
JAM 7

Language Reference

August 1995

This software manual is documentation for JAM) 7. It is as accurate as possible at this time; however, both
this manual and JAM itself are subject to revision.

JAM is a registered trademark of JYACC, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a trademark of Electronic Book Technologies.

INFORMIX is a registered trademark of Informix Software, Inc.

OS/2 and Presentation Manager are registered trademarks of International Business Machines Corporation.

Windows and ODBC are trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation.

Oracle is a registered trademark of Oracle Corporation.

SYBASE is a registered trademark of Sybase, Inc.

UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec-
tive owners, and they are used for identification purposes only.

Send suggestions and comments regarding this document to:
Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038
(212) 267±7722

W 1995 JYACC, Inc.
All rights reserved.
Printed in USA.

iii

Table of Contents
About this Guide ix.

Organization of this Guide ix.
Conventions x.

Text Conventions x.
Keyboard Conventions x.

JAM Documentation xi.

Section I: JPL 1.

Chapter 1 Programming in JPL 3.
JPL Modules and Procedures 3.

Module Structure 3.
Parameters 4.
Return Types 5.
Procedure Execution 6.

Module Types 7.
Widget Modules 8.
Screen Modules 9.
External Modules 9.
Module Compilation 11.

iv JAM 7.0 Language Reference

JPL Program Text Window 12.
Using Your Own Editor 13.
Reading and Writing Files 13.
Compiling and Saving 14.

Calls to JPL 14.
Calls from Screens and Widgets 15.
Calls from Control Strings 16.
JPL call Command 17.
Inline Calls 17.
Precedence of Called Objects 17.

Variables 18.
Declaring JPL Variables 18.
Declaring Global Variables 19.
Variable Scope and Lifetime 20.
Colon Preprocessing 20.

Constants 23.
References to JAM Objects and Properties 24.

Object Specification 24.
Object Values 27.
Properties 28.
Selection Group Data 31.
Traversal Properties 31.
Global Variables 32.

Data Types, Operators, and Expressions 32.
Data Types 32.
Operators 33.
Expressions 38.

Optimization 39.

Chapter 2 JPL Command Overview 41.
Procedure Structure 41.
Calls 41.
Variable Declaration 41.
Control Flow 42.
Text Display 42.
Public Modules 42.
Data Transfer 42.
Database Drivers 43.

Table of Contents v

Chapter 3 JPL Command Reference 45.

Section II: Built-in Functions 79.

Chapter 4 Built-in Control Functions 81.

Section III: Library Functions 89.

Chapter 5 Library Function Overview 91.
Initialization/Reset 91.
Property Access 92.
Widget Creation/Deletion 92.
Interscreen Messaging 92.
Screen and Viewport Control 93.
Display Terminal I/O 94.
Field/Array Data Access 95.
Group Access 96.
Local Data Block Access 96.
Cursor Control 97.
Message Display 98.
Validation 99.
Mass Storage and Retrieval 99.
Global Data and Changing JAM's Behavior 100.
Menus 100.
Database Initialization 101.
Database Access 101.
Database Binary Variable Access 102.
SQL Generation 102.
Transaction Manager Access 103.
Transaction Manager Event Processing 103.
Transaction Manager Error and Message Handling 104.
Before-Image Access in the Transaction Manager 104.
GUI Access 105.
DDE (Dynamic Data Exchange) 105.
File Access 106.
Library Access 107.

vi JAM 7.0 Language Reference

JPL 107.
Miscellaneous 107.

Chapter 6 JAM Library Functions 109.

Appendix A JAM Properties 519.
Application Properties 520.
Screen Properties 521.

Identity 521.
Geometry 522.
Color 523.
Font 523.
Focus 524.
Help 524.
Display 524.
Transaction 525.

Widget Properties 526.
Identity 526.
Geometry 528.
Positioning 530.
Color 531.
Font 531.
Focus 532.
Help 532.
Input 533.
Validation 534.
Format/Display 534.
Transaction 536.
Database 537.
Graphs 538.

Selection Group 546.
Identity 546.
Geometry 547.
Focus 547.
Validation 548.

Synchronized Scrolling Group 548.
Identity 548.
Geometry 548.

Table of Contents vii

Table View 549.
Identity 549.
Transaction 549.
Database 550.
Traversal 550.

Link Widget 551.
Identity 551.
Transaction 552.
Traversal 552.

Index 553.

ix

About this Guide
This manual is a reference tool for JAM users who already have a general
understanding about JAM concepts and design techniques. This book offers
general and specific information on how to use JAM language resources to code
back-end processing for your application. The sections on JPL assume that you
already have general programming experience; while the library function
descriptions assume specific experience with C programming.

The JAM documentation set assumes you are using a mouse in your development
environment. Refer to Appendix A in the Editors Guide for a listing of keyboard
alternatives and accelerator keys.

Organization of this Guide

This manual is divided into 3 sections:

� A two-part section on JPL, JYACC's own programming language. The first
part discusses programming concepts; the second contains descriptions of each
JPL command.

� Descriptions of the preinstalled, or built-in, control functions that you can call
from the application.

� Descriptions of JAM's library of C functions, which provide precise runtime
control over your application.

Conventions

x JAM 7.0 Language Reference

� An appendix that lists in table format all JAM properties that are accessible in
JPL or through calls to properties API functions. Information includes each
property's JPL mnemonic, valid values, and special requirements.

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

Monospace (fixed-spaced) text is used to indicate:

� Code examples.

� Words you're instructed to type exactly as indicated.

� Filenames, directories, library functions, and utilities.

� Error and status messages.

Uppercase, fixed-space font is used to indicate:

� SQL keywords.

� Mnemonics or constants as they appear in JAM include files.

Italicized helvetica is used to indicate placeholders for information you supply.

Items inside square brackets are optional.

One of the items listed inside curly brackets needs to be selected.

Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

Italicized text is used:

� To indicate defined terms when used for the first time in the guide.

� Occasionally for emphasis.

Keyboard Conventions

JAM logical keys are indicated with uppercase characters.

expression

KEYWORDS

numeric_value

[option_list]

{x | y}

x ...

new terms

XMIT

JAM Documentation

About this Guide xi

Physical keys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

The JAM documentation set includes the following guides and reference material:

Read Me First Ð Consists of three sections:

w What's New in JAM Ð Briefly describes what's new in JAM 7.

w Installation Guide Ð Describes how to install JAM on your specific
platform and environment.

w License Manager Installation Ð Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

Getting Started Ð Contains useful information for orienting you to JAM. Includes
a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guide Ð Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen editor, screen wizard, menu
bar editor, and styles editor. The Editors Guide is also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor.

Application Development Guide Ð Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repository, hook functions, and menu bars,
as well as sections on the SQL executor, SQL generator and the transaction
manager.

Language Reference Ð Describes JPL, JAM's proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti-
cally.

Database Guide Ð Instructions for using JDB, JYACC's prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver.

Configuration Guide Ð Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys

Alt+A

JAM Documentation

xii JAM 7.0 Language Reference

and input/output. Also includes information on GUI resource and initialization
files.

Master Index and Glossary Ð Provides an index into the entire documentation set
and a dictionary of terms used in the documentation set. This is in addition to the
indexes in the individual volumes.

Upgrade Guide Ð Online only. Information for upgrading from JAM 5.

JAM's documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynaTextTM browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
DynaText's read-only browser from the command line or by clicking on the
DynaText icon. For instructions on using DynaText, request Help while you have a
browser window open.

The following information is also provided with your JAM installation:

� Database Driver Notes Ð JAM 7 has database drivers for most popular
relational database engines, as well as JDB, JAM's proprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guide; others are included separately.

� Online help Ð The Editors Guide is provided in online form through the
DynaText browser on GUI platforms. It can be accessed by choosing Help
from the screen editor. For instructions on using DynaText, request Help while
you have a browser window open.

� Online README file.

JYACC provides the following product support services; contact JYACC for more
information.

� Technical Support

� Consulting Services

� Educational Services

Online
Documentation

Collateral
Documentation

Additional Help

SECTION ONE

JPL

Chapter 1 Programming in JPL. 3

Chapter 2 JPL Command Overview. 41

Chapter 3 JPL Command Reference. 45

3

Programming in JPL
JYACC Procedural Language, or JPL, is an interpreted language with a C-like
syntax. Because you can write and edit JPL code within the screen editor, you can
write and execute procedures without interrupting your creative work flow. Or
write JPL in external file modules and call these from hooks provided in the
Properties window of screens and widgets. Use JPL for rapid prototyping, and later
rewrite the procedures in one of the languages that JAM supports, including C. Or
leave the code unchanged; JPL can get most jobs done quickly and efficiently.

JPL Modules and Procedures

JPL modules contain one or more procedures written in JPL. You can create
modules either through the JAM's own JPL editor (described on page 12) or as
external text files. Widget and screen modules are created through the screen editor
and are saved in the screen binaries; JAM automatically reads these at the
appropriate stage of program execution. You can also create external modules that
are stored in files or libraries. For faster access, you can install external modules in
the application's memory-resident list.

Module Structure

A module contains one or more procedures. The first procedure of a module can be
unnamed. All subsequent procedures are named through JPL's proc command. For

11

JPL Modules and Procedures

4 JAM 7.0 Language Reference

example, the following module has two procedures, the first unnamed, the second
named warning :

if actual_cost > forecast_cost
 call warning()

proc warning()
msg emsg ºValue exceeds budget forecastº

Unnamed and named procedures are different in two ways:

� A module's named procedures must be called explicitly, while a module's
unnamed procedure is called automatically at specific events of program
execution. Read ªCalls to JPLº on page 14 to learn how JPL calls named and
unnamed procedures.

� Variables that you declare in the unnamed procedure are visible to all
procedures in the same module, while variables in a named procedure are
visible only to that procedure. You typically declare variables in an unnamed
procedure in order to initialize them and make them accessible to all named
procedures in the same module.

Parameters

The proc command can specify parameters that receive arguments passed by the
procedure's caller. You specify parameters as a comma-delimited argument list
within parentheses. The procedure's caller can pass in constants, global constants,
variables, or colon-expanded variables as arguments. JAM passes arguments by
valueÐthat is, the called procedure gets its own private copies of the values in the
calling procedure's arguments. This means that the called procedure cannot
directly alter a variable in its caller; it can only alter its own copies.

For example, the earlier warning procedure is modified below; it now expects its
caller to supply two arguments that are copied to actual and forecast . The
colon-expanded values of these variables are used to produce a more informative
message:

if actual_cost > forecast_cost
 call warning(actual_cost, forecast_cost)

proc warning (actual, forecast)
vars diff
diff = actual ± forecast

msg emsg ºValue in :actual exceeds budget forecast by $:diffº

JPL Modules and Procedures

51 Programming in JPLChapter

If a procedure is called as a hook function for a widget or screenÐfor example, as
a screen's exit functionÐand omits parentheses, JAM automatically passes
standard arguments to that procedure. These arguments indicate the current status
of the widget or screen. Their number and type varyÐfor example, two arguments
are passed for screens; four for fields; and three for grid widgets. The procedure's
proc statement must contain the appropriate number of parameters in order to
receive these arguments.

For example, you might define the following procedure in a screen's JPL module
in order to handle grid data:

proc gridProc(basefld, occ_no, status)

You can set gridProc in any of several grid properties; when JAM calls this
procedure at runtime, it sets parameters basefld , occ_no , and status with the
three standard arguments associated with grids. So, if a grid's Row Entry Function
property contains the string gridProc , JAM calls the procedure each time the
cursor enters a new row and sets its three parameters to the grid's base field
number, the number of the current occurrence, and an integer bitmask that
describes why the procedure was called.

Note: Precedence is always given to arguments that are specified in the property
string. For example, if a grid widget's Entry Function property contains the string
gridEntry(val) , JAM supplies the contents of val to procedure gridEntry . If
arguments are explicitly omitted through empty parentheses (), JAM does not
supply the standard arguments.

The unnamed procedure of the module for a screen or widget module is always
supplied standard arguments that indicate the current status of the screen or widget.
To receive these arguments, the unnamed procedure must have a parms statement.

For more information about the standard arguments available for screens and
widgets, refer to page 15 . The parms command description shows how to declare
parameters in an unnamed procedure; refer to page 64 for details.

Return Types

An unqualified proc command returns an integer value. You can specify to return
a string or double precision value by qualifying the proc command with the
keywords string or double , respectively. For example, the following sequence
of statements passes data from variables data1 and data2 to procedure
process_input , which is defined to return a double precision value. This return
value is used to determine whether the if statement evaluates to true or false:

Passing
Standard
Arguments to
JPL Procedures

JPL Modules and Procedures

6 JAM 7.0 Language Reference

if process_input(data1, data2) > 0.16667
...

double proc process_input(d1, d2)
vars retval
/*process d1 and d2 values*/
return retval

Procedure Execution
Procedure execution begins with the first statement of the procedure and continues
to the end of the procedure, or until a return statement executes. If an execution
error occurs, JAM aborts execution of the current procedure, posts an error
message, and returns to the procedure's caller. In all cases, a procedure returns to
its caller when execution ends.

JAM interprets each physical line as a separate statement, unless the line ends with
the backslash (\) continuation character. JPL statements can be up to 253
characters in length.

By default, JAM executes JPL procedures sequentially from start to finish. You can
use JPL's if , else , for , while , break and next statements to manipulate the
order of statement execution. JPL has no limit to how many levels deep you can
nest control flow statements.

Conditional and loop statements (if , else , for , while) allow curly braces { } as
blocking characters so you can conditionally execute multiple statements. Each
blocking character must have its own line except to specify a null statementÐ{} .
If you nest multiple blocks, make sure that all block characters are paired correctly.

The following example shows an if statement that contains a block of two
statements:

if cost > 1000
{
 exceptions = exceptions + 1
 msg emsg ºThe cost is very great.º
}

A left and right brace on the same line indicate a null statement. In the following
example, the for statement keeps count while testing a condition. Because no
other statements are required, the for block consists of a null statement:

for i = 1 while str(i, 1) != º º
 { }

JAM procedures can contain include statements that specify an external module. At
runtime, JAM compiles and inserts this module within the calling procedure and
executes it. Include statements have the following syntax:

Control Flow
Statements

null statements

Included
Modules

Module Types

71 Programming in JPLChapter

include module

where module is any JPL file module. The included module can also contain its
own include statements. The number of include statements that you can nest is
set by the constant LIMIT_DEEP_INC , defined in smjpl.h .

JAM looks for module in this order:

1. Memory-resident modules.

2. Library module in an open library.

3. The current directory.

4. File module in a directory specified by sm_initcrt .

5. File module in a directory specified by SMPATH.

Note that when JAM compiles JPL, either through the screen editor or through the
jpl2bin utility, it does not check the included module for errors.

You can enter commented text in JPL in three ways:

� Prefix the commented string with two slash (//) characters. JPL treats all
remaining text on that line as a comment.

� Enclose the commented string with the block specifiers /* and */ . JPL treats
all text within this block as a comment. Use /* */ comment characters to
comment contiguous lines of text.

� Begin the line with a pound (#) character. JPL treats the entire line as a
comment.

Note: The # character must be the first non-blank character of a line in order
to be interpreted as a comment character. If it is embedded within a line, JPL
interprets it as a reference to a widget by number.

Module Types

JAM lets you create several types of modules:

� Widget and screen modules that you create through the screen editor. These
are saved along with their screen binaries.

� External modules whose source code initially resides in text files outside JAM.
You can leave these modules as individual files. Alternatively, you can store

Comments

Module Types

8 JAM 7.0 Language Reference

them in libraries, or convert them to data structures and install them in the
application's memory-resident list.

An application's ability to access the procedures in a JPL module depends on its
type and how it is loaded and called. JAM executes a widget module only during
widget validation. The procedures in this module can call only each other and are
invisible to the rest of the program. Conversely, the application can call all named
procedures in a screen module while the screen is active.

JAM's ability to access external modulesÐfile, library, and memory-residentÐde-
pends on how they are loaded and called. If you load an external module into
memory as a public module, its named procedures are visible to the entire
application and can be called directly. If a module is not public, it can only be
called by its file name; this invokes the module's unnamed procedure. The named
procedures in this module are accessible only through its unnamed procedure.

The following sections describe these module types and how JAM executes them.

Widget Modules

Widget modules are modules that are associated with individual widgets. You
create and modify widget modules through the widget's JPL Validation property.
This property is available for most widget types, including grids and groups. When
you select this property, the JPL Program Text dialog box opens. You use this
dialog box's editing window to enter and modify JPL code. For more information
on using this editing window, refer to page 12.

JAM executes a widget module only when it performs validation. In the case of
data-entry widgets such as text widgets, validation occurs when the user exits via
TAB. For push buttons, radio buttons, check boxes, list boxes, and toggle buttons,
validation occurs when the widget is clicked with the mouse or otherwise
activatedÐfor example, by the NL key. Because a widget module is accessible
only to its widget, use it to perform tasks that are specific only to that widget.

The first procedure of a widget module must be unnamed. A widget module can
include named procedures; however, these can be called only by other procedures
in the same module.

Because JAM saves the module as part of the widget, you can view and edit this
module only through the screen editor. When you copy this widget to another
screen or to the repository, JAM copies the module along with other widget data.

JAM calls a widget module after it executes the widget's validation function, if any
exists. JAM first executes the module's unnamed procedure and passes the
standard arguments associated with widget processing. For widgets such as single
line text fields, four arguments are passed that describe the widget and its current

executing

Module Types

91 Programming in JPLChapter

status: its widget number, contents, occurrence number, and a set of context-sensi-
tive flags. The unnamed procedure must have a parms statement in order to
receive these arguments. For more information about arguments for different
widget types, refer to page 15.

Screen Modules

Screen modules are associated with specific screens. All named procedures in a
screen module are available to the application while the screen remains active. You
create and modify screen modules through the screen's JPL Procedures property.
When you select this property, the JPL Program Text dialog box opens. You use
this dialog box's editing window to enter and modify JPL code. For more
information on using this editing window, refer to page 12.

The first procedure of a screen module can be unnamed; an unnamed procedure is
optional. All subsequent procedures must be named. When you save the module,
the screen editor automatically compiles it. If an error prevents compilation, JAM
issues a message and returns you to the JPL Procedures window. Note that
included external modules are not checked for compile errors.

Because JAM saves the module as part of the screen, you can view and edit this
module only through the screen editor. If you save the screen to another file or as a
repository entry, JAM copies the module along with all other screen data.

When you open a screen, JAM loads all its named procedures into memory. It then
executes the screen module's unnamed procedure, if any. JAM passes the two
standard arguments associated with screen processing to this procedure: the name
of the screen and the K_ENTRY bit. The unnamed procedure must have a parms
statement in order to receive these arguments. For more information about these
arguments, refer to page 15.

While the screen is activeÐthat is, displayed on topÐevery named procedure in its
JPL module can be called. You can use these procedures to perform any task
required by the screen.

Note that JAM executes the unnamed procedure only when the screen first opens.
JAM does not execute a screen module's unnamed procedure on subsequent
exposures of an already open screenÐfor example, when a child or sibling screen
closes. Also note that JAM executes the unnamed procedure only after it executes
the global screen function and this screen's entry function, if any.

External Modules

External modules are modules saved to disk, either as files or in libraries. You can
also install an external module in an application's memory-resident list. Unlike

executing

Module Types

10 JAM 7.0 Language Reference

widget and screen modules, external modules are available to the entire application
at any time. JAM finds external modules in memory, in open libraries, and on disk.
For details on the search order for external modules, refer to page 17.

External modules are accessible to the application in two ways:

� Call the module by name. JAM compiles the module, if necessary, then
executes its first, unnamed procedure. If an external module is not loaded
through the public command, you must call it by name. An unloaded module
has only one entry pointÐits unnamed procedure.

� Call the named procedures in a public moduleÐthat is, a module loaded
through JPL's public command. When JAM loads a public module, it
compiles the module, if necessary. It then loads the module procedures into
memory and executes its unnamed procedure, if any. The application can call
any named procedure in a public module until it is removed from memory.

You can create external modules with any text editor. You can also write the
contents of widget and screen JPL modules to disk. External module names should
conform to operating system conventions. JAM does not append an extension to
ASCII JPL files.

JAM compiles an external module at runtime unless it is precompiled, either by the
jpl2bin utility or by being loaded as public. When JAM compiles an external
module at runtime, it issues error messages for all syntax errors that it encounters.
If compilation fails, JAM issues an error message and returns to the module's
caller.

The following sections describe each type of external module.

File modules can be stored in ASCII or binary format. Modules that are stored in
ASCII files are easy to modify and are available to the entire application. However,
because JAM must recompile the module each time it is called, an ASCII file
module also incurs more processing time than screen or widget modules. To
improve performance, precompile the module with jpl2bin . Because file
modules are stored outside the JAM executable, you should protect them from
deletion or accidental editing.

Using libraries reduces I/O time and the number of files to distribute. You can store
a module in an application library in these steps:

1. Compile the module with jpl2bin . For a description of of this utility, refer to
page 11.

2. Add the module to the library with the formlib utility.

You can call a library module only if its library is already open through
sm_l_open . JAM loads the module into memory each time you call it.

compilation and
conversion

File Modules

Library Modules

Module Types

111 Programming in JPLChapter

You can add a JPL module to an application's memory-resident list. Making a JPL
module memory-resident reduces I/O time and makes it a part of the JAM
executable. The module is held in memory during the life of the application.

You add a module to the memory-resident list in these steps:

1. Compile the module with jpl2bin .

2. Convert the binary file to source with the appropriate utilityÐfor example, for
programs written in C, convert the binary to a character array with bin2c .

3. Install the array with the library function sm_formlist .

Note that you must recompile your application after creating or editing a
memory-resident list. For more information on memory-resident lists, refer to page
522 in the Application Development Guide.

Module Compilation

If you create screen or widget modules in the screen editor, JAM compiles each
module when you save it to the screen binary. If the compiler finds any syntax
errors, it issues a warning and returns you to the editor.

If you use external modules, you can leave them as ASCII text. When JAM
executes any procedure in an external module, it first checks whether the module is
compiled. If not, the compiler performs syntax checking on command words,
replaces command words with tokens, and partitions the module into procedures.
During the syntax check, JAM displays error messages for invalid command
words, or missing arguments. If compilation is successful, JAM loads the module
into memory.

You can precompile the source module into binary format with the jpl2bin
utility. You can then store the precompiled module in a library, or convert it to
source with the appropriate utilityÐfor example, C data structures with bin2c .

jpl2bin is a command-line utility that lets you compile external modules before
runtime. This saves the overhead incurred by runtime compilation. If the
application platform has limited memory, compile all file modules with jpl2bin ,
then stub out the runtime JPL compiler.

Note that JAM always performs colon preprocessing at runtime; therefore, a
module is fully compiled only when it executes.

jpl2bin saves the file module to a file of the same name with a *.bin extension,
unless you specify a different extension. You invoke this utility from the command
line as follows:

Memory-Resi-
dent Modules

Runtime
Compilation of
Modules

Precompilation
of Modules

JPL Program Text Window

12 JAM 7.0 Language Reference

jpl2bin [±fpv] [±e extension] filename ...

±f
Permit the output file to overwrite an existing file.

±p
Put the binary file in the same directory as filename.

±v
List the name of each file as it is processed.

±e extension

Append extension to the binary file name instead of *bin . Do not insert any spaces
between the ±e switch and the extension name. To omit an extension, supply a
value of ± (dash) for extension. For example, ±e±.

filename
The name of the JPL file module to compile.

JPL Program Text Window

Widget and screen modules are accessed through their JPL Validation and JPL
Procedures properties, respectively. Selection of either property invokes the JPL
Program Text dialog box, where you can examine and edit the JPL code currently
stored with that property:

JPL Program Text Window

131 Programming in JPLChapter

Figure 1. JPL code entered into the JPL Program Text dialog box

Using Your Own Editor
You can type your JPL directly into the dialog box, or you can use your local editor
to enter and edit JPL codeÐfor example, Notepad in Windows; vi in UNIX. The
local editor is set by the configuration variable SMEDITOR. To use your local editor,
choose the Editor button. When you exit the editor, you are returned to the JPL
Program Text dialog box, which contains your latest edits.

Note: If you exceed the maximum line length of 253 characters, JAM issues an
error message when you try to return to the dialog box and returns you to your
editor to make the necessary corrections.

Reading and Writing Files
You can also write and read code to and from disk files by choosing the Read file
and Save file buttons. These invoke the Read JPL file and Save JPL file dialog
boxes, respectively. When you read a module, JAM copies its contents to the
cursor's current position. Any previous text at or below the cursor is overwritten.
When the read operation is complete, the cursor returns to its original position.

The dialog box accepts line lengths of up to 253 characters. If you try to read from
a file that contains longer lines, JAM copies all text preceding the erroneous line
into the editing window, then issues an error message.

Calls to JPL

14 JAM 7.0 Language Reference

Compiling and Saving

When you choose OK, JAM compiles and saves the module. If an error prevents
compilation, the editor issues a message and returns you to the dialog box. Note
that included external modules are not checked for compilation errors.

Calls to JPL

An application can call JPL modules and their named procedures from various
screen and widget hooks, and from control strings. JAM provides several ways of
calling JPL modules and procedures:

� Enter the names of the modules or procedures to execute in the Properties
window of a screen or widget. You can specify JPL to execute on screen and
widget entry and exit, and on widget validation.

� Call JPL from a control string.

� Explicitly call a module or named procedure through the call command.

� Issue an inline call, where the name of the procedure or module name to call is
embedded inside a JPL expression and is evaluated to its return value.

You can also call JPL from C or another language supported by JAM through the
library function sm_jplcall .

A screen module's named procedures can be called from outside the module while
the screen is active. Named procedures in external modules are accessible if the
module is public; otherwise, the procedures can be called only by the module's
unnamed procedure. Named procedures in a widget module can be called only by
the module's unnamed procedure.

All calls to JPL can supply comma-delimited arguments to their corresponding
parameters. Enclose the arguments in parentheses. If the procedure takes no
arguments, use the void argument specifier () . You can pass the following as
arguments:

� Variables, including those declared by the vars command, widget names, and
LDB entries.

� String and numeric constants.

� Global constants.

� Colon-expanded variables.

arguments

Calls to JPL

151 Programming in JPLChapter

As noted earlier, JAM passes arguments by value, so changes to the receiving
parameter's value leave its corresponding caller's argument unchanged. Note that
if you call an installed C function, you must prepare it for installation with the
correct macro (SM_INTFNC, SM_STRFNC, SM_DBLFNC, or SM_ZROFNC) in order to
pass arguments by value to that function. Refer to page 119 in the Application
Development Guide for more information about installing functions.

A procedure always returns to its caller with a return valueÐeither integer, string,
or double, according to the procedure definition. If the procedure lacks an explicit
return statement, or the return statement omits a return argument, the
procedure returns to its caller with a value of 0 or an empty string. If an execution
error causes the procedure to return prematurely, it returns with ±1.

Calls from Screens and W idgets
You can specify JPL modules and procedures in various properties of screens and
widgetsÐfor example, in a screen's Exit Function property. If no arguments are
supplied, JAM automatically passes arguments that describe the state of the calling
screen or widget. The called procedure must define the parameters needed to
receive these arguments. Table 1 describes the properties that can specify calls to a
procedure and the default arguments passed:

Table 1. Default arguments passed to JPL procedure

Caller Property Arguments

Screen Entry Function
Exit Function

screen-name, flag

Field widget Entry Function
Exit Function
Validation Function

widget-number, widget-contents,
occurrence-number, flags

Grid widget Entry Function
Exit Function
Row Entry Function
Row Exit Function
Validation Function

base-field-number, occurrence-number,
flags

Group Entry Function
Exit Function

group-name, flag

For example, if a widget's Exit Function property specifies the procedure fld_xt
and no arguments are specified, JAM automatically passes in four arguments to

returns

Calls to JPL

16 JAM 7.0 Language Reference

this procedure; the second of these arguments is the widget's current value.
fld_xt gets this value in parameter val and tests it as follows:

proc fld_xt (num, val, occ, flg)
if val = 'MR'
 sex = 'M'
else
 sex = 'F'
return

Note that the flag or flags that JAM passes are bit values, which you manipulate
through JPL's bitwise operators & (AND),| (OR), and ~ (one's complement). You
can test these flags for conditional processing when you use the same procedure to
handle different execution stages of a JAM objectÐfor example, entry and exit of
a widget. For information on flags that are set for a screen, refer to page 122 in the
Application Development Guide; for a field widget, page 126; for a grid widget,
page 129; and for a group, page 132.

If a screen is memory-resident, JAM passes a null string to the called procedure
instead of the screen's name.

Calls from Control Strings

You can use control strings to call JPL procedures on specific inputÐfor example,
keyboard input or menu choices. You issue calls from a control string as follows:

^ [(target-string [; target-string])] jpl-name [(arg-spec)]

where jpl-name can be the name of a procedure or module, and arg-spec is one or
more comma- or space-delimited arguments to pass to parameters in jpl-name. The
control string can optionally test the return value against one or more semicolon-
delimited target strings. Each target string has this syntax:

[test-value =] control-string

JAM compares jpl-name's return value to each test-value, reading from left to
right. If it finds a match, it executes the specified control string. If you omit a test
value, JAM executes the control string unconditionally. The control string can
itself contain a JPL call with its own target strings; you can thereby nest multiple
control strings with recursive calls.

For example, given this control string for a push button:

^(±1=^(^jm_exit)cleanup; 1=&welcome_scr)process

JAM calls the JPL module or procedure process when the user selects this push
button; it then evaluates the return value from process to determine its next

memory-resident
screens

Calls to JPL

171 Programming in JPLChapter

action: either to call cleanup , or to invoke the welcome_scr screen. Note that on
return from cleanup , JAM unconditionally calls the built-in function jm_exit .

Refer to page 109 in the Application Development Guide for more detailed
information about control string syntax.

JPL call Command

You call a JPL procedure or module through the call command from other
procedures or modules. The call command uses this syntax:

call executable ([arg-spec])

where executable can be the name of a JPL procedure or external module, or
installed C function, and arg-spec is one or more comma-delimited arguments
optionally to pass to parameters in executable. The entire argument list is enclosed
in parentheses. For more information about installing C functions, refer to page
119 in the Application Development Guide.

Inline Calls

Because JPL evaluates a procedure call to its return value, you can embed a
procedure call within any expression. The following statement embeds a call to the
credit_eval procedure:

if credit_eval() == 1
 msg emsg ºCreditworthy applicantº
else if credit_eval() == 0
 msg emsg ºReject applicationº

You can also specify a procedure as an argument to another procedure. In the
following statement, JPL first calls foobar , then passes its return value into foo
as that procedure's second argument:

ret = foo(a, foobar(b), c)

Precedence of Called Objects

When JAM processes a call, it cannot know whether the called object is a JPL
module, a JPL procedure, or an installed function. JAM attempts to execute a JPL
call by searching for functions and JPL modules or procedures in this order:

1. An installed or built-in function.

Variables

18 JAM 7.0 Language Reference

2. If the call is issued from a JPL module, a named procedure in that module.

3. A named procedure in the current screen's module.

4. A named procedure in a public module. If the procedure name exists in more
than one public module, JAM uses the procedure in the most recently loaded
module.

5. A memory-resident module.

6. A library module in an open library.

7. A file module in the current directory.

8. A file module in a directory specified by the library function sm_initcrt .

9. A file module in a directory specified by SMPATH.

Variables

JPL recognizes three kinds of variables:

� JPL module variables declared by the vars , proc , or parms commands.

� Global JPL variables declared by the global command.

� Screen variablesÐwidgets, groups, and LDB entries.

This chapter shows how to declare and reference variables in JPL.

Declaring JPL Variables

Earlier sections in this chapter showed how JPL declares parameter variables
through the proc and parms commands. You can also declare a JPL variable with
the vars command. JPL variables are not typed; you can assign a variable any
string or numeric value. All values are stored as strings.

The vars command declares one or more JPL variables:

vars var±spec [, var±spec]

var±spec specifies the variable's name and properties as follows:

var-name [[num-occurs]] [(size)] [= init±value]

Variables

191 Programming in JPLChapter

The following sections describe required and optional elements in a variable
declaration.

var±name
The name of the variable, where var±name is a string that contains up to 31
characters. JPL variable names can use any combination of letters, digits, or
underscores, where the first character is not a digit. JAM also allows usage of two
special characters, the dollar sign ($) and period (.).

[num-occurs]
Optionally declares var±name as an array of num-occurs occurrences. The default
number of occurrences is 1. For example the following statement declares
dependents as an array of ten occurrences:

vars dependents[10]

(size)
Optionally specifies the number of bytes allocated for this variable; JAM allocates
an extra byte for the terminating null character. The default size is 255 bytes. For
example, the following statement declares the variable zip with a size of 10 bytes:

vars zip (10)

= init±value
Optionally initializes the variable to init-value, where init-value can be any string or
numeric value less than or equal to the variable's size. If no value is assigned, JAM
initializes the variable to null string (ºº).

If the variable is declared as an array, you can initialize its occurrences. For
example:

vars ratings[5] = {ºGº, ºPGº, ºPG±13º, ºRº, ºNC±17º}

Occurrence values can be space-or comma-delimited, and can be string or numeric
constants, or variables that are in scope, including global variables and widget
names.

Declaring Global V ariables

You can declare global variables that are recognized throughout the application
with the following syntax:

global var±spec [, var±spec]

Variables

20 JAM 7.0 Language Reference

where var±spec specifies the variable's name and properties as follows:

var-name [[num-occurs]] [(size)] [= init±value]

Like the vars command, global can declare multiple comma-delimited
variables; each declaration can optionally declare the global as an array, specify its
size (1 to 255 bytes), and assign its initial value.

To reinitialize or clear a global variable, declare it again.

Variable Scope and Lifetime

JPL's ability to reference a variable depends on the variable's scope and lifetime.
LDB entries, widgets, and groups can be referenced by any module. LDB entries
are available as long as their LDB remains loaded in memory. Widgets and groups
are available as long as their screen is in memory. Global variables are available
for the duration of the application.

Variables declared in an unnamed procedure are accessible to all procedures in the
module; those declared in a named procedure are known only to that procedure.

Variables declared inside a procedure remain in memory until the procedure
returns, while variables declared in the unnamed procedure remain in memory until
the module returns. Two exceptions apply: variables declared in a screen module's
unnamed procedure remain in memory until the screen exits; variables in a public
module's unnamed procedure remain in memory until the module itself is removed
from memory.

Colon Preprocessing

JPL's colon preprocessor expands any colon-prefixed variable to its literal value.
This lets you reference variables in any JPL statement whose syntax otherwise
excludes variablesÐfor example, you can embed variables in a string. You can also
supply JPL variables as arguments for several JPL commands that take only literal
values as arguments: dbms, sql , and public .

The preprocessor expands colon-prefixed variables to their literal values before
JPL executes the statement. For example, you can reference the variable acctno in
a msg command, even though the command takes only a string value. For example:

msg emsg ºI cannot find account number :acctno.º

The colon preprocessor expands :acctno to its assigned value before execution.
Thus, if acctno has a value of 91956, JAM executes the statement by displaying
this message:

module variables

Variables

211 Programming in JPLChapter

I cannot find account number 91956.

Conversely, the following statement:

msg emsg ºI cannot find account number acctno.º

yields this message:

I cannot find account number acctno.

Note: The colon preprocessor always expands a variable to a string value. You
can use this in order to force treatment of numeric values as strings.

A colon variable begins with a colon and ends with any non-expandable character,
such as a blank or newline, as shown in the following syntax:

:var±name

JAM has two variations of colon variable syntax for applications that use its
database interface, :+ and := . For more information on these, refer to page 239 in
the Application Development Guide.

To prevent expansion of variables that contain colons, prefix the colon with
another colon (::) or backslash (\:), or follow it with a space. In the first two
cases, the colon preprocessor discards the first colon or the backslash. In the third
case, the colon and following space are preserved.

After JAM compiles and loads a JPL module, the colon preprocessor scans each
statement from right to left for colons. When it finds one, it starts expansion:

1. Checks for a left parenthesis immediately after the colon, then begins to
accumulate characters from left to right.

2. If a left parenthesis exists, the preprocessor accumulates characters until it
encounters a right parenthesis. Otherwise, it continues until it encounters a
character that cannot be expanded, such as space or a quote character.

3. Tries to identify this string as a variable according to the precedence rules
described earlier: refer to page 17.

4. Expands the variable to its current value, then returns control to JPL for
statement execution.

Parentheses explicitly delimit the scope of expansion. For example:

vars ref x4
vars alpha[3] = {ºbitsº, ºcenturiº, ºraysº}

ref = ºalphaº
x4 = :(ref)[3] /*Now x4 = rays*/

Syntax

syntax for database
interface

Expansion

Controlling
Expansion with
Parentheses

Variables

22 JAM 7.0 Language Reference

The colon preprocessor expands :(ref) to alpha . JPL then assigns the value of
alpha[3] Ð rays Ðto the variable x4 .

If a substring specifier immediately follows a variable name, the colon preproces-
sor gets the specified characters from the expanded value. If you enclose the
variable name with parentheses, the colon preprocessor ignores the specifier, and
JPL uses the specifier when it executes the statement.

For example, given these variables and assignments:

vars xyz = ºBelgiumº
vars xy = ºNew Zealandº
vars abc = ºxyzº
vars m

the following statement assigns the value New Zealand to variable m:

m = :abc(1,2)

The colon preprocessor expands :abc(1,2) to the first two characters of the
expanded valueÐthat is, it expands :abc to xyz , then extracts xy from that value.
After the expansion, JPL assigns to m the value of xy , which is New Zealand .

By contrast, examine the following statement, where the expanded variable is
enclosed by parentheses:

m = :(abc)(1,2)

This time, the colon preprocessor expands :abc to xyz . After the expansion, JPL
executes the substring specifier on the value of xyz Ð Belgium Ðand assigns its
first two characters Be to m.

For more information about substring specifiers, refer to page 36.

Colon preprocessing recognizes the subscript, or index, of an array reference as
part of the variable and expands it accordingly. If an array reference omits the
array's occurrence number, the colon preprocessor concatenates all the non-blank
array occurrences and inserts a space between each pair of occurrence values.

The following examples show how JAM expands array references, given these
variable declarations and assignments:

vars xyz[3] = {ºalphaº, ºbetaº, ºgammaº}
vars alpha[3] = {ºbitsº, ºcenturiº, ºraysº}
vars v = ºalphaº
vars w = ºxyzº
vars x1 x2 x3 x4 x5
x1 = xyz[3] /*x1 = gamma*/

Substring
Expansion

Array Expansion

Constants

231 Programming in JPLChapter

1. The colon preprocessor expands :xyz[1] to alpha . Thus, :xyz[1][3]
becomes alpha[3] . JPL changes the value of x2 to rays :

x2 = :xyz[1][3] /*x2 = alpha[3] = rays */

2. The colon preprocessor expands v to alpha . x3 then equals the third
occurrence of alpha , which is rays . The parentheses enclosing v prevent the
colon preprocessor from trying to expand the third occurrence of v :

x3 = :(v)[3] /*x3 = alpha [3] = rays */

3. The colon preprocessor tries to replace :v[3] with the third occurrence of v.
Because v has only one occurrence, JAM displays an error message:

x5 = :v[3] /*error occurs because v[3] does not exist*/

4. The colon preprocessor concatenates all non-blank occurrences of xyz ,
separating the occurrences with single blank spaces. :xyz must be enclosed in
quotes; otherwise, JAM displays an error message because beta and gamma
are not variables:

x4 = º:xyzº
/* x4 = º:xyz[1] :xyz[2] :xyz[3]º = ºalpha beta gammaº*/

By default, the colon preprocessor evaluates colon-expanded text only once, even
if the expanded text itself contains another colon reference. For example, the
following code yields display of the message Thank Goodness, it's :day :

vars day = ºFridayº
vars period = º\:dayº
msg emsg ºThank goodness it's :periodº

To display the message Thank goodness it's Friday , append an asterisk (*)
to the colon:

msg emsg ºThank goodness it's :*periodº

When the colon preprocessor finds a reexpansion operator, it repeats expansion
from the rightmost character of the expanded text. You can nest reexpansion
operators to reexpand the same text more than once.

