid® contains data,
build a SQL °in° clause.

if (occ>0)

First loop through gbe_titleid and build an IN clause
in the form Ctitle_id in (::p1, ::p2, ::p3).

for i=1 while i <= occ
if (qbe_titleid[i] != ©°)
{

%.0i=i
in_buffer = in_buffer ## comma ## °\:\:p° ## i \
comma =°,°
}

}

in_buffer = °title_id in (° ## in_buffer ## °)°

retval = dm_gen_change_select_where \
(°°, in_buffer, DM_GEN_APPEND)

Now loop through gbe_titleid and change the EXECUTE
USING statement. This could be done in the previous loop.
It is separated for clarity.

for i=1 while i <= occ
{
if (gbe_titleid[i] !=)
{
%.0i=i
retval=dm_gen_change_execute_using \

(", °p:i°, °qbe_titleid®, i, \
DM_GEN_ABSOLUTE_OCCUR, DM_GEN_APPEND)

}
}
if (retval != 0)
return TM_FAILURE

}
}
return TM_PROCEED

Chapter 6 JAM Library Functions 129

dm_gen_change_execute_using

Example

See Also

130

Thefollowing example uses the current occurrence in the parent table view to
specify the occurrence numb@&he parent table view in this sequential link is a list
of customers. When you enter one of idrgtal_status codes for a customer in
thegbe_status field, the rentals for that customer which match that status
populate the child table view

JPL Procedure:

Generate WHERE and EXECUTE USING clause using occurrence
in parent table view. The Function property for rentals

table view is set to rentals_hook.

proc rentals_hook(event)
{
vars whexp(100) retval(5)
if (event==TM_SEL_BUILD_PERFORM)

Build the following: correlation.rental_status = ::qbel
whexp=dm_gen_get_tv_alias(sm_tm_pinquire(TM_TV_NAME)) \
°.rental_status® \
#H 0=0\
°::.qbel®

Add it to the WHERE clause.
retval = dm_gen_change_select_where(°°, whexp,\
DM_GEN_APPEND)

Append to the EXECUTE USING clause in the form:
gbel = gbe_stat[<occ>]
where occ is the same occurrence number as the current
occurrence in parent table view.
retval = dm_gen_change_execute_using\
(°°, °gbel®, °gbe_stat®, \
0, DM_GEN_RELATIVE_TO_PARENT, DM_GEN_APPEND)

return TM_PROCEED
}

dm_gen_sql_info

JAM 7.0 Language Reference

dm_gen_change_select_from

dm_gen_change_select from
Edit the FROM clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_from(char *arg, char *table, char *corr_name,
int flag);

arg Reservedor future use.

table The name of the database table. For some database engines, you may need to
include the owner name in the format:

owner.table_name
corr_name The correlation name for the database table.

flag Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds the name of the database table and its associated correlation name to the end
of theFROMlause. This produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM existing_from_clause,
table corr_name

DM_GEN_PREPEND

Addsthe name of the database table and its associated correlation name to the
beginning of th&eROMclause. This produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM table corr_name,
existing_from_clause

DM_GEN_REPLACE_ALL

The name of the database table and its associated correlation name replace the
previousFROMlause. This produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM table corr_name

Returns 0 Success.
+1 Error:dm_gen_sql_info was not called.
+2 Error: Invalid flag.

Chapter 6 JAM Library Functions 131

dm_gen_change_select_from

Description

Example

See Also

132

dm_gen_change_select_from allows you to edit the tables listed in #fROM
clause of &8ELECTstatement built with the SQL generafdhe data structure for

the SELECTstatement, which is built by a calldon_gen_sql_info (generally in
theTM_SEL_GENevent), must already exist before this function is called. Note that
this function must be called once for each table name you wish to change.

By default, the SQL generator builds the table list based oratiie property of
each table view in the server vielor more information on the SQL generator
refer to Chapter 18 in th&pplication Development Guide

This function can be implemented as part of a transaction manager hook function
which processes thiev_SEL_BUILD_PERFORMvent. If you are modifying the

select processing for a server vj@all thedm_gen_change_select_from

function from a hook function attached to the first parent table view in the server
view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide

JPL Procedure:
Fetch data from titles which is an unlinked table view.
Function property is set to titles_join.

proc titles_join (event)
vars retval(5)
if (event == TM_SEL_BUILD_PERFORM)
Eetval =dm_gen_change_select_list(°°, °name®, °hame®, \
DM_GEN_APPEND)

retval = dm_gen_change_select_from\
(°°, °titles®, °titles®, DM_GEN_APPEND)

retval = dm_gen_change_select_where (°°, \
°rentals.title_id = titles.title_id°, DM_GEN_APPEND)

if (retval != 0)

return TM_FAILURE
}

return TM_PROCEED

dm_gen_sql_info

JAM 7.0 Language Reference

dm_gen_change_select_group_by

dm_gen_change_select group by
Edit the GROUP BY clause in a SELECT statement for automatic SQL generation

#include

<tmusubs.h>

int dm_gen_change_select_group_by(char *arg, char *column, int flag);

arg
column

flag

Returns

Reservedor future use.
The name of the column to be used iIn@EROUMBY clause.

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Addscolumn to the end of th6ROUBY clause. This produces the following
statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
GROUP BY existing_group_by_list, column

DM_GEN_PREPEND
Addscolumn to the beginning of theROUMY clause. This produces the
following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
GROUP BY column, existing_group_by_list

DM_GEN_REPLACE_ALL
column replaces the previolBROUBY clause. This produces the following
statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
GROUP BY column

If flag is set to this value armlumn is set to an empty string, tEROUMBY
clauseis removed. For example:

x =dm_gen_change_select_group_by(°°, °°, DM_GEN_REPLACE_ALL)

0 Success.
+1 Error:dm_gen_sql_info was not called.
+2 Error: Invalid flag.

Chapter 6 JAM Library Functions 133

dm_gen_change_select_group_by

Description

Example

See Also

134

dm_gen_change_select_group_by allows you to edit th&ROUBY clause

built with the SQL generatolhe data structure for tI|ELECTstatement, which

is built by a call talm_gen_sqgl_info (generally in th&@M_SEL_GENevent), must
already exist before this function is called. Note that this function must be called
once for each change you wish to make.

By default, the SQL generator buildSROUBY clause automatically when one

of the select expressions is an aggregate function. For more information on how the
SQL generator builds statements, refer to Chapter 18 isgpkcation Develop

ment Guide

This function can be implemented as part of a transaction manager hook function
which processes thev_SEL _BUILD PERFORMvent. If you are modifying the

select processing for a server vj@all thedm_gen_change_select_group_by

function from a hook function attached to the first parent table view in the server
view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide

JPL Procedure:

Append column not part of table view to automatically
generated group by clause.

Function property set to titles_group.

proc titles_group (event)
vars retval(5)
if (event == TM_SEL_BUILD_PERFORM)
retval = dm_gen_change_select_list\
(°°, °rating_code®, °rc®, DM_GEN_APPEND)
retval = dm_gen_change_select_group_by\
(°°, °rating_code®, DM_GEN_APPEND)
if (retval != 0)

return TM_FAILURE
}

return TM_PROCEED

dm_gen_sql_info

JAM 7.0 Language Reference

dm_gen_change_select_having

dm_gen_change_select having
Edit the HAVING clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_having(char *arg, char *search_cond, int flag);

arg Reservedor future use.
search_cond The search condition to include in tHaVINGclause.
flag Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Addssearch_cond to the end of thelAVINGclause. This produces the following
statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
HAVING existing_having_clause AND search_cond

DM_GEN_PREPEND
Addssearch_cond to the beginning of thBAVINGclause. This produces the
following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
HAVING search_cond AND existing_having_clause

DM_GEN_REPLACE_ALL
search_cond replaces the existingAVING clause. This produces the following
statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
HAVING search_cond

If flag is set to this value arsdarch_cond is set to an empty string, tHAVING
clause is removed. For example:

x =dm_gen_change_select_having(°, °°, DM_GEN_REPLACE_ALL)

Returns 0 Success.
+1 Error:dm_gen_sql_info was not called.
+2 Error: Invalid flag.

Chapter 6 JAM Library Functions 135

dm_gen_change_select_having

Description

Example

See Also

136

dm_gen_change_select_having lets you edit th&lAVINGclause built with the
SQL generatorThe data structure for tI®ELECTstatement, which is built by a
call todm_gen_sqgl_info (generally in th&M_SEL_GEMNevent), must already
exist before this function is called.

Generally aHAVING clause sets search conditions for the precedRQumBy
clauseThe SQL generator creatéROUMBY clauses automatically for aggregate
functions.GROUMY clauses can also be generated using the function
dm_gen_change_select_group_by . HAVINGclauses can be generated with the
Having property or by using this function. For more information on automatic SQL
generation, refer to Chapter 18 in #gplication Development Guide

This function can be implemented as part of a transaction manager hook function
which processes theM_SEL_BUILD_PERFORMvent. If you are modifying the

select processing for a server vj@alldm_gen_change_select_having from a
hook function attached to the first parent table view in the server view

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide

JPL Procedure:
Generate a having clause.
Function property is set to titles_having.

proc titles_having (event)

vars retval(5)
if (event == TM_SEL_BUILD_PERFORM)
{

retval = dm_gen_change_select_having\
(°°, °count(*) > 2°, DM_GEN_APPEND)

retval = dm_gen_change_select_having\
(%, odir_last_name like 'W%'", DM_GEN_APPEND)

if (retval != 0)

return TM_FAILURE
}

return TM_PROCEED

dm_gen_sql_info

JAM 7.0 Language Reference

dm_gen_change_select_list

dm_gen_change_select list

Edit the select list for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_list(char *arg, char *sel_expr, char *jam_alias,
int flag);

arg Reservedor future use.
sel_expr The select expression. If the expression is invalid, the engine returns an error

jam_alias Name of the JAM variable to use in thBMSALIAS statement. If this variable
does not exist or is blank, tlsELECTstatement fetches the expresssoralues,
but they are ignored. This is not considered an.error

flag Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Addssel_expr to the end of the select liggm_alias is added after the existing
aliases. This produces the following statements:

DBMSECLARE cursor FOR SELECT existing_select_list, sel_expr FROM ...
DBMS WITH CURSORcursor ALIAS existing_aliases, jam_alias

DM_GEN_PREPEND

Addssel_expr to the beginning of the select list, gaoh_alias is added before
the existing aliases. This produces the following statements:

DBMSDECLARE cursor FOR SELECT sel_expr, existing_select_list FROM ...
DBMS WITH CURSORcursor ALIAS jam_alias, existing_aliases

DM_GEN_REPLACE_ALL

sel_expr replaces the previous select list, gard_alias replaces the existing
aliases. This produces the following statements:

DBMSDECLARE cursor FOR SELECT sel_expr FROM ...
DBMS WITH CURSORcursor ALIAS jam_alias

Returns 0 Success.
+1 Error:dm_gen_sql_info was not called.
+2 Error: Invalid flag.

Chapter 6 JAM Library Functions 137

dm_gen_change_select_list

Description

Example

See Also

138

dm_gen_change_select_list allows you to edit the select list built using the
SQL generatorThe data structure for tI®ELECTstatement, which is built by a
call todm_gen_sgl_info (generally in th&M_SEL_GEMNevent), must already
exist before this function is calledo must call this function once for each
change you wish to make.

By default, the SQL generator builds the select list from the widgets whose Use In
Select property is set tee¥. For more information on the SQL generatefier to
Chapter 18 in thépplication Development Guide

This function can be implemented as part of a transaction manager hook function
that processes thev_SEL_BUILD_PERFORMvent. If you are modifying the select
processing for a server viewalldm_gen_change_select_list from a hook
function attached to the first parent table view in the server. view

For more information on transaction hook functions, refer to Chapter 22 in the
Application Development Guide

JPL Procedure:

Adds picl, a binary column, to the select list for the
current server view and sets bin_coll as the target.
The Function property is set to binary_hook.

proc binary_hook (event)

{

vars retval(5) colexp(64)

if (event==TM_SEL_BUILD_PERFORM)
{

colexp=dm_gen_get_tv_alias\
(sm_tm_pinquire(TV_NAME) ## °.pic1°
retval=dm_gen_change_select_list\
(°°, colexp, °bin_col1°, DM_GEN_APPEND)

The number of occurrences for bin_coll is set to match the
number of occurrences of another column in the table.

if (retval == 0)
{

retval=sm_n_max_occur(°nhame®)
dbms binary bin_col1[:retval](1024)

}

}
return TM_PROCEED
}

dm_gen_sql_info

JAM 7.0 Language Reference

dm_gen_change_select_order_by

dm_gen_change_select order_by
Edit the ORDER BY clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_order_by(char *arg, char *widget_name, int sort_ind,

int flag);
arg Reservedor future use.
widget_name The name of the widget whose Datal8é§zlumn Name property is referenced in
the ORDERBY clause. If the name of the database column is entered, it is ignored.
sort_ind Specifies whether the sort is ascendibyl (GEN_ASC_SORTEOr descending
(DM_GEN_DESC_SORTELSf set to an invalid value, an error is generated.
flag Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds the specified information to the end of @RDERBY clause. This produces
the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
ORDER BY existing_order_by_list, column_position sort_ind

DM_GEN_PREPEND

Addsthe specified information to the beginning of ®RDERBY clause. This
produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
ORDER BY column_position sort_ind, existing_order_by _list

DM_GEN_REPLACE_ALL

The specified information replaces the previ@RDERBY clause. This produces
the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM tables
ORDER BY column_position sort_ind

If flag is set to this value andidget_name is set to an empty string, tlRDER
BY clause is removed. For example:

Chapter 6 JAM Library Functions 139

dm_gen_change_select_order_by

Returns

Description

Example

See Also

140

x = dm_gen_change_select_order_by
(°°, ©°, %° DM_GEN_REPLACE_ALL)

0 Success.
+1 Error:dm_gen_sqgl_info was not called.
+2 Error: Invalid flag.

dm_gen_change_select_order_by lets you edit th©RDERBY clause built

with the SQL generatom he structure for thBELECTstatement, which is built by

a call todm_gen_sql_info (generally in th&M_SEL_GENevent), must already
exist before this function is called. Note that this function must be called once for
each change you wish to make.

By default, the SQL generator builds theDERBY clause from values of the table
view's Sort Columns propertiFor more information on how the SQL generator
builds statements, refer to Chapter 18 inApglication Development Guide

This function can be implemented as part of a transaction manager hook function
which processes theM_SEL_BUILD_PERFORMvent. If you are modifying the

select processing for a server vj@alldm_gen_change_select_order_by

from a hook function attached to the first parent table view in the server view

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide

Appends the order by list for titles table.

The Function property is set to titles_orderby.
proc titles_orderby (event)

vars retval(5)

if{(event ==TM_SEL_BUILD_PERFORM)

retval = dm_gen_change_select_order_by \
(°°, °film_minutes®, DM_GEN_ASC_SORTED, DM_GEN_APPEND)

if (retval != 0)
return TM_FAILURE
}

return TM_PROCEED

dm_gen_sql_info

JAM 7.0 Language Reference

dm_gen_change_select_suffix

dm_gen_change_select_ suffix
Appends text to the end of a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_suffix(char *arg, char *suffix);

arg

suffix

Returns

Description

Example

Reservedor future use.

The sufix to append to the SQEELECTstatement.

0 Success.
+1 dm_gen_sgl_info was not called.
+2 Invalid flag.

dm_gen_change_select_suffix lets you append text to the end of a SEp-
LECT statement built with the SQL generatiéor example, you can use this func
tion to add &ORUPDATE clause to the end ofSELECTstatement. The data struc
ture for theSELECTstatement, built by an earlier calldm_gen_sql_info

(generally in th&M_SEL_GENevent), must already exist before this function is
called.

By default, the SQL generator builds the statement based on the widgets' and table
view's properties. For more information on the SQL generegéer to Chapter 18
in the Application Development Guide

You can use this function in a transaction manager hook function that processes the
TM_SEL_BUILD_PERFORMvent. D modify the select processing for a server

view, calldm_gen_change_select_suffix from a hook function that is

attached to the first parent table view in the server.view

For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide

JPL Procedure:
Fetch data from titles for possible update.
Function property is set to titles_select.

proc titles_select (event)

Chapter 6 JAM Library Functions 141

dm_gen_change_select_suffix

vars retval(5)
if (event == TM_SEL_BUILD_PERFORM)
retval = dm_gen_change_select_suffix(°°, °for update®)
if (retval = 0)

return TM_FAILURE
}

return TM_PROCEED

See Also dm_gen_sgl_info

142 JAM 7.0 Language Reference

dm_gen_change_select_where

dm_gen_change_select where
Edit the WHERE clause in a SELECT statement used in automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_where(char *arg, char *where_expr, int flag);

arg

where_expr

flag

Returns

Reservedor future use.

Text of the expression to include in theiERElause. If the expression includes a
parameter and the function is called within a JPL procedure, the parameter name
must be declared with four colons because of colon expansiparfl).

Specifies the type of change to make with one of these constants:

DM_GEN_APPEND
Whenflag is set to this valueyhere_expr is added to end of th# HERElause.
This produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM table_list
WHERE link_expression AND existing_where_expr AND where_expr

DM_GEN_PREPEND

Addswhere_expr to the beginning of the expressions derived from the Use In
Where propertyThis produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM table_list
WHERE link_expression AND where_expr AND existing_where_expr

DM_GEN_REPLACE_ALL

Removesll the expressions based on the Use In Where property besngnd
where_expr replaces the previous data. This produces the following statement:

DBMSDECLARE cursor FOR SELECT select_list FROM table_list
WHERE link_expression AND where_expr

You also need to callm_gen_change_execute_using to remove the
existing_where_expr from theUSING clause of th&XECUTEstatement.

0 Success.
+1 Error:dm_gen_sql_info was not called.
+2 Error: Invalid flag.

Chapter 6 JAM Library Functions 143

dm_gen_change_select_where

Description

Example

144

dm_gen_change_select_ where lets you edit th&VHERElause of a SQISE-
LECT statement. The structure for tRELECTstatement, which is generally built
by a call todm_gen_sql_info in theTM_SEL_GEMNevent, must already exist-be
foredm_gen_change_select_where is called.

By default, the data for th& HERElause comes from:
Widgets whose Use In Where property &sY

The Relations property for the link which determines the columns for joins if
it is a server link and for master/detail information if it is a sequential link.

dm_gen_change_select_where adds to or replaces the data based on the Use In
Where propertyFor more information on how the SQL generator uses this
property refer to page 281 in thpplication Development Guide

In particular this function can be used to addETWEENI|ause or a subquery to a
SQL SELECTstatement.

This function can be implemented as part of a transaction manager hook function
which processes thev_SEL_BUILD_PERFORMvent. If you are modifying the

select processing for a server vi@alldm_gen_change_select where from a

hook function attached to the first parent table view in the server view

To view a sample hook function written in JPL, refer to the example in the next
section. For more information on writing transaction hook functions, refer to
Chapter 22 in thépplication Development Guide

JPL Procedure:

Append IN clause to WHERE clause.

Function property is set to titles_in.

proc titles_in (event)

vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
vars occ(3), i(3), in_buffer(255) comma(1)

occ = @widget(°gbe_titleid®)+>num_occurrences

JAM 7.0 Language Reference

See Also

If the array °gbe_titleid® contains data, build
a SQL °in° clause.

if (occ>0)

for i=1 while i <= occ

if (gbe_titleid[i] != ©°)
{

in_buffer = in_buffer ## comma ## \
".+gbe_titleid[i]' comma = ©,°
}

}

in_buffer = ¢title_id in (° ##in_buffer °)°
retval = dm_gen_change_select_where \
(°°, in_buffer, DM_GEN_APPEND)

if (retval = 0)
return TM_FAILURE
}

}

return TM_PROCEED
JPL Procedure:
Append search condition using onscreen value.
Function property is set to titles_where.
proc titles_where (event)
vars retval(5)
if (event == TM_SEL_BUILD_PERFORM)
{

retval = dm_gen_change_select_where\

dm_gen_change_select_where

(°°, °film_minutes > ::::parm1°, DM_GEN_APPEND)
retval = dm_gen_change_execute_using(°, °parm1°,\
°film_minutes®, 1, DM_GEN_ABSOLUTE_OCCUR, \

DM_GEN_APPEND)

if (retval != 0)
return TM_FAILURE
}

return TM_PROCEED

dm_gen_sql_info

Chapter 6 JAM Library Functions

145

dm_gen_get_tv_alias

dm_gen_get tv_alias

Get the correlation name or alias for a table view

#include <tmusubs.h>

char *dm_gen_get_tv_alias(char *tv_name);

tv_name Specifiesthe table view name.

Returns W A correlation name for the table view
W NULL string: tv_name is null.

Description dm_gen_get_tv_alias returns the correlation name, or alias, for the specified
table view name.

Generally the SQL generator uses the value in the table siblame property as

the tables correlation name in a generat#l ECTstatement. Howevegif the table
view name contains illegal characters for a correlation name, the SQL generator
removes the énding characters.

The SQL generator calls this function to generate correlation names. If you modify
generated SQL statements with one ofdinegen_change functions and any
argument supplies a column name, you must supply the proper correlation name.

Example # JPL Procedure:
Adds a column to the select list for the current \
server view and sets copy as the target.

proc rentals_hook (event)
vars retval(5) colexp(64)
if (event==TM_SEL_BUILD_PERFORM)
{ colexp=dm_gen_get_tv_alias\
(sm_tm_pinquire(TV_NAME) ## °.copy_num®

retval=dm_gen_change_select_list\
(°°, colexp, °copy®, DM_GEN_APPEND)

}
return TM_PROCEED
}

146 JAM 7.0 Language Reference

dm_gen_sql_info

dm_gen_sql_info

Generate a data structure used in SQL SELECT statements

#include <tmusubs.h>

int dm_gen_sql_info(int type, char *cursor_name);

type

cursor_name

Returns

Description

Example

See Also

Type of SQLSELECTto generate, specified by one of these constants:

SELECT
VALIDATE
CHECK_PKEY

Name of the cursor associated with the SQL statement.

0 Success.
30 One of the transaction error codes.

dm_gen_sgl_info generates a data structure associated with SEQECTstate
ments. Theype is SELECTwhen the function is called as the result of the transac
tion commandsSELECTandVIEW Thetype is VALIDATE when the function is

called as a result of processing a validation link. ffhe is CHECK_PKEYvhen

the function is called as a result of checking for duplicate key values before insert
ing a new row or updating the primary key columns.

int gen_select (cursor)
char *cursor;

{

int retcode;
retcode = dm_gen_sql_info (SELECT, cursorl);

return retcode;

}

dm_free_sql_info

Chapter 6 JAM Library Functions 147

dm_getdbitext

dm_getdbitext

Gets the text of the last-executed DBMS command

#include <dmuproto.h>

char *dm_getdbitext(void);

Returns

Description

Example

See Also

148

A pointer to the last-executed database command.

dm_getdbitext lets you get the full text of the last-execupgMScommand.
This includes all commands executed from JPL wfitis, or executed from C
with dm_dbmsor dm_dbms_noexp.

The text specified by the pointer thimh_getdbitext ~ returns has a short duration.
If the application needs this information, it should call this function immediately
after executing a database command. The program should process the returned
string or copy it to a local variable before making additional function calls. This is
the same string that is passed to the firgtiaent of an installed entrgrror or

exit handlerexcept that the error or exit handler is limited to 255 characters.

int

logfunc (stmt, engine, flag)

char *stmt;

char *engine;

int flag;

{
FILE *fp;
if (strlen(stmt) >= 255))

stmt = dm_getdbitext();

fp = fopen (°dbi.log®, °a°);
fprintf (fp, °%s\n°, stmt);
fclose (fp);
return 0;

dbms ONERRORdbms ONEXIT

JAM 7.0 Language Reference

dm_init

dm_init

Initializes JAM to access a specific database engine

#include <dmuproto.h>

int dm_init(char *engine, int support_function, int case, char *arg);

engine

support_function

case

arg

Returns

Description

A name you assign to the engine. If an application uses two or more engines, the
application uses the mnemomiegine to indicate a particular DBMS. Most
examples in the guide use a vendor name as the mnemonic, for exgimapte or
oracle , but any character string that is not a keyword is valid. For a list of
keywords, refer to Chapter 13 in thatabase Guidelf engine is already
installed,dm_init returns 0.

One of the function names documented indiiit.c file. The file name is
usually in the formdm_vendorsup wherevendor is an abbreviated vendor name.
For example:

dm_sybsup
dm_orasup
dm_intsup

Sets the case processing for the specified engine. The constants are shaivi@ in T
6 in Description.

Reserved for future use. Set this parameter to 0.

W 0: Success.
W A return code from the support function.

Before an application can access a database, JAM must perform an engire initial
ization. The initialization adds the engine name to the list of available engines, al
locates a data structure for the engine, calls the esginpport function to initial

ize the data structure, and sets case handling for the engimealf use the
vendor_list structure irdbiinit.c to initialize an engine at startup or else use
dm_init to initialize an engine at a later point in the application.

Thecase parameter specifies how JAM uses case to map column names to
variables when executing a SGELECTstatement. dble 6 lists the available
options.

Chapter 6 JAM Library Functions 149

dm_init

Table6. Database engine case constants

Constant Description

DM_DEFAULT_CASE Use the case option set in the support function
for that engine. For information on this setting,
refer to the Database Drivers section of flze
tabase Guide

DM_PRESERVE_CASE Use case exactly as returned by the engine.

DM_FORCE_TO_UPPER_CASEorce all column names returned by an engine to
upper case. Therefore, the application should use
upper case names for JAM variables.

DM_FORCE_TO_LOWER_CASEorce all column names returned by an engine to
lower case. Therefore, the application should use
lower case names for JAM variables.

After the engine is initialized, the application can declare a connection on it.

Example #include °dmerror.h°
#include °smusrdbi.h®

int retcode;
retcode = dm_init(°jdb°, dm_jdbsup, DM_DEFAULT_CASE, 0);

See Also dm_reset

150 JAM 7.0 Language Reference

dm_is_connection

dm_is_connection

Verifies that a connection is open

#include <dmuproto.h>

int dm_is_connection(char *connection_name);

connection_name Specifiesa connection name that is declared DBMSECLARE CONNECTION
command.

Returns 1 True:Connection exists.
0 False: Connection does not exist, either because it was never declared or was
closed.

Example #include <smdefs.h>
#include <dmuproto.h>

int
free_resources()
{

if (dm_is_connection(®work_connection®))

dm_dbms(°close connection work_connection®);

}

return O

}

Chapter 6 JAM Library Functions 151

dm_is_cursor

dm_is_cursor

Verifies that a cursor is open

#include <dmuproto.h>

int dm_is_cursor(char *cursor_name);

cursor_name Specifiesa cursor name. For a named cursise the name specified ilDBMS
DECLARECURSORcommand. For a default cursepecifycursor_name as being
default_cursor or as being 0.

Returns 1 The cursor exists.
0 The cursor does not exist, either because it was never declared or has been
closed.

Example #include <smdefs.h>
#include <dmuproto.h>

int
free_resources()
{

if (dm_is_cursor(°work_cursor®))

dm_dbms(°close cursor work_cursor®);

}

return O

}

152 JAM 7.0 Language Reference

dm_is_engine

dm_is _engine

Verifies that a database engine is initialized

#include <dmuproto.h>

int dm_is_engine(char *engine);

engine Specifiesan engine name. The engine name is the character string assigned to a
database engine in tlbiinit.c or Windows initialization file. For more
information about specifying engine names, refer to Chafiter theApplication
Development Guide

Returns 1 True: Engine is initialized.
0 False: Engine is not initialized.

Example [* Test if engine was installed in dbiinit.c or JAM7.INI */

#include <smdefs.h>
#include <dmuproto.h>

int
eng_connection()

if (dm_is_engine(°sybase®))

dm_dbms(°engine sybase®);
dm_dbms(°declare c1 connection for ...°);

}

return O

}

Chapter 6 JAM Library Functions 153

dm_reset

dm_reset

Disables support for a named database engine

#include <dmuproto.h>

int dm_reset(char *engine);

engine The name assigned to the DBMSdm_init or in thevendor_list structure of
dbiinit.c
Returns 0 The database engine was successfully disabled.

-1 engine is not a valid engine name.

Description An application can call this function to disable support for a named engine. If the
function executes successfyliyperforms the following steps:

1. Closes all active connections on the engine.

2. Calls the support function to perform any engine-specific reset processing.
3. If engine was the default engine, sets the default engine to 0.

4. Frees all data structures associated with the engine.

After an engine is reset, the application cannot connect to the engine unless it
initializes the engine witbm_init

See Also dm_init

154 JAM 7.0 Language Reference

dm_val_relative

dm_val relative

Set bits for validation after SQL SELECT statements are executed

#include <tmusubs.h>

dm_val_relative(void);

Description dm_val_relative sets validated bits, and can be called after successful lookup/
validation when using validation links. Because this function uses the data struc
ture generated bym_gen_sql_info for validation, you should call
dm_val_relative before callingdm_free_sql_info to free the data.

Chapter 6 JAM Library Functions 155

sm_adjust_area

sm_adjust_area

Recalculates widget positions

void sm_adjust_area

Environment

Description

156

(void)

Motif, Windows

sm_adjust_area recalculates the positions of widgets on the current screen and
redraws the screen accordinglyuses JAMs positioning algorithm to map charac
termode coordinates to the current GUI environmeat: $hould call this function
when runtime changes to the screen might cause widgets to overlapbfor example,
move a widget, add a new one, or change widget dimensions.

JAM 7.0 Language Reference

sm_allget

sm_allget

Loads data from the active LDBs to the current screen

void sm_allget(int respect_flag);

respect_flag

Description

Example

See Also

Indicateswhether to write to fields that already contain data:

0 Initialize all fields, regardless of their status.
.1 Initialize only empty fields or fields whose MDT bits are not set.

sm_allget copies data from the active local data blocks to fields on the current
screen with matching names. JAM calls this function automatically unless LDB
processing is turned fahroughsm_dd_able .

sm_allget overwrites or respects existing data according to the value of
respect_flag .sm_allget does not change the MDT bits of the fields that it
initializes.

#include <smdefs.h>
#include <smkeys.h>

* 1f you open a window with sm_r_window and want named
* fields initialized from the LDB, where LDB processing

* is off, you need to call sm_allget. You might use

* this to make the active LDBs readzonly for a certain

* transaction. */

sm_dd_able (0);

i-f.(sm_r_window (°popup®, 5, 24) == 0)

{
sm_allget (0);
while (sm_input (IN_DATA) != EXIT)
}
sm_close_window ();
}

sm_dd_able , sm_lIstore

Chapter 6 JAM Library Functions 157

sm_amt_format

sm_*amt_format

Writes formatted data to a field

int sm_amt_format(int field_number, char *buffer);

int sm_e_amt_format(char *field_name, int element, char *buffer);
int sm_i_amt_format(char *field_name, int occurrence, char *buffer);
int sm_n_amt_format(char *field_name, char *buffer);

int sm_o_amt_format(int field_number, int occurrence, char *buffer);

field_name, Thefield to receive the formatted data.
field_number

element The onscreen element in the field.
occurrence The occurrence in the field.

buffer A pointer to the data to write.
Returns 0 Success.

-1 The field is not found or the occurrence is out of range.
-2 The edited string does not fit in the field.

Description sm_amt_format writes data to a field in the following steps:

1. JAM checks whether the specified field has a currency format. If it does, it
formats the data containedtnffer accordingly

2. JAM callssm_putfield to write the string to the specified field. If the field
has no currency formadém_putfield writes the unedited string. If the
resulting string is too long for the field, JAM truncates it.

Example #include <smdefs.h>

/* Write a list of real numbers, stored as character strings,
* to the screen. The first and last fields in the list are

* tagged with special names.

*/

158 JAM 7.0 Language Reference

sm_amt_format

int fld, first, last;
extern char *values][]; /* defined elsewhere */

last = sm_n_fldno (°last®);
first = sm_n_fldno (°first®);
for (fld = first; fld <= last; ++fld)

{
sm_amt_format (fld, values|fld + first]);
}
See Also sm_dtofield , sm_strip_amt_ptr

Chapter 6 JAM Library Functions 159

sm_append_bundle_data

sm_append _bundle data

Sends data to a bundle item

int sm_append_bundle_data(char *bundle_name, int item_no, char *data);

bundle_name

item_no

data

Returns

Description

Example

160

The name of the bundle to get data. SupplLL or an empty string to specify the
unnamed bundle.

The bundle d&et of the item to getata . You add data items to a bundle through
successive calls tm_append_bundle_item ; each data item is identified by its
offset in the bundle, where the first data item has sebbalue of 1. Iftem_no
already contains data, JAM appendsa as the itens latest occurrence.

A single occurrence of data to appendétdém_no .

0 Success.
-1 Invalid bundle name or item number
-2 Memory allocation error

sm_append_bundle_data sends a single occurrence of data to the specified data
item inbundle_name . A bundle contains sequentially numbered data items, where
each data item can hold one or more occurrences of send data for later access by
sm_get_bundle_data . If the source data contains multiple occurrences, JAM
ends each occurrence with a NULL string terminator

This function assumes the existence of the specified bundle and item. Before
calling this function, create the ¢gat bundle and its items with calls to
sm_create_bundle andsm_append_bundle_item , respectively

/* Iterate over all fields on current screen and
* send data to bundle
*/
void sendScreenDataToBundle(int numFields)
{ . .

inti, ret;

ret = sm_create_bundle(°myBundle®)

JAM 7.0 Language Reference

sm_append_bundle_data

if (ret 1= 0)
return ret;
else

for (i = 1; i <= numFields; i++)
{
sm_append_bundle_item(°myBundle®);
sm_append_bundle_data(®myBundle®,i, sm_fptr(i));
}
}

return O;

}

See Also sm_append_bundle_item

Chapter 6 JAM Library Functions 161

sm_append_bundle_done

sm_append_bundle done

Optimizes memory allocated for a send bundle

int sm_append_bundle_done(char *bundle_name);

The name of the bundle. SuppWuLL or empty string to specify the unnamed
bundle.

bundle_name

Returns 0 Success.
-1 Invalid bundle name.

Description sm_append_bundle_done optimizes the memory allocated for a send bundle.
Call this function after you finish appending items and data to a bundle.

See Also sm_append_bundle_data

162 JAM 7.0 Language Reference

sm_append_bundle_item

sm_append_bundle _item

Adds a data item to a bundle

int sm_append_bundle_item(char *bundle_name);

bundle_name

Returns

Description

Example

See Also

Thename of the bundle to get a new item. Sup@lyL or empty string to specify
the unnamed bundle.

0 Success.
-1 Invalid bundle name.
-2 Memory allocation error

sm_append_bundle_item appends a new data item to the end of the specified
bundle. After you create a data item, you can send one or more occurrences of data
to it by callingsm_append_bundle_data

This function assumes the existencéwfdle_name , previously created with
sm_create_bundle . A bundle contains sequentially numbered data items, where
the first data item has anfeét of 1.

/* lterate over fields on current screen and
* send data to bundle
*/
sendScreenDataToBundle(int numFields)
t

inti, ret;

ret = sm_create_bundle(°myBundle®);

if (ret I=0)

return ret;
else

for (i = 1; i <= numFields; i++)
{
sm_append_bundle_item(°myBundle®);
sm_append_bundle_data(®myBundle®,i, sm_fptr(1));
}
}

return O;

}

sm_append_bundle_data

Chapter 6 JAM Library Functions 163

sm_at_cur

sm_*at_cur

Displays a window at the cursor location

intsm_d_at_cur(char *address);

intsm_|_at_cur(int lib_desc,
intsm_r_at_cur(char *name);

address

lib_desc

name

Returns

Description

164

char *name);

Theaddress of the screen in memory

Specifies the library in which the window is stored, whigrelesc is an integer
returned bysm_| _open . You must calsm_| open before you read any screens
from a library

The name of the windaw

-1
-2
-3
-5
-6

Success.

Screen files format is incorrect.

Screen cannot be found.

System ran out of memory but the previous screen was restored.
System ran out of memory after the screen was cleared.

Library is corrupted.

Seesm_window.

JAM 7.0 Language Reference

sm_*attach_drawing_func

Associates a drawing function with a widget

#include <smmcuser.h>

int sm_mc_attach_drawing_func(int widgetnumber, void(*drawfunc), void *);
int sm_mcn_attach_drawing_func(char *widgetname, void(*drawfunc), void *);

int sm_mce_attach_drawing_func(char *widgetname,int element, void(*drawfunc),
void *);

#include <smmwuser.h>

int sm_mw_attach_drawing_func(int widgetnumber, int (*drawfunc));
int sm_mwn_attach_drawing_func(char *widgetname, int (*drawfunc));
int sm_mwe_attach_drawing_func(char *widgetname,int element, int (*drawfunc));

#include <smxmuser.h>
int sm_xm_attach_drawing_func(int widgetnumber, void(*drawfunc),
XtPointer data);

int sm_xmn_attach_drawing_func(char *widgetname, void(*drawfunc),
XtPointer data);

int sm_xme_attach_drawing_func(char *widgetname, int element, void(*drawfunc),
XtPointer data);

sm_attach_drawing_func

widgetname, Specifiesthe widget to gedrawfunc .

widgetnumber

element If the widget is an arrappecifies the element widgetname to getdrawfunc .

drawfunc The drawing function to attach to the specified widget. Drawing function
declarations for the Macintosh,idows, and Motif are shown in Description.

data Points to a usedefined structure that contains the data required by the drawing
function.

Environment Macintosh, Motif, Whdows

Returns 0 Success.

-1 Invalid widget or element, or the appropriate data structures or handles do not

exist and cannot be created.

Chapter 6 JAM Library Functions

165

sm_attach_drawing_func

Description

MacintoshDraw
Function Declaration

Windows Draw
Function Declaration

166

sm_attach_drawing_func attaches the drawing function pointed to by

drawfunc to the specified widget or element on the current screen. The widget
must have its Customer Drawn property setde.You can use your own drawing
functions with dynamic labels, push buttons, and toggle buttons. JAM handles all
processing for these widgets except for drawing them, although it does draw the
shading for push button widgets.

The most convenient place to attach a drawing function is at screenGamtey
attached, the drawing function is called whenever the widget needs to be painted,
drawn or refreshed, regardless of whether the paint message comes from the
window manager or from JAM.

For Macintosh applications, declare the drawing function as follows:
void drawfunc(Cpane *pane, Rect *rectangle, void *userData);

Therectangle amgument is &ect pointer to the area to be drawn; the

userData argument points to a useefined structure that contains the data to use
in the drawing operation. This pointer is the same one supplied agtimeest to
sm_attach_drawing_func 'sdata parameter

For Windows applications, declare the drawing function as follows:

int drawfunc(HWND handle, UINT message, WPARAM wParam,
LPARAM [Param);

TheHWNRgument is a handle to the widget. If the widget is a dynamic label, the
message aigument is &VM_PAINTmessage. If the widget is a push button or
toggle button, thenessage argument is &VM_DRAWITEMessage. For dynamic
labels, theParam andwParam aguments are not used. For push buttons or toggle
buttons, thevParam agument specifies the identifier of the widget that sent the
message, and thiearam amgument points to BRAWITEMSTRUCStructure, which
provides information on how to paint the widget.

Refer to MS Vihdows SDK documentation for details wm_PAINTand
WM_DRAWITEMessages, and tBRAWITEMSTRUQata structure.

Note: Because JAM draws the shading on a push button and toggle button, it
alters a field in the©RAWITEMSTRUGThich specifies theectangle to draw in.
The ectangle passed to tlleawfunc in thercitem field is reduced slightly to
account for the shading. Thieawfunc therefore should draw in the enér
rectangle that it is passed, and not draw any shading. FurthesrtteehDCitem in
the structue is alteed, allowing for faster display and less flashing.

JAM selects JAMs color palette into the device context. For a dynamic label, the
color palette is selected into the device context during¢gmPaint() call in
thedrawfunc . For a push button or toggle button, the palette is selected into the
memory device context befodeawfunc is called.

JAM 7.0 Language Reference

Motif Draw Function
Declaration

Example

sm_attach_drawing_func

After drawfunc returns, JAM draws the cursor or focus rectangle. JAM ignores
the return value fromdrawfunc .

For Moatif, declare the drawing function as follows:

void drawfunc(Widget wdgt, XtPointer xtpUserData, XtPointer
xtpCallBackData);

#include °smdefs.h°
int MyDrawingFunc(HWND, UINT, WPARAM, LPARAM);

[* sample drawing function */
int
MyDrawingFunc(hWnd, message, wParam, IParam)
HWND hwnd;
UINT message;
WPARAM wParam,;
LPARAM IParam;
{
PAINTSTRUCT ps;
HBRUSH hBrush;

BeginPaint(hWnd, &ps);

hBrush = CreateSolidBrush(RGB(0, 0, 255));
FillRect(ps.hdc, &ps.rcPaint, hBrush);
DeleteObject(hBrush);

EndPaint(hWnd, &ps);

return(0);

/* attach drawing function to widget number 2 */
if (sm_attach_drawing_func(2, MyDrawingFunc) == 1)

{
}

<< error handling >>

}

int MyButtonDrawingFunc(HWND, UINT, WPARAM, LPARAM);
_/* sample drawing function */

Il\r/1ltyButtonDrawingFunc(hWnd, message, wParam, IParam)
HWND hwnd;

Chapter 6 JAM Library Functions 167

sm_attach_drawing_func

168

UINT message;
WPARAM wParam;
LPARAM IParam;

{
DRAWITEMSTRUCT *dis;

HBRUSH hBrush;
dis = (DRAWITEMSTRUCT *)IParam;

hBrush = CreateSolidBrush(RGB(0, 0, 255));
FillRect(dist>hDC, &dist>rcltem, hBrush);
DeleteObject(hBrush);

return(0);

/* attach drawing function to widget number 3 */
if (sm_attach_drawing_func(3, MyButtonDrawingFunc) ==

{

<< error handling >>

}

JAM 7.0 Language Reference

sm_backtab

sm_backtab

Backtabs to the previous unprotected field

void sm_backtab(void);

Description sm_backtab moves the cursor to the first enterable position of the field with the
next-lowest field number that is tab-accessible. The following conditions can
modify this behavior:

The cursor is not in the current fieddirst enterable position and the field is
left-justified. In this casesm_backtab moves the cursor to the current fisld'
first enterable position.

The cursor is in a field with a previous-field property and one of the fields
specified by the property is accessible to tabbing. The cursor moves to the first
enterable position of that field.

The cursor is in the first position of the first unprotected field on the screen, or
before the first unprotected field on the screen. The cursor wraps backward
into the last unprotected field.

There are no unprotected fields. The cursor remains stationary
If the destination field is shiftable, it is reset according to its justification. The first
enterable position depends on the justification of the field and, in fields with
embedded punctuation, on the presence of punctuation.
This function does not immediately trigger field entyit, or validation
processing. This processing occurs according to the cursor position when control
returns tosm_input .

JAM calls this function when the JAM logical key BACK is struck.

See Also sm_home sm_last , sm_nl, sm_tab

Chapter 6 JAM Library Functions 169

sm_bel

sm_bel

Issues a beep from the terminal

void sm_bel(void);

Description

Example

170

sm_bel causes the terminal to beep, usually by transmitting the ASRTItode to
it. If there is @BELL entry in the video filesm_bel transmits that instead. This
usually causes the terminal to flash.

Even if there is n®ELL entry use this function instead of sendingEL, because
certain displays UsBEL as a graphics character

This function is automatically called when message text begin®agith

#include <smdefs.h>
/* Beep if cost is too high. */

if (sm_n_dblval(°cost®) > 1000.00)
sm_bel();

JAM 7.0 Language Reference

sm_bi_compare

sm_bi_compare

Compares widgets in the current table view with their before-image values

#include <tmusubs.h>

int sm_bi_compare(void);

Returns DM_TM_ERR_GENERALNO transaction or table view is available.

Successbone of the following constants:

Bl_UNCHANGEDOccurrence was not changed.

BI_DELETED: Occurrence was deleted.

Bl_INSERTED: Occurrence was inserted.

BI_KEY_NULLED A primary key field in the occurrence was cleared or set to
NULL

£sss

W BI_KEY_CHANGEDA primary key field in the occurrence was changed to a
nonNULL/non-empty value.
W BI_UPDATED A non-primary key field in the occurrence was changed.
Description sm_bi_compare compares an occurrence value with its before-image and returns
a code indicating the status of the comparison. The comparison codes are listed
above.

The occurrence is the current occurrence number as determined by
sm_tm_inquireTM_OCC . A positive occurrence number indicates an onscreen
occurrence. A negative occurrence number indicates a deleted occurrence; an
occurrence is deleted by the logical key DELL or by a calitai_doccur

In the standard transaction models, the requUast$NSERT TM_UPDATEand
TM_DELETEeach calbm_bi_compare . This allows the model to choose the
appropriate processing for a changed occurrence.

A special case exists when a reyprimary key value is set to emptyNwLL The
program can do this in one of the following ways:

Write an empty string to the field

Call sm_tm_command(°CLEAR®) .

Chapter 6 JAM Library Functions 171

sm_bi_compare

Example

172

Call sm_tm_clear .

In the standard models both thid_DELETEandTM_INSERTrequests test for
BI_KEY_CHANGERnNd both perform processing for this change. Therefore, if a
primary key value changes, the standard models delete the occurrence using the
before-image value of the primary key and insert a new occurrence using the
onscreen value of the primary kdihe model may be changed so thdt UPDATE
handles all updates, including primary key changes.

This function operates on the current table vikwe intended to be called from a
transaction model or hook function.

[* The following example taken from the standard

transaction model for JDB shows the processing for the
TM_UPDATE request. */

case TM_UPDATE:

/* Do nothing, except for updates */
occ_type = sm_bi_compare();
if (occ_type !'= BI_UPDATED)
{

break;
}
if (Ireuse_cursor)
{
save_cursor_type = 0;
}

reuse_cursor = 0;

sm_tm_push_model_event(TM_UPDATE_EXEC);
sm_tm_push_model_event(TM_UPDATE_DECLARE);
sm_tm_push_model_event(TM_GET_SAVE_CURSOR);
break;

JAM 7.0 Language Reference

sm_bi_copy

sm_bi_copy

Copies current values of a range of occurrences to before images

#include <tmusubs.h>

int sm_bi_copy(void);

Returns W 0: Success.
W DM_TM_ERR_GENERANO transaction or table view is available.
W DM_TM_ERR_MALLO®lemory allocation error

Description sm_bi_copy writes the current values of a range of occurrences to their respective
before-image occurrences. The starting occurrence is the value of
sm_tm_inquireTM_OCC and the range of occurrences is determined by the value
of sm_tm_inquire(TM_OCC_COUNT) . If TM_OCC_COUNTas a value of -1,
sm_bi_copy gets the number of occurrences in the table MieWM_OCdhas a
value of 1 andM_OCC_COUNTas -1sm_bi_copy copies every occurrence in the
table view Usesm_tm_iset to set the values GM_OCGNdTM_OCC_COUNT
before callingsm_bi_copy .

The SELECTtransaction command calisy_bi_copy for updatable and non-up
datable table views. It set8!_OCQo the first occurrence where data was fetched;
it setsTM_OCC_COUN®D the number of rows fetched. Therefara, bi_copy

copies each selected occurrence.

The standard transaction models eall bi_copy intheTM_POST_SAVEequest

if the current mode iSM_UPDATE_MOD#hdsm_bi_initialize was successful.
Notice that the models s&t_OCC_COUNS®D -1 before callingm_bi_copy . This
ensures that all onscreen occurrences are copied.

Chapter 6 JAM Library Functions 173

sm_bi_initialize

sm_bi_initialize

Initializes before-image data for widgets in the current table view

#include <tmusubs.h>

int sm_bi_initialize(void);

Returns W 0: Success. Before-image successfully initialized for the table view or the table
view has the Updatable property undearisaction set to No.
DM_TM_ERR_TBLNAMTEable view did not haveable property set.
DM_TM_ERR_PRIMARY_KETYable view did not have a Primary Key property
set.

DM_TM_ERR_COL_NOT_FOUNdget not found for primary key column.
DM_TM_ERR_MALLO®lemory allocation error

DM_TM_ERR_GENERAMNO transaction or table view is available.

\W
\W

2=

Description sm_bi_initialize initializes or reinitializes before-image data for the widgets
in the current table vievBefore-image describes the state of transaction data
before the user or program changes it.

The transaction commantiEWandSELECTcall sm_bi_initialize . For the
NEWcommand, the before-image for the table view is enfaiytheSELECT
command, a before-image is defined for each row in the select set.

To initialize the before-image structures, the function first examines the properties
of the current table view and the table viswiembers. It builds the table view'

insert list and update list and it verifies that the current table view can participate in
the before-image. If a table view has the Updatable property under Transaction set
to Yes, it must also have values in ttable and Primary Keys properties which

are located in the Database category

If the Table and Primary Key properties are not set,bi_initialize returns

an error Furthermoresm_bi_initialize verifies that a widget exists for each
column named by the table viessPrimary Keys propertyf the widget does not

exist in the current table viewhe transaction manager looks for a link that names
the current table view as a child. The criteria is satisfied if the primary key column
is named in the Relations property of the link and that property points to an
onscreen widget, a literal, or to a widget in the knarent table view (or the

parent of the server view). Otherwisen_bi_initialize returns an error

174 JAM 7.0 Language Reference

sm_bi_initialize

Thestandard transaction models call_bi_initialize as part of the
processing for th&eM_POST_SAVEequest. If an application has saved data while
in new or update mode, the models eall bi_initialize after the save

completes. This allows the application to use the current screen data as the starting
point for the next save.

For example, assume the application execiitesm_command(®NEWP°) to enter
new customer data. The user enters the data and the application executes
sm_tm_command(°SAVE?®) . If the save is successful (e.g., it generates and
executes a SQINSERT statement), the standard model cadis bi_initialize
before returning control to JAMolenter the customarspouse, the user can
change the appropriate fields and eall tm_command(°SAVE®) again. This is
also equivalent to callingm_tm_command(°COPY®°) after aSAVE

Similarly, for theSELECTcommand, the use efn_bi_initialize in the

standard models allows the application to continue updating the screen data after a
save. If customer data is fetched wdth_tm_command(°SELECT®) and the user
changes the customsmphone number and cadlsi_tm_command(°SAVE®) , the

model performs save processing (e.g., generates and execute3J2SQIE

statement) and, by default, cadla_bi_initialize . The user can continue

updating the onscreen data without re-selecting it. If the user enters a comment and
callssm_tm_command(°SAVE®) again, the transaction manager performs save
processing for all changes since the last calhtabi_initialize . Therefore, it

might generate and execute a SQRDATEstatement for the comment; it does not
repeat save processing for the earlier phone number change.

This function operates on the current table vikws intended to be called from a
transaction model or hook function.

Chapter 6 JAM Library Functions 175

sm_bkrect

sm_ bkrect

Sets the background color of a rectangle

int sm_bkrect(int start_line, int start_col, int num_of _lines, int num_of col,
int bkgr_colors);

start_line, Specifythe uppeteft corner of the area to set, where the valuesaof line

start_col andstart_column can range from 0 through the length and width of the screen
less 1, respectively

num_of_lines The length of the area to set.

num_of_cols The width of the area to set.

bkgr_colors The attributes to set as the asdaackground color

Environment Character-mode

Returns 0 Success.

1 The starting line and column are valid but the rectangle was truncated to fit.
-1 Invalid starting line or column.

Description sm_bkrect changes the background color of a rectangular area of the current
screen. The background color must be one of the constants defamed in
attrib.h . You can highlight the background color by OR'ing the background
color attribute withtB_HILIGHT .

All fields or elements that start inside the area have their background attributes
changed to the specified attribute. Display text inside the rectangular area has its
background attribute set. Make sure that fields or elements that change are entirely
inside the area; otherwise, a ragged edge results.

Example /* Draw some colored squares on the display*/
int colors[] =

B_RED,
B_BLUE,

176 JAM 7.0 Language Reference

sm_bkrect

B_WHITE,
B_CYAN

2
int mondrian(void)
{ .
int I;
for (i=0;i<sizeof(colors)/sizeof(int);i++)
sm_bkrect((i/2) * 10,(i & 1) * 40, 10, 40, colors][i]);

return(0);

Chapter 6 JAM Library Functions 177

sm_c_off

sm_c_off

Turns the cursor off

void sm_c_off(void);

Description sm_c_off tells JAM that the normal cursor setting i§ &fse this function when
all fields on the current screen are protected. The normal cursor settingféxin ef
except under these circumstances:

The cursor is dfwhen a block cursor is in use, as during menu processing.
The cursor is dfwhile screen manager functions are writing to the display
The cursor is on within certain error message display functions.

If the display cannot turn its cursor on antbo€EONandCOFentries are not
defined in the video filebthis function has ndfegt.

Usesm_c_on to turn the cursor on.

Example sm_ferr_reset(0, °Verify that the cursor is turned ON©);
sm_c_off();
sm_femsg(0, °Verify that the cursor is turned OFF°);
sm_c_on();

sm_femsg(0, °Verify that the cursor is turned ON°);

See Also sm_c_on

178 JAM 7.0 Language Reference

sm_c_on

Turns the cursor on

void sm_c_on(void);

Description

Example

See Also

sm_c_on

sm_c_on tells JAM that the normal cursor setting is on. The normal setting is in
effect except under these circumstances:

The cursor is dfwhen a block cursor is in use, as during menu processing.
The cursor is dfwhile screen manager functions are writing to the display
The cursor is on within certain error message display functions.