Constants

JPL has the following constant types:

� Numeric: an optionally signed sequence of digits with an embedded decimal
point. If the string has a leading a 0x or 0X, JPL interprets it as a hexadecimal

Reexpansion

References to JAM Objects and Properties

24 JAM 7.0 Language Reference

`value and processes it accordingly. Only hexadecimal and decimal formats
are recognized. Because JPL performs data type conversions when necessary,
you can represent a numeric constant without decimals.

� Date: a literal date enclosed in parentheses. Date constants must use the date
format specified in the message file entry SM_CALC_DATE. The default in the
message file is %m/%d/%4yÐthat is, MON/DATE/YR4.

� String: Zero or more characters enclosed by single or double quotation
characters.

String constants are widely used in JPL, especially in msg and invocation
statements. At runtime, JPL strips off the quote characters. You can use single or
double quote symbols; however, the same symbol must open and close the string
constant:

º55 Baker St.º
'(212) 555±1212'

A quoted constant with no charactersÐºº or '' Ðis a null string.

To reference variable values in a string constant, use the colon preprocessor:

ºThe amount is :totalº

To use a special character in a quoted constantÐcolon, quote character, or
backslashÐprefix the character with a backslash.

References to JAM Objects and Properties

JAM objects and their properties can be referenced through JPL. For example, this
if statement conditionally unhides a widget at runtime by changing its Hidden
property to No:

if (login == ºsuperº)
 emp_salary ±>hidden = PV_NO

The basic JPL syntax for referencing a JAM object and, optionally, any of its
properties is as follows:

object-spec[±> property-spec]

The following sections describe syntactical elements and options.

Object Specification
You specify a JAM object either by its name or with object modifiers as follows:

quoted string constants

References to JAM Objects and Properties

251 Programming in JPLChapter

object-name
@object-modifier(object-identifier)

For example, you can refer to the widget last_name as follows:

last_name
@widget(ºlast_nameº)

Object modifiers make explicit the type of object required; JAM provides an @
modifier for each type of JAM object (except JPL variables): @widget for widgets,
@screen for screens, and so on. Use these modifiers to avoid name conflictsÐfor
example, between a screen that is being used simultaneously for data input and as
an LDB. They are also useful for referencing objects whose names are otherwise
considered illegalÐfor example, a screen whose name begins with a number. Thus,
you can reference a screen with the name 1001.jam as follows:

@screen(º1001.jamº)

Each object modifier takes either a string or integer argument; the argument can be
a constant or variable, or an expression that evaluates to a string or integer. Table 2
lists the available modifiers and valid arguments for each.

Table 2. Object type modifiers in JPL

Modifier Argument Examples

@app Always @jam. The string identifier
@app(º@jamº always refers to the current pro-
gram and allows access to application-wide
properties. You can omit the @app modifier and
use @jam directly to reference the application.

gui = @app(º@jamº)±>in_gui
ms_fld = @jam±>mouse_field

@id An integer handle that uniquely identifies an ap-
plication object. This integer can be obtained
from an object's id property or by calling
sm_prop_id .

Because each object's id property is unique, you
can use @id to reference objects that have the
same nameÐfor example, multiple instances of
the same screen, or widgets on different screens
that have the same name.

sendH=@screen_num(0)!msg±>id
recvH=@screen_num(±1)!msg±>id
send DATA @id(sendH)
receive DATA @id(recvH)

@screen The name of a JAM screen that is on the window
stack. To specify the active window, supply
@current as a string.

@screen(ºcustlist.jamº)
@screen(º@currentº)

Object Modifiers

References to JAM Objects and Properties

26 JAM 7.0 Language Reference

Modifier ExamplesArgument

@screen_num The number of a JAM screen that is on the win-
dow stack, where 0 is the active window, ±1 is
the window below it, and so on.

Positive numbers number from the bottom of the
window stack: 1 is the base window, 2 refer to
the window above it, and so on.

@screen_num(0)
@screen_num(sm_wcount())

@ldb The name of an LDB screen. @ldb(ºsales_data.jamº)

@widget The name of a widget or group on a screen that is
on the window stack or in an active LDB. To
specify the current widget, supply @current as
a string.

@widget(ºcityº)
@widget(º@currentº)

@field_num The field number of a widget on a screen that is
on the window stack or in an active LDB. JAM
consecutively numbers all widgets except static
labels from top to bottom and from left to right.

@field_num(1)
@field_num(numflds ± n)

If a widget or JPL variable is an array, you can reference occurrences and elements
within that array. Occurrences are specified with the following syntax:

object-name[n]
@object-modifier(object-identifier)[n]

Array elements are specified with the following syntax:

object-name[[n]]
@object-modifier(object-identifier)[[n]]

The subscripts [n] and [[n]] indicate the occurrence and element to reference,
respectively, where n evaluates to an integer value greater than 0. For example, if
customers is a list box, @widget(ºcustomerº)[3] refers to its third
occurrence. @widget(ºcustomerº)[[1]] refers to the widget's first element.

If a named object's type is not made explicit, JAM searches for that object among
the following JAM types, in this order:

1. Local variables already declared in the current JPL procedure

2. Variables that are global to the current JPL module

3. Widgets or groups on the current screen

4. Widgets in an active LDB (local data block)

Array Subscripts

Precedence of
Object Types

References to JAM Objects and Properties

271 Programming in JPLChapter

5. Global variables

6. Screens in the window stack, starting with the active screen

7. Active LDBs

You can join multiple object strings in a compound object string with the !
character. Compound object strings have this syntax:

object-string ! object-string [! object-string]...

For example, the following object string specifies the customer widget on the
active window:

@screen(º@currentº)!@widget(ºcustomerº)

Compound object strings let you make the context of a JAM object as specific as
you like and avoid possible ambiguity among different objects that share the same
name. For example, if two screens on the window stackÐcustqry.jam and
custedit.jam Ðboth have a cust_id widget, you can uniquely identify each
one as follows:

custqry.jam!cust_id
custedit.jam!cust_id

You can achieve even greater specificity within a compound object string by
including object modifiers. For example, all of the following object strings are
variants of custqry.jam!cust_id :

custqry.jam!@widget(ºcust_idº)
@screen(ºcustqry.jamº)!cust_id
@screen(ºcustqry.jamº)!@widget(ºcust_idº)

Note: You can reference objects through their object IDs with the @id modifier;
these unique handles provide another context-independent way to differentiate
objects that share the same name.

Object Values

An object's value is implicit in all references to it. In practice, this applies only to
widgets that can have values. For example, you can get and set the contents of a
text widget or a push button's label; widgets such as lines and boxes have no
equivalent values that you can access.

In the case of arrays, subscripted references return the value of the specified
occurrence or element; non-subscripted references return the first element. Thus,
these two statements put the same data into variable cust :

Compound
Object Strings

References to JAM Objects and Properties

28 JAM 7.0 Language Reference

cust = @widget(ºcustomerº)[[1]]
cust = @widget(ºcustomerº)

You can get portions of an object's value by appending substring specifiers to the
object's reference. For example, this statement gets the first eight characters from
customer 's second occurrence:

cust = @widget(ºcustomerº)[2](1,8)

For more information about substrings, refer to page 36.

Properties

All JAM objects have properties that can be accessed with this syntax:

object-spec ±>property-spec

The string that you supply for property-spec contains at a minimum the JPL
mnemonic for the desired property. For example, you can reference the current
screen's title as follows:

@screen(º@currentº)±>title

If a property can be set to multiple values, property-spec can specify one of them;
for more information, refer to page 29. You can also specify a portion of a string
property's setting; this is described on page 29.

If property-name is accessible through the screen editor, the value is usually a
variant of the name used in the properties window, where all characters are in
lower case, and non-alpha characters such as spaces, dashes, and slashes are
replaced with underscores. For example, the Menu Name property is referenced as
menu_name.

A number of exceptions exist, usually for properties that share the same label in the
properties window. For example, if you set a widget's FG Color Type and BG Col-
or Type properties to Basic, both properties get Color Name as a subproperty. To
differentiate these two properties, their runtime names are fg_color_name and
bg_color_name , respectively. For a full list of property names, refer to page 517.

Note: Several properties that are visible in the properties window are not
accessible at runtimeÐfor example, the Inherit From and Columns properties.

JAM also provides access to a number of properties that are not available in the
screen editor, either because they are accessible only at runtime or because they are
application-wide (@jam) properties. For example, selected is a runtime property
property that returns true or false for a specified occurrence in a list box or

Editor Properties

Runtime and
Application
Properties

References to JAM Objects and Properties

291 Programming in JPLChapter

selection group; in_gui is an application property that returns true if the
application is running on a GUI platform and false if in character mode.

Some properties have an array of valuesÐfor example, the Drop±Down Data
property of combo boxes and option menus. To reference multi-item properties,
specify the offset into that property's values as follows:

object-spec ±>property±name [prop-item]

For example, the following code changes the selected item in an option menu that
has its Drop-Down Source property set to constant data:

#replace current item with contents of ºsubstituteº
vars count
for count = 1 \
 while flavors±>drop_down_data[count] != flavors
{}
flavors±>drop_down_data[count] = substitute
flavors = flavors±>drop_down_data[count]

To access control string assignments for a screen or for the application, use the
desired logical key as the control_string property's offset. For example, the
following statement gets the screen-level control string assigned to the PF5 key:

ctrlstr = @screen(º@currentº)±>control_string[PF5]

You can get and set a portion of a string property's value with the following syntax:

object-spec ±>property±name(offset, length)
object-spec ±>property±name [prop-item](offset, length)

For example, the following code conditionally assigns the first eight characters of a
widget's name to its column_title property:

if @field_num(i)±>column_title = ºº
 @field_num(i)±>column_title = @field_num(i)±>name(1,8)

Properties can be grouped into three general categories according to the types of
values that they take:

Literal Pr operties
Literal properties take any valueÐstring, integer, or numeric, depending on the
property. For example:

@widget(ºcustomersº)±>first_occurrence = 1
@screen(º@currentº)±>control_string[XMIT] = º^verify_acctº

Some properties have implied or explicit rangesÐfor example, you cannot set an
array's first_occurrence property to a value greater than the number of
occurrences in the array.

Multi-item
Properties

control string
assignments

Property
Substrings

Property Value
Types

References to JAM Objects and Properties

30 JAM 7.0 Language Reference

Logical Properties
Logical properties take a value of PV_YES (1) or PV_NO (0). For example:

@widget(ºsalaryº)±>focus_protection = PV_YES

Enumerated Properties
Enumerated properties can only be set to one of several predefined integer
constants. For example, a widget's hidden property can be set to one of three
constants: PV_YES, PV_NO, or PV_ALWAYS.

For a full listing of JPL property names and valid values, refer to page 517.

All widgets that contain data have a property that let you set its initial valueÐIni-
tial Text for text widgets, Label for push buttons and check boxes, and so on. For
most widget types, these properties cannot be referenced explicitly. To access a
widget's data, refer to the widget itself. For example, the following statements
change the labels of check boxes day1 through day7 to the values found in
successive elements of array lang :

for count = 1 while count <= 7
 @widget(ºdayº##count) = @widget(lang)[count]

Table 3 shows which widget types are referenced directly in order to change their
data, and the screen editor properties that set their initial data:

Table 3. Screen editor properties that set a widget's initial data, accessible at runtime as
implicit properties.

Property name Widget types

Initial Text
(Format/Display)

single line and multiline text, list box, combo box, option
menu

Initial Value
(Input)

scale

Label
(Identity)

push button, check box, radio button, toggle button

Note: Graph widget data is set by its Value Source property; this multi-item
property must be explicitly referencedÐfor example,
@widget(ºsalesº)±>y_value_source[1] .

Properties of an array's occurrences and elements can be accessed by subscripting
the array referenceÐa single pair of square brackets refer to occurrences [] ,
double square brackets to elements [[]] . For example, this statement toggles the
reverse property of an array's first element:

Implicit
Properties

Properties of
Elements and
Occurrences

References to JAM Objects and Properties

311 Programming in JPLChapter

salaries[[1]]±>reverse = !salaries[[1]]±>reverse

Selection Group Data
In the screen editor, you can group together multiple radio buttons, check boxes or
toggle buttons into a selection group. JPL identifies a selection group name as an
array whose number of occurrences is equal to the number of selections from the
group. Each array occurrence contains the number of the selected itemÐthe first
element contains the number of the first-selected item, the second element contains
the number of the next selection, and so on.

Groups can be set up to accept one, multiple, or no selections. If the group allows
only one selection, its corresponding JPL variable is an array with one occurrence
of data, where group-name [1] contains the number of the selected item. Because
single-selection groups have only one occurrence, JPL lets you omit the subscript.
Thus, group-name[1] and group-name are equivalent.

For example, days is a selection group that allows multiple selections. It contains
seven check box widgets with these labels:

[] MON [] TUE [] WED [] THU [] FRI [] SAT [] SUN

JAM numbers widgets in this group in order of their placement on the screen: MON
has a value of 1, TUE a value of 2, and so on. If the user selects THU and SUN,
days[1] has a value of 4, while days[2] has a value of 7.

You can programmatically evaluate and manipulate the contents of the group array.
For example, the following code returns the number of items selected from days ,
then passes each selection to the routine days_off :

occurs = days±> num_occurrences
for count = 1 while count <= occurs
{
 call days_off(days[count])
}

You can change group selections by setting group array occurrences to the desired
values. The following code selects members 6 and 7ÐSAT and SUNÐin group
days :

days[1] = 6
days[2] = 7

Traversal Properties
When you use the transaction manager, it builds a tree of all table views that are
linked to the root table view. It traverses this tree to issue transaction manager

Data Types, Operators, and Expressions

32 JAM 7.0 Language Reference

commands to each table view or server view. You can query traversal properties to
get information about the table views, server views, and links that are a part of the
current transaction.

The following JPL queries the sv property to ascertain the server view for the
current field on field entry. It then executes the VIEW command to specify that
server view:

proc get_sv_query
if K_ENTRY
{
 vars value1
 value1 = name±>sv
 call sm_tm_command(ºVIEW :value1º)
}
return 0

If the specified property references an object that does not participate in the current
transaction, JAM returns an error. For more information on traversal properties,
refer to page 380 in the Application Development Guide.

Global Variables

You can reference any JPL variable declared by the global command at any time
during the application. JPL also recognizes global variables defined in JAM header
filesÐfor example, logical key names such as XMIT and EXIT, and bit mask
settings such as K_EXPOSE and K_ENTRY. You can reference these variables in any
JPL expression and pass them as arguments to another procedure or function.

Because JAM uses these variables internally, avoid changing their values; doing so
can yield unpredictable and possibly harmful results.

Data Types, Operators, and Expressions

Data types describe how JPL uses the values of variables and constants. Operators
specify what to do or how to manipulate variables and constants. Expressions
combine variables and constants to produce new values.

Data Types

JPL determines the data type of a variable or expression according to its value or
usage. All variable values are stored as character strings; JPL converts those values
when required.

Data Types, Operators, and Expressions

331 Programming in JPLChapter

 JPL recognizes four data types:

� String: zero or more characters. Because all variable values are stored as
character strings, no conversion is required. Maximum string lengths are
system-dependent.

� Integer: a sequence of digits with no decimal point; the value can be signed or
unsigned. JPL converts values of this type to integers. If a numeric value
contains a decimal point followed by zeros, JPL treats it is an integer.

� Float: a sequence of digits, either signed or unsigned, that contains a decimal
point. JPL converts values of this type to floating point.

� Logical: a string, integer, or numeric that evaluates to a logical valueÐthat is,
either true or false. If a string, it evaluates to true if it starts with the value of
message entry SM_YESÐfor example, y or Y. The string evaluates to false if it
starts with any other character. A numeric or integer evaluates to a logical
false if it is 0, and a logical true for all other numbers.

Operators

The following sections summarize JPL operators, their operands, and the data type
of the value after the operation. Associativity is left to right except for exponenti-
ation, where it is right to left.

String
JPL string operators evaluate to a string. Operands must also be strings.

() substring specifier

concatenation

Numeric
Evaluate to an integer or float. Operands must be either an integer or float.

@date date calculation@date date calculation

@length string length calculation

@sum array sum

^ exponentiation

/ division

* multiplication

Data Types, Operators, and Expressions

34 JAM 7.0 Language Reference

+ addition

± subtraction

Assignment =
Evaluates to numeric or string, according to the operand types. Both operands must
be of the same data type.

Relational
Evaluate to true or false; both operands must be of the same data type.

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

Logical
Evaluate to true or false; operands must be logical values.

! NOT (unary operator)

&& Logical AND

|| Logical OR

Bitwise
Evaluate to integer; operands must be integer types:

~ one's complement

& bitwise AND

| bitwise OR

Data Types, Operators, and Expressions

351 Programming in JPLChapter

JPL operators have the following precedence, in decreasing order:

() [] @date @length @sum
@ @@
##
^
~ !
/ *
+ ±
> >= < <=
== !=
&
&&
|
||
=

Some operators require operands of specific data types. If the operand's data type
is different, JPL tries to convert it; otherwise an error occurs. In the case of
relational and logical operators, JPL checks whether the operand data types are the
same; if they are different but compatibleÐfor example, integer and numericÐJPL
converts them to one or the other; if they are incompatible, an error occurs.

Table 4 shows the data type that JPL uses for operands of compatible data types in
relational and logical expressions:

Table 4. Data type conversion in relational and logical expressions

Operand
type

String Float Integer Logical

String string error error logical*

Float error float float logical**

Integer error float integer logical**

Logical logical* logical** logical** logical

* A string evaluates to a logical true or false if it begins with the value of SM_YES or SM_NO.

** A numeric or integer evaluates to a logical true if it is non±zero or or to a logical false if 0.

Use the concatenation operator ## to join multiple values into a single string. For
example, these statements concatenate the string Blue Moon into variable a.

vars a = ºBlue º
vars b = ºMoonº
a = a##b

Operator
Precedence

Conversion of
Operands

Concatenation

Data Types, Operators, and Expressions

36 JAM 7.0 Language Reference

Substring specifiers let you reference any part of a string that is in a variable or
property. Specify a substring with the following syntax:

obj-name (offset, length)

obj±name
The name of a JPL variable, widget, or LDB entry, or a property that takes string
values.

offset
The offset of the first character of the substring to get from obj-name, where the
first character in obj-name is 1. A value for offset is required, and can be an integer
or integer expression.

length
An integer expression that evaluates to the substring's length. If length exceeds the
substring's actual length, JPL reads only up to the last byte of data. A value for
length is optional: if no argument is supplied, JPL operates on all characters from
offset to the end of the string.

The following examples show some common uses for substring specifiers:

� Extract a country code from an international phone number.

if int_phone(1,3) == º039º
 country = ºItalyº

� Find the first blank in a string.

for i = 1 while string(i, 1) != º º
{ }

� Append a zip code extension.

zip(6) = º±º##extension

The @date operator lets you compare and perform arithmetic on dates. This
operator uses a date as its operandÐeither a widget with a date format, or a date
string constant or expression. @date converts a date constant to a numeric by
counting the number of days between the date constant and January 1, 1753Ðthe
standard for date calculations.

For example, if widgets order±date and ship±date have date edits, you can
add 30 days to order±date 's value and assign it to ship±date :

ship±date = @date(order±date) + 30

Substring
Specifiers

@date

Data Types, Operators, and Expressions

371 Programming in JPLChapter

In the next example, today is a widget with the current date, and days is a
variable that gets the number of days between today and 4/1/96:

days = @date(º4/1/1996º) ± @date(today)

If an operand includes a time valueÐfor example, 02/22/94 10:15 Ð @date
ignores the time value and outputs only a date value.

The @length operator counts the number of characters in one or more string
arguments. You can supply string constants or variables as arguments. You can use
a substring specifier on any argument that is a variable.

@length counts all characters and embedded blanks. Leading blanks in right-justi-
fied widgets and trailing blanks in left-justified widgets are ignored. In quoted
string constants, leading blanks are counted but trailing blanks are ignored.

For example, the following statement gets the total number of characters in fname
and lname :

vars ln
ln = @length(@widget(ºfnameº), @widget(ºlnameº))

The @sum operator calculates the sum of all non-blank occurrences in an array. In
the next statement, quantities is an array and total is a widget that gets the
sum of occurrences in quantities :

total = @sum(quantities)

JPL provides three operators for bit manipulation: AND (&), OR (|), and one's
complement (~). Bitwise operators let you examine and set the flags that are set on
bit masks.

For example, this procedure tests the value of widget status flags K_ENTRY and
K_EXIT to determine whether the widget is being entered or exited:

proc field_func (number, data, occ, flags)
if flags & K_ENTRY
 jpl do_process
else if flags & K_EXIT
 jpl do_exit_process
return

The next procedure examines the settings of K_KEYS to determine which key the
user pressed to exit a widget:

proc field_func2(num, dat, occ, flags)
if (flags & K_KEYS) == K_NORMAL
 return
else if (flags & K_KEYS) == K_ARROW
 msg emsg ºPlease use the tab key to move between fields.º
return

@length

@sum

Bitwise
Operators

Data Types, Operators, and Expressions

38 JAM 7.0 Language Reference

For more information on the flag settings that JAM passes into widget and screen
modules and hook functions, refer to page 15.

Expressions
An expression produces a new value by combining constants, variables, and
operators. In all statements, JAM's colon preprocessor evaluates colon-expanded
variables. In all expressions, JPL's statement processor replaces variable names
with values. JPL evaluates an expression as one of four data types: string, numeric,
bitwise, or logical. The following sections discuss these data types.

A string expression combines one or more quoted string constants or values of
string variables. Substring specifiers and ## are string operators. The following
examples are all string expressions:

'Montreal'
ºProcessed :i itemsº
fname##' '##lname
telephone(1, 3)

A numeric expression combines variables and numeric constants with one or more
of the numeric operators. The following examples are numeric expressions:

y + z
@sum(quantities)
@length(fname,lname)
x^y + y * (z^3/4 + 1) ± x/2
86

If the setup variable DECIMAL_PLACES is set to a number, JPL rounds the value of
a numeric expression to that number of decimal places. You can change this with a
format specifier to declare the total length and the number of decimal places.
Format specifiers have this syntax:

%[t] [m] [. n] var-name

where m and n are integer constants or variables. m specifies the total number of
characters, including leading spaces, sign, digits, and decimal place. If you omit m,
or m is too small to output the variable's value, JPL uses the variable's size. n
specifies the number of digits after the decimal place. If you omit n, JPL uses 2
decimal places.

For example, the following statement assigns 1.667 to i .

%6.3 i = 10/6 /* rounds value to 1.667 */

t overrides rounding and truncates to the specified number of decimal places, if
any. For example, the following statements truncate the values assigned to
variables i and n:

String

Numeric

Optimization

391 Programming in JPLChapter

%t1.2 i = 10/6 /* truncates i to 1.66 */
%t1.0 n = 10/6 /* truncates n to 1 */

If var-name is a widget or LDB entry, you can define its floating point precision by
setting Data Formatting to Numeric and setting its Format Type property. At
validation, JAM uses this property to format the widget's value.

A bitwise expression uses variables or constants which have the data type integer,
and any of the bitwise operators. The following examples are bitwise expressions:

flag1 & flag2
x | mask

A logical expression uses logical and relational operators to evaluate variables,
numeric constants, integer constants, string expressions, numeric expressions, or
integer expressions. Operands must be of the same data type; otherwise, JPL tries
to convert them according to Table 4. For example, you can compare a numeric
literal to a variable or expression only if JPL can evaluate the variable or
expression to a numeric. Otherwise, it displays an error message.

The following examples are logical expressions:

y
x != 7
(total * (1 + tax)) <= max_value
flag > ~flag

In contrast to C, the JPL interpreter always fully evaluates a boolean expression. In
the following example, JPL calls myFunc even though the expression already
evaluates to true:

vars a = 1
if (a || myFunc())
...

Optimization

You can improve performance of JPL procedures in several ways:

� Precompile external procedures. Once converted to binary, you can add the
procedure to a library with the formlib utility. Or convert the binary to
source language with the appropriate utilityÐfor example, convert to a C data
structure with bin2c Ðand add it to JAM's memory-resident list with
sm_formlist . For information about bin2c , refer to page 563 in the
Application Development Guide.

Bitwise

Logical

evaluation of boolean
expressions

Optimization

40 JAM 7.0 Language Reference

� Load an external module into memory as public . JAM compiles the module
(if necessary) and keeps its procedures in memory. Modules thus loaded incur
some memory overhead, but execute more efficiently than file modulesÐeven
if precompiledÐthat must be reloaded for each call.

� Execute loops with for instead of while . For example, this for construct
executes more efficiently than the while construct that follows it:

for i = 1 while i < 10
 {
 ...
 }

while i < 10
 {
 ...

 i = i + 1
 }

� Prevent expansion of a string that contains colons by appending a space to the
colon. Using a space is more efficient than prepending a backslash (\) or an
extra colon (:) because JAM avoids copying the argument to a buffer to
remove extra characters.

41

JPL Command
Overview

Below is a summary of the JPL commands organized according to category. All
JPL statements begin with one of these commands.

Procedure Structure

parms Declares parameters in an unnamed JPL procedure

proc Begins a named procedure

Calls

call Executes an installed function or JPL procedure

Variable Declaration

global Declares global JPL variables

vars Declares JPL variables in a procedure

22

Control Flow

42 JAM 7.0 Language Reference

Control Flow

break Exits a loop

for Executes an indexed loop

if ...else if ...else Conditionally executes statements

next Skips to next iteration of loop

return Exits a JPL procedure

while Repeatedly executes statements while a condition is true

Text Display

flush Flushes buffered output to the display

msg Displays a message to the terminal

Public Modules

public Reads a JPL module into memory and enables access to
its named procedures

unload Unloads modules loaded through the public command
and releases the memory associated with them.

Data Transfer

receive Receives data sent by a previous invocation of the send
command

send Sends data to a buffer for retrieval by the receive com-
mand

Database Drivers

432 JPL Command OverviewChapter

Database Drivers

dbms Executes a command available in JAM's database driv-
ers.

45

JPL Command
Reference

This section lists JPL commands in alphabetical order. It serves as a reference for
users who already have a working knowledge of JPL. Each command description
tells you what the command does, and where and how to use it.

Command descriptions are organized into the following components:

� Command name and brief description.

� Syntax line and parameter descriptions.

� Description of the command.

� Example.

� Related commands.

33

break

46 JAM 7.0 Language Reference

break
Stops loop execution

break [int-constant]

The number of nested loops to stop, where a value of 1 specifies the current loop.
If you omit this argument, break exits the current loop.

The break command stops execution of the current while or for loop. If the cur-
rent loop is nested inside one or more other loops, and int-constant is greater than
1, break stops execution of the specified number of outer loops. If int-constant is
greater than or equal to the number of loops currently being executed, JPL stops
each loop until it exits the outermost one.

Concatenate address and execute function for 100 entries.
If cities[i] is empty stop executing the loop.
#
vars i address total
for i = 1 while i <= 100
{
 if cities[i] == ºº
 break
 address = cities[i]##º, º##states[i]##º º##zips[i]
 call do_process (address)
}
total = i ± 1
msg emsg ºDone! :total addresses processed.º

for , next , while

int-constant

Description

Example

See Also

call

473 JPL Command ReferenceChapter

call
Executes an installed function or JPL procedure

call executable[(arg-list)]

The name of an installed function or JPL module or procedure. Refer to page 17
for more information on how JAM resolves this argument.

One or more comma- or space-delimited arguments optionally to pass to
parameters in executable. Enclose the entire argument list in parentheses.

You can pass the following as arguments:

� Variables, including those declared by the vars command, field names, and
LDB entries.

� String and numeric constants.

� Global constants.

� Colon-expanded variables.

The call command can call one of the following executables:

� Built-in and installed functions. Installed functions can include JAM library
functions and your own functions.

� JPL modules and procedures.

When JAM gets a call command, it must ascertain whether the executable is a
JPL module or procedure, or an installed function. JAM looks for executable's
name first among all built-in and installed functions, then among JPL modules and
procedures. Refer to page 17 for more information on how JAM searches among
JPL modules and procedures. If no match is found, JAM issues an error message.

JAM evaluates the call statement to its return valueÐeither integer, string, or
double, according to the procedure definition. Therefore, you can implicitly call a
function within an expression and gets its return value as follows:

vars i
i = myproc (a,b)

executable

arg-list

Description

call

48 JAM 7.0 Language Reference

JAM assumes that the executable has the same number and type of parameters.
JAM passes arguments by value, so changes to the receiving parameter's value
leave its corresponding caller's argument unchanged. If the executable is an
installed function, you can pass it hex, binary or octal numbers.

You can install C functions so that arguments can be passed by value. Refer to page
119 in the Application Development Guide for information about installation
options.

If you pass a variable's name, you can use JAM library functions to change the
contents of the variable. For example, if you pass a field name to a prototyped
function, the function can change the field's contents by using sm_n_putfield .

dbms

493 JPL Command ReferenceChapter

dbms
Executes a command available in JAM's database drivers

dbms dbms-stmt

The DBMS command to execute, where dbms-stmt can include one of the
following:

� SQL statements preceded by the keyword SQL.

� Directives that are not standardized across dialects of SQL, such as commit
transaction.

� Directives that are a part of JAM's database driversÐfor example, fetch the
next 10 rows.

dbms executes the specified DBMS command after colon expansion and syntax
checking. These commands control the connections to database engines and pro-
cessing of information fetched in SQL SELECT statements. For more information
on all of the available commands, refer to page 131 in the Database Reference.

There are two methods of passing SQL statements to the database engine. dbms
SQL passes the statement directly to the database engine. dbms DECLARE CURSOR
creates a named cursor to use for executing the SQL statement. For more
information on using SQL statements, refer to page 223 in the Application
Development Guide.

Because each database engine has unique features, some dbms commands are
described in the Engine Notes section of the Database Reference.

Additional forms of colon expansionÐcolon plus processing and colon equal
processingÐare available with the dbms command to help format information
before passing it to the database engine. For more information, refer to page 239 in
the Application Development Guide.

Fetch next set of rows
dbms continue

Commit transaction
dbms commit

SQL statement
dbms SQL select * FROM titles WHERE title_id = :+title_id

dbms-stmt

Description

Example

flush

50 JAM 7.0 Language Reference

flush
Flushes buffered output to the display

flush

The flush command performs delayed writes and flushes all buffered output to
the display. JAM automatically performs this operation when the keyboard is open
and the input queue is empty. This command calls the library function sm_flush .

Because JAM uses a delayed-write feature, JAM does not immediately display
output from assignments and msg statements. Instead, it updates the screen image
in memory. When the keyboard is opened or the flush command is called, JAM
updates the display from this image.

Frequent calls to this command and its library equivalent sm_flush can
significantly slow execution. JAM always calls sm_input when the keyboard
opens, so the display is always up to date before data entry occurs. Use this
command when your procedure requires timed output or non-interactive
displayÐfor example, to update a time field.

/*If this procedure is called as a screen entry function,
 *it prints text one character at a time in field
 * banner when the screen is opened.
 */
proc welcome
vars w i
w = º±±±±±±±Sam's Discount Rentals±±±±±±±º
for i = 1 while w(i,1) != ºº step 1
{
 banner(i) = w(i,1)
 flush
 call delay
}

proc delay
Lengthen the interval between flushes.
vars i
for i =1 while i < 5 step 1
{ }

Description

Example

for

513 JPL Command ReferenceChapter

for
Executes one or more JPL statements the specified number of times

for counter = init-value while logical-expr [step step-value]

 [statement block]

A variable whose value is tested as a condition for continuing or ending for
execution.

The initial value of counter.

Specifies the condition for continuing for execution. Execution remains inside the
for loop until logical-expr evaluates to false. You can specify multiple conditions
with the logical operators AND (&&) and OR (||).

Optionally specifies the value by which counter is incremented or decremented,
where step-value is a positive or negative integer constant or variable. The default
step value is 1. If step-value is a variable, JPL evaluates it only once, before the
first evaluation of logical-expr. Subsequent changes in the value of the step-value
variable during loop execution have no effect on step processing.

One or more JPL statements to execute as long as logical-expr evaluates to true. If
statement-block has multiple statements, enclose them with open and close
blocking characters { 0 } on the lines before and after. If there is no statement to
execute, enter a null statement {} .

The for command starts a loop whose iterations increment a counter variable.
Each for statement contains up to three clausesÐinitialization of the counter vari-
able, a logical expression whose evaluation determines whether to reenter the loop,
and optionally, the number by which to increment the counter variable. JAM
executes a for statement as follows:

1. Initializes counter to the value of init-value.

2. Evaluates step-value.

3. Evaluates logical-expr:

w If logical-expr evaluates to false, stop execution of the loop and exit.

counter

init-value

logical-expr

step step-value

statement-block

Description

for

52 JAM 7.0 Language Reference

w If logical-expr evaluates to true, execute the for statement or block;
increment counter by step-value; repeat step 3 (evaluate logical-expr).

When the value of logical-expr is false, JPL stops loop execution. In the simplest
case, it compares counter to a value that specifies the number of times that JPL
executes the loop. You can use other values to decide when loop execution ends.
For example, you can use counter to evaluate array occurrences and use the value
of an occurrence, like a null string, to the end the loop.

Keep the entire for command on the same physical line. Using continuation
characters (\) to split a for command across several lines can yield unpredictable
results.

Change each element of an array to its absolute value.
vars i
for i = 1 while i <= 10 step 1
{
 if amounts[i] == ºº
 amounts[i] = º0º
 else if amounts[i] < 0
 amounts[i] = ±amounts[i]
}

next , break , while

Example

See Also

global

533 JPL Command ReferenceChapter

global
Declares global JPL variables

global var-spec[, var-spec]...

Specifies the global variable's name and properties as follows:

var-name [[num-occurs]] [(size)] [= init-value]

var-name
The name of the variable, where var-name is a string that contains up to 31
characters. Global names can use any combination of letters, digits, or underscores,
where the first character is not a digit. JAM also allows usage of two special
characters, the dollar sign ($) and period (.).

[num-occurs]
Optionally declares var-name as an array of num-occurs occurrences. The default
number of occurrences is 1. For example the following statement declares
dependents as an array of ten occurrences:

global dependents[10]

(size)
Optionally specifies the number of bytes allocated for this variable; JAM
automatically allocates an extra byte for the terminating null character. The default
size is 255 bytes. For example, the following statement declares the variable zip
with a size of 10 bytes:

global zip (10)

= init-value
Optionally initializes the variable to init-value, where init-value can be any constant
or variable less than or equal to the variable's size. If no value is assigned, JAM
initializes the variable to null string (ºº)

If the variable is declared as an array, you can initialize its occurrences. For
example:

global ratings[5] = {ºGº, ºPGº, ºPG±13º, ºRº, ºNC±17º}

var-spec

global

54 JAM 7.0 Language Reference

Occurrence values can be space- or comma-delimited, and can be any constants or
variables that are in scope, including other global variables and widget names.

The global command creates one or more global JPL variables. These variables
are visible to the entire application and can be referenced at any time.

Avoid using names already in use by JAM itselfÐfor example, logical key names
such as XMIT and EXIT, and bit mask settings such as K_EXPOSE and K_ENTRY.
Because JAM uses these variables internally, reinitializing them can yield
unpredictable and possibly harmful results.

Description

if

553 JPL Command ReferenceChapter

if
Conditionally executes one or more JPL statements

if logical-expr

 statement-block

[else if logical-expr

 statement-block]

 0

[else

 statement-block]

Specifies the condition under which JPL executes statement-block, where
logical-expr can be any logical expression. For more information on logical
expression construction, refer to page 39.

One or more statements that JPL executes if the preceding logical-expr evaluates to
true. If statement-block has more than one statement, enclose the block with open
and close blocking characters { 0 } on the lines before and after.

Optionally specifies the statement block to execute if all previous if and else if
conditions evaluate to false and logical-expr evaluates to true.

Optionally specifies the statement block to execute if all previous if and else if
conditions evaluate to false. Each else must be paired with an if statement and
follow all else if statements associated with that if .

The if command specifies conditional execution of other JPL statements. Each
if can be followed by one or more else if commands to create a chain of condi-
tional processing. JPL executes each if and else if in the chain until it evalu-
ates one of the conditions to true; JPL then executes the statement block and exits
the chain.

If all conditions in an if chain evaluate to false and the chain ends with an else
command, JPL executes the else statement block. If the if chain omits an else
command, JPL simply exits the chain and continues module execution.

#Determine a person's sex, based on personal title.
if title == 'MR'
 sex = 'Male'
else if title == 'MS'
 sex = 'Female'

logical-expr

statement-block

else if
 logical-expr

else

Description

Example

if

56 JAM 7.0 Language Reference

else if title == 'MRS'
 sex = 'Female'
else if title == 'MISS'
 sex = 'Female'
else
{
 sex = 'Unknown'
 msg err_reset 'Please supply a title.'
}

include

573 JPL Command ReferenceChapter

include
Interpolates the contents of another module at the current statement line

include module

The name of the module to include.

The include command replaces the current include statement with the contents
of the specified file module. include lets you write and maintain JPL in separate
modules. You can thereby avoid hard-coding the same procedure across several
modules, or allocating memory for public modules. The included module can itself
contain its own include statements. The number of include statements that you
can nest is set by the constant LIMIT_DEEP_INC . The default setting is 8.

JAM looks for module among available modules in this order:

1. Memory-resident modules.

2. Library module in an open library.

3. The current directory.

4. File module in a directory specified by sm_initcrt .

5. File module in a directory specified by SMPATH.

At runtime, JPL compiles and loads the included module as needed. Compilation
occurs before JPL executes the primary module or procedure that contains the
include statement. Consequently, compilation errors in the included module
prevent execution of the primary module.

module

Description

msg

58 JAM 7.0 Language Reference

msg
Writes a message to the terminal

msg mode message

Specifies the message's format and behavior with one of these arguments:

emsg
Displays message as an error message and awaits user acknowledgement.

err_reset
Identical to emsg except when the message is displayed on the status line: in that
case, err_reset forces the cursor on at its current position.

qui_msg
Displays message as an error message and awaits user acknowledgement.
message is preceded by the SM_ERROR string from the message fileÐfor example,
ERROR. In GUIs, the SM_ERROR text is also preceded by the stop icon.

quiet
Identical to qui_msg except when the message is displayed on the status line: in
that case, quiet forces the cursor on at its current position.

setbkstat
Installs message as the background status line, which displays when no other
message is active.

d_msg
Displays message arguments on the status line and leaves it there until cleared or
replaced by another message. Text displayed using d_msg is buffered. You can
clear the buffer by another msg d_msg command that supplies an empty
string(ºº). msg d_msg displaces the status line message displayed by
msg_setbkstat .

One or more comma-delimited arguments that comprise the message to display.
Each argument can be a string or numeric constant, or a variable. Note that
msg query allows only one argument. All other arguments for mode allow
multiple arguments.

mode

message

msg

593 JPL Command ReferenceChapter

The msg command displays messages on the status line or in a pop-up window in
one of several modes. Each mode correspond to a JAM library function. To display
messages in a dialog box with standard command buttons, call sm_message_box .

By default, GUI versions of JAM always display messages in a pop-up window
with an OK button. Character-mode JAM always displays messages in a window
only if the configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set
this variable to WHEN_REQUIRED (the default), character-mode JAM displays
messages on the status line except when these conditions occur:

� The message overflows the status line. Note that JAM prevents the message
from overlapping the cursor row/column display, if it is turned on.

� The message wraps to multiple lines.

� You specify window display with the %W format option.

Note: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of MESSAGE_WINDOW's setting, if the
message contains the %Mu option, or the setup variable ER_KEYUSE is set to
ER_USE. Also, the setbkstat and d_msg modes always display messages on the
status line.

Users can dismiss the error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error
message. The acknowledgement keyÐby default, space barÐcan be set through
the setup variable ER_ACK_KEY. If the user acknowledges the message through the
keyboard, JAM discards the key. You can modify this behavior for individual
messages through the %Mu option, described later.

Several setup variables determine default message presentation and behavior. For
more information about these variables, refer to page 26 in the Configuration
Guide. You can change these defaults at runtime through sm_option .

You can change message behavior and appearance for individual messages by
embedding percent escape options in the message text. Use these options after the
call to sm_initcrt ; otherwise, the percent characters appear as literals.

%A attr-value

Change the display of the subsequent string to the attr-value-specified attribute,
where attr-value is a four-digit hexadecimal value. If the string to get the attribute
change starts with a hexadecimal digit (0...F), pad attr±value with leading zeros to
four digits. Refer to page 58 in the Configuration Guide for valid attribute values.

This option is valid only for messages that display on the status line. JAM ignores
this option if the message displays in a window.

Description

Window versus Status
Line Display

Message
Acknowledgement

Message Appearance
and Behavior

msg

60 JAM 7.0 Language Reference

%B
Beep the terminal before the message displays. This option must precede the
message text.

%K key-logical

Display key label for logical key, where key-logical is a logical key mnemonic or
hex value. When JAM displays the message, it replaces key-logical with the key
label string defined for that key in the key translation file. If there is no label, the
%K is stripped out and the constant remains. Key constants are defined in
smkeys.h

Note: If %K is used in a status line message, the user can push the corresponding
logical key onto the input queue by mouse-clicking on the key label text.

%Md
Force the user to press the acknowledgment key (ER_ACK_KEY) in order to dismiss
the error message. JAM discards the key that is pressed. If the user presses any
other key, JAM displays an error message or beeps, depending on how setup
variable ER_SP_WIND is set. The %Md option corresponds to the default message
behavior when setup variable ER_KEYUSE is set to ER_NO_USE.

This option must precede the message text.

%Mt [time-out]

Force temporary display of message to the status line. JAM automatically
dismisses the message after the specified timeout elapses and restores the previous
status line display. Timeout specification is optional; the default timeout is one
second. You can specify another timeout in units of 1/10 second with this syntax:

#(n)

where n is a numeric constant that specifies the timeout's length. If n is more than
one digit, the value must be enclosed with parentheses. For example, this statement
displays a message for 2 seconds:

msg emsg º%Mt(20)ºChanges have been saved to database.º

The user can dismiss the message before the timeout by pressing any key or mouse
clicking. JAM then processes the keyboard or mouse input.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement key. JAM then discards any keyboard input.

This option must precede the message text.

msg

613 JPL Command ReferenceChapter

%Mu
Force message display to the status line and permit any keyboard or mouse input to
serve as error acknowledgment. JAM then processes the keyboard or mouse input.
This option must precede the message text.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement key. JAM then discards any keyboard input.

%N
Insert a line break. This option is invalid for setbkstat and d_msg modes .

%W
Forces display of the message in a window. This option is ignored by setbkstat
and d_msg modes .

/* Indicate that the entry to the field state is invalid.*/
msg err_reset ':state is not a U.S. state'

/* Indicate that the current entry is being processed. */
/* Note that d_msg overrides delayed write and immediately*/
/* flushes text to the screen. */
msg d_msg 'Processing :name'

/* Ask whether the user wants to quit the current screen.*/
vars quit
quit = sm_message_box \
 ('Are you ready to quit?' ,ºº,SM_MB_OKCANCEL,ºº)
if quit = SM_ID_OK
 return 0

vars field1 message
field1 = ºmessageº
message = ºQuick brown foxº

/* This will display 'message' on the status line.*/
msg emsg field1

/* This will also display 'message'.*/
msg emsg º:field1º

/* This will display 'field1'. */
msg emsg ºfield1º

/* This will display 'Quick brown fox'.*/
msg emsg :field1

Example

msg

62 JAM 7.0 Language Reference

/* These messages use percent escapes.*/
/* Print message in red */
msg emsg º%A004Stop now.º

msg emsg ºThe menu toggle is %KMTGLº
msg emsg ºEnter value.%NPress XMIT.º
msg qui_msg º%WInvalid password.º
msg err_reset º%MdPlease enter a positive value.º

sm_message_boxSee Also

next

633 JPL Command ReferenceChapter

next
Skips to the next iteration of a loop

next

The next command is valid in any for or while loop. next terminates the cur-
rent iteration of the loop and starts the next iteration. When a next statement
executes, JPL skips all subsequent statements until the end of the loop. If the loop
is controlled by a for statement, JPL increments the loop's step value. It then tests
the loop condition; if the condition evaluates to true, JPL executes the while or
for statement block.

next resembles the continue statement in C.

Process all the engineers in a list of people.
vars k
for k = 1 while job[k] != ºº step 1
{
 if job[k] != ºengineerº
 next
/*process mailing label for engineers...*/
}

break , for , while

Description

Example

See Also

parms

64 JAM 7.0 Language Reference

parms
Declares parameters in the unnamed procedure of a JPL module

parms [deref] param-name[, param-name]...

Specifies to pass in the values of the caller's arguments. If you omit the deref
qualifier, JPL passes in the literal value of the caller's arguments. In the case of a
variable, JPL passes in the name of the variable instead of its value. Omit this
argument if you use the parms command to get the standard arguments passed in
by a field, group, or screen.

The name of the parameter, where param-name is a string that contains up to 31
characters. JPL parameter names can use any combination of letters, digits, or
underscores, where the first character is not a digit. JAM also allows usage of two
special characters, the dollar sign ($) and period (.).

The parms command declares one or more parameters in a JPL module's unnamed
procedure. An unnamed procedure must be the first procedure in a JPL module;
because this procedure omits the proc statement, you must use the parms com-
mand to receive any arguments that are passed in by its caller. Also use it in a
field's validation module or in an external non-public JPL module to get the stan-
dard arguments passed by screens, groups, and fields. For more information about
the standard arguments available for screen modules, refer to page 122 in the Ap-
plication Development Guide; for widget modules, refer to page 126 .

A parms statement can declare up to twenty comma-delimited parameters. If you
declare more parameters than are actually passed, JAM initializes the extra
parameters to empty strings. If you declare fewer, the undeclared parameters are
inaccessible.

Like variables, parameters that are declared in a module's unnamed procedure are
accessible to all procedures in that module.

/* call module calculate*/
call calculate(subtotal, state)

/*first unnamed procedure in module calculate*/
parms amt, st

deref

param-name

Description

Example

parms

653 JPL Command ReferenceChapter

if st == 'CA'
 tax = 0.0725
else if st == 'NY'
 tax = 0.085
else
 tax = 0.00
total = amt * (1 + tax)

vars, procSee Also

proc

66 JAM 7.0 Language Reference

proc
Starts a JPL procedure definition

[return-type] proc proc-name [([param[, param]...])]

Specifies the data type of the procedure's return value. An unqualified proc
command returns an integer value. You can specify to return a string or double
precision value by qualifying the proc command with the keywords string or
double , respectively.

A character string that specifies the JPL procedure to call. Procedure names can be
up to 31 characters long and contain any keyboard character except a blank space.
When naming procedures in screen and public modules, be sure to avoid name
conflicts, especially with any external modules that you wish to call by name.

A parameter to receive the corresponding argument passed by this procedure's
caller. You specify parameters as a comma- or space-delimited argument list within
parentheses. JAM passes arguments by valueÐthat is, the called procedure gets its
own private copies of the values in the calling procedure's arguments. This means
that the called procedure cannot directly alter a variable in its caller; it can only
alter its own copies.

The proc command names a procedure and optionally specifies its parameters and
return value's data type. If a module contains multiple procedures, each proc state-
ment serves to end the previous procedure. Only named procedures can be called
from other procedures, and from application hooks such as control strings and Fo-
cus properties.

In the following example, the call to procedure process_input passes data from
variables data1 and data2 to the procedure's corresponding parameters. The
procedure is defined to return a double value. This return value is used to
determine whether the if statement evaluates to true or false:

if process_input(data1, data2) > 0.16667
...

double proc process_input(d1, d2)
vars retval
/*process d1 and d2 values*/
return retval

return-type

proc-name

param

Description

proc

673 JPL Command ReferenceChapter

Because a proc statement marks the end of one procedure and the start of another,
you cannot embed one procedure definition inside another.

Refer to page 3 for more information on procedure structure and execution.

callSee Also

public

68 JAM 7.0 Language Reference

public
Reads JPL modules into memory and makes their procedures available to application

public module-name[module-name]...

Specifies the module to read into memory, where module-name is a string constant
or colon-expanded variable that names a file module, library module, or
memory-resident module.

The public command reads the procedures contained in one or more JPL mod-
ules, compiles them if necessary, converts them to an internal data structure, and
puts them in memory. It also executes the first procedure if it is unnamed. All pro-
cedures beginning with a proc statement are available until the application exits or
you remove their module from memory with an unload statement.

public lets you store generic procedures in external modules that are easy to edit
and available to any application. For example, these procedures handle user exits:

proc quit
vars ans
ans = sm_message_box \
 (ºAre you ready to quit?º, ºº, SM_MB_YESNO, ºº)
if ans = SM_IDYES
 return 1
else
 return 0

proc end
msg emsg 'Program exit.'

Given that these procedures are in external module exit_handler , you can make
them available to the application by entering this public command in the opening
screen's Entry Function property:

public exit_handler

You can now call quit from any available application hookÐfor example, from a
control string that is associated with the EXIT key:

EXIT=^(0=&nextscreen; 1=^end)quit

module-name

Description

public

693 JPL Command ReferenceChapter

You can issue the public command on a module only once. JAM ignores public
commands on a module that is already public.

Note: If you test an application that loads a public module, that module remains in
memory until you explicitly unload it or exit JAM. If you subsequently edit the
module after exiting test mode, remember in the next test session to unload the
module's earlier version and reload the new one in order to see your changes.

unloadSee Also

receive

70 JAM 7.0 Language Reference

receive
Receives data sent by an earlier send command

receive [bundle bundle-name] [item item-no] [keep] data field-expr

Optionally names the buffer, or bundle, from which to receive data, where
bundle-name can be a string constant or variable. Bundle data is written by send
statements; if the send statement supplies a bundle name, JAM creates a bundle
with that name. JAM can maintain up to ten bundles of send data in memory. If no
name is supplied, JAM gets data from the unnamed bundleÐthat is, a bundle
whose data is sent from the last send command that omitted a bundle name.

Specifies the bundle offset from which to start reading data, where item numbering
begins at 1. If you omit this argument, receive starts getting bundle data from the
first item. receive counts data items in the same order as they were sent. Each
item in the bundle can contain one or more occurrences; because an array is
regarded as a single data item, JAM disregards its occurrences when it evaluates
item-no.

Specifies to leave the bundle data intact after receive completes execution. This
lets multiple receive statements specify the same bundle of data. By default,
receive destroys the bundle and frees the memory allocated for it after it
completes execution.

Specifies the fields or occurrences to receive the bundle data. Refer to page 24 for
more information about valid field expressions. You can specify multiple field-expr
arguments delimited by commas.

If field-expr is a non-subscripted array, receive reads the bundle data into all of
the array's occurrences. You can specify a single occurrence or range of occur-
rences within an array by subscripting it with this format:

array[int-expr[.. [int-expr]]]

where int-expr evaluates to an integer. If you omit the last occurrence specifier,
receive reads into all occurrences from the one specified to the end of the array.
The following examples show different subscripts that are valid:

receive data @widget(ºempnoº)[1] //read only occurrence 1
receive data empno[1..10] // read into occurrences 1±10
receive data empno[ct..] //read all occurrences from ct

bundle bundle-name

item item-no

keep

data field-expr

receive

713 JPL Command ReferenceChapter

receive reads data from a bundle that was written by an earlier send statementÐ
typically, from another screen. receive reads the data into its field-expr arguments
in the same order that it was sent. Unless you supply the keep argument, the
bundle data is discarded after receive completes execution.

receive sequentially pairs each field-expr argument to a data item in the bundle. If
the data item contains multiple occurrences, receive reads as many occurrences
into field-expr as the field allows, or as many as the field-expr expression specifies.
If any occurrences remain unread, receive ignores them and reads the next data
item into its corresponding target.

You can use the item argument to start reading data from a specified offset in the
bundle. receive starts reading data from this offset.

If a bundle item has more occurrences than are currently allocated for the target
array, JAM allocates new occurrences for the overflow data. If the incoming data
overflows the array's maximum number of occurrences or a specified range,
receive ignores the extra occurrences.

If a bundle item has fewer occurrences than currently allocated for the target array,
receive writes to the array as follows:

� If no range is specified, JAM overwrites the array with the bundle data and
discards previous data in remaining occurrences.

� If a range is specified, JAM writes only to those occurrences. Data in other
occurrences remains intact. If the range has more occurrences than the
incoming data, JAM discards previous data in the remaining occurrences.

� If an unbounded range is specifiedÐfor example, DATA empno[4..] ÐJAM
overwrites the array from the specified occurrence and discards previous data
in remaining occurrences. Data in occurrences that precede the range remains
intact.

If a data argument is invalidÐfor example, the target field does not exist, or the
range of occurrences is invalid, the receive command aborts data transfer
prematurely and posts an error message. JAM ignores remaining bundle data and,
unless keep was specified, destroys the bundle.

send

Description

Overflow and
Underflow

Errors

See Also

return

72 JAM 7.0 Language Reference

return
Exits a JPL procedure

return [retval]

The value to return to this procedure's caller, where the datatype of retval depends
on the procedure definition. Supply either a constant or variable, or an expression
that evaluates to a string or numeric value. If no argument is supplied, JAM returns
a value of 0 or null string, depending on retval's datatype.

The return command causes a JPL procedure to exit. Control is returned to the
procedure's caller, if any, or to the JAM runtime system.

JPL automatically returns with either 0 or null string to a procedure's caller when it
reaches the end of the called module or another proc statement. Use the return
statement to exit before the end of a procedure, or to return a value other than zero.

/* Call procedure checknum to evaluate value of num
 * field. Based on its value, return an integer that
 * determines the next procedure to call
 */

vars ret
ret = checknum()
if ret == 1
 call lownum_process()
else if ret == 2
 call midnum_process()
else
 call hinum_process()

proc checknum()
if num < 0
 return 1
else if num < 500
 return 2
else
 return 3

retval

Description

Example

send

733 JPL Command ReferenceChapter

send
Sends data to a buffer for retrieval by the receive command

send [bundle bundle-name] [append] data data-expr[, ...]

Optionally names the buffer, or bundle, in which to store the send data, where
bundle-name can be a string constant or variable. Bundle names can be up to 31
characters long. By using names, you can maintain up to ten bundles of send data
in memory

If an existing bundle is already named bundle-name, JAM frees the existing bundle
and replaces it with the new one. If ten bundles already are in memory, JAM
removes the oldest bundle from memory.

If no name is supplied, JAM stores the data in an unnamed bundleÐthat is, a
bundle whose name is an empty string. JAM uses the unnamed bundle for
receive calls that specify no bundle name.

Optionally appends the send data to the specified or unnamed bundle.

Specifies the data to send from this screen, where data-expr can be a constant, JPL
variable, or field expression. Refer to page 24 for more information about valid
field expressions. You can specify multiple data arguments delimited by commas.

If data-expr is a non-subscripted array, send writes all its occurrences. You can
specify a single occurrence or range of occurrences within an array by subscripting
it with this format:

array[int-expr[.. [int-expr]]]

where int-expr evaluates to an integer. If you omit the last occurrence specifier,
send writes all occurrences from the one specified to the end of the array. The
following examples show different subscripts that are valid:

send data @widget(ºempnoº)[1] //get only occurrence 1
send data empno[1..10] //get occurrences 1±10
send data empno[ct..] //get all occurrences from ct to end

send writes screen data to a buffer that is accessible to other screens through a
receive statement. send can send one or more values from fields and array oc-

bundle bundle-name

append

data data-expr

Description

send

74 JAM 7.0 Language Reference

currences on a screen. It can also send constant values and JPL variables, as well as
parts of arrays or the current occurrence of an array.

JAM writes the send data to a temporary buffer, or bundle, which you can
optionally name. JAM can maintain up to ten named and unnamed bundles. If you
omit a bundle name, JAM writes the data to an unnamed bundle; this data is
accessed by the next call to receive that also omits a bundle name argument or
specifies it as an empty string.

The bundle retains no information about its data sources. receive gets data in the
same order as it was sent. For example, the following send statement sends to an
unnamed bundle the value in credit_acctno , the value 1000 , and all values in
occurrences of the array credit . The receive statement expects to receive this
data in the same order:

send data credit_acctno, 1000, credit
receive data acctno, amount, references

receiveSee Also

unload

753 JPL Command ReferenceChapter

unload
Frees the memory allocated for a public module

unload module-name[module-name]...

The name of the public module to remove from memory.

The unload command releases the memory used to hold one or more JPL modules
previously loaded into memory as public modules. After you unload module-name,
subsequent calls to that module read it from disk, the memory-resident list, or an
open library. The named procedures in that module are inaccessible to the applica-
tion except through its unnamed procedure.

Avoid unloading a module that is undergoing execution.

/* load a file, call it in a loop, */
/* then unload it after exiting the loop */

load validname
for i = 1 while i < 11 step 1
 call validname (name[i])
unload validname

public

module-name

Description

Example

See Also

vars

76 JAM 7.0 Language Reference

vars
Declares JPL variables

vars var-spec [, var-spec]...

Specifies the variable's name and properties as follows:

var-name [[num-occurs]] [(size)] [= init-value]

var-name
The name of the variable, where var-name is a string that contains up to 31
characters. JPL variable names can use any combination of letters, digits, or
underscores, where the first character is not a digit. JAM also allows usage of two
special characters, the dollar sign ($) and period (.).

[num-occurs]
Optionally declares var-name as an array of num-occurs occurrences. The default
number of occurrences is 1. For example the following statement declares
dependents as an array of ten occurrences:

vars dependents[10]

(size)
Optionally specifies the number of bytes allocated for this variable; JAM allocates
an extra byte for the terminating null character. The default size is 255 bytes. For
example, the following statement declares the variable zip with a size of 10 bytes:

vars zip (10)

= init-value
Optionally initializes the variable to init-value, where init-value can be any constant
or variable less than or equal to the new variable's size. If no value is assigned,
JAM initializes the variable to null string (ºº)

If the variable is declared as an array, you can initialize its occurrences. For
example:

vars ratings[5] = {ºGº, ºPGº, ºPG±13º, ºRº, ºNC±17º}

Occurrence values can be space-or comma-delimited, and can be any constants or
variables that are in scope, including global variables and widget names.

var-spec

vars

773 JPL Command ReferenceChapter

The vars command creates one or more JPL variables. Variables declared within a
procedure are local to the procedure. Variables declared in a module's unnamed
procedure are available to all procedures in the same module. JPL executes the
vars statements in the unnamed procedure of screen and public modules when the
module is activatedÐon screen open and when the module is made public, respec-
tively.

vars name(50), flag(1)
vars address[3](50), abbrevs[10]
vars zip(5) = 02138

Description

Example

while

78 JAM 7.0 Language Reference

while
Repeatedly executes a block while a condition is true

while logical-expr

 statement-block

Specifies the condition that JPL uses to determine whether to reiterate execution of
the while block.

One or more statements that JPL executes if logical-expr evaluates to true. If
statement-block has more than one statement, enclose the block with open and
close blocking characters { 0 } on the lines before and after.

The while statement repeatedly executes a block of one or more statements as
long as the value of logical-expr is true. JPL evaluates logical-expr before each it-
eration of the loop.

/* do do_proc as often as user wants */
vars ans
ans = sm_message_box \
 (ºStart processing?º,ºº,SM_MB_YESNO, ºº)
while ans
{
 call do_proc
 ans = sm_message_box \
 (ºRepeat processing?º,ºº,SM_MB_YESNO, ºº)
}

break, for, next

logical-expr

statement-block

Description

Example

See Also

SECTION TWO

Built-in Functions

Chapter 4 Built-in Control Functions. 81

81

Built-in Control
Functions

This chapter describes control functions supplied with JAM. You can use these
functions in control strings and in JPL call statements. Unlike other control hook
functions, these functions are installed internally and cannot be deinstalled.

Note: Built-in control functions are internally installed. Unlike JAM library
functions, they can only be called from within JAM.

44

jm_exit

82 JAM 7.0 Language Reference

jm_exit
Ends processing and leaves the current screen

jm_exit

jm_exit closes the current form or window and returns to the previous one. If the
form is the application's base form and and the setup variable CLOSELAST_OPT is
set to OK_CLOSELAST, JAM asks the user whether to exit the application.

By default, EXIT invokes this function at runtime.

/* The following control string invokes a function
 named process . If it returns 0, another function is
 invoked to reinitialize the screen. If it returns ±1,
 the screen closes.
 */

^(±1=^jm_exit; 0=^reinit)process

/* This control string replaces a form or a window with
another
 form or a window
 */

^(0=&w2)jm_exit

Description

Example

jm_gotop

834 Built-in Control FunctionsChapter

jm_gotop
Returns to form stack's base screen

jm_gotop

jm_gotop returns to the form stack's base screenÐtypically, the first screen that
the application displays at startup. JAM closes all other forms and windows and
removes them from their respective stacks.

By default, SPF1 invokes this function at runtime.

Description

jm_goform

84 JAM 7.0 Language Reference

jm_goform
Invokes a dialog box that prompts for the name of a screen to display

jm_goform

jm_goform invokes an Open Screen dialog box that asks the user to enter the
name of a screen to open. By default, JAM opens the screen as a form; however,
users can specify to open a screen as a a stacked or sibling window. If the screen
opens as a form, JAM closes all previously open windows before it displays the
specified screen.

By default, the SPF3 key invokes this function at runtime.

The following line in your setup file causes PF10 to invoke jm_goform .

SMINICTRL= PF10=^jm_goform

Description

Example

jm_keys

854 Built-in Control FunctionsChapter

jm_keys
Simulates keyboard input

jm_keys input[, input]0

A logical key or string to push onto the input queue. Arguments can be space- or
comma-delimited. Logical keys are defined in smkeys.h . Strings are enclosed by
single or double quote characters.

Because jm_keys passes its arguments to sm_ungetkey in reverse order, list them
in their actual input sequence. You can specify up to 20 arguments.

jm_keys queues the specified characters and function keys for input to the runtime
system through successive calls to sm_ungetkey . The runtime system then be-
haves as though you had typed the keys or strings.

Enter the name of your favorite bar, followed by a tab and the name of its owner:

^jm_keys 'Steinway Brauhall', TAB

^jm_keys ºJames O'Shaughnessyº

input

Description

Example

jm_system

86 JAM 7.0 Language Reference

jm_system
Prompts for and executes an operating system command

jm_system

jm_system invokes a dialog box in which you can enter an operating system
command. By default, the SPF2 key invokes this function at runtime.

The following line in your setup file causes PF10 to invoke system .

SMINICTRL= PF10 = ^jm_system

sm_shell

Description

Example

See Also

jm_winsize

874 Built-in Control FunctionsChapter

jm_winsize
Lets users manipulate a screen's viewport from the keyboard

jm_winsize

Valid only in character mode, jm_winsize invokes the system menu and selects
the Move option. Cursor keys are enabled to change the window's position, size,
and the offset of its contents. You can also change focus to a sibling window.
XMIT accepts the changes; EXIT cancels them.

The initial mode is resize. You can change the mode through one of these function
keys:

� F2: Move the screen.

� F3: Resize the screen.

� F4: Change offset of the screen's contents within its window.

� F5: Change focus to a sibling window.

sm_winsize

Description

See Also

SECTION THREE

Library Functions

Chapter 5 Library Function Overview. 91

Chapter 6 JAM Library Functions. 109

Appendix A JAM Properties . 519

91

Library Function
Overview

This chapter summarizes the JAM library functions and lists them by category.
Groups of closely related variant functions are listed under a single root name. The
functions sm_r_form , sm_d_form , and sm_l_form , for example, are all grouped
under the heading sm_form .

Functions marked with an asterisk (*) are not installed in the distribution and
cannot be directly called from JPL. All other functions can be called from JPL.

Initialization/Reset

The following library functions are called in order to initialize or reset certain
aspects of the JAM runtime environment. Those that are necessary for the proper
operation of JAM are called from within the supplied main routine source modules
jmain.c and jxmain.c .

sm_cancel Resets the display and exits

sm_do_uinstalls * Installs an application's hook functions

sm_inimsg * Creates a displayable error message on failure of an ini-
tialization function

55

Property Access

92 JAM 7.0 Language Reference

sm_initcrt * Initializes the display and JAM data structures

sm_install * Installs application hook functions

sm_jtop * Starts the JAM executive

sm_leave * Prepares to leave a JAM application temporarily

sm_resetcrt * Resets the terminal to the operating system's default state

sm_return * Prepares for return to JAM application

sm_vinit Initializes video translation tables

uinstall Installs an application function

Property Access
Set and get properties of JAM objectsÐfor example, screens, widgets, and the
application itself:

sm_prop_error Gets the last value returned by a properties function call

sm_prop_get Gets a property setting

sm_prop_id Returns an integer handle for an application component

sm_prop_set Sets a property

Widget Creation/Deletion

sm_obj_copy Copies a widget

sm_obj_delete Deletes a widget

Interscreen Messaging
Send and receive data from one screen to another:

sm_append_bundle_data Sends data to a bundle item

sm_append_bundle_done Optimizes memory allocated for a send
bundle

Screen and Viewport Control

935 Library Function OverviewChapter

sm_append_bundle_item Adds a data item to a bundle

sm_create_bundle Creates a send bundle

sm_free_bundle Destroys a send bundle

sm_get_bundle_data Reads an occurrence of bundle item
data

sm_get_bundle_item_count Counts the number of data items in a
bundle

sm_get_bundle_occur_count Counts the number of occurrences in a
data item

sm_get_next_bundle_name Gets the name of the bundle created
before the one specified

sm_is_bundle Checks whether a bundle exists

sm_receive Executes a JPL receive command

sm_send Executes a JPL send command

Screen and Viewport Control
Control viewports, the display of screens, and the form and window stacks:

sm_at_cur * Displays a window at the cursor location

sm_close_window Closes the current window

sm_form Displays a screen as a form

sm_issv Checks whether a screen is in the saved list

sm_jclose Closes the current window or form under JAM executive
control

sm_jform Displays a screen as a form under JAM control

sm_jwindow Displays a window at a given position under JAM con-
trol

sm_message_box Displays a message in a dialog box.

sm_setsibling Specifies the next screen to open to be a sibling of the
current window

sm_shrink_to_fit Removes trailing empty array elements and shrinks the
screen

Display Terminal I/O

94 JAM 7.0 Language Reference

sm_unsvscreen * Removes screens from the save list

sm_wcount Obtains the number of currently open windows

sm_wdeselect Restores the previously active window

sm_window * Displays a window at a given position

sm_winsize Lets users interactively move and resize a window

sm_wrotate Rotates the display of sibling windows

sm_wselect Activates a window

Display Terminal I/O

Set the interface to JAM terminal I/O:

sm_bel Issues a beep from the terminal

sm_bkrect Sets the background color of a rectangle

sm_flush Flushes delayed writes to the display

sm_getkey Gets the logical value of the key hit

sm_input Opens the keyboard for data entry and menu selection

sm_key_integer Gets the integer value of a logical key mnemonic

sm_keyfilter Controls keystroke record/playback filtering

sm_keyhit Tests whether a key is typed ahead

sm_keyinit Initializes a key translation table

sm_keylabel Gets the printable name of a logical key

sm_keyoption Sets cursor control key options

sm_m_flush Flushes the status line

sm_rescreen Refreshes the data displayed on the screen

sm_resize Notifies JAM of a change in the display size

sm_ungetkey Pushes back a translated key on the input

Field/Array Data Access

955 Library Function OverviewChapter

Field/Array Data Access

Access data in fields and arrays:

sm_amt_format Writes formatted data to a field

sm_calc Executes a math edit style expression

sm_cl_unprot Clears all unprotected fields

sm_clear_array Clears all data in an array

sm_copyarray Copies the contents of one array to another

sm_dblval * Gets the value of a field as a real number

sm_dlength Gets the length of a field's contents

sm_doccur Deletes occurrences from a field

sm_dtofield * Writes a real number to a field

sm_fptr * Gets the contents of a field

sm_getfield * Copies the contents of a field

sm_intval * Gets the integer value of a field

sm_ioccur Inserts blank occurrences into an array

sm_is_no Tests a field for no

sm_is_yes Tests a field for yes

sm_itofield * Writes an integer value to a field

sm_lngval * Gets the long integer value of a field

sm_ltofield * Places a long integer in a field

sm_null Tests whether a field is null

sm_putfield Puts a string into a field

sm_sdtime Gets the formatted system date and time

sm_strip_amt_ptr Strips amount editing characters from a string

sm_udtime * Formats a user-supplied date and time

sm_upd_select * Updates the contents of an option menu or combo box

sm_ww_length Gets the number of characters in a word wrap field

Group Access

96 JAM 7.0 Language Reference

sm_ww_read* Gets word-wrapped text from a multiline text widget

sm_ww_write Puts text into a wordwrap field

Group Access

The following functions access groups. Groups are made up of fields that have
attributes and data in them. The value of a group indicates the set of selected
constituent fields, although it is not recommended that that value ever be accessed
or modified directly with any of the field access functions discussed in the
preceding sections.

sm_deselect Deselects a checklist occurrence

sm_ftog * Converts field references to group references

sm_i_gtof * Converts a group name and group occurrence into a field
number and occurrence

sm_n_gval Forces execution of a group's validation function

sm_select Selects an occurrence in a selection widget group

Local Data Block Access

The following functions access local data blocks, or LDBs. Note that if a field data
access function references a field by nameÐfor example, sm_n and sm_i_
variantsÐand the name field does not exist on the active screen, it looks in an
active LDB for an entry of the same name.

sm_allget Loads data from the active LDBs to the cur-
rent screen

sm_dd_able Turns LDB write-through on or off for all
LDBs

sm_ldb_getfield Gets the contents of an LDB entry

sm_ldb_get_active Gets the handle of the most recently activated
LDB

Cursor Control

975 Library Function OverviewChapter

sm_ldb_get_inactive Gets the handle of the most recently inacti-
vated LDB

sm_ldb_get_next_active Gets the LDB activated before the one speci-
fied

sm_ldb_get_next_inactive Gets the LDB inactivated before the one spe-
cified

sm_ldb_handle Gets the handle of an LDB

sm_ldb_init * Initializes or reinitializes local data blocks

sm_ldb_is_loaded Tests whether an LDB is loaded

sm_ldb_load Loads an LDB into memory

sm_ldb_name Gets the name of an LDB of the specified
handle

sm_ldb_next_handle Gets the handle of previously loaded LDB
with the same name as the specified LDB

sm_ldb_pop Pops LDBs off the LDB save stack

sm_ldb_push Pushes all LDBs onto a save stack

sm_ldb_state_get Gets the current state of the LDB

sm_ldb_state_set Changes the state of the LDB

sm_ldb_unload Unloads LDBs from memory

sm_lstore Copies everything from screen to LDB

Cursor Control

Control the positioning and display of the cursor on the active screen:

sm_backtab Backtabs to the start of the last unprotected field

sm_c_off Turns the cursor off

sm_c_on Turns the cursor on

sm_c_vis Turns the cursor position display on or off

sm_disp_off Gets the cursor's offset in the current field

sm_gofield Moves the cursor into a field

Message Display

98 JAM 7.0 Language Reference

sm_home Homes the cursor

sm_last Positions the cursor in the last field

sm_nl Positions the cursor to the first unprotected field beyond
the current line

sm_off_gofield Moves the cursor into a field, offset from the left

sm_sh_off Gets the cursor location relative to the start of a shifting
field

sm_tab Moves the cursor to the next unprotected field

Message Display

Access and display runtime application messages:

sm_d_msg_line Displays a message on the status line

sm_femsg ** Displays an error message and awaits user acknowledge-
ment

sm_ferr_reset ** Displays an error message and awaits user acknowledge-
ment

sm_fqui_msg ** Displays an error message preceded by a constant tag

sm_fquiet_err ** Displays an error message preceded by a constant tag

sm_hlp_by_name Displays a help window

sm_message_box Displays a message in a dialog box.

sm_msg Displays a message at a given column on the status line

sm_msg_get Finds a message

sm_msgfind Finds a message given its number

sm_msgread Reads a message file into memory

sm_setbkstat Sets background text for status line

sm_setstatus Turns alternating background status message on or off

** In JPL, error messages are handled by the msg command.

Validation

995 Library Function OverviewChapter

Validation

The following functions provide an application interface to the field and group
validation processes:

dm_val_relative Sets bits for validation

sm_ckdigit Validates a check digit

sm_cl_all_mdts Clears all MDT bits

sm_fval Forces field validation

sm_n_gval Forces execution of a group's validation function

sm_s_val Validates the current screen

sm_tst_all_mdts * Finds the first modified occurrence on the current screen

Mass Storage and Retrieval

Move data to or from sets of fields in the screen or LDB:

sm_restore_data * Restores previously saved data to the screen

sm_rs_data * Restores saved data to some of the screen

sm_save_data * Saves screen contents

sm_sv_data * Saves partial screen contents

sm_sv_free * Frees a buffer that contains saved screen data

sm_svscreen * Registers a list of screens on the save list

Global Data and Changing JAM's Behavior

100 JAM 7.0 Language Reference

Global Data and Changing JAM's Behavior

Get access to global data and manipulate their settings:

sm_delay_cursor Changes the state of the mouse pointer

sm_inquire Gets the value of a global integer variable

sm_iset Changes the value of a global integer variable

sm_ms_inquire Gets information about the mouse's current state

sm_mus_time * Gets the system time of the last mouse click

sm_occur_no Gets the current occurrence number

sm_option Sets a setup variable

sm_pinquire Gets the value of a global string

sm_pset Modifies the value of a global string

sm_soption Sets a string option

Menus

Get and change properties of menus and menu items:

sm_menu_bar_error Returns the error generated by the last call to get a
menu or menu item property

sm_menu_change * Sets a menu's properties

sm_menu_create Defines a menu at runtime

sm_menu_delete Removes a menu from the specified script

sm_menu_get Gets a menu's property

sm_menu_install Makes a menu bar available for display

sm_menu_remove Removes a menu from display

sm_mnitem_change ** Sets a menu item's property

** Wrapper functions for sm_mnitem_change are prototyped in funclist.c and callable from JPL.
For a list of these functions and their parameter declarations, refer to page 373.

Database Initialization

1015 Library Function OverviewChapter

sm_mnitem_create * Inserts a new item into a menu

sm_mnitem_delete Removes an item from a menu

sm_mnitem_get Gets a menu item's property

sm_mnscript_load Loads a menu script into memory and makes its me-
nus available for installation

sm_mnscript_unload Removes a script from memory and destroys all me-
nus installed from it

sm_mncrinit * Initializes the menu subsystem

sm_popup_at_cur Invokes the current widget's pop-up menu

** Wrapper functions for sm_mnitem_change are prototyped in funclist.c and callable from JPL.
For a list of these functions and their parameter declarations, refer to page 373.

Database Initialization

dm_dbi_init * Initializes JAM for database interaction.

dm_init * Initializes JAM to access a specific database engine.

dm_reset * Disables support for a named engine.

Database Access

dm_dbms Executes a DBMS command directly from C.

dm_dbms_noexp* Executes a DBMS command without colon preproces-
sing.

dm_exec_sql Generates and executes SQL statements

dm_expand * Formats a string for an engine.

dm_free_sql_info Frees memory associated with an SQL statement

dm_gen_sql_info Generates SQL

dm_getdbitext * Gets the text of the last executed dbms command.

Database Binary Variable Access

102 JAM 7.0 Language Reference

dm_is_connection Verifies a connection

dm_is_cursor Checks to see if a cursor exists

dm_is_engine * Verifies that a database engine is initialized

Database Binary Variable Access

dm_bin_create_occur * Gets or allocates an occurrence in a binary variable.

dm_bin_delete_occur * Deletes an occurrence in a binary variable.

dm_bin_get_dlength * Gets the length of an occurrence in a binary vari-
able.

dm_bin_get_occur * Gets the data in an occurrence of a binary variable.

dm_bin_length * Gets the maximum length of an occurrence in a
binary variable.

dm_bin_max_occur * Gets the maximum number of occurrences in a
binary variable.

dm_bin_set_dlength * Sets the length of an occurrence in a binary variable.

SQL Generation

dm_gen_change_execute_using Modifies the SQL generation for the
EXECUTE USING command

dm_gen_change_select_from Modifies the SQL generation for the
FROM clause in a SELECT statement

dm_gen_change_select_group_by Modifies the SQL generation for the
GROUP BY clause in a SELECT state-
ment

dm_gen_change_select_having Modifies the SQL generation for the
HAVING clause in a SELECT statement

dm_gen_change_select_list Modifies the SQL generation for the
select list

Transaction Manager Access

1035 Library Function OverviewChapter

dm_gen_change_select_order_by Modifies the SQL generation for the
ORDER BY clause in a SELECT state-
ment

dm_gen_change_select_suffix Appends text to the end of a SELECT
statement for automatic SQL genera-
tion

dm_gen_change_select_where Modifies the SQL generation for the
WHERE clause in a SELECT statement

dm_gen_get_tv_alias Gets the correlation name, or alias,
generated for a table view

Transaction Manager Access

sm_tm_clear Clears all fields in the table view

sm_tm_command Executes a transaction command

sm_tm_event Gets the event number for the specified event name

sm_tm_event_name Gets the event name for the specified event number

sm_tm_inquire Retrieves the value of an integer±valued attribute of the
current transaction

sm_tm_iset Sets the value of an integer±valued transaction attribute

sm_tm_pcopy * Retrieves the value of a string±valued attribute of the
current transaction

sm_tm_pinquire Obtains the value of a string±valued attribute of the cur-
rent transaction

sm_tm_pset Sets the value of a string±valued transaction attribute

Transaction Manager Event Processing

sm_tm_clear_model_events Empties the transaction event stack

sm_tm_continuation_validity * Checks whether CONTINUE events are
permitted for the current table view

Transaction Manager Error and Message Handling

104 JAM 7.0 Language Reference

sm_tm_pop_model_event Pops an event from the transaction event
stack

sm_tm_push_model_event Pushes an event onto the transaction
event stack

Transaction Manager Error and Message Handling

sm_tm_command_emsgset Initiates emsg processing for a DM_TM_ERR_XXX
code

sm_tm_command_errset Initiates error processing for a DM_TM_ERR_XXX
code

sm_tm_dbi_checker Tests for common database errors during trans-
action manager processing

sm_tm_error * Reports an error condition

sm_tm_errorlog Controls error log processing

sm_tm_failure_message Specify an error message for a failed event

sm_tm_msg_count_error Reports a transaction manager error of severity
ERROR

sm_tm_msg_emsg Reports error of emsg severity with message

sm_tm_msg_error Reports error

Before-Image Access in the Transaction Manager

sm_bi_compare Compares fields in the current table view with their be-
fore±image values

sm_bi_copy Copies current values of a range of occurrences to the
before±images

sm_bi_initialize Initializes before±image data for fields in the current
table view

GUI Access

1055 Library Function OverviewChapter

GUI Access

The following functions are applicable for JAM under a GUI. Those that contain
mw or _xm_ are specific to Windows or Motif only.

sm_adjust_area * Recalculates widget positions

sm_attach_drawing_func * Associates a drawing function with a widget

sm_delay_cursor Changes the state of the mouse pointer

sm_drawingarea * Gets a handle to the current screen that can be
passed to the window manager

sm_mw_get_instance * Gets a handle to the current instance of a Win-
dows program

sm_translatecoords * Translates screen coordinates to display coordi-
nates

sm_widget * Gets a handle to a widget

sm_xm_get_base_window * Gets the Widget ID of the base window

sm_xm_get_display * Gets the Widget ID of the current display

DDE (Dynamic Data Exchange)

Exchange data between JAM Windows applications and other Windows applica-
tions.

sm_dde_client_connect_cold Creates a cold DDE link to a server

sm_dde_client_connect_hot Creates a hot DDE link to a server

sm_dde_client_connect_warm Creates a warm DDE link to a server

sm_dde_client_disconnect Destroys a DDE link to a server

sm_dde_client_off Disables DDE client activity

sm_dde_client_on Enables DDE client activity

sm_dde_client_paste_link_cold Creates a cold DDE paste link between
a JAM field and a server

sm_dde_client_paste_link_hot Creates a hot DDE paste link between
a JAM field and a server

File Access

106 JAM 7.0 Language Reference

sm_dde_client_paste_link_warm Creates a warm DDE paste link be-
tween a JAM field and a server

sm_dde_client_request Requests data from a DDE server

sm_dde_execute Sends a command to a DDE server

sm_dde_install_notify * Installs a callback function

sm_dde_poke Pokes data into a DDE server

sm_dde_server_off Disables DDE server activity

sm_dde_server_on Enables DDE server activity

File Access

sm_fi_open * Finds a file and opens it in binary read-only mode

sm_fi_path Returns the full path name of a file

sm_filebox * Opens a file selection dialog box.

sm_filetypes * Adds an option to the file type option menu.

sm_fio_a2f Writes the contents of an array to a file

sm_fio_close Closes an open file stream

sm_fio_editor Invokes an external text editor for an array

sm_fio_error Gets the error returned by the last call to a file I/O
function

sm_fio_error_set Sets the file I/O error

sm_fio_f2a Writes a file's contents to an array

sm_fio_getc Reads the next byte from the specified file stream

sm_fio_gets Reads a line from a file

sm_fio_handle * Gets a handle to an open file

sm_fio_open Opens the specified file and returns a handle to the
JPL caller

sm_fio_putc Writes a single byte to an open file

Library Access

1075 Library Function OverviewChapter

sm_fio_puts Writes a line of text to an open file

sm_fio_rewind Resets the file stream to the beginning of a file

Library Access

sm_l_close Closes a library and frees all memory associated with it

sm_l_open Opens a library

sm_slib_error Gets the system return for the last call to sm_slib_load

sm_slib_install Installs a function from a DLL into a JAM application

sm_slib_load Loads a DLL and makes its functions available for instal-
lation

JPL

sm_jplcall Executes a JPL procedure

sm_jplpublic Executes JPL's public command

sm_jplunload Executes JPL's unload command

Miscellaneous

sm_formlist * Updates the list of memory-resident files

sm_shell Executes a system call

sm_isabort Tests and sets the abort control flag

sm_pm_add_res_map * Installs tables that map string resource identifiers to
integer identifiers

sm_rmformlist * Empties the memory-resident form list

109

JAM Library
Functions

This chapter contains descriptions of JAM library functions arranged alphabetical-
ly. Each function description tells what the function does, and where and how to
use it. Information about each function is organized into the following sections:

� Syntax lines that are patterned after C function declarations. A syntax line is
given for each variant of this function. Syntax lines are preceded by include
statements that are specific to the function.