If the display cannot turn its cursor on antbo€EONandCOFentries are not
defined in the video filebthis function has nofegt.

Usesm_c_off to turn the cursor &f

sm_ferr_reset(0, °Verify that the cursor is turned ON®);
sm_c_off();

sm_femsg(0, °Verify that the cursor is turned OFF°);
sm_c_on();

sm_femsg(0, °Verify that the cursor is turned ON°);

sm_c_off

Chapter 6 JAM Library Functions 179

sm_c_vis

sSm_c_Vis

Turns the cursor position display on or off

void sm_c_vis(int display);

display Specifieswhether to turn the cursor position display on ér of

0 causes subsequent status line messages to be displayed without tfe cursor
position display

Non-zero displays subsequent status line messages with the £psition
display This includes background status messages. Messages that would
overlap the cursor position display are truncated.

Description sm_c_vis toggles display of the cursor position on anfdastording to the value
of display . This function has no fefct if theCURPOSnNtry in the video file is not
defined. In this case, the cursor position display never appears.

JAM uses an asynchronous function and a status line function to perform the
cursor position displayf either one is already installesin_c_vis overrides it.

Example #include <smdefs.h>
#include <smkeys.h>

/* Toggle the cursor position display on or off when
* the PF10 key is struck. The first time the key is

* struck, it will go on.

*/

static int cpos_on = 0;

switch (sm_input(IN_DATA))

case PF10:
sm_c_vis (cpos_on "= 1);

180 JAM 7.0 Language Reference

sm_calc

sm_calc

Executes a math expression

int sm_calc(int field_number, int occurrence, char *expression);

field_number

occurrence

expression

Returns

Description

Example

Thefield to use for relative field referenceseixpression ; otherwise, set to 0.

The occurrence ifield_number to use for relative field references in
expression ; otherwise, setto 0.

A math expression. Refer to page 316 inEd#ors Guidefor information on
creating math expressions.

0 Success
-1 A math error occurred.

sm_calc lets you execute a math expression. Use this function to perform-mathe
matical operations that use the contents of one or more fields and then insert the
result into a field.

The first two parameterield_number andoccurrence identify the field and
occurrence with which the calculation is associatedefer to the current field
and occurrence, supply 0 for both parameters.

If, in the event of a math errgrou want the cursor to move a specific field,
specify that field witHield_number . If the field is an array angtcurrence is
offscreen, JAM scrolls that occurrence into view

/* Compute payment due date. */

sm_calc (0, 0, °paymentduedate = @date(shipdate) + 30°);

Chapter 6 JAM Library Functions 181

sm_cancel

sm_cancel

Resets the display and exits

void sm_cancel(int arg);

arg

Description

Example

182

A dummy agument that always has a value of 0. Thiguarent lets the C function
signal usesm_cancel as a signal handler

sm_initcrt installs this function to handle keyboard interrupts. cancel calls
sm_resetcrt to restore the display to the operating syssamefault state, and
exits to the operating system.

Depending on your operating system, you can also install this function to handle
conditions that normally cause a program to abort. If a program aborts with
sm_cancel installed, its call tem_resetcrt ensures that your terminal is
restored to its normal state.

/* the following program segment could be found in
* some error routines */

#include <smdefs.h>
if (error)

sm_fquiet_err(0,

°fatal error ++ can't continue\n°);
sm_cancel(0);

/* The following code can be used on a UNIX system to
* install sm_cancel() as a signal handler. */

#include <smdefs.h>
#include <signal.h>

signal (SIGTERM, sm_cancel);

JAM 7.0 Language Reference

sm_ckdigit

sm_ ckdigit

Validates data with a check digit function

int sm_ckdigit(int field_number, char *field_data, int occurrence, int modulus,
int minimum_digits);

field_number Thefield to validate. Ifield_number is 0,sm_ckdigit uses the data in
field_data . If an error occurs anitkld_number is 0, no message is posted.
field_data Specifies the data to validatefifid_data is null, the string to check is

obtained from théeld_number andoccurrence and an error message is
displayed if the string is bad.

occurrence The occurrence ifield_number to validate.

modulus Specifies the check digit algorithm to use. By defauit,ckdigit ~ supports mod
10 and mod 1 algorithms. For more information about the check digit algorithms,
see the source codesvh_ckdigit that is distributed with JAM.

minimum_digits The minimum number of digits required by the check digit algorithm.

Returns 0 The value ofield_number orfield data is valid.
-1 The field contents lack the minimum number of digits or proper check digit.
-2 field_data is a null pointer and the field or occurrence cannot be found.

Description sm_ckdigit checks whether the datafield_data oroccurrence contains
the required minimum number of digits and ends with the proper check digit. This
function is typically called by JAM at field validation; it uses the values in the
field's Check Digit and Minimum Digits property agiaments for parameters
modulus andminimum_digits , respectively

If you specify a field occurrence and its data is invalid, JAM issues an error
message before returning. If you eftl_number to 0 and supply invalid data
for field_data , JAM does not issue any message.

You can install your own check digit function to replage ckdigit . For more
information on installing functions, refer to padin theApplication Develop
ment Guide

Chapter 6 JAM Library Functions 183

sm_cl_all_mdts

sm_cl_all _mdts
Clears all MDT bits

void sm_cl_all_mdts(void);

Description sm_cl_all_mdts clears the MDT (modified data tag) bit of every occurrence,
both onscreen andfofor every field on the current screen.

JAM sets an occurrenceMDT flag when it is modified after the screen entry
function returns, either because of keyboard entry or a call to a function like
sm_putfield . A field undegoes validation only if its MDT bit is set.

To clear an individual field MDT bit, set itsndt property to O.

Example #include <smdefs.h>

/* Clear MDT for all fields on the screen. Then write */
* data to the last field, and check that its MDT is */
* the first one set. */

int occurrence;
int numflds;

sm_cl_all_mdts();

numflds = sm_inquire (SC_NFLDS);

sm_putfield (numflds, °Hello®);

if (sm_tst_all_mdts (&occurrence) != numflds)
sm_ferr_reset (O,
°Something is rotten in the state of Denmark.°);

See Also sm_tst_all_mdts

184 JAM 7.0 Language Reference

sm_cl_unprot

sm_cl_unprot

Clears all unprotected fields

void sm_cl_unprot(void);

Description sm_cl_unprot erases onscreen andsofeen data from all fields that are unpro
tected from clearingbthat is, thetlearing_protect property is set to No.
Date and time fields that take system values are reinitialized. Fields with a Null
Format are reset to their null indicator values.

This function is normally bound to the CLR key

Example [* The following code clears all unprotected fields
* and puts the cursor into the first one. */

sm_cl_unprot ();
sm_home ();

Chapter 6 JAM Library Functions 185

sm_clear_array

sm_*clear_array

Clears all data in an array

int sm_clear_array(int field_number);

int sm_n_clear_array(char *field_name);
int sm_1clear_array(int field_number);
int sm_n_1clear_array(char *field_name);

field_name,
field_number

Returns

Description

Example

186

A field in the array to clear

0 Success.
-1 The field does not exist.

sm_clear_array clears all data from the array that contdigis_number or
field_name and resets the number of occurrences in the array to 0. The array is
cleared even if it is protected from clearing.

sm_1clear_array =~ andsm_n_1clear_array only clear the specified array;
sm_clear_array ~andsm_n_clear_array also clear arrays synchronized with
the array unless they are protected from clearing.

[* Clear the entire array of ®hames® and arrays
* synchronized with ®names®. */
sm_n_clear_array(°names®);

/* Clear the °totals® column of a screen,

* without clearing arrays synchronized with °totals®. */
sm_n_1clear_array(°totals®);

JAM 7.0 Language Reference

sm_close_window

sm_close_window

Closes the current window

int sm_close_window(void);

Returns

Description

Example

0 Success.
-1 Nowindow is open.

sm_close_window closes a screen opened as a windownioyrwindow |,
sm_r_at_cur , or one of their variants.

sm_close_window erases the currently open window and restores the screen to its
state before the window opened. If LDB processing is activelstore writes

data from the named fields to the LDB; otherwise, all window data is lost. If the
closed window was spawned by another one, JAM makes the parent window the
current one and restores the cursor to its last position in that window

JAM automatically callsm_close_window when you close a form with
sm_jclose .sm_jclose callssm_jform to pop the form stack and calls
sm_close_window to empty the forns window stack.

Note: sm_close_window does not close the baseesen in a window stackbthat
is, the active form.dlclose the active form, calin_jclose

#include <smdefs.h>
#include <smkeys.h>

/* In a validation function, if the field contains a */
/* special value, open up a window to prompt for a */
/* second value and save it in another field. */

int validate (field, data, occur, bits)
char *data;
int field, occur, bits;

char buf[256];

if (bits & VALIDED)
return O;

Chapter 6 JAM Library Functions 187

sm_close_window

if (strcmp(data, °other®) == 0)

sm_r_at_cur (°getsecval®);
if (sm_input (IN_DATA) != EXIT)
sm_getfield (buf, 1);
else
buf[0] = 0;
sm_close_window ();
sm_n_putfield (°secval®, buf);

}
return O;
}
See Also sm_r_window , sm_wselect

188 JAM 7.0 Language Reference

sm_copyarray

sm_* copyarray

Copies the contents of one array to another

int sm_copyarray(int target_fnum, int source_fld);

int sm_n_copyarray(char *target_fname, char *source_name);

target_fnum,
target_fname

source_fnum,
source_fname

Returns

Description

An element in the array to receive the data.

An element in the source array

0 Success.
-1 One of the fields is not found, or thedat array in the LDB has a scope of 1
and cannot be written.

sm_copyarray andsm_n_copyarray copy the contents of the specified source
array into a taget arrayBoth functions set the MDT bit and clear th® NDED

bit for each destination array occurrence to indicate that the occurrence is modified
and needs validation.

Becausam_copyarray references fields by numbéhey must be on the current
screensm_n_copyarray looks for the named fields first in the current screen; if
the screen omits one or both of the specified arrays, the function looks for the
named entry in the current LDB. If found thessy,_n_copyarray gets the data
from or writes to that entry

Source and tget arrays must be compatible to ensure the integrity of the copied
data. Otherwise, JAM handlesféifences between the two arrays as follows:

If the source data is too long for itsgat, JAM truncates it automatically and
issues no warning.

If the data is too short, JAM pads thegtroccurrence with spaces.

If the taget array has fewer occurrences than the source aAlydiscards
the data in the extra occurrences.

Chapter 6 JAM Library Functions 189

sm_copyarray

If the taget array has more occurrences than the source afdslyclears the
data from the extra tget occurrences but maintains their allocation.

See Also sm_clear_array ,sm_getfield , sm_putfield

190 JAM 7.0 Language Reference

sm_create_bundle

sm_create_bundle

Creates a send bundle

int sm_create_bundle(char *bundle_name);

bundle_name

Returns

Description

The name of the bdiér, orbundle in which to store the send data. Bundle names

can be up to 31 characters longuYtan create up to ten bundles of send data in
memory One of these bundles can be unnamedsdehd andreceive

commands identify the unnamed bundle as the default bundle. Create an unnamed
bundle by supplying NULL gument or an empty string ().

0 Success.
-2 Memory allocation failure.

sm_create_bundle creates a new send bundle. The bundle initially is empty
After you create a bundle, you can append data items to it and send data to those
items throughsm_append_bundle_item andsm_append_bundle_data , re-
spectively.

If an existing bundle is already nama¢thdle_name , JAM frees the existing
bundle and replaces it with the new one. If ten bundles already are in memory
JAM removes the oldest bundle.

Chapter 6 JAM Library Functions 191

sm_d_msg_line

sm_d_msg_line

Displays a message on the status line

void sm_d_msg_line(char *message, int display_attr);

message

display_attr

Description

192

A pointer to the message to displ@y clear the message previously displayed
with this function, supply an empty string.

The display attribute to use foressage, one of the constants defined in
smattrib.h . A value of O clears the message previously displayed with this
function.

Foreground colors can be used alone or OR'd with one or more highlights, a
background colgrand a background highlight. If you do not specify a highlight or
a background colothe attribute defaults to white against a black background.
Omitting a foreground color causes the attribute to default to black.

sm_d_msg_line displays the contents afessage on the status line with an ini
tial display attribute oflisplay_attr . If the cursor position display is turned on
(seesm_c_vis), the end of the status line contains the cussturrent row and
column.

Messages displayed witim_d_msg_line override both background and field
status text. They remain on all screens until you clear the status line with another
call tosm_d _msg_line , wheremessage gets an empty string arnis-

play_attr gets 0. Once cleared, the previously overridden message redisplays.
The functionsm_d_msg_line is itself overridden bgm_ferr_reset and related
functions, or by the ready/wait message enableshbgetstatus

Several percent escapes let you control the content and presentation of status
messages. The character that follows the percent sign must be in uppercase. Note
that if a message containing percent escapes is displayed befargcrt is

called, the percent escapes appear in the message.

If a string of the formeAnnn appears anywhere in the message, the hexadecimal
numbemnnn is interpreted as a display attribute to be applied to the remainder of
the message. Use numeric values to specify the logical display attributes you need
to construct embedded attributes. These values are specified in the attributes table
on this books inside back covelf you want a digit to appear immediately after the

JAM 7.0 Language Reference

Example

See Also

sm_d_msg_line

attributechange, pad the attribute to 4 digits with leading zeros. If the following
character is not a legal hex digit, then leading zeros are unnecessary

If a string of the formskeyname appears anywhere in the mess&gegname is
interpreted as a logical key constant, and the whole expression is replaced with the
key label string defined for that key in the key translation file. If there is no label,
the%Kis stripped out and the constant remains. Key constants are defined in
smkeys.h .

If the message begins witht&B JAM beeps the terminal (usisg_bel) before
issuing the message.

/* The following prompt uses labels for the EXIT and
* return keys, and underlines crucial words. */

sm_d_msg_line (°Press %KEXIT to %A0027abort%A7, °
°or %KNL to %A0027continue%A7.%);

[* To clear the status line, use: */

sm_d_msg_line (°°, 0);

sm_ferr_reset , sm_msg

Chapter 6 JAM Library Functions 193

sm_dblval

sm_*dblval

Returns the value of a field as a double precision floating point

double sm_dblval(int field_number);

double sm_e_dblval(char *field_name, int element);
double sm_i_dblval(char *field_name, int occurrence);

double sm_n_dblval(char *field_name);

double sm_o_dblval(int field_number, int occurrence);

field_name, Thefield with the value to get.

field_number

element The element ifield_name with the value to get.
occurrence The occurrence with the value to get.

Returns >0 The real value of the field.

0 The field is not found.

Description sm_dblval returns the contents of the specified field as a double precision float
ing point. It callssm_strip_amt_ptr to remove extra amount editing characters
before it converts the data.

Example #include <smdefs.h>
I* Retrieve the value of a starting parameter. */
double param1;

paraml = sm_n_dblval (°param1°);

See Also sm_dtofield , sm_strip_amt_ptr

194 JAM 7.0 Language Reference

sm_dd_able

sm_dd_able
Turns LDB write-through on or off for all LDBs

int sm_dd_able(int flag);

flag Specifieswhether to turn LDB processing on of:of

0 Turn processing &fno data is exchanged between screens and LDBs.
1 Turn processing on for all LDBs loaded into memory

Returns The previous state of LDB write-through:

0 LDB write-through was dffor all LDBs.
1 LDB write-through was on for one or more LDBs.

Description sm_dd_able enables or disables data exchange between screens and all loaded
LDBs according to the value 6g . You can selectively activate and inactivate
write-through for individual LDBs througém_Idb_state_set

For more information about LDB processing, refer to page 191 iAppgcation
Development Guide

See Also sm_ldb_state_set

Chapter 6 JAM Library Functions 195

sm_dde_client_connect_cold

sm_dde_client_connect_cold

Creates a cold DDE link to a server

int sm_dde_client_connect_cold(char *server,char *topic,char *item,char *field);

server

topic

item

field

Environment

Returns

Description

See Also

196

The server applicatios' namebfor exampleWINWORD

The server topic, typically the file name of the spreadsheet or documentbfor
example SALES.DOC

The server itembfor exampl&DE_LINK1

The name of the JAM field to receive server data.

Windows

1 Success.
0 Failure.

sm_dde_client_connect_cold creates a cold DDE link between a JAM field

and a server application. Given a cold link, the server does not notify the client
JAM application of changes to linked data. The application must explicitly request
data updates by callirggn_dde_client_request

Before creating a link, JAM must be enabled as a client. JAM checks whether a
connection to the server application already existsbfor example, another open
screen has a link to this servémo connection exists, JAM attempts to establish
one. After JAM verifies or establishes a connection, it creates a cold link between
the JAM field and the specified topic and item.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

sm_dde_client_request

JAM 7.0 Language Reference

sm_dde_client_connect_hot

sm_dde_client_connect_hot

Creates a hot DDE link to a server

int sm_dde_client_connect_hot(char *server,char *topic,char *item,char *field);

server

topic

item

field

Environment

Returns

Description

The server applicatios' namebfor exampleWINWORD

The server topic, typically the file name of the spreadsheet or documentbfor
example SALES.DOC

The server itembfor exampl&DE_LINK1

The name of the JAM field to receive server data.

Windows

1 Success.
0 Failure.

sm_dde_client_connect_hot creates a hot DDE link between a JAM field and
a server application. Given a hot link, the server automatically updates the JAM
field whenever the linked data changes.

Before creating a link, JAM must be enabled as a client. JAM checks whether a
connection to the server application already existsbfor example, another open
screen has a link to this servémo connection exists, JAM attempts to establish
one. After JAM verifies or establishes a connection, it creates a hot link between
the JAM field and the specified topic and item.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

Chapter 6 JAM Library Functions 197

sm_dde_client_connect_warm

sm_dde_client_connect_warm

Creates a warm DDE link to a server

int sm_dde_client_connect_warm(char *server,char *topic,char *item,char *field);

server

topic

item

field

Environment

Returns

Description

See Also

198

The server applicatios' namebfor exampleWINWORD

The server topic, typically the file name of the spreadsheet or documentbfor
example SALES.DOC

The server itembfor exampleDE_LINK1

The name of the JAM field to receive server data.

Windows

1 Success.
0 Failure.

sm_dde_client_connect_warm creates a warm DDE link between a JAM field
and a server application. Given a warm link, the server notifies the client JAM ap
plication of changes to linked data. Howewle application must explicitly e

guest data updates by calligg_dde_client_request

When the server notifies JAM that linked data has changed, JAM checks whether a
callback function is installed and uses it to notify the application; otherwise, it uses
its own callback function. Usam_dde_install_notify to install a callback

function.

Before creating a link, JAM must be enabled as a client. JAM checks whether a
connection to the server application already existsbfor example, another open
screen has a link to this servémo connection exists, JAM attempts to establish
one. After JAM verifies or establishes a connection, it creates a warm link between
the JAM field and the specified topic and item.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

sm_dde_client_request , sSm_dde_install_notify

JAM 7.0 Language Reference

sm_dde_client_disconnect

sm_dde_client_disconnect

Destroys a DDE link to a server

int sm_dde_client_disconnect(char *server,char *topic,char *item,char *field);

server

topic

item

field

Environment

Returns

Description

The server applicatios' namebfor exampleWINWORD

The server topic, typically the file name of the spreadsheet or documentbfor
example SALES.DOC

The server itembfor exampl&DE_LINK1

The name of a JAM field on the active screen.

Windows

1 Success.
0 Failure.

sm_dde_client_disconnect destroys a client DDE link on the active screen. If
the link specified is the last link to a server application, JAM also closes the con
nection to that server

Note: When a s&en closes, JAM automatically dests its DDE links.

Chapter 6 JAM Library Functions 199

sm_dde_client_off

sm_dde_client_off
Disables DDE client activity

void sm_dde_client_off(void);

Environment Windows
Description sm_dde_client_off
See Also sm_dde_client_on
200

prevents JAM from acting as a DDE client.

JAM 7.0 Language Reference

sm_dde_client_on
Enables DDE client activity

void sm_dde_client_on(void);

Environment Windows
Description sm_dde_client_on
See Also sm_dde_client_off

Chapter 6 JAM Library Functions

lets JAM act as a DDE client.

sm_dde_client_on

201

sm_dde_client_paste_link_cold

sm_dde_client_paste_link _cold

Creates a cold DDE paste link between a JAM field and a server

int sm_dde_client_paste_link_cold(char *field);

field

Environment

Returns

Description

202

Thename of the JAM field to receive server data.

Windows

1 Success.
30 Failure.

sm_dde_client_paste_link_cold requests a cold DDE paste link between a
JAM field and a server application. JAM gets the clipboard data and its sourceb
servertopic, and item. Subsequent requests to update data use this source informa
tion to get new data from the serv@iven a cold paste link, the server does not

notify the client JAM application of changes to linked data. The application must
explicitly request data updates by callsry_dde_client_request

Before creating a paste link, two conditions must be true:
The clipboard must contain data copied from the server
JAM must be enabled as a client.

JAM checks whether a connection to the server application already existsbfor
example, another open screen has a link to this séfrwerconnection exists, JAM
attempts to establish one. After JAM verifies or establishes a connection, it creates
a cold link between the JAM field and the data source.

This function can succeed only if the server application is already running;

otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

JAM 7.0 Language Reference

sm_dde_client_paste_link_hot

sm_dde_client_paste_link_hot

Creates a hot DDE paste link between a JAM field and a server

int sm_dde_client_paste_link_hot(char *field);

field

Environment

Returns

Description

Thename of the JAM field to receive server data.

Windows

1 Success.
30 Failure.

sm_dde_client_paste_link_hot requests a hot DDE paste link between a

JAM field and a server application. JAM gets the clipboard data and its sourceb
servertopic, and item. Subsequent requests to update data use this source informa
tion to get new data from the serv@iven a hot paste link, the server automatical

ly updates the JAM field whenever the linked data changes.

Before creating a paste link, two conditions must be true:
The clipboard must contain data copied from the server
JAM must be enabled as a client.

JAM checks whether a connection to the server application already existsbfor
example, another open screen has a link to this séfrwmerconnection exists, JAM
attempts to establish one. After JAM verifies or establishes a connection, it creates
a hot link between the JAM field and the data source.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

Chapter 6 JAM Library Functions 203

sm_dde_client_paste_link_warm

sm_dde_client_paste link_warm

Creates a warm DDE paste link between a JAM field and a server

int sm_dde_client_paste_link_warm(char *field);

field

Environment

Returns

Description

204

Thename of the JAM field to receive server data.

Windows

1 Success.
30 Failure.

sm_dde_client_paste_link_warm requests a warm DDE paste link between a
JAM field and a server application. JAM gets the clipboard data and its sourceb
servertopic, and item. Subsequent requests to update data use this source informa
tion to get new data from the serv@iven a warm paste link, the server notifies

the client JAM application of changes to linked data. Howekerapplication

must explicitly request data updates by calkng dde_client_request

When the server notifies JAM that linked data has changed, JAM checks whether a
callback function is installed and uses it to notify the application; otherwise, it uses
its own callback function. Usam_dde_install_notify to install a callback

function.

Before creating a paste link, two conditions must be true:
The clipboard must contain data copied from the server
JAM must be enabled as a client.

JAM checks whether a connection to the server application already existsbfor
example, another open screen has a link to this séfrwerconnection exists, JAM
attempts to establish one. After JAM verifies or establishes a connection, it creates
a warm link between the JAM field and the data source.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

JAM 7.0 Language Reference

sm_dde_client_request

sm_dde_client_request

Requests data from a DDE server

int sm_dde_client_request(char *server,char *topic,char *item,char *field);

server

topic

item

field

Environment

Returns

Description

See Also

The server applicatios' namebfor exampleWINWORD

The server topic, typically the file name of the spreadsheet or documentbfor
example SALES.DOC

The server itembfor exampl&DE_LINK1

The name of a JAM field on the active screen.

Windows

1 Success.
0 Failure.

sm_dde_client_request requests data from a DDE serv@all this function to
update cold and warm link data on JAM screens.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message.

sm_dde_client_connect_cold , Sm_dde_client_connect_warm ,
sm_dde_client_paste_link_cold , Sm_dde_client_paste_link_warm

Chapter 6 JAM Library Functions 205

sm_dde_execute

sm_dde_ execute

Sends a command to a DDE server

int sm_dde_execute(char *server,char *topic, char *command);
server Theserver applicatios' namebfor exampleW?VINWORD
topic The server topic, typically the file name of the spreadsheet or documentbfor

example SALES.DOC

command A command in the server applicatisrsyntax.
Environment Windows
Returns 1 Success.
0 Failure.
Description sm_dde_execute sends a command from a JAM client to a server application.

The server decides how to execute this command.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message.

See Also sm_dde_poke

206 JAM 7.0 Language Reference

sm_dde_install_notify

sm_dde_install_notify

Installs a callback function that executes on changes in warm link data

void sm_dde_install_notify(void (*callback) (char *, char *));

callback The name of the callback function to install.

Environment Windows

Description sm_dde_install_notify installs a function that JAM calls when it gets netifi

cation from a server that warm link data has changed. If no callback function is
installed, JAM uses its own callback function to notify the application. After the
application is natified, it must explicitly request the data by calling
sm_dde_client_request

JAM supplies two ayuments to a callback function: the name of the screen, and
the name of the field that contains the link data.

Declare a callback function as follows:

void callback(char* screenname,char *fieldname);

Example /* Function to notify user of new data via a message and
a checkbox.*/
#include °smdefs.h°

void notify(s_name, f_name)
char *s_name;
char *f_name;

{
int g_occur; [* group occurrence number */
char *g_name; [* group name */
char buff[128];

sprintf(buff,°New data available for %s on %s°,
f_name,s_name);
sm_d_msg_line (buff,10);

Chapter 6 JAM Library Functions 207

sm_dde_install_notify

[* Locate next field, get group name, and use it to set a
checklist item indicating that new data is available.
*/

g_name=sm_ftog(sm_e_fldno(f_name,0)+1,&g_occur);
sm_select(g_name,g_occur);

See Also sm_dde_client_request

208 JAM 7.0 Language Reference

sm_dde_poke

sm_dde_poke

Pokes data into a DDE server

int sm_dde_poke(char *server,char *topic,char *item,char *data);

server

topic

item

data

Environment

Returns

Description

See Also

The server applicatios' namebfor exampleWINWORD

The server topic, typically the file name of the spreadsheet or documentbfor
example SALES.DOC

The server itembfor exampl&DE_LINK1

The data to send to the setver

Windows

1 Success.
0 Failure.

sm_dde_poke sends unsolicited data from a JAM client to a server application.
The server decides whether to accept or reject this data. A connection to the server
must already exist; howevex link to the specified topic and item is not required.

sm_dde_execute

Chapter 6 JAM Library Functions 209

sm_dde_server_off

sm_dde_server_ off

Disables DDE server activity

void sm_dde_server_off(void);

Environment Windows
Description sm_dde_server_off
See Also sm_dde_server_on
210

prevents JAM from acting as a DDE server

JAM 7.0 Language Reference

sm_dde_server_on

sm_dde_server _on

Enables DDE server activity

void sm_dde_server_on(void);

Environment Windows
Description sm_dde_server_on enables JAM to act as a DDE server
See Also sm_dde_server_off

Chapter 6 JAM Library Functions 211

sm_delay_cursor

sm_delay cursor

Changes the state of the mouse pointer

int sm_delay_cursor(int state);

state

Returns

Description

212

Specifiesthe cursots new state with one of thesgaments:

SM_AUTO_BUSY_CURSOR

Toggles the mouse pointer between the default cursor and the delay cursor
depending on whether the application is awaiting input or not. The default cursor
appears whenever JAM is awaiting input.

SM_BUSY_CURSOR
Changes the mouse pointer into the delay cursor

SM_DEFAULT_CURSOR
Restores the default cursor

SM_SAME_CURSOR

Leaves the mouse pointer unchanged. Use thistant to get the pointarcurrent
state.

SM_TEMP_BUSY_CURSOR

Temporarily changes the mouse pointer to the delay cuiibt restores the
mouse pointer to the default cursor after JAM refreshes the screen.

W The mouse point&s previous state, one of thggaments specified for the pa
rameterstate , excludingSM_SAME_CURSOR

sm_delay _cursor sets the mouse pointer to be either the default cursor or the
delay cursaror gets the mouse pointercurrent state, according to the value of
state . It can also specify to change the cursstate automaticallgepending on
whether the application is awaiting input or not.

JAM 7.0 Language Reference

sm_delay_cursor

You can set the default cursor for a screen through the Pointer prdperty
Windows and Motif, the default cursor is an arrdlue delay cursor in Wdows is
an houglass; in Motif, the delay cursor is usually a wristwatch icau ¥an
change Motifs default cursor through tipeinterShape resource.

Because charactenode JAM does not change the mouse pointer shape,
sm_delay_cursor resets the background status line message to the value of
SM_WAITor SM_READNote that you can turn background status messages on and
off throughsm_setstatus

Chapter 6 JAM Library Functions 213

sm_deselect

sm_deselect

Deselects an occurrence in a selection widget group

int sm_deselect(char *group_name, int grp_occurrence);
group_name Thename of the group with the item to deselect.
grp_occurrence The occurrence igroup_name to deselect.
Returns -1 Arguments do not reference an occurrence.

0 Occurrence not previously selected.
1 Occurrence previously selected.

Description sm_deselect lets you deselect an occurrence within a selection widget group.
You can usem_select to select a group occurrence.

See Also sm_select

214 JAM 7.0 Language Reference

sm_dicname

sm_dicname

Sets the repository name

int sm_dicname(char *filespec);

filespec

Returns

Description

Example

Chapter 6 JAM Library Functions

Therepositorys name and, optionallpath. If no path is specified, JAM searches
for the file according to the paths specifie SMPATH

0 Success.

-1 Insuficient memory

-2 Unable to findilespec

-3 filespec is not a repository

sm_dicname sets the name of the repository to open in F\dtreen editoiYou

can also specify a repository by setting MDICNAMEariable in your setup file

to the desired repositog/hame. During an editing session, you can close and open
repositories through the screen edidfile menu. Only one repository can be open
at a time.

#include <smdefs.h>

I* Set the name of the application's repository
* to /usr/app/common.dic .*/

sm_dicname (°/usr/app/common.dic®);

215

sm_disp_off

sm_disp_off

Gets the cursor's offset in the current field

int sm_disp_off(void);

Returns .0 Thedifference between curserposition and the start of the field.
-1 The cursor is not in a field.

Description sm_disp_off returns the dference between the fieklfirst position and the cur
rent cursor locatiorsm_disp_off ignores ofscreen data.d get the total cursor
offset in a shiftable field, usan_sh_off .

See Also sm_sh_off

216 JAM 7.0 Language Reference

sm_dlength

sm_*dlength

Gets the length of a field's contents

int sm_dlength(int field_number);
int sm_e_dlength(char *field_name, int element);

int sm_i_dlength(char *field_name, int occurrence);

int sm_n_dlength(char *field_name);
int sm_o_dlength(int field_number, int occurrence);

field_name,
field_number

element

occurrence

Returns

Description

Example

Thefield with the data to evaluate.

The element ifield_name with the data to evaluate.

The occurrence in the field with the data to evaluate.

.0 Length of field contents.
-1 The field is not found.

sm_dlength returns the length of the data in the specified field or occurrence of a
field. The length includes any data that is shiftddaséen and therefore out of

view. The length excludes leading blanks in right-justified fields, and trailing
blanks in left-justified fields.

#include <smdefs.h>

[* Save the contents of the °rank® field in a buffer
* of the proper size. */

char *save_rank;

if ((save_rank = malloc (sm_n_dlength (°rank®) + 1)) == 0)

{
report_error (°malloc error.°);
}
else
{
sm_n_getfield (save_rank, °rank®);
}

Chapter 6 JAM Library Functions 217

sm_do_uinstalls

sm_do_uinstalls

Installs an application's hook functions

void sm_do_uinstalls(void);

Description

See Also

218

Hook functions are installed with the library functism_install . The call to this
function is typically but not necessarjlynade bysm_do_uinstalls , whose
source is irfunclist.c

sm_do_uinstalls is usually called by the main function. The provided source
code calls the library functiosm_install to install dummy function lists.o0
should replace these dummy calls with your own installation calls.

In general, you should install hook functions after the calfrtanitcrt , which
initializes the displayOne exception applies: you should always install an
initialization function before the call tm_initcrt

For more information about installing hook functions, refer to pa§drithe
Application Development Guide

sm_initcrt , sm_install

JAM 7.0 Language Reference

sm_doccur

sm_*doccur

Deletes occurrences from a field

int sm_i_doccur(char *field_name, int occurrence, int count);
int sm_o_doccur(int field_number, int occurrence, int count);

field_name, Thefield with the occurrences to delete.

field_number

occurrence The first occurrence to delete in the array specifiefielty number or
field_name

count The number of occurrences to delete, starting wdtlarrence . If you supply a

negative value, JAM inserts new occurrences abow@rence , with the same
restrictions that apply tem_ioccur .

Returns .0 The number of occurrences deleted.
-1 The field or occurrence number is out of range.
-3 Insuficient memory available.

Description sm_i_doccur andsm_o_doccur delete data fromount occurrences, starting
with occurrence . If the array is scrolling, JAM then deallocatesnt occur
rences. JAM moves up data in the occurrences after the last-deleted occurrence to
prevent gaps in the array

If count is equal to or greater than the number of allocated occurrences, JAM
deletes all data from the array

If other arrays are synchronized with this asme, doccur performs the same
operation on them, provided their Clearing Protect property is set to No.
sm_doccur ignores the ta@et arrays Clearing Protect setting.

You can usem_doccur to insert new occurrences in a field by supplying a
negative value fotount . You can achieve the samédeet withsm_ioccur .

This function is normally bound to the logical key DELL.

See Also sm_ioccur

Chapter 6 JAM Library Functions 219

sm_drawingarea

sm_*drawingarea

Gets a handle to the current screen that can be passed to the window manager

#include <smmcuser.h>

CPane *sm_mc_drawingarea(void);

#include <smmwuser.h>

HWND sm_mw_drawingarea(void);

#include <smxmuser.h>

Widget sm_xm_drawingarea(void);

Environment

Returns

Description

See Also

220

Macintosh,Motif, Windows

W Success: On Macintosh, a pointer to a Cpane; imuldws, an HWND handle
to the window; on Motif, a \idget ID.
W Failure: NULL if there is no current screen.

sm_mc_drawingarea ,sm_mw_drawingarea andsm_xm_drawingarea geta
handle to the current screenbin the case of Macintosh, a pointer to a CPane, for
Windows, a HWND handle; under Motif, aifget ID. Use these functions with
sm_translatecoords to place objects such as bitmapped graphics or custom
widgets on a JAM screen. Refersta_translatecoords for a Windows exam

ple that uses this function.

Note: The Vitlget ID thatsm_xm_drawingarea returns is not agcognizable X
widget type. Consequentlyjou cannot dictly call XmAddCallback with itoTuse
this Wdget ID, you must call XmAddEventHandler

sm_translatecoords , Sm_widget

JAM 7.0 Language Reference

sm_dtofield

sm_* dtofield

Writes a real number to a field

int sm_dtofield(int field_number, double value, char *format);

int sm_e_dtofield(char *field_name, int element, double value, char *format);

int sm_i_dtofield(char *field_name, int occurrence, double value, char *format);

int sm_n_dtofield(char *field_name, double value, char *format);

int sm_o_dtofield(int field_number, int occurrence, double value, char *format);

field_name,
field_number

element
occurrence
value

format

Returns

Description

Thefield to receivevalue .

The element ifield_name to receivevalue .
The occurrence in the field to receiaue .
The real number data to write.

Specifies the format to apply talue . To supply a value of O, cast thggament
as follows:(char *)0

0 Success.
-1 Thefield is not found.
-2 The field has a currency format but the formatted output is too wide for it.

sm_dtofield converts the real numbedilue to useireadable format as speci
fied byformat . It then moves this value into the specified field with a call to
sm_amt_format . If theformat string is emptyJAM determines the numbBer
precision from the field Format ype subproperty if Data Formatting property is
set to Numeric. Otherwise, it uses the precision set by the setup varble
IMAL_PLACES

You can round the number of decimal places ptaces with the format string
%%. nf° . To truncate, use the format stritegt. nfo .

Chapter 6 JAM Library Functions 221

sm_dtofield

Example

See Also

222

/* Place the value of pi on the screen, using the
* formatting attached to the field. */

sm_n_dtofield (°pi°, 3.14159, (char *)0);

/* Do it again, using only three decimal places.
sm_n_dtofield (°pi®, 3.14159, °%5.3f°);

sm_amt_format , sm_dblval

JAM 7.0 Language Reference

sm_femsg

sm_femsg

Displays an error message and awaits user acknowledgement

void sm_femsg(int msg_num, char *message);

msg_num

message

Description

Windowversus Status
Line Display

Message
Acknowledgement

A JAM message numhbédf you supply a string value fonessage , JAM ignores
this parameter

The error message to displdyp use thensg_numspecified message, set this
parameter tolULL

sm_femsg displays the specified message either on the status line or in a pop-up
window and awaits user acknowledgement. This function also calls the error hook
function if one is installed.

By default, GUI versions of JAM always display messages in a pop-up window
with an OK button. Charactenode JAM always displays messages in a window
only if the configuration variabIFIESSAGE_WINDQA®Vset toALWAYSIf you set

this variable toWHEN_REQUIRE(he default), JAM displays messages on the
status line except when these conditions occur:

The message overflows the status line. Note that JAM prevents the message
from overlapping the cursor row/column displdyt is turned on.

The message wraps to multiple lines.
You specify window display with tHéwWormat option.

Note: You can foce display of a message to the status line on all GUI and
charactermode platforms,egadiess oMESSAGE_WINDGVgetting, if the
message contains teeMwption, or the setup variabER_KEYUSHS set to
ER_USE

Users can dismiss the error message by pressing the acknowledgembnakey
window-displayed message, OK and space bar also serve to dismiss the error
message. The acknowledgement keybby default, space barbcan be set through
the setup variablER_ACK_KEYIf the user acknowledges the message through the
keyboard, JAM discards the keyou can modify this behavior for individual
messages through tk@Mwption, described later

Chapter 6 JAM Library Functions 223

sm_femsg

MessageAppearance
and Behavior

224

Severalketup variables determine default message presentation and hefavior
more information about these variables, refer to page 26 @dhéguration
Guide You can change these defaults at runtime threugloption .

You can change message behavior and appearance for individual messages by
embedding percent escape options in the message text. Use these options after the
call tosm_initcrt ; otherwise, the percent characters appear as literals.

%A attr-value

Change the display of the subsequent string tatthealue-specified attribute,
whereattr-value is a fourdigit hexadecimal value. If the string to get the attribute
change starts with a hexadecimal digit.f), padattr+value with leading zeros to
four digits. Refer to dble 4 in theConfiguration Guiddor valid attribute values.

This option is valid only for messages that display on the status line. JAM ignores
this option if the message displays in a window

%B

Beep the terminal withm_bel before the message displays. This option must be
at the beginning of the message.

%K key-logical

Display key label for logical kewherekey-logical is a logical key constant. When
JAM displays the message, it replakeglogical with the key label string defined

for that key in the key translation file. If there is no label %ixés stripped out and
the constant remains. Key constants are defineshkeys.h

Note: If %Kis used in a status line message, the user can push tlesponding
logical key onto the input queue by mouse-clicking on the key label text.

%Md

Force the user to press the acknowledgmentkRyACK_KEYin order to dismiss
the error message. JAM discards the key that is pressed. If the user presses any
other key JAM displays an error message or beeps, depending on how setup
variableER_SP_WINDSs set. ThesMdoption corresponds to the default message
behavior when setup variall#® _KEYUSHS set taER_NO_USE

This option must precede the message text.

%Mt [time-out]

Force temporary display of message to the status line. JAM automatically

dismisses the message after the specified timeout elapses and restores the previous
status line displaylimeout specification is optional; the default timeout is one

second. ¥u can specify another timeout in units of 1/10 second with this syntax:

JAM 7.0 Language Reference

See Also

sm_femsg

#(n)

wheren is a numeric constant that specifies the timadetigth. Ifn is more than
one digit, the value must be enclosed with parentheses. For example, this statement
displays a message for 2 seconds:

err =sm_femsg (0, °%Mt(20)°Changes saved to database.°);

Theuser can dismiss the message before the timeout by pressing any key or mouse
clicking. JAM then processes the keyboard or mouse input.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement k&xM then discards any keyboard input.

This option must precede the message text.

%Mu

Force message display to the status line and permit any keypress to serve as both
error acknowledgment and data enfi&M processes the key that is pressed. This
option must precede the message text. This option corresponds to default message
behavior when setup variall# R _KEYUSHS set tcER_USE

If the message is too long to fit on the status line, JAM displays the message in a
window: In this case, users can dismiss the message only by choosing OK or by
pressing the acknowledgement key or spacelddr then discards any keyboard
input used to dismiss the message.

%N
Insert a line break and force display of the message in a window

%W

Force display of the message in a wind®his option must be at the beginning of
the message.

sm_ferr_reset , sm_fqui_msg , sm_fquiet_err

Chapter 6 JAM Library Functions 225

sm_ferr_reset

sm_ferr_reset

Displays an error message and awaits user acknowledgement

void sm_ferr_reset(int msg_num, char *message);

msg_num

message

Description

Windowversus Status
Line Display

Message
Acknowledgement

226

A JAM message numhbdf you supply a string value fonessage, JAM ignores
this parameter

The error message to displdy use thensg_numspecified message, set this
parameter tolULL

sm_ferr_reset displays the specified message either on the status line or in a
pop-up window and awaits user acknowledgement. This function also calls the
error hook function if one is installed.

By default, GUI versions of JAM always display messages in a pop-up window
with an OK button. Charactenode JAM always displays messages in a window
only if the configuration variabIFIESSAGE_WINDQA®Vset toALWAYSIf you set

this variable toWHEN_REQUIRE(he default), charactenode JAM displays
messages on the status line except when these conditions occur:

The message overflows the status line. Note that JAM prevents the message
from overlapping the cursor row/column displéyt is turned on.

The message wraps to multiple lines.
You specify window display with thgwWormat option.

Note: You can foce display of a message to the status line on all GUI and
charactermode platforms,egadliess oMESSAGE_WINDGVgetting, if the
message contains theMwption, or the setup variabER_KEYUSHS set to
ER_USE

sm_ferr_reset andsm_femsg function identically when messages are displayed
in a window If the message is displayed on the status simeferr_reset forces
the cursor on at the current field and forcdgtdbal flagsm_do_not_display

Users can dismiss the error message by pressing the acknowledgembnakey
window-displayed message, OK and space bar also serve to dismiss the error
message. The acknowledgement keybby default, space barbBcan be set through

JAM 7.0 Language Reference

sm_ferr_reset

the setup variabl&R_ACK_KEYIf the user acknowledges the message through the
keyboard, JAM discards the kegyou can modify this behavior for individual
messages through theéMuwoption, described later

Several setup variables determine default message presentation and bEbavior
more information about these variables, refer to page 26 @dhéguration
Guide You can change these defaults at runtime thraugloption

You can also change message behavior and appearance for individual messages
through percent escapes embedded in the message text. Refer to page 224 for a
description of percent escapes.

See Also sm_femsg, sm_fqui_msg , sm_fquiet_err

Chapter 6 JAM Library Functions 227

sm_fi_open

sm_fi_open

Finds a file and opens it in binary read-only mode

FILE *sm_fi_open(char *file_name);

file_name A pointer to the name of the file to openfild_name 's full path name exceeds
84 characters, the file is skipped.

Returns W The file pointer to the open file stream.
w 0: The file cannot be found on any path.

Description sm_fi_open lets you open a file in binary read-only mode. The file can be any
kind of file, including a screen file.

JAM searches faile_name in the current directonthen along the path given to
sm_initcrt ~ , and finally along the path defined BMPATH

See Also sm_fi_path

228 JAM 7.0 Language Reference

sm_fi_path

sm_fi_path

Returns the full path name of a file

char *sm_fi_path(char *file_name);

file_name

Returns

Description

See Also

A pointer to the name of the file whose path is sought.

W A pointer to a static bédr that contains the path.
w 0: The file cannot be found on any path.

sm_fi_path finds the full path name of a file. The file can be a screen or any oth
er type of filesm_fi_path returns a pointer to a static Berfthat contains the
file's full path name.

JAM searches faoile_name in the current directonthen along the path given to
sm_initert , and finally along the path defined BMPATH

If the file is found, the full path name is returned to the célecause the static

buffer used to hold the full path name is shared by several functions, it should be
used or copied immediately

sm_fi_open

Chapter 6 JAM Library Functions 229

sm_filebox

sm_filebox

Opens a file selection dialog box

int sm_filebox (char *buffer, int length, char *path, char *file_mask,
char *title, int open_save);

buffer

length

path

file_mask

title

open_save

Returns

Description

230

Onreturn, contains the selected fddull pathname.

The length obuffer . Make sure thdength is lage enough to contain the
contents obuffer

The initial path for the directory tree.

A filter to narrow down the selection of filespath . Use at least one wildcard
character.

The text of the dialog bog'title. Titles are used only by applications that run under
Windows and in character mode. If you supply an empty string, JAM supplies
default titles according to the valueflafy : Open forFB_OPEN and Save As for
FB_SAVE

Specifies whether the file selection box lets users open or save a file; valid only for
applications running under Mows and character mode. Supply eitkigrOPEN
or FB_SAVE

1 Success: the user chose OK and JAM copied the filenam#féo .
0 The user chose Cancel. No text is copiebltter
-1 Failure: A malloc error occurred or the farfwas too small.

sm_filebox invokes a file selection box that lets users choose a file to open or
where to save a file. The dialog box initially displays the contents phkthe-spe-
cified directory and lists files that match the wildcard specificatiofilégnmask

Users can browse through the directory tree. When the user chooses OK,-JAM co
pies tobuffer the name of the file to open or save.

If you are running an application undeindfows or in character mode, JAM also
displays an option menu that lists the file types to open or save, according to the
value ofopen_save . JAM uses the selected option to change the types of files it
displays Yu specify the option mersitontents througém_filetypes

JAM 7.0 Language Reference

sm_filebox
Example #include °smdefs.h®

#define LEN 256
char buf [LEN];

sm_filebox(buf, LEN, °c:\videobiz®, °*.tbl°, °©°, FB_OPEN);

See Also sm_filetypes

Chapter 6 JAM Library Functions 231

sm_filetypes

sm_filetypes

Adds an option to the file type option menu

int sm_filetypes(char *option_text, char *filters);

option_text

filters

Environment

Returns

Description

See Also

232

Thetext of the option to display on the file type option menu.

A semicolon-separated list of file masks that specify the files selected through
description

Windows

0 The description is successfully added to the list.
-1 A memory allocation error occurred.

sm_filetypes defines a file type and adds it to the option menu that JAM dis
plays in the Vihdows file selection dialog box. This menu gives users an easy way
to specify which files to show in the current directory

You build the option menu through repeated callsricfiletypes . For example,
the following statements define two files typesxfland Executables:

sm_filetypes(°Text®, °* doc; *.txt°);
sm_filetypes(°Executables®, °*.com; *.exe; *.bat°);

Thedialog box subsequently invoked &y_filebox contains an option menu

with these file types. Options are displayed in order of their definition. Each call to
sm_filebox uses the current file type definitiong §hange the menu, first
reinitialize the current one by callisgn_filetypes with null pointer aguments,

as in this statement:

sm_filetypes(NULL, NULL);

sm_filebox

JAM 7.0 Language Reference

sm_fio_a2f

sm_fio_a2f

Writes the contents of an array to a file

int sm_fio_a2f(char *file_name, char *array_name);
file_name Thename of the tget file.
array_name The name of the source array
Returns 0 Success.
+4 SMFIO_IO_ERRORETrror during write operation.
+7 SMFIO_OPEN_ERRORJnable to open filebfor example, because the file does
not exist or is protected.
+8 SMFIO_FIELD_ERRORNOonexistent field.
+13SMFIO_GETFIELD Unable to read the fielsl'contents.
Description sm_fio_a2f writes the contents of the specified array to a file. The contents of
each occurrence are written as a single line to the file.
Example proc arrayZ2file()

vars fileName, retErr

/* get the file name sent from previous dialog */
receive DATA fileName

[* put array's contents into file */
retErr = sm_fio_a2f(fileName, °comments®)
if retErr 1= 0

{

msg emsg (°Error + error number :retErr°)

return

Chapter 6 JAM Library Functions 233

sm_fio_close

sm_fio_close

Closes an open file stream

int sm_fio_close(int file_stream);

file_stream

Returns

Description

See Also

234

A handle to the file to close, obtaineddny fio_open

Success.

SMFIO_INVALID_HANDLE Invalid file handle.
SMFIO_HANDLE_CLOSHandle points to closed file.
SMFIO_IO_ERRORStandard I/O errolCheck the value in system variable
errno to determine the nature of the error

+ H+ I+
ANRLO

sm_fio_close closes the specified file and releases its handle for rease. Y
should call this function after all read and write operations that require an open file
streambfor example, after callingm_fio_gets

This function is similar to the C functiddose , except thasm_fio_close
takes an integer gament so that it can be called from JPL.

sm_fio_open

JAM 7.0 Language Reference

sm_fio_editor

sm_fio_editor

Invokes an external text editor for an array

int sm_fio_editor(

array_name

Returns

Description

char *array_name);

Thename of the array whose contents you wish to edit.

0 Success.

+4 SMFIO_IO_ERRORStandard I/O erroCheck the value in system variable
errno to determine the nature of the error

+8 SMFIO_FIELD_ERRORNOonexistent field.

+9 SMFIO_FILE_TRUNCATE Array not lage enough to accept all file data; par
tial read was successful.

+10SMFIO_LINE_BREAK One or more lines in the file were too long and wrapped
to the next occurrence.

+11 SMFIO_NO_EDITORJAM setup variablSMEDITORSs undefined; no editor is
available to handle the operation.

+12SMFIO_PUTFIELD. Unable to write to the field.

+13SMFIO_GETFIELD Unable to read the fielsl’contents.

sm_fio_editor invokes the editor specified in the setup vari&eEDITORand
writes the contents afrray_name to a temporary file. Each occurrence is written
as a single line to that file.

When you exit the editpdAM writes the edited text back to the arrdM

attempts to write each line in the file to a single occurrence. If any line is too long
for its taget occurrence, JAM breaks the line and writes the overflow text to the
next occurrence. If the array contains too few occurrences to read the entire file,
sm_fio_editor discards the excess text.

Chapter 6 JAM Library Functions 235

sm_fio_error

sm_fio_error

Gets the error returned by the last call to a file /0O function

int sm_fio_error(

Returns

Description

236

void);

Success.

SMFIO_INVALID_HANDLE Invalid file handle.

SMFIO_HANDLE_CLOSHandle points to closed file.

SMFIO_EOF Already at end of file.

SMFIO_IO_ERRORStandard I/O errolCheck the value in system variable

errno to determine the nature of the error

+5 SMFIO_INVALID_MODE Invalid mode specified for open operation.

+6 SMFIO_NO_HANDLESAIl available file handles currently in use.

+7 SMFIO_OPEN_ERRORJnable to open the filebfor example, because it does
not exist or is protected.

+8 SMFIO_FIELD_ERRORNonexistent field.

+9 SMFIO_FILE_TRUNCATE Array not lage enough to accept all file data; par
tial read was successful.

+10SMFIO_LINE_BREAK One or more lines in the file were too long and wrapped
to the next occurrence.

+11 SMFIO_NO_EDITORJAM setup variablSMEDITORSs undefined; no editor is
available to handle the operation.

+12 SMFIO_PUTFIELD: Unable to write to the field.

+13SMFIO_GETFIELD Unable to read the fielgl'contents.

AWNPREFO

+ I+ 1+ I+

sm_fio_error gets the last value returned by a file I/O function. Use this func
tion after callingsm_fio_gets andsm_fio_handle , which respectively return
an empty string andULL when an error occurs. In both cases, you must call
sm_fio_error to determine the actual cause of the error

Note: Because the same errcode variable is shad by all JPL file /0 outines,

you should calém_fio_error befoe making any other 1/O operations with JAM
library functions.

JAM 7.0 Language Reference

sm_fio_error

Example [* Write the contents of an ASCII file to a singlet *
* line text array. The file stream handle was *
* obtained earlier by a call to sm_fio_open() *
*/

proc getStr()
{

vars str, occurNo, err, fileStream, maxOccurs
call sm_fio_error_set(0)

/* get array size */
maxOccurs = @widget(°comments®)+>max_occurrences

[* get file stream handle sent from previous dialog */
receive BUNDLE f_handle DATA fileStream

/* loop through array occurrences */
for occurNo =1 && err =0\

while (err == 0 && occurNo <= maxOccurs)
{

[* get the next string in file stream */
str = sm_fio_gets(fileStream, 32)

/* check for error condition like EOF */

if (str ==)
{

err = sm_fio_error()
}

/* read string into occurrence */
comments[occurNo] = str

}

/* close the file stream when done */
call sm_fio_close(fileStream)
return

Chapter 6 JAM Library Functions 237

sm_fio_error_set

sm_fio_error_set

Sets the file I/O error

int sm_fio_error_set(

new_error

Returns

Description

238

int new_error);

Theerror code to set, one of the file I/O error codes shown in the Returns section
below.

The value returned by the last call to a file I/O function, one of the following:

Success.

SMFIO_INVALID_HANDLE Invalid file handle.

SMFIO_HANDLE_CLOSHandle points to closed file.