� Parameter descriptions.

� Platforms on which the function is valid. If the function is available on all
platforms, this section is omitted.

� Return values, if any. If the function returns no meaningful value, this section
is omitted.

� Description of the functionÐtypical usage, prerequisites, results, and potential
side-effects.

� An example that shows how to use the function.

� Listing of related functions.

Note: Because all routines that call JAM library functions must include
smdefs.h , syntax sections omit an include statement for this file. If the function
requires inclusion of other header files, the syntax section contains include
statements for them.

66

dm_bin_create_occur

110 JAM 7.0 Language Reference

dm_bin_create_occur
Gets or allocates an occurrence in a binary variable

#include <dmuproto.h>

char *dm_bin_create_occur(char *variable, int occurrence);

The binary variable that contains the occurrence to get.

The occurrence in variable to get.

w 0: The variable is not found or the occurrence number is not valid.
w A pointer to an occurrence in a binary variable.

dm_bin_create_occur gets the specified occurrence from the variable if the
application has created a binary variable with DBMS BINARY. If the occurrence has
not been allocated, this function will allocate it. Note that occurrence must be
less than or equal to the number of occurrences specified in the DBMS BINARY
statement.

dbms BINARY

variable

occurrence

Returns

Description

See Also

dm_bin_delete_occur

1116 JAM Library FunctionsChapter

dm_bin_delete_occur
Deletes an occurrence in a binary variable

#include <dmuproto.h>

void dm_bin_delete_occur(char *variable, int occurrence);

The binary variable that contains the occurrence to delete.

The occurrence in variable to delete.

dm_bin_delete_occur frees the specified occurrence and sets the pointer to the
occurrence to 0 if the application has created a binary variable with DBMS BINARY
and the occurrence has been allocated. If the occurrence has not been allocated, the
function does nothing.

dbms BINARY

variable

occurrence

Description

See Also

dm_bin_get_dlength

112 JAM 7.0 Language Reference

dm_bin_get_dlength
Gets the length of an occurrence in a binary variable

#include <dmuproto.h>

unsigned int dm_bin_get_dlength(char *variable, int occurrence);

The binary variable that contains the occurrence to measure.

The occurrence in variable whose length you want to get.

w 0: The variable or occurrence is not found.
w The length of the occurrence.

If the application has created a binary variable with DBMS BINARY and the occur-
rence has been allocated, this function returns the length of the contents in the spe-
cified occurrence.

dbms BINARY , dm_bin_set_dlength

variable

occurrence

Returns

Description

See Also

dm_bin_get_occur

1136 JAM Library FunctionsChapter

dm_bin_get_occur
Gets the data in an occurrence of a binary variable

#include <dmuproto.h>

char *dm_bin_get_occur(char *variable, int occurrence);

The binary variable that contains the occurrence to get.

The occurrence in variable whose data you want to get.

w 0: The variable or occurrence is not found.
w A pointer to an occurrence in the variable.

If the application has created a binary variable with DBMS BINARY and the occur-
rence has been allocated, this function gets the specified occurrence from the vari-
able.

dbms BINARY

variable

occurrence

Returns

Description

See Also

dm_bin_length

114 JAM 7.0 Language Reference

dm_bin_length
Gets the maximum length of an occurrence in a binary variable

#include <dmuproto.h>

unsigned int dm_bin_length(char *variable);

The variable whose maximum occurrence length you want to ascertain.

w 0: The variable is not found.
w The length of the variable.

If the application has created a binary variable with DBMS BINARY, this function
gets the maximum length of a single occurrence in the variable. To get the length
of an occurrence's contents, use dm_bin_get_dlength .

dbms BINARY

variable

Returns

Description

See Also

dm_bin_max_occur

1156 JAM Library FunctionsChapter

dm_bin_max_occur
Gets the maximum number of occurrences in a binary variable

#include <dmuproto.h>

int dm_bin_max_occur(char *variable);

The variable whose maximum number of occurrences you want to ascertain.

w 0: The variable is not found.
w The number of occurrences in the variable.

If the application has created a binary variable with DBMS BINARY, this function
gets the maximum number of occurrences in the variable.

dbms BINARY

variable

Returns

Description

See Also

dm_bin_set_dlength

116 JAM 7.0 Language Reference

dm_bin_set_dlength
Sets the length of an occurrence in a binary variable

#include <dmuproto.h>

void dm_bin_set_dlength(char *variable, int occurrence, unsigned int length);

The variable that contains the occurrence to set.

The occurrence in variable whose length is to be set.

The length to set for occurrence .

If the application has created a binary variable with DBMS BINARY, this function
sets the length of a single occurrence in the binary variable. length can be less
than or greater than the variable's declared length.

dbms BINARY , dm_bin_get_dlength

variable

occurrence

length

Description

See Also

dm_dbi_init

1176 JAM Library FunctionsChapter

dm_dbi_init
Initializes for database interaction

#include <dmuproto.h>

void dm_dbi_init(void);

JAM must be initialized for use with the database drivers. This function tells JAM
the class of error messages used with the database drivers and how to handle the
JPL command dbms.

JAM calls this function in the source files jmain.c and jxmain.c . If you modify
these files or if you write your own executive, you can call this function at another
time. However, it should be called before sm_initcrt so that the message file
loads properly.

Description

dm_dbms

118 JAM 7.0 Language Reference

dm_dbms
Executes a DBMS command directly from C

#include <dmuproto.h>

int dm_dbms(char *dbms_cmd);

Points to a buffer with the DBMS command to execute. Refer to Chapter 11 in the
Database Guide for detailed descriptions of each DBMS command.

w 0: Success.
w An error code from the default or installed error handler.

dm_dbms lets you execute any DBMS command directly from C. This function
executes in the following steps:

1. dbms_cmd is examined for the WITH ENGINE or WITH CONNECTION clause.
If it is not used, dm_dbms assumes the default engine and connection.

2. The colon preprocessor examines dbms_cmd for colon variables and performs
the indicated expansion.

3. dbms_cmd is passed to the appropriate function for handing DBMS commands.
After executing the requested command, JAM updates all global status and
error variables (@dm).

If the application has installed an entry function with DBMS ONENTRY, an exit
function with DBMS ONEXIT , or an error handler with DBMS ONERROR, the
installed function is called for commands executed through dm_dbms.

int start_up ()
{
 int retcode;
 retcode = dm_dbms (ºONERROR CALL do_errorº);
 if (retcode)
 {
 sm_emsg(ºCannot install application error handler.º)

dbms_cmd

Returns

Description

Example

dm_dbms

1196 JAM Library FunctionsChapter

 return 0;
 }
 dm_dbms (ºDECLARE c1 CONNECTION FOR USER ':user' PASSWORD
 ':password'º);
 return 0;
}

dm_dbms_noexp

120 JAM 7.0 Language Reference

dm_dbms_noexp
Executes a DBMS command without colon preprocessing

#include <dmuproto.h>

int dm_dbms_noexp(char *dbms_cmd);

Points to a buffer that contains the DBMS command to execute.

w 0: Success.
w A return code from an installed or default error handler.

dm_dbms_noexp is identical to dm_dbms except that no colon preprocessing is
performed on dbms_cmd.

dm_dbms, dm_expand

dbms_cmd

Returns

Description

See Also

dm_exec_sql

1216 JAM Library FunctionsChapter

dm_exec_sql
Generates and executes SQL statements

#include <tmusubs.h>

int dm_exec_sql(int type, char *cursor_name);

Type of SQL statement specified by one of the constants listed in Table 5.

Name of the cursor associated with the SQL statement.

0 Success.
w A non±zero value returned from an ONENTRY, ONEXIT or ONERROR function

resulting from a generated SQL statement having executed.
w One of the DM_TM_ERR_xxx return values listed in tmusubs.h .

dm_exec_sql is called from a transaction model or a user hook function to
generate and execute SQL statements according to one of the following constants
supplied for the type parameter:

Table 5. SQL statement types

Argument Description

BUILD_SELECT Examines screen properties and builds structures for a SQL SELECT statement
including a distinct string, if specified, a select list (column names and/or ex-
pressions), and a WHERE clause.

BUILD_VALIDATE Examines screen edits and builds structures for a SELECT statement used to
process a validation link.

DECLARE_DELETE_NBR
DECLARE_DELETE_OCC

Builds and executes the following statement for database deletions:

DBMS DECLARE cursor CURSOR FOR DELETE FROM current-table-view
 WHERE primary-key-column = :w_ primary-key-column ...

DECLARE_INSERT Builds and executes the following statement for database insertions:

DBMS DECLARE cursor CURSOR FOR INSERT INTO current-table-view
 (column-name ...)
 VALUES (:v_ column-name...)

type

cursor_name

Returns

Description

dm_exec_sql

122 JAM 7.0 Language Reference

Argument Description

DECLARE_UPDATE Builds and executes the following statement for database updates:

DBMS DECLARE cursor CURSOR FOR UPDATE current-table-view
 SET column-name = :s_ widget-name ...
 WHERE primary-key-column = :w_ primary-key-column ...

EXEC_DELETE_NBR
EXEC_DELETE_OCC

Builds and executes the following statement for database deletions:

DBMS WITH CURSOR cursor EXECUTE USING
 w_ primary-key-column = @bi(primary-key-widget)[occ] ...

EXEC_INSERT Builds and executes the following statement for database insertions:

DBMS WITH CURSOR cursor EXECUTE USING
 v_ column-name = widget-name[occ] ...

EXEC_UPDATE Builds and executes the following statement for database updates:

DBMS WITH CURSOR cursor EXECUTE USING
 s_ column-name = widget-name[occ] ...
 w_ primary-key-column = @bi(primary-key-widget)[occ] ...

PERFORM_SELECT Executes the following statements for database queries:

DBMS DECLARE cursor CURSOR FOR SELECT [DISTINCT] select-list
 FROM tables-in-current-server-view
 [WHERE [join-clause] [AND search-condition]]
 [GROUP BY column-list]
 [HAVING search-condition]
 [ORDER BY column-position { ASC|DESC }, ...]

DBMS WITH CURSOR cursor ALIAS widget-list

DBMS WITH CURSOR cursor <EXECUTE
 [USING [join-values] [where-values] [having-values]]

PERFORM_VALIDATE Executes the following statements for validation links:

DBMS DECLARE cursor CURSOR FOR
 SELECT {1 | look±up list} FROM child-table-view WHERE ...
DBMS WITH CURSOR cursor ALIAS ...
DBMS OCCUR
DBMS WITH CURSOR cursor EXECUTE
DBMS CLOSE CURSOR cursor

dm_exec_sql(BUILD_SELECT) and dm_exec_sql(BUILD_VALIDATE) should
not be called without a prior call to dm_gen_sql_info to initialize the statement

Selecting Data

dm_exec_sql

1236 JAM Library FunctionsChapter

structures. In the standard transaction models, dm_exec_sql and other related
functions are called by the following requests:

Request dm_exec_sql (and related) calls

TM_SEL_GEN dm_gen_sql_info(SELECT, cursor)

TM_SEL_BUILD_PERFORM dm_exec_sql(BUILD_SELECT, cursor)
dm_exec_sql (PERFORM_SELECT, cursor)
dm_free_sql_info(SELECT)

TM_VAL_GEN dm_gen_sql_info (VALIDATE, cursor)

TM_VAL_BUILD_PERFORM dm_exec_sql(BUILD_VALIDATE, cursor)
dm_exec_sql (PERFORM_VALIDATE, cursor)

TM_VAL_CHECK dm_free_sql_info(VALIDATE)

dm_exec_sql(DECLARE_xxx) should not be called without a prior call to
sm_bi_initialize . The transaction manager calls sm_bi_initialize
automatically when sm_tm_command(ºNEWº) or sm_tm_command(ºSELECTº)
is executed. In the standard transaction models, dm_exec_sql and other related
functions are called by the following requests:

Request dm_exec_sql calls

TM_DELETE_DECLARE dm_exec_sql(DECLARE_DELETE_NBR)
dm_exec_sql(DECLARE_DELETE_OCC)

TM_DELETE_EXEC dm_exec_sql(EXEC_DELETE_NBR)
dm_exec_sql(EXEC_DELETE_OCC)

TM_INSERT_DECLARE dm_exec_sql(DECLARE_INSERT)

TM_INSERT_EXEC dm_exec_sql(EXEC_INSERT)

TM_UPDATE_DECLARE dm_exec_sql(DECLARE_UPDATE)

TM_UPDATE_EXEC dm_exec_sql(EXEC_UPDATE)

Modifying Data

dm_expand

124 JAM 7.0 Language Reference

dm_expand
Formats a string for an engine

#include <dmuproto.h>

int dm_expand(char *engine, char *data, int type, char *buf, int buflen,
char *edit);

The name of an initialized engine. If this argument is null, JAM uses the default
engine.

The string to format. Use JAM library functions such as sm_getfield to get the
value of a field or LDB entry.

A JAM data type, specified by one of the following constants defined in
smedits.h :

FT_CHAR FT_DOUBLE FT_LONG
DT_CURRENCY FT_FLOAT FT_SHORT
DT_DATETIME FT_INT DT_YESNO

A buffer provided by the program. The program is responsible for allocating a
buffer large enough for the formatted string.

Points to the size of the buffer. Upon return from dm_expand , the value contained
in the integer will be the length of the formatted text. The program can compare
this value with the allocated length to ensure that truncation did not occur.

A date-time edit string describing data . It is required when type is DT_DATETIME.

0 Success.
-1 engine is invalid.
-2 Arguments are invalidÐillegal JAM type, buflen 3 0, buf not allocated, or

DT_DATETIME was used without a datetime edit.
-3 Formatting function failed.

dm_expand lets you format a string for a particular engine and JAM type. The
function copies the formatted string to a buffer provided by the program.

engine

data

type

buf

buflen

edit

Returns

Description

dm_expand

1256 JAM Library FunctionsChapter

#include ºsmdefs.hº
#include ºsmedits.hº
#include ºdmuproto.hº

char *
formatter (src_name, jamtype)
char *src_name;
int jamtype;
{
char src_buf[256]; /* For widget contents */
char *edit=0; /* For datetime edit */
char dst_buf[256]; int dst_len=256; /* For formatted string*/

strcat (dst_buf, ºº);

/* Get contents of non±null widget. */
if ((sm_n_null (src_name) == 0) &&

(sm_n_getfield (src_buf, src_name) > 0))
{
/* If no type was supplied, get it from the source

field.*/
if (jamtype == 0)
{

jamtype = sm_n_ftype(src_name, (int*)0) & DT_DTYPE;
}

/* If type is DT_DATETIME get format from source field. */
if (jamtype == DT_DATETIME)
{

edit = sm_n_edit_ptr (src_name, UDATETIME);
/* If there is no user format, check for

system format. */
if (edit == 0)
{

edit = sm_n_edit_ptr (src_name, SDATETIME);
}
edit = edit +2;

}

/* Format text for the current engine. */
dm_expand (ºº, src_buf, jamtype, dst_buf, &dst_len, edit);

}
return dst_buf;

}

dm_dbms_noexp

Example

See Also

dm_free_sql_info

126 JAM 7.0 Language Reference

dm_free_sql_info
Free memory associated with an SQL SELECT statement

#include <tmusubs.h>

int dm_free_sql_info(int type);

The type of SQL SELECT statement, either SELECT or VALIDATE. When this
function is called by the standard transaction models, the type is set to SELECT for
the transaction commands SELECT and VIEW, and the type is set to VALIDATE for
the transaction command VALIDATE_LINK .

0

dm_free_sql_info is used to free data that is associated with SELECT or
VALIDATE statements. If the type is SELECT, it should follow the BUILD_SELECT
or PERFORM_SELECT processing performed in dm_gen_sql .

If the type is VALIDATE, it should follow the BUILD_VALIDATE and PER-
FORM_VALIDATE processing performed in dm_gen_sql as well as any call to
dm_val_relative .

int retcode;
char *sel_cursor;
...
retcode = dm_exec_sql(BUILD_SELECT, sel_cursor);
if (!retcode)
 retcode = dm_exec_sql(PERFORM_SELECT, sel_cursor);
dm_free_sql_info(SELECT);

dm_gen_sql_info

type

Returns

Description

Example

See Also

dm_gen_change_execute_using

1276 JAM Library FunctionsChapter

dm_gen_change_execute_using
Add or replace a bind value in a DBMS EXECUTE statement for SQL generation

#include <tmusubs.h>

int dm_gen_change_execute_using(char *arg, char *bind_parm, char *bind_val,
int occ, int relative, int flag);

Reserved for future use.

Specifies the bind parameter. If this is a null pointer or an empty string, the clause
is not built.

Specifies the bind value. If this is a null pointer or an empty string, the clause is not
built.

Specifies the occurrence number.

Specifies how to use the occurrence number with one of the following values:

DM_GEN_ABSOLUTE_OCCUR
DM_GEN_RELATIVE_TO_PARENT
DM_GEN_RELATIVE TO CHILD

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

When flag is set to this value, bind_val is added to end of the USING clause.
This produces the following statement:

DBMS WITH CURSOR cursor EXECUTE USING existing_parentTV_binds,
 existing_childTV_binds, bind_parm = bind_val[occ]

DM_GEN_PREPEND

When flag is set to this value, bind_val is added to the beginning of the USING
clause. This produces the following statement:

DBMS WITH CURSOR cursor EXECUTE USING bind_parm = bind_val[occ],
 existing_parentTV_binds, existing_childTV_binds

DM_GEN_REPLACE_ALL

When flag is set to this value, bind_val replaces the previous USING clause.
This produces the following statement:

arg

bind_parm

bind_val

occ

relative

flag

dm_gen_change_execute_using

128 JAM 7.0 Language Reference

DBMS WITH CURSOR cursor EXECUTE USING bind_parm = bind_val[occ]

If flag is set to this value and the other arguments are empty strings, the USING
clause is removed.

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

dm_gen_change_execute_using lets you edit the USING clause of a DBMS
EXECUTE statement. The data structure for the SELECT statement, which is built by
a call to dm_gen_sql_info (generally in the TM_SEL_GEN event), must already
exist before this function is called. Note that this function must be called once for
each bind value you wish to change.

This function can be implemented as part of a transaction manager hook function
that processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call the dm_gen_change_execute_using function
from a hook function attached to the first parent table view in the server view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide.

The settings for relative and occurrence determine the value for occ, the
occurrence number used in the statement.

If relative is set to DM_GEN_RELATIVE_TO_PARENT or DM_GEN_REL-
ATIVE_TO_CHILD, the current occurrence in the parent or child table view is used
as the basis for the occurrence number. Then, the setting for occurrence is
checked. If occurrence is 0, the current occurrence in that table view is used in
the statement. If occurrence is greater than 0, the occurrence is calculated by
adding the specified occurrence to the current occurrence.

If you only need to substitute an occurrence number in the statement processing,
set relative to DM_GEN_ABSOLUTE_OCCUR and set occurrence to be greater
than 0.

JPL Procedure:
Generate IN clause using binding parameters.
Function property is set to titles_exec.

proc titles_exec (event)

Returns

Description

Example

dm_gen_change_execute_using

1296 JAM Library FunctionsChapter

if (event == TM_SEL_BUILD_PERFORM)
{
 vars retval(5), occ(3), i(3), in_buffer(255), comma(1)

 occ = @widget(ºqbe_titleidº)±>num_occurrences

If the array ºqbe_titleidº contains data,
build a SQL ºinº clause.

 if (occ > 0)

First loop through qbe_titleid and build an IN clause
in the form ºtitle_id in (::p1, ::p2, ::p3).
 {
 for i=1 while i <= occ
 {
 if (qbe_titleid[i] != ºº)
 {
 %.0 i = i
 in_buffer = in_buffer ## comma ## º\:\:pº ## i \
 comma = º,º
 }
 }
 in_buffer = ºtitle_id in (º ## in_buffer ## º)º
 retval = dm_gen_change_select_where \
 (ºº, in_buffer, DM_GEN_APPEND)

Now loop through qbe_titleid and change the EXECUTE
USING statement. This could be done in the previous loop.
It is separated for clarity.

 for i=1 while i <= occ
 {
 if (qbe_titleid[i] != ºº)
 {
 %.0 i = i
 retval=dm_gen_change_execute_using \
 ('', ºp:iº, ºqbe_titleidº, i, \
 DM_GEN_ABSOLUTE_OCCUR, DM_GEN_APPEND)
 }
 }

 if (retval != 0)
 return TM_FAILURE
 }
}
return TM_PROCEED

dm_gen_change_execute_using

130 JAM 7.0 Language Reference

The following example uses the current occurrence in the parent table view to
specify the occurrence number. The parent table view in this sequential link is a list
of customers. When you enter one of the rental_status codes for a customer in
the qbe_status field, the rentals for that customer which match that status
populate the child table view.

JPL Procedure:
Generate WHERE and EXECUTE USING clause using occurrence
in parent table view. The Function property for rentals
table view is set to rentals_hook.

proc rentals_hook(event)
{
 vars whexp(100) retval(5)
 if (event==TM_SEL_BUILD_PERFORM)
 {
 # Build the following: correlation.rental_status = ::qbe1
 whexp=dm_gen_get_tv_alias(sm_tm_pinquire(TM_TV_NAME)) \
 ## º.rental_statusº \
 ## º=º \
 ## º::::qbe1º

 # Add it to the WHERE clause.
 retval = dm_gen_change_select_where(ºº, whexp,\
 DM_GEN_APPEND)

 # Append to the EXECUTE USING clause in the form:
 # qbe1 = qbe_stat[<occ>]
 # where occ is the same occurrence number as the current
 # occurrence in parent table view.
 retval = dm_gen_change_execute_using\
 (ºº, ºqbe1º, ºqbe_statº, \
 0, DM_GEN_RELATIVE_TO_PARENT, DM_GEN_APPEND)
 }
 return TM_PROCEED
}

dm_gen_sql_info

Example

See Also

dm_gen_change_select_from

1316 JAM Library FunctionsChapter

dm_gen_change_select_from
Edit the FROM clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_from(char *arg, char *table, char *corr_name,
int flag);

Reserved for future use.

The name of the database table. For some database engines, you may need to
include the owner name in the format:

owner.table_name

The correlation name for the database table.

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds the name of the database table and its associated correlation name to the end
of the FROM clause. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM existing_from_clause,
 table corr_name

DM_GEN_PREPEND

Adds the name of the database table and its associated correlation name to the
beginning of the FROM clause. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM table corr_name,
 existing_from_clause

DM_GEN_REPLACE_ALL

The name of the database table and its associated correlation name replace the
previous FROM clause. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM table corr_name

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

arg

table

corr_name

flag

Returns

dm_gen_change_select_from

132 JAM 7.0 Language Reference

dm_gen_change_select_from allows you to edit the tables listed in the FROM
clause of a SELECT statement built with the SQL generator. The data structure for
the SELECT statement, which is built by a call to dm_gen_sql_info (generally in
the TM_SEL_GEN event), must already exist before this function is called. Note that
this function must be called once for each table name you wish to change.

By default, the SQL generator builds the table list based on the Table property of
each table view in the server view. For more information on the SQL generator,
refer to Chapter 18 in the Application Development Guide.

This function can be implemented as part of a transaction manager hook function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the
select processing for a server view, call the dm_gen_change_select_from
function from a hook function attached to the first parent table view in the server
view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide.

JPL Procedure:
Fetch data from titles which is an unlinked table view.
Function property is set to titles_join.

proc titles_join (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_list(ºº, ºnameº, ºnameº, \
 DM_GEN_APPEND)

 retval = dm_gen_change_select_from \
 (ºº, ºtitlesº, ºtitlesº, DM_GEN_APPEND)

 retval = dm_gen_change_select_where (ºº, \
 ºrentals.title_id = titles.title_idº, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

dm_gen_sql_info

Description

Example

See Also

dm_gen_change_select_group_by

1336 JAM Library FunctionsChapter

dm_gen_change_select_group_by
Edit the GROUP BY clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_group_by(char *arg, char *column, int flag);

Reserved for future use.

The name of the column to be used in the GROUP BY clause.

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds column to the end of the GROUP BY clause. This produces the following
statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
GROUP BY existing_group_by_list, column

DM_GEN_PREPEND

Adds column to the beginning of the GROUP BY clause. This produces the
following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
GROUP BY column, existing_group_by_list

DM_GEN_REPLACE_ALL

column replaces the previous GROUP BY clause. This produces the following
statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
GROUP BY column

If flag is set to this value and column is set to an empty string, the GROUP BY
clause is removed. For example:

x = dm_gen_change_select_group_by(ºº, ºº, DM_GEN_REPLACE_ALL)

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

arg

column

flag

Returns

dm_gen_change_select_group_by

134 JAM 7.0 Language Reference

dm_gen_change_select_group_by allows you to edit the GROUP BY clause
built with the SQL generator. The data structure for the SELECT statement, which
is built by a call to dm_gen_sql_info (generally in the TM_SEL_GEN event), must
already exist before this function is called. Note that this function must be called
once for each change you wish to make.

By default, the SQL generator builds a GROUP BY clause automatically when one
of the select expressions is an aggregate function. For more information on how the
SQL generator builds statements, refer to Chapter 18 in the Application Develop-
ment Guide.

This function can be implemented as part of a transaction manager hook function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the
select processing for a server view, call the dm_gen_change_select_group_by
function from a hook function attached to the first parent table view in the server
view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide.

JPL Procedure:
Append column not part of table view to automatically
generated group by clause.
Function property set to titles_group.

proc titles_group (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_list \
 (ºº, ºrating_codeº, ºrcº, DM_GEN_APPEND)
 retval = dm_gen_change_select_group_by \
 (ºº, ºrating_codeº, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

dm_gen_sql_info

Description

Example

See Also

dm_gen_change_select_having

1356 JAM Library FunctionsChapter

dm_gen_change_select_having
Edit the HAVING clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_having(char *arg, char *search_cond, int flag);

Reserved for future use.

The search condition to include in the HAVING clause.

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds search_cond to the end of the HAVING clause. This produces the following
statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
 HAVING existing_having_clause AND search_cond

DM_GEN_PREPEND

Adds search_cond to the beginning of the HAVING clause. This produces the
following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
 HAVING search_cond AND existing_having_clause

DM_GEN_REPLACE_ALL

search_cond replaces the existing HAVING clause. This produces the following
statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
 HAVING search_cond

If flag is set to this value and search_cond is set to an empty string, the HAVING
clause is removed. For example:

x = dm_gen_change_select_having(ºº, ºº, DM_GEN_REPLACE_ALL)

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

arg

search_cond

flag

Returns

dm_gen_change_select_having

136 JAM 7.0 Language Reference

dm_gen_change_select_having lets you edit the HAVING clause built with the
SQL generator. The data structure for the SELECT statement, which is built by a
call to dm_gen_sql_info (generally in the TM_SEL_GEN event), must already
exist before this function is called.

Generally, a HAVING clause sets search conditions for the preceding GROUP BY
clause. The SQL generator creates GROUP BY clauses automatically for aggregate
functions. GROUP BY clauses can also be generated using the function
dm_gen_change_select_group_by . HAVING clauses can be generated with the
Having property or by using this function. For more information on automatic SQL
generation, refer to Chapter 18 in the Application Development Guide.

This function can be implemented as part of a transaction manager hook function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the
select processing for a server view, call dm_gen_change_select_having from a
hook function attached to the first parent table view in the server view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide.

JPL Procedure:
Generate a having clause.
Function property is set to titles_having.

proc titles_having (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_having\
 (ºº, ºcount(*) > 2º, DM_GEN_APPEND)

 retval = dm_gen_change_select_having\
 (ºº, ºdir_last_name like 'W%'º, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

dm_gen_sql_info

Description

Example

See Also

dm_gen_change_select_list

1376 JAM Library FunctionsChapter

dm_gen_change_select_list
Edit the select list for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_list(char *arg, char *sel_expr, char *jam_alias,
int flag);

Reserved for future use.

The select expression. If the expression is invalid, the engine returns an error.

Name of the JAM variable to use in the DBMS ALIAS statement. If this variable
does not exist or is blank, the SELECT statement fetches the expression's values,
but they are ignored. This is not considered an error.

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds sel_expr to the end of the select list. jam_alias is added after the existing
aliases. This produces the following statements:

DBMS DECLARE cursor FOR SELECT existing_select_list, sel_expr FROM ...
DBMS WITH CURSOR cursor ALIAS existing_aliases, jam_alias

DM_GEN_PREPEND

Adds sel_expr to the beginning of the select list, and jam_alias is added before
the existing aliases. This produces the following statements:

DBMS DECLARE cursor FOR SELECT sel_expr, existing_select_list FROM ...
DBMS WITH CURSOR cursor ALIAS jam_alias, existing_aliases

DM_GEN_REPLACE_ALL

sel_expr replaces the previous select list, and jam_alias replaces the existing
aliases. This produces the following statements:

DBMS DECLARE cursor FOR SELECT sel_expr FROM ...
DBMS WITH CURSOR cursor ALIAS jam_alias

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

arg

sel_expr

jam_alias

flag

Returns

dm_gen_change_select_list

138 JAM 7.0 Language Reference

dm_gen_change_select_list allows you to edit the select list built using the
SQL generator. The data structure for the SELECT statement, which is built by a
call to dm_gen_sql_info (generally in the TM_SEL_GEN event), must already
exist before this function is called. You must call this function once for each
change you wish to make.

By default, the SQL generator builds the select list from the widgets whose Use In
Select property is set to Yes. For more information on the SQL generator, refer to
Chapter 18 in the Application Development Guide.

This function can be implemented as part of a transaction manager hook function
that processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call dm_gen_change_select_list from a hook
function attached to the first parent table view in the server view.

For more information on transaction hook functions, refer to Chapter 22 in the
Application Development Guide.

JPL Procedure:
Adds pic1, a binary column, to the select list for the
current server view and sets bin_col1 as the target.
The Function property is set to binary_hook.

proc binary_hook (event)
{
vars retval(5) colexp(64)

if (event==TM_SEL_BUILD_PERFORM)
 {
 colexp=dm_gen_get_tv_alias\
 (sm_tm_pinquire(TV_NAME) ## º.pic1º
 retval=dm_gen_change_select_list\
 (ºº, colexp, ºbin_col1º, DM_GEN_APPEND)

The number of occurrences for bin_col1 is set to match the
number of occurrences of another column in the table.

 if (retval == 0)
 {
 retval=sm_n_max_occur(ºnameº)
 dbms binary bin_col1[:retval](1024)
 }
 }
 return TM_PROCEED
}

dm_gen_sql_info

Description

Example

See Also

dm_gen_change_select_order_by

1396 JAM Library FunctionsChapter

dm_gen_change_select_order_by
Edit the ORDER BY clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_order_by(char *arg, char *widget_name, int sort_ind,
int flag);

Reserved for future use.

The name of the widget whose Database%Column Name property is referenced in
the ORDER BY clause. If the name of the database column is entered, it is ignored.

Specifies whether the sort is ascending (DM_GEN_ASC_SORTED) or descending
(DM_GEN_DESC_SORTED). If set to an invalid value, an error is generated.

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds the specified information to the end of the ORDER BY clause. This produces
the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
 ORDER BY existing_order_by_list, column_position sort_ind

DM_GEN_PREPEND

Adds the specified information to the beginning of the ORDER BY clause. This
produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
 ORDER BY column_position sort_ind, existing_order_by_list

DM_GEN_REPLACE_ALL

The specified information replaces the previous ORDER BY clause. This produces
the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM tables
 ORDER BY column_position sort_ind

If flag is set to this value and widget_name is set to an empty string, the ORDER
BY clause is removed. For example:

arg

widget_name

sort_ind

flag

dm_gen_change_select_order_by

140 JAM 7.0 Language Reference

x = dm_gen_change_select_order_by
 (ºº, ºº, ºº, DM_GEN_REPLACE_ALL)

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

dm_gen_change_select_order_by lets you edit the ORDER BY clause built
with the SQL generator. The structure for the SELECT statement, which is built by
a call to dm_gen_sql_info (generally in the TM_SEL_GEN event), must already
exist before this function is called. Note that this function must be called once for
each change you wish to make.

By default, the SQL generator builds the ORDER BY clause from values of the table
view's Sort Columns property. For more information on how the SQL generator
builds statements, refer to Chapter 18 in the Application Development Guide.

This function can be implemented as part of a transaction manager hook function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the
select processing for a server view, call dm_gen_change_select_order_by
from a hook function attached to the first parent table view in the server view.

To view a sample hook function written in JPL, refer to the example in this section.
For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide.

Appends the order by list for titles table.
The Function property is set to titles_orderby.

proc titles_orderby (event)

vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_order_by \
 (ºº, ºfilm_minutesº, DM_GEN_ASC_SORTED, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

dm_gen_sql_info

Returns

Description

Example

See Also

dm_gen_change_select_suffix

1416 JAM Library FunctionsChapter

dm_gen_change_select_suffix
Appends text to the end of a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_suffix(char *arg, char *suffix);

Reserved for future use.

The suffix to append to the SQL SELECT statement.

0 Success.
±1 dm_gen_sql_info was not called.
±2 Invalid flag.

dm_gen_change_select_suffix lets you append text to the end of a SQL SE-
LECT statement built with the SQL generator. For example, you can use this func-
tion to add a FOR UPDATE clause to the end of a SELECT statement. The data struc-
ture for the SELECT statement, built by an earlier call to dm_gen_sql_info
(generally in the TM_SEL_GEN event), must already exist before this function is
called.

By default, the SQL generator builds the statement based on the widgets' and table
view's properties. For more information on the SQL generator, refer to Chapter 18
in the Application Development Guide.

You can use this function in a transaction manager hook function that processes the
TM_SEL_BUILD_PERFORM event. To modify the select processing for a server
view, call dm_gen_change_select_suffix from a hook function that is
attached to the first parent table view in the server view.

For more information on writing transaction hook functions, refer to Chapter 22 in
the Application Development Guide.

JPL Procedure:
Fetch data from titles for possible update.
Function property is set to titles_select.

proc titles_select (event)

arg

suffix

Returns

Description

Example

dm_gen_change_select_suffix

142 JAM 7.0 Language Reference

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_suffix(ºº, ºfor updateº)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

dm_gen_sql_infoSee Also

dm_gen_change_select_where

1436 JAM Library FunctionsChapter

dm_gen_change_select_where
Edit the WHERE clause in a SELECT statement used in automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_where(char *arg, char *where_expr, int flag);

Reserved for future use.

Text of the expression to include in the WHERE clause. If the expression includes a
parameter and the function is called within a JPL procedure, the parameter name
must be declared with four colons because of colon expansion (::::parm1).

Specifies the type of change to make with one of these constants:

DM_GEN_APPEND

When flag is set to this value, where_expr is added to end of the WHERE clause.
This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM table_list
 WHERE link_expression AND existing_where_expr AND where_expr

DM_GEN_PREPEND

Adds where_expr to the beginning of the expressions derived from the Use In
Where property. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM table_list
 WHERE link_expression AND where_expr AND existing_where_expr

DM_GEN_REPLACE_ALL

Removes all the expressions based on the Use In Where property being Yes and
where_expr replaces the previous data. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM table_list
 WHERE link_expression AND where_expr

You also need to call dm_gen_change_execute_using to remove the
existing_where_expr from the USING clause of the EXECUTE statement.

0 Success.
±1 Error: dm_gen_sql_info was not called.
±2 Error: Invalid flag.

arg

where_expr

flag

Returns

dm_gen_change_select_where

144 JAM 7.0 Language Reference

dm_gen_change_select_where lets you edit the WHERE clause of a SQL SE-
LECT statement. The structure for the SELECT statement, which is generally built
by a call to dm_gen_sql_info in the TM_SEL_GEN event, must already exist be-
fore dm_gen_change_select_where is called.

By default, the data for the WHERE clause comes from:

� Widgets whose Use In Where property is Yes.

� The Relations property for the link which determines the columns for joins if
it is a server link and for master/detail information if it is a sequential link.

dm_gen_change_select_where adds to or replaces the data based on the Use In
Where property. For more information on how the SQL generator uses this
property, refer to page 281 in the Application Development Guide.

In particular, this function can be used to add a BETWEEN clause or a subquery to a
SQL SELECT statement.

This function can be implemented as part of a transaction manager hook function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the
select processing for a server view, call dm_gen_change_select_where from a
hook function attached to the first parent table view in the server view.

To view a sample hook function written in JPL, refer to the example in the next
section. For more information on writing transaction hook functions, refer to
Chapter 22 in the Application Development Guide.

JPL Procedure:
Append IN clause to WHERE clause.
Function property is set to titles_in.

proc titles_in (event)

vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
{
 vars occ(3), i(3), in_buffer(255) comma(1)

 occ = @widget(ºqbe_titleidº)±>num_occurrences

Description

Example

dm_gen_change_select_where

1456 JAM Library FunctionsChapter

If the array ºqbe_titleidº contains data, build
a SQL ºinº clause.
 if (occ > 0)
 {
 for i=1 while i <= occ
 {
 if (qbe_titleid[i] != ºº)
 {
 in_buffer = in_buffer ## comma ## \
 ':+qbe_titleid[i]' comma = º,º
 }
 }

 in_buffer = ºtitle_id in (º ##in_buffer º)º
 retval = dm_gen_change_select_where \
 (ºº, in_buffer, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }
}
return TM_PROCEED

JPL Procedure:
Append search condition using onscreen value.
Function property is set to titles_where.

proc titles_where (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_where\
 (ºº, ºfilm_minutes > ::::parm1º, DM_GEN_APPEND)
 retval = dm_gen_change_execute_using(ºº, ºparm1º, \
 ºfilm_minutesº, 1, DM_GEN_ABSOLUTE_OCCUR, \
 DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

dm_gen_sql_infoSee Also

dm_gen_get_tv_alias

146 JAM 7.0 Language Reference

dm_gen_get_tv_alias
Get the correlation name or alias for a table view

#include <tmusubs.h>

char *dm_gen_get_tv_alias(char *tv_name);

Specifies the table view name.

w A correlation name for the table view
w NULL string: tv_name is null.

dm_gen_get_tv_alias returns the correlation name, or alias, for the specified
table view name.

Generally, the SQL generator uses the value in the table view's Name property as
the table's correlation name in a generated SELECT statement. However, if the table
view name contains illegal characters for a correlation name, the SQL generator
removes the offending characters.