SMFIO_EOF Already at end of file.

SMFIO_IO_ERRORStandard I/O errolCheck the value in system variable

errno to determine the nature of the error

SMFIO_INVALID_MODE Invalid mode specified for open operation.

+6 SMFIO_NO_HANDLE®AIll available file handles currently in use.

+7 SMFIO_OPEN_ERRORJnable to open the filebfor example, because it does
not exist or is protected.

+8 SMFIO_FIELD_ERRORNOonexistent field.

+9 SMFIO_FILE_TRUNCATE Array not lage enough to accept all file data; par
tial read was successful.

+10SMFIO_LINE_BREAK One or more lines in the file were too long and wrapped
to the next occurrence.

+11 SMFIO_NO_EDITORJAM setup variablSMEDITORSs undefined; no editor is
available to handle the operation.

+12SMFIO_PUTFIELD. Unable to write to the field.

+13SMFIO_GETFIELD Unable to read the fielsl'contents.

+ H+ -+ 1+
AWNRFO

I+
ol

sm_fio_error_set sets the error code for JABfile 1/0O processing functions.
Use this function to clear the last-reported error

For an example of this function, refersta_fio_error

JAM 7.0 Language Reference

sm_fio f2a

sm_fio_f2a

Writes a file's contents to an array

int sm_fio_f2a(

file_name

array_name

Returns

Description

Example

char *file_name, char *array_name);

Thename of the file to read.

The name of a JAM widget. Do not write to multiline text widgets; doing so can
yield unpredictable results.

0 Success.

+4 SMFIO_IO_ERRORStandard I/O erroCheck the value in system variable
errno to determine the nature of the error

+7 SMFIO_OPEN_ERRORJnable to open the filebfor example, because it does
not exist or is protected.

+8 SMFIO_FIELD_ERRORNOonexistent field.

+9 SMFIO_FILE_TRUNCATE Array not lage enough to accept all file data; par
tial read was successful.

+10SMFIO_LINE_BREAK One or more lines in the file were too long and wrapped
to the next occurrence.

+12 SMFIO_PUTFIELD: Unable to write to the field.

sm_fio_f2a writes the contents of a file to an arrAjl previous text in the array
is overwritten. If the array belongs to a synchronized scrolling group, the data of
other members in the group is uieated.

JAM attempts to write each line in the file to a single occurrence. If any line is too
long for its taget occurrence, JAM breaks the line and writes the overflow text to
the next occurrence. If the array contains too few occurrences to read the entire
file, sm_fio_editor discards the excess text.

proc file2array()
vars fileName, retErr

[* get file name sent from previous dialog */
receive DATA fileName

Chapter 6 JAM Library Functions 239

sm_fio_f2a

/* put file's contents into array*/
retErr = sm_fio_f2a(fileName, °comments®)

if retErr 1= 0

call io_errproc(retErr)
}
return

240 JAM 7.0 Language Reference

sm_fio_getc

sm_fio_getc

Reads the next bye from the specified file stream

int sm_fio_getc(int file_stream);

file_stream A handle to the required file stream, obtainedryfio_open

Returns .0 Next character in the file stream as an integer
+3 SMFIO_EOF Already at end of file.
+4 SMFIO_IO_ERRORStandard I/O erroCheck the value in system variable
errno to determine the nature of the error

Description sm_fio_getc reads a character from the specified file stream and returns the re
sult as an integethis function is similar to the C functidgetc and is intended
to read the contents of binary files.

Note: This function onlyeturns the ASCII integer value of tread character

Chapter 6 JAM Library Functions 241

sm_fio_gets

sm_fio_gets

Reads a line from a file

char *sm_fio_gets(

file_stream

maxlen

Returns

Description

242

int file_stream, int maxlen);

A handle to the required file stream, obtainedryfio_open

The number of bytes to read.

W A pointer to the string read frofite_stream
W An empty string if an error occurred.

sm_fio_gets readsmaxlen bytes from the current line fite_stream orto

the end of the line and returns that string. If the current line is shortenttxém ,
sm_fio_gets only reads up to the end of the line. If the current line is longer than
maxlen , the function returns oniyaxlen characters and sets the error code to
SMFIO_LINE_BREAK The next read operation on this file stream by

sm_fio_gets continues where the last read ended. This function strips newline
characters before reading it into the return value.

If the read operation fails, the function returns an empty string and sets the
appropriate error codeoy can get this error code by callisg_fio_error

Because an empty string can also be a valid return valuebfor example, the file
stream contains a blank linebyou should interleave calisdfio_gets ~ with

calls tosm_fio_error to determine whether an error condition exists and to
ascertain its naturem_fio_gets can set one of these error codes:

SMFIO_INVALID_HANDLE Invalid file handle.
SMFIO_HANDLE_CLOSE Handle points to closed file.
SMFIO_EOF Already at end of file.

SMFIO_IO_ERROR Standard 1/O erroilCheck the value in system \ari
ableerrno to determine the nature of the error

SMFIO_LINE_BREAK The line is longer thamaxlen characters.

JAM 7.0 Language Reference

Example

sm_fio_gets

Note: Because the same errcode variable is shad by all JPL file /0 outines,
you should calsm_fio_error befoe calling any other I/O library functions.

/¥ Write the contents of an ASCII file to a singlet *
* line text array. The file stream handle was *

* obtained earlier by a call to sm_fio_open() *
*/

proc getStr()

{
vars str, occurNo, err, fileStream, maxOccurs
call sm_fio_error_set(0)

[* get array size */
maxOccurs = @widget(°comments®)+>max_occurrences

[* get file stream handle sent from previous dialog */
receive BUNDLE f_handle DATA fileStream

[* loop through array occurrences */
for occurNo =1 && err =0\

while (err == 0 && occurNo <= maxOccurs)
{

[* get the next string in file stream */

str = sm_fio_gets(fileStream, 32)

/* check for error condition like EOF */

if (str ==)
{

err = sm_fio_error()
}

[* read string into occurrence */
comments[occurNo] = str

}

/* close the file stream when done */
call sm_fio_close(fileStream)
return

}

Chapter 6 JAM Library Functions 243

sm_fio_handle

sm_fio_handle

Gets a handle to an open file

FILE *sm_fio_handle(int file_stream);

file_stream A handle to the required file stream, obtainedryfio_open

Returns W FILE * pointer to the specified file.

W NULL Failurebfor example, the file is closed. Calh_fio_error to ascer
tain the nature of the failure.

Description sm_fio_handle gets &ILE * pointer to a JPL file stream opened by
sm_fio_open . You can pass this handle to routines written in C. This function lets
you write your own extensions to JAM file 1/O functions.

Note: This function cannot be callecbi JPL.

244 JAM 7.0 Language Reference

sm_fio_open

Opens the specified file and returns a handle to the JPL caller

int sm_fio_open(char *path, char *mode);

path

mode

Returns

Description

Table 7.

Pathname of file to open.

sm_fio_open

Describes the file typebbinary or textband type of access required, one of the

following constants described imble 7 in Description.

+ 1+ I+
~No o=

A handle to the opened file.
SMFIO_INVALID_MODE Invalid mode specified for open operation.
SMFIO_NO_HANDLE®AIl available file handles currently in use.
SMFIO_OPEN_ERRORJnable to open the filebfor example, because it does

not exist or is protected.

sm_fio_open

opens a file in the specified mode and returns an integer handle to a

file stream accessible only from JPL. Use this handle for all subsequent I/G opera
tions on the file stream in JPL.

You can open a file in one of the modes showraind 7:

File access modes

Mode identifier

Access description

r

rb

w

wb

a

ab

Open read-only text file.
Open read-only binary file.

Create write-only text file.

Create write-only binary file.

Open text file for append.

Open binary file for append.

Chapter 6 JAM Library Functions

245

sm_fio_open

Mode identifier ~Access description

r+b Open binary file for update.

w+b Create binary file for update.

a+b Open binary file for append or update.
Example /* this validation routine is attached to a

* push button on a dialog screen that gets
* usertentered name of a file and opens it
*/

vars fileStream, operation
receive BUNDLE mode DATA operation

if (operation == °wP°)
fileStream = getFileHandle (file, °w°)
if (operation == °r°)

{

fileStream = getFileHandle (file, °r°)

}
/* Allxpurpose routine for supplying file handles*/

proc getFileHandle (fileName, mode)
vars fileHandle

fileHandle = sm_fio_open(fileName, mode)
if fileHandle < 0

{

msg emsg °l/O error :fileHandle + reenter file name®
sm_n_gofield(°fileName®)

}

if fleHandle >= 0

send BUNDLE f_handle DATA fileHandle
}

return

246 JAM 7.0 Language Reference

sm_fio_putc

sm_fio_putc

Writes a single byte to an open file

int sm_fio_putc(int byte, int file_stream);

byte

file_stream

Returns

Description

An ASCII integer value to write. Attempts to write any other kind of valuebfor
example, a stringbyield an error

A handle to the file to write to, obtained &y_fio_open

Success

SMFIO_INVALID_HANDLE Invalid file handle.
SMFIO_HANDLE_CLOSHandle points to closed file.
SMFIO_IO_ERRORStandard I/O errolCheck the value in system variable
errno to determine the nature of the error

=+ + I+
ANPRLO

sm_fio_putc writes the specified integer characterba single bytebto a file
opened bym_fio_open . The value should be the integer value of an ASCII-char
acter Call this function only from JPL. Routines that are written in C should call
fputc . Do not call JAM and C functions on the same 1/O stream.

Be sure to cabm_fio_close onfile_stream after you finish writing the data;
the actual write operation is not complete until the handle to this file stream is
released.

Chapter 6 JAM Library Functions 247

sm_fio_puts

sm_fio_puts

Writes a line of text

to an open file.

int sm_fio_puts(char *string, int file_stream);

string

file_stream

Returns

Description

Example

248

Charactestring to be output.

A handle to the file to write to, obtained &y _fio_open

Success.

SMFIO_INVALID_HANDLE Invalid file handle.
SMFIO_HANDLE_CLOSHandle points to closed file.
SMFIO_IO_ERRORStandard I/O erroCheck the value in system variable
errno to determine the nature of the error

+ H+ -+
ANPEFO

sm_fio_puts writes the contents afring to the specified open file and-ap

pends a newlinen characterBe sure to caim_fio_close onfile_stream

after you finish writing the data; the actual write operation is not complete until the
handle to this file stream is released.

proc putStr()

{
vars str, occurNo, err, fileStream, maxOccurs
call sm_fio_error_set(0)

[* get array size */
maxOccurs = @widget(°comments®)+>max_occurrences

[*get file stream handle sent from previous dialog */
receive BUNDLE f_handle DATA fileStream

* loop through array occurrences */
foroccurNo=1 &&err=0\

while (err == 0 && occurNo <= maxOccurs)
{

[* get string in current occurrence */

str = comments[occurNo]

JAM 7.0 Language Reference

sm_fio_puts

[* put string into next line of file stream */
err = sm_fio_puts(str, fileStream)

}

/* close file stream when done */
call sm_fio_close(fileStream)
return

Chapter 6 JAM Library Functions 249

sm_fio_rewind

sm_fio_rewind

Resets the file stream to the beginning of a file

intsm_fio_rewind (int file_stream);
file_stream A handle to the file to rewind, obtained $¥_fio_open
Returns 0 Success.
+1 SMFIO_INVALID _HANDLE Invalid file handle.
+2 SMFIO_HANDLE_CLOSHEandle points to closed file.
+4 SMFIO_IO_ERRORStandard I/O erroCheck the value in system variable

errno to determine the nature of the error

Description sm_fio_rewind resets the specified file stream to the $ileéginningbfor exam
ple, in order to re-read a fiktontents.

250 JAM 7.0 Language Reference

sm_flush

sm_flush

Flushes delayed writes to the display

void sm_flush(void);

Description sm_flush performs delayed writes and flushes allferéd output to the displait
is called automatically bym_input when the keyboard is opened and there are no
keystrokes availablebthat is, typed ahead.

Frequent calls to this function can significantly slow execution. Because it is called
whenever the keyboard opens, the display is always up to date before data entry
occurs.

You must use this function if you want timed output or other non-interactive
display.

Example #include <smdefs.h>

/* Update a system time field once per second,
* until a key is pressed. */

while (Ism_keyhit (10))

{
sm_n_putfield (°time_now?®, °);
sm_flush ();

}

[* ...process the key */

See Also sm_m_flush , sm_rescreen

Chapter 6 JAM Library Functions 251

sm_form

sm_*form

Opens a screen as a form

int sm_d_form(char *screen_address);

int sm_|_form(int lib_desc, char *screen_name);

int sm_r_form(char *screen_name);

screen_address

lib_desc

screen_name

Returns

Description

252

A pointer to the screemaddress in memary

Specifies the library in whickcreen_name is stored, wherib_desc is an
integer returned bym_|_open . You must calkm_|_open before you read any
screens from a library

The name of the screen.

0 Success.

-1 Screen file format is incorrect; previous form still displayed and available.

-2 The screen cannot be found or the maximum allowable number of files is al
ready open; previous form still displayed and available.

-4 Unable to read the specified screen after the previous screen closed.

-5 Insuficient memory available to display the screen.

Use these functions only if you write your own executive. Because these functions
do not update the form stack, do not use them with the JAM executivpeh a

form while under the control of the JAM executive, use a JAM control string or
sm_jform .

sm_form displays the named screen as a form. In so doing, it discards the pre
viously displayed form and its window stack and frees their merfibl/screen
displays with its upper left-hand corner at the disglaygper left position (0,0).

If the function returns an error code of -1 or -2, the previously displayed form
remains on display and available for use. Other negative return codes indicate that
the display is undefined. The caller should display another form before using
screen manager functions.

JAM 7.0 Language Reference

Example

See Also

sm_form

If the form is stored in a libraryou can usem_|_form to display it. If the form
is memory-resident, you can use_d_form . sm_r_form looks for the form in all
possible areas, including the disk.

When you usem_r_form , JAM looks for the named screen in the following
locations in this order:

1. The memory-resident screen list; if fousdh_d_form displays the screen.
2. All open screen libraries; if foundm_| form displays the screen.

3. Ondisk in the current directary

4. Along the path supplied &n_initcrt

5. Along all paths in the setup varial$&PATH

JAM skips any file name that exceeds 84 characters. If the search fails,
sm_r_form displays an error message and returns.

You can save processing time by using d_form to display memory-resident
screens. Memory-resident screens are useful in applications with a limited number
of screens, and in environments with a slow disk. A memory-resident screen never
changes at runtime, so it can be made sharable on systems that support sharing
read-only datasm_r_form can also display memory-resident screens if they are
properly installed witlsm_formlist . To create memory-resident screens, use

bin2c to convert editable screens from disk files to program data structures that
you can compile into your application.

To display a windowusesm_r_at_cur , sm_r_window , or one of their variants.

#include <smdefs.h>
#include <setjmp.h>

[* If an abort condition exists, read in a special
* form to handle that condition, discarding all
* open windows. */

extern jmp_buf re_init;

if (sm_isabort (ABT_OFF) > 0)
{
sm_r_form (°badstuff°);
if (sm_message_box (°Do you want to continue?°, 0,
SM_MB_YESNO, 0) == SM_IDYES)
longjmp (re_init);
else sm_cancel ();

}

sm_r_window , sm_r_at_cur , sm_formlist

Chapter 6 JAM Library Functions 253

sm_formlist

sm_formlist

Updates the list of memory-resident files

int sm_formlist(struct

ptr_to_form_list

Returns

Description

Example

254

form_list *ptr_to_form_list);

A pointer to the form list to update.

0 Success.
-1 Insuficient memory is available for the new list.

sm_formlist ~adds JPL modules and screens to the memory-resident form list.
Each member of the list is a structure that contains the name of the JPL module or
screen as a character string and its address in me¥ioarysually call this func

tion frommain . You can also call it elsewhere in an application program te aug
ment to the memory resident list.

The library functionsm_r_form , sm_r_window , andsm_r_at_cur search for

the specified screen in the memory-resident list before they try to read it from disk.
Thecall command and library functiesm_jplcall ~ search the memory-resident
list when they look for a JPL procedure to execute.

Because no count is given with the list, be careful to end the list with a null entry
To make a JPL module or screen memory resident:

1. Use thenin2c utility to create a static C structure initialized with the binary
content of the object.

2. Compile and link the structure with the application executable.

Alternatively, read the object into memory after opening it with the function
sm_fi_open

#include <smdefs.h>
/* Add 2 screens to memory-resident form list. */

struct form_list new_list[] =

JAM 7.0 Language Reference

sm_formlist

{°new_form1°, new_form1},
{°new_form2°, new_formz2},
{0, 0}

%

sm_formlist (new_list);

See Also sm_rmformlist

Chapter 6 JAM Library Functions 255

sm_fptr

sm_*fptr

Gets the contents of a field

char *sm_fptr(int field_number);

char *sm_e_fptr(char *field_name, int element);
char *sm_i_fptr(char *field_name, int occurrence);

char *sm_n_fptr(char *field_name);

char *sm_o_fptr(int field_number, int occurrence);

field_name, Thefield with the data to get.

field_number

element The element that contains the data to get.
occurrence The occurrence that contains the data to get.
Returns W The field's contents.

W 0: The field cannot be found.

Description sm_fptr returns the contents of the specified field. JAM strips leading or trailing
blanks.

sm_fptr shares with several other functions a pool ofdrafwhere it stores

returned data. Consequentypu should immediately process or copy the value
returned by this function.

256 JAM 7.0 Language Reference

sm_fptr

Example #include <smdefs.h>
[* This function reports the contents of a field. */

void report (fieldname)
char *fieldname;

char buf[256], *stuf;
if ((stuf = sm_n_fptr (fieldname)) == 0)
return;
sprintf (buf, °Field '%s' contains '%s'",
fieldname, stuf);
sm_femsg (0, buf);
}

See Also sm_getfield , sm_putfield

Chapter 6 JAM Library Functions 257

sm_fqui_msg

sm_fqui_msg

Displays an error message preceded by a constant tag

void sm_fqui_msg(int msg_num, char *message);

msg_num

message

Description

See Also

258

A JAM message numhbdf you supply a string value fonessage , JAM ignores
this parameter

The message to display on the status limeuge thensg_num-specified message,
set this parameter tULL

sm_fqui_msg is identical tosm_femsg except that it prepends a tagbfor exam
ple, ERRORDto the specified messagem_fqui_msg gets the tag from the
SM_ERRORNtry in the message file. In GUIs, the_ERRORext is also preceded
by the stop icon.

For more information on options available for this function, refentaemsg .

sm_femsg, sm_ferr_reset , sm_fquiet_err

JAM 7.0 Language Reference

sm_fquiet_err

sm_fquiet_err

Displays an error message preceded by a constant tag

void sm_fquiet_err(int msg_num, char *message);

msg_num

message

Description

See Also

A JAM message numhbdf you supply a string value fonessage , JAM ignores
this parameter

The message to display on the status limeuge thensg_num-specified message,
set this parameter tULL

sm_fquiet_err is identical tasm_ferr_reset except that it prepends a tagb
for example ERRORDto the specified messagem_fquiet_err gets the tag
from theSM_ERRORNtry in the message file. In GUIs, thi_ERROReXt is also
preceded by the stop icon.

For more information on options available for this function, refer to
sm_ferr_reset

sm_femsg, sm_ferr_reset , sm_fqui_msg

Chapter 6 JAM Library Functions 259

sm_free_bundle

sm_free bundle
Destroys a send bundle

int sm_free_bundle(char *bundle_name);

The name of the bundle to destr@&upplyNULL or empty string to specify the
unnamed bundle.

bundle_name

Returns 0 Success.
-1 Invalid bundle name.

destroys the specified send bundle and frees the memory allo

Description sm_free_bundle
cated for it.
See Also sm_create_bundle

260 JAM 7.0 Language Reference

sm_*ftog

sm_ftog

Converts field references to group references

char *sm_ftog(int field_number, int *grp_occurrence);

char *sm_e_ftog(char *field_name, int element, int *grp_occurrence);

char *sm_i_ftog(char *field_name, int occurrence, int *grp_occurrence);

char *sm_n_ftog(char *field_name, int *grp_occurrence);

char *sm_o_ftog(int field_number, int occurrence, int *grp_occurrence);

field_name,
field_number

element

occurrence

grp_occurrence

Returns

Description

See Also

Thefield whose group name is sought.

The element ifield_name whose group hame and group occurrence number is
sought.

The occurrence in the specified field whose group name and group occurrence
number is sought.

On return, contains the group occurrence number that is currently in the specified
field.

W A pointer to the group name if found and, throggh occurrence 's output
value, the group occurrence number
W 0 otherwise andrp_occurrence is unchanged.

sm_ftog converts field references to group references. It returns the name of the
group that contains the referenced field, and puts thedigldup occurrence num
ber into the address pointed todyg_occurrence

Usesm_i_gtof to convert group references back into field references.

WARNING: This function returns a pointer to internal data that remains valid only
for the duration of the current screen. Do not change the pdirigrg so can
yield unpredictable and possibly disruptive results.

sm_i_gtof

Chapter 6 JAM Library Functions 261

sm_fval

sm_*fval

Forces field validation

int sm_fval(int field_number);

int sm_e_fval(char *array_name, int element);
int sm_i_fval(char *field_name, int occurrence);

int sm_n_fval(char *field_name);

int sm_o_fval(int field_number, int occurrence);

field_name,
field_number

element

occurrence

Returns

Description

262

Thefield to validate.

The element ifield_name to validate.

The occurrence in the specified field to validate.

0 Success.
-1 Unable to find the validation function specified for this field.
-2 The field or occurrence specification is invalid.

sm_fval performs all validations on the specified data and returns the result. If the
field is protected against validation, JAM aborts execution of the function and re
turns 0. \dlidations are done in the order listed bel®ame are skipped if the field

is empty or if itsVALIDED bit is already setbthat is, there is no data to verify or

the data already passed verification.

Property setting Skip if valid Skip if empty
Required = ¥s y n
Must Fill = Yes y y
Regular Exp =expr y y
Minimum Value =value y y

*For fields with a numeric format, the Empty Format propertgas$ this; see Chapter 14 in the
Editors Guide

JAM 7.0 Language Reference

sm_fval

Property setting Skip if valid Skip if empty
Maximum \alue =value y y

Check Digit =value y y

Table Lookup =expr y y

JPL \alidation n n
Calculation n n

No Validation = No n n

Data Formatting = Dateifhe y y

Data Formatting = Numeric y n*

*For fields with a numeric format, the Empty Format propertgas this; see Chapter 14 in the

Editors Guide

You can force skip-if-empty validation by making the field required. If a field has
embedded characters, JAM performs validation if it contains at least one character
that is neither blank nor punctuation; otherwise, it treats the field as.empty

Math expressions, JPL functions and field validation functions are never skipped,
because they can alter fields other than the one being validated.

Field validation is performed automatically witlsm_input when the cursor
exits a fieldsm_s_val validates all fields on a screen on screen exit. Application
programs should call this function only to force validation of other fields.

Example #include <smdefs.h>
[* Make sure that the previous field has been
* validated before checking the current one.
*/
validate (fieldnum, data, occurrence, bits)
int fieldnum, occurrence, bits;
char *data;
if (sm_fval (fieldnum % 1))

[* Put cursor in the previous field to show error */

Chapter 6 JAM Library Functions

263

sm_fval

sm_gofield (fieldnum + 1);
return 1;

}

See Also sm_n_gval ,sm_s_val

264 JAM 7.0 Language Reference

sm_get_bi_data

sm_*get _bi data

Returns the specified before-image data

#include <tmusubs.h>

char *sm_i_get_bi_data(char *field_name, int occurrence);
char *sm_o_get_bi_data(int field_number, int occurrence);

field_name Thefield whose before-image data is requested.

field_number

occurrence The field's occurrence numhek negative number indicates deleted before-image
data.

Returns W A pointer to the before-image data.

0 Error.

Description sm_get_bi_data retrieves the before-image data for the specified field and oc

currence.

Chapter 6 JAM Library Functions 265

sm_get_bundle_data

sm_get_bundle_data

Reads an occurrence of bundle item data

char *sm_get_bundle_data(char *bundle_name, int item_no, int occur);

bundle_name The name of the bundle to read. SupRlyLL or empty string to specify the
unnamed bundle.

item_no The bundle d6et of the item whose data you want to read. Each data item is
identified by its ofset within the bundle, where the first data item has fseDf
value of 1.

occur The occurrence to read fraram_no . If the data item contains only one

occurrence, supply a value of 1.

Returns W Success: A pointer to the lberf that gets the bundle data.
W Failure: NULL pointer

Description sm_get_bundle_data reads an occurrence from the data il@m_no and re
turns a pointer to the dasdocation. Each occurrence in a bundle item is a null-ter
minated string. Ibccur is greater than Em_get_bundle_data traverses the
bundle item until it finds the specified occurrence.

Because JAM reuses the memory location in which the bundle data is copied, you
should read this data immediately after calkng get_bundle_data

266 JAM 7.0 Language Reference

sm_get_bundle_item_count

sm_get_bundle_item_count

Counts the number of data items in a bundle

int sm_get_bundle_item_count(char *bundle_name);

bundle_name

Returns

Description

The name of the bundle. SuppiuLL or empty string to specify the unnamed
bundle.

.0 The number of items in the bundle.
-1 Invalid bundle name.

sm_get_bundle_item_count counts the number of data items in the specified
bundle. Yu can call this function before reading send data into a screen to ensure
that a data item exists for each receiving field, or to set a counter for successive
calls tosm_get_bundle_data orsm_append_bundle_data within a loop.

Chapter 6 JAM Library Functions 267

sm_get_bundle_occur_count

sm_get_bundle_occur_count

Counts the number of occurrences in a data item

int sm_get_bundle_occur_count(char * bundle_name, int item_no);

bundle_name

item_no

Returns

Description

Example

268

The name of the bundle. SuppgWuLL or empty string to specify the unnamed
bundle.

The bundle d&et of the item whose occurrences you want to count. Each data item
is identified by its dket within the bundle, where the first data item has tsebf
value of 1.

.0 The number of items in the bundle.
-1 Invalid bundle name or item number

sm_get_bundle_item_count counts the number of occurrences in the specified
data item. Use this function to get the number of occurrences in a data item. This
lets you supply the correctgument tosm_get_bundle_data to read the entire
contents of the item into a af. You can also use the functismreturn value to set

a counter for successive reads from thiddyuhto a taget field.

/* read data occurrences from a bundle data item
into a field

*/

char *occur_data, array_data;

int num_occurs, emp_name_occur;

emp_name_occurs = 1;

[*count the number of occurrences in the data item */
num_occurs = sm_get_bundle_occur_count(°®myBundle®, 1);

/*get item data and put into field*/
for (occur = 1;0ccur <= num_occurs;occur++, emp_name_occur++)
sm_i_putfield
(°emp_names®,
emp_name_occur,
sm_get_bundle_data(°myBundle®,1,occur);

JAM 7.0 Language Reference

sm_get_next_bundle_name

sm_get_next_bundle_name

Gets the name of the bundle created before the one specified

char *sm_get_next_bundle_name(char *bundle_name);

bundle_name The name of the bundle that precedes the bundle to get. Supplyto get the
most recently created bundle.

Returns W The name of the next bundle.
W Null pointer ifbundle_name does not exist or there are no more bundles.

Description sm_get_next_bundle_name returns the name of the bundle whose creation pre
ceded the one specified. Call this function iteratively inside a loop to traverse the
list of all existing bundles, from youngest to oldest.

Chapter 6 JAM Library Functions 269

sm_getfield

sm_* getfield

Copies the contents of a field

int sm_getfield(char *buffer, int field_number);

int sm_e_getfield(char *buffer, char *field_name, int element);
int sm_i_getfield(char *buffer, char *field_name, int occurrence);
int sm_n_getfield(char *buffer, char *field_name);

int sm_o_getfield(char *buffer, int field_number, int occurrence);

buffer

field_name,
field_number

element

occurrence

Returns

Description

270

Onreturn, contains the data copied from the specified field.

The field to copywherefield_name can be the name of a field or group.

The element to copy

The occurrence to copy

.0 The total length of the field'contents.
-1 The field cannot be found.

sm_getfield copies data from the specified field or occurrendaufier . JAM
omits leading blanks from right justified fields and trailing blanks from other fields
If you specify the field by name and the field is not on the screen, JAM looks for
the corresponding LDB entrif you call the function during screen entry proeces
sing, JAM first checks the LDB for an entryENTEXT_OPTIONS set to

LDB_FIRST.

Make sure thabuffer is laige enough to receive the figddtontentsbat least one
greater than the field'maximum length.

If you callsm_n_getfield on a radio button group that allows one selection,
buffer gets the group occurrence number of the selected item. For example, the
radio button groupating has the third occurrenceG+13, selected:

G
PG
PG £ 13

NC £ 17

JAM 7.0 Language Reference

sm_getfield

Giventhis selection, the following call ton_n_getfield puts the string3° into
buffer

retvar =sm_n_getfield (buffer, °rating®);

If you callsm_n_getfield on a group of widget types that allows multiple
selectionsbfor example, a check box groupbJAM puts the numbers of the
selected occurrences irtioffer . For example, thgenre check box group has
occurrences 1, 3, and 4 selected:

y Comedy
Mystery

y ScizFi

y Western

If you callsm_n_getfield ongenre , buffer gets the string 34 .

JAM sees a group'value as an array whose elements contain fhetsfof the
selected items. Thus, JAM stores the valugeafe as follows:

genre[l] =°1°
genre[2] = °3°
genre[3] = °4°
genre[4] =°°

sm_i_getfield gets the specified selection in the group. For example, this call
gets the second-selected itenyémre and puts its value, 3, intauffer

retvar =sm_i_getfield (buffer, °genre®, 2);

Example #include <smdefs.h>

/* Save the contents of the °rank® field in a buffer
* of the proper size. */

int size;
char *save_rank;

size = sm_n_dlength (°rank®);

if ((save_rank = malloc (size + 1)) == 0)
report_error (°malloc error.°);

else
sm_n_getfield (save_rank, °rank®);

See Also sm_dblval ,sm_fptr ,sm_intval , sm_Ingval , sm_putfield

Chapter 6 JAM Library Functions 271

sm_getkey

sm_getkey

Gets the logical value of the key hit

#include <smkeys.h>

int sm_getkey(void);

Returns W Thestandard ASCII value of a displayable key
W A value greater than 255 (FF hex) for a key sequence in the key translation
file.
Description sm_getkey gets and interprets keyboard input and returns its logical value. JAM

returns normal characters unchanged; it interprets logical keys according to the
current key translation fileam_getkey is called bysm_input and is not usually
called explicitly by the application program.

Logical keys include XMITEXIT, HELPR, arrows, data modification keys like INS,
user function keys PF1 - PF24, shifted function keys SPF1 - SPF24, and others.
Defined values for all are ikmkeys.h . Some logical keys like LP and REFR are
processed locally ism_getkey and are not returned to the caller

Usesm_getkey to retrieve logical key values previously pushed back on the input
stream bysm_ungetkey . Because all JAM input routines cath_getkey , you
can useam_ungetkey to generate any input sequence automatically

Whensm_getkey reads a key from the keyboard, it flushes the display first so the
user sees a fully updated display before typing on. This is not the case for keys
pushed back bym_ungetkey ; because input comes from the program, it is
responsible for updating the display itself.

sm_getkey can call a number of usarstalled functions. For information on
installing functions, see pagé&4din theApplication Development Guide

Like other JAM input functiongm_getkey checks for externally established
abort conditions on each iteration. If such a condition existsgetkey returns
the ABORT key and returns to its caller immediatebeesm_isabort

Note that JAM control strings are not executed within this function, but at a higher
level in JAM's runtime systembthat is, by functions that cal_getkey .

272 JAM 7.0 Language Reference

sm_getkey

Thefollowing outline shows how JAM processes_getkey . This presentation
omits key translation for the sake of clarity; for a description of that algorithm,
refer to page 474 of thispplication Development Guide

Step 1
If an abort condition exists, return the ABDRey.

If there is a key pushed back &y_ungetkey , return the key

If playback is active and a key is available, take it directly to Step 2; otherwise
read and translate input from the keyboard. When the keyboard is read and
remains inactive, JAM calls the asynchronous functions, if any are installed.

Step 2
Pass the key to the keychange function. If that function specifies to discard the
key, repeat step 1; otherwise, if an abort condition exists, return the ABOR
key.

If recording is active, pass the key to the recording function.

Step 3
If the routing table says to process the key locdityso.

If the routing table says to return the kesturn it; otherwise, return to step 1.

If the key is a soft keyreturn its logical value.

Example #include <smdefs.h>
#include <smkeys.h>

int query (text)
char *text;

{
int key;

sm_d_msg_line (text, REVERSE);
for ()
{
switch (key = sm_getkey ()
{
case XMIT:
case'y"
case'Y"
sm_d_msg_line (°°, WHITE);
return 1;

Chapter 6 JAM Library Functions 273

sm_getkey

default:
sm_femsg (0, °%Mu So it's 'no’);
sm_d_msg_line (°°, WHITE);
return O;
}
}
}

See Also sm_keyfilter ~ , sm_ungetkey

274 JAM 7.0 Language Reference

sm_gofield

sm_* gofield

Moves the cursor into a field

int sm_gofield(int field_number);

int sm_e_gofield(char *field_name, int element);
int sm_i_gofield(char *field_name, int occurrence);

int sm_n_gofield(char *field_name);

int sm_o_gofield(int field_number, int occurrence);

field_name, Thedestination field.
field_number

element The destination element.
occurrence The destination occurrence.odcurrence is offscreen, JAM scrolls it into view
Returns 0 Success.

-1 The field is not found.

Description sm_gofield puts the cursor in the first enterable position of the specified field or
occurrence, according to its justification. If the field is shiftable, it is reset. If the
field has embedded characters, the cursor goes to the nearest position unoccupied
by a punctuation charactétsesm_off_gofield to put the cursor elsewhere in
the field.

When called to position the cursor in a scrolling arsay o_gofield and
sm_i_gofield return an error if the occurrence number passed exceeds by more
than 1 the number of allocated occurrences in the specified array

This function does not immediately trigger field entyit, or validation
processing. This processing occurs according to the cursor position when control
returns tesm_input .

If a field validation function that callen_gofield is invoked by AB, JAM
executesm_gofield and moves the cursor to the specified field, then executes
the TAB. To prevent this extra tab, the validation function must return non-zero.
When non-zero is returned by a validation function, the Bellided property

is set to O (false). In this case, reset the property to 1 (true).

Chapter 6 JAM Library Functions 275

sm_gofield

Example #include <smdefs.h>

/* If the combination of this field and the previous
* one is invalid, go back to the previous for data
* entry. */

int validate (field, data, occur, bits)
int field, occur, bits;
char *data;

if (bits & VALIDED)
return O;

if (lookup (data, sm_fptr (field + 1)))
{

sm_novalbit (field + 1);

sm_gofield (field + 1);
sm_fquiet_err (0, °Lookup failed £\
please retenter both items.°);
return 1,

}

return O;

}

See Also sm_off_gofield

276 JAM 7.0 Language Reference

sm_i_gtof

sm_i_gtof

Converts a group name and group occurrence into a field number and occurrence

int sm_i_gtof(char *group_name, int grp_occurrence, int *occurrence);
group_name Thename of the group whose field number is sought.
grp_occurrence The occurrence igroup_name.

occurrence On return, contains the occurrence number of the field.
Returns .1 The field number

0 Cannot find the field.

Description sm_i_gtof converts a group name and group occurrence into a field number and
occurrence. This function lets you use other JAM library functions to manipulate
group fields by converting group references into field references. For example, to
access text from a specific field within a group, sreei_gtof to get the field and
occurrence numbgthen callsm_o_getfield to retrieve the text.

See Also sm_ftog

Chapter 6 JAM Library Functions 277

sm_n_gval

sm_n_gval

Forces execution of a group's validation function

int sm_n_gval(char *group_name);

group_name Thename of the group to validate.

Returns 0 Success.
-1 The group fails any validation.

-2 The group name is invalid.

sm_n_gval forces execution of a grougvalidation function. Note that since

Description
groups cannot be referenced by numbes function has only then_ variant.

See Also sm_fval ,sm_s_val

278 JAM 7.0 Language Reference

sm_hlp_by name

sm_hlp by name
Displays a JAM help window

int sm_hlp_by _name(char *help_screen);

help_screen The name of the help screen to display

Returns 0 Success.
1 Success: data was copied from the help screen to the underlying field.
-1 Screen was not found or another error occurred.

Description sm_hlp_by_name displays and processes the specified screen as a JAM help
screen. If the help screen has a data entry field, the function copies its data back to
the underlying field, as if the help screen were specified in thedigkiM Help
property and the user pressed HELP

Refer to Chapter 17 in tHeditors Guidefor information about JAM help screen
creation and behavior

Chapter 6 JAM Library Functions 279

sm_home

sm_home

Homes the cursor

int sm_home(void);

Returns

Description

See Also

280

.1 Thenumber of the field where the cursor is put.
0 Allfields on the screen are tab-protected and the home position is not in a pro
tected field.

sm_home moves the cursor to the first enterable position of the first tab-accessible
field on the current screen. JAM automatically calls this function when it processes
the logical key HOME.

The first enterable position in a field depends on the justification of the field and,
in fields with embedded characters, on the presence of punctuation. If all the
screers fields are tab-protectesin_home moves the cursor to the first line and
column (0,0) of the screen. If a tab-protected field occupies this position, JAM
places the cursor in that field. If you are using the JAM executive, the cursor might
be invisible on a screen whose fields are all tab-protected.

sm_homedoes not immediately trigger field entexit, or validation processing.
Processing is based on the cursor position when control retusnms itgut .

sm_backtab , sm_gofield ,sm_last ,sm_nl,sm_tab,

JAM 7.0 Language Reference

sm_inimsg

sm_inimsg

Creates a displayable error message on failure of an initialization function

char *sm_inimsg

filetype

error_code

Returns

Description

See Also

(int filetype, int error_code);

Specifiesthe source of the error through one of the following constants, defined in
smumisc.h :

B_E_KEYS
Error was generated lsyn_keyinit ~ or sm_n_keyinit

B_E_MSGS
Error was generated lsyn_msgread .

B_E_VID
Error was generated lsyn_vinit or sm_n_vinit

The error code returned by the initialization function.

W Success: A pointer to the error message.
w Failure: null pointer

sm_inimsg lets you display an error message to the user after an initialization
function failsbfor example, attempts to initialize a message file faili Yupply
sm_inimsg with the error code returned from the failed function and a description
of the function itself through parametergor_code andfiletype , respective

ly. sm_inimsg uses this information to return a string that you can display to the
userbfor example, by passing it ton_fqui_msg .

sm_keyinit , sm_msgread, sm_vinit

Chapter 6 JAM Library Functions 281

sm_initcrt

sm *initcrt

Initializes the display and JAM data structures

int sm_initcrt(char *path);

void sm_jinitcrt(char *path);

void sm_jxinitcrt(char *path);

path

Returns

Description

282

Specifieswhere to look for a screen file after JAM searches the current direlétory
you supply an empty string, JAM looks only in the current directory or in the paths
specified bySMPATHJAM searches for screen files in these areas:

1. The current directory
2. The directory specified byath .

3. The paths specified in the environment varigNe®ATH

W 0: Success.
W On an errgrsm_initcrt prints a descriptive message and terminates.

sm_initcrt is called automatically by the JAM executive. Use this function only
if you write your own executive.

A custom executive should calh_initcrt when screen handling startsbthat is,
before any screens display and the keyboard opens for screersimpguitcrt

can be preceded only by those functions that set options, saich@sion , and
those that install functions or configuration files suchrasinstall ~ or

sm_vinit

sm_initcrt performs these tasks:
1. Sets a path that JAM uses to search for screens.
2. Calls an optional usetefined initialization function. This function initializes

the character stringm_term . If sm_term contains the terminal type,
sm_initcrt ~ proceeds to step 4.

JAM 7.0 Language Reference

Example

See Also

sm_initcrt

Triesto ascertain the terminal type with this search algorithm:
W Looks for the variablSMTERNN the environment.

W Looks forSMTERNN SMVARS

W Looks for the systera TERMiIn the environment.

If neitherSMTERMI TERMare foundsm_initcrt ~ prompts the user to supply
the terminal type. If none is provided, the application terminates.

Finds and reads either the configuration file specified by the environment
variableSMVARSr the default configuration filemvars . Finds and reads
either the setup file specified by the environment variamMeARSDr the setup
file specified in the configuration file (if any).

Finds and reads the binary message file specifieeM8GSIf SMSGSannot
be found, JAM aborts initialization.

Finds and reads the binary video and keyboard files definetiyDEOCand
SMKEYrespectivelyThese variables are defineddmMVARSSMSETUPor the
environment.

Allocates memory for various data structures shared among JAM library
functions.

If supported by the operating system, traps keyboard interrupts to a routine
that clears the display and exits.

/* Toinitialize the screen manager without supplying
* a path for screens: */

sm_initcrt (°°);

sm_resetcrt

Chapter 6 JAM Library Functions 283

sm_input

sm_input

Opens the keyboard for data entry and menu selection

int sm_input(int initial_mode);

initial_mode SupplyIN_AUTO.

Returns W The key that terminated the callgm_input .
W The first character of the selected menu item.

Description sm_input opens the keyboard for data entry or menu selection. This function is
called automatically by the JAM executive; use it only if you write your own
executive.

sm_input callssm_getkey to get and process keyboard entihile in data entry
mode, ASCII data can be entered into fields according to their restrictions or
propertiessm_input returns when one of these events occurs:

A return entry field is filled or tabbed from.

It gets a logical key with the return bit set in the routing table.
If sm_getkey returns one of these logical keysBXMIEXIT, HELPR or a cursor

position keyba routing table determines how to process it. Routing options are set
by sm_keyoption

See Also sm_getkey , sm_isabort , sm_keyoption

284 JAM 7.0 Language Reference

sm_inquire

sm_inquire

Gets the value of a global integer variable

#include <smglobs.h>

int sm_inquire(int property);

property Specifiesthe global integer to get with one of the constants describeabie 8.
Returns .0 The current value of the global variable. If the variable can have a value of
true or falsesm_inquire returnsi for true and for false.
-1 Failure.
Description sm_inquire gets the integer value of the global variable specifiegrdperty

To modify the value of a global integer variable, siseiset .

Table 8 lists the constants that you can supply@maents foproperty

Table 8. Global integer variables

Constant Meaning

|_BLKFLGS Block mode turned on? (true/false)

|_BSNESS Screen manager controls display? (true/false).

I_INHELP Help level of current screen, or 0 if not in help.

I_INSMODE In insert mode? (true/false).

I_INXFORM In JAM screen editor? (true/false) Field validation routines are

generally still called when in editor; they can check this flag to
disable certain features.

I_MXCOLMS Number of columns available for use by JAM on the hardware
display.

I_MXLINES Number of lines available for use by JAM on the hardware dis
play.

Chapter 6 JAM Library Functions 285

sm_inquire

286

Constant

Meaning

I_NODISP

| _NOMSG
| _NOWSEL

SC_AFLDMDT

SC_AFLDNO

SC_AFLDOCC

SC_AGRPMDT

SC_BDATTR
SC_BDCHAR
SC_CCOLM
SC_CLINE

In non-display mode? (true/false). Initially set to false, setting
this variable to true causes no further changes to the actual dis
play, although JAMS internal screen image is kept up-to-date.

Error message display disabled? (true/false).

LDB meme of for sm_wselect ? (true/false) Normally false.
True can be useful for a quisk_wselect /sm_wdeselect
pair.

Bit mask that contains contextual information about the geld'
validation state and the circumstances under which a prototyped
field function was called. Corresponds to the fourth standard ar
gument passed to a non-prototyped field function.

Number of the field calling a prototyped field function. Cerre
sponds to the first of the four standarguanents passed to a
non-prototyped field function.

Occurrence number of the field calling a prototyped field func
tion. Corresponds to the third standarglement passed to a non-
prototyped field function. The second standagluiarent, can be
obtained fronsm_getfield orsm_o_getfield

Bit mask that contains information about the grewgalidation

state and the circumstances under which a prototyped group
function was called. Corresponds to the second of two standard
arguments passed to a non-prototyped group function. The first
standard ajument, a pointer to the group name, can be obtained
by thefldnum property of a member widget ana_ftog at

group entry and exit. Access to the group name at group valida
tion is not supported.

Border attribute of screen.
Border character of screen.
Current column number in screen (zero-based).

Current line number in screen (zero-based).

JAM 7.0 Language Reference

sm_inquire

Example if (sm_inquire(l_BSNESS))
sm_ferr_reset(0, °Problem #2!°);
else

fprintf(stderr,°Problem #2\n°);

See Also sm_iset ,sm_pinquire , sm_pset

Chapter 6 JAM Library Functions 287

sm_install

sm_install

Installs application hook functions

struct fnc_data *sm_install(int func_type,struct fnc_data funcs[],

int *num_fncs);

func_type

funcs

num_fncs

Returns

Description

288

Specifiesthe hook function type. For hook function types, refer to pa§erithe
Application Development Guide

The address of thfac_data structure or array of structures to install. Functions
to install withsm_install ~ are stored in fnc_data structure before installation.
For more information abotiic_data structures, refer to pagé&&.in the
Application Development Guide

To deinstall functions, séincs to 0. This removes all unprotected hook functions
of all functtype types.

Supply one of theseguments:
If an automatic function, null pointer

If a list of demand functions, the address of an integer whose value is the
number of functions to install.

On return, this parameter points to the number of entries in the function list.

W When installing an automatic hook with a single function, returns the address
of a bufer that contains a copy of the previously installed funcsioiata
structure. If no function was previously installed, returns zero.

W When installing a function list, returns a pointer to the list.

sm_install is typically used when you build a JAM application or authoring
executable. It compiles C functions and links them to BAMihction hooks. These
C functions can be JAM library functions or functions that you wsite install

can also install and deinstall functions at runtime.

The filefunclist.c , provided in source form with JAM, can be used as a
template for installing automatic and demand hook functions. This file contains

JAM 7.0 Language Reference

sm_install

samplefnc_data structure definitions and corresponding callsrtoinstall
Most of these calls are used to install dummy functions to the local function lists.
Replace these with your own installations.

Note that infunclist.c , calls tosm_install are made bgm_do_uinstalls
sm_do_uinstalls is called aftesm_initcrt , which calls the initialization hook
functions. Consequentlyou should not install an initialization hook function with
funclist.c

For specific examples of hook function installation, see pageritheApplication
Development Guide

Chapter 6 JAM Library Functions 289

sm_intval

sm *intval

Gets the integer value of a field

int sm_intval(int field_number);

int sm_e_intval(char *field_name, int element);

int sm_i_intval(char *field_name, int occurrence);

int sm_n_intval(char *field_name);

int sm_o_intval(int field_number, int occurrence);

field_name,
field_number

element

occurrence

Returns

Description

Example

See Also

290

Thefield whose value is sought.

The element ifield_name whose value is sought.

The occurrence in the field whose value is sought.

W The integer value of the specified field.
0 The field is not found.

sm_intval returns the integer value of the data contained in the specified field,
including its sign. All other punctuation characters are ignoresth Ifntval can
not find the field, it returns with 0. Because a field can contain a value of 0, you
should use another method to check whether the field exists.

[* Retrieve the integer value of the
* 0sequence? field. */

int sequence;

sequence = sm_n_intval (°sequence®);

sm_itofield

JAM 7.0 Language Reference

sm *ioccur

sm_ioccur

Inserts blank occurrences into an array

int sm_i_ioccur(char *field_name, int occurrence, int count);

int sm_o_ioccur(int field_number, int occurrence, int count);

field_name,
field_number

occurrence

count

Returns

Description

Thearray to receive new occurrences.

Specifies where to insert the first occurrence in the array specified by
field_number orfield name , where 0O inserts the new occurrences at the
beginning of the array

The number of new occurrences to insertolfnt is negative, occurrences are
deleted instead, subject to the same limitations describachfaioccur .

.0 The number of occurrences actually inserted.
-1 The field or occurrence number is out of range.
-3 Insuficient memory

sm_ioccur insertscount blank occurrences befooecurrence . If the array is
scrollablesm_ioccur can allocate up teount new occurrences. Before it inserts
these, JAM checks whether the arsaylaximum number of occurrence is equal or
greater thamount plus existing data-filled occurrences:

If trueP max-occurs . count + old-occurs BJAM insertscount blank
occurrences beforcurrence and pushes it and all subsequent occurrences
(old-occurs) down.

If falseb max-occurs < count + old-occursDJAM modifies the value of
count to equalmax-occurs - old-occurs; it then inserts as many blank
occurrences as it can befareeurrence without pushing any existing data
off they arrays end.

Note thatsm_ioccur never increases the maximum number of occurrences an
array can contain; you can do this by resetting the amays'occurrences

property.

Chapter 6 JAM Library Functions 291

sm_ioccur

Example

See Also

292

JAM inserts the same number of occurrences for synchronized arrays that are
unprotected from clearing. If a synchronized array is protected from clearing, JAM
leaves it unchanged. Thus, you can synchronize a protected array that contains an
unchanging sequence of numbers with an adjoining unprotected array whose data
grows and shrinks.

sm_o_ioccur is normally invoked by the logical key INSL.

#include <smdefs.h>
[* Insert five blank lines at the beginning of
an array named °amounts®. */

sm_i_ioccur (°amounts®, 0, 5);

sm_doccur

JAM 7.0 Language Reference

sm_is_bundle

sm_is_ bundle

Checks whether a bundle exists

int sm_is_bundle(char *bundle_name);

bundle_name The name of the bundle to verifgupplyNULL or empty string to specify the
unnamed bundle.

Returns 1 True: the bundle exists.
0 False: the bundle does not exist..

Description sm_is_bundle verifies the existence of the specified bundle.

Chapter 6 JAM Library Functions 293

sm_is_no

sm_*is_no

Tests a field for no

int sm_is_no(int field_number);

int sm_e_is_no(char *field_name, int element);
int sm_i_is_no(char *field_name, int occurrence);

int sm_n_is_no(char *field_name);

int sm_o_is_no(int field_number, int occurrence);

field_name, Thefield to test.
field_number

element The element ifield_name to test.
occurrence The occurrence in the field to test.
Returns 1 True: The fields first character matches the first character obtieNCentry

in the message file.
0 False, or failure.

Description sm_is_no compares the first character of the data in the specified field or-occur
rence to the first letter of tr&M_NQCentry in the message file, ignoring case. A re
turn of O (failure) does not indicate whether the failure occurred because the field
contains the value &M_YESor for another reasonoTest forSM_YES use
sm_is_yes .

You can use this function with one-letter fields that specify the yes/no character
edit. For these fields, users can enter only the vaMe¥ESor SM_NQor space (=
SM_NQ. Unlike other functionssm_is_no does not ignore leading blanks.

See Also sm_is_yes

294 JAM 7.0 Language Reference

sm_is_yes

sm_*is_yes

Tests a field for yes

int sm_is_yes(int field_number);

int sm_e_is_yes(char *field_name, int element);
int sm_i_is_yes(char *field_name, int occurrence);

int sm_n_is_yes(char *field_name);

int sm_o_is_yes(int field_number, int occurrence);

field_name, Thefield to test.
field_number

element The element ifield_name to test.
occurrence The occurrence in the field to test.
Returns 1 True: The fields first character matches the first character obtieYESentry

in the message file.
0 False, or failure.

Description sm_is_yes compares the first character of the data in the specified field or-occur
rence to the first letter of ti&M_YESentry in the message file, ignoring case. A
return of O (failure) does not indicate whether the failure occurred because the field
contains the value &M_NQor for another reasonoTest forsSM_NQuse
SM_IS _no .

You can use this function with one-letter fields that specify the yes/no character
edit. For these fields, users can enter only the vaMe¥ESor SM_NQor space (=
SM_NQ. Unlike other functionssm_is_yes does not ignore leading blanks.

See Also sm_is_no

Chapter 6 JAM Library Functions 295

sm_isabort

sm_isabort

Tests and sets the abort control flag

int sm_isabort(int flag);

flag

Returns

Description

Example

296

Theflag to set for abort control, one of the following definedritumisc.h :

ABT_ON
Set abort flag.

ABT_OFF
Clear abort flag.

ABT_DISABLE
Turn abort reporting &f

ABT_NOCHANGE
Do not alter the flag.

The previous value of the abort flag.

sm_isabort sets the abort flag to the valueflafj and returns the old value.
Abort reporting provides a quick way out of processing in the JAM libvamich
otherwise might involve nested callssta_input . The triggering event is the
detection of an abort condition byn_getkey , either an ABOR keystroke, or a
call to this function wit,ABT_ONbfor example, from an asynchronous function.

#include <smdefs.h>
/* Establish an abort condition */
sm_isabort (ABT_ON);

/* Verify that an abort condition exists, without
* altering it. */

if (sm_isabort (ABT_NOCHANGE) == ABT_ON)

JAM 7.0 Language Reference

sm_iset

sm_iset

Changes the value of a global integer variable

#include <smglobs.h>

int sm_iset(int property, int newval);

property Specifiesthe global variable to change with one of these constants:
Constant Value Meaning
I_INSMODE 0 Enter overtype mode.
1 Enter insert mode.
| _NOWSEL 0 LDB meme is on fosm_wselect .
1 LDB meme is of for sm_wselect , nhormally set to

0. A value of 1 is useful for a quick
sm_wselect /sm_wdeselect pair, for example, to
update a realtime clock.

I_NODISP 0 Enable updating of display
1 Disable updating of displagxcept for error mes
sages.
I _NOMSG 0 Display error messages.
1 Don't display error messages.
newval The new value to assign peoperty as shown in the previous table.
Returns .0 Success: The previous valuepodperty

1 True: The flag is set to on.
0 False: The flag is set tofof
-1 Failure.

Description JAM has a number of global parameters and settingssrsset to modify the
current value of global integerso §et the value of a global integase
sm_inquire

Chapter 6 JAM Library Functions 297

sm_iset

Example

See Also

298

If you want a process to run in the background, you can set b@bISP and

|_NOMSGto 1.

void insert_mode(int on_off);

sm_iset(l_INSMODE,on_off);
}

sm_inquire , sm_pinquire , sm_pset

JAM 7.0 Language Reference

sm_issv

sSm_issv

Checks whether a screen is in the saved list

int sm_issv(char *screen_name);

screen_name Thename of the screen to search in the saved list.
Returns 1 True: The screen is in the saved list.
0 False.
Description sm_issv searches the list of screens saved in memory for the specified screen.

Call this function on screen entry to avoid redundant database queries for previous
ly saved screens:

1. On screen exit, cadim_svscreen to add the screen to the save list.

2. Onscreen entrcallsm_issv to check the save list, to ascertain whether the
screen has already been displayed.

Example I* Perform database query only once */
/* on the screen °results®. */

if ('sm_issv(°results®))

{
/* do query . . .*/
sm_svscreen (screen_list, 1);

}

See Also sm_svscreen

Chapter 6 JAM Library Functions 299

sm_itofield

sm_*itofield

Writes an integer value to a field

int sm_itofield(int field_number, int value);

int sm_e_itofield(char *field_name, int element, int value);
int sm_i_itofield(char *field_name, int occurrence, int value);
int sm_n_itofield(char *field_name, int value);

int sm_o_itofield(int field_number, int occurrence, int value);

field_name, Thefield to write.
field_number

element The element ifield_name to write.

occurrence The occurrence in the field to write.

value The integer value to write to the field or occurrence.
Returns 0 Success.

-1 Failure: the field is not found.

Description sm_itofield convertsralue to a string and places it in the specified field. If the
string is longer than the field, JAM truncates it without warning on the left or right,
according to the field'justification.

Example /* Find the length of the data in field number 12 */

sm_n_itofield (°count®, sm_dlength (12));

See Also sm_intval

300 JAM 7.0 Language Reference

sm_jclose

sm_jclose

Closes the current window or form

int sm_jclose(void);

Returns 0 Success.
-1 Nowindow is openbfor example, the currently displayed screen is a formb

or no screen is displayed.

Description sm_jclose closes the active screen and restores the display to its state before the
screen opened. Usen_jclose only with the JAM executive.

When called for a formsm_jclose pops the form stack and cadla_jform to
display the screen on the top of the form stack. When called for a window
sm_jclose callssm_close_window . JAM redisplays the previous window on the
window stack and puts the cursor at its last-displayed position.

Example #include °smdefs.h°

[* This is an example of a control function attached to
*the XMIT key. It validates login and password

* information. If the login and password are

* incorrect, the program proceeds to close three of

* the four °security® windows used for getting a

* user's login and password information, and the

* user may again attempt to enter the information.

* If the password passes, the welcome screen is

* displayed, and the user may proceed.

*/

int complete_login(jptr);

char *jptr;

{
char pass[10];
sm_n_getfield(pass, °password®);
[*call routine to validate password*/
if(lcheck_password(pass))

[*close current password window*/

sm_jclose();

Chapter 6 JAM Library Functions 301

sm_jclose

/*close 3rd underlying login window*/
sm_jclose();

[*close 2nd underlying login window*/

sm_jclose();

/*in bottom window*/

sm_femsg(0, °Please reenter login and password®);

}

else

{
sm_d_msg_line(°Welcome to Security Systems,\
Inc.9);
[*open welcome screen*/
sm_jform(°Welcome®);

return (0);

}
See Also sm_close_window , sm_jform , sm_jwindow

302 JAM 7.0 Language Reference

sm_jform

sm_jform

Displays a screen as a form

int sm_jform(char *screen_name);

screen_name Thescreen to open as a form. This character string uses the same format as a JAM
control string that displays a form. Thiggament can optionally specify the fosm'
position on the physical displathe size of the viewport, and which portion of the
form to position in the viewpo”'top-left cornerFor information on control string
options, refer to page 109 Application Development Guide

Returns 0 Success.
-1 The screen files format is incorrect.
-2 The screen cannot be found.
-4 After the display cleared, the screen failed to display because of a read error
-5 After the display cleared, the system ran out of memory

Description sm_jform displays the specified screen as a form under JAM control. Use it only
with the JAM executive. If you are using your own executive,soallr_form or
one of its variants to display a forno @isplay a window under JAM control, use
sm_jwindow .

Whensm_jform opens a screen as a form, JAM discards the previously displayed
form and windows and frees their memal#M places the new form on top of the
JAM form stack. ¥u can usem_jclose to close the form, or let the JAM

executive handle itbfor example, when the user presses the EXIT key

Becausem_jform callssm_r_form , refer tosm_r_form for information on
other details, such as how JAM finds the screen to display

The following statement displaysyScreen 's first row and column at row 0,
column 0 of the physical display:

status = sm_jform(°myScreen®);
Thenext statement displays the screen at row 20, column 10 of the display:

status = sm_jform (°(20,10)myScreen®);

Chapter 6 JAM Library Functions 303

sm_jform

Example

See Also

304

This statement display the screen at row 20, column 10 of the physical display in

viewport that is 15 rows by 8 columns:

status =sm_jform(°(20,10,15,8)myScreen®);

A screen can be Iger than its viewport. If the viewport does not fit on the physical
display where indicated, JAM tries to place it entirely on the display aftesedtit
location. If you specify a viewport that is dgr than the physical displahe

viewport is the size of the physical displd@g change the viewport size after the
screen is displayed, set the applicable viewport properties.

#include °smdefs.h®
/* This could be a control function attached to the
* XMIT key. Here we have completed entering data
* on the second of several security screens. If

* the user entered °bypass® into the login, he

* bypasses the other security screens, and the

* Owelcome® screen is displayed. If the user
*login is incorrect, the current window is

* closed, and the user is back at the initial

* screen (below). Otherwise, the next security

* window is displayed. */

int getlogin(jptr)
char *jptr;
{
char password[10];
sm_n_getfield(password, °password®);
[* check if °bypass® has been entered into login */
if (strcmp(password,®bypass®))
sm_jform(°welcome?);
/* check if login is valid */
else if (check_password(password))
{
[*close current (2nd) login window */
sm_jclose();
sm_femsg(NULL °Please reenter login®);
}
else
sm_jwindow(°login3°);
return (0);

sm_r_form , sm_jwindow

JAM 7.0 Language Reference

sm_*jplcall

sm_jplcall

Executes a JPL procedure

double sm_djplcall(char *jplcall_text);

int sm_jplcall(char *jplcall_text);
char *sm_sjplcall(char *jplcall_text);

jplcall_text

Returns

Description

Specifiesthe JPL procedure to execute, whipteall_text is a string of up to
255 characters that contains the name of a JPL module or procedure and its
arguments.

Forsm_djplcall andsm_jplcall
.0 The value returned by the JPL procedure.
30 The procedure could not be loaded.

Forsm_sijplcall

W Success: A dynamically allocated string containing the value returned by the
JPL procedure. When no longer needed, free this string by catlirfree

W Failure: Null pointer

sm_jplcall and its variantsm_djplcall andsm_sjplcall lets you call a JPL
procedure or module from a C functie@m_jplcall ~ executes a JPL procedure
exactly as if the specified JPL statement were executed from within a JPE proce
dure. The three variants of this functionfelifonly in their return value types.

For example, these statements in C and JPL are equivalent:
stat =sm_jplcall (°verifysal (name, 50000)°);
call verifysal(name, 50000)

For more information on calling JPL, refer to ttwl command on page 47.

Chapter 6 JAM Library Functions 305

sm_jplpublic

sm_jplpublic

Executes JPL's PUBLIC command

int sm_jplpublic(char *module_list);

module_list

Returns

Description

See Also

306

Specifiesthe JPL modules to load as public modules, wherdule_list is a
string of up to 255 characters that contains one or more module names delimited by
spaces.

0 Success.
-1 Failure.

sm_jplpublic is the C interface to the JPublic command. Use this com
mand to load the procedures of one or more modules into me@uailiyng
sm_jplpublic is equivalent to using the JRublic command. For moredn
formation on thepublic command, refer to page 68.

Usesm_jplunload to remove a module from memory

sm_jplunload

JAM 7.0 Language Reference

sm_jplunload

sm_jplunload
Executes JPL's UNLOAD command

int sm_jplunload(char *module_list);

module_list Specifiesthe JPL modules to unload, whetiedule_list is a string of up to 255
characters that contains one or more module names delimited by spaces.

Returns 0 Success.
-1 Failure.
Description sm_jplunioad is the C interface to the JRbload command. Use this com

mand to remove one or more modules from menmdpdules are read into
memory withsm_jplpublic or, in a JPL module, with theublic command.

Callingsm_jplunload is equivalent to using the JRhload command. For
more information, refer to thénload command on page 75.

Example void
unload_modules()

{
if (sm_jplunload(°select.jpl insert.jpl delete.jpl®))
sm_ferr_reset(0,
°Unable to unload modules from memory®);

See Also sm_jplpublic

Chapter 6 JAM Library Functions 307

sm_jtop

sm_jtop

Starts the JAM executive

int sm_jtop(char *screen_name);

screen_name Thename of the first screen that your application displays.
Returns 0
Description sm_jtop must be called by all applications that use the JAM executive. This func

tion starts the JAM executive and displageeen_name as a form. After the call
tosm_jtop , the JAM executive retains control until the user exits the application.

The JAM executive calls various JAM functions that handle all of the tasks
required to control application flowbfor example, opening the keyboard for input,
opening and closing forms and windows, and processing all control strings.

If you do not usem_jtop , you must write your own procedures to control
application flow

308 JAM 7.0 Language Reference

sm_jwindow

sm_jwindow

Displays a window at a given position under JAM control

int sm_jwindow(char *screen_name);

screen_name

Returns

Description

Example

The screen to open as a windawreen_name uses the same format as a JAM
control string that invokes a screen as a stacked or sibling witdk®a single
ampersand (&) to specify a stacked window and a double ampersand (&&) to
specify a sibling windowif no ampersand is included, the screen opens as a
stacked windowThe string can also specify viewport parameters.

For information on control string options, refer to page 10%8pplication
Development Guide

0 Success.

-1 The screen files format is incorrect.

-2 The form cannot be found.

-3 The system ran out of memory but the previous screen was restored.

sm_jwindow displays a screen as a window by calkng r_window . You can
also callsm_r_window or one of its variants directiRefer tosm_r_window for
information on how JAM finds the screen to display

To display a screen as a form, sse jform . To close the window programmati
cally, callsm_jclose orsm_close_window

#include ©°smdefs.h®

/* This could be a control function attached to the

* XMIT key. Here we have completed entering data
* on the second of several security screens. If

* the user entered °bypass® into the login, he

* bypasses the other security screens, and the

* Owelcome® screen is displayed. If the user

* login is incorrect, the current window is

* closed, and the user is back at the initial

* screen (below). Otherwise, the next security

* window is displayed. */

Chapter 6 JAM Library Functions 309

sm_jwindow

int getlogin(jptr)
char *jptr;
{
char password[10];
sm_n_getfield(password, °password®);
/* check if °bypass® has been entered into
* login */
if (strcmp(password,®bypass®))
sm_jform(°welcome®);
/* check if login is valid */
else if (check_password(password))

[*close current (2nd) login window */
sm_jclose();
sm_femsg(0, °Please reenter login®);

}
else
sm_jwindow(°login3°);
return (0);
}
See Also sm_jclose ,sm_jform , sm_window

310 JAM 7.0 Language Reference

sm_key_integer

sm_key integer

Gets the integer value of a logical key mnemonic

#include <smkeys.h>

int sm_key_integer (char *key);

key A logical key constant defined #mkeys.h . For a complete list of JAM logical
keys, refer tothe table on this boslhside front cover .

Returns .1 The integer value of the logical key mnemonic.
0 The mnemonic is not found.

Description sm_key _integer returns the integer value of a JAM logical key constant. JAM
gets this value froramkeys.h . This function is useful when a function needs a
key's integer value but cannot access the include files.

For all logical key constants, refer to the table on this Isoiokide front cover

See Also sm_keylabel

Chapter 6 JAM Library Functions 311

sm_keyfilter

sm_keyfilter

Controls keystroke record/playback filtering

int sm_keyfilter(int flag);

flag Oneof the following values:
.1 Turn keystroke record/playback on.

0 Turn keystroke record/playbackf of
30 Return the status of keystroke record/playback.

Returns The previous value of the filter flag:

0 Recording was éf
.1 Recording was on.

Description sm_keyfilter turns on or dfthe keystroke record/playback mechanism of
sm_getkey according to the value ébg .

Example /* Disable key recording and playback. */

sm_keyfilter (0);

See Also sm_getkey

312 JAM 7.0 Language Reference

sm_keyhit

sm_keyhit

Tests whether a key is typed ahead

int sm_keyhit(int interval);

interval Specifiesin tenths of seconds how long to wait before it checks whether the user
pressed a keyhe exact length of the wait depends on the granularity of the
system clock and on the hardware and operating system.

Returns 1 A key was typed ahead, or pressed duringrtfeeval -specified period.
0 False: no key is available.

Description sm_keyhit checks whether a key has already been pressed. If a key has been
pressed, it returns 1 immediateQtherwise, it waits the specified interval. If a key
is pressed during the interval the function returns 1 immediately; otherwise, it re
turns 0. The keyif any is struck, is not read in and is available to the usual key
board input functions.

If the operating system does not support reads with timeout, this function ignores
the interval and only returns 1 if a key has been typed ahead.

JAM uses this function to decide when to call timeout functions.

Example #include °smdefs.h°
#include °smkeys.h°

/* The following code adds one asterisk per second to
* a danger bar, until somebody presses EXIT. */

static char *danger_bar =° 0,
int k;
sm_d_msg_line
(°You have 25 seconds to find the EXIT key.°, WHITE);
/* Clear the danger bar area
sm_do_region (5, 10, 25, WHITE, °); */

for (k = 1; k <= 25; ++k)

Chapter 6 JAM Library Functions 313

sm_keyhit

sm_flush ();
} if (sm_keyhit (10))
{

if (sm_getkey () == EXIT)
break;

}
sm_do_region (5, 10, k, WHITE, danger_bar);

if (k <= 25)
sm_d_msg_line (°%BCongratulations! you win!®);

else
sm_ferr_reset (0, °Sorry, you lose.°);

See Also sm_getkey

314 JAM 7.0 Language Reference

sm_keyinit

sm_keyinit

Initializes a key translation table

int sm_keyinit(char *key_address);
int sm_n_keyinit(char *key_file);

key address Theaddress of a key translation table created kei$2bin andbin2c ; required
to install a memory-resident key translation file.
key file The name of the key translation file to use to initialize the table.
Returns 0 Success. Otherwise, JAM aborts program execution and returns to the operat
ing system.
Description sm_keyinit is called bysm_initcrt during initialization. Yu can also call it

from an application program, either before or adterinitcrt , to install a
memory-resident key translation file.

If sm_keyinit fails, you can generate error messages threonginimsg . This
function creates formatted output that you can display through other library
functions likesm_fqui_msg .

Chapter 6 JAM Library Functions 315

sm_keylabel

sm_keylabel

Gets the printable name of a logical key

#include <smkeys.h>

int sm_keylabel(int key);

key

Returns

Description

Example

316

Thelogical key whose key label is sought.

W The keys name.
W Null pointer if the key has no name.

sm_keylabel returns the label defined feey in the key translation filebfor
example, End for the XMIT keyf no label exists, the function returns the name of
the logical keyThe logical key table at the front of this book lists all logical key

constants.

If the value okey is undefined irsmkeys.h , the function returns an empty string.

#include °smkeys.h°

[* Put the name of the TRANSMIT key into a field
* for help purposes. */

char buf[80];
sprintf (buf, °Press %s to commit the transaction.°,

sm_keylabel (XMIT));
sm_n_putfield (°help®, buf);

JAM 7.0 Language Reference

sm_keyoption

sm_keyoption

Sets cursor control key options

#include <smkeys.h>

int sm_keyoption(int key, int mode, int newval);

key

mode

newval

Returns

Description

The key whose processing you wish to change.
Specifies the type of action to takelkay with one of these values:

KEY_ROUTINGets you disable a key or explicitly control the action taken
when a key is pressed.

KEY_GROUTlets you control the cursor action when it is within a group.
KEY_XLATElets you assigkey the action performed byewval .

The new action to assign key .

W The old value.
W -1: A parameter is out of range.

Usesm_keyoption to change at runtime hoswn_input processekey, where

key is a cursor control keypefault key option values are built into JAM. This
function only works with cursor control keys; these include all JAM logical keys
except those of type PEPEand APPThe logical key table at the front of this
book lists all logical key constants.

There are three dédrent possible values farode: KEY_ROUTINGKEY_GROUP
andKEY_XLATE Thenewval arguments that are valid for each mode are
described belowAll of these modes accept a logical key constantdpr

KEY_ROUTING

Allows access to the EXECUTE and RETURN bits of the routing table. Use this
mode to disable a key or to explicitly control the action to take when a key is
pressed. The following constants can be assigneelteal :

Chapter 6 JAM Library Functions 317

sm_keyoption

Example

318

KEY_IGNOREDisablesey . JAM does nothing whekey is struck.

EXECUTEThe action normally associated wiiy is executed; can leR'd
with RETURN

RETURNNO action is performed, but the function returns to the caller in your
code. Use to gain direct controllafy 's action; can b®R'd with EXECUTE

KEY_GROUP

Allows access to the group action bits. Use this mode to control the action of the
cursor when it is within a group. The following values can be assigneavtal :

VF_GROUM Obey group semantics. Hittingey causes the cursor to move to
the next field within the group in the indicated direction. If this constant is
OR'd with VF_CHANGEhe cursor exits the group in the indicated direction.

VF_CHANGH This value has no ééct, unless it i©OR'd with VF_GROURAN
this case the cursor exits the group in the indicated direction.

0 B Assigning zero tonewval causesey to treat a field within a group as if
it were not part of a group.

VF_OFFSCREEM Of fscreen data scrolls onscreen from the direction
indicated.

VF_NOPRQOTkey B Moves cursor into a field protected from tabbing.

KEY_XLATE

Allows access to the cursor table. Use this mode to aksjgthe action
performed bynewval . key can be any cursor control key excludiNg , MNBR
REFR SFTS, andLP. newval can be any keyblogical, function, application,

ASCII, etc.
[*newline_is_xmit: Map the new line key (return or enter on
most

keyboards) to XMIT torz reset it back to NL.

Invoke from a control string as:
Anewline_is_xmit X To make NL act as XMIT
“newline_is_xmit N To make NL act as NL

int newline_is_xmit (char *cs_data);

while (*cs_data && *cs_data!="")
cs_data++;
while (*cs_data=="")

JAM 7.0 Language Reference

sm_keyoption

cs_data++;
if (*cs_data =="'X")
{

}

else

{

sm_keyoption (NL, KEY_XLATE, XMIT);

sm_keyoption (NL, KEY_XLATE, NL);

return(0);

Chapter 6 JAM Library Functions 319

sm_|_close

sm_| close

Closes a library and frees all memory associated with it

int sm_|_close(int lib_desc);

lib_desc Thelibrary to close, wherkb_desc is an integer library descriptor returned by
sm_|_open .
Returns 0 Success.

-1 Operating system reported an error closing the library
-2 The library is already closed.

Example /* Bring up a window from a library. */
int Id;

if (Id = sm_|_open (°myforms®)) < 0)
sm_cancel ();

éh_l_at_cur (Id, °popup®);

sm_|_close (Id);

See Also sm_|_at cur ,sm_|_form ,sm_|_open , sm_|_window

320 JAM 7.0 Language Reference

sm_|_open

Opens a library

sm_|_open

int sm_|_open(char *lib_name);

lib_name

Returns

Description

Example

Thename of the library to open. JAM searchedifername in the current
directory then along the path givendgm_initcrt , and finally along the path
defined bySMPATH

.1 The library file's identifier

-1 The library cannot be opened or read.
-3 The named file is not a library

-4 Insuficient memory is available.

Usesm_|_open to open a library before you use a JPL module, a menu, or a
screen that is in that librarym_|_open opens a library in these steps:

Allocates space in which to store information about the library

Leaves the library file open, and returns a descriptor that identifies the.library
You can use this descriptor to explicitly search a single librarybfor example,
to find a screen in a specific library wihh_|_window .

If you define theSMFLIBS variable in your setup file as a list of library names,
JAM automatically callsm_|_open for those libraries.

JAM has no limit on the number of libraries you can have open at the same time.
Note that some systems have severe limits on memory or simultaneously open
files.

/* Prompt for the name of a library until a

* valid one is found. Assume the memory+resident
* screen contains one field for entering the library
* name, with suitable instructions. */

int Id;
extern char libquery([];

Chapter 6 JAM Library Functions 321

sm_|_open

See Also

322

if (sm_d_form (libquery) < 0)

sm_cancel ();
sm_d_msg_line (°Please enter the name of\
your library.°);

do {
sm_input (IN_DATA);
}while ((Id = sm_|_open (sm_fptr (1))) < 0);

sm_jplcall , Sm_jpublic ,sm_|_close ,sm_form , sm_window

JAM 7.0 Language Reference

sm_last

sm_last

Positions the cursor in the last field

void sm_last(void);

Description sm_last places the cursor at the first enterable position of the last tab-accessible
field of the current screen. The first enterable position depends on the justification
of the field and, in fields with embedded punctuation, on the presence of punctua
tion.

Unlike sm_home sm_last does not reposition the cursor if all fields are
tab-protected.

This function does not immediately trigger field en#yit, or validation
processing. Such processing depends on the cursor position when control returns tc
sm_input .

This function is called when the JAM logical key EMOH is struck.

See Also sm_backtab , sm_home sm_nl , sm_tab

Chapter 6 JAM Library Functions 323

sm_ldb_get_active

sm_Idb_get_active

Gets the handle of the most recently loaded active LDB

intsm_lbd_get_active(void);

Returns .0 SuccessThe integer handle of the most recently activated LDB.
-1 Failure: No LDBs are active.

Description sm_ldb_get_active searches the stack of loaded LDBs and returns the integer
handle of the topmost LDB that is marked as active.

Note: The oder in which LDBs & activated can be diffent fom the oder in
which they we loaded.

The following example uses this function to iterate over the active LDBs in order
of most to least recently loaded.

Example int h;
for (
h =sm_ldb_get_active();
hl=+1,
h =sm_ldb_get_next_active())
{
/* Do stuff with h * /
}
See Also sm_ldb_get_next_active

324 JAM 7.0 Language Reference

sm_ldb_get_inactive

sm_Idb_get_inactive

Gets the handle of the most recently loaded inactive LDB

int sm_Ibd_get_inactive(void);

Returns .0 SuccessThe integer handle of the most recently inactivated LDB.
-1 Failure: No LDBs are inactive.

Description sm_ldb_get_inactive searches the stack of loaded LDBs and returns the inte
ger handle of the topmost LDB that is also inactive.

See Also sm_ldb_get_next_inactive

Chapter 6 JAM Library Functions 325

sm_ldb_get_next_active

sm_Ildb_get next_active

Gets the active LDB loaded before the one specified

intsm_ldb_get_next_active(int prev_handle);

prev_handle Thehandle of an active LDB.

Returns .0 Success: The handle of an activated LDB.
-1 No LDB was active beforprev_handle
-2 prev_handle isinvalid.

Description sm_ldb_get_next_active takes the handle of an active LDB and returns with
the handle of the LDB that was most recently loaded before it and is also active.

The following example uses this function to iterate over the active LDBs in order
of most to least recently loaded.

Example int h;
for (
h =sm_ldb_get_inactive();
hl=+1;
h =sm_ldb_get_next_inactive(h))
/ * Do stuff with h * /
}
See Also sm_ldb_get_next_active

326 JAM 7.0 Language Reference

sm_ldb_get_next_inactive

sm_Idb_get next_inactive
Gets the inactive LDB loaded before the one specified

int sm_ldb_get_next_inactive(int prev_handle);

prev_handle Thehandle of an inactive LDB.

Returns .0 Success: The handle of an inactivated LDB.
-1 No LDB was inactivated befoggev_handle
-2 prev_handle isinvalid.

Description sm_ldb_get_next_inactive takes the handle of an inactive LDB and returns
with the handle of the LDB most recently loaded before it that is also inactive.

The following example uses this function to iterate over the inactive LDBs in order
of most to least recently loaded.

Example int h;
for (
h =sm_ldb_get_inactive();
hl==+1;
h =sm_ldb_get_next_inactive(h))
/ * Do stuff with h * /
}
See Also sm_ldb_get_inactive

Chapter 6 JAM Library Functions 327

sm_ldb_getfield

sm_*ldb_* getfield

Gets the contents of an LDB entry

int sm_Idb_getfield(char *buffer, int field_number, char *ldbname);

int sm_i_Ildb_getfield(char *buffer, char *field_name, int occurrence,
char *ldbname);

int sm_n_ldb_getffield(char *buffer, char *field_name, char *ldbname);

int sm_o_ldb_getfield(char *buffer, int field_number, int occurrence,
char *ldbname);

int sm_Idb_h_getfield(char *buffer, int field_number, int Idbhandle);

int sm_i_Idb_h_getfield(char *buffer, char *field_name, int occurrence,
int [dbhandle);

intsm_n_ldb_h_getfield(char *buffer, char *field_name, int Idbhandle);

intsm_o_ldb_h_getfield(char *buffer, int field_number, int occurrence,
int [dbhandle);

buffer Thebuffer to get the LDB data.

field_name, The LDB field with the data to obtain.
field_number

occurrence The occurrence that contains the data to obtain.
Idbname The name of the LDB that contains the field.
Idbhandle The handle of the LDB that contains the field.
Returns .0 The length of the data in the LDB entry

-1 Unabile to find the specified field.
-2 Unabile to find the specified LDB.
-3 The occurrence number is out of range.

Description sm_ldb_getfield gets the contents of an entry or array occurrence in the speci
fied LDB. This function and its variants let you specify an LDB by name or by
handle. The LDB must be among one of the LDBs loaded into memhamyltiple
instances of the same LDB are loaded, you can get the value from the desired
instance by specifying its handle; if you specify the LDB by name, JAM gets the
value from the last-loaded instance.

328 JAM 7.0 Language Reference

sm_Ildb_handle

sm_Idb_handle
Gets the handle of an LDB

int sm_ldb_handle(char *ldbname);

Thename of the LDB to get.

I[dbname
Returns .0 Success: The handle ldbname.
-1 Failure: Cannot finddbname among the loaded LDBs.
Description sm_ldb_handle takes the name of an LDB and returns with its integer handle of
the specified LDB. The LDB can be active or inactive; howevenust be loaded

into memory

Chapter 6 JAM Library Functions 329

sm_Idb_init

sm_Idb_init

Initializes or reinitializes local data blocks

void sm_ldb_init(void);

Description

330

sm_Idb_init unloads all LDBs from memorwhether active or not. It then loads
and activates the same LDBs as as at application startup. At application startup,
JAM calls this function and attempts to load and activate LDBs as follows:

1. Looks for the configuration variabEVLDBLIBNAMENd opens all screens in
the specified libraries as LDBs.

2. Looks for the configuration variab&VLDBNAMENd opens the specified
screens as LDBs. For example:

SMLDBNAME screenl.jam screen2.jam screen3.jam

3. Looksfor the libraryidb.lib and the screens stored in it.

4. Ifldb.lib does not exist, JAM searches the path for the stubgam

JAM 7.0 Language Reference

sm_Ildb_is_loaded

sm_Idb _is loaded

Tests whether an LDB is loaded

int sm_ldb_is_loaded(char *ldbname);

Idbname Thename of the LDB to test.

Returns 0 The LDB is not loaded.
1 The LDB is loaded.

Description sm_ldb_is_loaded takes the name of an LDB and tests whether it is loaded into
memory or not. It returns a value of true (1) or false (0).

Chapter 6 JAM Library Functions 331

sm_Ildb_load

sm_Idb_load

Loads an LDB into memory

int sm_ldb_load(char *ldbname);

Idbname

Returns

Description

See Also

332

Thename of the LDB to load.

.0 The handle of the loaded LDB.

-1 Failure. JAM was unable to load the LDB for one of these reasons:
- Unable to open the specified file.
- Unable to read the file.
- The file type is invalid.

sm_ldb_load loads a screen into memory as an LDB. Multiple LDBs can be
loaded into memory; of these, one or more can be active at any time. Once an LDB
is loaded, you can activate it by callisg_Idb_state_set ; only active LDBs

are open to read and write operations.

You can load multiple instances of the same LDB. For example, you might do this
to prevent data from multiple invocations of the same screen from overwriting
each otherBecause JAM assigns a unique handle to each loaded LDB, you can
reference these LDBs either collectively by their common name, or individually by
their separate handles.

sm_ldb_state_set , sm_ldb_unload

JAM 7.0 Language Reference

sm_Ildb_name

sm_Idb_name

Gets the name of an LDB of the specified handle

char *sm_ldb_name(ldbhandle);

Idbhandle The handle of the LDB to look up.

Returns W Success: A pointer to the name of the LDB specifieddnyle .
W Failure: NULL pointer

Description sm_ldb_name takes the integer handle of an LDB and returns a pointer to the
LDB's name.

Chapter 6 JAM Library Functions 333

sm_ldb_next _handle

sm_Idb_next handle

Gets the handle of a previously loaded LDB with the same name as the specified LDB

int sm_ldb_next_handle(int Idbhandle);

Idbhandle The handle of a loaded LDB whose name is sought among previously loaded
LDBs.
Returns .0 Success: The handle of a previously loaded LDB with the same name as
Idbhandle.

-1 No LDB was loaded befordbhandle
-2 ldbhandle is not a valid handle.

Description sm_ldb_handle takes a handle of a loaded LDB and looks for a previously
loaded instance of the same LDB. If an earlier instance exists, the function returns
with its handle. 6u can call this function iteratively to ascertain how many
instances of an LDB are loaded into memory and their order of precedence.

334 JAM 7.0 Language Reference

sm_ldb_pop

sm_Idb_pop

Pops LDBs off the LDB save stack

int sm_ldb_pop (void);

Returns 0 Success.
-1 Thestack is empty

sm_ldb_pop removes all loaded LDBs from memolythen restores to memory

Description
the LDBs in the LDB save stacktopmostbthat is, most recently pushedblist. If
any LDBs were active at the time they were unload@d|db_pop restores them
to active status. If the stack is emptiy_Idb_pop removes all loaded LDBs from
memory and returns with1 .

See Also sm_ldb_push

Chapter 6 JAM Library Functions 335

sm_ldb_push

sm_Ildb_push

Pushes all LDBs onto a save stack

int sm_ldb_push (void);

Returns 0 Successone or more LDBs are pushed.
-1 No LDBs are currently loaded.
-2 A memory allocation error occurred.

Description sm_ldb_push makes all loaded LDBs unavailable to the application. It writes
their identities and statusbwhether active or notbto a list that it pushes onto the
LDB save stack. Each call $sn_Idb_push pushes another list of LDBs onto the
stack; the stack stores these lists in first-in/last-out ofdher number of lists you
can save depends on the amount of memory available on your systegstdre
the last-pushed list of LDB'to memaorycallsm_Idb_pop .

See Also sm_ldb_pop

336 JAM 7.0 Language Reference

sm_ldb_putfield

sm_*Idb_* putfield

Reads data into an LDB entry

int sm_ldb_putfield(int field_number, char *ldbname, char *buffer);

int sm_i_ldb_putfield(char *field_name, int occurrence, char *ldbname,
char *buffer);

int sm_n_ldb_putfield(char *field_name, char *Idbname, char *buffer);

int sm_o_Idb_putfield(int field_number, int occurrence, char *ldbname,
char *buffer);

int sm_Ildb_h_putfield(int field_number, int Idbhandle, char *buffer);

int sm_i_ldb_h_getfield(char *field_name, int occurrence, int I[dbhandle,
char *buffer);

int sm_n_Idb_h_putfield(char *field_name, int Idbhandle, char *buffer);

intsm_o_Idb_h_putfield(int field_number, int occurrence, int Idbhandle,
char *buffer);

field_name, The LDB field to read the data inuffer
field_number

occurrence The occurrence to read the data.

Idbname The name of the LDB that contains the field.
Idbhandle The handle of the LDB that contains the field.
buffer The bufer that contains the data to read.
Returns 0 Success.

-1 Unabile to find the specified field.
-2 Unabile to find the specified LDB.
-3 The occurrence number is out of range.

Description sm_ldb_putfield reads the contents of the specifiedf@uinto an entry or array
occurrence in the specified LDB. This function and its variants let you specify an
LDB by name or by handle. The LDB must be among one of the LDBs loaded into
memory If multiple instances of the same LDB are loaded, you can get the value
from the desired instance by specifying its handle; if you specify the LDB by
name, JAM gets the value from the last-loaded instance.

Chapter 6 JAM Library Functions 337

sm_ldb_state_get

sm_ldb_* state get
Gets the current state of the LDB

int sm_ldb_state_get(char *Idbname, int state_type);
intsm_Ildb_h_state_get(int Idbhandle, int state_type);

Idbname
Idbhandle

state_type

Returns

Description

338

Thename of the LDB whose state you want to get.
The integer handle of the LDB whose state you want to get.

Specifies the state to get with one of these constants:

LDB_ACTIVE

A Yes/No flag that specifies whether the LDB is active. Only active LDBs
participate in LDB write-through.

LDB_READ_ONLY
A Yes/No flag that specifies whether the LDB is read-dBtyeens can read from

this LDB on screen entry but cannot modify it on exit; consequentiyad-only
LDB cannot be used to transfer values from one screen to another

0 state type is setto No.
1 state type is setto ¥s.
-1 Unable to finddbname .

sm_Idb_state_get lets you determine whether a loaded LDB is active or wheth
er it is read-onlyCall this function before changing an LBBtate through
sm_ldb_state_set

JAM 7.0 Language Reference

sm_Ildb_state set

sm_Idb_*state set
Changes the state of the LDB

int sm_ldb_state_set(char *Idbname, int state_type, int new_value);
int sm_Idb_h_state_set(int Idbhandle, int state_type, int new_value);

Idbname Thename of the LDB whose state you want to set.

Idbhandle The integer handle of the LDB whose state you want to set.

state_type Specifies the state to set with one of these constants:
LDB_ACTIVE

A Yes/No flag that specifies whether the LDB is active. Only active LDBs
participate in LDB write-through.

LDB_READ_ONLY

A Yes/No flag that specifies whether the LDB is read-ofie default for newly
activated LDBs is set to No. Screens can read from this LDB on screen entry but
cannot modify it on exit; consequentyyread-only LDB cannot be used to transfer
values from one screen to another

new_value A value of 1 (és) or 0 (No) to set fattate_type

Returns 0 Success.
1 No change: the LDB was already set to the specified state.
-1 Unable to finddbname .

Description sm_ldb_state_set lets you change the status of an LDB in one of two ways:

Allow or disallow participation in LDB write-through. If a loaded LDB has its
active statel(DB_ACTIVE) set to ¥s, screens can, at a minimum, read its data;
if the LDB'sLDB_READ_ONL%tate is set to No, screens can also write data to
it. For more information about LDB write-through, refer to page 191 in the
Application Development Guide

Chapter 6 JAM Library Functions 339

sm_|ldb_state set

Setthe LDB data to be read-only an active LDB is read-onlyb
LDB_READ_ONLYs set to ¥sba screen can read that LBRJata but cannot
use it to propogate data to other screens. By default, newly activated LDBs
haveLDB_READ_ ONLet to No.

Note: You can callsm_Idb_state_set only on LDBs that & already loaded
into memoryTo load an LDB at runtime, caéim_Idb_load

See Also sm_Idb_load ,sm_Idb_state_get

340 JAM 7.0 Language Reference

sm_Ildb_unload

sm_Ildb_*unload

Unloads LDBs from memory

int sm_ldb_unload(char *ldbname);
int sm_Ildb_h_unload(int Idbhandle);

Idbname Thename of the LDB to unload.
Idbhandle The integer handle of the LDB to unload.
Returns 0 Success.

-1 Failure. JAM is unable to find the specified LDB.

Description sm_ldb_unload unloads LDBs and free the memory allocated for it. If the LDB
is loaded more than once, use Idb_unload to unload all instances; to unload a
specific instance, supply its handle with_Idb_h_unload

Chapter 6 JAM Library Functions 341

sm_leave

sm_leave

Prepares to leave a JAM application temporarily

void sm_leave(void);

Description sm_leave lets you leave a JAM application temporarilybfor example, to escape
to the command interpreter or execute some graphics functions. When you call this
function before leavingsm_leave performs these tasks:

Clears the physical screen, but not the internal screen image.
Resets the operating system channel.

Resets the terminal with tlRESETsequence found in the video file.

Example #include °smdefs.h®
[* Escape to the UNIX shell for a directory listing */

sm_leave ();

system (°ls +I°);

sm_return ();

sm_c_off ();

sm_d_msg_line (°Hit any key to continue®,
BLINK | WHITE);

sm_getkey ();

sm_d_msg_line (°°, WHITE);

sm_rescreen ();

See Also sm_return

342 JAM 7.0 Language Reference

sm_lIngval

sm_Ingval

Gets the long integer value of a field

long sm_lIngval(int field_number);

long sm_e_Ingval(char *field_name, int element);
long sm_i_Ingval(char *field_name, int occurrence);
long sm_n_Ingval(char *field_name);

long sm_o_Ingval(int field_number, int occurrence);

field_name, Thefield whose value is sought.
field_number

element The element ifield_name that contains the data to get.
occurrence The occurrence in the specified field that contains the data to get.
Returns .1 The long value of the field.

30 The field is not found.

Description sm_Ingval returns the contents of the specified field as a long intigecog
nizes only digit characters and a leading plus or minus sign.

Example #include °smdefs.h®

/* Retrieve the number of fish in one particular sea
* (a big number) from the screen. */

#define MEDITERRANEAN 4
long fish;

fish = sm_e_Ingval (°seas®, MEDITERRANEAN);

See Also sm_intval , sm_ltofield

Chapter 6 JAM Library Functions 343

sm_lstore

sm_Istore
Copies everything from screen to LDB

int sm_|Istore(void);

Returns 0 Success.
-3 Insufficientmemory

Description sm_lIstore copies data from the screen to local data block entries with matching
names.

JAM's executive automatically cas_Istore when it brings up a new screen or
before it closes a windowou should explicitly call this function only for special
circumstances.

See Also sm_allget

344 JAM 7.0 Language Reference

sm_ ltofield

sm_ltofield

Writes a long integer value to a field

int sm_ltofield(int field_number, long value);

int sm_e_ltofield(char *field_name, int element, long value);

int sm_i_ltofield(char *field_name, int occurrence, long value);
int sm_n_ltofield(char *field_name, long value);

int sm_o_ltofield(int field_number, int occurrence, long value);

field_name,
field_number

element
occurrence

value

Returns

Description

Example

See Also

Thefield to receivevalue .

The element ifield_name to receivevalue .
The occurrence in the specified field to receizige .

A long integer to put into the specified field.

0 Success.
-1 The field is not found.

The long integer passed to this function is converted teraadable format and
placed infield_number . If the number is longer than the field, it is truncated
without warning, on the right or left depending on the fee]dstification.

#include ©°smdefs.h®

/* Set the number of fish in the sea to a
* smallish number. */

#define MEDITERRANEAN 4

sm_i_ltofield (°seas®, MEDITERRANEAN, 14L);

sm_itofield , Sm_Ingval

Chapter 6 JAM Library Functions 345

sm_m_flush

sm_m_flush

Flushes the status line

void sm_m_flush(void);

Description sm_m_flush forces JAM to display updates to the status line. This is useful if you
want to display the status of an operation withd_msg_line without flushing

the entire display likem_flush

Example #include <smdefs.h>

/* Process a big pile of records, providing
* status as we go.

*/

char buf{80];

int k;

k=0;

do {
sprintf (buf, °Processing record %d°, k + 1);
sm_d_msg_line (buf, REVERSE | WHITE);
sm_m_flush ();

} while (process (records[k++]) >= 0);

See Also sm_flush

346 JAM 7.0 Language Reference

sm_menu_bar_error

sm_menu_bar_error

Returns the last error returned by a menu function

int sm_menu_bar_error(void);

Returns

Description

0 MNERR_OKSuccess.
-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-2 MNERROR_EMPTY_SCORMenNuU not installed at specified scope.
-3 MNERR_NOT_SUPPORTH®eNnus not supported.
-4 MNERR_MENWMenu name not found.
-5 MNERR_ITEMItem name not found.
-6 MNERR_DATAnNvalid data.
-7 MNERR_MALLO®emory allocation error
-8 MNERR_NULLProperty has a value of null string pointer
-9 MNERR_READ_ONLFroperty is read-only
-10 MNERR_LOCATIQNnNnvalid memory location.

sm_menu_bar_error returns the error generated by the last call to a menu func
tion. This is particularly useful for calls $tn_menu_get andsm_mnitem_get

and their variants. These functions return the value of the specified property when
successful; otherwise, they return -1 for failure of thet_int variants, and 0 for
the_get str variantssm_menu_bar_error returns the actual cause of failure.

It also lets you determine whether a returrloindicates the property'actual

value or an error condition.

Because JAM retains the error code only for the last call to one of the menu
functions, calsm_menu_bar_error immediately afterward to evaluate the call'
return status.

Chapter 6 JAM Library Functions 347

sm_menu_bar_error

Example /*enable and disable menu teartoffs*/
int ToggleTearOffs(void)
int errorCode;
switch
(sm_menu_get_int (MNL_SCREEN, °menucom®, °main®,
MN_TEAR)
{

/*enable tearzoffs */
case 0: sm_menu_change
(MNL_SCREEN, °menucom?®, °main®, MN_TEAR, 1,
NULL);
break;

/*disable tearzoffs */
case 1: sm_menu_change
(MNL_SCREEN, °menucom?®, °main®, MN_TEAR, 0,
NULL);
break;

[* if error returned, find out why */
case +1:
errorCode = sm_menu_bar_error();
menuErrorHandler (errorCode);
break;

348 JAM 7.0 Language Reference

sm_menu_change

sm_menu_change

Sets a menu's properties

int sm_menu_change(int mem_location, char *script, char *menu, int prop,
int intval, char *strval);

mem_location Themenus memory location, one of these constants:

MNL_ANY
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

If set toMNL_ANYJAM looks for the menu in all memory locations. If the menu is
installed in more than one location, the call fails and retdMhisSERR_LOCATION

script The name of a memory-resident script that contains the menu to change. The script
must already be loaded into memorym@in_location by sm_mnscript_load
If you supplyNULL, JAM searches among the most recently loaded script in
mem_location for the specified menu.

menu The menu to change. If settiLL, JAM uses the first menu #eript

prop The property to changealble 9 lists the properties that you can change and their
constants.

intval The integer value to set fprop . If the property takes a string value, supply 0.

strval The string value to set farop . If the property takes an integer value, supply
NULL

Returns 0 MNERR_OKSuccess.

-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTHeNuUS not supported.

-4 MNERR_MENWMenu name not found.

-6 MNERR_DATAnNvalid data.

-8 MNERR_NULLNull string agument.

-9 MNERR_READ_ONLRroperty is read-only

-10 MNERR_LOCATIQNnvalid memory location.

Description sm_menu_change sets a menu propertylenu properties are derived from a
memory-resident script. Because_menu_change changes the specified script,
all instances of menus from this script get the requested property change.

Specify the property to change through one of the constan&bla 9. Menu-spe
cific properties begin with a prefix N Properties that begin withiNI set

Chapter 6 JAM Library Functions 349

sm_menu_change

defaultsfor new items that are added to the menu at runtime. If you call
sm_menu_change to reset item property defaults, the changes ofécitems
that are added after this call; it leaves existing menu items unchangeset
item properties for individual items, calh_mnitem_change .

Table 9. Menu poperties that can be changed at runtime

Property Type*

Description

MN_EXTERNAL int

MN_NAME str
MN_TEAR int
MN_TITLE str

MNI_ACCEL_ACTIVE

nt

MNI_ACTIVE int
MNI_INDICATOR int
MNI_SEP_STYLE int

MNI_SHOW_ACCEL int

A value ofPROP_ONor PROP_OFFspecifies whether to find this mesu’
definition in another script.

The name of this menu. The function does not check for duplicate names.

A value ofPROP_ONor PROP_OFFenables or disables tlésbmenu as a
tear-offmenu.

A title to display with pop-up menus.

A value ofPROP_ONor PROP_OFFspecifies whether menu item acceler
ators are active.

A value ofPROP_ONor PROP_OFRllows or disallows access to menu
items. IFMNI_ACTIVE is set tcPROP_OFFmenu items are greyed out.

A value of PROP_ONor PROP_OFFspecifies whether to show the toggle
indicator on items.

The default style used by separaiype items, specified by one of these
integer constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED
SEP_MENUBREAK
SEP_TYPE_MASK

A value of PROP_ONor PROP_OFRspecifies whether menu items display
the accelerator key next to their labels.

* For integeitype properties, supply angamment for the intval parameter and set the strval parameter to NULL; for string-proper
ties, supply an gument for the strval parameter and set the intval parameter to O.

350

JAM 7.0 Language Reference

Example [*enable and disable menu tearzoffs*/
int ToggleTearOffs(void)
int errorCode;
switch
(sm_menu_get_int (MNL_SCREEN, °menucom®, °main®,
MN_TEAR)
{

/*enable tearzoffs */
case 0: sm_menu_change
(MNL_SCREEN, °menucom?®, °main®, MN_TEAR, 1,
NULL);
break;

/*disable tearzoffs */
case 1: sm_menu_change
(MNL_SCREEN, °menucom?®, °main®, MN_TEAR, 0,
NULL);
break;

[* if error returned, find out why */
case +1:
errorCode = sm_menu_bar_error();
menuErrorHandler (errorCode);
break;

See Also sm_mnitem_change

Chapter 6 JAM Library Functions

sm_menu_change

351

sm_menu_create

sm_menu_create

Defines a menu at runtime

int sm_menu_create(int mem_location, char *script, char *menu);

mem_location

script

menu

Returns

Description

352

Thememory location in which to load this menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script to contain the menu. The script can be one
previously loaded into memory @em_location by sm_mnscript_load ~ ;
otherwise, JAM creates a script in memory with the name that you supply

The name of the menu to create. The menu name must be unsguigtin .

0 MNERR_OKSuccess.

-3 MNERR_NOT_SUPPORTH®enus not supported.

-6 MNERR_DATAVienu name already exists or not supplied.
-7 MNERR_MALLO®emory allocation error

sm_menu_create defines a menu and loads it into memory as part of the specified
script. After you create this menu, you can set its properties and create items for it
throughsm_menu_change andsm_mnitem_create , respectivelyLike other me

nus that are loaded into memoypu can attach this menu to an application-com
ponentbscreen or widgetband make it available for display through
sm_menu_install

JAM 7.0 Language Reference

sm_menu_delete

sm_menu_delete

Removes a menu from the specified script

int sm_menu_delete(int mem_location, char *script, char *menu);
mem_location The menus memory location, one of the following constants:
MNL_APPLIC
MNL_SCREEN
MNL_FIELD
script The name of a memory-resident script that contains the menu. The script must

already be loaded into memorynaém_location by sm_mnscript_load . If you
supplyNULL, JAM searches in the most recently loaded scriptem_location
for the specified menu.

menu The name of the menu to delete. If you supply L, JAM uses the first menu in
script
Returns 0 MNERR_OKSuccess.

-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTH®enus not supported.
-4 MNERR_MENWMenu name not found.

Description sm_menu_delete removes a menu from memory at runtime and frees the memory
allocated for it. This function also destroys all items in the menu and frees the
memory associated with them. After you call this function, you can restore this
menu only by reloading its script, provided the scsigturce file already contains
the menu definition.

See Also sm_menu_create

Chapter 6 JAM Library Functions 353

sm_menu_get

sm_menu_get*

Gets a menu's property

int sm_menu_get_int(int mem_location, char *script, char *menu, int prop);
char *sm_menu_get_str(int mem_location, char *script, char *menu, int prop);

mem_|ocation The menus memory location, one of the following constants:
MNL_APPLIC
MNL_SCREEN
MNL_FIELD
script The name of a memory-resident script that contains the menu. The script must

already be loaded into memoryna¢m_location by sm_mnscript_load . If you
supplyNULL, JAM searches in the most recently loaded scripteim_location
for the specified menu.

menu The menws name. If you suppIMULL, JAM uses the first menu #eript
prop The property to get.able 10 lists the properties that you can get and their
constants.
Returns W The propertys current value, returned either as an integer or as a pointer to a
string value.
0 Error returned by aget_str variant. Calsm_menu_bar_error to get the
error code.
-1 Error returned by aget_int variant. Calkm_menu_bar_error to get the
error code.
Description sm_menu_get_int andsm_menu_get_str returns the current setting of the spe

cified propertyUse the int variant for those properties that have an integer val
uebfor example MN_TEARuse the str variant for properties that take string
values, such agN_NAMBNdMN_TITLE.

Table 10. Menu poperties

Property Type* Description

MN_EXTERNAL int A value ofPROP_ONor PROP_OFPspecifies whether to find this
menus definition in another script.

MN_NAME str The name of this menu.

* For integeitype properties, use sm_menu_get_int; for string-properties, use sm_menu._get_str

354 JAM 7.0 Language Reference

sm_menu_get

Property Type* Description

MN_NUM_ITEMS int Numberof items in this menu.

MN_TEAR int A value ofPROP_ONor PROP_OFFnables or disables this submenu
as a teapff menu.

MN_TITLE str A title to display with pop-up menus.

MNI_SHOW_ACCEL int A value ofPROP_ONor PROP_OFFspecifies whether menu items
display the accelerator key next to their labels.

MNI_ACCEL_ACTIVE int A value of PROP_ONor PROP_OFFspecifies whether menu item
accelerators are active.

MNI_ACTIVE int A value ofPROP_ONor PROP_OFHRllows or disallows user access
to menu items. IMNI_ACTIVE is set tcPROP_OFFmenu items are
greyed out.

MNI_INDICATOR int A value ofPROP_ONor PROP_OFFspecifies whether to show the
toggle indicator on items

MNI_SEP_STYLE int The default style used by separaigpe items, specified by one of
these constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE

SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

* For integeitype properties, use sm_menu_get_int; for string-properties, use sm_menu._get_str

Chapter 6 JAM Library Functions 355

sm_menu_get

Example /*enable and disable menu teartoffs*/
nint ToggleTearOffs(void)

int errorCode;
switch
(sm_menu_get_int (MNL_SCREEN, °menucom®, °main®,
MN_TEAR)
{
[*enable teartoffs */
case 0: sm_menu_change
(MNL_SCREEN, °menucom?®, °main®, MN_TEAR, 1,
NULL);
break;

/*disable tearzoffs */
case 1: sm_menu_change
(MNL_SCREEN, °menucom?®, °main®, MN_TEAR, 0,
NULL);
break;

[* if error returned, find out why */
case +1:
errorCode = sm_menu_bar_error();
menuErrorHandler (errorCode);
break;

356 JAM 7.0 Language Reference

sm_menu_install

sm_menu_install

Makes a menu available for display

int sm_menu_install

scope

mem_|ocation

(int scope, int mem_location, char *script, char *menu);

Specifiesthe menws scope within the application with one of these constants:

MNS_APPLIC

Associatesnenu with the application and displays it. An application menu displays
with all screens unless you install another menu at screen $¢8geSCREBEN

Under Motif, the application menu can display on the base window along with the
active screes' menu if you set theasewindow andformMenus resources to true.
You can install an application menu only from a script that is loaded into
application NL_APPLIQ memory

MNS_SCREEN

Associatesnenu with the current screen and displays it. The menu displays when
its screen is invoked or reexposeduYtan install a screen menu from a script that
is loaded into applicatioMNL_APPLIQ or screenNINL_SCREENmMemory

MNS_FIELD

Associates a menu with the current field, and makes it available for display as a
pop-up that the user invokes while in that fielduXan install a field menu from a
script in any memory location.

Specifies the memory location in whistript is loaded. A script memory loca

tion determines the scope at which you can install its menusbfor example, you can
install a screen menu only from a script that is loaded into savidin §CREENor
application MNL_APPLIQ memory You load a menu script into memory with
sm_mnscript_load with one of the ayjuments in the following table. The table
shows whictscope amguments are valid for each memory location:

Memory location Valid scopes

MNL_APPLIC All
MNL_SCREEN MNS_SCREENMNS_FIELD

Chapter 6 JAM Library Functions 357

sm_menu_install

script

menu

Returns

Description

358

Memory location Valid scopes

MNL_FIELD MNS_FIELD

MNL_ANY JAM searches for the mesuscript in all memory locations
that are valid for the mersiscope, starting with the @lowest®
location. For example, if you want to install a screen-level
menu, MNS_SCREENJAM first looks in screen memaqry
(MNL_SCREENthen in application memorfNL_APPLIQ.

Refer tosm_mnscript_load for more information about thesegaments.

The name of a memory-resident script that contains the menu to install. The script
must already be loaded into memorym@in_location by sm_mnscript_load

If you supplyNULL, JAM searches fanenuin the script most recently loaded in
mem_location . A NULLvalue requires you to supply a nNiL value formenu.