The SQL generator calls this function to generate correlation names. If you modify
generated SQL statements with one of the dm_gen_change functions and any
argument supplies a column name, you must supply the proper correlation name.

JPL Procedure:
Adds a column to the select list for the current \
server view and sets copy as the target.

proc rentals_hook (event)
{
vars retval(5) colexp(64)

if (event==TM_SEL_BUILD_PERFORM)
 {
 colexp=dm_gen_get_tv_alias\
 (sm_tm_pinquire(TV_NAME) ## º.copy_numº

 retval=dm_gen_change_select_list\
 (ºº, colexp, ºcopyº, DM_GEN_APPEND)
 }
 return TM_PROCEED
}

tv_name

Returns

Description

Example

dm_gen_sql_info

1476 JAM Library FunctionsChapter

dm_gen_sql_info
Generate a data structure used in SQL SELECT statements

#include <tmusubs.h>

int dm_gen_sql_info(int type, char *cursor_name);

Type of SQL SELECT to generate, specified by one of these constants:

SELECT
VALIDATE
CHECK_PKEY

Name of the cursor associated with the SQL statement.

0 Success.
30 One of the transaction error codes.

dm_gen_sql_info generates a data structure associated with SQL SELECT state-
ments. The type is SELECT when the function is called as the result of the transac-
tion commands SELECT and VIEW. The type is VALIDATE when the function is
called as a result of processing a validation link. The type is CHECK_PKEY when
the function is called as a result of checking for duplicate key values before insert-
ing a new row or updating the primary key columns.

int gen_select (cursor)
char *cursor;
{
 int retcode;
 retcode = dm_gen_sql_info (SELECT, cursor1);
 ...
 return retcode;
}

dm_free_sql_info

type

cursor_name

Returns

Description

Example

See Also

dm_getdbitext

148 JAM 7.0 Language Reference

dm_getdbitext
Gets the text of the last-executed DBMS command

#include <dmuproto.h>

char *dm_getdbitext(void);

A pointer to the last-executed database command.

dm_getdbitext lets you get the full text of the last-executed DBMS command.
This includes all commands executed from JPL with dbms, or executed from C
with dm_dbms or dm_dbms_noexp .

The text specified by the pointer that dm_getdbitext returns has a short duration.
If the application needs this information, it should call this function immediately
after executing a database command. The program should process the returned
string or copy it to a local variable before making additional function calls. This is
the same string that is passed to the first argument of an installed entry, error or
exit handler, except that the error or exit handler is limited to 255 characters.

int
logfunc (stmt, engine, flag)
char *stmt;
char *engine;
int flag;
{
 FILE *fp;
 if (strlen(stmt) >= 255))
 stmt = dm_getdbitext();
 fp = fopen (ºdbi.logº, ºaº);
 fprintf (fp, º%s\nº, stmt);
 fclose (fp);
 return 0;
}

dbms ONERROR, dbms ONEXIT

Returns

Description

Example

See Also

dm_init

1496 JAM Library FunctionsChapter

dm_init
Initializes JAM to access a specific database engine

#include <dmuproto.h>

int dm_init(char *engine, int support_function, int case, char *arg);

A name you assign to the engine. If an application uses two or more engines, the
application uses the mnemonic engine to indicate a particular DBMS. Most
examples in the guide use a vendor name as the mnemonic, for example sybase or
oracle , but any character string that is not a keyword is valid. For a list of
keywords, refer to Chapter 13 in the Database Guide. If engine is already
installed, dm_init returns 0.

One of the function names documented in the dbiinit.c file. The file name is
usually in the form dm_vendorsup where vendor is an abbreviated vendor name.
For example:

dm_sybsup
dm_orasup
dm_intsup

Sets the case processing for the specified engine. The constants are shown in Table
6 in Description.

Reserved for future use. Set this parameter to 0.

w 0: Success.
w A return code from the support function.

Before an application can access a database, JAM must perform an engine initial-
ization. The initialization adds the engine name to the list of available engines, al-
locates a data structure for the engine, calls the engine's support function to initial-
ize the data structure, and sets case handling for the engine. You can use the
vendor_list structure in dbiinit.c to initialize an engine at startup or else use
dm_init to initialize an engine at a later point in the application.

The case parameter specifies how JAM uses case to map column names to
variables when executing a SQL SELECT statement. Table 6 lists the available
options.

engine

support_function

case

arg

Returns

Description

dm_init

150 JAM 7.0 Language Reference

Table 6. Database engine case constants

Constant Description

DM_DEFAULT_CASE Use the case option set in the support function
for that engine. For information on this setting,
refer to the Database Drivers section of the Da-
tabase Guide.

DM_PRESERVE_CASE Use case exactly as returned by the engine.

DM_FORCE_TO_UPPER_CASEForce all column names returned by an engine to
upper case. Therefore, the application should use
upper case names for JAM variables.

DM_FORCE_TO_LOWER_CASEForce all column names returned by an engine to
lower case. Therefore, the application should use
lower case names for JAM variables.

After the engine is initialized, the application can declare a connection on it.

#include ºdmerror.hº
#include ºsmusrdbi.hº

int retcode;
retcode = dm_init(ºjdbº, dm_jdbsup, DM_DEFAULT_CASE, 0);

dm_reset

Example

See Also

dm_is_connection

1516 JAM Library FunctionsChapter

dm_is_connection
Verifies that a connection is open

#include <dmuproto.h>

int dm_is_connection(char *connection_name);

Specifies a connection name that is declared in a DBMS DECLARE CONNECTION
command.

1 True: Connection exists.
0 False: Connection does not exist, either because it was never declared or was

closed.

#include <smdefs.h>
#include <dmuproto.h>

int
free_resources()
{

 if (dm_is_connection(ºwork_connectionº))
 {
 dm_dbms(ºclose connection work_connectionº);
 }
 return 0
}

connection_name

Returns

Example

dm_is_cursor

152 JAM 7.0 Language Reference

dm_is_cursor
Verifies that a cursor is open

#include <dmuproto.h>

int dm_is_cursor(char *cursor_name);

Specifies a cursor name. For a named cursor, use the name specified in a DBMS
DECLARE CURSOR command. For a default cursor, specify cursor_name as being
default_cursor or as being 0.

1 The cursor exists.
0 The cursor does not exist, either because it was never declared or has been

closed.

#include <smdefs.h>
#include <dmuproto.h>

int
free_resources()
{

 if (dm_is_cursor(ºwork_cursorº))
 {
 dm_dbms(ºclose cursor work_cursorº);
 }
 return 0
}

cursor_name

Returns

Example

dm_is_engine

1536 JAM Library FunctionsChapter

dm_is_engine
Verifies that a database engine is initialized

#include <dmuproto.h>

int dm_is_engine(char *engine);

Specifies an engine name. The engine name is the character string assigned to a
database engine in the dbiinit.c or Windows initialization file. For more
information about specifying engine names, refer to Chapter 11 in the Application
Development Guide.

1 True: Engine is initialized.
0 False: Engine is not initialized.

/* Test if engine was installed in dbiinit.c or JAM7.INI */

#include <smdefs.h>
#include <dmuproto.h>

int
eng_connection()
{

 if (dm_is_engine(ºsybaseº))
 {
 dm_dbms(ºengine sybaseº);
 dm_dbms(ºdeclare c1 connection for ...º);
 }
 return 0
}

engine

Returns

Example

dm_reset

154 JAM 7.0 Language Reference

dm_reset
Disables support for a named database engine

#include <dmuproto.h>

int dm_reset(char *engine);

The name assigned to the DBMS in dm_init or in the vendor_list structure of
dbiinit.c .

0 The database engine was successfully disabled.
-1 engine is not a valid engine name.

An application can call this function to disable support for a named engine. If the
function executes successfully, it performs the following steps:

1. Closes all active connections on the engine.

2. Calls the support function to perform any engine-specific reset processing.

3. If engine was the default engine, sets the default engine to 0.

4. Frees all data structures associated with the engine.

After an engine is reset, the application cannot connect to the engine unless it
initializes the engine with dm_init .

dm_init

engine

Returns

Description

See Also

dm_val_relative

1556 JAM Library FunctionsChapter

dm_val_relative
Set bits for validation after SQL SELECT statements are executed

#include <tmusubs.h>

dm_val_relative(void);

dm_val_relative sets validated bits, and can be called after successful lookup/
validation when using validation links. Because this function uses the data struc-
ture generated by dm_gen_sql_info for validation, you should call
dm_val_relative before calling dm_free_sql_info to free the data.

Description

sm_adjust_area

156 JAM 7.0 Language Reference

sm_adjust_area
Recalculates widget positions

void sm_adjust_area (void)

Motif, Windows

sm_adjust_area recalculates the positions of widgets on the current screen and
redraws the screen accordingly. It uses JAM's positioning algorithm to map charac-
ter-mode coordinates to the current GUI environment. You should call this function
when runtime changes to the screen might cause widgets to overlapÐfor example,
move a widget, add a new one, or change widget dimensions.

Environment

Description

sm_allget

1576 JAM Library FunctionsChapter

sm_allget
Loads data from the active LDBs to the current screen

void sm_allget(int respect_flag);

Indicates whether to write to fields that already contain data:

0 Initialize all fields, regardless of their status.
. 1 Initialize only empty fields or fields whose MDT bits are not set.

sm_allget copies data from the active local data blocks to fields on the current
screen with matching names. JAM calls this function automatically unless LDB
processing is turned off through sm_dd_able .

sm_allget overwrites or respects existing data according to the value of
respect_flag . sm_allget does not change the MDT bits of the fields that it
initializes.

#include <smdefs.h>
#include <smkeys.h>

/* If you open a window with sm_r_window and want named
 * fields initialized from the LDB, where LDB processing
 * is off, you need to call sm_allget. You might use
 * this to make the active LDBs read±only for a certain
 * transaction. */

 sm_dd_able (0);
 ...
 if (sm_r_window (ºpopupº, 5, 24) == 0)
 {

sm_allget (0);
while (sm_input (IN_DATA) != EXIT)
{

 ...
}
sm_close_window ();

 }

sm_dd_able , sm_lstore

respect_flag

Description

Example

See Also

sm_amt_format

158 JAM 7.0 Language Reference

sm_

* amt_format

Writes formatted data to a field

int sm_amt_format(int field_number, char *buffer);

int sm_e_amt_format(char *field_name, int element, char *buffer);

int sm_i_amt_format(char *field_name, int occurrence, char *buffer);

int sm_n_amt_format(char *field_name, char *buffer);

int sm_o_amt_format(int field_number, int occurrence, char *buffer);

The field to receive the formatted data.

The onscreen element in the field.

The occurrence in the field.

A pointer to the data to write.

0 Success.
-1 The field is not found or the occurrence is out of range.
-2 The edited string does not fit in the field.

sm_amt_format writes data to a field in the following steps:

1. JAM checks whether the specified field has a currency format. If it does, it
formats the data contained in buffer accordingly.

2. JAM calls sm_putfield to write the string to the specified field. If the field
has no currency format, sm_putfield writes the unedited string. If the
resulting string is too long for the field, JAM truncates it.

#include <smdefs.h>

/* Write a list of real numbers, stored as character strings,
 * to the screen. The first and last fields in the list are
 * tagged with special names.
*/

field_name,
field_number

element

occurrence

buffer

Returns

Description

Example

sm_amt_format

1596 JAM Library FunctionsChapter

int fld, first, last;
extern char *values[]; /* defined elsewhere */

last = sm_n_fldno (ºlastº);
first = sm_n_fldno (ºfirstº);
for (fld = first; fld <= last; ++fld)
{

sm_amt_format (fld, values[fld ± first]);
}

sm_dtofield , sm_strip_amt_ptrSee Also

sm_append_bundle_data

160 JAM 7.0 Language Reference

sm_append_bundle_data
Sends data to a bundle item

int sm_append_bundle_data(char *bundle_name, int item_no, char *data);

The name of the bundle to get data. Supply NULL or an empty string to specify the
unnamed bundle.

The bundle offset of the item to get data . You add data items to a bundle through
successive calls to sm_append_bundle_item ; each data item is identified by its
offset in the bundle, where the first data item has an offset value of 1. If item_no
already contains data, JAM appends data as the item's latest occurrence.

A single occurrence of data to append to item_no .

0 Success.
-1 Invalid bundle name or item number.
-2 Memory allocation error.

sm_append_bundle_data sends a single occurrence of data to the specified data
item in bundle_name . A bundle contains sequentially numbered data items, where
each data item can hold one or more occurrences of send data for later access by
sm_get_bundle_data . If the source data contains multiple occurrences, JAM
ends each occurrence with a NULL string terminator.

This function assumes the existence of the specified bundle and item. Before
calling this function, create the target bundle and its items with calls to
sm_create_bundle and sm_append_bundle_item , respectively.

/* Iterate over all fields on current screen and
 * send data to bundle
 */
void sendScreenDataToBundle(int numFields)
{
 int i, ret;
 ret = sm_create_bundle(ºmyBundleº)

bundle_name

item_no

data

Returns

Description

Example

sm_append_bundle_data

1616 JAM Library FunctionsChapter

 if (ret != 0)
 return ret;
 else
 {
 for (i = 1; i <= numFields; i++)
 {
 sm_append_bundle_item(ºmyBundleº);
 sm_append_bundle_data(ºmyBundleº,i, sm_fptr(i));
 }
 }
return 0;
}

sm_append_bundle_itemSee Also

sm_append_bundle_done

162 JAM 7.0 Language Reference

sm_append_bundle_done
Optimizes memory allocated for a send bundle

int sm_append_bundle_done(char *bundle_name);

The name of the bundle. Supply NULL or empty string to specify the unnamed
bundle.

0 Success.
-1 Invalid bundle name.

sm_append_bundle_done optimizes the memory allocated for a send bundle.
Call this function after you finish appending items and data to a bundle.

sm_append_bundle_data

bundle_name

Returns

Description

See Also

sm_append_bundle_item

1636 JAM Library FunctionsChapter

sm_append_bundle_item
Adds a data item to a bundle

int sm_append_bundle_item(char *bundle_name);

The name of the bundle to get a new item. Supply NULL or empty string to specify
the unnamed bundle.

0 Success.
-1 Invalid bundle name.
-2 Memory allocation error.

sm_append_bundle_item appends a new data item to the end of the specified
bundle. After you create a data item, you can send one or more occurrences of data
to it by calling sm_append_bundle_data .

This function assumes the existence of bundle_name , previously created with
sm_create_bundle . A bundle contains sequentially numbered data items, where
the first data item has an offset of 1.

/* Iterate over fields on current screen and
 * send data to bundle
 */
sendScreenDataToBundle(int numFields)
{
 int i, ret;
 ret = sm_create_bundle(ºmyBundleº);
 if (ret != 0)
 return ret;
 else
 {
 for (i = 1; i <= numFields; i++)
 {
 sm_append_bundle_item(ºmyBundleº);
 sm_append_bundle_data(ºmyBundleº,i, sm_fptr(1));
 }
 }
return 0;
}

sm_append_bundle_data

bundle_name

Returns

Description

Example

See Also

sm_at_cur

164 JAM 7.0 Language Reference

sm_

* at_cur

Displays a window at the cursor location

int sm_d_at_cur(char *address);

int sm_l_at_cur(int lib_desc, char *name);

int sm_r_at_cur(char *name);

The address of the screen in memory.

Specifies the library in which the window is stored, where lib_desc is an integer
returned by sm_l_open . You must call sm_l_open before you read any screens
from a library.

The name of the window.

0 Success.
-1 Screen file's format is incorrect.
-2 Screen cannot be found.
-3 System ran out of memory but the previous screen was restored.
-5 System ran out of memory after the screen was cleared.
-6 Library is corrupted.

See sm_window .

address

lib_desc

name

Returns

Description

sm_attach_drawing_func

1656 JAM Library FunctionsChapter

sm_

* attach_drawing_func

Associates a drawing function with a widget

#include <smmcuser.h>

int sm_mc_attach_drawing_func(int widgetnumber, void(*drawfunc), void *);

int sm_mcn_attach_drawing_func(char *widgetname, void(*drawfunc), void *);

int sm_mce_attach_drawing_func(char *widgetname,int element, void(*drawfunc),
void *);

#include <smmwuser.h>

int sm_mw_attach_drawing_func(int widgetnumber, int (*drawfunc));

int sm_mwn_attach_drawing_func(char *widgetname, int (*drawfunc));

int sm_mwe_attach_drawing_func(char *widgetname,int element, int (*drawfunc));

#include <smxmuser.h>

int sm_xm_attach_drawing_func(int widgetnumber, void(*drawfunc),
XtPointer data);

int sm_xmn_attach_drawing_func(char *widgetname, void(*drawfunc),
XtPointer data);

int sm_xme_attach_drawing_func(char *widgetname, int element, void(*drawfunc),
XtPointer data);

Specifies the widget to get drawfunc .

If the widget is an array, specifies the element in widgetname to get drawfunc .

The drawing function to attach to the specified widget. Drawing function
declarations for the Macintosh, Windows, and Motif are shown in Description.

Points to a user-defined structure that contains the data required by the drawing
function.

Macintosh, Motif, Windows

0 Success.
-1 Invalid widget or element, or the appropriate data structures or handles do not

exist and cannot be created.

widgetname,
widgetnumber

element

drawfunc

data

Environment

Returns

sm_attach_drawing_func

166 JAM 7.0 Language Reference

sm_attach_drawing_func attaches the drawing function pointed to by
drawfunc to the specified widget or element on the current screen. The widget
must have its Customer Drawn property set to Yes. You can use your own drawing
functions with dynamic labels, push buttons, and toggle buttons. JAM handles all
processing for these widgets except for drawing them, although it does draw the
shading for push button widgets.

The most convenient place to attach a drawing function is at screen entry. Once
attached, the drawing function is called whenever the widget needs to be painted,
drawn or refreshed, regardless of whether the paint message comes from the
window manager or from JAM.

For Macintosh applications, declare the drawing function as follows:

void drawfunc(Cpane *pane, Rect *rectangle, void *userData);

The rectangle argument is a Rect pointer to the area to be drawn; the
userData argument points to a user-defined structure that contains the data to use
in the drawing operation. This pointer is the same one supplied as the argument to
sm_attach_drawing_func 's data parameter.

For Windows applications, declare the drawing function as follows:

int drawfunc(HWND handle, UINT message, WPARAM wParam,
 LPARAM lParam);

The HWND argument is a handle to the widget. If the widget is a dynamic label, the
message argument is a WM_PAINT message. If the widget is a push button or
toggle button, the message argument is a WM_DRAWITEM message. For dynamic
labels, the lParam and wParam arguments are not used. For push buttons or toggle
buttons, the wParam argument specifies the identifier of the widget that sent the
message, and the lParam argument points to a DRAWITEMSTRUCT structure, which
provides information on how to paint the widget.

Refer to MS Windows SDK documentation for details on WM_PAINT and
WM_DRAWITEM messages, and the DRAWITEMSTRUCT data structure.

Note: Because JAM draws the shading on a push button and toggle button, it
alters a field in the DRAWITEMSTRUCT which specifies the rectangle to draw in.
The rectangle passed to the drawfunc in the rcItem field is reduced slightly to
account for the shading. The drawfunc therefore should draw in the entire
rectangle that it is passed, and not draw any shading. Furthermore, the hDC item in
the structure is altered, allowing for faster display and less flashing.

JAM selects JAM's color palette into the device context. For a dynamic label, the
color palette is selected into the device context during the BeginPaint() call in
the drawfunc . For a push button or toggle button, the palette is selected into the
memory device context before drawfunc is called.

Description

Macintosh Draw
Function Declaration

Windows Draw
Function Declaration

sm_attach_drawing_func

1676 JAM Library FunctionsChapter

After drawfunc returns, JAM draws the cursor or focus rectangle. JAM ignores
the return value from drawfunc .

For Motif, declare the drawing function as follows:

void drawfunc(Widget wdgt, XtPointer xtpUserData, XtPointer
xtpCallBackData);

#include ºsmdefs.hº

int MyDrawingFunc(HWND, UINT, WPARAM, LPARAM);

/* sample drawing function */
int
MyDrawingFunc(hWnd, message, wParam, lParam)
HWND hWnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
{
 PAINTSTRUCT ps;
 HBRUSH hBrush;

 BeginPaint(hWnd, &ps);

 hBrush = CreateSolidBrush(RGB(0, 0, 255));
 FillRect(ps.hdc, &ps.rcPaint, hBrush);
 DeleteObject(hBrush);

 EndPaint(hWnd, &ps);

 return(0);
}

{
 ...
 /* attach drawing function to widget number 2 */
 if (sm_attach_drawing_func(2, MyDrawingFunc) == ±1)
 {
 << error handling >>
 }
 ...
}

int MyButtonDrawingFunc(HWND, UINT, WPARAM, LPARAM);

/* sample drawing function */
int
MyButtonDrawingFunc(hWnd, message, wParam, lParam)
HWND hWnd;

Motif Draw Function
Declaration

Example

sm_attach_drawing_func

168 JAM 7.0 Language Reference

UINT message;
WPARAM wParam;
LPARAM lParam;
{
 DRAWITEMSTRUCT *dis;
 HBRUSH hBrush;

 dis = (DRAWITEMSTRUCT *)lParam;

 hBrush = CreateSolidBrush(RGB(0, 0, 255));
 FillRect(dis±>hDC, &dis±>rcItem, hBrush);
 DeleteObject(hBrush);
 return(0);
}

{
 ...
 /* attach drawing function to widget number 3 */
 if (sm_attach_drawing_func(3, MyButtonDrawingFunc) ==
±1)
 {
 << error handling >>
 }
 ...
}

sm_backtab

1696 JAM Library FunctionsChapter

sm_backtab
Backtabs to the previous unprotected field

void sm_backtab(void);

sm_backtab moves the cursor to the first enterable position of the field with the
next-lowest field number that is tab-accessible. The following conditions can
modify this behavior:

� The cursor is not in the current field's first enterable position and the field is
left-justified. In this case, sm_backtab moves the cursor to the current field's
first enterable position.

� The cursor is in a field with a previous-field property and one of the fields
specified by the property is accessible to tabbing. The cursor moves to the first
enterable position of that field.

� The cursor is in the first position of the first unprotected field on the screen, or
before the first unprotected field on the screen. The cursor wraps backward
into the last unprotected field.

� There are no unprotected fields. The cursor remains stationary.

If the destination field is shiftable, it is reset according to its justification. The first
enterable position depends on the justification of the field and, in fields with
embedded punctuation, on the presence of punctuation.

This function does not immediately trigger field entry, exit, or validation
processing. This processing occurs according to the cursor position when control
returns to sm_input .

JAM calls this function when the JAM logical key BACK is struck.

sm_home, sm_last , sm_nl , sm_tab

Description

See Also

sm_bel

170 JAM 7.0 Language Reference

sm_bel
Issues a beep from the terminal

void sm_bel(void);

sm_bel causes the terminal to beep, usually by transmitting the ASCII BEL code to
it. If there is a BELL entry in the video file, sm_bel transmits that instead. This
usually causes the terminal to flash.

Even if there is no BELL entry, use this function instead of sending a BEL, because
certain displays use BEL as a graphics character.

This function is automatically called when message text begins with %B.

#include <smdefs.h>

/* Beep if cost is too high. */
if (sm_n_dblval(ºcostº) > 1000.00)
 sm_bel();

Description

Example

sm_bi_compare

1716 JAM Library FunctionsChapter

sm_bi_compare
Compares widgets in the current table view with their before-image values

#include <tmusubs.h>

int sm_bi_compare(void);

DM_TM_ERR_GENERAL if no transaction or table view is available.

SuccessÐone of the following constants:
w BI_UNCHANGED: Occurrence was not changed.
w BI_DELETED: Occurrence was deleted.
w BI_INSERTED: Occurrence was inserted.
w BI_KEY_NULLED: A primary key field in the occurrence was cleared or set to

NULL.
w BI_KEY_CHANGED: A primary key field in the occurrence was changed to a

non-NULL/non-empty value.
w BI_UPDATED: A non-primary key field in the occurrence was changed.

sm_bi_compare compares an occurrence value with its before-image and returns
a code indicating the status of the comparison. The comparison codes are listed
above.

The occurrence is the current occurrence number as determined by
sm_tm_inquireTM_OCC . A positive occurrence number indicates an onscreen
occurrence. A negative occurrence number indicates a deleted occurrence; an
occurrence is deleted by the logical key DELL or by a call to sm_i_doccur .

In the standard transaction models, the requests TM_INSERT, TM_UPDATE, and
TM_DELETE each call sm_bi_compare . This allows the model to choose the
appropriate processing for a changed occurrence.

A special case exists when a row's primary key value is set to empty or NULL. The
program can do this in one of the following ways:

� Write an empty string to the field.

� Call sm_tm_command(ºCLEARº) .

Returns

Description

sm_bi_compare

172 JAM 7.0 Language Reference

� Call sm_tm_clear .

In the standard models both the TM_DELETE and TM_INSERT requests test for
BI_KEY_CHANGED and both perform processing for this change. Therefore, if a
primary key value changes, the standard models delete the occurrence using the
before-image value of the primary key and insert a new occurrence using the
onscreen value of the primary key. The model may be changed so that TM_UPDATE
handles all updates, including primary key changes.

This function operates on the current table view. It is intended to be called from a
transaction model or hook function.

/* The following example taken from the standard
transaction model for JDB shows the processing for the
TM_UPDATE request. */

case TM_UPDATE:
/* Do nothing, except for updates */

occ_type = sm_bi_compare();
if (occ_type != BI_UPDATED)
{

break;
}

if (!reuse_cursor)
{

save_cursor_type = 0;
}
reuse_cursor = 0;

sm_tm_push_model_event(TM_UPDATE_EXEC);
sm_tm_push_model_event(TM_UPDATE_DECLARE);
sm_tm_push_model_event(TM_GET_SAVE_CURSOR);
break;

Example

sm_bi_copy

1736 JAM Library FunctionsChapter

sm_bi_copy
Copies current values of a range of occurrences to before images

#include <tmusubs.h>

int sm_bi_copy(void);

w 0: Success.
w DM_TM_ERR_GENERAL: No transaction or table view is available.
w DM_TM_ERR_MALLOC: Memory allocation error.

sm_bi_copy writes the current values of a range of occurrences to their respective
before-image occurrences. The starting occurrence is the value of
sm_tm_inquireTM_OCC and the range of occurrences is determined by the value
of sm_tm_inquire(TM_OCC_COUNT) . If TM_OCC_COUNT has a value of -1,
sm_bi_copy gets the number of occurrences in the table view. If TM_OCC has a
value of 1 and TM_OCC_COUNT has -1, sm_bi_copy copies every occurrence in the
table view. Use sm_tm_iset to set the values of TM_OCC and TM_OCC_COUNT
before calling sm_bi_copy .

The SELECT transaction command calls sm_bi_copy for updatable and non-up-
datable table views. It sets TM_OCC to the first occurrence where data was fetched;
it sets TM_OCC_COUNT to the number of rows fetched. Therefore, sm_bi_copy
copies each selected occurrence.

The standard transaction models call sm_bi_copy in the TM_POST_SAVE request
if the current mode is TM_UPDATE_MODE and sm_bi_initialize was successful.
Notice that the models set TM_OCC_COUNT to -1 before calling sm_bi_copy . This
ensures that all onscreen occurrences are copied.

Returns

Description

sm_bi_initialize

174 JAM 7.0 Language Reference

sm_bi_initialize
Initializes before-image data for widgets in the current table view

#include <tmusubs.h>

int sm_bi_initialize(void);

w 0: Success. Before-image successfully initialized for the table view or the table
view has the Updatable property under Transaction set to No.

w DM_TM_ERR_TBLNAME: Table view did not have Table property set.
w DM_TM_ERR_PRIMARY_KEY: Table view did not have a Primary Key property

set.
w DM_TM_ERR_COL_NOT_FOUND: Widget not found for primary key column.
w DM_TM_ERR_MALLOC: Memory allocation error.
w DM_TM_ERR_GENERAL: No transaction or table view is available.

sm_bi_initialize initializes or reinitializes before-image data for the widgets
in the current table view. Before-image describes the state of transaction data
before the user or program changes it.

The transaction commands NEW and SELECT call sm_bi_initialize . For the
NEW command, the before-image for the table view is empty. For the SELECT
command, a before-image is defined for each row in the select set.

To initialize the before-image structures, the function first examines the properties
of the current table view and the table view's members. It builds the table view's
insert list and update list and it verifies that the current table view can participate in
the before-image. If a table view has the Updatable property under Transaction set
to Yes, it must also have values in the Table and Primary Keys properties which
are located in the Database category.

If the Table and Primary Key properties are not set, sm_bi_initialize returns
an error. Furthermore, sm_bi_initialize verifies that a widget exists for each
column named by the table view's Primary Keys property. If the widget does not
exist in the current table view, the transaction manager looks for a link that names
the current table view as a child. The criteria is satisfied if the primary key column
is named in the Relations property of the link and that property points to an
onscreen widget, a literal, or to a widget in the link's parent table view (or the
parent of the server view). Otherwise, sm_bi_initialize returns an error.

Returns

Description

sm_bi_initialize

1756 JAM Library FunctionsChapter

The standard transaction models call sm_bi_initialize as part of the
processing for the TM_POST_SAVE request. If an application has saved data while
in new or update mode, the models call sm_bi_initialize after the save
completes. This allows the application to use the current screen data as the starting
point for the next save.

For example, assume the application executes sm_tm_command(ºNEWº) to enter
new customer data. The user enters the data and the application executes
sm_tm_command(ºSAVEº) . If the save is successful (e.g., it generates and
executes a SQL INSERT statement), the standard model calls sm_bi_initialize
before returning control to JAM. To enter the customer's spouse, the user can
change the appropriate fields and call sm_tm_command(ºSAVEº) again. This is
also equivalent to calling sm_tm_command(ºCOPYº) after a SAVE.

Similarly, for the SELECT command, the use of sm_bi_initialize in the
standard models allows the application to continue updating the screen data after a
save. If customer data is fetched with sm_tm_command(ºSELECTº) and the user
changes the customer's phone number and calls sm_tm_command(ºSAVEº) , the
model performs save processing (e.g., generates and executes a SQL UPDATE
statement) and, by default, calls sm_bi_initialize . The user can continue
updating the onscreen data without re-selecting it. If the user enters a comment and
calls sm_tm_command(ºSAVEº) again, the transaction manager performs save
processing for all changes since the last call to sm_bi_initialize . Therefore, it
might generate and execute a SQL UPDATE statement for the comment; it does not
repeat save processing for the earlier phone number change.

This function operates on the current table view. It is intended to be called from a
transaction model or hook function.

sm_bkrect

176 JAM 7.0 Language Reference

sm_bkrect
Sets the background color of a rectangle

int sm_bkrect(int start_line, int start_col, int num_of_lines, int num_of_col,
int bkgr_colors);

Specify the upper-left corner of the area to set, where the values of start_line
and start_column can range from 0 through the length and width of the screen
less 1, respectively.

The length of the area to set.

The width of the area to set.

The attributes to set as the area's background color.

Character-mode

0 Success.
1 The starting line and column are valid but the rectangle was truncated to fit.

-1 Invalid starting line or column.

sm_bkrect changes the background color of a rectangular area of the current
screen. The background color must be one of the constants defined in sm-
attrib.h . You can highlight the background color by OR'ing the background
color attribute with B_HILIGHT .

All fields or elements that start inside the area have their background attributes
changed to the specified attribute. Display text inside the rectangular area has its
background attribute set. Make sure that fields or elements that change are entirely
inside the area; otherwise, a ragged edge results.

/* Draw some colored squares on the display*/
int colors[] =
{

B_RED,
B_BLUE,

start_line,
start_col

num_of_lines

num_of_cols

bkgr_colors

Environment

Returns

Description

Example

sm_bkrect

1776 JAM Library FunctionsChapter

B_WHITE,
B_CYAN

};

int mondrian(void)
{
 int i;

for (i=0;i<sizeof(colors)/sizeof(int);i++)
 {

 sm_bkrect((i/2) * 10,(i & 1) * 40, 10, 40, colors[i]);
 }
 return(0);
}

sm_c_off

178 JAM 7.0 Language Reference

sm_c_off
Turns the cursor off

void sm_c_off(void);

sm_c_off tells JAM that the normal cursor setting is off. Use this function when
all fields on the current screen are protected. The normal cursor setting is in effect
except under these circumstances:

� The cursor is off when a block cursor is in use, as during menu processing.

� The cursor is off while screen manager functions are writing to the display.

� The cursor is on within certain error message display functions.

If the display cannot turn its cursor on and offÐ CON and COF entries are not
defined in the video fileÐthis function has no effect.

Use sm_c_on to turn the cursor on.

sm_ferr_reset(0, ºVerify that the cursor is turned ONº);
sm_c_off();
sm_femsg(0, ºVerify that the cursor is turned OFFº);
sm_c_on();
sm_femsg(0, ºVerify that the cursor is turned ONº);

sm_c_on

Description

Example

See Also

sm_c_on

1796 JAM Library FunctionsChapter

sm_c_on
Turns the cursor on

void sm_c_on(void);

sm_c_on tells JAM that the normal cursor setting is on. The normal setting is in
effect except under these circumstances:

� The cursor is off when a block cursor is in use, as during menu processing.

� The cursor is off while screen manager functions are writing to the display.

� The cursor is on within certain error message display functions.

If the display cannot turn its cursor on and offÐ CON and COF entries are not
defined in the video fileÐthis function has no effect.

Use sm_c_off to turn the cursor off.

sm_ferr_reset(0, ºVerify that the cursor is turned ONº);
sm_c_off();
sm_femsg(0, ºVerify that the cursor is turned OFFº);
sm_c_on();
sm_femsg(0, ºVerify that the cursor is turned ONº);

sm_c_off

Description

Example

See Also

sm_c_vis

180 JAM 7.0 Language Reference

sm_c_vis
Turns the cursor position display on or off

void sm_c_vis(int display);

Specifies whether to turn the cursor position display on or off:

� 0 causes subsequent status line messages to be displayed without the cursor's
position display.

� Non-zero displays subsequent status line messages with the cursor's position
display. This includes background status messages. Messages that would
overlap the cursor position display are truncated.

sm_c_vis toggles display of the cursor position on and off according to the value
of display . This function has no effect if the CURPOS entry in the video file is not
defined. In this case, the cursor position display never appears.

JAM uses an asynchronous function and a status line function to perform the
cursor position display. If either one is already installed, sm_c_vis overrides it.

#include <smdefs.h>
#include <smkeys.h>

/* Toggle the cursor position display on or off when
 * the PF10 key is struck. The first time the key is
 * struck, it will go on.
 */

static int cpos_on = 0;

switch (sm_input(IN_DATA))
{
...
case PF10:

sm_c_vis (cpos_on ^= 1);
...
}

display

Description

Example

sm_calc

1816 JAM Library FunctionsChapter

sm_calc
Executes a math expression

int sm_calc(int field_number, int occurrence, char *expression);

The field to use for relative field references in expression ; otherwise, set to 0.

The occurrence in field_number to use for relative field references in
expression ; otherwise, set to 0.

A math expression. Refer to page 316 in the Editors Guide for information on
creating math expressions.

0 Success
-1 A math error occurred.

sm_calc lets you execute a math expression. Use this function to perform mathe-
matical operations that use the contents of one or more fields and then insert the
result into a field.

The first two parameters, field_number and occurrence identify the field and
occurrence with which the calculation is associated. To refer to the current field
and occurrence, supply 0 for both parameters.

If, in the event of a math error, you want the cursor to move a specific field,
specify that field with field_number . If the field is an array and occurrence is
offscreen, JAM scrolls that occurrence into view.

/* Compute payment due date. */

sm_calc (0, 0, ºpaymentduedate = @date(shipdate) + 30º);

field_number

occurrence

expression

Returns

Description

Example

sm_cancel

182 JAM 7.0 Language Reference

sm_cancel
Resets the display and exits

void sm_cancel(int arg);

A dummy argument that always has a value of 0. This argument lets the C function
signal use sm_cancel as a signal handler.

sm_initcrt installs this function to handle keyboard interrupts. sm_cancel calls
sm_resetcrt to restore the display to the operating system's default state, and
exits to the operating system.

Depending on your operating system, you can also install this function to handle
conditions that normally cause a program to abort. If a program aborts with
sm_cancel installed, its call to sm_resetcrt ensures that your terminal is
restored to its normal state.

/* the following program segment could be found in
 * some error routines */

#include <smdefs.h>
if (error)
{

sm_fquiet_err(0,
 ºfatal error ±± can't continue!\nº);
sm_cancel(0);

}

/* The following code can be used on a UNIX system to
 * install sm_cancel() as a signal handler. */

#include <smdefs.h>
#include <signal.h>

signal (SIGTERM, sm_cancel);

arg

Description

Example

sm_ckdigit

1836 JAM Library FunctionsChapter

sm_ckdigit
Validates data with a check digit function

int sm_ckdigit(int field_number, char *field_data, int occurrence, int modulus,
int minimum_digits);

The field to validate. If field_number is 0, sm_ckdigit uses the data in
field_data . If an error occurs and field_number is 0, no message is posted.

Specifies the data to validate. If field_data is null, the string to check is
obtained from the field_number and occurrence and an error message is
displayed if the string is bad.

The occurrence in field_number to validate.

Specifies the check digit algorithm to use. By default, sm_ckdigit supports mod
10 and mod 11 algorithms. For more information about the check digit algorithms,
see the source code of sm_ckdigit that is distributed with JAM.

The minimum number of digits required by the check digit algorithm.

0 The value of field_number or field_data is valid.
-1 The field contents lack the minimum number of digits or proper check digit.
-2 field_data is a null pointer and the field or occurrence cannot be found.

sm_ckdigit checks whether the data in field_data or occurrence contains
the required minimum number of digits and ends with the proper check digit. This
function is typically called by JAM at field validation; it uses the values in the
field's Check Digit and Minimum Digits property as arguments for parameters
modulus and minimum_digits , respectively.

If you specify a field occurrence and its data is invalid, JAM issues an error
message before returning. If you set field_number to 0 and supply invalid data
for field_data , JAM does not issue any message.

You can install your own check digit function to replace sm_ckdigit . For more
information on installing functions, refer to page 119 in the Application Develop-
ment Guide.

field_number

field_data

occurrence

modulus

minimum_digits

Returns

Description

sm_cl_all_mdts

184 JAM 7.0 Language Reference

sm_cl_all_mdts
Clears all MDT bits

void sm_cl_all_mdts(void);

sm_cl_all_mdts clears the MDT (modified data tag) bit of every occurrence,
both onscreen and off, for every field on the current screen.

JAM sets an occurrence's MDT flag when it is modified after the screen entry
function returns, either because of keyboard entry or a call to a function like
sm_putfield . A field undergoes validation only if its MDT bit is set.

To clear an individual field's MDT bit, set its mdt property to 0.

#include <smdefs.h>

/* Clear MDT for all fields on the screen. Then write */
 * data to the last field, and check that its MDT is */
 * the first one set. */

int occurrence;
int numflds;

sm_cl_all_mdts();
numflds = sm_inquire (SC_NFLDS);
sm_putfield (numflds, ºHelloº);
if (sm_tst_all_mdts (&occurrence) != numflds)

sm_ferr_reset (0,
ºSomething is rotten in the state of Denmark.º);

sm_tst_all_mdts

Description

Example

See Also

sm_cl_unprot

1856 JAM Library FunctionsChapter

sm_cl_unprot
Clears all unprotected fields

void sm_cl_unprot(void);

sm_cl_unprot erases onscreen and offscreen data from all fields that are unpro-
tected from clearingÐthat is, their clearing_protect property is set to No.
Date and time fields that take system values are reinitialized. Fields with a Null
Format are reset to their null indicator values.

This function is normally bound to the CLR key.

/* The following code clears all unprotected fields
 * and puts the cursor into the first one. */

sm_cl_unprot ();
sm_home ();

Description

Example

sm_clear_array

186 JAM 7.0 Language Reference

sm_

* clear_array

Clears all data in an array

int sm_clear_array(int field_number);

int sm_n_clear_array(char *field_name);

int sm_1clear_array(int field_number);

int sm_n_1clear_array(char *field_name);

A field in the array to clear.