Specifies a menu definition geript to install. If you supply an empty string,
JAM installs the first menu definition stript . Make sure that menu names
among all scripts loaded at the same memory location are unigue; otherwise,
results can be unpredictable.

If you supplyNULL, JAM uses the first menu #eript . A NULL value requires
you to supply a nonUJLL value forscript

0 MNERR_OKSuccess.
-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTHValid scope or Menus not supported.
-4 MNERR_MENWMenu name not found.
-7 MNERR_MALLO®emory allocation error
-10 MNERR_LOCATIONnNnvalid memory location for specified scope.

sm_menu_install finds a menu in the specified script and memory location and
reads its definition. If the menu contains external references, JAM resolves these; it
then makes the menu available for display

Except for Motif versions, JAM applications can display only one menu bar at a
time. For example, if an application contains multiple screens and each screen has
its own menu, JAM displays only the menu bar of the active screen. Under Motif,
an application menu and screen menu can display simultaneously

The scope at which you install a menu determines when JAM displays it; its
memory location determines whether you can have identical instances of the same
menu.

JAM 7.0 Language Reference

Installing Menus with
Shaed Content

sm_menu_install

Menusdisplay according to their scope assignment as follows:

An application menu displays at all times unless a screen menu is installed.
Note that under Motif, an application menu bar can display along with a
screen menu.

A screen menu displays when its screen is invoked or reexposed. This menu
also displays with successive screens that lack their own menus: with sibling
and child windows; and, if invoked as a form, with other forms invoked later

A field menu displays as a pop-up that the user invokes while on that field.

You can install a menu at any scope that is the same or higher than the scope of its
caller For example, the applicati@ntartup routines ijmain.c can only install a

menu at application scope, while a screemitry procedure can install a menu at

all scopes except fieldNS_FIELD); a field's entry procedure can install menus at

all scopes, including field.

JAM installs a screen menu with the current screen, a field menu with the current
field. If another menu is already installed at the specified scope, JAM removes the
previous menu. If the same menu is already installed from the same memory
location, JAM does not try to reinstall it.

Because a script can be loaded only once into a given memory location, all menus
installed from that location are identical. JAM provides only one memory location
at the application leveMNL_APPLIQ. So, all scripts in application memory are
unigue, and all instances of a menu installed from application memory are the
same: changes in one are immediately propagated to all others.

You can install the same menu from application memory féerdifit screens and
fields; if you do, all instances of this menu are always the same. If you install the
same menu from screen memory fofatiént fields on that screen; all pop-up
menus of those fields are identical.

For example, the following JPL procedure in an applicaistartup screen loads a
menu script into application memory; it then installs the nsenunmn for the
startup screen from application memory:

if sm_mnscript_load (MNL_APPLIC, °mnscript_myprog®) \
== MNERR_OK
call sm_menu_install \
(MNS_SCREEN, MNL_APPLIC,°mnscript_myprog®, °scr_mn°)

else

{

msg emsg °No menu found for application. Goodbye®

call jm_exit

}

return

Chapter 6 JAM Library Functions 359

sm_menu_install

Installing Menus with
Unique Content

External Menus

Removing Menusdm
Memory

360

Subsequentlypther screens in this application can install their own instances of
this menu with the following call:

call sm_menu_install \
(MNS_SCREEN, MNL_APPLIC, °mnscript_myprog®, °scr_mn°)

All screens that display tker_mn menu display the same menu. Thus, if one
screen makes a menu option inactive, that option is inactive when other screens
display that menu.

Converselyyou can install multiple copies of the same menu for screens and
widgets, where each copy is unique. Because screens and widgets can load menu
scripts into their private memory locations, each location can maintain its own
copy of a menu; changes to one have fiecebn the others.

To install unique copies of the same menu for several screens, repeat these steps for
each screen:

1. Load the menu script into screen memorybeatl_ mnscript_load ~ with an
argument ofMNL_SCREEN

2. Install the menu from screen memoryBcath_menu_install ~ with
arguments oMNS_SCREEBNdMNL_SCREEN

Similarly, you can make sure that several widgets on a screen have unique copies
of the same pop-up menu. Repeat these steps for each field:

1. Load the menu script into field memory for the widgetbcall
sm_mnscript_load with an agument ofMNL_FIELD.

2. Install the menu from the widgetmemorybcallsm_menu_install with
arguments oMNS_FIELDandMNL_FIELD.

A menu definition can specify submenus whose contents are defined outside the
current scriptbthat is, the submersuExternal property is set ¥es. For

maximum flexibility, the external flag contains no information about this neenu’
script name. Consequentlyhen you install a menu, JAM resolves external
references by searching first among scripts in the same memory location, then
among scripts in the next highest memory location, and so on.

For example, given a menu installed from screen mendéiy tries to resolve
each of its external references first by searching among other scripts in screen
memory; if no match is found in screen memdA&M continues the search among
the scripts loaded into application memdfyno menu is found in any memory
location, JAM displays an empty submenu.

You can explicitly remove any instance of a menu by cadiimgnenu_remove.
Otherwise, the menu remains installed until its screen or widget is removed from

JAM 7.0 Language Reference

sm_menu_install

memorybfor example, when a screen with its own menu is removed from the
form or window stack. JAM automatically removes all menus and frees their
memory when the application exits.

Chapter 6 JAM Library Functions 361

sm_menu_remove

sm_menu_remove

Removes a menu from display

int sm_menu_remove

scope

Returns

Description

See Also

362

(int scope);

Specifieswhich menu to remove from display:

MNS_APPLIC
Removes the application menu.

MNS_SCREEN

Removes the current screemenu, either installed with the current screen or
inherited from another screen.

MNS_FIELD
Removes the current fieklmenu.

0 MNERR_OKSuccess.
-2 MNERROR_EMPTY_SCORENU not installed at specified scope.
-3 MNERR_NOT_SUPPORTHDvalid scope or Menus not supported.

sm_menu_remove makes a menu unavailable for display at the specified scope.
Because the script remains loaded, any subsequent changes to treprapes’
ties become visible when you reinstall it.

This function has no &fct on other instances of the menu that are installed from
the same memory location.

sm_menu_install

JAM 7.0 Language Reference

sm_message_box

sm_message_box

Displays a message in a dialog box

int sm_message_box(char *text, char *title, unsigned int options, char *icon);

text

title

options

icon

Returns

Description

Thetext of the message. The text can contain format options shown in
aDescription.®

The title of the dialog box. A null pointer or an empty string specifies no title.

A bit mask that specifies message box display and beh&rguments that set
different bits can be OR'd togethd&able 1L shows the flags that you can set on
this mask.

Specifies the icon to use in the dialog box, valid only in Motif. The icon specified
here overrides any icon set througttions . This agument is ignored by
characteimode and Wdows applications.

An integer that indicates which button was pushed:

SM_IDOK OK
SM_IDCANCEL Cancel
SM_IDABORTAbort
SM_IDRETRY Retry
SM_IDIGNORE Ignore
SM_IDYES Yes
SM_IDNQO No
SM_IDHELPR Help
SM_IDYESALL Yes to All
SM_IDOKALL OK to All

QOWO~NOULA, WNPE

=

sm_message_box creates a dialog box that displays a message and requests the
user to select a button. JAM prevents further interaction with the application until
the function returns with the usgiselection.

The message text is a single string that wraps within the wirittosvtext can
contain these % format options:

Chapter 6 JAM Library Functions 363

sm_message_box

%HkKeyname

Displaysthe specified keywherekeyname is a logical key constant. When JAM
displays the message, it replakegname with the key label string defined for that
key in the key translation file. If there is no label, #i€is stripped out and the

364

constant remains. Key constants are definethiteys.h

%B

Beeps the terminal wittm_bel before the message displays. This escape

character must precede the message text.

%N
Creates a new line.

You control message box display and behavior by setting one or more flags in
Table 1. You can set one flag from each group. Flag settings frderelift groups

can be OR'd together

Table L. Message box settings
Flag settings (by group) Display/Action
Button Combinations
SM_MB_OK OK
SM_MB_OKCANCEL OK, Cancel

SM_MB_ABORTRETRYIGNORE
SM_MB_YESNOCANCEL
SM_MB_YESNO
SM_MB_RETRYCANCEL
SM_MB_YESALLNOCANCEL
SM_MB_OKALL

SM_MB_OKHELP
SM_MB_OKCANCELHELP
SM_MB_ABORTRETRYIGNOREHELP
SM_MB_YESNOCANCELHELP
SM_MB_YESNOHELP
SM_MB_RETRYCANCELHELP

Abort, Retry Ignore

Yes, No, Cancel

Yes, No

Retry Cancel

Yes, ‘es to All, No, Cancel
OK, OK to All

OK, Help

OK, Cancel, Help

Abort, Retry Ignore, Help
Yes, No, Cancel, Help
Yes, No, Help

Retry Cancel, Help

JAM 7.0 Language Reference

sm_message_box

Flag settings (by group) Display/Action

SM_MB_YESALLNOALLCANCEL Yes, s to all, No,
No to all, Cancel

System Icon Display

SM_MB_ICONNONE No icon.
SM_MB_ICONSTOP Stop
SM_MB_ICONQUESTION Question
SM_MB_ICONWARNING Warning
SM_MB_ICONINFORMATION Information

Default Button

SM_MB_DEFBUTTON1 First button

SM_MB_DEFBUTTON2 Secondoutton

SM_MB_DEFBUTTON3 Third button
Modality

SM_MB_APPLMODAL
SM_MB_SYSTEMMODAL

The following sections describe these settings in more detail.

ButtonCombinations User options are controlled through the message box buttons. The message box cai
contain a subset of one or more buttons from one of these configurations:

OKCancel Help
Yes No Cancel Help
Abort Retry Ignore Help

Table11 shows the permissible combinations and the constants that set them. Only
the first five button display settings in the earlier tabs¥ MB_Okhrough
SM_MB_RETRYCANGCEare fully functional across all platforms:

Two platform-specific restrictions apply to button combinations:

Windows does not support the Help button; if ¢he message_box call
specifies a button combination that includes Helpbfor example,
SM_MB_OKHEIBthe message box omits this buttorolycan give Whdows
users alternative access to help through a function keybtypjdaifty.

Chapter 6 JAM Library Functions 365

sm_message_box

Systenicon

Default Buttons

Modality

Example

366

Motif displays only the first three buttons of any combination. If the button
display setting specifies four buttons, Motif omits the last button. For example,
if you set the flagsgM_MB_YESNOCANCELHEMbtif displays the message box
with Yes, No, andCancel , and omitdHelp .

Your message file defines the labels of message box buttmmgayi edit this file
and modify the label text. For more information on button label text, refer to page
70 in theConfiguration Guide

You can use theptions parameter to set a flag for the system icon you want to
display in the message windpifvany. The actual icon that appears is platform-
specific. In character mode, JAM searches in the message file for the tag that
corresponds to the specified icon and its associated text; this text appears in front
of the title text. For information on modifying message file tags, refer to page 70 in
the Configuration Guide

Theoptions parameter can set the default button. The default button is specified
by positionbyou can set the first, second , or third button as the defauwit. Y
cannot set the Help button as the default button.

JAM requires the user to respond to the message before continuing interaction with
the application. ¥u can extend this restriction to the entire system, and thereby
prevent interaction with other applications, by setSivjy MB_APPLMODAIN the

options parameterThe default modality setting 8v_MB_SYSTEMMODAthich
constrains user interaction only within the JAM application.

proc clean_exit()

{

vars btnPush
btnPush = sm_message_box(°Save changes before exiting?°,\
%0 SM_MB_YESNOCANCEL|SM_MB_ICONQUESTION,)

if (btnPush == SM_IDCANCEL)
{

return
}
if (btnPush == SM_IDYES)
{
call save_changes()
}
if (btnPush == SM_IDNO)

call sm_jclose()

}

JAM 7.0 Language Reference

sm_mncrinit

sm_mncrinit

initializes support for JAM's menu subsystem

void sm_mncrinit(void);

Description sm_mncrinit is usually called automatically when you enable menus in yoeur ap
plication. This function is called and menu support is enabled if yousRt/So 1
in the main function.

sm_mncrinit sets a global variable to point to a control function. All screen
manager functions that need menu support check the variable and, if it is non-zero,
call indirectly with the request.

Call this function explicitly only if you write your own executiveolymust call
sm_mncrinit in the main function before the calldm_initcrt

Chapter 6 JAM Library Functions 367

sm_mnitem_change

sm_*mnitem_change

Sets a menu item's property

int sm_mnitem_change(int mem_location, char *script, char *menu, int item_no,
int prop, int intval, char *strval);

int sm_n_mnitem_change(int mem_location, char *script, char *menu,
char *item_name, int prop, int intval, char *strval);

mem_location The memory location of the item'menu, one of the following constants:

MNL_ANY
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

If you supplyMNL_ANYJAM looks for the menu in all memory locations. If the
menu is installed in more than one location, the function call fails and returns
MN_ERR_LOCATION

script The name of a memory-resident script that contains the menu to change. The script
must already be loaded into memorym@in_location by sm_mnscript_load
If you supplyNULL, JAM searches in the most recently loaded script in
mem_location for the specified menu.

menu The name of the iterm'menu. If you suppI¥ULL, JAM uses the first menu in
script

item_no, Specifies the menu item to change by its number or name:

item_name

sm_mnitem_change identifies the item by its numericfeét within the menu,
where the first menu item &

sm_n_mnitem_change identifies the item by its name.

prop The property to change, one of the constants listedlieTL2.

intval The integer value to set fprop . If the property takes a string value, supply 0.

strval The string value to set farop . If the property takes an integer value, supply
NULL

368 JAM 7.0 Language Reference

sm_mnitem_change

Returns 0 MNERR_OKSuccess.
-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTHDenuUs not supported.
-4 MNERR_MENWMenu name not found.
-5 MNERR_ITEMItem name not found.
-6 MNERR_DATAnNvalid data.
-7 MNERR_MALLO®emory allocation error
-8 MNERR_NULLNull string agument.
-9 MNERR_READ_ONLFroperty is read-only

Description sm_mnitem_change sets the property of a menu item. Menu item properties are
derived from a memory-resident script. Becasmsemnitem_change changes the
specified script, all instances of items from this script get the property change.

Menultem Poperty Table 12 lists menu item property constants and the values you can set these to.
Constants Integer and string properties are listed in separate groups.

Table 12. Menu item poperties that can be changed at runtime

Constant Property values

Integer properties:

MNI_ACCEL An accelerator keystroke that specifies the keyboard
equivalent for selecting this menu item, valid only
for action and toggle menu items.

You cannot set this property for main menu items.
Accelerator keys for edit-type items such as Edit Cut
or Edit Paste are set by the GUI platformbfor exam
ple, in Windows, through the JAM initialization file;
on Motif, in the XJam file. @ change edit item ac
celerators, modify the appropriate GUI file.

MNI_ACCEL_ACTIVE A value ofPROP_ONor PROP_OFRspecifies whether
the menu item accelerator is active.

MNI_ACTIVE A value ofPROP_ONor PROP_OFRllows or disal
lows user access to this menu itenMMNI_ACTIVE
is set toPROP_OFFthe menu item is greyed out.

* Ignored in charactenode.

Chapter 6 JAM Library Functions 369

sm_mnitem_change

Constant

Property values

MNI_DISPLAY_ON

MNI_INDICATOR

MNI_IS_HELP

MNI_MNEMONIC

MNI_ORDER*

MNI_SEP_STYLE

MNI_SHOW_ACCEL

Specifieswhether to display the menu item on the
menu and/or the tool haBupply one of thesegu-
ments:

DISPLAY_MENUMenu only (default)
DISPLAY_TOOL Tool bar only
DISPLAY_BOTH Menu and tool bar
DISPLAY_NEITHER Neither

A value ofPROP_ONor PROP_OFFspecifies whether
to show the toggle indicator

A value ofPROP_ONor PROP_OFFspecifies whether
to display this item as the rightmost item on the
menu bar

A zero-based det into the itens label that speci
fies which character users can type to select this
item, provided the menu is displayed. A value of -1
specifies no mnemonic for this item.

The order in which this item appears on the toalbar
The default value is 100.04 can enter any value
between 0 and 200, inclusive. If all toolbar items are
set to the same value, they appear in the same order
as they do in the menu.

The style used by an item separa&pecified by one
of these constants:

SEP_SINGLE

SEP_DOUBLE

SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

A value ofPROP_ONor PROP_OFFspecifies whether
a menu item displays the accelerator key next to the
item label.

* Ignored in charactenode.

370

JAM 7.0 Language Reference

sm_mnitem_change

Constant

Property values

MNI_TM_CLASS

String properties:
MNI_ACT_PIXMAP *

MNI_ARM_PIXMAP*

MNI_CONTROL

MNI_EXT_HELP_TAG

MNI_INACT_PIXMAP *

MNI_JAM_HELP

MNI_LABEL
MNI_MEMO

MNI_NAME

Thetransaction manager class assigned to this menu
item. This property determines how the item behaves
in each of the transaction manager modes. Refer to
page 285 in th&ditors Guidefor more information

on transaction manager classes.

The name of an image file whose contents are shown
for an active toolbar itembthat is, accessible but not
pressed. Refer to page 225 in Euditors Guidefor

valid file types, and for information about path and
extension options.

The name of an image file whose contents are shown
for an armed toolbar itembthat is, in its pressed
state. If this property is blank, Motif uses the
MNI_ACT_PIXMAPproperty for the itens armed

state. Vihdows uses a modified version of the Active
Pixmap property to display a toolbar itenarmed

state and ignores this property

A control string that specifies the action that occurs
when this item is selected.

A help context identifier that specifies the help to
invoke from an external help program.

The name of an image file whose contents are shown
for an inactive or unavailable (grayed) item. If this
property is blank, Motif displays an empty toolbar
item. Windows uses a grayed version of the Active
Pixmap property to display a toolbar itenmactive
state and ignores this property

Thename of a JAM screen to invoke as a help
screen.

A string expression to display as this iterabel.

A string expression for this menu itenMemo Ext
property.

Themenu items name. This function does not check
for duplicate names.

* |gnored in charactenode.

Chapter 6 JAM Library Functions

371

sm_mnitem_change

Constant Property values
MNI_STAT_TEXT A string expression to display on the screestatus
line when this item has focus.
MNI_SUBMENU Nameof the submenu to invoke when this item is
selected.
MNI_TOOL_TIP * The balloon help to display when the cursor remains

over the toolbar item.

* Ignored in charactenode.

Calling from JPL sm_mnitem_change andsm_n_mnitem_change have too many parameters to
allow installation bysm_install ; consequentlythey are not directly accessible to
JPL modules. (Refer to page 121 in Application Development Guider
function installation requirements.) A number of wrapper functions that call
sm_mnitem_change andsm_n_mnitem_change are declared and installed in
funclist.c . You can call these functions from JPL to modify menu items.

Table 13 lists the provided wrapper functions and their parameter declarations.
Each wrapper function is narrowly defined to look for a menu in a discrete
memory locationbapplication, screen, or fieldbor to look in all memory locations
(thechange_i_any andchange_s_any variants). Also, thehange_i variants

set only integer properties; thkange_s variants set only string properties. All
parameters are identical in type and purpose to those declared for
sm_mnitem_change andsm_n_mnitem_change .

Table 13. Wrapper functions for changing menu itenoperties fom JPL

Function names Parameter declarations

To modify integer properties, call:

sm_n_mnitem_change_i_any* (char *script, char *menu, char *item_name,
sm_n_mnitem_change_i_app int prop, int intval)
sm_n_mnitem_change_i_screen

sm_n_mnitem_change_i_field

sm_mnitem_change_i_any* (char *script, char *menu, int item_no,
sm_mnitem_change_i_app int prop, int intval)
sm_mnitem_change_i_screen

sm_mnitem_change_i_field

* JAM looks for the menu in all memory locations. If the menu is installed in more than one location, the function call fails and
returnsMN_ERR_LOCATION

372 JAM 7.0 Language Reference

sm_mnitem_change

Function names Parameter declarations

To modify string properties, call:

sm_n_mnitem_change_s_any* (char *script, char *menu, char *item_name,
sm_n_mnitem_change_s_app int prop, char *strval)
sm_n_mnitem_change_s_screen

sm_n_mnitem_change_s_field

sm_mnitem_change_s_any* (char *script, char *menu, int item_no
sm_mnitem_change_s_app int prop, char *strval)
sm_mnitem_change_s_screen

sm_mnitem_change_s_field

* JAM looks for the menu in all memory locations. If the menu is installed in more than one location, the function call fails and
returnsMN_ERR_LOCATION

Chapter 6 JAM Library Functions 373

sm_mnitem_create

sm_* mnitem_create

Inserts a new item into a menu

int sm_mnitem_create(int mem_location, char *script, char *menu,
int next_item_no, int item_type, char *item_name);

int sm_n_mnitem_create(int mem_location, char *script, char *menu,
char *next_item_name, int item_type, char *item_name);

mem_location The memory location of the item'menu, one of the following constants:
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script The name of a memory-resident script that contains thesiterahu. The script

must already be loaded into memorym@in_location by sm_mnscript_load
If you supplyNULL, JAM searches in the most recently loaded script in
mem_location for the specified menu.

menu The name of the iterm'menu. If you suppIMULL, JAM uses the first menu in
script
next_item_no, Specifies the new item'position by the number or name of the item to follow it:

next_item_name
sm_mnitem_create identifies the next item by its numeridsdt within the
menu, where the first menu item0isSupply-1 to append the new item to the
end of the menu.

sm_n_mnitem_create identifies the next item by its name. SupRIlyLL to
append the new item to the end of the menu.

item_type The items type. Supply one of the constants describeinerl4.

item_name The name to assign this item. Item names must be unigue within the same menu.
SupplyNULL to create an unnamed item.

Returns 0 MNERR_QKSuccess.
-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTHeNuUs not supported.
-4 MNERR_MENWMenu name not found.

374 JAM 7.0 Language Reference

Description

Table 14.

sm_mnitem_create

-5 MNERR_ITEMItem name not found.
-6 MNERR_DATAtem name already exists.
-7 MNERR_MALLO®emory allocation error

sm_mnitem_create

inserts a new menu item into a menu. After you create this

item, you can set its properties through mnitem_change . The menu displays
this item at the next delayed write.

Table 14 lists menu item type constants.

Menu item type constants

Iltem type constants

Item behavior

MI_SEPARATOR

MI_SUBMENU

MI_ACTION_BTTN
MI_TOGGLE_BTTN

MT_WINDOWS_OPT

MT_WINDOWS_LIST
MT_EDIT_CUT
MT_EDIT_DELETE
MT_EDIT_PASTE
MT_EDIT_SELECT*
MT_EDIT_COPY
MT_EDIT_CLEAR

Draws a separator between the previous and next
menu items, according to the specified separator
style (MNI_SEP_STYLB.

Invokes another menu. IfMl_SUBMENHYype item is
on the menu baits submenu displays as a pulldown;
otherwise, the submenu displays to its right.

Invokes an action through a control string.

Invokes an action through a control string and
toggles the indicator on orfof

Invokes the windows menu of the current platformb
for example, under Wdows, the W\hdows menu

with Arrange Icons, ife, and Cascade. This item is
ignored in character mode.

Invokes a menu that lists all open windows.
Cuts selected text to the clipboard.

Deletes the selected text.

Pastes the clipboard contents.

Selects the current widgsettontents.

Copies selected text to the clipboard.

Replaces the selected text with blank spaces.

*Under Windows and Motif, use edit-type items only on a pulldown or pop-up memaows and
Motif inactivate edit-type menu items when they appear on a menu bar

Chapter 6 JAM Library Functions

375

sm_mnitem_delete

sm_*mnitem_delete

Removes an item from a menu

int sm_mnitem_delete(int mem_location, char *script, char *menu, int item_no);

int sm_n_mnitem_delete(int mem_location, char *script, char *menu,
char *item_name);

mem_location The memory location of the item'menu, one of the following constants:
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script The name of a memory-resident script that contains thesiter@hu. If you supply

NULL, JAM searches in the most recently loaded scripteim_location for the
specified menu.

menu The name of the iterm'menu. If you suppI¥ULL, JAM uses the first menu in
script

item_no, Specifies the menu item to delete by its number or name:

item_name

sm_mnitem_delete identifies the item by its numericfeét within the menu,
where the first menu item @5

sm_n_mnitem_delete identifies the item by its name.

Returns 0 MNERR_OKSuccess.
-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTH®eNnus not supported.
-4 MNERR_MENWMenu name not found.
-5 MNERR_ITEMItem name not found.

Description sm_mnitem_delete removes an item from a menu and frees the memory
associated with it. JAM updates the menu display at the first delayed write.

376 JAM 7.0 Language Reference

sm_mnitem_get

sm_* mnitem_get*

Gets a menu item's property

int sm_mnitem_get_int(int mem_location, char *script, char *menu, int item_no,
int prop);
int sm_n_mnitem_get_int(int mem_location, char *script, char *menu,
char *item_name, int prop);
char *sm_mnitem_get_str(int mem_location, char *script, char *menu, int item_no,
int prop);
char *sm_n_mnitem_get_str(int mem_location, char *script, char *menu,
char *item_name, int prop);

mem_location The memory location of the item'menu, one of the following constants:
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script The name of a memory-resident script that contains thesiterahu. The script

must already be loaded into memorym@in_location by sm_mnscript_load

menu The name of the iter®'menu.
item_no, Specifies the menu item by its number or name:
item_name

sm_mnitem_get identifies the item by its numericfeét within the menu,
where the first menu item &

sm_n_mnitem_get identifies the item by its name.

prop The property to get. Supply one of the constants described abla I5.

Returns W The propertys current value, returned either as an integer or as a pointer to a
string value. Because this function stores a returned string in a poofafsbuf
that it shares with other functions, copy or process this data immediately

0 Error returned byget_str variants. Calkm_menu_bar_error to get the
error code.

-1 Error returned byget_int variants. Calbm_menu_bar_error to get the
error code.

Chapter 6 JAM Library Functions 377

sm_mnitem_get

Description

sm_mnitem_get_int andsm_mnitem_get_str return the current setting of the
specified propertyUse the int variant for those properties that have an integer
valuebfor example MNI_SEP_STYLE use the str variant for properties that
take string values, such Bi&I_NAMEandMNI_ACCEL

Table 15 lists the menu item property constants that you can suppyuaseats
to theprop parameter and the values that these return. Integer and string properties
are listed in separate groups.

Table 15. Menu item poperties

378

Constant Property values

Integer properties:

MNI_ACCEL An accelerator keystroke that specifies the keyboard
equivalent for selecting this menu item, valid only
for action and toggle menu items.

MNI_ACCEL_ACTIVE A value ofPROP_ONor PROP_OFRspecifies whether
the menu item accelerator is active.

MNI_ACTIVE A value ofPROP_ONor PROP_OFRllows or disal
lows user access to this menu itenMMNI_ACTIVE
is set toPROP_OFFthe menu item is greyed out.

MNI_DISPLAY_ON Specifieswhether to display the menu item on the
menu and/or the tool haBupply one of thesegu-
ments:

DISPLAY_MENUMenu only (default).
DISPLAY_TOOL Tool bar only
DISPLAY_BOTH Menu and tool bar
DISPLAY_NEITHER Neither

MNI_INDICATOR A value ofPROP_ONor PROP_OFFspecifies whether
to show the toggle indicator

MNI_IS_HELP A value ofPROP_ONor PROP_OFHspecifies whether
to display this item as the rightmost item on the
menu bar

MNI_MNEMONIC A zero-based det into the itens label that speci

fies which character users can type to select this
item, provided the menu is displayed. A value of -1
indicates that the item has no mnemonic set.

* |gnored in charactenode.

JAM 7.0 Language Reference

sm_mnitem_get

Constant

Property values

MNI_ORDER*

MNI_SEP_STYLE

MNI_SHOW_ACCEL

MNI_TM_CLASS

MNI_TYPE

Theorder in which this item appears on the toalbar
The default value is 100.04 can enter any value
between 0 and 200, inclusive. If all toolbar items are
set to the same value, they appear in the same order
as they do in the menu.

The style used by an item separagpecified by one
of these constants:

SEP_SINGLE

SEP_DOUBLE

SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

A value ofPROP_ONor PROP_OFPspecifies whether
a menu item displays the accelerator key next to the
item label.

Thetransaction manager class assigned to this menu
item. This property determines how the item behaves
in each of the transaction manager modes. Refer to
page 285 in th&ditors Guidefor more information

on transaction manager classes.

Themenu items type, specified by one of the fol
lowing constants:

MI_SEPARATOR
MI_SUBMENU
MI_ACTION_BTTN
MI_TOGGLE_BTTN
MT_WINDOWS_OPT
MT_WINDOWS_LIST
MT_EDIT_CUT
MT_EDIT_DELETE
MT_EDIT_PASTE
MT_EDIT_SELECT
MT_EDIT_COPY
MT_EDIT_CLEAR

* Ignored in charactenode.

Chapter 6 JAM Library Functions

379

sm_mnitem_get

380

Constant

Property values

String properties:

MNI_ACT_PIXMAP *

MNI_ARM_PIXMAP*

MNI_CONTROL

MNI_EXT_HELP_TAG

MNI_INACT_PIXMAP *

MNI_JAM_HELP

MNI_LABEL
MNI_MEMO

MNI_NAME
MNI_STAT_TEXT

The name of an image file whose contents are shown
for an active toolbar itembthat is, accessible but not
pressed. Refer toable 15 in théeditors Guidefor

valid file types. File paths and extensions are option
al; for more information, refer to page 225 in the
Editors Guide

The name of an image file whose contents are shown
for an armed toolbar itembthat is, in its pressed
state. If this property is blank, Motif uses the
MNI_ACT_PIXMAPproperty for the itens armed

state. Vihdows uses a modified version of the Active
Pixmap property to display a toolbar itenarmed

state and ignores this property

A control string that specifies the action that occurs
when this item is selected.

A help context identifier that specifies the help to
invoke from an external help program.

The name of an image file whose contents are shown
for an inactive or unavailable (grayed) item. If this
property is blank, Motif displays an empty toolbar
item. Windows uses a grayed version of the Active
Pixmap property to display a toolbar itenmactive
state and ignores this property

Thename of a JAM screen to invoke as a help
screen.

A string expression to display as this iteralbel.

A string expression for this menu itenMemo Ext
property.
Themenu iters name.

A string expression to display on the screestatus
line when this item has focus.

* |gnored in charactenode.

JAM 7.0 Language Reference

sm_mnitem_get

Constant

Property values

MNI_SUBMENU

MNI_TOOL_TIP *

Nameof the submenu to invoke when this item is
selected.

The balloon help to display when the cursor remains
over the toolbar item.

* Ignored in charactenode.

Chapter 6 JAM Library Functions

381

sm_mnscript_load

sm_mnscript_load

Loads a menu script into memory and makes its menus available for installation

int sm_mnscript_load (int mem_location, char *script);

mem_location Specifieswhere to load this script into memoiou can load a script only once
into a given memory location. The scripthemory location determines the scope
at which its menus can be installed and whether you can install identical instances
of the same menu.

MNL_APPLIC

Loads the menu script into application memasgnus in application memory can
be installed at any scopebapplication, screen, and field. All instances of a menu
installed from application memory are always identical; changes in one are
immediately propagated to the others.

MNL_SCREEN

Loads the menu script into the current screememoryEach screen maintains its
own memory location. & can install menus for a screen and its fields from that
screens memory

MNL_FIELD

Loads the menu script into the current fisldiemoryEach field maintains its own
memory location. Wu can install a pop-up menu for a field from its own memory

location.
script The name of the menu script to load into memory
Returns 0 MNERR_OKSuccess.

-1 MNERR_SCRIPTScript not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTHENUS not supported.

-7 MNERR_MALLO®emory allocation error

-10 MNERR_LOCATIQONnNnvalid memory location.

Description sm_mnscript_load loads the specified script into application, screen, or field
memory All menus that are defined in that script are subsequently available for
installation and display througim_menu_install

382 JAM 7.0 Language Reference

See Also

sm_mnscript_load

sm_mnscript_load lets you load a menu into any memory location that is the
same or higher than its calleis shown in dble 16:

Table 16. Valid menu script load locations

sm_mnscript_load caller Valid memory locations

Application MNL_APPLIC

Screen MNL_SCREEN
MNL_APPLIC

Widget MNL_FIELD
MNL_SCREEN
MNL_APPLIC

For example, the applicatianstartup routines jjmain.c can only load menu
scripts into application memarwhile a screes'entry procedure can load scripts
into application memory and into its own memory

A menu script memory location determines the scope at which its menus can be
installed:

Application memory menus can be installed at all scopes: application, screen,
and field. Instances of a menu installed from application memory all share the
same content; changes to one are propagated to all.

Screen memory menus can be installed at screen and field scopes. All copies
of a screen menu installed from screen memory are unique; copies of a field
menu installed from screen memory all share the same content within that
screen.

Field memory menus can be installed only at field scope. All instances of a
field menu installed from field memory are unique.

sm_mnscript_unload

Chapter 6 JAM Library Functions 383

sm_mnscript_unload

sm_mnscript_unload

Removes a script from memory and destroys all menus installed from it

int sm_mnscript_unload (int mem_location, char *script);

mem_location The memory location that contains the menu script, one of the following constants:
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script The menu script to unload. Angarment ofNULL unloads the script last loaded in

mem_location

Returns 0 MNERR_OKSuccess.
-1 MNERR_SCRIPTScript not found.
-10 MNERR_LOCATIQONnvalid memory location.

Description sm_mnscript_unload removescript from the specified memory location and
destroys all menus that are installed from it. If any of those menus are currently
displayed, JAM removes them immediatéfya menu is referenced as an external
menu, JAM displays an empty menu in its place.

See Also sm_mnscript_load

384 JAM 7.0 Language Reference

sSm_ms_inquire

sSm_ms_inquire

Gets information about the mouse's current state

int sm_ms_inquire

request

Returns

(int request);

Specifiesthe data to get, one of the following constants:

MOUSE_LINE
The line of the physical display on which the mouse click occurred.

MOUSE_COLM
The column of the physical display on which the mouse click occurred.

MOUSE_SHIFT

The state of the Shift, Control, and Alt keys during the mouse click. JAM returns
this information in an integer bit mask. For bit settings, refer to the Description.

MOUSE_BUTTONS

The state of all mouse buttons, left, middle, and right. JAM returns this information
in an integer bit mask. For states that are recognized by JAM and their correspond
ing bit settings, refer to the Description.

MOUSE_FIELD

The number of the field in which the mouse click occurred. If the mouse click
occurs outside a field, the function returns +1.

MOUSE_FORM_LINE
The number of the JAM screen line on which the mouse click occurred.

MOUSE_FORM_COLM
The number of the JAM screen column on which the mouse click occurred.

W The data specified byquest
+1 Unable to get the requested data.

Chapter 6 JAM Library Functions 385

sSm_ms_inquire

Description

Mouse Events with
Keyboad Modifiers

Mouse Button States

386

sm_ms_inquire gets information about the mouseurrent statebthe position of

the last mouse click on the physical or JAM screen, whether other keys are pressed
in combination with it, and which mouse buttons have been pressed and-how re
cently.

This functions returns an integer value whose bits are set according to the supplied
argumentMOUSE_SHIFTor MOUSE_BUTTONS

MOUSE_SHIFTsets the three lowest-order bits in the return value to indicate which
of three keysbShift, Ctrl, and Altbare pressed at the same time as the mouse
click. sm_ms_inquire can set these bits as follows, from lowest- to highest-order
bit:

1 Shift key is down
1 Citrl key is down
1 Altkey is down

For example, a return value of 2 (1 0) indicates that the Ctrl key is down,
while a return value of 5 01) indicates that the Alt and Shift keys are both
down. The second of these returns can be represented as follows:

Alt cul Shift
1 | 0 | 1

MOUSE_BUTTONs®ts nine bits to indicate the state of the left, middle, and right
mouse buttonsm_ms_inquire puts the requested data in three segments of three
bits each, where each segment represents one of three mouse buttonsbleft, middle,
and right. The three lowest-order bits contain left button data; if the mouse has

only one button, only these bit settings are significant. The middle three bits

contain data for the middle button, if any; and the three highest-order bits contain
right button data.

Each bit within a three-bit segment can be set as follows, from lowest- to
highest-order bit:

0/1 Up/down
1 Just pressed
1 Justreleased

For example, the bit settings returned for a just-initiated point and click-opera
tionbleft button is down and just pressedbcan be represented as follows:

Right Button Middle Button Left Button
o | o | o o | o |o o | 1 |1

JAM 7.0 Language Reference

sSm_ms_inquire

A click and drag operation that is in progressbright button is downbcan be
represented like this:

Right Button Middle Button Left Button

o | o | 1 o | o] o o | o | o

Only four combinations of bit settings are meaningful to JAM and recognized as
valid button states:

UpbBo0ooo
Downb 001
Downand just pressed 0 1 1

Up and just released B 0 0

Example *find out whether any button is down */

intis_any_button_down (void)
{
int retval;
retval = £1;
if (sm_ms_inquire (MOUSE_BUTTONS) > £1)
return retval & 0x49;
return retval;

}

See Also sm_mus_time

Chapter 6 JAM Library Functions 387

sm_msg

sm_msg

Displays a message at a given column on the status line

void sm_msg(int column,

column

disp_length

text

Description

Example

See Also

388

int disp_length, char *text);

The message' start column on the status line. On terminals with onscreen
attributes, you might need to adjust the column position to allow for attributes
embedded in the status liretn_d_msg_line explains how to embed attributes

and function key names in a status line message.

The number of characters to display

The contents of the message.

sm_msgmeiges the specified message with the current contents of the status line
and displays it at the specified column. This function is called by the function that

updates the cursor position display (seec_vis).

Note: Messages generated iy _msg have the lowest of priority among status
line messages; consequenity display is guaranteed only until the function
returns to its calleror until another messageutine is called. Any messages that
are subsequently posted to the status line overwritenthensg-generated text.

#include <smdefs.h>

[* This code displays a message, then chops out

* part of it.

*/

char *text0 =° ¢

char *textl = °Message is displayed on the status °©
%ine at col 1.9

sm_msg(1, strlen(textl), textl);
sm_msg(12, strlen(text0), text0);

sm_d_msg_line

JAM 7.0 Language Reference

sm_msg_get

sm_msg_get

Finds a message

#include <smerror.h>

char *sm_msg_get(int msg_id);

msg_id Specifiesthe message to get through its number or name, defirsatkiror.h
Returns W The text ofmsg_id 's message.
W A string that contains the message class and number if no message exists for
msg_id .
Description sm_msg_get gets a message from a message file previously loaded by

sm_msgread . Message files are binary files, created through the JAM utility
msg2bin , whose contents are accessible through JAM library functions like
sm_msg_get.

Example #include <smdefs.h>
#include <smerror.h>

[* Assume that an anxious programmer has just

* typed in the question, °Will my boss like

* my new program?° This code fragment answers
* the question.

*/

sm_n_putfield (Panswer®, rand() & 1 ?
sm_msg_get (SM_YES) :
sm_msg_get (SM_NO));

See Also sm_msgfind , sm_msgread

Chapter 6 JAM Library Functions 389

sm_msgfind

sm_msgfind

Finds a message given its number

#include <smerror.h>

char *sm_msgfind(int msg_id);

msg_id Specifiesthe message to get.

Returns W The message.
W 0: The message number is out of range.

Description sm_msgfind finds the message specifiediaymber and returns the message
string. Unlikesm_msg_get, this function returns 0 if the message number is not
found.

Message numbers for JAM messages are defingdérror.h

Example #include <smdefs.h>
#include <smerror.h>

[* print out message #4 */
sprintf (buf, °The message reads: %s\n°, sm_msgfind

(SM_BADKEY));
sm_fquiet_err (0, buf);

See Also sm_msg_get , sm_msgread

390 JAM 7.0 Language Reference

sm_msgread

sm_msgread

Reads a message file into memory

#include <smerror.h>

int sm_msgread(char *msg_prefix, int class, int mode, char *location);

msg_prefix Specifiesto read messages of this prefix in message class . JAM messages
have the following prefixes:

CA
DM
FM
JM

JX

SM
™
uT

CASE interface

Database interface

Screen editor

JAM runtime

Data dictionary and control strings
Screen manager

Transaction manager

Utilities

To read all messagesdtass , supplyNULL or empty string® .

class Specifies the class of messages to read, where 0-7 are reserved-fafinser
message classes, and the following classes, defirgdkiror.n , are reserved for
JAM:
CA_MSGS JX_MSGS
DM_MSGS SM_MSGS
FM_MSGS TP_MSGS
JM_MSGS UT_MSGS

If the message file is not divided into sections, supply a value of 0.

mode Specifies where to find messages, or to remove messages of the specified class anc
prefix, with one or more of these constants:

MSG_DELETEemoves the message class and recovers its memory
MSG_FILENAMEIseS théocation -specified file.

MSG_FILEPTRuses the file specified bycation , wherelocation is a file
pointer obtained bym_fi_open

MSG_ENVIROMSes the message file named inltieation -specified
environment variable.

Chapter 6 JAM Library Functions 391

sm_msgread

location

Returns

Description

392

MSG_MEMORMses a memory-resident file of tlheation -specified address.

You can optionally modifgm_msgread 's behavior by OR'ing the aforementioned
constants with one or both of thesgluanents:

MSG_NOREPLAQEevents overwriting previously installed messages. dan
OR this agument with any othenode algument exceptISG_DELETE

MSG_DSHeaves file open and does not read the messages into madery
reads messages from disk as needed.

Specifies the location of the messages to read according to the valogeof

0 Success.

1 The message class is already in memory and the mode includes
MSG_NOREPLACE

2 mode is MSG_DELETENd the message file is not in memory

-1 mode is MSG_ENVIROMNd the environment variable is undefined.

-2 mode is MSG_ENVIRONIr MSG_FILENAMENd the message file cannot be read
from disk.

-n Other negative values if the message file is bad orfingrft memory is
available.

sm_msgread reads a single set of messages from a binary message file into
memory according to the values dghss andmsg_prefix . When JAM reads
messages of prefinsg_prefix from the file, it numbers them sequentiafijart
ing fromclass*4096 . Later you can access these messages through
sm_msg_get orsm_msgfind .

You can also usen_msgread to delete messages of the specified class and prefix
by supplyingMSG_DELETHRSs the agument formode.

If you ORMSG_DSHKvith the mode, the messages are not read into memory
sm_msg_get andsm_msgfind fetch them from disk when requested. If your
message file is lge, this can save substantial memétgwever remember to
account for operating system file Barks in your calculations.

If sm_msgread fails, you can generate error messages threonginimsg . This

function creates formatted output that you can display through other library
functions likesm_fqui_msg .

JAM 7.0 Language Reference

Example

See Also

#include <smdefs.h>
#include <smerror.h>

int msginit (char *msg_file)

}

int mode = (msg_file ? MSG_MEMORY : MSG_DEFAULT |
MSG_NOREPLACE) | MSG_INIT;

if (sm_msgread (°SM°, SM_MSGS, mode,
msg_file) <0 ||
sm_msgread (°JM°, IM_MSGS, mode,
msg_file) <0 ||
sm_msgread (°FM°, FM_MSGS, mode,
msg_file) <0 ||
sm_msgread (°JX°, JX_MSGS, mode,
msg_file) < 0)

{
sm_resetcrt();
exit (RET_FATAL);

}

sm_msgread ((char *)0, 0, mode & ~MSG_INIT |

MSG_QUIET, msg_file);
return (0);

sm_msg_get, sm_msgfind

Chapter 6 JAM Library Functions

sm_msgread

393

sm_mus_time

sm_mus_time
Gets the system time of the last mouse click

double sm_mus_time (void);

Returns The system time in milliseconds.

Description sm_mus_time reports the number of milliseconds that elapsed since an unspeci
fied time. You can compare this value to the value reported on previous or subse
guent mouse clicksbfor example, to determine whether two successive mouse
clicks should be interpreted as a double mouse click.

See Also sm_ms_inquire

394 JAM 7.0 Language Reference

sm_mw_get_instance

sm_mw_get _instance

Gets a handle to the current instance of a Windows program

#include <smmwuser.h>

HINSTANCE sm_mw_get_instance(void);

Environment Windows
Returns A handle to the applicatiominstance.
Description sm_mw_get_instance gets a handle to the current instance ofiaddivs ap

plication. Use this function to supply the handle required byddivs API routines
such as CreateMtow.

Chapter 6 JAM Library Functions 395

sm_next_sync

sm_next_sync

Finds the next synchronized array

int sm_next_sync(int field_number);

field_number Specifiesthe field for which a synchronized array is sought.

Returns W The field number of the next synchronized arigginy.
W The field number the function was passed.

Description Given a field numbesm_next_sync finds the next array synchronized with
field_number and returns the field number of the corresponding element in that
array JAM identifies the next synchronized array as the one to the right, unless
field_number s in the rightmost synchronized arréty that case, the function
returns the corresponding element in the leftmost array that is synchronized with
field_number Dthatis, it wraps around the screen.

396 JAM 7.0 Language Reference

sm_nl

sm_nl

Positions the cursor to the first unprotected field beyond the current line

void sm_nl(void);

Description sm_nl moves the cursor to the next line of the screen or to the next occurrence of a
scrolling arrayf the current field is non-scrolling, the cursor goes to the first un
protected field, if anyon the screea'next line. If all fields below the current one
are protected, the cursor wraps to the sceefinst unprotected field.

If the cursor is on the last allocated occurrence of a scrolling array and the number
of allocated occurrences is less than the maximum, JAM allocates an empty
occurrence.

If all fields are protected, the cursor goes to the first column of the next line. If the
cursor is on the screenlast line of the form, it wraps to the screetop left-hand
corner (0,0).

sm_nl does not immediately trigger field entexit, or validation processing. Such
processing occurs according to the cursor position when control returns to
sm_input .

This function is usually bound to NL.

See Also sm_backtab , sm_home sm_last , sm_tab

Chapter 6 JAM Library Functions 397

sm_null

sm_*null

Tests whether a field is null

int sm_null(int field_number);
int sm_e_null(char *field_name, int element);

int sm_i_null(char *field_name, int occurrence);

int sm_n_null(char *field_name);
int sm_o_null(int field_number, int occurrence);

field_name,
field_number

element

occurrence

Returns

Description

398

Specifiesthe field to test.

The element ifield_name to test.

The occurrence in the specified field to test.

1 True: the fields Null Field property is set toeg and contains a null value.

0 False: the fields Null Field property is set to No or it does not contain a null
value.

-1 The field does not exist.

Usesm_null to test whether a field'value is null or not. This function checks
whether a fields Null Field property is set toeg; if it is,sm_null gets the fields
null indicator and compares it to the field/alue.

You can specify the field'null indicator string through the message file and/or the
field's Null Text property

JAM 7.0 Language Reference

sm_obj_copy

sm_obj_copy*

Copies a widget

#include <smuprapi.h>

int sm_obj_copy(char *target_screen, char *source_widget);

int sm_obj_copy_id(int target_screen_id, int source_widget_id);

target_screen,
target_screen_id

source_widget
source_widget_id

Returns

Description

Copying Goups

Thescreen to get the copied widget, specified either by name or by an integer
handle obtained frorem_prop_id .

The widget to copyspecified either by its name or by an integer handle obtained
fromsm_prop_id . The widget to copy can be on any screen on the window stack.
If the widget is not on the current screen, supply its integer handle; or use the JPL
object syntax to specify the source screen. For example, supply this string to copy
cust_id from thecustqry screen:

@screen(°custqgry.jam®)!cust_id.

.1 Object ID of the new widget.

PR_E_MALLOCInsuficient memory available.

PR_E_OBJID: ID for source widget or tget screen does not exist.
PR_E_OBJECTNamed object does not exist.

PR_E_TOO_BIG Widget cannot fit on the tget screen.

sm_obj_copy creates a copy of the specified widget and puts it on thettar

screen. The data and all properties of the source widget are copied to the new one,
including its position on the screen. If the widget is copied onto the screen of the
source widget, the new widget overlays the original.

If the source widget is named and thgérscreen already has a widget with the
same name, JAM sets the new widgeiame to an empty string to prevent
duplicate names.

sm_obj_copy can also copy a synchronized scrolling group or table view group;
the function copies an empty group to thgeaiscreenbthat is, the member
widgets are not copied.0d can subsequently copy one or more members of the
group through additional calls $m_obj_copy .

Chapter 6 JAM Library Functions 399

sm_obj_copy

Selectiongroups cannot be copied directly; however if you copy a field that
belongs to a selection group to another screen, JAM copies the field and its group
to the taget screen, provided that thegar screen does not already contain a group
of the same name; if it does, the copied field is added to the existing group.

See Also sm_obj_delete

400 JAM 7.0 Language Reference

sm_obj_delete

sm_obj_delete*

Deletes a widget

#include <smuprapi.h>

int sm_obj_delete(char *widget);
int sm_obj_delete_id(int widget_id);

widget - Thewidget to delete, specified either by its name or by an integer handle obtained
widget_id from sm_prop_id .
Returns 0: Success.

PR_E_OBJID: ID for source widget or tget screen does not exist.
PR_E_OBJECTNamed object does not exist.

Description sm_obj_delete deletes the specified widget. The widget to delete can be on any
screen on the window stack. If the widget is not on the current screen, supply its
integer handle; or use the JPL object syntax to specify the source screen. For exam
ple, this statement deletesst_id from thecustqry screen:

call sm_obj_delete(°@screen(‘custqry.jam’)!cust_id°)

Note: This function has no effect on theesam definition; toestoe deleted
widgets, close ancebpen the seen.

See Also sm_obj_copy

Chapter 6 JAM Library Functions 401

sm_occur_no

sm_occur_no

Gets the current occurrence number

int sm_occur_no(void);

Returns .1 Theoccurrence number
0 The cursor is not in a field.

Description sm_occur_no returns the number of the occurrence in the current field.

402 JAM 7.0 Language Reference

sm_off_gofield

sm_* off_gofield

Moves the cursor into a field, offset from the left

int sm_off_gofield(int field_number, int offset);

int sm_e_off_gofield(char *field_name, int element, int offset);
int sm_i_off gofield(char *field_name, int occurrence, int offset);
int sm_n_off_gofield(char *field_name, int offset);

int sm_o_off_gofield(int field_number, int occurrence, int offset);

field_name,
field_number

element
occurrence

offset

Returns

Description

Example

Specifiesthe destination field.

The destination element field_name
The destination occurrence in the specified field.

The position in the destination field at which to place the culfsoifset is
larger than the field length, or greater than a shiftable fisldiaximum length,
the cursor is placed in the rightmost position.

0 Success.
-1 The field is not found.

sm_off_gofield moves the cursor into the specified field at positiffiset
regardless of the field'justification. If the data specified bffset is out of
view, JAM shifts the fields contents to make the data visible.

#include <smdefs.h>

#include <ctype.h>

/* Place cursor over the first embedded blank in */
/* the °names?® field.

*/

char buf[256], *p;
int length;

Chapter 6 JAM Library Functions 403

sm_off_gofield

length = sm_n_getfield (buf, °names®);
for (p = buf; p <buf + length; ++p)

if (isspace (*p))
break;

}

sm_n_off_gofield (°names®, p + buf);

See Also sm_disp_off ,sm_gofield ,sm_sh_off

404 JAM 7.0 Language Reference

sm_option

sm_option

Sets a setup variable

int sm_option(int option, int newval);
option Thesetup variable to change, definediimsetup.h
newval The new value, defined smsetup.h , to assign theption -specified option. @

get an optiors current value, supply the valN®CHANGE
Returns W The old value for the specified option.
W -1: The option is out of range.

Description sm_option lets you change JAM setup variables at runtimebfor example, error
window attributes, delayed write options, cursor dispdan zoom options. Refer
to Chapter 4 in th€onfiguration Guiddor a list of all options and valid values.

Note: Usesm_keyoption to change the behavior of cursor casitkeys.

See Also sm_keyoption , sm_soption

Chapter 6 JAM Library Functions 405

sm_pinquire

sm_pinquire

Gets the value of a global string

#include <smglobs.h>

char *sm_pinquire(int which);

which Specifiesthe global string to get through one of these constants:

P_YES

Returns valid dirmative input for a field whose Keystroke Filter property is set to
Yes/No. The return is a null-terminated string that contains the lowercase yes value
and the uppercase yes value.

P_NO

Returns valid negative input for a field whose Keystroke Filter property is set to
Yes/No. The return is a null-terminated string that contains the lowercase no value
and the uppercase no value.

P_DECIMAL

Returns a three-character string: the issdecimal point markethe operating
systems decimal point markeand the null terminator

P_DICNAME
Returns the repositoryfile name.

P_FLDPTRS

Returns a pointer to an array of field structures. The implementation of these
structures is release-dependent.

P_TERM

Returns the name JAM uses as the terminal identifrean empty string if not
found.

P_SPMASK
Returns a pointer to a memory-resident, full-size form containing all blanks.

P_USER

Returns a pointer to developgpecified region of memory for the current screen.
Each screen maintains its own poini#ris pointer is not set by JAM; it is set and
maintained by the application.

406 JAM 7.0 Language Reference

Returns

Description

Example

sm_pinquire

SP_NAME
Returnsthe name of the active screen.

SP_STATATTR

Returns attributes of current status lineba pointer to an array of unsigned short
integers.

V_
One of thev_ constants defined gmvideo.h , returns video-related information.

W If the agument corresponds to a global pointer variable, the value of that vari
able.

W O: Failure.

sm_pinquire gets the current value of a global pointer variabdembdify a
global string, usem_pset .

Because the objects pointed to by the pointers returneah pyinquire usually
have short duration, use or copy them quicklyis caution does not apply to
P_USER which is maintained by the application. The pointerspoint to the

actual objects in JAM. TheP_ pointers point to copies of the objects. Because an
objects characteristics is implementation dependent, it might change in future
releases of JAM. Except fer USER do not use the pointers returned by
sm_pinquire to modify objects directlyUsesm_pset instead.

/* Get next key from user. Return +1 for 'n’, 1 for 'y', and
* 0 if unknown. 'n* and 'y' come from the message file,
*and so can be changed to reflect the local language.
*/

int get_yes_no()

unsigned key;

char *yes;

char *no;

key = sm_getkey();

yes = sm_pinquire(P_YES);

no = sm_pinquire(P_NO);

if (key == yes[0] || key == yes[1])

Chapter 6 JAM Library Functions 407

sm_pinquire

return(l);
if (key == no[0] || key == no[1])
return(x1);
return(0);
}
See Also sm_inquire , sm_iset , sm_pset

408 JAM 7.0 Language Reference

sm_pm_add_res_map

sm_pm_add res_map

Installs tables that map string resource identifiers to integer identifiers

#include <smpmuser.h>

int sm_pm_add_res_map(symtab_t *res_map, HMODULE hmodule);

res_map

hmodule

Environment

Returns

Description

A pointer to a table that maps resource identifiers to integer identifiers.

An HMODULE handle to an instance of the library whose resources you want to
access. If resources are stored in the executable, SVPpPHANDLE

0Ss/2

0 Success.
+1 Invalid agumentbfor example, the specified table does not exist.
+2 Insuficient memory available.

sm_pm_add_res_map installs one or more tables that map string resource identifi
ers to integer identifiers. These tables let JAM applications running under Presenta
tion Manager specify resources such as bitmaps, cursors, and icons by their string
identifiers, and thereby facilitate cross-platform portability

For example, the following header and resource modules define three resources for
a JAM application:

[*myres.h */

#define MYBMP 100
#define MYICON 200
#define MYCSR 300

I*myres.rc */
#include °myres.h°

BITMAP MYBMP LOADONCALL MOVEABLE DISCARDABLE °mybitmap.bmp®
ICON MYICON LOADONCALL MOVEABLE DISCARDABLE °myicon.ico®
POINTER MYCSR LOADONCALL MOVEABLE DISCARDABLE °mycursor.cur®

Chapter 6 JAM Library Functions 409

sm_pm_add_res_map

At startup, JAM can install a table that maps string to integer identifiers for these
three resources by callirgh_pm_add_res_map as follows:

#include °myres.h°
symtab_t myresources][]

{°mybitmap®, MYBMP }

{°myicon®, MYICON }
{°mycursor®, MYCSR }
{NULL, 0 }/*last must be NULL */

5
HMODULE hmodule;

hmodule = WinLoadLibrary(°mylib.dll°);
sm_pm_add_res_map(my_resources, hmodule);

410 JAM 7.0 Language Reference

sm_popup_at_cur

sm_popup_at_cur

Invokes the current widget's pop-up menu

int sm_popup_at_cur(void);

Returns 0 MNERR_OKSuccess.
+3 MNERR_NOT_SUPPORTHenu bars are not supported.

Description sm_popup_at_cur invokes the pop-up menu installed for the field or screen, de
pending on which one has focus. This function lets users access pop-up menus via
the keyboard. For example, the following control string assignment lets a-user in
voke a pop-up menu by pressing Bl key:

PF1="sm_popup_at_cur

sm_popup_at_cur uses one of the following two algorithms for finding and
displaying a pop-up menu:

If a field has focussm_popup_at_cur displays the first menu that it finds
from the following:

1. The pop-up menu installed for the field.
2. The menu installed for the screemenu bar
3. The application-level menu.

If the screen has focusn_popup_at_cur displays the first menu that it
finds from the following:

1. The menu installed for the screemhenu bar

2. The application-level menu.

See Also sm_menu_install

Chapter 6 JAM Library Functions 411

sm_prop_error

sm_prop_error

Gets the error code returned by the last properties API function call

#include <smuprapi.h>

int sm_prop_error(void);

Returns 0: The last function call succeeded.
PR_E_ERRORFailed for another reason.
PR_E_MALLOCInsuficient memory
PR_E_OBJID: Object ID does not exist.
PR_E_OBJECTObject does not exist.
PR_E_ITEM Invalid occurrence or element.
PR_E_PROPInvalid property
PR_E_PROP_ITEMInvalid property item.
PR_E_PROP_VALlInvalid property value.
PR_E_CONVERTUnable to perform conversion.
PR_E_OBJ_TYPEInvalid object type.
PR_E_RANGEProperty value is out of range.
PR_E_NO_SETProperty cannot be set.
PR_E_BEYOND_SCREEWiIdget extends beyond screen.
PR_E_WW_SCROLLIN®Vord wrap must be scrolling.
PR_E_NO_SYNCArrays cannot be synchronized.
PR_E_TOO_BIG Widget too lage for screen.
PR_E_BAD_MASKnvalid edit mask or regular expression
PR_E_NO_KEYSTRUCProperty requires previous executiors&LECT NEW

COPYor COPY_FOR_UPDATE&MmMand.

Description sm_prop_error gets the error code returned by the last-called properties API
function:sm_prop_get , sm_prop_set ,sm_prop_id , or one of their variants.
This function is especially useful for ascertaining the success or failure of calls to
variants that do not return an error codebfor examgie,prop_get_s , which
returns O when an error occurs.

Because JAM internal processing also uses the properties API, you should call this
function and retrieve the desired error code immediately

Note: A negative valueaturned bysm_prop_get_int and its variants usually
specifies an ear. Howeversome integer pperties accept negative values; in
these cases, you can diffatiate between a negativeoperty value and an esr
condition only by callingm_prop_err .

412 JAM 7.0 Language Reference

sm_prop_get

SmM_prop_g et
Gets a property setting

#include <smuprapi.h>

int sm_prop_get_int(int obj_id, int prop);
char *sm_prop_get_str(int obj_id, int prop);
double sm_prop_get_dbl(int obj_id, int prop);

int sm_prop_get_x_int(int obj_id, int array_item, int prop);
char *sm_prop_get_x_str(int obj_id, int array_item, int prop);
double sm_prop_get_x_dbl(int obj_id, int array_item, int prop);

int sm_prop_get_m_int(int obj_id, int prop, int prop_item);
char *sm_prop_get_m_str(int obj_id, int prop, int prop_item);
double sm_prop_get_m_dbl(int obj_id, int prop, int prop_item);

obj_id An integer handle that identifies the JAM object whose property you want to get,
obtained througkm_prop_id . For application properties, supply
PR_APPLICATION for the current screeRR_CURSCREEN

array_item The widget occurrence or element whose property you want to get.
prop The property to get. Refer to page 519 for a full list of property constants.
prop_item Specifies the item in a multi-item property whose value you want to get. For

example, if theorop value isSSM_PR_CONTROL_STRINGupply a logical key
name such as XMIT to get that keyurrent control string assignment.

Returns Forsm_prop_get int and its variants:
W The propertys current value, returned as an integer
<0 The propertys negative value or the error code returned by this functon. T
ascertain whether an error condition exists, sallprop_error

Chapter 6 JAM Library Functions 413

sm_prop_get

Description

Elementsand
Occurrences

414

Forsm_prop_get_str ,sm_prop_get _dbl , and their variants:
W The propertys current value, returned either as a string or a double.
0 Failure. D ascertain the cause of failure, catl_prop_error

sm_prop_get has three basic variantsn_prop_get_str , sm_prop_get_int
andsm_prop_get_dbl , which get string, integeand double properties, respec
tively. For examplesm_prop_get_str gets string properties suchtiale
while sm_prop_get_int gets integer properties suchnasx_occurrences

Each of these variants have and_mvariants. These let you access properties of
occurrences or elements, anésefs into properties that take multiple values,
respectively These variant types are discussed in the following sections.

You can get properties for individual elements and occurrences in an array by
callingsm_prop_get_x_ prop-type. All variants of this function require an

obj-id handle to the array and amay_item amgument. Depending on how the
objtid handle was obtained, the function determines whetrsr_item

specifies an d$et into the arrag elements or its occurrences:

To set the properties of an armglements, obtain a handle by supplying
sm_prop_id with a widget identifier that has the fornwatiget-spec[]]

To set the properties of an armsgccurrences, obtain a handle by supplying
sm_prop_id with a widget identifier that has the fornwtiget-spec[] .

For example, this call tem_prop_id gets a handle to the propertiesadt id 's
elements:

int elem_h;
elem_h =sm_prop_id(°cust_id[[]]°);

This call gets a handle to the propertieswdt_id 's occurrences:

int occ_h;
occ_h =sm_prop_id(°cust_id[]°);

Giventhese two handles, you can gse prop_get_x_int to get themdt
property setting for eithewust_id 's first element or first occurrence as follows:

/* get the first element's MDT setting */
int elem_mdt;
elem_mdt = sm_prop_get_x_int(elem_h, 1, PR_MDT);

/* get the first occurrence's MDT setting */

int occ_mdt;
occ_mdt = sm_prop_get_x int(occ_h, 1, PR_MDT);

JAM 7.0 Language Reference

Multi-item Properties

Errors

See Also

sm_prop_get

sm_prop_get_m_ prop-type gets one of the settings in a multi-item property such
asPR_DROP_DOWN_DATfX an option menu, d?dR_CONTROL_STRIN(r a
screen. For example, this code iteratively calisprop_get m_str to compare
the data in each item in option mefftavors to the current selection:

I* replace current item with contents of °substitute® */
char cur_item[256], new_item[256];

char *option_txt;

intct, f_id, err;

f_id = sm_prop_id(°flavors®);

/*get substitute data*/
sm_n_getfield(°substitute®, new_item);

[*get selection data*/
sm_n_getfield(°flavors®, cur_item);

[* get offset of current selection */
for (ct=1;; ct++)

option_txt = sm_prop_get_m_str(f_id,
PR_DROP_DOWN_DATA, ct)
if (loption_txt)
{
err = PR_E_ERROR,;
break;

}

if (strcemp(option_txt, cur_item) ==0)

err = sm_prop_set_m_str(f_id,
PR_DROP_DOWN_DATA, ct, new_item);
break;

}
}

A return value of O fromam_prop_get_str , sm_prop_get_dbl , or one of its
variants usually indicates that the call failed. Howgseme string and double
properties accepMULL or O values. @ determine with absolute certainty whether a
call failed and to get its error code, call_prop_error

A negative value returned Byn_prop_get_int and its variants usually specifies
an error However some integer properties accept negative values; in these cases,

you can diferentiate between a negative property value and an error condition only

by callingsm_prop_error

sm_prop_error , sm_prop_id , sm_prop_set

Chapter 6 JAM Library Functions 415

sm_prop_id

sm_prop_id*

Returns an integer handle for an application component

#include

<smuprapi.h>

int sm_prop_id(char *obj_name);

obj_name

Returns

416

A string that identifies an object in the current application. The string must
conform to JAM object name conventions. For information about valid formats,
refer to page 28.

For example, this call tem_prop_id gets a handle to tlest_id widget in the
custlist screen:

err =sm_prop_id
(°@screen(‘custlist’)!@widget('cust_id")°);

A non-subscripted widget identifier returns a handle to the entire widget. If the
widget is an arrgyyou can use this handle to get or set properties for all-occur
rences and elementsolY can also create handle to an array that lets you get or set
properties for individual occurrences or elementsdad this, include an empty
subscript in the widget'string identifierusing one of these two formats:

widget-spec[] enables access to properties of occurrenceglget-spec.
widget-spec[[]] enables access to properties of elemeniddiget-spec.

For example, the handle returned by this cashtoprop_id can be used as an
argument to variants afm_prop_get x_ prop-type to get or set properties of
elements ircust_id

sm_prop_idC@widget(‘cust_id)[[]]);

Refer to Description for more information about obtaining access to the properties
of an arrays occurrences or elements.

.1 Integer handle to the specified object.
PR_E_ERRORFailed for another reason.
PR_E_OBJID: Object ID does not exist.
PR_E_OBJECTObject does not exist.
PR_E_ITEM Invalid element or occurrence.

JAM 7.0 Language Reference

Description

Accesdo Occurence

sm_prop_id

sm_prop_id gets an integer handle to an application component.c#n use this
handle to get and change the composgmperties with calls to functions like
sm_prop_get_str orsm_prop_set_int . The application components that you
can modify include the application itself, screens, widgets, LDBs, and array ele
ments or occurrences.

You can get three kinds of handles to an adapending on whether the arsy'

and Element Riperties string identifier contains a subscript and the subssrfptmat:

See Also

A non-subscripted identifier returns a handle that lets you get or set properties
for the array as a whole. The following sequence of calls changes the
reverse property for all elements and occurrences in ataay id

arr_h =sm_prop_id(°cust_id°);
sm_prop_set_int(arr_h, PR_REVERSE, PV_YES);

An empty subscript of single paired brackefsBbreturns a handle to an
array that you can supply ta variants okm_prop_get andsm_prop_set
to get and set properties of individual occurrences. The following sequence of
calls changes theverse property for the first occurrence in arrast_id

occ_h =sm_prop_id(°cust_id[]°);
sm_prop_set_x_int(occ_h, 1, PR_REVERSE, PV_YES);

An empty subscript of double paired brackefgp Breturns a handle to an
array that you can supply ta variants okm_prop_get andsm_prop_set ,

to get and set properties of individual elements. The following sequence of
calls changes theverse property for the first element in arrayst_id

elem_h =sm_prop_id(°cust_id[[]]°);
sm_prop_set_x_int(elem_h, 1, PR_REVERSE, PV_YES);

sm_prop_get , sm_prop_set

Chapter 6 JAM Library Functions 417

sm_prop_set

sm_prop_set*
Sets a property

#include <smuprapi.h>

int sm_prop_set_int(int obj_id, int prop, int val);
int sm_prop_set_str(int obj_id, int prop, char *val);
int sm_prop_set_dbl(int obj_id, int prop, double val);

int sm_prop_set_x_int(int obj_id, int array_item, int prop, int val);
int sm_prop_set_x_str(int obj_id, int array_item, int prop, char *val);
int sm_prop_set_x_dbl(int obj_id, int array_item, int prop, double val);

int sm_prop_set_m_int(int obj_id, int prop, int prop_item, int val);
int sm_prop_set_m_str(int obj_id, int prop, int prop_item, char *val);
int sm_prop_set_m_dbl(int obj_id, int prop, int prop_item, double val);

obj_id An integer handle that identifies the JAM object whose property you want to set,
obtained througkm_prop_id . For application properties, supply
PR_APPLICATION for the current screeRR_CURSCREEN

array_item The widget occurrence or element whose value you want to set.

prop The property to set. Refer to page 519 for a full list of property constants.

prop_item Specifies the item in a multi-item property whose value you want to set. For
example, if theorop value isSSM_PR_CONTROL_STRINGupply a logical key
name to get that key'current control string assignment.

val The value to set for the specified property or property item. The salue'
typebstring, integeror doubleBDmust be appropriate to the property itself. For a
list of properties and their valid values, refer to page 519.

Returns PR_E_MALLOCInsuficient memory
PR_E_OBJID: Object ID does not exist.

418

JAM 7.0 Language Reference

Description

Elementsaand
Occurrences

sm_prop_set

PR_E_OBJECTObject does not exist.
PR_E_ITEM Invalid occurrence or element.
PR_E_PROPInvalid property
PR_E_PROP_ITEMInvalid property item.
PR_E_PROP_VALlInvalid property value.
PR_E_CONVERTUnable to perform conversion.
PR_E_OBJ_TYPEInvalid object type.
PR_E_RANGEProperty value is out of range.
PR_E_NO_SETProperty cannot be set.
PR_E_BEYOND_SCREEWiIdget extends beyond screen.
PR_E_WW_SCROLLIN®Vord wrap must be scrolling.
PR_E_NO_SYNCArrays cannot be synchronized.
PR_E_TOO_BIG Widget too lage for screen.
PR_E_ERRORFailed for another reason.
PR_E_BAD_MASKnvalid edit mask or regular expression
PR_E_NO_KEYSTRUCProperty requires previous executiors&l.ECT NEW
COPYoOrCOPY_FOR_UPDAT&®mMmMand.

sm_prop_set has three basic variantsn_prop_set_str ,sm_prop_set_int
andsm_prop_dbl , which set string, integeand double properties, respectively
For examplesm_prop_set_str sets string properties suchtés , while
sm_prop_set_int sets integer properties suchnas<_occurrences

Each of these variants have and_mvariants. These let you set properties of
occurrences or elements, anésefs into properties that take multiple values,
respectivelyThese variant types are discussed in the following sections.

You can set properties for individual elements and occurrences in an array by
callingsm_prop_set x_ prop-type. All variants of this function require an

obj-id handle to the array and anmay_item argument. Depending on how the
objtid handle was obtained, the function determines wheth®r_item

specifies an déet into the arrag elements or its occurrences:

To set the properties of an arrmglements, obtain a handle by supplying
sm_prop_id with a widget identifier that has the fornwtiget-spec[[]]

To set the properties of an armygccurrences, obtain a handle by supplying
sm_prop_id with a widget identifier that has the formwtiget-spec|] .

For example, this call tem_prop_id gets a handle to the propertiexadt_id 's
elements:

int elem_h;
elem_h =sm_prop_id(°cust_id[[]]°);

Alternatively, this call gets a handle to the propertieswst_id 's occurrences:

int occ_h;
occ_h =sm_prop_id(°cust_id[]°);

Chapter 6 JAM Library Functions 419

sm_prop_set

Giventhese two handles, you can gse prop_get x_int to set the foreground
color of eithercust_id 's first element or first occurrence as follows:

/*set the first element's foreground color */
sm_prop_set_xint(elem_h, 1, PR_FG_COLOR_NUM, MAGENTA);

[*set the first occurrence's foreground color */
sm_prop_set_x_int(occ_h, 1,PR_FG_COLOR_NUM, MAGENTA);

Note: To set poperties on the engrarray use a handle obtained by supplying
sm_prop_id with a widget string identifier that contains no subscript,

Multi-item Properties ~ sm_prop_set_m_ prop-type sets one of the values in a multi-item property such as
PR_DROP_DOWN_DAfiox an option menu, d?R_CONTROL_STRINf®r a screen.
For example, this code calls_prop_set m_str to set the data for an item in
option menulavors

/* replace current item with contents of °substitute® */
char cur_item[256], new_item[256];

char *option_txt[256];

intct, f_id, err;

f_id = sm_prop_id(°flavors®);

/*get substitute data*/
sm_n_getfield(°substitute®, new_item);

/*get selection data*/
sm_n_getfield(°flavors®, cur_item);

[* get offset of current selection */
for (ct=1;; ct++)
{
option_txt = sm_prop_get_m_str(f_id,
PR_DROP_DOWN_DATA, ct)
if (loption_txt)

err = PR_E_ERROR,;
break;

}

if (strcemp(option_txt, cur_item) ==0)

err = sm_prop_set_m_str(f_id,
PR_DROP_DOWN_DATA, ct, new_item);
break;

}
}

See Also sm_prop_error , sm_prop_id , sm_prop_set

420 JAM 7.0 Language Reference

sm_pset

sm_pset

Modifies the value of a global string

#include

<smglobs.h>

char *sm_pset(int which, char *newval);

which

Specifiesthe global string to modify with one of these constants:

P_YES

Set the dfrmative input that is valid for a field whose keystroke filter is set to
Yes/No. Supply a two-character string that contains the lowercase yes value and
the uppercase yes value.

P_NO

Set the negative input that is valid for a field whose keystroke filter is set to

Yes/No. Supply a two-character string that contains the lowercase no value and the
uppercase no value.

P_DECIMAL

Set the usés decimal point marker and the operating systetatimal point
marker in a two-character string.

P_TERM

Set the terminal type.otl must calbm_pset with this agument this before
initialization.

P_USER

Set a pointer to a developspecified region of memory for the current screen.
Each screen maintains its own poinf#ris pointer is not set by JAM; it is set and
maintained by the application.

SP_NAME
Set the name of the active screen.

SP_STATATTR

Return attributes of current status lineba pointer to an array of unsigned short
integers.

\Y

One of thev_ constants defined mvideo.h , returns video-related information.

Chapter 6 JAM Library Functions 421

sm_pset

newval Thenew value to assign to this global string.

Note: If you supply &/_ constant fowhich , declae this parameter as a static
variable.

Returns W A pointer to a buer with the old contents of the array specifiedalbych .
The bufer's maximum size of 255 bytes, including the null terminator
W 0:which is invalid.

Description sm_pset lets you modify the contents of thwaich -specified global string.d'get
the value of a global string, use_pinquire

Example [* Set things for °German®: Ja ==yes, */
/* Nein == no, and ',' is decimal point. */

void
set_german()

sm_pset(P_YES,°jJ°);

sm_pset(P_NO,°nN°);
sm_pset(P_DECIMAL,°,.9);

sm_ferr_reset(0, °Jetzt spreche ich Deutsch!?);

}

See Also sm_iset , sm_pinquire

422 JAM 7.0 Language Reference

sm_pultfield

sm_ putfield

Puts a string into a field

int sm_putfield(int field_number, char *data);

int sm_e_putfield(char *field_name, int element, char *data);
int sm_i_putfield(char *field_name, int occurrence, char *data);
int sm_n_putfield(char *field_name, char *data);

int sm_o_putfield(int field_number, int occurrence, char *data);

field_name, Thefield to receive the contents ddta . If field_name is a group, use
field_number sm_select andsm_deselect to change the groupVvalue.
element The element in arrafjeld_name to receive the string.
occurrence The occurrence in the field to receive the string.
data A pointer to the string to put in the specified field or occurrence.
Returns 0 Success.
-1 Failure.
Description sm_putfield moves the string idata into the specified field. If the string is too

long, JAM truncates it without warning. If the string is shorter than the destination
field, JAM blank fills it according to the field'justification. Ifdata points to an
empty string, the field is cleared. This refreshes date and time fields that take sys
tem values.

sm_putfield sets the field mdt property to 1 (true) to indicate that it is

modified, and clears itwmlided property to O (false) to indicate that the field

must be revalidated upon exit. If you use variantsn_putfield or

sm_i_putfield andfield_name is absent from the screen, the valudath is

put in the corresponding LDB entry unless the entry has a scope of 1. In that case,
the entrys contents remain unchanged and the function fails.

Example #include <smdefs.h>

sm_pultfield (1, °This string has 29 characters®);

See Also sm_deselect ,sm_dtofield ,sm_getfield ,sm_itofield , sm_ltofield

Chapter 6 JAM Library Functions 423

sm_receive

sm_receive

Executes a JPL receive command

int sm_receive(char *receive_args);

receive_args

Returns

Description

See Also

424

A string constant that contaireceive command ajuments.
[bundle bundle-name] [item item-no] [keep]data field-expr

For a description ofeceive command ajuments, refer to page 70.

0 Success.

-1 Unable to execute the function, or execution aborted prematSesythee-
ceive command for potential error conditions.

-2 Memory allocation failure.

sm_receive reads data from a bundle that was written by an earlier call to
sm_send or the JPLsend commandbtypically from another screen.

sm_receive reads the data into ifigld-expr aguments in the same order that it
was sent. Unless you supply tteep argument, the bundle data is discarded after
sm_receive completes execution.

For more information, refer to theceive command on page 70.

sm_send

JAM 7.0 Language Reference

sm_rescreen

Sm_rescreen

Refreshes the data displayed on the screen

void sm_rescreen(void);

Description sm_rescreen repaints the entire display from JAd/internal screen and attribute
buffers. This function erases anything written to the screen by means other than
JAM library functions. This function is normally bound to the REFR key and
executes automatically withsm_getkey .
You might need to call this function explicitly under the following conditions:
Screen 1/O occurs with the flagn_do_not_display turned on.
Escape fro an JAM application to another program thraugteave .

To force writes to the displaysesm_flush .

See Also sm_flush , sm_return

Chapter 6 JAM Library Functions 425

sm_resetcrt

sm_*resetcrt

Resets the terminal to the operating system's default state

void sm_resetcrt(void);
void sm_jresetcrt(void);
void sm_jxresetcrt(void);

Description sm_resetcrt resets terminal characteristics to the operating systeonmal
state. Use this function only for your own executive. €allresetcrt when
leaving the screen manager environment before program exit.

All the memory associated with the display and open screens is freed. However
the bufers that hold the message file, key translation file, and so on, are not
released. A subsequent calkto_initcrt finds them in placesm_resetcrt

then clears the screen and turns on the qursmsmits th&RESETsequence

defined in the video file, and resets the operating system channel.

JAM's executive automatically calien_resetcrt throughsm_jresetcrt

orbin the case of the screen editod_jxresetcrt as part of its exit
processing. These two functions should not be called by application programs
except in case of abnormal termination.

Example *1f an effort to read the first form results in
* failure, clean up the screen and leave. */

if (sm_r_form (°first®) < 0)

{
sm_resetcrt ();
exit (1);
}
See Also sm_cancel , sm_leave

426 JAM 7.0 Language Reference

sm_resize

sm_resize

Notifies JAM of a change in the display size

int sm_resize(int rows,

rows,
columns

Returns

Description

Example

int columns);

Specifiesthe new display size, where the maximum valuew$ andcolumns is
255. If the specified rectangle isdar than the physical displagsults can be
unpredictable.

W 0: Success.
W -1: Failure. A parameter is less than O or greater than 255.
W Program exit on memory allocation failure.

sm_resize lets you change the default display set by the vides filRES and
COLMSentries. This function lets you use a single video file in a windowing envi
ronment. Applications can run in tifent-sized windows by setting their individu

al display sizes at runtime. Also use_resize to switch between normal and
compressed modesbfor example, 80 and 132 columns on VT100-compatible ter
minals.

#include <smdefs.h>
#include <smkeys.h>

#include <smglobs.h>

#define WIDTH_TOGGLE PF9

/* Somewhat irregular code to switch a VT+£100
* petween 80+ and 132+column mode by pressing PF9. */

switch (sm_input (IN_DATA))
{

;:.ése WIDTH_TOGGLE:
if (sm_inquire(I_MXCOLMS) == 80)

printf (°\033[?3h°);
sm_resize (sm_inquire(I_MXLINES), 132);
}

Chapter 6 JAM Library Functions 427

sm_resize

else

printf (°\033[?31°);
sm_resize (sm_inquire(I_MXLINES), 80);
}

break;

428 JAM 7.0 Language Reference

sm_restore_data

sm_restore_data

Restores previously saved data to the screen

int sm_restore_data(char *buffer);

buffer

Returns

Description

See Also

Theaddress of an area initialized y_save_data that contains the data to
restore. Data items are storedirifer as null-terminated character strings. The
contents of a scrollable array is preceded by 2 bytes giving the total number of
items saved (high order byte first); each item is preceded by two bytes of display
attribute, and followed by a null. There is an additional null following all the
scrolling data.

0 Success.
-1 Error, usually memory allocation failure.

sm_restore_data restores all data items, on- an@isdreen, to the current

screen fronbuffer , previously initialized bym_save_data . Passing a btdr

not returned bym_save_data , or attempting to restore to a screen other than the
one saved, can yield unpredictable results.

sm_save data ,sm_sv_free

Chapter 6 JAM Library Functions 429

sm_return

sm_return

Prepares for return to JAM application

void sm_return(void);

Description

Example

See Also

430

Callsm_return on returning to a JAM application after a temporary exit. This

function sets up the operating system channel and initializes the display with the

video file's SETUPstring.

Note thatsm_return does not restore the screen to its state before the call to
sm_leave . To restore the screen to its previous statesumseescreen

#include <smdefs.h>
/* Escape to the UNIX shell for a directory listing */

sm_leave ();

system (°ls +I°);

sm_return ();

sm_c_off ();

sm_d_msg_line (°Hit any key to continue®,
BLINK | WHITE);

sm_getkey ();

sm_d_msg_line (°°, WHITE);

sm_rescreen ();

sm_leave , sm_resetcrt

JAM 7.0 Language Reference

sm_rmformlist

sm_rmformlist

Purges the memory-resident form list

void sm_rmformlist(void);

Description sm_rmformlist ~ erases the memory-resident form list established by
sm_formlist , and releases the memory used to hold it. It does not release any of
the memory-resident JPL modules or screens. Calling this function prevents

sm_r_window , sm_jplcall , and related functions from finding memory-resident
objects.
Example /* Hide all the memory+resident screens, perhaps

* pbecause the disk versions have been modified. */

sm_rmformlist ();

See Also sm_formlist

Chapter 6 JAM Library Functions 431

sm_rs_data

sm_rs_data

Restores saved data to some of the screen

void sm_rs_data(int first_field, int last_field, char *buffer);

first_field,
last_field

buffer

Returns

Description

See Also

432

Specifiesthe range of data items to restore, where all data betixsefield
andlast_field are restored to the screen.

The address of a Hfef, initialized bysm_sv_data , that stores the data to restore.
Data items are stored iuffer ~ as null-terminated character strings. The contents
of a scrollable array is preceded by 2 bytes giving the total number of items saved
(high order byte first); each item is preceded by two bytes of display attribute, and
followed by a null. There is an additional null following all the scrolling data.

0 Success.
-1 Error, usually memory allocation failure.

sm_rs_data restores all data items betwdest_field andlast_field ,
both of- and onscreen, from a Waf initialized bysm_sv_data .

The range of fields passed¢d_rs_data must match those passed to
sm_sv_data andbuffer ~must be a value returned by that function; otherwise,
serious errors can occulifor more information on saving data for later retrieval by
sm_rs_data , Seesm_sv_data .

sm_sv_data

JAM 7.0 Language Reference

sm_s_val

sm_s val

Validates the current screen

int sm_s_val(void);

Returns 0 Success.
-1 A field failed validation.

Description sm_s_val validates all fields and their occurrences, on- afetaden, that are not
protected from validation. JAM calls this function whenever screen validation
takes placebfor example, when a screen exits.s_val also validates groups.

sm_s_val validates array occurrences sequentiallyether onscreen orfstreen.
Thus, ofscreen occurrences that precede the first onscreen occurrence are
validated first.

sm_s_val validates synchronized arrays by processing parallel occurrences se
quentially The function begins by validating the first occurrence (on-fecigen)
of the array with the lowest base field numlieen the first occurrence of the array
with the next base field numbhemnd so onsm_s_val completes validation when
it processes the last occurrence of the array with the highest base field.number

For each fieldsm_s_val checks the property settings shown in the table to
determine whether to validate a field according to the following conditions:

Property setting Skip if valid Skip if empty

Required = ¥s
Must Fill = Yes

Yy n
y y
Regular Exp =xpr y y
Minimum Value =value y y
Maximum \alue =value y y
y

Check Digit =value y

*For fields with a numeric format, the Empty Format properfgas$ this see Chapter 14
in theEditors Guide

Chapter 6 JAM Library Functions 433

sm_s_val

Example

See Also

434

Property setting Skip if valid Skip if empty
Table Lookup =expr y y

JPL \alidation n n
Calculation n n

No Validation = No n n

Data Formatting = Dateifhe y y

Data Formatting = Numeric y n*

*For fields with a numeric format, the Empty Format properfgci$ this see Chapter 14
in theEditors Guide

To force validation for an empty field, make the field requised.s val regards
a field with embedded punctuation as empty if it has only blank and punctuation
characters. If it contains another character types_val regards it as non-empty

If an occurrence fails validatioam_s_val repositions the cursor to it and

displays an error message. If the occurrencessmensm_s val scrolls the

array until it is visible. The function then stops validation and returns. Data that is
after the dfiending occurrence remain unvalidated.

#include °smdefs.h®
#include °smkeys.h°

/* Treat the SPF1 key as transmit, for a change. */
int key;
sm_d_msg_line (°Press %KSPF1 when done.°, WHITE | REVERSE);
while ((key = sm_input (IN_DATA)) != EXIT)
if (key == SPF1)
if (sm_s_val ()
sm_ferr_reset (0, °Please correct the °
°mistake(s).?);

else
break;

sm_fval

JAM 7.0 Language Reference

sm_save_data

sm_save_data

Saves screen contents

char *sm_save_data(void);

Returns

Description

See Also

W Theaddress of a memory area that contains the serdats.
w 0: Insuficient memory

sm_save_data saves the current scregidata for external access or subsequent
retrieval and returns the address of the save swreaave_data ignores selec

tions from the following widgets: radio buttons, toggle buttons, check boxes, and
list boxes.

To restore the saved data, gse restore_data . Usesm_sv_free to discard a
save area.

You can get the size of the data with this statement:

length = ((unsigned int *)buffer)[+1];

sm_restore_data ,sm_sv_data ,sm_sv_free

Chapter 6 JAM Library Functions 435

sm_sdtime

sm_sdtime

Gets the formatted system date and time

char *sm_sdtime(char *format);

format
Returns
Description

Table 17.
436

Specifiesthe format to use with an expression that starts wihn, followed by

any combination of date/time tokens and literal tgxhdicates a 12-hour clock;

or any other character indicates a 24-hour clock. This character is required even if
the format does not include time tokens. The table in Description shows the
date/time tokens that you use to build a format expression.

W A pointer to the current date/time in the specified format.
W Empty:format is invalid.

sm_sdtime gets the current date and/or time from the operating system-and re
turns it in theformat -specified format.

The following table lists the tokens you use to build a format expression. All
tokens are prefixed by the percent sign (%) and are case-sensitive.

Day/time format options

Unit Description Token
year 4 digit (e.g., 1990) %4y
2 digit (e.g., 90) %2y
month 1 or 2 digit (1 - 12) %m
2 digit (01 - 12) %0m
full name (e.g., January) %*m
3 character name (e.g., Jan) %3m
day 1 or 2 digit (1 - 31) %d
2 digit (01 - 31) %0d
day of the week full name (e.g., Sunday) %*d

JAM 7.0 Language Reference

sm_sdtime

Unit Description Token

3 character name (e.g., Sun) %3d

day of the year digit (1 - 366) %+d
hour 1 or 2 digit (1 -12 or 0 - 23) %h
2 digit (01 -12 or 00 -23) %0h
minute 1 or 2 digit (0 - 59) %M
2 digit (00 - 59) %O0M
second 1 or 2 digit (0 - 59) %s
2 digit (00 - 59) %0s
AM or PM for use with a 12-hour clock %p
literal percent use%as a literal character %%
default formats from the messag: SM_ODEF_DTIME %0f

file; refer to page 61 in th€onfig-
uration Guidefor details. SM_1DEF_DTIME %11

SM_9DEF_DTIME
- - %09f

At runtime, JAM strips dfthe first character dbrmat . If the character ig, it

uses a 12-hour clock; otherwise, it uses the 24-hour clock. Next, it examines the
rest offormat , replacing any tokens with the appropriate values. All non-token
characters are treated as literal values.

The message file contains the text for day and month names, AM and PM, and the
tokens for the default formatsod can modify these. Refer to page 61 in the
Configuration Guiddor details.

sm_sdtime uses a 256-byte static lferf that it shares with other date and time
formatting functions. Because JAM does not check for overfiwacess the
returned string or copy it to a local variable immediately

Example #include °smdefs.h°
[* Put current date MONTH+DAY+YEAR in the field &ime®°. */
char *format;
format = °n%m=%0d+%2y°;
sm_n_putfield (°time®, sm_sdtime (format));

See Also sm_udtime

Chapter 6 JAM Library Functions 437

sm_select

sm_select

Selects an occurrence in a selection widget group

int sm_select(char *group_name, int group_occurrence);

group_name The name of the tget group.

group_occurrence The number of the occurrence to select fgpoup_name .
Returns 1 Occurrence is already selected.

0 Occurrence not previously selected.
-1 Invalid reference to group or occurrence.

Description sm_select lets you select an occurrence within a selection widget group. If the
group’s # of Selections property allows no more than one selection, JAM first dese

lects the current selection before it selgetsip_occurrence . For more iR
formation about selection widgets, refer to page 199 ik ti®rs Guide

To deselect an occurrence, call_deselect

See Also sm_deselect

438 JAM 7.0 Language Reference

sm_send

sm_send

Executes a JPL send command

int sm_send(char *send_args);

send_args

Returns

Description

See Also

A string constant that contaissnd command ajuments:
[bundle bundle-name] [append]data data-expr],...]

For a description ofend command ajuments, refer to page 73.

0 Success.

-1 Unable to execute the function, or execution aborted prematGesdythe JPL
send command for potential error conditions.

-2 Memory allocation failure.

sm_send executes a JPdend command exactly as if called from JRmn_send

writes screen data to a lerf that is accessible to other screens through calls to
sm_receive or the JPlreceive commandsm_send can send one or more val

ues from fields and array occurrences on a screen. It can also send character string
constants as well as parts of arrays or the current occurrence of an array

JAM writes the data that you specifysm_send to a temporary bfgr, orbundle

which you can optionally name. JAM can maintain up to ten bundles. If you omit a
bundle name, JAM writes the data to an unnamed bundle; this data is accessed by
the next call tam_receive orreceive that also omits a bundle namgament

or specifies it as an empty string.

For more information, refer to thkend command on page 73.

sm_receive

Chapter 6 JAM Library Functions 439

sm_setbkstat

sm_setbkstat

Sets background text for status line

void sm_setbkstat(char *message, int display_attr);

message

display_attr

Description

See Also

440

Specifiesthe message to display as background text.

The display attributes to use faessage, one of the constants defined in
smattrib.h

Foreground colors can be used alone or OR'd with one or more highlights, a
background colgrand a background highlight. If you do not specify a highlight or
a background colpthe attribute defaults to white against a black background.
Omitting a foreground color causes the attribute to default to black.

sm_setbkstat ~ saves the contents wkssage for display on the status line when
there is no other message with a higher priority to displag highest priority
messages are those passeshtod msg_line , sm_ferr_reset , or

sm_fquiet_err ; the next highest are those attached to a field by means of the
status text option. Background status text has lowest priority

sm_setstatus sets the background status to an alternating ready/wait flag; turn
this feature dfbefore callingsm_setbkstat

sm_d_msg_line shows how to embed attributes and function key names in
messages.

sm_d_msg_line , sm_setstatus

JAM 7.0 Language Reference

sm_setsibling

sm_setsibling

Specifies to open the next screen as a sibling of the current window

int sm_setsibling(void);

Returns 0 Success.
+1 Failure.
Description sm_setsibling forces sibling status onto the next screen opened as a window

Usually you can open a screen as a sibling window by prepending the screen name
with double ampersands (&&) in a control stringbfor example, in a widg€br

trol String property or as angqument tasm_jwindow . This operation fails if the
specified screen is already open as the current window or as a sibling of the current
window. If you want to open multiple instances of the same screen as sibling win
dows, precede each call to open these windows with a cafl teetsibling

Also, you can use this function to set sibling status for a screen to be opened with
sm_r_window , sm_r_at cur , or one of their variants. Otherwise, JAM opens all
windows opened by these functions as stacked windows.

To change stacked windows into siblings and vice-versa, setithiaig
property to 1 and 0, respectively

Note: sm_setsibling temporarily sets a static variable that is immediately

unset after the next window-open operation, even if the operation fails. All
subsequent window-open operatioasart to their default behavior

Chapter 6 JAM Library Functions 441

sm_setstatus

sm_setstatus

Turns alternating background status message on or off

void sm_setstatus(int mode);

mode

Description

Example

442

Specifieswhether to turn the alternating status message or:or of

1 Turns the status message on.
0 Turns the status messagé of

When alternating messages are turned on, one messagebtyeatlybdis-
plays on the status line while JAM awaits input, and anotherbnorredly B
when it is not. Ifmode is 0, the messages are turnefd of

The status flags are replaced temporarily by messages passedeio reset
and related functions. They overwrite messages postea by msg_line and
sm_setbkstat

You can edit the the text of alternating messages in the message file, where they are
stored asSM_READ¥WNdSM_WAIT You can also embed attribute changes and
function key names in these messages, as described dnmsg_line

#include °smdefs.h®

#include °smerror.h®

#define PAUSE (sm_flush (), sleep (3))
char buf[100];

/* Tell people what you're gonna tell 'em. */
sprintf (buf, °You will soon see %s alternating °

with %s below.°,

sm_msg_get (SM_READY), sm_msg_get (SM_WAIT));
sm_do_region (3, 0, 80, WHITE, buf);

/* Now tell 'em. */

sm_setstatus (1);

PAUSE; [* Shows WAIT */

sm_input (IN_DATA); /* Shows READY */

JAM 7.0 Language Reference

sm_setstatus

[* Finally, tell 'em what you told 'em. */
sprintf (buf, °That was %s alternating with %s ©

%n the status line.°,

sm_msg_get (SM_READY), sm_msg_get (SM_WAIT));
sm_ferr_reset (0, buf);

See Also sm_setbkstat

Chapter 6 JAM Library Functions 443

sm_sh_off

sm_sh_off

Gets the cursor location relative to the start of a shifting field

int sm_sh_off(void);

Returns .0 Thedifference between the current cursor position and the start of shiftable
data in the current field.
-1 The cursor is not in a field.

Description sm_sh_off returns the dference between the start of data in a shiftable field and
the current cursor location. If the current field is not shiftable, it returns flee-dif
ence between the fieklleftmost column and the current cursor location.

Example #include °smdefs.h®

/* Fancy test to see whether the current field is shifted
* to the left. */

if (sm_sh_off () != sm_disp_off ())
sm_ferr_reset (0, °Ha! You shifted!?);

See Also sm_disp_off , sm_off_gofield

444 JAM 7.0 Language Reference

sm_shell

sm_shell

Executes a system call

int sm_shell(char *cmdstr, int wait);
cmdstr Theoperating system command to execute.
wait Used only in character mode, specifies whether to display an acknowledgement

message before returning to the JAM application:

1 (Yes): Display a message that the user must acknowledge before the JAM
application resumes execution.

0 (No): Return immediately to the JAM application att@dstr executes.
JAM refreshes the screen and resumes screen processing.

Returns System-dependent.

Description In character modem_shell clears the screen and displays any output from the
specified program; on GUI platforms, display output is system-dependent.

Return values are system dependent. For example, UNIX systems typically supply
sm_shell with the executed commasdeturn value; under WHows,sm_shell

returns £1 only iEmdstr contains an invalid command;dfndstr is a valid DOS
commandsm_shell returns O (true) regardless of the commaisdiccess or

failure.

Example # On a UNIX system, check a directory listing.
call sm_shell(®ls %I°, 1)
#open afile...

See Also jm_system

Chapter 6 JAM Library Functions 445

sm_shrink_to_fit

sm_shrink_to_fit

Removes trailing empty array elements and shrinks the screen

void sm_shrink_to_fit(void);

Description sm_shrink_to_fit lets you dynamically reduce the current screen size accord
ing to the number of array elements that contain data at runtime. This funetion re
moves the trailing elements in all arrays on a screen and then shrinks the screen to
a size just lage enough to accommodate the displayed data. If there is no data in
the arraythen the entire array is removed. Only the currently displayed copy of the
screen in memory is altered.

sm_shrink_to_fit never minimizes screen size at the expense of the sereen’
first or last line. For example, given a five-line screen with a five-element array in
which only four elements have dasey_shrink_to_fit leaves the last empty
element alone because it occupies the scsdast line.

Example /* Put ~shrink in the auto control */
/* to have window shrink to fit before */
[* user gets a chance to see it! */

int
shrink (ignored_data)
char *ignored_data;

sm_shrink_to_fit();
return (0);

}

446 JAM 7.0 Language Reference

sm_slib_error

sm_slib_error

Gets the system return for the last call to sm_slib_load

int sm_slib_error(void);

Environment Windows

Description sm_slib_error gets the system-specific error value set when a DLL is loaded by
sm_slib_load . This is the return code from theiddows API functiorLoadLi-
brary .

See Also sm_slib_load

Chapter 6 JAM Library Functions 447

sm_slib_install

sm_slib_install

Installs a function from a DLL into a JAM application

int sm_slib_install(char *fnc_name, int language, int return_type);

fnc_name

language

return_type

Environment

Returns

Description

448

The name of the function to install. JAM searches all libraries loaded by
sm_slib_load , starting with the one most recently loaded.

Specifies which language calling convention to use when pushing this fuaction’
arguments onto the code stack. The convention that you specify must conform to
the order in which the function expects to find itguanents stacked. Supply one

of these identifiers:

SLIB_C
Arguments are pushed onto the stack in left-to-right order

SLIB_PASCAL

Arguments are pushed onto the stack in right-to-left oMest Wndows
functions use this convention.

fnc_name 's return type, specified by one of thesguanents:

SM_INTFNC
SM_STRFNC
SM_DBLFNC
SM_ZROFNC

SM_ZROFNGpecifies to ignorénc_name 's return value and always to return 0.

Windows

0 Success
+1 Cannot findinc_name in the loaded libraries.
+2 Invalid agument.

sm_slib_install installs the specified function from a shared library previously
installed bysm_slib_load . This function is installed as a prototyped function and
can be called directly from JPL modules.

JAM 7.0 Language Reference

sm_slib_install

Note: In the Whdows distribution, JAM automatically loads the DIKBYBOARDP
KERNEL andUSER in that oder. All functions in these libraries aravailable for
installation.

See Also sm_slib_load

Chapter 6 JAM Library Functions 449

sm_slib _load

sm_slib _load
Loads a dynamic link library (DLL)

int sm_slib_load(char *lib_name);

lib_name

Environment

Returns

Description

450

The name of the dynamic library to load. The name can include its path. If
lib_name is already loaded, JAM moves the library to the top of the stack of
loaded libraries.

Windows

0 Success.
+1 Unable to loadib_name . Callsm_slib_error to get the system-specific
error code.

sm_slib_load makes the functions and other resourcdis iname available

for installation. Resources can include bitmaps and icons. The library must-be shar
ablebon Windows, a dynamic link library (DLL).d'install a function from a

loaded librarycall sm_slib_install . After a function is installed, it can be

called directly from a JPL module.

If the agument supplied fdib_name omits a path, JAM searches for the library
in these locations:

1. JAM's working directory

2. Windows directory

3. Windows system directory

4. The executable'startup directory

5. SMPATH

6. The list of directories mapped in a network

Note: In the Whdows distribution, JAM automatically loads the DIKBYBOARD
KERNEL andUSER in that oder. All functions in these libraries aravailable for
installation.

JAM 7.0 Language Reference

sm_slib _load

All loaded libraries are automatically unloaded on program exit.

See Also sm_slib_install

Chapter 6 JAM Library Functions 451

sm_soption

sm_soption

Sets a string option

char *sm_soption(int option, char *newval);

option

newval

Returns

Description

Example

See Also

452

Specifiesthe option to set with one of these constants &msetup.h

SO_EDITOR
Editor to use in JPL windows. Equivalent to setup variaMEDITOR

SO_FEXTENSION
Screen file extension. Equivalent to setup variSiEXTENSION

SO_LPRINT
Operating system print command. Equivalent to setup varsbl®RINT

SO _PATH
Search path for screens and JPL procedures. Equivalent to setup \&viBAEH

SO_LDBLIBNAME
An LDB library to open. Equivalent t8MLDBLIBNAMESet this option in
jmain.c orjxmain.c before the call tam_Idb_init

SO_LDBNAME
An LDB screen to open. Equivalent3VLDBNAME

The new value to assign dption

W The old value for the specified option or an empty string if the specified option
was not set.
W 0: The option is invalid or a malloc error occurred.

sm_soption lets you change at runtime the default string options defined in
smsetup.h

char *default_lIp;
default_lp = sm_soption (SO_LPRINT, °lp +dny %s°);

sm_option

JAM 7.0 Language Reference

sm_*strip_amt_ptr

Strips amount editing characters from a string

char *sm_strip_amt_ptr(int field_number, char *inbuf);
char *sm_e_strip_amt_ptr(char *field_name, int element, char *inbuf);
char *sm_i_strip_amt_ptr(char *field_name, int occurrence, char *inbuf);
char *sm_n_strip_amt_ptr(char *field_name, char *inbuf);

char *sm_o_strip_amt_ptr(int field_number, int occurrence, char *inbuf);

field_name, Thefield with the string to strip.

field_number

element The element with the string to strip.

occurrence The occurrence with the string to strip.

inbuf Contains the string to stripoTuse the field data, suppluLL
Returns W A pointer to a buer containing the stripped text.

w O if inbuf is 0 and the field number is invalid.

sm_strip_amt_ptr

Description sm_strip_amt_ptr strips all non-digit characters from the string, except for an
optional leading minus sign and decimal point. If you supply a valuetiai
sm_strip_amt_ptr processes its contents. Otherwise, it uses the field data.

Note: sm_strip_amt ptr stores its eturn value in a pool of buffers that it
shaes with other functions. Consequenylgu should use this data immediately

Example #include °smdefs.h®

char *strip_text;
in amount;

strip_text = sm_strip_amt_ptr (0, °$1,234°);
amount = atoi(strip_text);

See Also sm_amt_format , sm_dblval

Chapter 6 JAM Library Functions

453

sm_sv_data

sm_sv_data

Saves partial screen contents

char *sm_sv_data(int first_field, int last_field);
first_field, Specifiesthe area to save. All data between fiirst_field andlast_field ,
last_field inclusive, is saved to the specified address.
Returns W The address of an area containing the saved data.
W 0: The current screen has no fieliis;_field orlast_field is invalid,

or insuficient free memory

Description sm_sv_data saves the current scregata from all fields numbered from
first_field tolast_field for external access or subsequent retrieval. Use
sm_rs_data to restore the saved data to the screen.

Data items are stored as null-terminated character strings. The contents of a
scrollable array is preceded by 2 bytes giving the total number of items saved (high

order byte first); each item is preceded by two bytes of display attribute, and
followed by a null. There is an additional null following all the scrolling data.

See Also sm_rs_data ,sm_save data ,sm_sv free

454 JAM 7.0 Language Reference

sm_sv_free

sm_sv_free

Frees a buffer that contains saved screen data

void sm_sv_free(char *buffer);

buffer The address of the the Waf to free.

Description sm_sv_free releases the save areadaffer , created bgm_save data or
sm_sv_data . Once released, this data is no longer accessible.

sm_save_data and related functions record up to 10 save area addresses. If you
save more than 10 times during a JAM session, JAM frees existifggdah a
first-in/first-out basis. Consequentlyou should use this function only if you need
to manipulate the save lbefs manually

See Also sm_save data ,sm_sv_data

Chapter 6 JAM Library Functions 455

Sm_sSsvscreen

Sm_Ssvscreen

Registers a list of screens on the save list

int sm_svscreen(char **screen_list, int count);

screen_list Specifiesthe screens to add to the save list.
count The number of screens to addsteeen_list
Returns 0 Success.

1 Failure: Insuficient memory

Description sm_svscreen adds screens to the JAM-managed list of screens that are saved in
memory You can call this function to add screens to this list anywhere in your
code; howevelthese screens and the data entered in them are saved in memory
only when you close the screens for the first time. Consequantgss to the
saved screens is mordieient only on subsequent opens of those screens.

If a screen is already on the save list, JAM leaves that list entry unchaioged. Y
can remove screens from the list with_unsvscreen . To check whether a screen
is on the save list, usen_issv .

This function saves processing time at the expense of metisrgspecially

useful with read-only screens that usgéaamounts of external data, for example,
from databases or other files. For instance, use this function to save in memory a
help screen that gets its data from a database and is repeatedly opened.

Example /¥ sm_issv */
/* sm_svscreen */
/* sm_unsvscreen */
char *screens|] =
{
Ostart.jam®,
°demo.jam®,
°help.jam®

I3

int num_screens = sizeof(screens) / sizeof(char *);

456 JAM 7.0 Language Reference

See Also

void
save_screens()

/* Put 'screens' onto the save list. */
sm_svscreen(screens, num_screens);

}

void

release_screens()

{
/* Remove 'screens' from the save list. */
sm_unsvscreen(screens, num_screens);

}

void
release_screen(name)
char *name;
{

char *temp[1];

if (sm_issv(name))

temp[0] = name;
sm_unsvscreen(temp,1);
}
}

SM_issv , sm_unsvscreen

Chapter 6 JAM Library Functions

Sm_sSsvscreen

457

sm_tab

sm_tab

Moves the cursor to the next unprotected field

void sm_tab(void);

Description sm_tab moves the cursor to first enterable position in the next tab-accessible field
on the screen. If the cursor is in a field with a next-field property and one of the
fields specified by the property is tab-accessible, the cursor moves to that field'
first enterable position. This function is normally bound to thB Key.

This function does not immediately trigger field entyit, or validation
processing. Such processing occurs based on the cursor position when control
returns tesm_input .

Example #include °smkeys.h°
[* This moves the cursor to the next field. */
sm_tab ();

See Also sm_backtab , sm_home sm_last , sm_nl

458 JAM 7.0 Language Reference

sm_tm_clear

sm_tm_clear

Clears all fields in the table view

#include <tmusubs.h>

int sm_tm_clear(int suppress);

suppress A flag that, if set to other than 0, indicates that before-image processing should be
suppressed while the clearing is being done.

Returns 0 Success.
<0 Failure.
Description sm_tm_clear clears all fields in the current table viedvpositive value of

suppress indicates that before-image processing should be suppressed while the
clearing is being done.