0 Success.
-1 The field does not exist.

sm_clear_array clears all data from the array that contains field_number or
field_name and resets the number of occurrences in the array to 0. The array is
cleared even if it is protected from clearing.

sm_1clear_array and sm_n_1clear_array only clear the specified array;
sm_clear_array and sm_n_clear_array also clear arrays synchronized with
the array unless they are protected from clearing.

/* Clear the entire array of ºnamesº and arrays
 * synchronized with ºnamesº. */
sm_n_clear_array(ºnamesº);

/* Clear the ºtotalsº column of a screen,
 * without clearing arrays synchronized with ºtotalsº. */
sm_n_1clear_array(ºtotalsº);

field_name,
field_number

Returns

Description

Example

sm_close_window

1876 JAM Library FunctionsChapter

sm_close_window
Closes the current window

int sm_close_window(void);

0 Success.
-1 No window is open.

sm_close_window closes a screen opened as a window by sm_r_window ,
sm_r_at_cur , or one of their variants.

sm_close_window erases the currently open window and restores the screen to its
state before the window opened. If LDB processing is active, sm_lstore writes
data from the named fields to the LDB; otherwise, all window data is lost. If the
closed window was spawned by another one, JAM makes the parent window the
current one and restores the cursor to its last position in that window.

JAM automatically calls sm_close_window when you close a form with
sm_jclose . sm_jclose calls sm_jform to pop the form stack and calls
sm_close_window to empty the form's window stack.

Note: sm_close_window does not close the base screen in a window stackÐthat
is, the active form. To close the active form, call sm_jclose .

#include <smdefs.h>
#include <smkeys.h>

/* In a validation function, if the field contains a */
/* special value, open up a window to prompt for a */
/* second value and save it in another field. */

int validate (field, data, occur, bits)
char *data;
int field, occur, bits;
{

char buf[256];

if (bits & VALIDED)
return 0;

Returns

Description

Example

sm_close_window

188 JAM 7.0 Language Reference

if (strcmp(data, ºotherº) == 0)
{

sm_r_at_cur (ºgetsecvalº);
if (sm_input (IN_DATA) != EXIT)

sm_getfield (buf, 1);
else

buf[0] = 0;
sm_close_window ();
sm_n_putfield (ºsecvalº, buf);

}

return 0;
}

sm_r_window , sm_wselectSee Also

sm_copyarray

1896 JAM Library FunctionsChapter

sm_

* copyarray

Copies the contents of one array to another

int sm_copyarray(int target_fnum, int source_fld);

int sm_n_copyarray(char *target_fname, char *source_name);

An element in the array to receive the data.

An element in the source array.

0 Success.
-1 One of the fields is not found, or the target array in the LDB has a scope of 1

and cannot be written.

sm_copyarray and sm_n_copyarray copy the contents of the specified source
array into a target array. Both functions set the MDT bit and clear the VALIDED
bit for each destination array occurrence to indicate that the occurrence is modified
and needs validation.

Because sm_copyarray references fields by number, they must be on the current
screen. sm_n_copyarray looks for the named fields first in the current screen; if
the screen omits one or both of the specified arrays, the function looks for the
named entry in the current LDB. If found there, sm_n_copyarray gets the data
from or writes to that entry.

Source and target arrays must be compatible to ensure the integrity of the copied
data. Otherwise, JAM handles differences between the two arrays as follows:

� If the source data is too long for its target, JAM truncates it automatically and
issues no warning.

� If the data is too short, JAM pads the target occurrence with spaces.

� If the target array has fewer occurrences than the source array, JAM discards
the data in the extra occurrences.

target_fnum,
target_fname

source_fnum,
source_fname

Returns

Description

sm_copyarray

190 JAM 7.0 Language Reference

� If the target array has more occurrences than the source array, JAM clears the
data from the extra target occurrences but maintains their allocation.

sm_clear_array , sm_getfield , sm_putfieldSee Also

sm_create_bundle

1916 JAM Library FunctionsChapter

sm_create_bundle
Creates a send bundle

int sm_create_bundle(char *bundle_name);

The name of the buffer, or bundle, in which to store the send data. Bundle names
can be up to 31 characters long. You can create up to ten bundles of send data in
memory. One of these bundles can be unnamed. JPL's send and receive
commands identify the unnamed bundle as the default bundle. Create an unnamed
bundle by supplying NULL argument or an empty string (ºº).

0 Success.
-2 Memory allocation failure.

sm_create_bundle creates a new send bundle. The bundle initially is empty.
After you create a bundle, you can append data items to it and send data to those
items through sm_append_bundle_item and sm_append_bundle_data , re-
spectively.

If an existing bundle is already named bundle_name , JAM frees the existing
bundle and replaces it with the new one. If ten bundles already are in memory,
JAM removes the oldest bundle.

bundle_name

Returns

Description

sm_d_msg_line

192 JAM 7.0 Language Reference

sm_d_msg_line
Displays a message on the status line

void sm_d_msg_line(char *message, int display_attr);

A pointer to the message to display. To clear the message previously displayed
with this function, supply an empty string.

The display attribute to use for message , one of the constants defined in
smattrib.h . A value of 0 clears the message previously displayed with this
function.

Foreground colors can be used alone or OR'd with one or more highlights, a
background color, and a background highlight. If you do not specify a highlight or
a background color, the attribute defaults to white against a black background.
Omitting a foreground color causes the attribute to default to black.

sm_d_msg_line displays the contents of message on the status line with an ini-
tial display attribute of display_attr . If the cursor position display is turned on
(see sm_c_vis), the end of the status line contains the cursor's current row and
column.

Messages displayed with sm_d_msg_line override both background and field
status text. They remain on all screens until you clear the status line with another
call to sm_d_msg_line , where message gets an empty string and dis-
play_attr gets 0. Once cleared, the previously overridden message redisplays.
The function sm_d_msg_line is itself overridden by sm_ferr_reset and related
functions, or by the ready/wait message enabled by sm_setstatus .

Several percent escapes let you control the content and presentation of status
messages. The character that follows the percent sign must be in uppercase. Note
that if a message containing percent escapes is displayed before sm_initcrt is
called, the percent escapes appear in the message.

If a string of the form %Annnn appears anywhere in the message, the hexadecimal
number nnnn is interpreted as a display attribute to be applied to the remainder of
the message. Use numeric values to specify the logical display attributes you need
to construct embedded attributes. These values are specified in the attributes table
on this book's inside back cover. If you want a digit to appear immediately after the

message

display_attr

Description

sm_d_msg_line

1936 JAM Library FunctionsChapter

attribute change, pad the attribute to 4 digits with leading zeros. If the following
character is not a legal hex digit, then leading zeros are unnecessary.

If a string of the form %Kkeyname appears anywhere in the message, keyname is
interpreted as a logical key constant, and the whole expression is replaced with the
key label string defined for that key in the key translation file. If there is no label,
the %K is stripped out and the constant remains. Key constants are defined in
smkeys.h .

If the message begins with a %B, JAM beeps the terminal (using sm_bel) before
issuing the message.

/* The following prompt uses labels for the EXIT and
 * return keys, and underlines crucial words. */

sm_d_msg_line (ºPress %KEXIT to %A0027abort%A7, º

ºor %KNL to %A0027continue%A7.º);

/* To clear the status line, use: */

sm_d_msg_line (ºº, 0);

sm_ferr_reset , sm_msg

Example

See Also

sm_dblval

194 JAM 7.0 Language Reference

sm_

* dblval

Returns the value of a field as a double precision floating point

double sm_dblval(int field_number);

double sm_e_dblval(char *field_name, int element);

double sm_i_dblval(char *field_name, int occurrence);

double sm_n_dblval(char *field_name);

double sm_o_dblval(int field_number, int occurrence);

The field with the value to get.

The element in field_name with the value to get.

The occurrence with the value to get.

>0 The real value of the field.
0 The field is not found.

sm_dblval returns the contents of the specified field as a double precision float-
ing point. It calls sm_strip_amt_ptr to remove extra amount editing characters
before it converts the data.

#include <smdefs.h>

/* Retrieve the value of a starting parameter. */

double param1;

param1 = sm_n_dblval (ºparam1º);

sm_dtofield , sm_strip_amt_ptr

field_name,
field_number

element

occurrence

Returns

Description

Example

See Also

sm_dd_able

1956 JAM Library FunctionsChapter

sm_dd_able
Turns LDB write-through on or off for all LDBs

int sm_dd_able(int flag);

Specifies whether to turn LDB processing on or off:

0 Turn processing off; no data is exchanged between screens and LDBs.
1 Turn processing on for all LDBs loaded into memory.

The previous state of LDB write-through:

0 LDB write-through was off for all LDBs.
1 LDB write-through was on for one or more LDBs.

sm_dd_able enables or disables data exchange between screens and all loaded
LDBs according to the value of flag . You can selectively activate and inactivate
write-through for individual LDBs through sm_ldb_state_set .

For more information about LDB processing, refer to page 191 in the Application
Development Guide.

sm_ldb_state_set

flag

Returns

Description

See Also

sm_dde_client_connect_cold

196 JAM 7.0 Language Reference

sm_dde_client_connect_cold
Creates a cold DDE link to a server

int sm_dde_client_connect_cold(char *server,char *topic,char *item,char *field);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

The server itemÐfor example, DDE_LINK1

The name of the JAM field to receive server data.

Windows

1 Success.
0 Failure.

sm_dde_client_connect_cold creates a cold DDE link between a JAM field
and a server application. Given a cold link, the server does not notify the client
JAM application of changes to linked data. The application must explicitly request
data updates by calling sm_dde_client_request .

Before creating a link, JAM must be enabled as a client. JAM checks whether a
connection to the server application already existsÐfor example, another open
screen has a link to this server. If no connection exists, JAM attempts to establish
one. After JAM verifies or establishes a connection, it creates a cold link between
the JAM field and the specified topic and item.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

sm_dde_client_request

server

topic

item

field

Environment

Returns

Description

See Also

sm_dde_client_connect_hot

1976 JAM Library FunctionsChapter

sm_dde_client_connect_hot
Creates a hot DDE link to a server

int sm_dde_client_connect_hot(char *server,char *topic,char *item,char *field);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

The server itemÐfor example, DDE_LINK1

The name of the JAM field to receive server data.

Windows

1 Success.
0 Failure.

sm_dde_client_connect_hot creates a hot DDE link between a JAM field and
a server application. Given a hot link, the server automatically updates the JAM
field whenever the linked data changes.

Before creating a link, JAM must be enabled as a client. JAM checks whether a
connection to the server application already existsÐfor example, another open
screen has a link to this server. If no connection exists, JAM attempts to establish
one. After JAM verifies or establishes a connection, it creates a hot link between
the JAM field and the specified topic and item.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

server

topic

item

field

Environment

Returns

Description

sm_dde_client_connect_warm

198 JAM 7.0 Language Reference

sm_dde_client_connect_warm
Creates a warm DDE link to a server

int sm_dde_client_connect_warm(char *server,char *topic,char *item,char *field);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

The server itemÐfor example, DDE_LINK1

The name of the JAM field to receive server data.

Windows

1 Success.
0 Failure.

sm_dde_client_connect_warm creates a warm DDE link between a JAM field
and a server application. Given a warm link, the server notifies the client JAM ap-
plication of changes to linked data. However, the application must explicitly re-
quest data updates by calling sm_dde_client_request .

When the server notifies JAM that linked data has changed, JAM checks whether a
callback function is installed and uses it to notify the application; otherwise, it uses
its own callback function. Use sm_dde_install_notify to install a callback
function.

Before creating a link, JAM must be enabled as a client. JAM checks whether a
connection to the server application already existsÐfor example, another open
screen has a link to this server. If no connection exists, JAM attempts to establish
one. After JAM verifies or establishes a connection, it creates a warm link between
the JAM field and the specified topic and item.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

sm_dde_client_request , sm_dde_install_notify

server

topic

item

field

Environment

Returns

Description

See Also

sm_dde_client_disconnect

1996 JAM Library FunctionsChapter

sm_dde_client_disconnect
Destroys a DDE link to a server

int sm_dde_client_disconnect(char *server,char *topic,char *item,char *field);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

The server itemÐfor example, DDE_LINK1

The name of a JAM field on the active screen.

Windows

1 Success.
0 Failure.

sm_dde_client_disconnect destroys a client DDE link on the active screen. If
the link specified is the last link to a server application, JAM also closes the con-
nection to that server.

Note: When a screen closes, JAM automatically destroys its DDE links.

server

topic

item

field

Environment

Returns

Description

sm_dde_client_off

200 JAM 7.0 Language Reference

sm_dde_client_off
Disables DDE client activity

void sm_dde_client_off(void);

Windows

sm_dde_client_off prevents JAM from acting as a DDE client.

sm_dde_client_on

Environment

Description

See Also

sm_dde_client_on

2016 JAM Library FunctionsChapter

sm_dde_client_on
Enables DDE client activity

void sm_dde_client_on(void);

Windows

sm_dde_client_on lets JAM act as a DDE client.

sm_dde_client_off

Environment

Description

See Also

sm_dde_client_paste_link_cold

202 JAM 7.0 Language Reference

sm_dde_client_paste_link_cold
Creates a cold DDE paste link between a JAM field and a server

int sm_dde_client_paste_link_cold(char *field);

The name of the JAM field to receive server data.

Windows

1 Success.
30 Failure.

sm_dde_client_paste_link_cold requests a cold DDE paste link between a
JAM field and a server application. JAM gets the clipboard data and its sourceÐ
server, topic, and item. Subsequent requests to update data use this source informa-
tion to get new data from the server. Given a cold paste link, the server does not
notify the client JAM application of changes to linked data. The application must
explicitly request data updates by calling sm_dde_client_request .

Before creating a paste link, two conditions must be true:

� The clipboard must contain data copied from the server.

� JAM must be enabled as a client.

JAM checks whether a connection to the server application already existsÐfor
example, another open screen has a link to this server. If no connection exists, JAM
attempts to establish one. After JAM verifies or establishes a connection, it creates
a cold link between the JAM field and the data source.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

field

Environment

Returns

Description

sm_dde_client_paste_link_hot

2036 JAM Library FunctionsChapter

sm_dde_client_paste_link_hot
Creates a hot DDE paste link between a JAM field and a server

int sm_dde_client_paste_link_hot(char *field);

The name of the JAM field to receive server data.

Windows

1 Success.
30 Failure.

sm_dde_client_paste_link_hot requests a hot DDE paste link between a
JAM field and a server application. JAM gets the clipboard data and its sourceÐ
server, topic, and item. Subsequent requests to update data use this source informa-
tion to get new data from the server. Given a hot paste link, the server automatical-
ly updates the JAM field whenever the linked data changes.

Before creating a paste link, two conditions must be true:

� The clipboard must contain data copied from the server.

� JAM must be enabled as a client.

JAM checks whether a connection to the server application already existsÐfor
example, another open screen has a link to this server. If no connection exists, JAM
attempts to establish one. After JAM verifies or establishes a connection, it creates
a hot link between the JAM field and the data source.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

field

Environment

Returns

Description

sm_dde_client_paste_link_warm

204 JAM 7.0 Language Reference

sm_dde_client_paste_link_warm
Creates a warm DDE paste link between a JAM field and a server

int sm_dde_client_paste_link_warm(char *field);

The name of the JAM field to receive server data.

Windows

1 Success.
30 Failure.

sm_dde_client_paste_link_warm requests a warm DDE paste link between a
JAM field and a server application. JAM gets the clipboard data and its sourceÐ
server, topic, and item. Subsequent requests to update data use this source informa-
tion to get new data from the server. Given a warm paste link, the server notifies
the client JAM application of changes to linked data. However, the application
must explicitly request data updates by calling sm_dde_client_request .

When the server notifies JAM that linked data has changed, JAM checks whether a
callback function is installed and uses it to notify the application; otherwise, it uses
its own callback function. Use sm_dde_install_notify to install a callback
function.

Before creating a paste link, two conditions must be true:

� The clipboard must contain data copied from the server.

� JAM must be enabled as a client.

JAM checks whether a connection to the server application already existsÐfor
example, another open screen has a link to this server. If no connection exists, JAM
attempts to establish one. After JAM verifies or establishes a connection, it creates
a warm link between the JAM field and the data source.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message. If the link cannot be created, JAM posts an
error message.

field

Environment

Returns

Description

sm_dde_client_request

2056 JAM Library FunctionsChapter

sm_dde_client_request
Requests data from a DDE server

int sm_dde_client_request(char *server,char *topic,char *item,char *field);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

The server itemÐfor example, DDE_LINK1

The name of a JAM field on the active screen.

Windows

1 Success.
0 Failure.

sm_dde_client_request requests data from a DDE server. Call this function to
update cold and warm link data on JAM screens.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message.

sm_dde_client_connect_cold , sm_dde_client_connect_warm ,
sm_dde_client_paste_link_cold , sm_dde_client_paste_link_warm

server

topic

item

field

Environment

Returns

Description

See Also

sm_dde_execute

206 JAM 7.0 Language Reference

sm_dde_execute
Sends a command to a DDE server

int sm_dde_execute(char *server,char *topic, char *command);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

A command in the server application's syntax.

Windows

1 Success.
0 Failure.

sm_dde_execute sends a command from a JAM client to a server application.
The server decides how to execute this command.

This function can succeed only if the server application is already running;
otherwise JAM posts an error message.

sm_dde_poke

server

topic

command

Environment

Returns

Description

See Also

sm_dde_install_notify

2076 JAM Library FunctionsChapter

sm_dde_install_notify
Installs a callback function that executes on changes in warm link data

void sm_dde_install_notify(void (*callback) (char *, char *));

The name of the callback function to install.

Windows

sm_dde_install_notify installs a function that JAM calls when it gets notifi-
cation from a server that warm link data has changed. If no callback function is
installed, JAM uses its own callback function to notify the application. After the
application is notified, it must explicitly request the data by calling
sm_dde_client_request .

JAM supplies two arguments to a callback function: the name of the screen, and
the name of the field that contains the link data.

Declare a callback function as follows:

void callback(char* screenname,char *fieldname);

/* Function to notify user of new data via a message and
 a checkbox.*/
#include ºsmdefs.hº

void notify(s_name, f_name)
char *s_name;
char *f_name;
{

int g_occur; /* group occurrence number */
char *g_name; /* group name */
char buff[128];
sprintf(buff,ºNew data available for %s on %sº,

 f_name,s_name);
sm_d_msg_line (buff,10);

callback

Environment

Description

Example

sm_dde_install_notify

208 JAM 7.0 Language Reference

 /* Locate next field, get group name, and use it to set a
 checklist item indicating that new data is available.
 */

g_name=sm_ftog(sm_e_fldno(f_name,0)+1,&g_occur);
sm_select(g_name,g_occur);

}

sm_dde_client_requestSee Also

sm_dde_poke

2096 JAM Library FunctionsChapter

sm_dde_poke
Pokes data into a DDE server

int sm_dde_poke(char *server,char *topic,char *item,char *data);

The server application's nameÐfor example, WINWORD

The server topic, typically the file name of the spreadsheet or documentÐfor
example, SALES.DOC

The server itemÐfor example, DDE_LINK1

The data to send to the server.

Windows

1 Success.
0 Failure.

sm_dde_poke sends unsolicited data from a JAM client to a server application.
The server decides whether to accept or reject this data. A connection to the server
must already exist; however, a link to the specified topic and item is not required.

sm_dde_execute

server

topic

item

data

Environment

Returns

Description

See Also

sm_dde_server_off

210 JAM 7.0 Language Reference

sm_dde_server_off
Disables DDE server activity

void sm_dde_server_off(void);

Windows

sm_dde_server_off prevents JAM from acting as a DDE server.

sm_dde_server_on

Environment

Description

See Also

sm_dde_server_on

2116 JAM Library FunctionsChapter

sm_dde_server_on
Enables DDE server activity

void sm_dde_server_on(void);

Windows

sm_dde_server_on enables JAM to act as a DDE server.

sm_dde_server_off

Environment

Description

See Also

sm_delay_cursor

212 JAM 7.0 Language Reference

sm_delay_cursor
Changes the state of the mouse pointer

int sm_delay_cursor(int state);

Specifies the cursor's new state with one of these arguments:

SM_AUTO_BUSY_CURSOR

Toggles the mouse pointer between the default cursor and the delay cursor
depending on whether the application is awaiting input or not. The default cursor
appears whenever JAM is awaiting input.

SM_BUSY_CURSOR

Changes the mouse pointer into the delay cursor.

SM_DEFAULT_CURSOR

Restores the default cursor.

SM_SAME_CURSOR

Leaves the mouse pointer unchanged. Use this argument to get the pointer's current
state.

SM_TEMP_BUSY_CURSOR

Temporarily changes the mouse pointer to the delay cursor. JAM restores the
mouse pointer to the default cursor after JAM refreshes the screen.

w The mouse pointer's previous state, one of the arguments specified for the pa-
rameter state , excluding SM_SAME_CURSOR.

sm_delay_cursor sets the mouse pointer to be either the default cursor or the
delay cursor, or gets the mouse pointer's current state, according to the value of
state . It can also specify to change the cursor's state automatically, depending on
whether the application is awaiting input or not.

state

Returns

Description

sm_delay_cursor

2136 JAM Library FunctionsChapter

You can set the default cursor for a screen through the Pointer property. In
Windows and Motif, the default cursor is an arrow. The delay cursor in Windows is
an hourglass; in Motif, the delay cursor is usually a wristwatch icon. You can
change Motif's default cursor through the pointerShape resource.

Because character-mode JAM does not change the mouse pointer shape,
sm_delay_cursor resets the background status line message to the value of
SM_WAIT or SM_READY. Note that you can turn background status messages on and
off through sm_setstatus .

sm_deselect

214 JAM 7.0 Language Reference

sm_deselect
Deselects an occurrence in a selection widget group

int sm_deselect(char *group_name, int grp_occurrence);

The name of the group with the item to deselect.

The occurrence in group_name to deselect.

-1 Arguments do not reference an occurrence.
0 Occurrence not previously selected.
1 Occurrence previously selected.

sm_deselect lets you deselect an occurrence within a selection widget group.
You can use sm_select to select a group occurrence.

sm_select

group_name

grp_occurrence

Returns

Description

See Also

sm_dicname

2156 JAM Library FunctionsChapter

sm_dicname
Sets the repository name

int sm_dicname(char *filespec);

The repository's name and, optionally, path. If no path is specified, JAM searches
for the file according to the paths specified in SMPATH.

0 Success.
-1 Insufficient memory.
-2 Unable to find filespec .
-3 filespec is not a repository.

sm_dicname sets the name of the repository to open in JAM's screen editor. You
can also specify a repository by setting the SMDICNAME variable in your setup file
to the desired repository's name. During an editing session, you can close and open
repositories through the screen editor's File menu. Only one repository can be open
at a time.

#include <smdefs.h>

/* Set the name of the application's repository
 * to /usr/app/common.dic .*/

sm_dicname (º/usr/app/common.dicº);

filespec

Returns

Description

Example

sm_disp_off

216 JAM 7.0 Language Reference

sm_disp_off
Gets the cursor's offset in the current field

int sm_disp_off(void);

. 0 The difference between cursor's position and the start of the field.
-1 The cursor is not in a field.

sm_disp_off returns the difference between the field's first position and the cur-
rent cursor location. sm_disp_off ignores offscreen data. To get the total cursor
offset in a shiftable field, use sm_sh_off .

sm_sh_off

Returns

Description

See Also

sm_dlength

2176 JAM Library FunctionsChapter

sm_

* dlength

Gets the length of a field's contents

int sm_dlength(int field_number);

int sm_e_dlength(char *field_name, int element);

int sm_i_dlength(char *field_name, int occurrence);

int sm_n_dlength(char *field_name);

int sm_o_dlength(int field_number, int occurrence);

The field with the data to evaluate.

The element in field_name with the data to evaluate.

The occurrence in the field with the data to evaluate.

. 0 Length of field contents.
-1 The field is not found.

sm_dlength returns the length of the data in the specified field or occurrence of a
field. The length includes any data that is shifted offscreen and therefore out of
view. The length excludes leading blanks in right-justified fields, and trailing
blanks in left-justified fields.

#include <smdefs.h>

/* Save the contents of the ºrankº field in a buffer
 * of the proper size. */

char *save_rank;

if ((save_rank = malloc (sm_n_dlength (ºrankº) + 1)) == 0)
{

report_error (ºmalloc error.º);
}
else
{

sm_n_getfield (save_rank, ºrankº);
}

field_name,
field_number

element

occurrence

Returns

Description

Example

sm_do_uinstalls

218 JAM 7.0 Language Reference

sm_do_uinstalls
Installs an application's hook functions

void sm_do_uinstalls(void);

Hook functions are installed with the library function sm_install . The call to this
function is typically, but not necessarily, made by sm_do_uinstalls , whose
source is in funclist.c .

sm_do_uinstalls is usually called by the main function. The provided source
code calls the library function sm_install to install dummy function lists. You
should replace these dummy calls with your own installation calls.

In general, you should install hook functions after the call to sm_initcrt , which
initializes the display. One exception applies: you should always install an
initialization function before the call to sm_initcrt .

For more information about installing hook functions, refer to page 119 in the
Application Development Guide.

sm_initcrt , sm_install

Description

See Also

sm_doccur

2196 JAM Library FunctionsChapter

sm_

* doccur

Deletes occurrences from a field

int sm_i_doccur(char *field_name, int occurrence, int count);

int sm_o_doccur(int field_number, int occurrence, int count);

The field with the occurrences to delete.

The first occurrence to delete in the array specified by field_number or
field_name .

The number of occurrences to delete, starting with occurrence . If you supply a
negative value, JAM inserts new occurrences above occurrence , with the same
restrictions that apply to sm_ioccur .

. 0 The number of occurrences deleted.
-1 The field or occurrence number is out of range.
-3 Insufficient memory available.

sm_i_doccur and sm_o_doccur delete data from count occurrences, starting
with occurrence . If the array is scrolling, JAM then deallocates count occur-
rences. JAM moves up data in the occurrences after the last-deleted occurrence to
prevent gaps in the array.

If count is equal to or greater than the number of allocated occurrences, JAM
deletes all data from the array.

If other arrays are synchronized with this one, sm_doccur performs the same
operation on them, provided their Clearing Protect property is set to No.
sm_doccur ignores the target array's Clearing Protect setting.

You can use sm_doccur to insert new occurrences in a field by supplying a
negative value for count . You can achieve the same effect with sm_ioccur .

This function is normally bound to the logical key DELL.

sm_ioccur

field_name,
field_number

occurrence

count

Returns

Description

See Also

sm_drawingarea

220 JAM 7.0 Language Reference

sm_

* drawingarea

Gets a handle to the current screen that can be passed to the window manager

#include <smmcuser.h>

CPane *sm_mc_drawingarea(void);

#include <smmwuser.h>

HWND sm_mw_drawingarea(void);

#include <smxmuser.h>

Widget sm_xm_drawingarea(void);

Macintosh, Motif, Windows

w Success: On Macintosh, a pointer to a Cpane; on Windows, an HWND handle
to the window; on Motif, a Widget ID.

w Failure: NULL if there is no current screen.

sm_mc_drawingarea , sm_mw_drawingarea and sm_xm_drawingarea get a
handle to the current screenÐin the case of Macintosh, a pointer to a CPane, for
Windows, a HWND handle; under Motif, a Widget ID. Use these functions with
sm_translatecoords to place objects such as bitmapped graphics or custom
widgets on a JAM screen. Refer to sm_translatecoords for a Windows exam-
ple that uses this function.

Note: The Widget ID that sm_xm_drawingarea returns is not a recognizable X
widget type. Consequently, you cannot directly call XmAddCallback with it. To use
this Widget ID, you must call XmAddEventHandler.

sm_translatecoords , sm_widget

Environment

Returns

Description

See Also

sm_dtofield

2216 JAM Library FunctionsChapter

sm_

* dtofield

Writes a real number to a field

int sm_dtofield(int field_number, double value, char *format);

int sm_e_dtofield(char *field_name, int element, double value, char *format);

int sm_i_dtofield(char *field_name, int occurrence, double value, char *format);

int sm_n_dtofield(char *field_name, double value, char *format);

int sm_o_dtofield(int field_number, int occurrence, double value, char *format);

The field to receive value .

The element in field_name to receive value .

The occurrence in the field to receive value .

The real number data to write.

Specifies the format to apply to value . To supply a value of 0, cast the argument
as follows: (char *)0 .

0 Success.
-1 The field is not found.
-2 The field has a currency format but the formatted output is too wide for it.

sm_dtofield converts the real number value to user-readable format as speci-
fied by format . It then moves this value into the specified field with a call to
sm_amt_format . If the format string is empty, JAM determines the number's
precision from the field's Format Type subproperty if Data Formatting property is
set to Numeric. Otherwise, it uses the precision set by the setup variable DEC-
IMAL_PLACES.

You can round the number of decimal places to n places with the format string
º%. nfº . To truncate, use the format string º%t. nfº .

field_name,
field_number

element

occurrence

value

format

Returns

Description

sm_dtofield

222 JAM 7.0 Language Reference

/* Place the value of pi on the screen, using the
 * formatting attached to the field. */

sm_n_dtofield (ºpiº, 3.14159, (char *)0);

/* Do it again, using only three decimal places.
 sm_n_dtofield (ºpiº, 3.14159, º%5.3fº);

sm_amt_format , sm_dblval

Example

See Also

sm_femsg

2236 JAM Library FunctionsChapter

sm_femsg
Displays an error message and awaits user acknowledgement

void sm_femsg(int msg_num, char *message);

A JAM message number. If you supply a string value for message , JAM ignores
this parameter.

The error message to display. To use the msg_num-specified message, set this
parameter to NULL.

sm_femsg displays the specified message either on the status line or in a pop-up
window and awaits user acknowledgement. This function also calls the error hook
function if one is installed.

By default, GUI versions of JAM always display messages in a pop-up window
with an OK button. Character-mode JAM always displays messages in a window
only if the configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set
this variable to WHEN_REQUIRED (the default), JAM displays messages on the
status line except when these conditions occur:

� The message overflows the status line. Note that JAM prevents the message
from overlapping the cursor row/column display, if it is turned on.

� The message wraps to multiple lines.

� You specify window display with the %W format option.

Note: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of MESSAGE_WINDOW's setting, if the
message contains the %Mu option, or the setup variable ER_KEYUSE is set to
ER_USE.

Users can dismiss the error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error
message. The acknowledgement keyÐby default, space barÐcan be set through
the setup variable ER_ACK_KEY. If the user acknowledges the message through the
keyboard, JAM discards the key. You can modify this behavior for individual
messages through the %Mu option, described later.

msg_num

message

Description

Window versus Status
Line Display

Message
Acknowledgement

sm_femsg

224 JAM 7.0 Language Reference

Several setup variables determine default message presentation and behavior. For
more information about these variables, refer to page 26 in the Configuration
Guide. You can change these defaults at runtime through sm_option .

You can change message behavior and appearance for individual messages by
embedding percent escape options in the message text. Use these options after the
call to sm_initcrt ; otherwise, the percent characters appear as literals.

%A attr-value

Change the display of the subsequent string to the attr-value-specified attribute,
where attr-value is a four-digit hexadecimal value. If the string to get the attribute
change starts with a hexadecimal digit (0...F), pad attr±value with leading zeros to
four digits. Refer to Table 4 in the Configuration Guide for valid attribute values.

This option is valid only for messages that display on the status line. JAM ignores
this option if the message displays in a window.

%B
Beep the terminal with sm_bel before the message displays. This option must be
at the beginning of the message.

%K key-logical

Display key label for logical key, where key-logical is a logical key constant. When
JAM displays the message, it replaces key-logical with the key label string defined
for that key in the key translation file. If there is no label, the %K is stripped out and
the constant remains. Key constants are defined in smkeys.h

Note: If %K is used in a status line message, the user can push the corresponding
logical key onto the input queue by mouse-clicking on the key label text.

%Md
Force the user to press the acknowledgment key (ER_ACK_KEY) in order to dismiss
the error message. JAM discards the key that is pressed. If the user presses any
other key, JAM displays an error message or beeps, depending on how setup
variable ER_SP_WIND is set. The %Md option corresponds to the default message
behavior when setup variable ER_KEYUSE is set to ER_NO_USE.

This option must precede the message text.

%Mt [time-out]

Force temporary display of message to the status line. JAM automatically
dismisses the message after the specified timeout elapses and restores the previous
status line display. Timeout specification is optional; the default timeout is one
second. You can specify another timeout in units of 1/10 second with this syntax:

Message Appearance
and Behavior

sm_femsg

2256 JAM Library FunctionsChapter

#(n)

where n is a numeric constant that specifies the timeout's length. If n is more than
one digit, the value must be enclosed with parentheses. For example, this statement
displays a message for 2 seconds:

err = sm_femsg (0, º%Mt(20)ºChanges saved to database.º);

The user can dismiss the message before the timeout by pressing any key or mouse
clicking. JAM then processes the keyboard or mouse input.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement key. JAM then discards any keyboard input.

This option must precede the message text.

%Mu
Force message display to the status line and permit any keypress to serve as both
error acknowledgment and data entry. JAM processes the key that is pressed. This
option must precede the message text. This option corresponds to default message
behavior when setup variable ER_KEYUSE is set to ER_USE.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or by
pressing the acknowledgement key or space bar. JAM then discards any keyboard
input used to dismiss the message.

%N
Insert a line break and force display of the message in a window.

%W
Force display of the message in a window. This option must be at the beginning of
the message.

sm_ferr_reset , sm_fqui_msg , sm_fquiet_errSee Also

sm_ferr_reset

226 JAM 7.0 Language Reference

sm_ferr_reset
Displays an error message and awaits user acknowledgement

void sm_ferr_reset(int msg_num, char *message);

A JAM message number. If you supply a string value for message , JAM ignores
this parameter.

The error message to display. To use the msg_num-specified message, set this
parameter to NULL.

sm_ferr_reset displays the specified message either on the status line or in a
pop-up window and awaits user acknowledgement. This function also calls the
error hook function if one is installed.

By default, GUI versions of JAM always display messages in a pop-up window
with an OK button. Character-mode JAM always displays messages in a window
only if the configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set
this variable to WHEN_REQUIRED (the default), character-mode JAM displays
messages on the status line except when these conditions occur:

� The message overflows the status line. Note that JAM prevents the message
from overlapping the cursor row/column display, if it is turned on.

� The message wraps to multiple lines.

� You specify window display with the %W format option.

Note: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of MESSAGE_WINDOW's setting, if the
message contains the %Mu option, or the setup variable ER_KEYUSE is set to
ER_USE.

sm_ferr_reset and sm_femsg function identically when messages are displayed
in a window. If the message is displayed on the status line, sm_ferr_reset forces
the cursor on at the current field and forces off global flag sm_do_not_display

Users can dismiss the error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error
message. The acknowledgement keyÐby default, space barÐcan be set through

msg_num

message

Description

Window versus Status
Line Display

Message
Acknowledgement

sm_ferr_reset

2276 JAM Library FunctionsChapter

the setup variable ER_ACK_KEY. If the user acknowledges the message through the
keyboard, JAM discards the key. You can modify this behavior for individual
messages through the %Mu option, described later.

Several setup variables determine default message presentation and behavior. For
more information about these variables, refer to page 26 in the Configuration
Guide. You can change these defaults at runtime through sm_option .

You can also change message behavior and appearance for individual messages
through percent escapes embedded in the message text. Refer to page 224 for a
description of percent escapes.

sm_femsg , sm_fqui_msg , sm_fquiet_errSee Also

sm_fi_open

228 JAM 7.0 Language Reference

sm_fi_open
Finds a file and opens it in binary read-only mode

FILE *sm_fi_open(char *file_name);

A pointer to the name of the file to open. If file_name 's full path name exceeds
84 characters, the file is skipped.

w The file pointer to the open file stream.
w 0: The file cannot be found on any path.

sm_fi_open lets you open a file in binary read-only mode. The file can be any
kind of file, including a screen file.

JAM searches for file_name in the current directory, then along the path given to
sm_initcrt , and finally along the path defined by SMPATH.

sm_fi_path

file_name

Returns

Description

See Also

sm_fi_path

2296 JAM Library FunctionsChapter

sm_fi_path
Returns the full path name of a file

char *sm_fi_path(char *file_name);

A pointer to the name of the file whose path is sought.

w A pointer to a static buffer that contains the path.
w 0: The file cannot be found on any path.

sm_fi_path finds the full path name of a file. The file can be a screen or any oth-
er type of file. sm_fi_path returns a pointer to a static buffer that contains the
file' s full path name.

JAM searches for file_name in the current directory, then along the path given to
sm_initcrt , and finally along the path defined by SMPATH.

If the file is found, the full path name is returned to the caller. Because the static
buffer used to hold the full path name is shared by several functions, it should be
used or copied immediately.

sm_fi_open

file_name

Returns

Description

See Also

sm_filebox

230 JAM 7.0 Language Reference

sm_filebox
Opens a file selection dialog box

int sm_filebox (char *buffer, int length, char *path, char *file_mask,
char *title, int open_save);

On return, contains the selected file's full pathname.

The length of buffer . Make sure that length is large enough to contain the
contents of buffer .

The initial path for the directory tree.

A filter to narrow down the selection of files in path . Use at least one wildcard
character.

The text of the dialog box's title. Titles are used only by applications that run under
Windows and in character mode. If you supply an empty string, JAM supplies
default titles according to the value of flag : Open for FB_OPEN, and Save As for
FB_SAVE.

Specifies whether the file selection box lets users open or save a file; valid only for
applications running under Windows and character mode. Supply either FB_OPEN
or FB_SAVE.

1 Success: the user chose OK and JAM copied the filename to buffer .
0 The user chose Cancel. No text is copied to buffer .

-1 Failure: A malloc error occurred or the buffer was too small.

sm_filebox invokes a file selection box that lets users choose a file to open or
where to save a file. The dialog box initially displays the contents of the path -spe-
cified directory, and lists files that match the wildcard specification in file_mask .
Users can browse through the directory tree. When the user chooses OK, JAM co-
pies to buffer the name of the file to open or save.

If you are running an application under Windows or in character mode, JAM also
displays an option menu that lists the file types to open or save, according to the
value of open_save . JAM uses the selected option to change the types of files it
displays You specify the option menu's contents through sm_filetypes .

buffer

length

path

file_mask

title

open_save

Returns

Description

sm_filebox

2316 JAM Library FunctionsChapter

#include ºsmdefs.hº

#define LEN 256
char buf [LEN];

sm_filebox(buf, LEN, ºc:\videobizº, º*.tblº, ºº, FB_OPEN);

sm_filetypes

Example

See Also

sm_filetypes

232 JAM 7.0 Language Reference

sm_filetypes
Adds an option to the file type option menu

int sm_filetypes(char *option_text, char *filters);

The text of the option to display on the file type option menu.

A semicolon-separated list of file masks that specify the files selected through
description .

Windows

0 The description is successfully added to the list.
-1 A memory allocation error occurred.

sm_filetypes defines a file type and adds it to the option menu that JAM dis-
plays in the Windows file selection dialog box. This menu gives users an easy way
to specify which files to show in the current directory.

You build the option menu through repeated calls to sm_filetypes . For example,
the following statements define two files types, Text and Executables:

sm_filetypes(ºTextº, º*.doc; *.txtº);
sm_filetypes(ºExecutablesº, º*.com; *.exe; *.batº);

The dialog box subsequently invoked by sm_filebox contains an option menu
with these file types. Options are displayed in order of their definition. Each call to
sm_filebox uses the current file type definitions. To change the menu, first
reinitialize the current one by calling sm_filetypes with null pointer arguments,
as in this statement:

sm_filetypes(NULL, NULL);

sm_filebox

option_text

filters

Environment

Returns

Description

See Also

sm_fio_a2f

2336 JAM Library FunctionsChapter

sm_fio_a2f
Writes the contents of an array to a file

int sm_fio_a2f(char *file_name, char *array_name);

The name of the target file.

The name of the source array.