Chapter 6 JAM Library Functions 459

sm_tm_clear_model_events

sm_tm_clear_model _events

Empties the transaction event stack

#include <tmusubs.h>

sm_tm_clear_model_events(void);

Description

See Also

460

sm_tm_clear_model_events clears the transaction event stack. Events can be
pushed onto the event stack by the transaction mareatzansaction model, or a

user hook function. The events generated by the transaction manager and those by
the standard transaction models can be found in the includeddabs.h

This function can be used by transaction models or by transaction hook functions
associated with a table view

For more information on the event stack, refer to page 337 iydlécation
Development Guide

sm_tm_push_model_event , sm_tm_pop_model_event

JAM 7.0 Language Reference

sm_tm_command

sm_tm_command

Executes a transaction command

#include <tmusubs.h>

int sm_tm_command(char *cmd_string);

cmd_string

Returns

Description

Containsone of the following transaction commands and its associated parameters:

CHANGE CONTINUE_DOWN COPY_FOR_VIEW REFRESH
CLEAR CONTINUE_TOP FETCH SAVE
CLOSE CONTINUE_UP FINISH SELECT
CONTINUE COPY FORCE_CLOSE START
CONTINUE_BOTTOM COPY_FOR_UPDATE NEW VIEW

When specifying a command, the table view name is case sensitive; haivever
command name and the optional parameters following the table view name are not
case sensitive.

W STATUSof the current transaction.
-1 Unable to execute command because transaction is already in progress.

sm_tm_command executes the specified transaction manager command. Before the
command is processed, a test is performed to see if the specified command is
available with the current mode.

By definition, a command is in progress from the momsentm_commandis

called until the moment it returns. As it processes most commandsy_com-

mand invokes transaction hook functions and transaction models. These, in turn,
should not invoke transaction manager commands, because the transaction
manager cannot process its commands recursively implies that they should

not close the active screen (which triggeFNISH command), or cause any other
screen to be displayed that contains table views (which triggaHga&GE
command).

For the transaction commasa@ART the command keyword is followed by the
transaction name and can also be followed by a table view name and scope.

Chapter 6 JAM Library Functions 461

sm_tm_command

Example

See Also

462

int sm_tm_command(START transaction-name [table-view-name scope J);

For the transaction commamtHANGEthe command keyword is followed by the
transaction name.

int sm_tm_command(CHANGE transaction-name);

For other transaction commands, the transaction name is set by the pBARTS
or CHANGEommand and the parameter following the command is interpreted as a
table view name.

If there is an additionacope parameterit specifies a portion of the table view
tree. The command is then applied only to those table views.

int sm_tm_command(command [table-view-name] [scope]);
Thescope parameter must be preceded by a table view name and takes one of

these aguments:

TV_AND_BELOW

Applies the command to the specified table view and all table views below it on
the tree. If no parameter is specified, the transaction manager acts as though
TV_AND_BELOWvas supplied.

BELOW_TV
Applies the command to the table views below the specified table view

TV_ONLY
Applies the command to the specified table view only

SV_ONLY
Applies the command only to the table views of the specified server view

Special processing occurs for tETCHcommand. FOFETCH thescope
parameter is eithéfETCH_SIMPLEOr FETCH_SPECIALwWhich specifies the type
of fetch processing.

For infomation on the syntax of each command, refer to Chapter 23 in the
Application Development Guide

int sm_tm_command (°SELECT titles BELOW_TV®°);

Chapter®21 and 23 in thépplication Development Guide

JAM 7.0 Language Reference

sm_tm_command_emsgset

sm_tm_command_emsgset

Initiates error message processing for a transaction manager error code

#include <tmusubs.h>

int sm_tm_command_emsgset(char *caller_id, int code);

caller_id

code

Returns

Description

A string used for identification; in JAM transaction models this is set to the module
name followed by the function name where the event was triggered.

One of the transaction mana@_TM_ERR_XXXpéturn codes.

STATUSvalue of the current transaction.

sm_tm_command_emsgset reports an error to the transaction manager error
processorgm_tm_error). code is one of thedM_TM_ERR_XXpeturn codes
returned fromsm_tm_command The error severity level is setTM_EMSGThe
error text generated corresponds to the error messagsdéor

If the TM_STATUSralue of the current transaction is 0, this function sets
TM_STATUSO -1. If bothTM_STATUSSNdTM_MS&alues of the current
transaction are 0, this function s&_MSGo the value otode .

Chapter 6 JAM Library Functions 463

sm_tm_command_errset

sm_tm_command_errset

Initiates error processing for a transaction manager error code

#include <tmusubs.h>

int sm_tm_command_errset(char *caller_id, int code);

caller_id

code

Returns

Description

464

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

One of the transaction mana@_TM_ERR_XXXpéturn codes.

STATUSvalue of the current transaction.

sm_tm_command_errset reports an error to the transaction manager error
processorgm_tm_error). code is one of thedM_TM_ERR_XXpeturn codes
returned fromsm_tm_command The error severity level is setT™_ERRORThe
error text generated corresponds to the error messagsdéor

If the TM_STATUSralue of the current transaction is 0, this function sets
TM_STATUSO -1. If bothTM_STATUSSNdTM_MS&values of the current
transaction are 0, this function s&\g_MSGo the value otode .

JAM 7.0 Language Reference

sm_tm_continuation_validity

sm_tm_continuation_validity

Checks to see if the CONTINUE events are permitted for the current table view

#include <tmusubs.h>

int sm_tm_continuation_validity(int report);

report

Returns

Description

Controlswhether an error message is generated. If this parameter is non-zero, the
message is generated.

W TM_OKif the TM_CONTINUE_UAM_CONTINUE_TQAM_CONTINUE_DOWN
andTM_CONTINUE_BOTTO&¥ents are permitted.

W TM_FAILUREIf these events are not permittedielfort is non-zero, an error
message is also generated.

This function is used in the standard transaction models as part of the transaction
manager processing for t8€LECTandVIEW commands. It checks the value of

the Fetch Directions property for the current table view to see TMh€ON-
TINUE_UPR, TM_CONTINUE_TQAM_CONTINUE_DOWSNdTM_CONTINUE_BOT-
TOMevents are permitted.

If the Fetch Directions property is specifiedbasvnonly+all modes , only
TM_CONTINUHEetches additional dataM_CONTINUE_DOWSInot permitted.

If the Fetch Directions property is specifieduggDowntview mode , the
TM_CONTINUE_UPTM_CONTINUE_TQAM_CONTINUE_DOWSNdTM_CON-
TINUE_BOTTOMvents are allowed in additionT¥_CONTINUEf the current
transaction mode igew .

If the Fetch Directions property is specifiedlggDown+all modes , the
TM_CONTINUE_UFTM_CONTINUE_TQAM_CONTINUE_DOW&aNATM_CON-
TINUE_BOTTOMevents are allowed in additionT®_CONTINUEN view and

update mode. Note that data must be re-fetched in order for updates to be
displayed from the continuation file used with these events. For more information
about using these eventsuipdate mode, refer to page 377 in tApplication
Development Guide

If the table views Fetch Directions property is specifieddafault , the screes’
Fetch Directions property is consulted. If the screé&@tch Directions property is
specified aslefault , this is the equivalent @ownonly+all modes

Chapter 6 JAM Library Functions 465

sm_tm_dbi_checker

sm_tm_dbi_checker

Tests for common database errors during transaction manager processing

#include <tmusubs.h>

int sm_tm_dbi_checker(int event);

event TM_TEST_ERROB check for database error)_TEST_ONE_ROW check that
one row was décted by the processing, O¥_TEST_SOME_ROWScheck that
one or more rows wasfatted by the processing.

Returns W TM_FAILURE

- If a database error is recognized.

- If no database error is recognized budnt is TM_TEST_ONE_RO#&Nd more
than one row has beerfedted by SQL executor processing.

- If no database error is recognized budnt isTM_TEST_SOME_ROWS&d no
rows have been faicted by SQL executor processing.

W TM_OKif no database error has been recognized, nor an error because of an
event condition as described above.

Description sm_tm_dbi_checker tests the JAM database variabf@émretcode and
@dmengerrcode for any errors in database processing. If it finds an,atdogs it
and sets error messages.

If no database errors are encounterecehbaiit isTM_TEST_ONE_RQW
sm_tm_dbi_checker returns the error statd®/_FAILUREIf @dmrowcount is
not 1.

Similarly, if event is TM_TEST_SOME_ROWs&_tm_dbi_checker returns the
error statugM_FAILUREIif @dmrowcount is 0.

Example /* The following example taken from the standard
transaction model for JDB shows the processing for
these events. */

case TM_TEST_ERROR:
case TM_TEST_ONE_ROW:
case TM_TEST_SOME_ROWS:
retcode = sm_tm_dbi_checker(event);
break;

466 JAM 7.0 Language Reference

sm_tm_error

sm_tm_error

Reports an error condition

#include <tmusubs.h>

void sm_tm_error(char *caller_id, char *text, char *user_use, int severity);

caller_id

text
user_use

severity

Description

See Also

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

Null-terminated character string containing a message.
Null-terminated character string for usemessage.

Severity level of the error

sm_tm_error reports an error to the transaction manager error proc&$sor
error is identified by thealler_id ,text , user_use (if one exists) andever-

ity . Errors are written to an error log file. If an error log file is not specified or if
severity is less than the severity limit, nothing is written.

The character string parameters can contain white space but the first NULL
character indicates the end of the string.

sm_tm_errorlog, sm_tm_msg_count_error, sm_tm_msg_emsg,
sm_tm_command_emsgset, sm_tm_command_errset

Chapter 6 JAM Library Functions 467

sm_tm_errorlog

sm_tm_errorlog

Controls error log processing

#include <tmusubs.h>

int sm_tm_errlog(int call_type, int call_type_code, char *log_file);

call_type

call_type_code

log_file

Returns

Description

468

Determineswhich aspect of error log processing ieafed. One of the following
constantsTM_ERR_KEEPIM_ERR_SUPPRESSM_ERR_FILE
TM_ERR_NEW_COMMAB®defined below

A value that is used depending on thguamnent supplied facall_type

The name of the file in which the error log is maintained; ignored unless
call_type iISTM_ERR_FILE

0 Success.
-1 Failure.

sm_tm_errlog controls error log processing according to the value of
call_type

TM_ERR_KEEBRpecifies the existence of the error logcall type code value
of O clears the error log when a new command begins processing. A value of 1
indicates not to clear out the log. The last parameter is ignored.

TM_ERR_SUPPRES$pecifies which errors to suppress depending on a severity
level, wherecall_type_code determines which errors to suppress. Any errors
passed tem_tm_error with a severity greater than 0 and less than or equal to
call_type_code are not logged. Iall_type_code is 0, there is no
suppression.

TM_ERR_FILE specifies the error log file that is namedidxy file . The file is
appended to if it exists, but a call to this function With ERR_KEEPnight
override this. If there is no call tm_tm_errorlog , there is n@m_tm_error
error logging.

If call_type code is 0, the file is not flushed or closed unnecessarily after it is
written to. Ifcall_type_code is 1, the file is closed after each entry is written.

JAM 7.0 Language Reference

sm_tm_errorlog

If log_file is a null pointer or empty string, there is no further error logging until
a subsequent call tan_tm_errorlog reinstates it.

TM_ERR_NEW_COMMApEcifies that processing of a new command is starting.

See Also sm_tm_error

Chapter 6 JAM Library Functions 469

sm_tm_event

sm_tm_event

Returns the event number for the specified transaction manager event name

#include <tmusubs.h>

int sm_tm_event(char *event_name);

event_name Oneof the names in the table of request and event numbers defimnagims.h
Returns W The number for the specified event.
0 Error:event_name is not found.

Description sm_tm_event returns the event number corresponding to the specified transaction
manager event name. As part of its processvent_name is converted from
lower case letters to upper case.

470 JAM 7.0 Language Reference

sm_tm_event_name

sm_tm_event_name

Returns the transaction manager event name for the specified event number

#include <tmusubs.h>

char *sm_tm_event_name(int event_number);

event_number Oneof the request and event numbers definachirsubs.h

Returns w Pointer to the name of the specified event number
W A string that contains the event number if the number does not correspond to
one of the events

Description sm_tm_event_name returns the event name corresponding to the specified event
number Because this function stores the returned data in a poolfefdthat it
shares with other functions, copy or process this data immediately

Example # JPL Procedure called as a hook function that displays
each event name as it is processed.

proc gethname (event)

vars retname
retname=sm_tm_event_name(event)
msg_emsg °Event name is ° retname
return TM_PROCEED

Chapter 6 JAM Library Functions 471

sm_tm_failure_message

sm_tm_failure_message

Specify an error message to report for a transaction manager error

#include <tmusubs.h>

int sm_tm_failure_message(int type, char *caller_id, char *text);

type

caller_id

text

Returns

Description

Example

472

The event calling this function. This event mustTdé NOTE_FAILUREOr
TM_NOTE_UNSUPPORTED

Identifier for the calling program. If this is not supplied, the generatit_id
has embedded in it the previous event name or number and the previous transaction
model or transaction hook function name.

The text for the error message. If this is not supplied, a generic error message is
generated.

W TM_OK

When the transaction manager generates eith@iMhROTE_FAILUREDr the
TM_NOTE_UNSUPPORTE#RenNt, the standard transaction models call
sm_tm_failure_message to generate an error message for the previous event.

sm_tm_failure_message checks the value afvi_STATUSand sets it to 1 if the
value is 0.

/* The following example taken from the standard
transaction model for JDB shows the processing for
these events. */

case TM_NOTE_FAILURE:

case TM_NOTE_UNSUPPORTED:
retcode = sm_tm_failure_message(event, ©°, %);
break;

JAM 7.0 Language Reference

sm_tm_inquire

sm_tm_inquire

Gets an integer attribute of the current transaction

#include <tmusubs.h>

int sm_tm_inquire(int attribute);

attribute Specifiesthe integer attribute of the current transaction to get with one of the
constants shown ineble 18.

Returns .1 The current value ddttribute
0 The current transaction is null.
-1 Invalid agument supplied faattribute

Description sm_tm_inquire gets the value of an integer attribute of the current transaction.
This includes the data in the current transaction structure itself and data that can be
found indirectlybfor example, information about the current table view

Table 18 describes the constants definadhirsubs.h that specify the attributes
to get with this function.

Table 18. Transaction integer attributes

Attribute constant Description
TM_AT_OR_BELOW Traversal specifier
TM_CONTINUATION Value of Fetch Directions property for current

table view:PV_CONT_DEFAULPV_CONT_AL-
WAYSPV_CONT_NEVER
PV_CONT_VIEW_ONLY

TM_CURRENT_MODE Current transaction mode.
TM_CURRENT_OCC Current occurrence number of current table
view.

TM_CURRENT_REQUEST Current request being processed.
TM_EMSG_USED Error message indicator

Chapter 6 JAM Library Functions 473

sm_tm_inquire

Attribute constant Description
TM_FULL Full or partial command indicator
TM_HOOK_IN_USE Indicates whether a transaction model or trans

action hook function is in useales include:

TM_NOTHING_IN_USENOothing in use.
TM_MODEL_IN_USETransaction model in use.
TM_UHOOK_IN_USEHook function in use.

TM_LINK Link from a table view to its parent table view
TM_MSG User specified message code to use for exit
condition after a call tem_tm_command
TM_OCC Occurrence number being processed.
TM_OCC_COUNT The number of occurrences in the table view
TM_OCC_TYPE Code reflecting the nature of change, if aofy
an occurrence from its before-image.
TM_PARENT_OCC Current occurrence of parent of current table
view.
TM_PARENTING_OCC Occurrence that was valid in parent when table

view last fetched.

TM_PREVIOUS_EVENT Indicates the previous transaction manager
event. Used when writing an error handler to
log the event which generated the error

TM_PREVIOUS_HOOK_IN_USEIndicates whether the transaction model or a
hook function was used in the previous event.
Used when writing an error handldalues in
clude:

TM_NOTHING_IN_USENOothing in use.
TM_MODEL_PREV_IN_USHransaction model
used for previous event.
TM_UHOOK_PREV_IN_USHoo0k function used
for previous event.

TM_QUERY_ACTION Return code fronrTM_QUERWoodels return:
TM_DISCARD_ACTIONDiscard changes

TM_EXIT_ACTION Return to screen without
discarding changes

TM_STATUS Error indicator

474 JAM 7.0 Language Reference

sm_tm_inquire

Attribute constant

Description

TM_SV_SEL_REQUEST

TM_USER_VALUE

Request that gave rise to the current select cur
sor for the table view (eith@ELECTor VIEW).

Reserved for user use.

TM_VALUE General purpose integer
TM_VALUE2 General purpose integer
See Also sm_tm_iset , sm_tm_pcopy , sm_tm_pinquire , sm_tm_pset

Chapter 6 JAM Library Functions

475

sm_tm_iset

sm_tm_iset

Sets the value of a transaction attribute

#include <tmusubs.h>

int sm_tm_iset(int attribute, int value);

attribute Specifiesthe integer attribute of the current transaction to change with one of the
constants shown ingble 19.

value attribute 's new value.

Returns 0 Success.
-1 Invalid agument supplied faattribute
-2 Unable to make the requested change.

Description sm_tm_iset changes the value of an integer attribute of the current transaction.
This includes not only data in the current transaction structure itself, but also data
that can be found indirectlguch as data relating to the current table view

Table 19 describes the constants, definedhisubs.h , that specify the attributes
to change with this function.

Table 19. Transaction integer attributes that can be changed

Attribute constant Description

TM_EMSG_USED If set to 1, no error message is displayed when
sm_tm_command returns to its calletndicates that
the error message was displayedstoy tm_com-

mand.
TM_MSG User specified message code to use for exit condition
after a call tsm_tm_command
TM_OCC Occurrence number being processed.
TM_OCC_COUNT The number of occurrences in the table view

476 JAM 7.0 Language Reference

sm_tm_iset

Attribute constant

Description

TM_PROPOSE_MSG

TM_PROPOSE_STATUS

TM_QUERY_ACTION

TM_STATUS
TM_SV_SEL_REQUEST

TM_USER_VALUE

A conditional value fomM_MSGused only if there is
no existing value.

A conditional value fomM_STATUSused only if
there is no existing value.

Return code fronrTM_QUERWodels return:

TM_DISCARD_ACTIONDiscard changes
TM_EXIT_ACTION Return to screen without discard
ing changes

Error indicator

Request that gave rise to the current select cursor for
the table view (eitheBELECTor VIEW).

Reserved for user use.

TM_VALUE General purpose integer
TM_VALUE2 General purpose integer
See Also sm_tm_inquire , sm_tm_pcopy , Sm_tm_pinquire , sm_tm_pset

Chapter 6 JAM Library Functions

477

sm_tm_msg_count_error

sm_tm_msg_count_error

Reports a transaction manager error

#include <tmusubs.h>

void sm_tm_msg_count_error(char *caller_id, int msg, int count);

caller_id

msg

count

Description

See Also

478

A string used for identification; in JAM transactions models, this is set to the
module name followed by the function name where the event was triggered.

Identifier for a predefined error message.

Any integer value useful for display in the message string.

sm_tm_msg_count_error reports areRRORseverity error to the transaction
manager error processen(_tm_error). The error text includes the name of the
function where the error occurred identifieddayler id , the message text
string corresponding tmsg (obtained by a call tem_msg_get), and the value
identified incount . A typical use focount would be to display an error return
code from the function that triggered the error event.

If msgis DM_TM_ALREADUr 0, this function does nothing.

sm_tm_error , sm_tm_msg_emsg, Sm_tm_msg_error

JAM 7.0 Language Reference

sm_tm_msg_emsg

sm_tm_msg_emsg

Reports an error of message severity

#include <tmusubs.h>

void sm_tm_msg_emsg(char *caller_id, int msg);

caller_id

msg

Description

See Also

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

Identifies an error message.

sm_tm_msg_emsg reports areEMSGseverity error to the transaction manager error
processarThe error text includes the name of the function where the eror oc
curred identified byaller_id and the message text string correspondimgsty
obtained by a call tem_msg_get .

If msgis DM_TM_ALREADUr 0, this function does nothing.

sm_tm_error , sm_tm_msg_count_error , sm_tm_msg_error

Chapter 6 JAM Library Functions 479

sm_tm_msg_error

sm_tm_msg_error

Reports an error

#include <tmusubs.h>

void sm_tm_msg_error(char *caller_id, int msg);

caller_id

msg

Description

See Also

480

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

Identifies an error message.

sm_tm_msg_error reports areERRORseverity error to the transaction manager
error processoilhe error text includes the name of the function where the error
occurred identified byaller_id and the message text string corresponding to
msg, obtained by a call tem_msg_get .

If msgis DM_TM_ALREADUr 0, this function does nothing.

sm_tm_error , sm_tm_msg_emsg, sm_tm_msg_count_error

JAM 7.0 Language Reference

sm_tm_pcopy

sm_tm_pcopy

Gets a string attribute of the current transaction

#include <tmusubs.h>

int sm_tm_pcopy(int attribute, char *attr_value, int length);

attribute

attr_value

length

Returns

Description

Table 20.

Specifiesthe string attribute of the current transaction to get with one of the
constants shown inable 20.

A string bufer where the specified attribusevalue is copied.

Specifies the maximum length of data to copgtto value , excluding the
NULL string terminatarlf length has a O or negative value, it is set to 255.

0 Success.

W DM_TM_ERR_NO_TRANSACTIOMe current transaction is null.

W DM_TM_ERR_ARGSalue is a null pointer

W DM_TM_ERR_BAD MEMBRERribute is invalid.

W DM_TM_ERR_GENERALhe length ofittr_value = exceedsength or 255.

sm_tm_pcopy is used to obtain the current value of an string attribute of the
current transaction. This includes not only data in the current transaction structure
itself, but also data that can be found indirectlych as data relating to the current
table view

Table 20 lists the constants, definedniusubs.h , that specify the string
attributes to get with this function.

Transaction string attributes

Transaction Attribute Description

TM_BUFFER General purpose string.
TM_COMMAND_PARM Text string passed tm_tm_command

TM_MSG_TEXT Text of sm_tm_command exit message.

Chapter 6 JAM Library Functions 481

sm_tm_pcopy

Transaction Attribute Description

TM_PARENT_NAME Name of parent table view of current table view

TM_PREVIOUS_HOOK Name of the previous hook function. Used when
writing an error handler

TM_ROOT_NAME Name of root table view of the transaction.
TM_SAVE_CURSOR SAVE or VALIDATION cursor name.
TM_SV_NAME Name of server view containing current table view

TM_SV_SELECT_CURSORSELECT cursor name.
TM_TRAN_NAME Name of the current transaction.
TM_TRANS_MODEL_NAMBame of the transaction model.
TM_TV_NAME Name of the current table view
TM_USER_BUFFER Buffer reserved for user use.

Data is only copied if no errors are encountered.

See Also sm_tm_inquire , sm_tm_iset , sm_tm_pinquire , sm_tm_pset

482 JAM 7.0 Language Reference

sm_tm_pinquire

sm_tm_pinquire

Gets the value of a stringtvalued attribute of the current transaction

#include <tmusubs.h>

char *sm_tm_pinquire(int attribute);

attribute

Returns

Description

See Also

Specifiesthe string attribute of the current transaction to copy with one of the
following constants defined imusubs.h and described inable 20:

TM_BUFFER
TM_COMMAND_PARM
TM_MSG_TEXT
TM_PARENT_NAME
TM_PREVIOUS_HOOK
TM_ROOT_NAME
TM_SAVE_CURSOR
TM_SV_NAME
TM_SV_SELECT_CURSOR
TM_TRAN_NAME
TM_TRANS_MODEL_NAME
TM_TV_NAME
TM_USER_BUFFER

W Success: copy of the string valueagfibute
W Failure: empty string.

sm_tm_pinquire gets the current value of a string attribute of the current
transaction. This includes not only data in the structure itself, but also data that can
be found indirectlysuch as data relating to the current table view

An empty string is returned if any of the following errors occurs: the current
transaction is nullattribute is invalid, the value ddttribute is a
non-existent string, or the length of the valuetofoute is greater than 255.

For a description of thattribute ~ values that can be returned by this function,
refer to Tble 20 in the description fem_tm_pcopy .

sm_tm_inquire , sm_tm_iset ,sm_tm_pset , sm_tm_pcopy

Chapter 6 JAM Library Functions 483

sm_tm_pop_model_event

sm_tm_pop_model event

Pops an event off the transaction event stack

#include <tmusubs.h>

int sm_tm_pop_model_event(void);

Returns Theevent popped bthe event stack.
0: The stack is empty

Description sm_tm_pop_model_event pops the next event in the transaction event stack.
Events can be pushed onto the event stack by the transaction martesgesaction
model, or a user hook function. The events generated by the transaction manager
and those by the standard transaction models can be found in the include file
tmusubs.h

This function can be used by transaction models or by transaction hook functions
associated with a table view

See Also sm_tm_clear_model_events , Sm_tm_push_model_event

484 JAM 7.0 Language Reference

sm_tm_pset

sm_tm_pset

Sets the value of a string transaction attribute

#include <tmusubs.h>

int sm_tm_pset(int attribute, char *value);

attribute

value

Returns

Description

Table 21.

Specifiesthe string attribute of the current transaction to change with one of the
constants shown below

attribute 's new value.

0 Success.
-1 Invalid agument supplied faattribute
-2 Unable to make the requested change.

sm_tm_pset changes the value of a string attribute of the current transaction. This
includes not only data in the current transaction structure itself, but also data that
can be found indirectlysuch as data relating to the current table view

Table 21 describes the constants, definadhisubs.h , that specify the attributes
to change with this function.

Transaction string attributes for sm_tm_pset

Transaction Attribute Description
TM_BUFFER General purpose string.
TM_MSG_TEXT Text of sm_tm_command exit message.

TM_PROPOSE_MSG_TXT Used to conditionally satM_MSG_TEXT
TM_SAVE_CURSOR SAVE or VALIDATION cursor hame.
TM_SV_SELECT_CURSORSELECT cursor name.
TM_USER_BUFFER Reserved for user use.

Chapter 6 JAM Library Functions 485

sm_tm_pset

Example void set_msg_text (msg);
char *msg;
{
/*
* Set the sm_tm_command exit message, possibly overriding
* any previously set message.

*/
sm_tm_pset (TM_MSG_TEXT, msg);
}
See Also sm_tm_inquire , sm_tm_pinquire , sm_tm_pcopy , sm_tm_pset

486 JAM 7.0 Language Reference

sm_tm_push_model_event

sm_tm_push_model event

Pushes an event onto the transaction event stack

#include <tmusubs.h>

int sm_tm_push_model_event(int event);

event

Returns

Description

Example

Any transaction event.

0 Successevent pushed on stack and stack was not full.
-1 event isO.
W The event value pushed difie stack because the stack was full.

sm_tm_push_model_event pushes an event onto the transaction event stack. If
event is 0, the stack is unchanged and a warning is logged. If the stack is full
before the event is pushed, the event that is push#uedftack is returned.

The transaction manager generates requests in response to commands. It calls this
function to push each request onto the stack as an event, to commence event
processing for the request. This function can also be used by transaction models or
by transaction hook functions associated with a table.Viee events generated

by the transaction manager and those generated by the standard transaction model
are defined inmusubs.h . For a description of these events, refer to Chapter 23 of
the Application Development Guide

[* The following example taken from the standard
transaction model for JDB shows the processing for the
TM_UPDATE request. */

case TM_UPDATE:
/* Do nothing, except for updates */
occ_type = sm_bi_compare();
if (occ_type !'= BI_UPDATED)

break;
}
if (freuse_cursor)
{
save_cursor_type = 0;
}

reuse_cursor = 0;

Chapter 6 JAM Library Functions 487

sm_tm_push_model_event

sm_tm_push_model_event(TM_UPDATE_EXEC);
sm_tm_push_model_event(TM_UPDATE_DECLARE);
sm_tm_push_model_event(TM_GET_SAVE_CURSOR);
break;

See Also sm_tm_clear_model_events , Sm_tm_pop_model_event

488 JAM 7.0 Language Reference

sm_translatecoords

sm_translatecoords

Translates screen coordinates to display coordinates

int sm_translatecoords(int column, int line, int *column_ptr, int *line_ptr);

column, Zero-basedatoordinates relative to the current screen, whgrespecifies the
line screers uppeileft corner

column_ptr, On return, contain the pixel coordinates relative to the drawing area.
line_ptr

Environment

Returns

Description

Example

Motif, Windows

0 Success.
-1 line orcolumn is out of range

sm_translatecoords translates the JANMhe andcolumn relative to a screen,
into pixel line and column relative to the upper left hand corner of the drawing
arealine andcolumn are zero based. This function in conjunction with
sm_drawingarea is useful when placing objects such as bitmapped graphics or
custom widgets on a JAM screen.

#include <windows.h>

#include <windowsx.h>

#include <stdlib.h>

#include °smdefs.h°

#include °drawbmp.h®

/*

* The following program shows how to display a bitmap file
* on the current JAM screen in Windows. The routine uses
* several functions from sample code in Programming Windows
* 3.1, pp. 610616 by Charles Petzold (Microsoft Press,
*1992). All other functions are either standard C, JAM API,
* or Windows API calls

*/

int JAM_display_bmp_file(char *file_name, int In, int col)

{

Chapter 6 JAM Library Functions 489

sm_translatecoords

static BYTE huge *IpDib;

HWND hwnd;

HDC hdc;

BYTE huge *IpDibBits;

short cxDib, cyDib, pix_In, pix_col;

if (IpDib '= NULL) {
GlobalFreePtr(IpDib);
IpDib = NULL;

}

IpDib = ReadDib(file_name); /* Petzold, pp. 613+614 */

if (IpDib == NULL) {
sm_message_box(°Could not open DIB file®, °ERROR?®,
SM_MB_OK | SM_MB_ICONSTOP, 0);
return RET_FATAL;
}

hwnd = sm_mw_drawingarea();
hdc = GetDC(hwnd);

if (hdc = NULL) {
IpDibBits = GetDibBitsAddr(IpDib);/* Petzold,p. 612 */
cxDib = GetDibWidth(IpDib); /* Petzold, p. 612 */
cyDib = GetDibHeight(IpDib); /* Petzold, p. 612 */

if (sm_translatecoords(col, In, &pix_col, &pix_In) < 0) {
char buf[100];
sprintf(buf,
°JAM_display_bmp_file: invalid line/column: %d/%d°,
In, col);
sm_message_box(buf, °(ERROR?®,
SM_MB_OK | SM_MB_ICONSTOP, 0);
return RET_FATAL;
}

SetStretchBltMode(hdc, COLORONCOLOR);

SetDIBitsToDevice(
hdc, pix_col, pix_In, cxDib, cyDib, 0, 0, 0, cyDib,
(LPSTR) IpDibBits, (LPBITMAPINFO) IpDib,
DIB_RGB_COLORS);

}

else {

sm_message_box(°Could not get handle to drawing area®,

°ERROR?, SM_MB_OK | SM_MB_ICONSTOP, 0);

}

ReleaseDC(hwnd, hdc);

return RET_SUCCESS;
}

490 JAM 7.0 Language Reference

sm_tst_all_mdts

sm_tst all mdts

Finds the first modified occurrence on the current screen

int sm_tst_all_mdts(int *occurrence);

occurrence Onoutput, the address of a variable that contains the number of the first occurrence
with its MDT bit set.

Returns .1 The number of the first field on the current screen for which some occurrence
has its MDT bit set. In this case, the number of the first occurrence with MDT
set is returned in the variable addresseddsyrrence

0 No MDT bit is set anywhere on the screen.

Description sm_tst_all_mdts tests the MDT bits of all on- andfs€reen occurrences of all
fields on the current screen. If it finds an occurrence with its MDT bit set, the func
tion returns with the base field and occurrence nuntlee this function to ascer
tain whether any occurrence has been modified on the screen, either from-the key
board or by the application program, since the screen was displayed, or since its
mdt property was last cleared.

Example #include °smdefs.h°

/* Clear MDT for all fields on screen. Then write data to
* last field, and check that its MDT is the first one set.
*/

int occurrence;
int numflds;

sm_cl_all_mdts();

numflds = sm_inquire (I_NUMFLDS);

sm_putfield (numflds, °Hello°);

if (sm_tst_all_mdts (&occurrence) != sm_inquire(SC_NFLDS)
sm_ferr_reset (0,
°Something is rotten in the state of Denmark.°);

Chapter 6 JAM Library Functions 491

sm_udtime

sm_udtime

Formats a user-supplied date and time

char *sm_udtime(struct

dt tm_data

format

Returns

Description

Example

See Also

492

tm *dt_tm_data, char *format);

A pointer to the date and time data to forrdattm_data is atm structure,
defined in the standard C header fitee.h

Specifies the format to use with an expression that startywith, followed by

any combination of date/time tokens and literal tgxhdicates a 12-hour clock;

or any other character indicates a 24-hour clock. This character is required even if
the format does not include time tokens. Refer to page 436 for a list of the
date/time tokens that you use to build a format expression.

W A pointer to the user date/time in the specified format.
W Empty ifformat is invalid.

sm_udtime formats the date and time datalintm_data according to the speci
fied format .

This function uses a static lfeif that it shares with other date and time formatting
functions. The bdér is 256 bytes long. JAM does not check for overflow
Consequentlyyou should process the returned string or copy it to a local variable
before making additional function calls.

/* Put the date 135 days from now into the field °maturity®
*/

#include smdefs.h

time_t tim;

struct tm *matdate;

char *ptr;

/* calculate local time in seconds */

tim = time ((time_t *)0) + 135L * 24 * 60 * 60;
matdate = localtime (&tim);

ptr = sm_udtime (matdate, © %0f°);
sm_n_putfield (°maturity®, ptr);

sm_sdtime

JAM 7.0 Language Reference

sm_ungetkey

sm_ungetkey

Pushes a translated key onto the input queue

#include <smkeys.h>

int sm_ungetkey(int key);

key Thekey to push onto the input stack.

Returns W The value okey.
w -1: Insuficient memory

Description sm_ungetkey saves the translated key givenkey so it can be retrieved by the
next call tosm_getkey . Multiple calls are allowed. The key values are pushed
onto a stack in last-in/first-out order

Whensm_getkey reads a key from the keyboard, it flushes the display first so the

user sees a fully updated display before typing on. This is not the case for keys
pushed back bym_ungetkey .

Example #include °smkeys.h°

/* Force tab to next field */
sm_ungetkey (TAB);

See Also sm_getkey

Chapter 6 JAM Library Functions 493

sSm_unsvscreen

Sm_unsvscreen

Removes screens from the save list

void sm_unsvscreen(char *screen_list, int count);

screen_list[]

count

Description

See Also

494

Thescreens to remove from the save list.

The number of screens to remove from the save list.

sm_svscreen removes screens from the list of screens that are saved in memory
and frees the memory associated with theou &an call this function to remove
screens from this list anywhere in your code, whether or not the screen is open.
Note that if a screen is open, JAM frees its memory only when it closes.

sm_issv , sm_svscreen

JAM 7.0 Language Reference

sm_upd_select

sm_upd_select

Updates the contents of an option menu or combo box

int sm_upd_select(int fldno);

int sm_n_upd_select(char *fldname);

field_name,
field_number

Returns

Description

The option menu or combo box to update.

0 Success.
-1 Invalid widget type.
-2 Widgets list contains constant data.

sm_upd_select updates the contents of an option menu or combo box with data
from another screen. The widget must be defined to accept data from an external
screen; otherwise, the function returns an error

An option menu or combo box that gets its data from a screen can be initialized
either on screen entry or each time the widget list displays, depending whether its
Initialization property is set tBill at Popup OrFill at Init . Use

sm_upd_select to force updates only if the Initialization property is set to

Fill at Init

Note: If fields on the external seen have initial data, LDB write-tbugh is
disabled for those fields.

Chapter 6 JAM Library Functions 495

sm_vinit

sm_* vinit

Initializes video translation table

int sm_vinit(char *video_address);
int sm_n_vinit(char *video_file);

video_address

video_file

Returns

Description

Example

496

Theaddress of a memory-resident video file. Create this filewidtbin and
bin2c utilities, then compile it into the application.

The name of a video file, set in tB®VIDEOvariable that is specified in the setup
file or in the environment.

0 Success.
W Non-zero value: failure.

sm_vinit andsm_n_vinit initialize the video translation table. JAM uses one of
these functions during program initialization, depending on whether the video file
is memory-resident or resides on disk. These functions can also be called directly
by an application program.

If sm_vinit fails, you can generate error messages threngimimsg . This
function creates formatted output that you can display through other library
functions likesm_fqui_msg .

/* Install a memoryzresident video file */
extern char special_vid[];

sm_vinit (special_vid);

JAM 7.0 Language Reference

sm_wcount

sm_wcount

Obtains the number of currently open windows

int sm_wcount(void);

Returns .1 Thenumber of windows open.
0 The base window is the only open screen.
-1 There is no current screen.

Description sm_wcount returns the number of windows currently open. The number is equiva
lent to the number of windows in the window stack, excluding the base window

Use this function witkm_wselect to activate another window from the window
stack. For example, the following statement selects the screen beneath the current
window:

sm_wselect(sm_wcount()£1);

See Also sm_wselect

Chapter 6 JAM Library Functions 497

sm_wdeselect

sm_wdeselect

Restores the previously active window

int sm_wdeselect(void);

Returns 0 Success.
-1 Nowindow to restore.

Description sm_wdeselect restores a window to its original position in the window stack after
it has been moved to the top by a calito wselect . Successive calls to

sm_wdeselect recursively restore windows selectedshy wselect .

See Also sm_wcount , sm_wselect

498 JAM 7.0 Language Reference

sm_widget

sm_*widget

Gets a handle to a widget

#include <smmcuser.h>

CPane *sm_mc_widget(int widgetnumber);
CPane *sm_mcn_widget(char *widgetname);
CPane *sm_mce_widget(char *widgetname, int element);

#include <smmwuser.h>

HWND sm_mw_widget(int widgetnumber);
HWND sm_mwn_widget(char *widgetname);
HWND sm_mwe_widget(char *widgetname, int element);

#include <smxmuser.h>

Widget sm_xm_widget(int widgetnumber);
Widget sm_xmn_widget(char *widgetname);
Widget sm_xme_widget(char *widgetname, int element);

widgetname, Specifiesthe widget whose handle you want to get.

widgetnumber

element If the widget is an arragpecifies element whose handle you want to get.
Returns W Success: For Macintosh, a CPane pointer; fordéivs, an HWND handle; for

Motif, a Widget ID.
W Null pointer: the widget does not exist.

Description sm_widget gets a handle to the specified widget or widget elementbin the case of
Macintosh applications, a CPane pointer; ondws, a HWND handle; under
Motif, a Widget ID. You can pass this handle to Macintoshnd@éws and Motif
functions when you want the window manager to act directly on a JAM widget.

Chapter 6 JAM Library Functions 499

sm_widget

500

For more information about corresponding Macintosh, Motif and JAM widget
types, refer to page 178 in thenfiguration Guide

Note: For scale widgets, list box widgets, and multiline text widgets in Motif
applicationssm_xm_widget and its variantseturn the widget ID of the sult

bar. UsextParent to obtain the ID of the scale, list box or multiline text widget.
For list boxes in \Midows applicationssm_mw_widget and its variantseturn a
handle to the list box itself. SDK function calls such as GellBos use the list
boxs handle and a flag that identifies the dediscoll bar.

JAM 7.0 Language Reference

sm_window

sm_*window

Displays a window at a given position

int sm_d_window(char *address, int start_line, int start_column);

int sm_d_at_cur(char *address);
int sm_|_window(int lib_desc, char *name, int start_line, int start_column);
int sm_|_at_cur(int lib_desc, char *name);

int sm_r_window(char *name, int start_line, int start_column);

int sm_r_at_cur(char *name);

address

lib_desc

name

start_line ,
start_column

Returns

Theaddress of the screen in memory

Specifies the library in which the window is stored, whigrelesc is an integer
library descriptor returned kym_|_open . You must calsm_| _open before you
read any screens from a library

The name of the windaw

Specifies the windows'top left cornerwherestart_line andstart_column

are zero-based fskts from the physical displaytop left cornerThus, setting
start_line to 1 starts the window at the screesécond line. If the window does
not fit on the display at the specified location, JAM adjusts it as needed.

A negative value fostart_line specifies to clear the current screen before
displaying the windowThe screeis’' contents are discarded and cannot be restored.

0 Success.

-1 Screen files format is incorrect.

-2 Screen cannot be found.

-3 Insuficient memory available to display the screen; the current screen remains
displayed.

-4 Read error occurred after the current screen was clearethanthe is
-1. Consequent)yJAM cannot restore the screen.

-5 System ran out of memory after the current screen was cleared and
start_line is -1. ConsequentiyJAM cannot restore the screen.

-6 Library is corrupted.

-7 The window is lager than the physical display and there are fields that over
hang the display

Chapter 6 JAM Library Functions 501

sm_window

Description

502

Usesm_d_window, sm_|_window , orsm_r_window to display the window at the
specified line and column. Usen_d_at_cur ,sm_|_at cur , orsm_r_at_cur

to display a window at the current cursor positiofseaifby one line to avoid hid
ing that lines current display

The area of the display that surrounds the window remains visible. Howaler
the last-invoked window is active, and only its fields are accessible to input and
library functions. ® change the active windowsesm_wselect .

When you usam_r_window , JAM looks for the named screen in the following
places in this order:

The memory-resident screen list; if found there, it sgesl_window to
display it.

The open libraries; if found there, it uses |_window to display it.
On disk in the current directary
Along the path supplied tan_initcrt

Along all the paths in the setup variaBPATHIf any path exceeds 80
characters, it is skipped.

If the entire search fails, the function displays an error message and returns.

You can save processing time by usingd_window andsm_d_at_cur to
display screens that are memory-resident.Hilszz to convert screens from disk
files to program data structures that you can compile into your application.

A memory-resident screen never changes at runtime and therefore can be made
sharable on systems let you share read-only siata. window and

sm_r_at_cur can also display memory-resident screens if they are properly
installed withsm_formlist . Memory-resident screens are especially useful in
applications with a limited number of screens, or in environments with a slow disk.

You can also save processing time with |_window andsm_|_at_cur to

display screens from a librark library is a single file that stores screens, JPL
modules, and menusol can assemble a library from individual screen files with
formlib . Libraries let you distribute a Iz number of screens with an applica
tion, and can improve g&tiency by reducing the number of search paths.

To display a form usem_r_form or one of its variants. Usen_close_window
to close the window

JAM 7.0 Language Reference

sm_window

Example [* Bring up a window from a library. */
int Id;

if (Id = sm_|_open (°myforms®)) < 0)
sm_cancel ();

sm_|_window (Id, °popup®, 5, 22);

sm_|_close (Id);

See Also sm_close_window , sm_form , sm_jwindow

Chapter 6 JAM Library Functions 503

sm_win_shrink

sm_win_shrink
Trims the current screen

int sm_win_shrink(void)

Environment Motif, Windows
Returns PI_ERR_NONE Success
Description sm_win_shrink trims all space on a screen to the right of the rightmost widget

and below the bottom widget. It does not change the number of JAM lines and col
umns. It is primarily useful after repositioning fields. Gail adjust_area to
restore a screen to its original size.

504 JAM 7.0 Language Reference

sm_winsize

sm_winsize

Lets users interactively move and resize a window

int sm_winsize(void);

Returns 0 Success.
-1 Failure.
Description sm_winsize invokes the viewport status line and lets the user move, resize and

change the &et of the current screen and any sibling windows. XMIT restores the
previous status line.olresize the viewport programmaticaket the applicable
viewport properties for the screen.

Chapter 6 JAM Library Functions 505

sm_wrotate

sm_wrotate

Rotates the display of sibling windows

int sm_wrotate(int step);

step A positive or negative integer that specifies the number of times to rotate the
windows. A positive value makes the topmost sibling window the last sibling
window for each instance efep . A negative value makes the last sibling window
first window A value of O specifies to perform no rotations.

Returns .1 The number of sibling windows, less one, on top of the window stack.
0 Failure: There are no sibling windows.

Description sm_wrotate rotates the sequence of sibling windows according to the value of
step . For example, given the following sequence of sibling windows A, B, and C:

this following function call:
sib_windows =sm_wrotate (1);

rotatesthe top sibling window C to the bottom of the sibling stack and leaves
screen B on top.

506 JAM 7.0 Language Reference

sm_wrotate

Converselythis function call supplies a value of -1:
sib_windows =sm_wrotate (+1);

This rotates the bottom sibling window C to the top:

sm_wrotate can take any value, positive or negative, astdye value. If the
value ofstep is greater than one, JAM rotates the windows that many times. For
example, given the previous window ordis call:

sib_windows =sm_wrotate (2);

tells JAM to perform two rotations, thus moving the top two windows to the
backbfirst C, then B. This leaves window A as the topmost window:

See Also sm_setsibling , sm_wselect

Chapter 6 JAM Library Functions 507

sm_wselect

sm_*wselect

Activates a window

int sm_wselect(int window_numbery);

int sm_n_wselect(char *window_name);

window_number

window_name

Returns

Description

508

Specifiesthe window to activate, wheréndow_number is its zero-based fsfet in

the window stack. \iddows are numbered sequentially from the bottom of the
stack, where the bottom-most screen, or base winddv Callingsm_wselect

changes the number of the specified window and all windows previously above it.

The windows screen name.

.1 The number of the window that was made activebeither the valuénef
dow_number, or the maximum ifvindow_number is out of range.
-1 Failure: The window was not found or the window was not open.

sm_wselect lets you change the active window in a multi-window displdys
function is typically used in routines that update information in windows that
might be inactive.

Only one windowbthe one at the top of the window stackbcan be active at a
time, and thereby accessible to library functions and user input. These functions
activate a window by bringing it to the top of the window stack and restores the
cursor to its last position in it. If the window is hidden by an overlying window
JAM brings it to the forefront of the display

You can specify a window by itsfeét into the window stack wittm_wselect ,
or by its screen name witim_n_wselect .sm_wselect involves more work
inasmuch as you must keep track of the inactive winsipasition on the stack.
Howeversm_wselect can find windows displayed wigm_d_window or related
functions, which do not record the screen name.

In character modem_wselect selects sibling windows as a group. If any one of
a set of sibling windows is activated by this function, then all of the siblings are
brought to the top of the window stack. The selected window becomes the active
window at the top of this set. Otherwise, the sequence within the set of siblings
remains the same.

JAM 7.0 Language Reference

sm_wselect

sm_wselect andsm_n_wselect can be used in the following ways:

Select a hidden screen, update it with putfield , then deselect it with
sm_wdeselect . JAM updates the visible portion of the hidden screen with the
new data. Because of delayed write, JAM updates the screen only when
keyboard input is sought.

Select a hidden screen and open the keyboard. In this case, the selected screer
becomes visible, and can hide part or all of the previously active screen. This

lets you implement multi-page forms, or switch among several tiled windows.
You can let the user select among windows by defining them as siblings.

See Also sm_wecount , sm_wdeselect

Chapter 6 JAM Library Functions 509

sm_ww_length

sm_*ww_length

Gets the number of characters in a word wrap field

int sm_ww_length(

int field_number);

int sm_n_ww_length(char *field_name);

field_number
field_name

Returns

Description

Example

510

Specifiesthe field whose length is required oWl wrapped text is allowed only in
multiline text widgets whose @¥d Wrap property is set toes.

.0 The number of bytes in the specified field, excluding the null terminator
+1 Failure.

sm_ww_length returns the number of bytes in a word wrap fieldbthat is, a
multiline text widget whose Wfd Wrap property is set toeé. You can call this
function to get the ddet into the end of word wrap field data, then use tHaeDf
to append data to the field wigm_ww_write . You can also use it to decide how
large a bufer you need to allocate for reading word wrap field data with
sm_ww_read.

/* this JPL procedure reads text from a filestream and
* reads each line into a word wrapped field. It uses

* sm_ww_write to reformat the file text so that it

* wraps within the field.

*/

proc wrapFileTextToMulti

{
vars str, last_char, wwerr, err, fileStream
call sm_fio_error_set(0)
[* get file stream sent from previous dialog */
receive DATA fileStream
err=0
while (err==0)

{

JAM 7.0 Language Reference

sm_ww_length

str = sm_fio_gets(fileStream, 255)
/* check for error condition like EOF */
if (str 1= ©°)

last_char = sm_n_ww_length(°comments®)

[* if writing to empty array */
if (last_char=0)
{

WwWErr = sm_n_ww_write(°comments®, str, last_char)

}

/* otherwise add space after last char before write*/
else

{
WWErr = sm_n_ww_write(°comments®, °°, last_char)
WWETrT = sm_n_ww_write(°comments®, str, last_char+1)

}
}

else

{

err = sm_fio_error()

}

call sm_fio_close(fileStream)
return

}

See Also sm_ww_read, sm_ww_write

Chapter 6 JAM Library Functions 511

sm_ww_read

sm_ww_read

Copies the contents of a word wrap field into a text buffer

int sm_ww_read(int field_number, char *buffer, int nbytes, int offset);

int sm_n_ww_read(char *field_name, char *buffer, int nbytes, int offset);

field_name,
field_number

buffer

size

offset

Returns

Description

See Also

512

Specifiesthe field whose contents you want to readriivrapped text is allowed
only in multiline text widgets whose &kl Wrap property is set toes.

A pointer to the bdér into which the fields contents are to be read. determine
the size required by this Waf, callsm_ww_length to get the length of the word
wrapped text.

The size obuffer in bytes.

The ofset into the word wrap field at which to start reading. Supply a value of 0 to
start reading from the beginning of the field.

.0 The number of bytes read into frf excluding the null terminator
+1 Failure.

sm_ww_read copies word wrapped text from a multiline text widget intéer
starting abffset . Usesm_ww_length to determine the size required faff-
er.

sm_ww_length , sm_ww_write

JAM 7.0 Language Reference

sm_ww_write

sm_ww_write
Writes text into a word wrap field

int sm_ww_write(int field_number, char *text, int offset);
int sm_n_ww_write(char *field_name, char *text, int offset);

field_name,
field_number

buffer

offset

Returns

Description

Overflowand
Underflow

Example

Specifiesthe field to receive the contentstafffer . The field must be a multiline
text widget whose \&fd Wkap property is set toes.

A pointer to a null-terminated bief that contains the text to write.

The ofset into the word wrap field at which to start writing. Supply a value of 0 to
start writing at the beginning of the field. If supplied value is greater than the
field's total length, JAM recalculates the valueidet to the fields length + 1;

the contents dfuffer are thereby appended to the end of the field.

.0 The number of bytes written to the field.
+1 Failure.

sm_ww_write copiestext into the specified word wrap fieldbthat is, a multiline

text widget whose \Wd Wkap property is set toeé.sm_ww_write wraps at the

end of words and leaves a space at the end of each line. If a word is equal to or
longer than the length of the fiekkim_ww_write breaks the word one character
before the end of the field, appends a space, and wraps the rest of the word on the
next line.

If you try to copy data that is too tgr for the field to holdsm_ww_write

truncates the excess text. If the fisldriginal contents exceeds the amount of text
in buffer , the leftover text remains in the fieldo @void this, first clear the field
with sm_clear_array or one of its variants before callisgn_ww_write .

I* this procedure reads text from a filestream and
* reads each line into a word wrapped field. It uses
*sm_ww_write to reformat the file text so that it

* wraps within the field.

*/

Chapter 6 JAM Library Functions 513

sm_ww_write

proc wrapFileTextToMulti

{

vars str, last_char, wwErr, err, fileStream
call sm_fio_error_set(0)

[* get file stream sent from previous dialog */
receive DATA fileStream
err=0

while (err==0)

{
str = sm_fio_gets(fileStream, 255)
/* check for error condition like EOF */
if (str 1= ©°)

last_char = sm_n_ww_length(°comments®)

[* if writing to empty array */
if (last_char=0)

{

WWETrT = sm_n_ww_write(°comments?®, str, last_char)
}
[* otherwise add space after last char before write*/
else
{

wWwErr = sm_n_ww_write(°comments®, °°, last_char)
WWErr = sm_n_ww_write(°comments?®, str, last_char+1)
}
}

else

{

err = sm_fio_error()

}

call sm_fio_close(fileStream)
return

}

See Also sm_clear_array ,sm_ww_length , sm_ww_read

514 JAM 7.0 Language Reference

sm_xlate_table

sm_xlate table

Installs or deinstalls an 8+bit character translation table

char *sm_xlate_table(int which, char *new);
which Determinesvhether the table is for keyboard input or screen output through
arguments oXLATE_INPUT or XLATE_OUTPUT
new The name of the new translation table, whexe can hold at least 256 bytes.
Returns W Pointer to the previous table.

W NULL No previous table found.

Description sm_xlate_table installs the translation table pointed torleyv. To deinstall and
deactivate translation, supply a valueNofiLL for new.

Chapter 6 JAM Library Functions 515

sm_xm_get_base_window

sm_xm_get_base window
Gets a Widget ID to the base window

#include <smxmuser.h>

Widget sm_xm_get_base_window(void);

Environment Motif
Returns W Thebase windows Wdget ID.
W Failure: 0
Description sm_xm_get_base_window gets a Viiget ID to the base window that you can

pass to the Motif window manager

See Also sm_drawingarea

516 JAM 7.0 Language Reference

sm_xm_get_display

sm_xm_get_display
Gets a Widget ID to the current display

#include <smxmuser.h>

Widget sm_xm_get_display(void);

Environment Motif
Returns W A Widget ID to the current display
w Failure: 0
Description sm_xm_get_display gets a WWiget ID to the current display that you can pass to

the Motif window manager

Chapter 6 JAM Library Functions 517

JAM Properties

This appendix contains tables that list all JAM properties that are accessible in JPL
or through calls to properties API functions. Each table contains three columns
with the following information:

The propertys JPL mnemonic. The corresponding C constant uses the same
string in upper case, prefixed BR_. For example, the equivalent constant for
font_name isPR_FONT_NAME

Values that are valid for this property

Special requirements for this propertybfor example, if a subproptrgy
prerequisite setting for its parent® property; or whether it is read-only or
GUI-specific.