0 Success.
±4 SMFIO_IO_ERROR: Error during write operation.
±7 SMFIO_OPEN_ERROR: Unable to open fileÐfor example, because the file does

not exist or is protected.
±8 SMFIO_FIELD_ERROR: Nonexistent field.
±13SMFIO_GETFIELD: Unable to read the field's contents.

sm_fio_a2f writes the contents of the specified array to a file. The contents of
each occurrence are written as a single line to the file.

proc array2file()
vars fileName, retErr

/* get the file name sent from previous dialog */
receive DATA fileName

/* put array's contents into file */
retErr = sm_fio_a2f(fileName, ºcommentsº)
if retErr != 0
{
 msg emsg (ºError ± error number :retErrº)
}
return

file_name

array_name

Returns

Description

Example

sm_fio_close

234 JAM 7.0 Language Reference

sm_fio_close
Closes an open file stream

int sm_fio_close(int file_stream);

A handle to the file to close, obtained by sm_fio_open .

0 Success.
±1 SMFIO_INVALID_HANDLE: Invalid file handle.
±2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

sm_fio_close closes the specified file and releases its handle for reuse. You
should call this function after all read and write operations that require an open file
streamÐfor example, after calling sm_fio_gets .

This function is similar to the C function fclose , except that sm_fio_close
takes an integer argument so that it can be called from JPL.

sm_fio_open

file_stream

Returns

Description

See Also

sm_fio_editor

2356 JAM Library FunctionsChapter

sm_fio_editor
Invokes an external text editor for an array

int sm_fio_editor(char *array_name);

The name of the array whose contents you wish to edit.

0 Success.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
±8 SMFIO_FIELD_ERROR: Nonexistent field.
±9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; par-

tial read was successful.
±10SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
±11 SMFIO_NO_EDITOR: JAM setup variable SMEDITOR is undefined; no editor is

available to handle the operation.
±12SMFIO_PUTFIELD: Unable to write to the field.
±13SMFIO_GETFIELD: Unable to read the field's contents.

sm_fio_editor invokes the editor specified in the setup variable SMEDITOR and
writes the contents of array_name to a temporary file. Each occurrence is written
as a single line to that file.

When you exit the editor, JAM writes the edited text back to the array. JAM
attempts to write each line in the file to a single occurrence. If any line is too long
for its target occurrence, JAM breaks the line and writes the overflow text to the
next occurrence. If the array contains too few occurrences to read the entire file,
sm_fio_editor discards the excess text.

array_name

Returns

Description

sm_fio_error

236 JAM 7.0 Language Reference

sm_fio_error
Gets the error returned by the last call to a file I/O function

int sm_fio_error(void);

0 Success.
±1 SMFIO_INVALID_HANDLE: Invalid file handle.
±2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
±3 SMFIO_EOF: Already at end of file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
±5 SMFIO_INVALID_MODE: Invalid mode specified for open operation.
±6 SMFIO_NO_HANDLES: All available file handles currently in use.
±7 SMFIO_OPEN_ERROR: Unable to open the fileÐfor example, because it does

not exist or is protected.
±8 SMFIO_FIELD_ERROR: Nonexistent field.
±9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; par-

tial read was successful.
±10SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
±11 SMFIO_NO_EDITOR: JAM setup variable SMEDITOR is undefined; no editor is

available to handle the operation.
±12SMFIO_PUTFIELD: Unable to write to the field.
±13SMFIO_GETFIELD: Unable to read the field's contents.

sm_fio_error gets the last value returned by a file I/O function. Use this func-
tion after calling sm_fio_gets and sm_fio_handle , which respectively return
an empty string and NULL when an error occurs. In both cases, you must call
sm_fio_error to determine the actual cause of the error.

Note: Because the same error code variable is shared by all JPL file I/O routines,
you should call sm_fio_error before making any other I/O operations with JAM
library functions.

Returns

Description

sm_fio_error

2376 JAM Library FunctionsChapter

/* Write the contents of an ASCII file to a single± *
 * line text array. The file stream handle was *
 * obtained earlier by a call to sm_fio_open() *
 */

proc getStr()
{
 vars str, occurNo, err, fileStream, maxOccurs
 call sm_fio_error_set(0)

 /* get array size */
 maxOccurs = @widget(ºcommentsº)±>max_occurrences

 /* get file stream handle sent from previous dialog */
 receive BUNDLE f_handle DATA fileStream

 /* loop through array occurrences */
 for occurNo = 1 && err = 0 \
 while (err == 0 && occurNo <= maxOccurs)
 {
 /* get the next string in file stream */
 str = sm_fio_gets(fileStream, 32)

 /* check for error condition like EOF */
 if (str == ºº)
 {
 err = sm_fio_error()
 }
 /* read string into occurrence */
 comments[occurNo] = str
 }

 /* close the file stream when done */
 call sm_fio_close(fileStream)
 return
}

Example

sm_fio_error_set

238 JAM 7.0 Language Reference

sm_fio_error_set
Sets the file I/O error

int sm_fio_error_set(int new_error);

The error code to set, one of the file I/O error codes shown in the Returns section
below.

The value returned by the last call to a file I/O function, one of the following:

0 Success.
±1 SMFIO_INVALID_HANDLE: Invalid file handle.
±2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
±3 SMFIO_EOF: Already at end of file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
±5 SMFIO_INVALID_MODE: Invalid mode specified for open operation.
±6 SMFIO_NO_HANDLES: All available file handles currently in use.
±7 SMFIO_OPEN_ERROR: Unable to open the fileÐfor example, because it does

not exist or is protected.
±8 SMFIO_FIELD_ERROR: Nonexistent field.
±9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; par-

tial read was successful.
±10SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
±11 SMFIO_NO_EDITOR: JAM setup variable SMEDITOR is undefined; no editor is

available to handle the operation.
±12SMFIO_PUTFIELD: Unable to write to the field.
±13SMFIO_GETFIELD: Unable to read the field's contents.

sm_fio_error_set sets the error code for JAM's file I/O processing functions.
Use this function to clear the last-reported error.

For an example of this function, refer to sm_fio_error .

new_error

Returns

Description

sm_fio_f2a

2396 JAM Library FunctionsChapter

sm_fio_f2a
Writes a file's contents to an array

int sm_fio_f2a(char *file_name, char *array_name);

The name of the file to read.

The name of a JAM widget. Do not write to multiline text widgets; doing so can
yield unpredictable results.

0 Success.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
±7 SMFIO_OPEN_ERROR: Unable to open the fileÐfor example, because it does

not exist or is protected.
±8 SMFIO_FIELD_ERROR: Nonexistent field.
±9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; par-

tial read was successful.
±10SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
±12SMFIO_PUTFIELD: Unable to write to the field.

sm_fio_f2a writes the contents of a file to an array. All previous text in the array
is overwritten. If the array belongs to a synchronized scrolling group, the data of
other members in the group is unaffected.

JAM attempts to write each line in the file to a single occurrence. If any line is too
long for its target occurrence, JAM breaks the line and writes the overflow text to
the next occurrence. If the array contains too few occurrences to read the entire
file, sm_fio_editor discards the excess text.

proc file2array()
vars fileName, retErr

/* get file name sent from previous dialog */
receive DATA fileName

file_name

array_name

Returns

Description

Example

sm_fio_f2a

240 JAM 7.0 Language Reference

/* put file's contents into array*/
retErr = sm_fio_f2a(fileName, ºcommentsº)

if retErr != 0
{
 call io_errproc(retErr)
}
return

sm_fio_getc

2416 JAM Library FunctionsChapter

sm_fio_getc
Reads the next bye from the specified file stream

int sm_fio_getc(int file_stream);

A handle to the required file stream, obtained by sm_fio_open .

. 0 Next character in the file stream as an integer.
±3 SMFIO_EOF: Already at end of file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

sm_fio_getc reads a character from the specified file stream and returns the re-
sult as an integer. This function is similar to the C function fgetc and is intended
to read the contents of binary files.

Note: This function only returns the ASCII integer value of the read character.

file_stream

Returns

Description

sm_fio_gets

242 JAM 7.0 Language Reference

sm_fio_gets
Reads a line from a file

char *sm_fio_gets(int file_stream, int maxlen);

A handle to the required file stream, obtained by sm_fio_open .

The number of bytes to read.

w A pointer to the string read from file_stream .
w An empty string if an error occurred.

sm_fio_gets reads maxlen bytes from the current line in file_stream or to
the end of the line and returns that string. If the current line is shorter than maxlen ,
sm_fio_gets only reads up to the end of the line. If the current line is longer than
maxlen , the function returns only maxlen characters and sets the error code to
SMFIO_LINE_BREAK. The next read operation on this file stream by
sm_fio_gets continues where the last read ended. This function strips newline
characters before reading it into the return value.

If the read operation fails, the function returns an empty string and sets the
appropriate error code. You can get this error code by calling sm_fio_error .
Because an empty string can also be a valid return valueÐfor example, the file
stream contains a blank lineÐyou should interleave calls to sm_fio_gets with
calls to sm_fio_error to determine whether an error condition exists and to
ascertain its nature. sm_fio_gets can set one of these error codes:

SMFIO_INVALID_HANDLE Invalid file handle.

SMFIO_HANDLE_CLOSE Handle points to closed file.

SMFIO_EOF Already at end of file.

SMFIO_IO_ERROR Standard I/O error. Check the value in system vari-
able errno to determine the nature of the error.

SMFIO_LINE_BREAK The line is longer than maxlen characters.

file_stream

maxlen

Returns

Description

sm_fio_gets

2436 JAM Library FunctionsChapter

Note: Because the same error code variable is shared by all JPL file I/O routines,
you should call sm_fio_error before calling any other I/O library functions.

/* Write the contents of an ASCII file to a single± *
 * line text array. The file stream handle was *
 * obtained earlier by a call to sm_fio_open() *
 */

proc getStr()
{
 vars str, occurNo, err, fileStream, maxOccurs
 call sm_fio_error_set(0)

 /* get array size */
 maxOccurs = @widget(ºcommentsº)±>max_occurrences

 /* get file stream handle sent from previous dialog */
 receive BUNDLE f_handle DATA fileStream

 /* loop through array occurrences */
 for occurNo = 1 && err = 0 \
 while (err == 0 && occurNo <= maxOccurs)
 {
 /* get the next string in file stream */
 str = sm_fio_gets(fileStream, 32)

 /* check for error condition like EOF */
 if (str == ºº)
 {
 err = sm_fio_error()
 }
 /* read string into occurrence */
 comments[occurNo] = str
 }

 /* close the file stream when done */
 call sm_fio_close(fileStream)
 return
}

Example

sm_fio_handle

244 JAM 7.0 Language Reference

sm_fio_handle
Gets a handle to an open file

FILE *sm_fio_handle(int file_stream);

A handle to the required file stream, obtained by sm_fio_open .

w FILE * pointer to the specified file.
w NULL: FailureÐfor example, the file is closed. Call sm_fio_error to ascer-

tain the nature of the failure.

sm_fio_handle gets a FILE * pointer to a JPL file stream opened by
sm_fio_open . You can pass this handle to routines written in C. This function lets
you write your own extensions to JAM file I/O functions.

Note: This function cannot be called from JPL.

file_stream

Returns

Description

sm_fio_open

2456 JAM Library FunctionsChapter

sm_fio_open
Opens the specified file and returns a handle to the JPL caller

int sm_fio_open(char *path, char *mode);

Path name of file to open.

Describes the file typeÐbinary or textÐand type of access required, one of the
following constants described in Table 7 in Description.

. 1 A handle to the opened file.
±5 SMFIO_INVALID_MODE: Invalid mode specified for open operation.
±6 SMFIO_NO_HANDLES: All available file handles currently in use.
±7 SMFIO_OPEN_ERROR: Unable to open the fileÐfor example, because it does

not exist or is protected.

sm_fio_open opens a file in the specified mode and returns an integer handle to a
file stream accessible only from JPL. Use this handle for all subsequent I/O opera-
tions on the file stream in JPL.

You can open a file in one of the modes shown in Table 7:

Table 7. File access modes

Mode identifier Access description

r Open read-only text file.

rb Open read-only binary file.

w Create write-only text file.

wb Create write-only binary file.

a Open text file for append.

ab Open binary file for append.

path

mode

Returns

Description

sm_fio_open

246 JAM 7.0 Language Reference

Mode identifier Access description

r+b Open binary file for update.

w+b Create binary file for update.

a+b Open binary file for append or update.

/* this validation routine is attached to a
 * push button on a dialog screen that gets
 * user±entered name of a file and opens it
 */

vars fileStream, operation
receive BUNDLE mode DATA operation

if (operation == ºwº)
{
 fileStream = getFileHandle (file, ºwº)
}
if (operation == ºrº)
{
 fileStream = getFileHandle (file, ºrº)
}

/* All±purpose routine for supplying file handles*/

proc getFileHandle (fileName, mode)
vars fileHandle

fileHandle = sm_fio_open(fileName, mode)
if fileHandle < 0
{
 msg emsg ºI/O error :fileHandle ± reenter file nameº
 sm_n_gofield(ºfileNameº)
}

if fileHandle >= 0
{
 send BUNDLE f_handle DATA fileHandle
}

return

Example

sm_fio_putc

2476 JAM Library FunctionsChapter

sm_fio_putc
Writes a single byte to an open file

int sm_fio_putc(int byte, int file_stream);

An ASCII integer value to write. Attempts to write any other kind of valueÐfor
example, a stringÐyield an error.

A handle to the file to write to, obtained by sm_fio_open .

0 Success
±1 SMFIO_INVALID_HANDLE: Invalid file handle.
±2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

sm_fio_putc writes the specified integer characterÐa single byteÐto a file
opened by sm_fio_open . The value should be the integer value of an ASCII char-
acter. Call this function only from JPL. Routines that are written in C should call
fputc . Do not call JAM and C functions on the same I/O stream.

Be sure to call sm_fio_close on file_stream after you finish writing the data;
the actual write operation is not complete until the handle to this file stream is
released.

byte

file_stream

Returns

Description

sm_fio_puts

248 JAM 7.0 Language Reference

sm_fio_puts
Writes a line of text to an open file.

int sm_fio_puts(char *string, int file_stream);

Character string to be output.

A handle to the file to write to, obtained by sm_fio_open .

0 Success.
±1 SMFIO_INVALID_HANDLE: Invalid file handle.
±2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

sm_fio_puts writes the contents of string to the specified open file and ap-
pends a newline \n character. Be sure to call sm_fio_close on file_stream
after you finish writing the data; the actual write operation is not complete until the
handle to this file stream is released.

proc putStr()
{
 vars str, occurNo, err, fileStream, maxOccurs
 call sm_fio_error_set(0)

 /* get array size */
 maxOccurs = @widget(ºcommentsº)±>max_occurrences

 /*get file stream handle sent from previous dialog */
 receive BUNDLE f_handle DATA fileStream

 /* loop through array occurrences */
 for occurNo = 1 && err = 0 \
 while (err == 0 && occurNo <= maxOccurs)
 {
 /* get string in current occurrence */
 str = comments[occurNo]

string

file_stream

Returns

Description

Example

sm_fio_puts

2496 JAM Library FunctionsChapter

 /* put string into next line of file stream */
 err = sm_fio_puts(str, fileStream)
 }

 /* close file stream when done */
 call sm_fio_close(fileStream)
 return
}

sm_fio_rewind

250 JAM 7.0 Language Reference

sm_fio_rewind
Resets the file stream to the beginning of a file

int sm_fio_rewind (int file_stream);

A handle to the file to rewind, obtained by sm_fio_open .

0 Success.
±1 SMFIO_INVALID_HANDLE: Invalid file handle.
±2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
±4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

sm_fio_rewind resets the specified file stream to the file's beginningÐfor exam-
ple, in order to re-read a file's contents.

file_stream

Returns

Description

sm_flush

2516 JAM Library FunctionsChapter

sm_flush
Flushes delayed writes to the display

void sm_flush(void);

sm_flush performs delayed writes and flushes all buffered output to the display. It
is called automatically by sm_input when the keyboard is opened and there are no
keystrokes availableÐthat is, typed ahead.

Frequent calls to this function can significantly slow execution. Because it is called
whenever the keyboard opens, the display is always up to date before data entry
occurs.

You must use this function if you want timed output or other non-interactive
display.

#include <smdefs.h>

/* Update a system time field once per second,
 * until a key is pressed. */

while (!sm_keyhit (10))
{
 sm_n_putfield (ºtime_nowº, ºº);
 sm_flush ();
}

/* ...process the key */

sm_m_flush , sm_rescreen

Description

Example

See Also

sm_form

252 JAM 7.0 Language Reference

sm_

* form

Opens a screen as a form

int sm_d_form(char *screen_address);

int sm_l_form(int lib_desc, char *screen_name);

int sm_r_form(char *screen_name);

A pointer to the screen's address in memory.

Specifies the library in which screen_name is stored, where lib_desc is an
integer returned by sm_l_open . You must call sm_l_open before you read any
screens from a library.

The name of the screen.

0 Success.
-1 Screen file format is incorrect; previous form still displayed and available.
-2 The screen cannot be found or the maximum allowable number of files is al-

ready open; previous form still displayed and available.
-4 Unable to read the specified screen after the previous screen closed.
-5 Insufficient memory available to display the screen.

Use these functions only if you write your own executive. Because these functions
do not update the form stack, do not use them with the JAM executive. To open a
form while under the control of the JAM executive, use a JAM control string or
sm_jform .

sm_form displays the named screen as a form. In so doing, it discards the pre-
viously displayed form and its window stack and frees their memory. The screen
displays with its upper left-hand corner at the display's upper left position (0,0).

If the function returns an error code of -1 or -2, the previously displayed form
remains on display and available for use. Other negative return codes indicate that
the display is undefined. The caller should display another form before using
screen manager functions.

screen_address

lib_desc

screen_name

Returns

Description

sm_form

2536 JAM Library FunctionsChapter

If the form is stored in a library, you can use sm_l_form to display it. If the form
is memory-resident, you can use sm_d_form . sm_r_form looks for the form in all
possible areas, including the disk.

When you use sm_r_form , JAM looks for the named screen in the following
locations in this order:

1. The memory-resident screen list; if found, sm_d_form displays the screen.

2. All open screen libraries; if found, sm_l_form displays the screen.

3. On disk in the current directory.

4. Along the path supplied to sm_initcrt .

5. Along all paths in the setup variable SMPATH.

JAM skips any file name that exceeds 84 characters. If the search fails,
sm_r_form displays an error message and returns.

You can save processing time by using sm_d_form to display memory-resident
screens. Memory-resident screens are useful in applications with a limited number
of screens, and in environments with a slow disk. A memory-resident screen never
changes at runtime, so it can be made sharable on systems that support sharing
read-only data. sm_r_form can also display memory-resident screens if they are
properly installed with sm_formlist . To create memory-resident screens, use
bin2c to convert editable screens from disk files to program data structures that
you can compile into your application.

To display a window, use sm_r_at_cur , sm_r_window , or one of their variants.

#include <smdefs.h>
#include <setjmp.h>

/* If an abort condition exists, read in a special
 * form to handle that condition, discarding all
 * open windows. */

extern jmp_buf re_init;

if (sm_isabort (ABT_OFF) > 0)
{
 sm_r_form (ºbadstuffº);
 if (sm_message_box (ºDo you want to continue?º, 0,
 SM_MB_YESNO, 0) == SM_IDYES)
 longjmp (re_init);
 else sm_cancel ();
}

sm_r_window , sm_r_at_cur , sm_formlist

Example

See Also

sm_formlist

254 JAM 7.0 Language Reference

sm_formlist
Updates the list of memory-resident files

int sm_formlist(struct form_list *ptr_to_form_list);

A pointer to the form list to update.

0 Success.
-1 Insufficient memory is available for the new list.

sm_formlist adds JPL modules and screens to the memory-resident form list.
Each member of the list is a structure that contains the name of the JPL module or
screen as a character string and its address in memory. You usually call this func-
tion from main . You can also call it elsewhere in an application program to aug-
ment to the memory resident list.

The library functions sm_r_form , sm_r_window , and sm_r_at_cur search for
the specified screen in the memory-resident list before they try to read it from disk.
The call command and library function sm_jplcall search the memory-resident
list when they look for a JPL procedure to execute.

Because no count is given with the list, be careful to end the list with a null entry.

To make a JPL module or screen memory resident:

1. Use the bin2c utility to create a static C structure initialized with the binary
content of the object.

2. Compile and link the structure with the application executable.

Alternatively, read the object into memory after opening it with the function
sm_fi_open .

#include <smdefs.h>

/* Add 2 screens to memory-resident form list. */

struct form_list new_list[] =

ptr_to_form_list

Returns

Description

Example

sm_formlist

2556 JAM Library FunctionsChapter

{
 {ºnew_form1º, new_form1},
 {ºnew_form2º, new_form2},
 {0, 0}
};

sm_formlist (new_list);

sm_rmformlistSee Also

sm_fptr

256 JAM 7.0 Language Reference

sm_

* fptr

Gets the contents of a field

char *sm_fptr(int field_number);

char *sm_e_fptr(char *field_name, int element);

char *sm_i_fptr(char *field_name, int occurrence);

char *sm_n_fptr(char *field_name);

char *sm_o_fptr(int field_number, int occurrence);

The field with the data to get.

The element that contains the data to get.

The occurrence that contains the data to get.

w The field's contents.
w 0: The field cannot be found.

sm_fptr returns the contents of the specified field. JAM strips leading or trailing
blanks.

sm_fptr shares with several other functions a pool of buffers where it stores
returned data. Consequently, you should immediately process or copy the value
returned by this function.

field_name,
field_number

element

occurrence

Returns

Description

sm_fptr

2576 JAM Library FunctionsChapter

#include <smdefs.h>

/* This function reports the contents of a field. */

void report (fieldname)
char *fieldname;
{
 char buf[256], *stuf;
 if ((stuf = sm_n_fptr (fieldname)) == 0)
 return;
 sprintf (buf, ºField '%s' contains '%s'º,
 fieldname, stuf);
 sm_femsg (0, buf);
}

sm_getfield , sm_putfield

Example

See Also

sm_fqui_msg

258 JAM 7.0 Language Reference

sm_fqui_msg
Displays an error message preceded by a constant tag

void sm_fqui_msg(int msg_num, char *message);

A JAM message number. If you supply a string value for message , JAM ignores
this parameter.

The message to display on the status line. To use the msg_num-specified message,
set this parameter to NULL.

sm_fqui_msg is identical to sm_femsg except that it prepends a tagÐfor exam-
ple, ERROR:Ðto the specified message. sm_fqui_msg gets the tag from the
SM_ERROR entry in the message file. In GUIs, the SM_ERROR text is also preceded
by the stop icon.

For more information on options available for this function, refer to sm_femsg .

sm_femsg , sm_ferr_reset , sm_fquiet_err

msg_num

message

Description

See Also

sm_fquiet_err

2596 JAM Library FunctionsChapter

sm_fquiet_err
Displays an error message preceded by a constant tag

void sm_fquiet_err(int msg_num, char *message);

A JAM message number. If you supply a string value for message , JAM ignores
this parameter.

The message to display on the status line. To use the msg_num-specified message,
set this parameter to NULL.

sm_fquiet_err is identical to sm_ferr_reset except that it prepends a tagÐ
for example, ERROR:Ðto the specified message. sm_fquiet_err gets the tag
from the SM_ERROR entry in the message file. In GUIs, the SM_ERROR text is also
preceded by the stop icon.

For more information on options available for this function, refer to
sm_ferr_reset .

sm_femsg , sm_ferr_reset , sm_fqui_msg

msg_num

message

Description

See Also

sm_free_bundle

260 JAM 7.0 Language Reference

sm_free_bundle
Destroys a send bundle

int sm_free_bundle(char *bundle_name);

The name of the bundle to destroy. Supply NULL or empty string to specify the
unnamed bundle.

0 Success.
-1 Invalid bundle name.

sm_free_bundle destroys the specified send bundle and frees the memory allo-
cated for it.

sm_create_bundle

bundle_name

Returns

Description

See Also

sm_ftog

2616 JAM Library FunctionsChapter

sm_

* ftog

Converts field references to group references

char *sm_ftog(int field_number, int *grp_occurrence);

char *sm_e_ftog(char *field_name, int element, int *grp_occurrence);

char *sm_i_ftog(char *field_name, int occurrence, int *grp_occurrence);

char *sm_n_ftog(char *field_name, int *grp_occurrence);

char *sm_o_ftog(int field_number, int occurrence, int *grp_occurrence);

The field whose group name is sought.

The element in field_name whose group name and group occurrence number is
sought.

The occurrence in the specified field whose group name and group occurrence
number is sought.

On return, contains the group occurrence number that is currently in the specified
field.

w A pointer to the group name if found and, through grp_occurrence 's output
value, the group occurrence number.

w 0 otherwise and grp_occurrence is unchanged.

sm_ftog converts field references to group references. It returns the name of the
group that contains the referenced field, and puts the field's group occurrence num-
ber into the address pointed to by grp_occurrence .

Use sm_i_gtof to convert group references back into field references.

WARNING: This function returns a pointer to internal data that remains valid only
for the duration of the current screen. Do not change the pointer. Doing so can
yield unpredictable and possibly disruptive results.

sm_i_gtof

field_name,
field_number

element

occurrence

grp_occurrence

Returns

Description

See Also

sm_fval

262 JAM 7.0 Language Reference

sm_

* fval

Forces field validation

int sm_fval(int field_number);

int sm_e_fval(char *array_name, int element);

int sm_i_fval(char *field_name, int occurrence);

int sm_n_fval(char *field_name);

int sm_o_fval(int field_number, int occurrence);

The field to validate.

The element in field_name to validate.

The occurrence in the specified field to validate.

0 Success.
-1 Unable to find the validation function specified for this field.
-2 The field or occurrence specification is invalid.

sm_fval performs all validations on the specified data and returns the result. If the
field is protected against validation, JAM aborts execution of the function and re-
turns 0. Validations are done in the order listed below. Some are skipped if the field
is empty or if its VALIDED bit is already setÐthat is, there is no data to verify or
the data already passed verification.

Property setting Skip if valid Skip if empty

Required = Yes y n

Must Fill = Yes y y

Regular Exp = expr y y

Minimum Value = value y y

*For fields with a numeric format, the Empty Format property affects this; see Chapter 14 in the
Editors Guide.

field_name,
field_number

element

occurrence

Returns

Description

sm_fval

2636 JAM Library FunctionsChapter

Property setting Skip if emptySkip if valid

Maximum Value = value y y

Check Digit = value y y

Table Lookup = expr y y

JPL Validation n n

Calculation n n

No Validation = No n n

Data Formatting = Date/Time y y

Data Formatting = Numeric y n *

*For fields with a numeric format, the Empty Format property affects this; see Chapter 14 in the
Editors Guide.

You can force skip-if-empty validation by making the field required. If a field has
embedded characters, JAM performs validation if it contains at least one character
that is neither blank nor punctuation; otherwise, it treats the field as empty.

Math expressions, JPL functions and field validation functions are never skipped,
because they can alter fields other than the one being validated.

Field validation is performed automatically within sm_input when the cursor
exits a field. sm_s_val validates all fields on a screen on screen exit. Application
programs should call this function only to force validation of other fields.

#include <smdefs.h>

/* Make sure that the previous field has been
* validated before checking the current one.
*/

validate (fieldnum, data, occurrence, bits)
int fieldnum, occurrence, bits;
char *data;
{
 if (sm_fval (fieldnum ± 1))
 {
 /* Put cursor in the previous field to show error */

Example

sm_fval

264 JAM 7.0 Language Reference

 sm_gofield (fieldnum ± 1);
 return 1;
 }
 ...
}

sm_n_gval , sm_s_valSee Also

sm_get_bi_data

2656 JAM Library FunctionsChapter

sm_

* get_bi_data

Returns the specified before-image data

#include <tmusubs.h>

char *sm_i_get_bi_data(char *field_name, int occurrence);

char *sm_o_get_bi_data(int field_number, int occurrence);

The field whose before-image data is requested.

The field's occurrence number. A negative number indicates deleted before-image
data.

w A pointer to the before-image data.
0 Error.

sm_get_bi_data retrieves the before-image data for the specified field and oc-
currence.

field_name
field_number

occurrence

Returns

Description

sm_get_bundle_data

266 JAM 7.0 Language Reference

sm_get_bundle_data
Reads an occurrence of bundle item data

char *sm_get_bundle_data(char *bundle_name, int item_no, int occur);

The name of the bundle to read. Supply NULL or empty string to specify the
unnamed bundle.

The bundle offset of the item whose data you want to read. Each data item is
identified by its offset within the bundle, where the first data item has an offset
value of 1.

The occurrence to read from item_no . If the data item contains only one
occurrence, supply a value of 1.

w Success: A pointer to the buffer that gets the bundle data.
w Failure: NULL pointer.

sm_get_bundle_data reads an occurrence from the data item item_no and re-
turns a pointer to the data's location. Each occurrence in a bundle item is a null-ter-
minated string. If occur is greater than 1, sm_get_bundle_data traverses the
bundle item until it finds the specified occurrence.

Because JAM reuses the memory location in which the bundle data is copied, you
should read this data immediately after calling sm_get_bundle_data .

bundle_name

item_no

occur

Returns

Description

sm_get_bundle_item_count

2676 JAM Library FunctionsChapter

sm_get_bundle_item_count
Counts the number of data items in a bundle

int sm_get_bundle_item_count(char *bundle_name);

The name of the bundle. Supply NULL or empty string to specify the unnamed
bundle.

. 0 The number of items in the bundle.
-1 Invalid bundle name.

sm_get_bundle_item_count counts the number of data items in the specified
bundle. You can call this function before reading send data into a screen to ensure
that a data item exists for each receiving field, or to set a counter for successive
calls to sm_get_bundle_data or sm_append_bundle_data within a loop.

bundle_name

Returns

Description

sm_get_bundle_occur_count

268 JAM 7.0 Language Reference

sm_get_bundle_occur_count
Counts the number of occurrences in a data item

int sm_get_bundle_occur_count(char * bundle_name, int item_no);

The name of the bundle. Supply NULL or empty string to specify the unnamed
bundle.

The bundle offset of the item whose occurrences you want to count. Each data item
is identified by its offset within the bundle, where the first data item has an offset
value of 1.

. 0 The number of items in the bundle.
-1 Invalid bundle name or item number.

sm_get_bundle_item_count counts the number of occurrences in the specified
data item. Use this function to get the number of occurrences in a data item. This
lets you supply the correct argument to sm_get_bundle_data to read the entire
contents of the item into a buffer. You can also use the function's return value to set
a counter for successive reads from this buffer into a target field.

/* read data occurrences from a bundle data item
 into a field
 */
char *occur_data, array_data;
int num_occurs, emp_name_occur;
emp_name_occurs = 1;

/*count the number of occurrences in the data item */
num_occurs = sm_get_bundle_occur_count(ºmyBundleº, 1);

/*get item data and put into field*/
for (occur = 1;occur <= num_occurs;occur++, emp_name_occur++)
 sm_i_putfield
 (ºemp_namesº,
 emp_name_occur,
 sm_get_bundle_data(ºmyBundleº,1,occur);

bundle_name

item_no

Returns

Description

Example

sm_get_next_bundle_name

2696 JAM Library FunctionsChapter

sm_get_next_bundle_name
Gets the name of the bundle created before the one specified

char *sm_get_next_bundle_name(char *bundle_name);

The name of the bundle that precedes the bundle to get. Supply NULL to get the
most recently created bundle.

w The name of the next bundle.
w Null pointer if bundle_name does not exist or there are no more bundles.

sm_get_next_bundle_name returns the name of the bundle whose creation pre-
ceded the one specified. Call this function iteratively inside a loop to traverse the
list of all existing bundles, from youngest to oldest.

bundle_name

Returns

Description

sm_getfield

270 JAM 7.0 Language Reference

sm_

* getfield

Copies the contents of a field

int sm_getfield(char *buffer, int field_number);

int sm_e_getfield(char *buffer, char *field_name, int element);

int sm_i_getfield(char *buffer, char *field_name, int occurrence);

int sm_n_getfield(char *buffer, char *field_name);

int sm_o_getfield(char *buffer, int field_number, int occurrence);

On return, contains the data copied from the specified field.

The field to copy, where field_name can be the name of a field or group.

The element to copy.

The occurrence to copy.

. 0 The total length of the field's contents.
-1 The field cannot be found.

sm_getfield copies data from the specified field or occurrence to buffer . JAM
omits leading blanks from right justified fields and trailing blanks from other fields
If you specify the field by name and the field is not on the screen, JAM looks for
the corresponding LDB entry. If you call the function during screen entry proces-
sing, JAM first checks the LDB for an entry if ENTEXT_OPTION is set to
LDB_FIRST.

Make sure that buffer is large enough to receive the field's contentsÐat least one
greater than the field's maximum length.

If you call sm_n_getfield on a radio button group that allows one selection,
buffer gets the group occurrence number of the selected item. For example, the
radio button group rating has the third occurrence, PG±13, selected:

�

�

�
�

��

G

PG

PG ± 13

R

NC ± 17

buffer

field_name,
field_number

element

occurrence

Returns

Description

sm_getfield

2716 JAM Library FunctionsChapter

Given this selection, the following call to sm_n_getfield puts the string º3º into
buffer . :

retvar = sm_n_getfield (buffer, ºratingº);

If you call sm_n_getfield on a group of widget types that allows multiple
selectionsÐfor example, a check box groupÐJAM puts the numbers of the
selected occurrences into buffer . For example, the genre check box group has
occurrences 1, 3, and 4 selected:

Comedy

Mystery

Sci±Fi

Western

�

�

�

�

y

y

y

If you call sm_n_getfield on genre , buffer gets the string 1 3 4 .

JAM sees a group's value as an array whose elements contain the offsets of the
selected items. Thus, JAM stores the value of genre as follows:

genre[1] = º1º
genre[2] = º3º
genre[3] = º4º
genre[4] = º º

sm_i_getfield gets the specified selection in the group. For example, this call
gets the second-selected item in genre and puts its value, 3, into buffer :

retvar = sm_i_getfield (buffer, ºgenreº, 2);

#include <smdefs.h>

/* Save the contents of the ºrankº field in a buffer
 * of the proper size. */

int size;
char *save_rank;

size = sm_n_dlength (ºrankº);
if ((save_rank = malloc (size + 1)) == 0)
 report_error (ºmalloc error.º);
else
 sm_n_getfield (save_rank, ºrankº);

sm_dblval , sm_fptr , sm_intval , sm_lngval , sm_putfield

Example

See Also

sm_getkey

272 JAM 7.0 Language Reference

sm_getkey
Gets the logical value of the key hit

#include <smkeys.h>

int sm_getkey(void);

w The standard ASCII value of a displayable key.
w A value greater than 255 (FF hex) for a key sequence in the key translation

file.

sm_getkey gets and interprets keyboard input and returns its logical value. JAM
returns normal characters unchanged; it interprets logical keys according to the
current key translation file. sm_getkey is called by sm_input and is not usually
called explicitly by the application program.

Logical keys include XMIT, EXIT, HELP, arrows, data modification keys like INS,
user function keys PF1 - PF24, shifted function keys SPF1 - SPF24, and others.
Defined values for all are in smkeys.h . Some logical keys like LP and REFR are
processed locally in sm_getkey and are not returned to the caller.

Use sm_getkey to retrieve logical key values previously pushed back on the input
stream by sm_ungetkey . Because all JAM input routines call sm_getkey , you
can use sm_ungetkey to generate any input sequence automatically.

When sm_getkey reads a key from the keyboard, it flushes the display first so the
user sees a fully updated display before typing on. This is not the case for keys
pushed back by sm_ungetkey ; because input comes from the program, it is
responsible for updating the display itself.

sm_getkey can call a number of user-installed functions. For information on
installing functions, see page 119 in the Application Development Guide.

Like other JAM input functions, sm_getkey checks for externally established
abort conditions on each iteration. If such a condition exists, sm_getkey returns
the ABORT key and returns to its caller immediately. See sm_isabort .

Note that JAM control strings are not executed within this function, but at a higher
level in JAM's runtime systemÐthat is, by functions that call sm_getkey .

Returns

Description

sm_getkey

2736 JAM Library FunctionsChapter

The following outline shows how JAM processes sm_getkey . This presentation
omits key translation for the sake of clarity; for a description of that algorithm,
refer to page 474 of the Application Development Guide.

Step 1
� If an abort condition exists, return the ABORT key.

� If there is a key pushed back by sm_ungetkey , return the key.

� If playback is active and a key is available, take it directly to Step 2; otherwise
read and translate input from the keyboard. When the keyboard is read and
remains inactive, JAM calls the asynchronous functions, if any are installed.

Step 2
� Pass the key to the keychange function. If that function specifies to discard the

key, repeat step 1; otherwise, if an abort condition exists, return the ABORT
key.

� If recording is active, pass the key to the recording function.

Step 3
� If the routing table says to process the key locally, do so.

� If the routing table says to return the key, return it; otherwise, return to step 1.

� If the key is a soft key, return its logical value.

#include <smdefs.h>
#include <smkeys.h>

int query (text)
char *text;
{
 int key;

 sm_d_msg_line (text, REVERSE);
 for (;;)
 {
 switch (key = sm_getkey ())
 {
 case XMIT:
 case 'y':
 case 'Y':
 sm_d_msg_line (ºº, WHITE);
 return 1;

Example

sm_getkey

274 JAM 7.0 Language Reference

 default:
 sm_femsg (0, º%Mu So it's 'no'º);
 sm_d_msg_line (ºº, WHITE);
 return 0;
 }
 }
}

sm_keyfilter , sm_ungetkeySee Also

sm_gofield

2756 JAM Library FunctionsChapter

sm_

* gofield

Moves the cursor into a field

int sm_gofield(int field_number);

int sm_e_gofield(char *field_name, int element);

int sm_i_gofield(char *field_name, int occurrence);

int sm_n_gofield(char *field_name);

int sm_o_gofield(int field_number, int occurrence);

The destination field.

The destination element.

The destination occurrence. If occurrence is offscreen, JAM scrolls it into view.

0 Success.
-1 The field is not found.

sm_gofield puts the cursor in the first enterable position of the specified field or
occurrence, according to its justification. If the field is shiftable, it is reset. If the
field has embedded characters, the cursor goes to the nearest position unoccupied
by a punctuation character. Use sm_off_gofield to put the cursor elsewhere in
the field.

When called to position the cursor in a scrolling array, sm_o_gofield and
sm_i_gofield return an error if the occurrence number passed exceeds by more
than 1 the number of allocated occurrences in the specified array.

This function does not immediately trigger field entry, exit, or validation
processing. This processing occurs according to the cursor position when control
returns to sm_input .

If a field validation function that calls sm_gofield is invoked by TAB, JAM
executes sm_gofield and moves the cursor to the specified field, then executes
the TAB. To prevent this extra tab, the validation function must return non-zero.
When non-zero is returned by a validation function, the field's valided property
is set to 0 (false). In this case, reset the property to 1 (true).

field_name,
field_number

element

occurrence

Returns

Description

sm_gofield

276 JAM 7.0 Language Reference

#include <smdefs.h>

/* If the combination of this field and the previous
 * one is invalid, go back to the previous for data
 * entry. */

int validate (field, data, occur, bits)
int field, occur, bits;
char *data;
{
 if (bits & VALIDED)
 return 0;

 if (!lookup (data, sm_fptr (field ± 1)))
 {
 sm_novalbit (field ± 1);
 sm_gofield (field ± 1);
 sm_fquiet_err (0, ºLookup failed ±\
 please re±enter both items.º);
 return 1;
 }
 return 0;
}

sm_off_gofield

Example

See Also

sm_i_gtof

2776 JAM Library FunctionsChapter

sm_i_gtof
Converts a group name and group occurrence into a field number and occurrence

int sm_i_gtof(char *group_name, int grp_occurrence, int *occurrence);

The name of the group whose field number is sought.

The occurrence in group_name.

On return, contains the occurrence number of the field.

. 1 The field number.
0 Cannot find the field.

sm_i_gtof converts a group name and group occurrence into a field number and
occurrence. This function lets you use other JAM library functions to manipulate
group fields by converting group references into field references. For example, to
access text from a specific field within a group, use sm_i_gtof to get the field and
occurrence number, then call sm_o_getfield to retrieve the text.

sm_ftog

group_name

grp_occurrence

occurrence

Returns

Description

See Also

sm_n_gval

278 JAM 7.0 Language Reference

sm_n_gval
Forces execution of a group's validation function

int sm_n_gval(char *group_name);

The name of the group to validate.