This appendix contains major sections to describe the properties of each JAM
application component: the application itself, screens, and widgets. Four widget
types have their own sections: selection groups, synchronized scrolling groups,
table views, and link widgets. Properties are subdivided under the headings used in
the properties window: Identitgseometryand so on. \ithin each subdivision,
properties are listed alphabetically

Note: Properties that a& denoted as runtimegperties ae not accessible at
design timebthat is, though the saen editor or setup variables. Several
properties that ag visible in the pyperties window a not accessible at
runtimebfor example, the Inherit Bm and Columns pperties.

519

Application Properties

Application Properties

Applicationproperties are referenced @jammodifier, which always refers to the
current application and takes ngaments. For example, thfs statement tests
whether the application is running on a GUI platform:

if(@jam£>in_gui)

Table22. Application poperties

Property Values Constraints
bold PV_DEFAULT

PV_YES/PV_NO
control_string[log-key] str
field_below[int] objid Runtime, Read-only
font_name str
id int Read-only
in_gui PV_YES/PV_NO Read-only
in_zoom PV_YES/PV_NO Read-only
italic PV_DEFAULT

PV_YES/PV_NO
mouse_field int D field number Read-only
mouse_field_name str D field name Read-only
mouse_field_occ int B occurrence number Read-only
mouse_form_name str Read-only
num_fields_below int Runtime, Read-only
num_svs_below int Runtime, Read-only
num_tvs_below int Runtime, Read-only
point_size str
sv objid Runtime, Read-only
sv_below[int] objid Runtime, Read-only
tv_below[int] objid Runtime, Read-only

520 JAM 7.0 Language Reference

Screen Properties

Property Values Constraints

underlined PV_DEFAULT
PV_YES/PV_NO

widget_type PV_APPLICATION Runtime,Read-only

Screen Properties

Screerproperties can be referenced@gcreen or @screen_num modifiers.
These modifiers are optional for properties that are unique to screensbfor
examplenumflds . Thus, these two statements are equivalent:

total_flds = sales_data.jam=>numflds
total_flds = @screen(®°sales_data.jam®)+>numflds

@screen takes the screen name as aguarent; thejam extension is optional if it
is specified as the default by setup vari@@MFEXTENSION

@screen_num takes an integer gmment that specifies the screepbsition on the
window stack: 0 refers to the current windaw to the window below it, and so
on. For example, this statement gets the number of fields on the current screen:

total_flds = @screen_num(0)+>numflds

Identity

Table23. Sceen identity poperties
Property Values Constraints
dialog PV_YESPV_NO
fldnum int Runtime, Read-only
id int Read-only
memol..memo9 str
name str Runtime
numflds int Runtime, Read+only
numgrps int Runtime, Readzonly

Appendix A JAM Properties 521

Screen Properties

Property Values Constraints
sibling int Runtime
title str
widget_type PV_SCREEN Runtime,Read-only
Geometry
Table 24. Sceen geometry pperties
Property Values Constraints
grid_height str GUI
seeEditors Guide page 41
grid_width GUI
height str
seeEditors Guide page 41
max_min PV_NEITHER GUI
PV_BOTH
PV_MAXIMIZEABLE
PV_MINIMIZEABLE
min_horiz_space str GUI
seeEditors Guide page 41
min_vert_space str GUI
seeEditors Guide page 41
region_margin str GUI
seeEditors Guide page 41
resize_function str
resizeable PV_YESPV_NO
startup PV_NORMAL GUI
PV_ICONIFIED
PV_MAXIMIZED
vncolms int Runtime
vnlines int Runtime
vofcolm int Runtime
522 JAM 7.0 Language Reference

Screen Properties

Property Values Constraints
vofline int Runtime
vstcolm int Runtime
vstline int Runtime
width int
Color
Table25. Sceen color poperties
Property Values Constraints
bg_color_name str bg_color_type =

PV_EXTENDED

bg_color_num

int B JAM basic color; bg_color_type =
see page 140 in ti@onfiguration| PV_BASIC
Guide

bg_color_type

PV_BASIC
PV_EXTENDED
PV_SCHEME

Font
Table26. Sceen font poperties
Property Values Constraints
bold PV_DEFAULT
PV_YES/PV_NO
font_name str
italic PV_DEFAULT
PV_YES/PV_NO
point_size str
underlined PV_DEFAULT

PV_YES/PV_NO

Appendix A JAM Properties

523

Screen Properties

Focus

Table27. Sceen focus mperties

Property

Values

Constraints

control_string[log-key]

str

entry_function

str

exit_function

str

menu_name

str

menu_script_file

str

Help

Table 28. Sceen help poperties

Property

Values

Constraints

external_help_tag

str

jam_help_screen

str

status_line_text

str

Display

Table 29. Sceen display mperties
Property Values Constraints
border PV_YES/PV_NO

border_bg_color_name

str

border_bg_color_type
PV_EXTENDED

border_bg_color_num

int B JAM basic color;
see page 140 in th@onfigu-
ration Guide

border_bg_color_type
PV_BASIC

border_bg_color_type

PV_BASIC
PV_EXTENDED
PV_SCHEME

border = PV_YES

524

JAM 7.0 Language Reference

Screen Properties

Property

Values

Constraints

border_fg_color_name

str

border_fg_color_type
PV_EXTENDED

border_fg_color_num

int © JAM basic color;
see page 140 in tt@onfigu-
ration Guide

border_fg_color_type
PV_BASIC

border_fg_color_type PV_BASIC border = PV_YES
PV_EXTENDED
PV_SCHEME

border_style int B 0.9 character mode

border =PV_YES

close_item PV_YES/PV_NO GUI
system_menu = PV_YES

icon str GUI
pointer str GUI
system_menu PV_YES/PV_NO

title_bar PV_YES/PV_NO

wallpaper_pixmap str GUI
wallpaper_style PV_CENTER GUI

PV_TILE wallpaper_pixmap = string

Transaction

Table30. Sceen transaction managerqperties

Property

Values

Constraints

fetch_directions

PV_CONT_ALWAYS
PV_CONT_DEFAULT
PV_CONT_NEVER
PV_CONT_VIEW_ONLY

model

str

root

str

If str is+nonet, then the trans
action manager is not active in
this screen.

Read-only

Appendix A JAM Properties

525

Widget Properties

Widget Properties

Widgetproperties can be referenced@yidget or @field_num modifiers. These
modifiers are optional for properties that are unique to widgetsbfor example,
hidden . Thus, these two statements are equivalent:

emp_salary+>hidden

=PV_YES

@widget(°emp_salary®)+>hidden = PV_YES

@widget takes the widged'name as angument.@field_num takes an integer
argument that specifies a fiefdposition on the screen. For example, this code gets
the name of the first field that allows data entry:

for i=1 while field_num(i)£>input_protection != PV_YES

{

fname = @field_num(i)x>name

Identity
Table31. Wdget identity poperties
Property Values Constraints

active PV_YES/PV_NO

column_title str

c_type PV_DEFAULT
PV_OMIT
PV_CHAR_STRING
PV_INT

PV_UNSIGNED_INT
PV_SHORT_INT
PV_LONG_INT
PV_FLOAT
PV_DOUBLE
PV_ZONED_DEC
PV_PACKED_DEC
PV_HEX_DEC

drop_down_data[int]

str

drop_down_source =
PV_SRC_CONSTANT_DATA

drop_down_screen

str B screen name

drop_down_source =
PV_SRC_EXTERNAL_SCREEN

drop_down_size

int

526

JAM 7.0 Language Reference

Widget Properties

Property

Values

Constraints

drop_down_source

PV_CONSTANT_DATA

default_cancel

PV_NEITHER
PV_BOTH
PV_DEFAULT_BUTTON
PV_CANCEL_BUTTON

fldnum int Runtime,Read-only
grid objid Runtime, Read-only
grid_column int grid =90
group objid Runtime,Read-only
hidden PV_YES

PV_NO

PV_ALWAYS
id int Runtime, Read-only
listbox_type PV_ACTION

PV_SELECT ANY

memol..memo9

str

mnemonic_character str Runtime

mnemonic_position int

name str

precision int c_type =
PV_DOUBLE | PV_FLOAT |
PV_PACKED | PV_ZONED

sign PV_YES/PV_NO c_type = FT_PACKEDI|FT_ZONED

sync_group objid Runtime,Read-only

Appendix A JAM Properties

527

Widget Properties

Property

Values

Constraints

tableview

objid

Runtime,Read-only

widget_type

PV_RELEASE_5
PV_DYNAMIC_LABEL
PV_SINGLE_LINE_TEXT
PV_MULTILINE_TEXT
PV_PUSH_BUTTON
PV_TOGGLE_BUTTON
PV_RADIO_BUTTON
PV_CHECK_BOX
PV_OPTION_MENU
PV_LIST_BOX
PV_HORIZONTAL_SCALE
PV_VERTICAL_SCALE
PV_COMBO_BOX
PV_BOX
PV_HORIZONTAL_LINE
PV_VERTICAL_LINE
PV_GRID_FRAME
PV_GRAPH

PV_LINK

PV_GROUP
PV_STATIC_LABEL
PV_TABLE_VIEW
PV_SYNC_GROUP

Geometry

Table 32. Wdget geometry mperties

Property

Values

Constraints

alt_scroll_func

str

array_size

int

auto_horiz_resize

PV_YES/PV_NO

GUI

auto_vert_resize

PV_YES/PV_NO

GUI

circular

PV_YES/PV_NO

column_move_resize

PV_YES/PV_NO

current_offset

int

Runtime

528

JAM 7.0 Language Reference

Widget Properties

Property Values Constraints
end_column int
end_row int
first_occurrence int Runtime
grid_current_occ int Runtime
height str

seeEditors Guide page 41

hor_scroll_bar

PV_YES/PV_NO

word_wrap =PV_NO &&

max_data_length > length

horiz_anchor PV_LEFT GUI
PV_RIGHT
PV_CENTER
horiz_max_size str GUI
seeEditors Guide page 41 auto_horiz_resize =PV_YES
horiz_min_size str GUI
seeEditors Guide page 41 auto_horiz_resize =PV_YES
horizontal PV_YES/PV_NO array_size > 1
length int
max_data_length int
max_occurrences int scrolling = PV_YES
num_occurrences int Runtime
onscreen_columns int
onscreen_rows int
position_region PV_YES/PV_NO
scroll_increment int scrolling = PV_YES
scrolling PV_YES/PV_NO
shift_increment int max_data_length > length

size_to_contents

PV_YES/PV_NO

spacing int array_size >1
start_column int
start_row int

Appendix A JAM Properties

529

Widget Properties

Property Values Constraints
vertical_anchor PV_TOP GUI
PV_BOTTOM
PV_MIDDLE
vert_max_size str GUI
seeEditors Guide page 41 auto_vert_resize =PV_YES
vert_min_size str GUI
seeEditors Guide page 41 auto_vert_resize =PV_YES

vert_scroll_bar

PV_YES/PV_NO

width str
seeEditors Guide page 41

Positioning

Table 33. Widget positioning poperties

Property Values Constraints

horiz_shrinking PV_DECREASE_REGION_SIZE GUI
PV_KEEP_REGION_SIZE
PV_PREVENT_GRID_SHRINKING

min_horiz_space str GUI
seeEditors Guide page 41

min_vert_space str GUI
seeEditors Guide page 41

region_margin str GUI
seeEditors Guide page 41

vert_shrinking PV_DECREASE_REGION_SIZE GUI
PV_KEEP_REGION_SIZE
PV_PREVENT_GRID_SHRINKING

530

JAM 7.0 Language Reference

Color

Table34. Wdget color poperties

Widget Properties

Property

Values

Constraints

bg_color_name

str

bg_color_type

PV_EXTENDED

bg_color_num

int B JAM basic color;
see page 140 in th&onfig-
uration Guide

bg_color_type

PV_BASIC

bg_color_type PV_BASIC

PV_EXTENDED

PV_SCHEME
blink PV_YES/PV_NO bg_color_type = PV_BASIC
dim PV_YES/PV_NO bg_color_type = PV_BASIC

fg_color_name

str

fg_color_type = PV_EXTENDED

fg_color_num

int © JAM basic color;
see page 140 in thgonfig-
uration Guide

fg_color_type =PV_BASIC

fg_color_type

PV_BASIC
PV_EXTENDED
PV_SCHEME

reverse

PV_YES/PV_NO

bg_color_type = PV_BASIC

Font
Table35. Wdget font poperties
Property Values Constraints
bold PV_YES/PV_NO
font_name str B font name
italic PV_YES/PV_NO
point_size str
underlined PV_YES/PV_NO

Appendix A JAM Properties

531

Widget Properties

Focus
Table36. Wdget focus poperties
Property Values Constraints
alt_next_tab_stop str B field name next_tab_stop = widget-name
alt_prev_tab_stop str D field name prev_tab_stop = widget-name
autotab PV_YES/PV_NO
entry_function str
exit_function str
focus_protection PV_YES/PV_NO
next_tab_stop str D field name
prev_tab_stop str D field name
row_entry_func str
row_exit_func str
selected PV_YES/PV_NO Runtime
Help
Table 37. Wdget help poperties
Property Values Constraints
auto_help PV_YES/PV_NO jam_help_screen = screen-name
auto_item PV_YES/PV_NO selection_screen = screen-name

external_help_tag

str

jam_help_screen

str

popup_menu

str

popup_script_file

str

selection_screen

str

status_line_text

str

532

JAM 7.0 Language Reference

Widget Properties

Input

Table38. Wdget input poperties
Property Values Constraints
all_protect PV_YES/PV_NO Runtime

clearing_protect

PV_YES/PV_NO

convert_case

PV_MIXED
PV_UPPER
PV_LOWER

edit_mask

str
seeEditors Guide page 164

keystroke_filter

= PV_EDIT_MASK

input_protection

PV_YES/PV_NO

keystroke_filter

PV_UNFILTERED
PV_DIGITS_ONLY
PV_YES_NO
PV_ALPHABETIC
PV_NUMERIC
PV_ALPHANUMERIC
PV_REGULAR_EXP
PV_EDIT_MASK

maximum_value

str

minimum_value

str

must_fill

PV_YES/PV_NO

reg_exp_filter

str
seeEditors Guide page 162

keystroke_filter

= PV_REGULAR_EXP

regular_expr

str
seeEditors Guide page 166

required

PV_YES/PV_NO

select_on_entry

PV_YES/PV_NO

table_lookup

str B screen name

Appendix A JAM Properties

533

Widget Properties

Validation
Table39. Wdget validation poperties
Property Values Constraints
calculation str

seeEditors Guide page 316

control_string

str

double_click str B control string

mdt PV_YES/PV_NO Runtime

no_validation PV_YES/PV_NO

validation_func str

valided PV_YES/PV_NO Runtime

Format/Display

Table 40. Wdget format and display pperties

Property Values Constraints

active_pixmap str D file name GUI
seeEditors Guide page 266

armed_pixmap str D file name GUI
seeEditors Guide page 266 active_pixmap = file-name

border PV_YES/PV_NO charactemode

border_style

int B 0.9

seeEditors Guide page 265

character mode
border =PV_YES

clock_type

PV_12 HOUR
PV_24 HOUR

data_formatting = PV_DATE_TIME

column_separators

PV_YES/PV_NO

column_titles

PV_NONE
PV_AUTO_NUMBER
PV_AUTO_LETTER
PV_PER_COLUMN

currency_symbol

str

numeric_type = PV_CUSTOM

534

JAM 7.0 Language Reference

Widget Properties

Property

Values

Constraints

custom_format

str

seeEditors Guide page 245

date_format =PV_CUSTOM

customer_drawn

PV_YES/PV_NO

GUI

data_formatting

PV_NONE
PV_DATE_TIME
PV_NUMERIC

date_format

PV_DEFAULT 0

PV_DEFAULT 9

data_formatting = PV_DATE_TIME

PV_CUSTOM

decimal_places int

decimal_symbol PV_DOT numeric_type = PV_CUSTOM
PV_COMMA

empty_format

PV_YES/PV_NO

data_formatting = PV_NUMERIC

fill_character

str

data_formatting = PV_NUMERIC

frequency

int

system_update = PV_YES

frozen_columns

int

inactive_pixmap

str D file name

seeEditors Guide page 266

GUI
active_pixmap = file-name

justification

PV_LEFT
PV_RIGHT
PV_CENTERED

max_decimals

int

numeric_type = PV_CUSTOM

min_decimals

int

numeric_type = PV_CUSTOM

null_field

PV_YES/PV_NO

null_text

str

null_field = PV_YES

numeric_type

PV_DEFAULT 0

PV_DEFAULT 9
PV_CUSTOM

data_formatting = PV_NUMERIC

password_field

PV_YES/PV_NO

password_char

str

password_field = PV_YES

Appendix A JAM Properties

535

Widget Properties

Property Values Constraints

placement PV_LEFT data_formatting =PV_NUMERIC
PV_RIGHT
PV_MIDDLE

repeating PV_YES/PV_NO null_field = PV_YES

rounding PV_ROUND_ADJUST data_formatting = PV_NUMERIC

PV_ROUND_DOWN
PV_ROUND_UP

row_separators

PV_YES/PV_NO

row_titles

PV_NONE
PV_AUTO_NUMBER
PV_FIRST_COLUMN

stripe_current_row

PV_YES/PV_NO

thousand_sep

PV_COMMA
PV_DOT
PV_BLANK
PV_NONE

numeric_type = PV_CUSTOM

system_update

PV_YES/PV_NO

data_formatting = PV_DATE_TIME

word_wrap

PV_YES/PV_NO

zero_format

PV_YES/PV_NO

data_formatting = PV_NUMERIC

Transaction

Table4l. Wdget transaction manager @perties

Property

Values

Constraints

class

str

seeEditors Guide page 287

synchronization

PV_DEFAULT
PV_YES
PV_NO

Read-only

536

JAM 7.0 Language Reference

Database

Table42. Wdget database piperties

Widget Properties

Property Values Constraints
column_name str Read-only
group_by str

having str

in_delete_where PV_YES/PV_NO Read-only
in_update_where PV_YES/PV_NO Read-only
insert_expression str Read-only

seeEditors Guide page 356

use_in_insert =PV_YES

select_expression

str
seeEditors Guide page 354

use_in_select =PV_YES

select_force_valid

PV_YES/PV_NO

use_in_select=PV_YES

select_set_valid

PV_YES/PV_NO

use_in_select=PV_YES

Sv

objid

Runtime,Read-only

tv

objid

Runtime, Read-only

update_expression

str
seeEditors Guide page 357

Read-only

use_in_update =PV_YES

use_if null PV_YES/PV_NO use_in_where = PV_YES
use_in_insert PV_YES/PV_NO Read-only
use_in_select PV_YES/PV_NO Read-only
use_in_update PV_YES/PV_NO Read-only

use_in_where

PV_YES/PV_NO

validation_link

str

Appendix A JAM Properties

537

Widget Properties

Property Values Constraints
version_column PV_YES/PV_NO Read-only
where_operator PV_WHERE_EQUAL use_in_where= PV_YES
PV_WHERE_GREATER
PV_WHERE_IN

PV_WHERE_LESS
PV_WHERE_LIKE
PV_WHERE_LIKE_R
PV_WHERE_LIKE_LR
PV_WHERE_NONE
PV_WHERE_NOT_EQUAL
PV_WHERE_NOT_GREATER
PV_WHERE_NOT_IN
PV_WHERE_NOT_LESS
PV_WHERE_NOT_LIKE
PV_WHERE_NOT_LIKE_R
PV_WHERE_NOT_LIKE_LR

Graphs
Graphsand their properties are valid only on GUI platforms.
Table 43. Graph general ppperties
Property Values Constraints
bar_chart_type PV_ABSOLUTE chart_type =PV_BAR
PV_STACK
PV_STEP
PV_100
PV_OVERLAP
chart_3d PV_YES/PV_NO
chart_type PV_PIE
PV_BAR
PV_XY_PLOT
PV_HIGH_LOW
depth str ® 0.0..100.0 3d =PV_YES
horiz_rotation str B 0..90 3d =PV_YES
chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW

538 JAM 7.0 Language Reference

Widget Properties

Property Values Constraints
orientation PV_HORIZONTAL chart_type =
PV_VERTICAL PV_BAR | PV_XY_PLOT |

PV_HIGH_LOW

subtitle str

subtitle_text_size str ® 0.0..100.0 subtitle = str

text_size str 0.0..100.0

title str

title_text_size str 0.0..100.0 tittle = str

vert_rotation str B 0..90 3d =PV_YES

Table44. Graph data poperties

Property Values Constraints

bar_style PV_BAR chart_type =PV_BAR
PV_LINE y_value_source[int]= str
PV_CURVE
PV_POINT
PV_TREND
PV_AREA

data_basic_color int B JAM basic color; chart_type =

seeConfiguration Guidepage
140

PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW

y_value_source[int]= str
data value_location PV_NONE chart_type =PV_BAR
PV_IN y_value_source[int]= str
PV_OUT
legend[int] str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y_value_source[int]= str
Appendix A JAM Properties 539

Widget Properties

Property Values Constraints

line_style[int] PV_NONE If one of the following:
PV_SOLID
PV_DASHED bar_style =
PV_DOTTED PV_LINE | PV_CURVE |
PV_LONG_DASH PV_TREND
PV_DASH_DOT

Xy_style =

PV_LINE | PV_CURVE

line_width[int] str B 0..100 If one of the following:
bar_style =
PV_LINE | PV_CURVE |
PV_TREND
Xy_style =
PV_LINE | PV_CURVE
point_marker[int] PV_NONE If one of the following:
PV_DOT
PV_PLUS bar_style =
PV_STAR PV_LINE | PV_CURVE |
PV_O PV_POINT | PV_TREND
PV_X
PV_SQUARE Xy_style =
PV_DIAMOND PV_LINE | PV_CURVE |
PV_TRIANGLE PV_POINT
PV_CIRCLE

PV_FILLED_SQUARE
PV_FILLED_DIAMOND
PV_FILLED_TRIANGLE
PV_FILLED_CIRCLE

x_value_source[int]

str
seeEditors Guide page 156

chart_type =PV_XY_PLOT
y_value_source[int]= str

Xy_style PV_CURVE chart_ type =PV_XY_PLOT
PV_LINE y_value_source[int]= str
PV_POINT
y_axis[int] PV_Y1 chart_type =
PV_Y2 PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y_value_source[int]= str

y_value_source[int]

str
seeEditors Guide page 137

540

JAM 7.0 Language Reference

Widget Properties

Table45. Pie graph poperties
Property Values Constraints
pie_diameter str D 0.0..200.0 chart_type =PV_PIE

pie_direction

PV_CLOCKWISE
PV_COUNTERCLOCKWISE

chart_type = PV_PIE

pie_start_angle str B 0..359 chart_type =PV_PIE
pie_x_position str D 0.0..100.0 chart_type =PV_PIE
pie_y_position str D 0.0..100.0 chart_type =PV_PIE

Table46. Pie graph segment pperties
Property Values Constraints
seg_label_location PV_OUT chart_type = PV_PIE
PV_LEGEND

seg_label_source

str

seeEditors Guide page 147

chart_type =PV_PIE

seg_percent_location

PV_NONE
PV_IN
PV_OUT

chart_type = PV_PIE

seg_style_source

str

seeEditors Guide page 148

chart_type =PV_PIE

seg_value_location

PV_NONE
PV_IN
PV_OUT

chart_type = PV_PIE

Table47.

Graph legend mperties

Property

Values

Constraints

legend_border_width

str

b 0..100

legend_placement =
PV_DEFAULT |
PV_LOCATION |
PV_POSITION

legend_in_data_space

PV_YES/PV_NO

legend_placement =
PV_LOCATION

Appendix A JAM Properties

541

Widget Properties

Property Values Constraints
legend_text_size str D 0.0..100.0 legend_placement =
PV_DEFAULT |
PV_LOCATION |
PV_POSITION
legend_placement PV_DEFAULT
PV_NONE
PV_LOCATION
PV_POSITION
legend_title str legend_placement =
PV_DEFAULT |
PV_LOCATION |
PV_POSITION
legend_x_anchor PV_LEFT legend_placement =
PV_CENTER PV_POSITION
PV_RIGHT
legend_x_location PV_LEFT legend_placement =
PV_CENTER PV_LOCATION
PV_RIGHT
legend_x_position str D 0.0..100.0 legend_placement =
PV_POSITION
legend_y_anchor PV_TOP legend_placement =
PV_MIDDLE PV_POSITION
PV_BOTTOM
legend_y_location PV_TOP legend_placement =
PV_MIDDLE PV_LOCATION
PV_BOTTOM
legend_y_position str D 0.0..100.0 legend_placement =
PV_POSITION
Table48. Graph axis poperties
Property Values Constraints
X_axis_label str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
542 JAM 7.0 Language Reference

Widget Properties

Property Values Constraints
x_axis_label_location PV_ALONG_SIDE chart_type =
PV_DOWN_SIDE PV_BAR | PV_XY_PLOT |
PV_TOP PV_HIGH_LOW
X_axis_location PV_EDGE chart_type =
PV_OPPOSITE_EDGE PV_BAR | PV_XY_PLOT |
PV_ZERO PV_HIGH_LOW
PV_NONE
X_axis_maximum str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
X_axis_minimum str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
X_axis_scale PV_LINEAR chart_type =
PV_COMMON_LOG PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
yl_axis_label str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y1_axis_label_location PV_ALONG_SIDE chart_type =
PV_DOWN_SIDE PV_BAR | PV_XY_PLOT |
PV_TOP PV_HIGH_LOW
yl_axis_location PV_EDGE chart_type =
PV_OPPOSITE_EDGE PV_BAR | PV_XY_PLOT |
PV_ZERO PV_HIGH_LOW
PV_NONE
yl_axis_maximum str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y1l_axis_minimum str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
yl_axis_scale PV_LINEAR chart_type =
PV_COMMON_LOG PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y2_axis_label str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW

Appendix A JAM Properties

543

Widget Properties

Property Values Constraints
y2_axis_label_location PV_ALONG_SIDE chart_type =
PV_DOWN_SIDE PV_BAR | PV_XY_PLOT |
PV_TOP PV_HIGH_LOW
y2_axis_location PV_EDGE chart_type =
PV_OPPOSITE_EDGE PV_BAR | PV_XY_PLOT |
PV_ZERO PV_HIGH_LOW
PV_NONE
y2_axis_maximum str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y2_axis_minimum str chart_type =
PV_BAR | PV_XY_PLOT|
PV_HIGH_LOW
y2_axis_scale PV_LINEAR chart_type =
PV_COMMON_LOG PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
Table49. Graph tick mark poperties
Property Values Constraints
x_tick_grid_style PV_SOLID chart_type =
PV_DASHED PV_BAR | PV_XY_PLOT |
PV_DOTTED PV_HIGH_LOW
PV_NONE
x_tick_label_source str chart_type =
seeEditors Guide page 134 PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
x_tick_major_increment str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
x_tick_minor_increment str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
x_tick_style PV_IN chart_type =
PV_OUT PV_BAR | PV_XY_PLOT |
PV_BOTH PV_HIGH_LOW
PV_NONE
544 JAM 7.0 Language Reference

Widget Properties

Property Values Constraints
x_tick_width str B 0..100 chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y1_tick_grid_style PV_SOLID chart_type =
PV_DASHED PV_BAR | PV_XY_PLOT |
PV_DOTTED PV_HIGH_LOW
PV_NONE
y1_tick_label_source str chart_type =
seeEditors Guide page 134 PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y1_tick_major_increment str chart_type =
PV_BAR | PV_XY_PLOT|
PV_HIGH_LOW
y1 tick_minor_increment str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
yl_tick_style PV_IN chart_type =
PV_OUT PV_BAR | PV_XY_PLOT |
PV_BOTH PV_HIGH_LOW
PV_NONE
yl_tick_width str B 0..100 chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y2_tick_grid_style PV_SOLID chart_type =
PV_DASHED PV_BAR | PV_XY_PLOT |
PV_DOTTED PV_HIGH_LOW
PV_NONE
y2_tick_label_source str chart_type =
seeEditors Guide page 134 PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y2_tick_major_increment str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW
y2_tick_minor_increment str chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW

Appendix A JAM Properties

545

Selection Group

Property Values Constraints
y2_tick_style PV_IN chart_type =
PV_OUT PV_BAR | PV_XY_PLOT |
PV_BOTH PV_HIGH_LOW
PV_NONE
y2_tick_width str © 0..100 chart_type =
PV_BAR | PV_XY_PLOT |
PV_HIGH_LOW

Selection Group

Identity

Table 50. Selection goup identity poperties

Selectiongroup properties can be referenced bydhedget modifier. This
modifier is optional for properties that are unique to widgetsbfor example,

num_of_selections

Property

Values

c_type

PV_DEFAULT
PV_OMIT
PV_CHAR_STRING
PV_INT
PV_UNSIGNED_INT
PV_SHORT_INT
PV_LONG_INT
PV_FLOAT
PV_DOUBLE
PV_ZONED_DEC
PV_PACKED_DEC
PV_HEX_DEC

id

int

Runtime, Read-only

memol..memo9

str

name

str

num_of_selections

PV_0 OR 1
PV_1
PV_ANY

546

JAM 7.0 Language Reference

Selection Group

Property Values Constraints

precision int c_type =
PV_DOUBLE | PV_FLOAT |
PV_PACKED | PV_ZONED

sign PV_YES/PV_NO c_type = FT_PACKED|FT_ZONED

Geometry

Table51. Selection goup geometry fmperties

Property Values Constraints
num_occurrences int Runtime
Focus

Table 52. Selection goup focus poperties

Property Values Constraints

alt_next_tab_stop str D field name next_tab_stop = widget-name
alt_prev_tab_stop str D field name prev_tab_stop = widget-name
entry_function str

exit_function str

next_tab_stop str B field name

prev_tab_stop str D field name

Appendix A JAM Properties 547

Synchronized Scrolling Group

Validation

Table53. Selection goup validation poperties

Property Values Constraints
mdt PV_YES/PV_NO Runtime
validation_func str

valided PV_YES/PV_NO Runtime

Synchronized Scrolling Group

Synchronizedcrolling group properties can be referenced bya@tget
modifier. This modifier is optional for properties that are unique to widgetsbfor
examplescroll_increment

Identity

Table 54. Synchonized saolling group identity poperties

Property Values Constraints

id int Runtime, Read-only
memol..memo9 str

name str

widget_type PV_SYNC_GROUP Runtime, Read-only
Geometry

Table 55. Synchonized savlling group geometry mperties

Property Values Constraints
array_size int
circular PV_YES/PV_NO

548 JAM 7.0 Language Reference

Table View

Property Values Constraints
max_occurrences int
scroll_increment int

Table View

Tableview properties can be referenced by @eidget modifier. This modifier is
optional for properties that are unique to widgetsbfor exampleary_key

Identity

Table 56. Table view identity mperties

Property Values Constraints
id int Runtime, Read-only
name str
widget_type PV_TABLE_VIEW Runtime, Read-only
Transaction
Table 57. Table view transaction managerqperties
Property Values Constraints

fetch_directions

PV_CONT_ALWAYS
PV_CONT_DEFAULT
PV_CONT_NEVER
PV_CONT_VIEW_ONLY

function

str

model

str

updatable

PV_YES/PV_NO

Read-only

Appendix A JAM Properties

549

Table View

Database

Table58. Table view database pperties

Property

Values

Constraints

columns[int]

str

Read-only

distinct PV_YES/PV_NO

field_below[int] objid Runtime, Read-only
primary_key[int] str Read-only
sort_widgets[int] str

table str Read-only
Traversal

Table 59. Table view traversal mperties
Property Values Constraints
bi_status[int] int Runtime, Read-only

SeeApp. DevGuide page 380

child[int] objid Runtime, Read-only
field[int] objid Runtime, Read-only
field_below[int] objid Runtime, Read-only
key _constant] int] str Runtime, Read-only
key field[int] objid Runtime, Read-only
num_children int Runtime, Read-only
num_fields int Runtime, Read-only
num_fields_below int Runtime, Read-only
num_key_columns int Runtime, Read-only
num_sorts int Runtime, Read-only
num_sv_fields int Runtime, Read-only
num_svs_below int Runtime, Read-only

550

JAM 7.0 Language Reference

Link Widget

Property Values Constraints

num_tvs int Runtime,Read-only
num_tvs_below int Runtime, Read-only
parent objid Runtime, Read-only
parent_link objid Runtime, Read-only
source_occ int Runtime, Read-only
sv objid Runtime, Read-only
sv_below[int] objid Runtime, Read-only
sv_field[int] objid Runtime, Read-only
tv[int] objid Runtime, Read-only
tv_below[int] objid Runtime, Read-only
sv_field[int] objid Runtime, Read-only
sort_widgets[int] str Runtime, Read-only

For a description of each traversal propamyer to page 380 in thpplication
Development Guide

Link Widget

Link widget properties can be referenced by@widget modifier. This modifier
is optional for properties that are unique to link widgetsbfor examyii

Identity

Table 60. Link identity poperties

Property Values Constraints

id int Read-only

name str

widget_type PV_LINK Runtime, Read-only

Appendix A JAM Properties 551

Link Widget

Transaction

Table61. Link transaction manager pperties

Property Values Constraints

child str Read-only

delete_order PV_CHILD_FIRST Read-only
PV_PARENT_FIRST

insert_order PV_CHILD_FIRST Read-only
PV_PARENT_FIRST

parent str Read-only

relations[int] str Read-only

type PV_LNK_SEQUENTIAL Read-only

PV_LNK_SERVER
PV_LNK_NONE

update_order PV_CHILD_FIRST Read-only
PV_PARENT_FIRST

Traversal

Table 62. Link traversal poperty

Property Values Constraints

num_relations int Runtime, Read-only

552 JAM 7.0 Language Reference

Index

Application runtime properties (continued)
getting (continued)

Symbols

@date, in JPL, 36
@length, in JPL, 37
@sum, in JPL, 37

A

Application
aborting, 182, 296
escaping to operating system, 342
handle to instance, getting, 395
initialization, 282
propertiesSeeApplication runtime properties
referencing in JPL, 25
resetting display to system defaults, 426
returning after escape, 430
start, 308

Application components, referencing, 24
with object modifiers, 25

Application runtime properties, 520
getting, 406, 413
cursor ofset in field, 444
decimal symbol, 406

no value, 406

repository name, 406
screen name, 407

status line attributes, 407
terminal identifier 406
video settings, 407

yes value, 406

getting handle to, 416
setting, 418, 421

decimal symbol, 421

no value, 421

screen name, 421

status line attributes, 421
through global variables, 297
video settings, 421

yes value, 421

Argument passing in JPL, 14
Array

clearing all data, 186
copying data, 189
declaring in JPL, 76
deleting occurrence, 219
editing contents with external edit@35
getting
current occurrence numbhe02
runtime propertiesSeeArray runtime properties

553

Array (continued)
inserting occurrence, 291
reading file contents into, 239
scrolling. SeeScrolling array
setting runtime propertieSeeArray runtime prop
erties
sum of occurrences, 37
synchronizing SeeSynchronized arrays
trimming, 446
writing contents to file, 233

Array data, accessing in JPL, 27

Array runtime properties
accessing in JPL, 30
getting, 413415
for element, 414
for occurrence, 414
getting handle to elements, 417
getting handle to occurrences, 417
setting, 418+420
for element, 419
for occurrence, 419

B

Backtab, 169
Base windowgetting Wdget ID, 516

Before image processing
comparing values, 171+172
copying current values, 173
initializing, 174175

Bell
invoking, 170
setting in messages, 60, 224

Binary variables

deleting occurrence 11

getting
maximum number of occurrenced,51
occurrence data,1B
occurrence data lengthld
occurrence length,14
pointer to occurrence 10

setting, occurrence data lengtip1l

Bitmap, mapping string ID to integer ID, 409

Bitwise expression, 39

554

Bitwise operators, 37
Builtin control functions, 81+87
Bundle.SeeSend data

C

Calling JPL procedure, 14
as hook function, 15
from control string, 16
through call command, 17
within expression, 17

Check digit function, executing, 183
Colon preprocessing, 20
simulating from C, 124+125
substring specifier22
Combo box widget, updating contents, 495
Comments, in JPL, 7
Constants in JPL, 23
Continuation characte6
Continuation file, using in transaction managk5
CONTINUE, availability in transaction managé65
Control flow in JPL, 6
Control string, calling JPL, 16
Conversion utilities, jpl2bin, 1L
Copying widgets, at runtime, 399
Currency format, stripping from string, 453

Cursor

backtabbing to previous field, 169
changing delay state, 212
controlling behavior in group, 318
getting location in field, 444
getting ofset in field, 216
moving to

field, 275, 403

first field, 280

last field, 323

next field, 458

next line, 397
toggling position displayl80
turning of, 178
turning on, 179

Cursor (database), checking status, 152

JAM 7.0 Language Reference

D

Datatype, JPL, 32
Database columns, fetching binary valudd) 1
Database connections, checking status, 151

Database engines
checking status, 153
deinstalling, 154
initializing, 149+150

Database interface
execute dbms command in JPL, 49
initializing, 117

Date, using in JPL expressions, 36

Date/time format
applying to supplied value, 492
applying to system date/time, 436

DBMS commands
executing from C, 18, 120, 265
last executed command, 148

DDE
callback function, installing, 207
cold links, creating for JAM client, 196
cold paste links, creating for JAM client, 202
destroying links on JAM client, 199
disabling JAM as client, 200
disabling JAM as serve210
enabling JAM as client, 201
enabling JAM as serve?1l
executing command from JAM client, 206
hot links, creating for JAM client, 197
hot paste links, creating for JAM client, 203
paste links, creating for JAM client, 202
poking data from JAM client, 209
requesting link data, 205
warm links, creating for JAM client, 198
warm paste links, creating for JAM client, 204

Decimal symbol
getting default, 406
setting default, 421

Delay cursor212

Delayed write
flush, 50
forcing, 251

Deleting widgets, at runtime, 401

Index

Deselect in selection group, 214

Display
getting HWND handle, 517
getting Wdget ID, 517

Display attributes, setting
for area, 176
in status line, 59, 224

DLL
getting load errqr447
installing function from, 448
loading, 450

Double clicking, getting time between clicks, 394
Drawing function, attaching to widget, 165
Dynamic link library SeeDLL

E

Editor
invoking for JPL procedures, 12
invoking from JPL dialog box, 13
invoking to edit array at runtime, 235
setting, 452

Error handling
DLL loading, 447
for menu API, 347
for properties API, 412

Error messageSeeMessage

Error messages (database), testing in transaction man
ager 466

EXECUTE, dbms statement, changing in SQL genera
tion, 127

Exit screen, 82
ExpressionsSeelPL expression

External menu, 360

F

Field, copying array data, 189

Field data
accessing in JPL, 27, 30
accessing substring, 28
clearing all fields, 185

555

Field data (continued)
clearing all fields in table viey59
clearing from array186
copying to bufier, 270
getting length, 37, 217
of word wrapped text, 510
reading, 256
double precision float, 194
from LDBs, 157
integer 290
long integer 343
unformatted data, 453
word wrapped text, 512
testing
all fields for changes, 491
for yes value, 295
if null, 398
testing for no value, 294
forcing validation, 262
validating with check digit function, 183
writing, 423
double precision floating point, 221
formatted data, 158
integer 300
long integer 345
word wrapped text, 513

Field runtime propertiesSeeWidget runtime proper
ties

File

getting path name, 229
opening as binary read+onB28

File I/O

closing file stream, 234

error handling, 236

getting file stream handle, 244
invoking external editor for arrag35
opening file for read/write, 245
reading characters from file, 241
reading line from file, 242
rewinding file stream, 250
setting error code, 238

writing array to file, 233

writing character to file, 247
writing file contents to array239

File streamSeeFile I/O

Floating point
reading from field, 194
writing to field, 221

Flush bufered output, 50

For loop, 51
skip to next iteration, 63

Form
closing, 301
opening, 303

Form list. SeeMemory+resident list
Form stack, return to base screen, 83

Function, calling from JPL, 47

G

Global JPL variable
clearing, 20
declaring, 19, 53

Global string
getting, 406
setting, 421

Global variables
getting values, 285
setting values, 297

Group
converting to field numbe277
controlling cursor movement, 318
forcing validation, 278
getting name from field reference, 261
referencing in JPL as variable, 31

GROUP BY clause, changing generated SQL,
133+134

H

Handle.SeeHINSTANCE handle; HWND handle;
Widget ID

HAVING clause, changing generated SQL, 135+136
Help screen, 182, 296
HINSTANCE handle, 395

writing line to file, 248

File selection dialog box, 230
adding to file type option menu, 232

556 JAM 7.0 Language Reference

Hook functions
installing, 218, 288
invoking, 15

HWND handle, getting for
display 517
drawing area, 220
screenzresident widget, 499

1/0 processingSeeFile 110
If logic, 55

Include JPL module, 57
Included JPL modules, 6

Initialization
application, 282
database engines, 149+150
database interfacell
key translation table, 315
menu system, 367
messages, 391
video translation table, 496

Input
simulating from keyboard, 85, 493
test for keyboard activify313

Instance, getting handle, 395

Integer value
reading from field, 290
writing to field, 300

Interrupt handler182

J

JAM help screen
See alsdHelp screen
displaying, 279

JPL
calls.SeelJPL calls
choosing an editpi 3
commands, summargl+43
comments, 7
constants, 23
control flow, 6

Index

JPL (continued)

displaying messages, 58

modules.SeeJPL module; JPL procedure

null statement, 6

optimizing performance, 39
reading send dat&eeSend data
sending dataSeeSend data
validation, 8

variables SeeJPL variable

JPL calls, 14

arguments, 14

from C function, 305

from control string, 16

from screen, 15

from widget, 15

inline calls, 17

return value, 15

search orderl7

to JPL and installed functions, 47

JPL expression, 38

bitwise, 39

logical, 39

numeric, 38

numeric format, 38

operand conversion, 35

precision, 38

specifying substring in variable, 36
string, 38

JPL module, 3

adding to memory+resident list, 254
calling by name, 10
compiling, 1L

with jpl2bin, 11
compiling at runtime, 10
continuation characte6
external modules, 9
include module, 57
including external modules, 6
line length, 6
loading as public, 10, 68, 306
unloading public, 307
memory+resident,11
named procedure, 3
screen, 9
storing in library 10
types, 7
unloading public, 75
unnamed procedure, 3
widget validation, 8

557

JPL operators, 33
@date, 36
@length, 37
@sum, 37
bitwise, 37
concatenation, 35
precedence, 35
substring specifiel36

JPL procedure, 3
declaring parameters, 4
declaring return type, 5, 66
execution, 6
getting standard guments, 5
named, 3
returning from, 15, 72
unnamed, 3

JPL program text windowi 2
compiling and saving, 14
invoking local editor13
reading and writing files, 13

JPL variable, 18

allocate size, 76
declaring, 18, 76

as array76

global, 19, 53
expanding to literal value, 20
initialize, 76
name conventions, 76
referencing group selection, 31
resolving name ambiguit26
scope and lifetime, 20
substring specifiel36

jpl2bin, 11

K

Key

changing cursor control key behayidd.7

disabling, 317

getting integer value, 31
getting logical value, 272
logical. Seelogical key
pushing onto input queue, 493

Key label, displaying in messages, 60, 224

558

Key translation
initializing table, 315
installing file, 315

Keyboard, opening for input, 284

Keyboard interface, Invoking pop+up menu without
mouse, 41

L

LDB
activating at runtime, 339
changing to read+only at runtime, 339
changing to read/write at runtime, 339
default library 452
default screen, 452
disabling writexthrough, 195
forcing read from screen, 344
getting
contents of entry328
current state , 338
LDB name, 333
most recently activated, 324
most recently inactivated, 325
previously activated, 326
previously inactivated, 327
handle
getting, 329
getting to another instance, 334
inactivating at runtime, 339
initializing, 330
loading, 332
popping, 335
pushing, 336
reading data from all, 157
referencing in JPL, 26
testing whether loaded, 331
unloading at runtime, 341
writing to entry 337

Library
See alsdLL
closing, 320
opening, 321
screen as form, 252
screen as windavb01
storing JPL modules, 10

Line length of JPL statement, 6

Link widget, runtime properties, 551

JAM 7.0 Language Reference

Logical expression, 39

Logical key
getting integer value, 31
getting label, 316

Long integer
reading from field, 343
writing to field, 345

Loop
breaking from, 46
for condition, 51
skipping to next iteration, 63
while condition, 78

M

Math expression, specifying in function call, 181

MDT bit
clearing for all fields, 184
testing to find first modified field, 491

Memory
allocating for application, 282
deallocating on exit, 426

Memory+resident, JPL moduled, 1

Memory+resident list
purging, 431
updating, 254

Menu
changing properties, 349
creating at runtime, 352
deleting at runtime, 353
external reference, 360
getting error on menu function calls, 347
getting property354
identical instances of, 359
installing, 357
memory location constants, 382
pop=up for field, invoking from keyboard, 81
property constants, 350
removing from display362
scope assignment and displ&8%9
scope constants, 357
unique instances of, 360

Index

Menu item
changing properties, 368
getting properties, 377
inserting at runtime, 374
property constants, 378
removing at runtime, 376
type constants, 375

Menu script
loading into memory382
unloading from memor\384

Message
acknowledgment, 59, 61, 223, 225, 226
acknowledgment keys0, 224
bell, 60, 224
default display
in status line, 59, 223, 226
in window, 59, 223, 226
display attributes in, 59, 224
displaying
error tag, 58, 258, 259
forcing to window 61, 225
in dialog box, 363
through JPL commands, 58
through library functions, 223, 226, 258, 259
forcing to status line, 61, 225
automatic dismissal, 60, 224
key labels in, 60, 224
line break insertion, 61, 225
Ready/Wéit status, displaying, 442
removing from memory391
retrieving from message file, 389, 390
status lineSeeStatus line
transaction manager errors, 463, 464

Message dialog box, 363
button combinations, 364, 365
default button, 365, 366
modality setting, 365, 366
system icon, 365, 366
text format options, 363

Message file, initialization, 391

Mouse events
getting state of buttons, 385
getting system time for mouse click, 394

Multi-item properties
accessing in JPL, 29
getting at runtime, 415
setting at runtime, 420

559

N Path, 452

Percent escapes
Null statement in JPL, 6 in JPL message commands, 59

in message functions, 224

Numeric expression, JPL, 38 .
P Playback function, turn on orfpf312

Numeric format Popxup menu, invoking, through function call141

JPL, 38 o
properties Precision, JPL, 38
getting application defaults, 406 Presentation Managenapping to string resource IDs,
setting application defaults, 421 409
Numeric format properties, setting application de Procedure, declaring in JPL, 66
faults, 421

Properties
See alsd\pplication runtime properties; Array run
time properties; Screen runtime properties;
Widget runtime properties
O accessing in JPL, 28
application properties, 28

Occurrence editor properties, 28
deleting, 219 multi-item properties, 29
getting current numbed02 runtime properties, 28
inserting, 291 substring of setting, 29
referencing in JPL, 26 error handling, 412

o getting at runtime, 413

Operands, conversion in JPL, 35 for array element, 414

for array occurrences, 414
getting handle to object, 416
getting multi-item settings, 415
setting at runtime, 418

for array element, 419

for array occurrences, 419
setting item, 420
value types, 29

Operating system
date/time, getting, 436
escaping from application, 342
executing command
from JPL, 86
through library function, 445
print command specification, 452

returning to JAM application, 430
Public module
Operators, JPLSeeJPL operators loading, 68, 306

Option menu widget, updating contents, 495 unloading, 75, 307

ORDER BY clause, changing generated SQL,
139+140 R

Ready/\Wiit status, displaying, 442
P receive command, emulating through sm_receive, 424
Record function, turning on orfpf312

Parameters Reposition widgets at runtime, 156
declaring in JPL, 4
named procedure, 66
unnamed procedure, 64 Resources
name requirements, 64 mapping string to integer IDs, 409

Repository getting name, 406

560 JAM 7.0 Language Reference

Returnvalue, 15, 72 Screen runtime properties, 521

declaring type in JPL, 5, 66 getting, 413
)] getting handle to, 416
Runtime properties setting, 418

See alsd’roperties

accessing in JPL, 28
getting, 413 Script. SeeMenu script

setting, 418 Scrolling array getting next synchronized arfs806

Screen save list, check for screen, 299

Search path, screen, 253

SELECT statement
S changing generated SQL, 131+146
free memory for statement, 126
generating SQL, 147

Screen Selection group
calls to JPL from, 15 deselecting, 214
change window through keyboard, 87 getting selection data, 31
closing, 82, 84, 187, 301 runtime properties, 546
file extension, 452 selecting, 438

forcing validation, 433
forcing write to LDB, 344
freeing saved data, 455
getting name of current, 407

Send data
appending to bundle, 160
counting bundle item occurrences, 268
counting bundle items, 267

HWND handle, 220 creating bundle item, 163
JPL module, 9 destroying bundle, 260
memory+resident, adding to list, 254 emulating send command in C, 439
opening getting previous bundle name, 269
as a form, 252, 303 initializing bundle, 191
as a window309, 501 optimizing bundle storage, 162
through dialog box, 84 reading bundle data through JPL, 70
referencing in JPL reading bundle data through sm_receive, 424
by name, 25 reading occurrence from bundle, 266
by number 26 verifying bundle name, 293
refreshing, 156 writing data to bundle, 439
removing from save list, 494 through JPL, 73
restoring saved data, 429, 432 Setup variables, changing at runtime, 405

saving, in memory456
saving data, 435, 454
search path for opening, 253
setting name of current, 421
shrinking, 446 SM_NO

translating coordinates to pixels, 489 g:tt::gg \\//2:32’ 22?
trim, 504+517 ’

Sibling window
changing focus, 506
setting for next-opened window41

widget ID, 220 SM_YES
getting value, 406
Screen data transfé&eeSend data setting value, 421
Screen editgrsetting defaults, 452 Source code, main routines
jmain.c, 91
Screen module, 9 jxmain.c, 91

Index 561

SQL
automated, SELECT statement, 147
changing generated SQL, 131+146
generation, 121+123
last executed command, 148

SQL generation

appending to the SELECT statement, 141+142

changing bind values in DBMS EXECUTE,
127+130

changing the FROM clause, 131

changing the GROUP BY clause, 133+134
changing the HXING clause, 135+136
changing the ORDER BY clause, 139
changing the select list, 137+138
changing the WHERE clause, 143+145
getting the correlation name, 146

Standard gjuments
passing into JPL procedure, 5
passing into unnamed procedure, 5
types, 15

Status line

cursor position displayl 80

default message, 58
overriding, 58, 192
setting, 440

display attributes
getting, 407
setting, 421

flushing, 346

message, 388

Ready/\Viit status, toggling, 442

Status line function, cursor position displag0

String
getting length, 37
reading from file, 242
writing to file, 248

String expression, JPL, 38

Substring specifier36
colon variables, 22

Synchronized arrays
getting next, 396
runtime properties, 548

562

T

Table views
clearing fields, 459
getting correlation name, 146

Terminal
changingdisplay size, 427
flush delayed write, 50
flushing output, 251
getting identifier 406
initializing, 282
refreshing, 425
resetting to system defaults, 426

Text editor invoking for JPL procedures, 12
Timeout function, testing input, 313
Transaction commands, executing, 461

Transaction events
emptying event stack, 460
getting the event name, 471
getting the event numhet70
popping event from stack, 484
pushing event onto stack, 487

Transaction manager
accessing traversal properties, 31
attributes
getting integer values, 473+475
getting string values, 481+482, 483
setting integer values, 476+477
setting string values, 485+486

before image processing, 171+172, 173, 174+175

errors

logging errors, 468

message processing, 463, 464

reporting, 467, 478+481

specifying message, 472

testing for database errors, 466
event stack

emptying, 460

popping event dfstack, 484

pushing event onto stack, 487
nonzsequential scrolling, 465
processing transaction commands, 461
transaction events, 470, 471

Traversal properties, accessing at runtime, 31

JAM 7.0 Language Reference

U

Unnamed procedure, 3
getting standard guments, 5

Vv

Validation
clearing MDT bit, 184
executing check digit function, 183
forcing
for field, 262
for group, 278
for screen, 433
testing screen for modified data, 491

Variable
See alsdPL variable
declaring global in JPL, 53
declaring in JPL, 76

Video mapping, initializing, 496
Viewport, enabling user to change, 505
VWPT key (viewport), 505

W

WHERE clause, changing generated SQL, 143+145
While loop, 78

basewindow, 516

display 517

drawing area, 220
screenzresident widget, 499

Index

Widget runtime properties, 526
getting, 413+415
getting handle to, 416
setting, 418+420

Widgets
calls to JPL from, 15
copying, at runtime, 399
deleting, at runtime, 401
getting runtime propertieSeeWidget runtime
properties
JPL validation, 8
reading dataSeeField data
referencing in JPL
by name, 26
by number 26
repositioning at runtime, 156
setting runtime propertieSeeWidget runtime prop
erties

writing to. SeeField data

Window
changing focus among siblings, 506
closing, 187, 301
deselecting, 498
giving focus to, 508
opening, 309, 501
setting next-opened as sibling, 441
sibling, 508

Window stack
changing order508
counting windows, 497
deselecting windoyw498

Word wrapped text
getting length, 510
reading from field, 512
writing to field, 513

563