0 Success.
-1 The group fails any validation.
-2 The group name is invalid.

sm_n_gval forces execution of a group's validation function. Note that since
groups cannot be referenced by number, this function has only the _n_ variant.

sm_fval , sm_s_val

group_name

Returns

Description

See Also

sm_hlp_by_name

2796 JAM Library FunctionsChapter

sm_hlp_by_name
Displays a JAM help window

int sm_hlp_by_name(char *help_screen);

The name of the help screen to display.

0 Success.
1 Success: data was copied from the help screen to the underlying field.

-1 Screen was not found or another error occurred.

sm_hlp_by_name displays and processes the specified screen as a JAM help
screen. If the help screen has a data entry field, the function copies its data back to
the underlying field, as if the help screen were specified in the field's JAM Help
property and the user pressed HELP.

Refer to Chapter 17 in the Editors Guide for information about JAM help screen
creation and behavior.

help_screen

Returns

Description

sm_home

280 JAM 7.0 Language Reference

sm_home
Homes the cursor

int sm_home(void);

. 1 The number of the field where the cursor is put.
0 All fields on the screen are tab-protected and the home position is not in a pro-

tected field.

sm_home moves the cursor to the first enterable position of the first tab-accessible
field on the current screen. JAM automatically calls this function when it processes
the logical key HOME.

The first enterable position in a field depends on the justification of the field and,
in fields with embedded characters, on the presence of punctuation. If all the
screen's fields are tab-protected, sm_home moves the cursor to the first line and
column (0,0) of the screen. If a tab-protected field occupies this position, JAM
places the cursor in that field. If you are using the JAM executive, the cursor might
be invisible on a screen whose fields are all tab-protected.

sm_home does not immediately trigger field entry, exit, or validation processing.
Processing is based on the cursor position when control returns to sm_input .

sm_backtab , sm_gofield , sm_last , sm_nl , sm_tab ,

Returns

Description

See Also

sm_inimsg

2816 JAM Library FunctionsChapter

sm_inimsg
Creates a displayable error message on failure of an initialization function

char *sm_inimsg (int filetype, int error_code);

Specifies the source of the error through one of the following constants, defined in
smumisc.h :

B_E_KEYS

Error was generated by sm_keyinit or sm_n_keyinit .

B_E_MSGS

Error was generated by sm_msgread .

B_E_VID

Error was generated by sm_vinit or sm_n_vinit .

The error code returned by the initialization function.

w Success: A pointer to the error message.
w Failure: null pointer.

sm_inimsg lets you display an error message to the user after an initialization
function failsÐfor example, attempts to initialize a message file fail. You supply
sm_inimsg with the error code returned from the failed function and a description
of the function itself through parameters error_code and filetype , respective-
ly. sm_inimsg uses this information to return a string that you can display to the
userÐfor example, by passing it to sm_fqui_msg .

sm_keyinit , sm_msgread , sm_vinit

filetype

error_code

Returns

Description

See Also

sm_initcrt

282 JAM 7.0 Language Reference

sm_

* initcrt

Initializes the display and JAM data structures

int sm_initcrt(char *path);

void sm_jinitcrt(char *path);

void sm_jxinitcrt(char *path);

Specifies where to look for a screen file after JAM searches the current directory. If
you supply an empty string, JAM looks only in the current directory or in the paths
specified by SMPATH. JAM searches for screen files in these areas:

1. The current directory.

2. The directory specified by path .

3. The paths specified in the environment variable SMPATH.

w 0: Success.
w On an error, sm_initcrt prints a descriptive message and terminates.

sm_initcrt is called automatically by the JAM executive. Use this function only
if you write your own executive.

A custom executive should call sm_initcrt when screen handling startsÐthat is,
before any screens display and the keyboard opens for screen input. sm_initcrt
can be preceded only by those functions that set options, such as sm_option , and
those that install functions or configuration files such as sm_install or
sm_vinit .

sm_initcrt performs these tasks:

1. Sets a path that JAM uses to search for screens.

2. Calls an optional user-defined initialization function. This function initializes
the character string sm_term . If sm_term contains the terminal type,
sm_initcrt proceeds to step 4.

path

Returns

Description

sm_initcrt

2836 JAM Library FunctionsChapter

3. Tries to ascertain the terminal type with this search algorithm:

w Looks for the variable SMTERM in the environment.

w Looks for SMTERM in SMVARS.

w Looks for the system's TERM in the environment.

If neither SMTERM or TERM are found, sm_initcrt prompts the user to supply
the terminal type. If none is provided, the application terminates.

4. Finds and reads either the configuration file specified by the environment
variable SMVARS or the default configuration file smvars . Finds and reads
either the setup file specified by the environment variable SMVARS or the setup
file specified in the configuration file (if any).

5. Finds and reads the binary message file specified by SMSGS. If SMSGS cannot
be found, JAM aborts initialization.

6. Finds and reads the binary video and keyboard files defined by SMVIDEO and
SMKEY, respectively. These variables are defined in SMVARS, SMSETUP, or the
environment.

7. Allocates memory for various data structures shared among JAM library
functions.

8. If supported by the operating system, traps keyboard interrupts to a routine
that clears the display and exits.

/* To initialize the screen manager without supplying
 * a path for screens: */

 sm_initcrt (ºº);

sm_resetcrt

Example

See Also

sm_input

284 JAM 7.0 Language Reference

sm_input
Opens the keyboard for data entry and menu selection

int sm_input(int initial_mode);

Supply IN_AUTO.

w The key that terminated the call to sm_input .
w The first character of the selected menu item.

sm_input opens the keyboard for data entry or menu selection. This function is
called automatically by the JAM executive; use it only if you write your own
executive.

sm_input calls sm_getkey to get and process keyboard entry. While in data entry
mode, ASCII data can be entered into fields according to their restrictions or
properties. sm_input returns when one of these events occurs:

� A return entry field is filled or tabbed from.

� It gets a logical key with the return bit set in the routing table.

If sm_getkey returns one of these logical keysÐXMIT, EXIT, HELP, or a cursor
position keyÐa routing table determines how to process it. Routing options are set
by sm_keyoption .

sm_getkey , sm_isabort , sm_keyoption

initial_mode

Returns

Description

See Also

sm_inquire

2856 JAM Library FunctionsChapter

sm_inquire
Gets the value of a global integer variable

#include <smglobs.h>

int sm_inquire(int property);

Specifies the global integer to get with one of the constants described in Table 8.

. 0 The current value of the global variable. If the variable can have a value of
true or false, sm_inquire returns 1 for true and 0 for false.

-1 Failure.

sm_inquire gets the integer value of the global variable specified by property .
To modify the value of a global integer variable, use sm_iset .

Table 8 lists the constants that you can supply as arguments for property :

Table 8. Global integer variables

Constant Meaning

I_BLKFLGS Block mode turned on? (true/false)

I_BSNESS Screen manager controls display? (true/false).

I_INHELP Help level of current screen, or 0 if not in help.

I_INSMODE In insert mode? (true/false).

I_INXFORM In JAM screen editor? (true/false) Field validation routines are
generally still called when in editor; they can check this flag to
disable certain features.

I_MXCOLMS Number of columns available for use by JAM on the hardware
display.

I_MXLINES Number of lines available for use by JAM on the hardware dis-
play.

property

Returns

Description

sm_inquire

286 JAM 7.0 Language Reference

Constant Meaning

I_NODISP In non-display mode? (true/false). Initially set to false, setting
this variable to true causes no further changes to the actual dis-
play, although JAM's internal screen image is kept up-to-date.

I _NOMSG Error message display disabled? (true/false).

I _NOWSEL LDB merge off for sm_wselect ? (true/false) Normally false.
True can be useful for a quick sm_wselect /sm_wdeselect
pair.

SC_AFLDMDT Bit mask that contains contextual information about the field's
validation state and the circumstances under which a prototyped
field function was called. Corresponds to the fourth standard ar-
gument passed to a non-prototyped field function.

SC_AFLDNO Number of the field calling a prototyped field function. Corre-
sponds to the first of the four standard arguments passed to a
non-prototyped field function.

SC_AFLDOCC Occurrence number of the field calling a prototyped field func-
tion. Corresponds to the third standard argument passed to a non-
prototyped field function. The second standard argument, can be
obtained from sm_getfield or sm_o_getfield .

SC_AGRPMDT Bit mask that contains information about the group's validation
state and the circumstances under which a prototyped group
function was called. Corresponds to the second of two standard
arguments passed to a non-prototyped group function. The first
standard argument, a pointer to the group name, can be obtained
by the fldnum property of a member widget and sm_ftog at
group entry and exit. Access to the group name at group valida-
tion is not supported.

SC_BDATTR Border attribute of screen.

SC_BDCHAR Border character of screen.

SC_CCOLM Current column number in screen (zero-based).

SC_CLINE Current line number in screen (zero-based).

sm_inquire

2876 JAM Library FunctionsChapter

if (sm_inquire(I_BSNESS))
 sm_ferr_reset(0, ºProblem #2!º);
else
 fprintf(stderr,ºProblem #2!\nº);

sm_iset , sm_pinquire , sm_pset

Example

See Also

sm_install

288 JAM 7.0 Language Reference

sm_install
Installs application hook functions

struct fnc_data *sm_install(int func_type,struct fnc_data funcs[],
int *num_fncs);

Specifies the hook function type. For hook function types, refer to page 119 in the
Application Development Guide.

The address of the fnc_data structure or array of structures to install. Functions
to install with sm_install are stored in a fnc_data structure before installation.
For more information about fnc_data structures, refer to page 118 in the
Application Development Guide.

To deinstall functions, set funcs to 0. This removes all unprotected hook functions
of all func±type types.

Supply one of these arguments:

� If an automatic function, null pointer.

� If a list of demand functions, the address of an integer whose value is the
number of functions to install.

On return, this parameter points to the number of entries in the function list.

w When installing an automatic hook with a single function, returns the address
of a buffer that contains a copy of the previously installed function's data
structure. If no function was previously installed, returns zero.

w When installing a function list, returns a pointer to the list.

sm_install is typically used when you build a JAM application or authoring
executable. It compiles C functions and links them to JAM's function hooks. These
C functions can be JAM library functions or functions that you write. sm_install
can also install and deinstall functions at runtime.

The file funclist.c , provided in source form with JAM, can be used as a
template for installing automatic and demand hook functions. This file contains

func_type

funcs

num_fncs

Returns

Description

sm_install

2896 JAM Library FunctionsChapter

sample fnc_data structure definitions and corresponding calls to sm_install .
Most of these calls are used to install dummy functions to the local function lists.
Replace these with your own installations.

Note that in funclist.c , calls to sm_install are made by sm_do_uinstalls .
sm_do_uinstalls is called after sm_initcrt , which calls the initialization hook
functions. Consequently, you should not install an initialization hook function with
funclist.c .

For specific examples of hook function installation, see page 119 in the Application
Development Guide.

sm_intval

290 JAM 7.0 Language Reference

sm_

* intval

Gets the integer value of a field

int sm_intval(int field_number);

int sm_e_intval(char *field_name, int element);

int sm_i_intval(char *field_name, int occurrence);

int sm_n_intval(char *field_name);

int sm_o_intval(int field_number, int occurrence);

The field whose value is sought.

The element in field_name whose value is sought.

The occurrence in the field whose value is sought.

w The integer value of the specified field.
0 The field is not found.

sm_intval returns the integer value of the data contained in the specified field,
including its sign. All other punctuation characters are ignored. If sm_intval can-
not find the field, it returns with 0. Because a field can contain a value of 0, you
should use another method to check whether the field exists.

/* Retrieve the integer value of the
 * ºsequenceº field. */

int sequence;

sequence = sm_n_intval (ºsequenceº);

sm_itofield

field_name,
field_number

element

occurrence

Returns

Description

Example

See Also

sm_ioccur

2916 JAM Library FunctionsChapter

sm_

* ioccur

Inserts blank occurrences into an array

int sm_i_ioccur(char *field_name, int occurrence, int count);

int sm_o_ioccur(int field_number, int occurrence, int count);

The array to receive new occurrences.

Specifies where to insert the first occurrence in the array specified by
field_number or field_name , where 0 inserts the new occurrences at the
beginning of the array.

The number of new occurrences to insert. If count is negative, occurrences are
deleted instead, subject to the same limitations described for sm_doccur .

. 0 The number of occurrences actually inserted.
-1 The field or occurrence number is out of range.
-3 Insufficient memory.

sm_ioccur inserts count blank occurrences before occurrence . If the array is
scrollable, sm_ioccur can allocate up to count new occurrences. Before it inserts
these, JAM checks whether the array's maximum number of occurrence is equal or
greater than count plus existing data-filled occurrences:

� If trueÐ max-occurs . count + old-occurs ÐJAM inserts count blank
occurrences before occurrence and pushes it and all subsequent occurrences
(old-occurs) down.

� If falseÐ max-occurs < count + old-occursÐJAM modifies the value of
count to equal max-occurs - old-occurs; it then inserts as many blank
occurrences as it can before occurrence without pushing any existing data
off they array's end.

Note that sm_ioccur never increases the maximum number of occurrences an
array can contain; you can do this by resetting the arrays' max_occurrences
property.

field_name,
field_number

occurrence

count

Returns

Description

sm_ioccur

292 JAM 7.0 Language Reference

JAM inserts the same number of occurrences for synchronized arrays that are
unprotected from clearing. If a synchronized array is protected from clearing, JAM
leaves it unchanged. Thus, you can synchronize a protected array that contains an
unchanging sequence of numbers with an adjoining unprotected array whose data
grows and shrinks.

sm_o_ioccur is normally invoked by the logical key INSL.

#include <smdefs.h>
/* Insert five blank lines at the beginning of
 an array named ºamountsº. */

sm_i_ioccur (ºamountsº, 0, 5);

sm_doccur

Example

See Also

sm_is_bundle

2936 JAM Library FunctionsChapter

sm_is_bundle
Checks whether a bundle exists

int sm_is_bundle(char *bundle_name);

The name of the bundle to verify. Supply NULL or empty string to specify the
unnamed bundle.

1 True: the bundle exists.
0 False: the bundle does not exist..

sm_is_bundle verifies the existence of the specified bundle.

bundle_name

Returns

Description

sm_is_no

294 JAM 7.0 Language Reference

sm_

* is_no

Tests a field for no

int sm_is_no(int field_number);

int sm_e_is_no(char *field_name, int element);

int sm_i_is_no(char *field_name, int occurrence);

int sm_n_is_no(char *field_name);

int sm_o_is_no(int field_number, int occurrence);

The field to test.

The element in field_name to test.

The occurrence in the field to test.

1 True: The field's first character matches the first character of the SM_NO entry
in the message file.

0 False, or failure.

sm_is_no compares the first character of the data in the specified field or occur-
rence to the first letter of the SM_NO entry in the message file, ignoring case. A re-
turn of 0 (failure) does not indicate whether the failure occurred because the field
contains the value of SM_YES or for another reason. To test for SM_YES, use
sm_is_yes .

You can use this function with one-letter fields that specify the yes/no character
edit. For these fields, users can enter only the values SM_YES or SM_NO, or space (=
SM_NO). Unlike other functions, sm_is_no does not ignore leading blanks.

sm_is_yes

field_name,
field_number

element

occurrence

Returns

Description

See Also

sm_is_yes

2956 JAM Library FunctionsChapter

sm_

* is_yes

Tests a field for yes

int sm_is_yes(int field_number);

int sm_e_is_yes(char *field_name, int element);

int sm_i_is_yes(char *field_name, int occurrence);

int sm_n_is_yes(char *field_name);

int sm_o_is_yes(int field_number, int occurrence);

The field to test.

The element in field_name to test.

The occurrence in the field to test.

1 True: The field's first character matches the first character of the SM_YES entry
in the message file.

0 False, or failure.

sm_is_yes compares the first character of the data in the specified field or occur-
rence to the first letter of the SM_YES entry in the message file, ignoring case. A
return of 0 (failure) does not indicate whether the failure occurred because the field
contains the value of SM_NO or for another reason. To test for SM_NO, use
sm_is_no .

You can use this function with one-letter fields that specify the yes/no character
edit. For these fields, users can enter only the values SM_YES or SM_NO, or space (=
SM_NO). Unlike other functions, sm_is_yes does not ignore leading blanks.

sm_is_no

field_name,
field_number

element

occurrence

Returns

Description

See Also

sm_isabort

296 JAM 7.0 Language Reference

sm_isabort
Tests and sets the abort control flag

int sm_isabort(int flag);

The flag to set for abort control, one of the following defined in smumisc.h :

ABT_ON

Set abort flag.

ABT_OFF

Clear abort flag.

ABT_DISABLE

Turn abort reporting off.

ABT_NOCHANGE

Do not alter the flag.

The previous value of the abort flag.

sm_isabort sets the abort flag to the value of flag and returns the old value.
Abort reporting provides a quick way out of processing in the JAM library, which
otherwise might involve nested calls to sm_input . The triggering event is the
detection of an abort condition by sm_getkey , either an ABORT keystroke, or a
call to this function with ABT_ONÐfor example, from an asynchronous function.

#include <smdefs.h>

/* Establish an abort condition */

sm_isabort (ABT_ON);

/* Verify that an abort condition exists, without
 * altering it. */

if (sm_isabort (ABT_NOCHANGE) == ABT_ON)
 ...

flag

Returns

Description

Example

sm_iset

2976 JAM Library FunctionsChapter

sm_iset
Changes the value of a global integer variable

#include <smglobs.h>

int sm_iset(int property, int newval);

Specifies the global variable to change with one of these constants:

Constant Value Meaning

I_INSMODE 0 Enter overtype mode.

1 Enter insert mode.

I _NOWSEL 0 LDB merge is on for sm_wselect .

1 LDB merge is off for sm_wselect , normally set to
0. A value of 1 is useful for a quick
sm_wselect /sm_wdeselect pair, for example, to
update a realtime clock.

I_NODISP 0 Enable updating of display.

1 Disable updating of display, except for error mes-
sages.

I _NOMSG 0 Display error messages.

1 Don't display error messages.

The new value to assign to property as shown in the previous table.

. 0 Success: The previous value of property .
1 True: The flag is set to on.
0 False: The flag is set to off.

-1 Failure.

JAM has a number of global parameters and settings. Use sm_iset to modify the
current value of global integers. To get the value of a global integer, use
sm_inquire .

property

newval

Returns

Description

sm_iset

298 JAM 7.0 Language Reference

If you want a process to run in the background, you can set both I_NODISP and
I_NOMSG to 1.

void insert_mode(int on_off);
{
 sm_iset(I_INSMODE,on_off);
}

sm_inquire , sm_pinquire , sm_pset

Example

See Also

sm_issv

2996 JAM Library FunctionsChapter

sm_issv
Checks whether a screen is in the saved list

int sm_issv(char *screen_name);

The name of the screen to search in the saved list.

1 True: The screen is in the saved list.
0 False.

sm_issv searches the list of screens saved in memory for the specified screen.
Call this function on screen entry to avoid redundant database queries for previous-
ly saved screens:

1. On screen exit, call sm_svscreen to add the screen to the save list.

2. On screen entry, call sm_issv to check the save list, to ascertain whether the
screen has already been displayed.

/* Perform database query only once */
/* on the screen ºresultsº. */

if (!sm_issv(ºresultsº))
{
 /* do query . . .*/
 sm_svscreen (screen_list, 1);
}

sm_svscreen

screen_name

Returns

Description

Example

See Also

sm_itofield

300 JAM 7.0 Language Reference

sm_

* itofield

Writes an integer value to a field

int sm_itofield(int field_number, int value);

int sm_e_itofield(char *field_name, int element, int value);

int sm_i_itofield(char *field_name, int occurrence, int value);

int sm_n_itofield(char *field_name, int value);

int sm_o_itofield(int field_number, int occurrence, int value);

The field to write.

The element in field_name to write.

The occurrence in the field to write.

The integer value to write to the field or occurrence.

0 Success.
-1 Failure: the field is not found.

sm_itofield converts value to a string and places it in the specified field. If the
string is longer than the field, JAM truncates it without warning on the left or right,
according to the field's justification.

/* Find the length of the data in field number 12 */

sm_n_itofield (ºcountº, sm_dlength (12));

sm_intval

field_name,
field_number

element

occurrence

value

Returns

Description

Example

See Also

sm_jclose

3016 JAM Library FunctionsChapter

sm_jclose
Closes the current window or form

int sm_jclose(void);

0 Success.
-1 No window is openÐfor example, the currently displayed screen is a formÐ

or no screen is displayed.

sm_jclose closes the active screen and restores the display to its state before the
screen opened. Use sm_jclose only with the JAM executive.

When called for a form, sm_jclose pops the form stack and calls sm_jform to
display the screen on the top of the form stack. When called for a window,
sm_jclose calls sm_close_window . JAM redisplays the previous window on the
window stack and puts the cursor at its last-displayed position.

#include ºsmdefs.hº

/* This is an example of a control function attached to
 * the XMIT key. It validates login and password
 * information. If the login and password are
 * incorrect, the program proceeds to close three of
 * the four ºsecurityº windows used for getting a
 * user's login and password information, and the
 * user may again attempt to enter the information.
 * If the password passes, the welcome screen is
 * displayed, and the user may proceed.
 */

int complete_login(jptr);
char *jptr;
{

char pass[10];
sm_n_getfield(pass, ºpasswordº);
/*call routine to validate password*/
if(!check_password(pass))
{

/*close current password window*/
sm_jclose();

Returns

Description

Example

sm_jclose

302 JAM 7.0 Language Reference

/*close 3rd underlying login window*/
sm_jclose();
/*close 2nd underlying login window*/
sm_jclose();
/*in bottom window*/
sm_femsg(0, ºPlease reenter login and passwordº);

}
else
{

sm_d_msg_line(ºWelcome to Security Systems,\
Inc.º);
/*open welcome screen*/
sm_jform(ºWelcomeº);

}
return (0);

}

sm_close_window , sm_jform , sm_jwindowSee Also

sm_jform

3036 JAM Library FunctionsChapter

sm_jform
Displays a screen as a form

int sm_jform(char *screen_name);

The screen to open as a form. This character string uses the same format as a JAM
control string that displays a form. This argument can optionally specify the form's
position on the physical display, the size of the viewport, and which portion of the
form to position in the viewport's top-left corner. For information on control string
options, refer to page 109 in Application Development Guide

0 Success.
-1 The screen file's format is incorrect.
-2 The screen cannot be found.
-4 After the display cleared, the screen failed to display because of a read error.
-5 After the display cleared, the system ran out of memory.

sm_jform displays the specified screen as a form under JAM control. Use it only
with the JAM executive. If you are using your own executive, call sm_r_form or
one of its variants to display a form. To display a window under JAM control, use
sm_jwindow .

When sm_jform opens a screen as a form, JAM discards the previously displayed
form and windows and frees their memory. JAM places the new form on top of the
JAM form stack. You can use sm_jclose to close the form, or let the JAM
executive handle itÐfor example, when the user presses the EXIT key.

Because sm_jform calls sm_r_form , refer to sm_r_form for information on
other details, such as how JAM finds the screen to display.

The following statement displays myScreen 's first row and column at row 0,
column 0 of the physical display:

status = sm_jform(ºmyScreenº);

The next statement displays the screen at row 20, column 10 of the display:

status = sm_jform (º(20,10)myScreenº);

screen_name

Returns

Description

sm_jform

304 JAM 7.0 Language Reference

This statement display the screen at row 20, column 10 of the physical display in
viewport that is 15 rows by 8 columns:

status = sm_jform(º(20,10,15,8)myScreenº);

A screen can be larger than its viewport. If the viewport does not fit on the physical
display where indicated, JAM tries to place it entirely on the display at a different
location. If you specify a viewport that is larger than the physical display, the
viewport is the size of the physical display. To change the viewport size after the
screen is displayed, set the applicable viewport properties.

#include ºsmdefs.hº
/* This could be a control function attached to the
 * XMIT key. Here we have completed entering data
 * on the second of several security screens. If
 * the user entered ºbypassº into the login, he
 * bypasses the other security screens, and the
 * ºwelcomeº screen is displayed. If the user
 * login is incorrect, the current window is
 * closed, and the user is back at the initial
 * screen (below). Otherwise, the next security
 * window is displayed. */

int getlogin(jptr)
char *jptr;
{

char password[10];
sm_n_getfield(password, ºpasswordº);
/* check if ºbypassº has been entered into login */
if (strcmp(password,ºbypassº))

sm_jform(ºwelcomeº);
/* check if login is valid */

else if (check_password(password))
{

/*close current (2nd) login window */
sm_jclose();
sm_femsg(NULL ºPlease reenter loginº);

}
else

sm_jwindow(ºlogin3º);
return (0);

}

sm_r_form , sm_jwindow

Example

See Also

sm_jplcall

3056 JAM Library FunctionsChapter

sm_

* jplcall

Executes a JPL procedure

double sm_djplcall(char *jplcall_text);

int sm_jplcall(char *jplcall_text);

char *sm_sjplcall(char *jplcall_text);

Specifies the JPL procedure to execute, where jplcall_text is a string of up to
255 characters that contains the name of a JPL module or procedure and its
arguments.

For sm_djplcall and sm_jplcall :
. 0 The value returned by the JPL procedure.
30 The procedure could not be loaded.

For sm_sjplcall :
w Success: A dynamically allocated string containing the value returned by the

JPL procedure. When no longer needed, free this string by calling sm_ffree .
w Failure: Null pointer.

sm_jplcall and its variants sm_djplcall and sm_sjplcall lets you call a JPL
procedure or module from a C function. sm_jplcall executes a JPL procedure
exactly as if the specified JPL statement were executed from within a JPL proce-
dure. The three variants of this function differ only in their return value types.

For example, these statements in C and JPL are equivalent:

stat = sm_jplcall (ºverifysal (name, 50000)º);

call verifysal(name, 50000)

For more information on calling JPL, refer to the call command on page 47.

jplcall_text

Returns

Description

sm_jplpublic

306 JAM 7.0 Language Reference

sm_jplpublic
Executes JPL's PUBLIC command

int sm_jplpublic(char *module_list);

Specifies the JPL modules to load as public modules, where module_list is a
string of up to 255 characters that contains one or more module names delimited by
spaces.

0 Success.
-1 Failure.

sm_jplpublic is the C interface to the JPL public command. Use this com-
mand to load the procedures of one or more modules into memory. Calling
sm_jplpublic is equivalent to using the JPL public command. For more in-
formation on the public command, refer to page 68.

Use sm_jplunload to remove a module from memory.

sm_jplunload

module_list

Returns

Description

See Also

sm_jplunload

3076 JAM Library FunctionsChapter

sm_jplunload
Executes JPL's UNLOAD command

int sm_jplunload(char *module_list);

Specifies the JPL modules to unload, where module_list is a string of up to 255
characters that contains one or more module names delimited by spaces.

0 Success.
-1 Failure.

sm_jplunload is the C interface to the JPL unload command. Use this com-
mand to remove one or more modules from memory. Modules are read into
memory with sm_jplpublic or, in a JPL module, with the public command.

Calling sm_jplunload is equivalent to using the JPL unload command. For
more information, refer to the unload command on page 75.

void
unload_modules()
{

if (sm_jplunload(ºselect.jpl insert.jpl delete.jplº))
sm_ferr_reset(0,

 ºUnable to unload modules from memoryº);
}

sm_jplpublic

module_list

Returns

Description

Example

See Also

sm_jtop

308 JAM 7.0 Language Reference

sm_jtop
Starts the JAM executive

int sm_jtop(char *screen_name);

The name of the first screen that your application displays.

0

sm_jtop must be called by all applications that use the JAM executive. This func-
tion starts the JAM executive and displays screen_name as a form. After the call
to sm_jtop , the JAM executive retains control until the user exits the application.

The JAM executive calls various JAM functions that handle all of the tasks
required to control application flowÐfor example, opening the keyboard for input,
opening and closing forms and windows, and processing all control strings.

If you do not use sm_jtop , you must write your own procedures to control
application flow.

screen_name

Returns

Description

sm_jwindow

3096 JAM Library FunctionsChapter

sm_jwindow
Displays a window at a given position under JAM control

int sm_jwindow(char *screen_name);

The screen to open as a window. screen_name uses the same format as a JAM
control string that invokes a screen as a stacked or sibling window. Use a single
ampersand (&) to specify a stacked window and a double ampersand (&&) to
specify a sibling window. If no ampersand is included, the screen opens as a
stacked window. The string can also specify viewport parameters.

For information on control string options, refer to page 109 in Application
Development Guide.

0 Success.
-1 The screen file's format is incorrect.
-2 The form cannot be found.
-3 The system ran out of memory but the previous screen was restored.

sm_jwindow displays a screen as a window by calling sm_r_window . You can
also call sm_r_window or one of its variants directly. Refer to sm_r_window for
information on how JAM finds the screen to display.

To display a screen as a form, use sm_jform . To close the window programmati-
cally, call sm_jclose or sm_close_window .

#include ºsmdefs.hº

/* This could be a control function attached to the
 * XMIT key. Here we have completed entering data
 * on the second of several security screens. If
 * the user entered ºbypassº into the login, he
 * bypasses the other security screens, and the
 * ºwelcomeº screen is displayed. If the user
 * login is incorrect, the current window is
 * closed, and the user is back at the initial
 * screen (below). Otherwise, the next security
 * window is displayed. */

screen_name

Returns

Description

Example

sm_jwindow

310 JAM 7.0 Language Reference

int getlogin(jptr)
char *jptr;
{

char password[10];
sm_n_getfield(password, ºpasswordº);
/* check if ºbypassº has been entered into
 * login */
if (strcmp(password,ºbypassº))

sm_jform(ºwelcomeº);
/* check if login is valid */

else if (check_password(password))
{

/*close current (2nd) login window */
sm_jclose();
sm_femsg(0, ºPlease reenter loginº);

}
else

sm_jwindow(ºlogin3º);
return (0);

}

sm_jclose , sm_jform , sm_windowSee Also

sm_key_integer

3116 JAM Library FunctionsChapter

sm_key_integer
Gets the integer value of a logical key mnemonic

#include <smkeys.h>

int sm_key_integer (char *key);

A logical key constant defined in smkeys.h . For a complete list of JAM logical
keys, refer tothe table on this book's inside front cover .

. 1 The integer value of the logical key mnemonic.
0 The mnemonic is not found.

sm_key_integer returns the integer value of a JAM logical key constant. JAM
gets this value from smkeys.h . This function is useful when a function needs a
key's integer value but cannot access the include files.

For all logical key constants, refer to the table on this book's inside front cover.

sm_keylabel

key

Returns

Description

See Also

sm_keyfilter

312 JAM 7.0 Language Reference

sm_keyfilter
Controls keystroke record/playback filtering

int sm_keyfilter(int flag);

One of the following values:

. 1 Turn keystroke record/playback on.
0 Turn keystroke record/playback off.

30 Return the status of keystroke record/playback.

The previous value of the filter flag:

0 Recording was off.
. 1 Recording was on.

sm_keyfilter turns on or off the keystroke record/playback mechanism of
sm_getkey according to the value of flag .

/* Disable key recording and playback. */

sm_keyfilter (0);

sm_getkey

flag

Returns

Description

Example

See Also

sm_keyhit

3136 JAM Library FunctionsChapter

sm_keyhit
Tests whether a key is typed ahead

int sm_keyhit(int interval);

Specifies in tenths of seconds how long to wait before it checks whether the user
pressed a key. The exact length of the wait depends on the granularity of the
system clock and on the hardware and operating system.

1 A key was typed ahead, or pressed during the interval -specified period.
0 False: no key is available.

sm_keyhit checks whether a key has already been pressed. If a key has been
pressed, it returns 1 immediately. Otherwise, it waits the specified interval. If a key
is pressed during the interval the function returns 1 immediately; otherwise, it re-
turns 0. The key, if any is struck, is not read in and is available to the usual key-
board input functions.

If the operating system does not support reads with timeout, this function ignores
the interval and only returns 1 if a key has been typed ahead.

JAM uses this function to decide when to call timeout functions.

#include ºsmdefs.hº
#include ºsmkeys.hº

/* The following code adds one asterisk per second to
 * a danger bar, until somebody presses EXIT. */

static char *danger_bar = º***********************º;
int k;

sm_d_msg_line
 (ºYou have 25 seconds to find the EXIT key.º, WHITE);
/* Clear the danger bar area
sm_do_region (5, 10, 25, WHITE, ºº); */

for (k = 1; k <= 25; ++k)

interval

Returns

Description

Example

sm_keyhit

314 JAM 7.0 Language Reference

{
sm_flush ();

} if (sm_keyhit (10))
{

if (sm_getkey () == EXIT)
break;

}
sm_do_region (5, 10, k, WHITE, danger_bar);

if (k <= 25)

sm_d_msg_line (º%BCongratulations! you win!º);
else

sm_ferr_reset (0, ºSorry, you lose.º);

sm_getkeySee Also

sm_keyinit

3156 JAM Library FunctionsChapter

sm_keyinit
Initializes a key translation table

int sm_keyinit(char *key_address);

int sm_n_keyinit(char *key_file);

The address of a key translation table created with key2bin and bin2c ; required
to install a memory-resident key translation file.

The name of the key translation file to use to initialize the table.

0 Success. Otherwise, JAM aborts program execution and returns to the operat-
ing system.

sm_keyinit is called by sm_initcrt during initialization. You can also call it
from an application program, either before or after sm_initcrt , to install a
memory-resident key translation file.

If sm_keyinit fails, you can generate error messages through sm_inimsg . This
function creates formatted output that you can display through other library
functions like sm_fqui_msg .

key_address

key_file

Returns

Description

sm_keylabel

316 JAM 7.0 Language Reference

sm_keylabel
Gets the printable name of a logical key

#include <smkeys.h>

int sm_keylabel(int key);

The logical key whose key label is sought.

w The key's name.
w Null pointer if the key has no name.

sm_keylabel returns the label defined for key in the key translation fileÐfor
example, End for the XMIT key. If no label exists, the function returns the name of
the logical key. The logical key table at the front of this book lists all logical key
constants.

If the value of key is undefined in smkeys.h , the function returns an empty string.

#include ºsmkeys.hº

/* Put the name of the TRANSMIT key into a field
 * for help purposes. */

char buf[80];

sprintf (buf, ºPress %s to commit the transaction.º,

sm_keylabel (XMIT));
sm_n_putfield (ºhelpº, buf);

key

Returns

Description

Example

sm_keyoption

3176 JAM Library FunctionsChapter

sm_keyoption
Sets cursor control key options

#include <smkeys.h>

int sm_keyoption(int key, int mode, int newval);

The key whose processing you wish to change.

Specifies the type of action to take on key with one of these values:

� KEY_ROUTING lets you disable a key or explicitly control the action taken
when a key is pressed.

� KEY_GROUP lets you control the cursor action when it is within a group.

� KEY_XLATE lets you assign key the action performed by newval .

The new action to assign to key .

w The old value.
w -1: A parameter is out of range.

Use sm_keyoption to change at runtime how sm_input processes key , where
key is a cursor control key. Default key option values are built into JAM. This
function only works with cursor control keys; these include all JAM logical keys
except those of type PF, SPF, and APP. The logical key table at the front of this
book lists all logical key constants.

There are three different possible values for mode: KEY_ROUTING, KEY_GROUP,
and KEY_XLATE. The newval arguments that are valid for each mode are
described below. All of these modes accept a logical key constant for key .

KEY_ROUTING

Allows access to the EXECUTE and RETURN bits of the routing table. Use this
mode to disable a key or to explicitly control the action to take when a key is
pressed. The following constants can be assigned to newval :

key

mode

newval

Returns

Description

sm_keyoption

318 JAM 7.0 Language Reference

� KEY_IGNORE. Disables key . JAM does nothing when key is struck.

� EXECUTE. The action normally associated with key is executed; can be OR'd
with RETURN.

� RETURN. No action is performed, but the function returns to the caller in your
code. Use to gain direct control of key 's action; can be OR'd with EXECUTE.

KEY_GROUP

Allows access to the group action bits. Use this mode to control the action of the
cursor when it is within a group. The following values can be assigned to newval :

� VF_GROUP Ð Obey group semantics. Hitting key causes the cursor to move to
the next field within the group in the indicated direction. If this constant is
OR'd with VF_CHANGE the cursor exits the group in the indicated direction.

� VF_CHANGE Ð This value has no effect, unless it is OR'd with VF_GROUP. In
this case the cursor exits the group in the indicated direction.

� 0 Ð Assigning zero to newval causes key to treat a field within a group as if
it were not part of a group.

� VF_OFFSCREEN Ð Of fscreen data scrolls onscreen from the direction
indicated.

� VF_NOPROT. key Ð Moves cursor into a field protected from tabbing.

KEY_XLATE

Allows access to the cursor table. Use this mode to assign key the action
performed by newval . key can be any cursor control key excluding INS , MNBR,
REFR, SFTS, and LP. newval can be any keyÐlogical, function, application,
ASCII, etc.

/*newline_is_xmit: Map the new line key (return or enter on
most
 keyboards) to XMIT ±or± reset it back to NL.
 Invoke from a control string as:
 ^newline_is_xmit X To make NL act as XMIT
 ^newline_is_xmit N To make NL act as NL
 */

int newline_is_xmit (char *cs_data);
{

while (*cs_data && *cs_data != ' ')
cs_data++;

 while (*cs_data == ' ')

Example

sm_keyoption

3196 JAM Library FunctionsChapter

cs_data++;
 if (*cs_data == 'X')

{
sm_keyoption (NL, KEY_XLATE, XMIT);

}
else
{

sm_keyoption (NL, KEY_XLATE, NL);
}
return(0);

}

sm_l_close

320 JAM 7.0 Language Reference

sm_l_close
Closes a library and frees all memory associated with it

int sm_l_close(int lib_desc);

The library to close, where lib_desc is an integer library descriptor returned by
sm_l_open .

0 Success.
-1 Operating system reported an error closing the library.
-2 The library is already closed.

/* Bring up a window from a library. */

int ld;

if ((ld = sm_l_open (ºmyformsº)) < 0)

sm_cancel ();
...
sm_l_at_cur (ld, ºpopupº);
...
sm_l_close (ld);

sm_l_at_cur , sm_l_form , sm_l_open , sm_l_window

lib_desc

Returns

Example

See Also

sm_l_open

3216 JAM Library FunctionsChapter

sm_l_open
Opens a library

int sm_l_open(char *lib_name);

The name of the library to open. JAM searches for file_name in the current
directory, then along the path given to sm_initcrt , and finally along the path
defined by SMPATH.

. 1 The library file's identifier.
-1 The library cannot be opened or read.
-3 The named file is not a library.
-4 Insufficient memory is available.

Use sm_l_open to open a library before you use a JPL module, a menu, or a
screen that is in that library. sm_l_open opens a library in these steps:

� Allocates space in which to store information about the library.

� Leaves the library file open, and returns a descriptor that identifies the library.
You can use this descriptor to explicitly search a single libraryÐfor example,
to find a screen in a specific library with sm_l_window .

If you define the SMFLIBS variable in your setup file as a list of library names,
JAM automatically calls sm_l_open for those libraries.

JAM has no limit on the number of libraries you can have open at the same time.
Note that some systems have severe limits on memory or simultaneously open
files.

/* Prompt for the name of a library until a
 * valid one is found. Assume the memory±resident
 * screen contains one field for entering the library
 * name, with suitable instructions. */

int ld;
extern char libquery[];

lib_name

Returns

Description

Example

sm_l_open

322 JAM 7.0 Language Reference

if (sm_d_form (libquery) < 0)

sm_cancel ();
sm_d_msg_line (ºPlease enter the name of\
your library.º);

do {

sm_input (IN_DATA);
} while ((ld = sm_l_open (sm_fptr (1))) < 0);

sm_jplcall , sm_jpublic , sm_l_close , sm_form , sm_windowSee Also

sm_last

3236 JAM Library FunctionsChapter

sm_last
Positions the cursor in the last field

void sm_last(void);

sm_last places the cursor at the first enterable position of the last tab-accessible
field of the current screen. The first enterable position depends on the justification
of the field and, in fields with embedded punctuation, on the presence of punctua-
tion.

Unlike sm_home, sm_last does not reposition the cursor if all fields are
tab-protected.

This function does not immediately trigger field entry, exit, or validation
processing. Such processing depends on the cursor position when control returns to
sm_input .

This function is called when the JAM logical key EMOH is struck.

sm_backtab , sm_home, sm_nl , sm_tab

Description

See Also

sm_ldb_get_active

324 JAM 7.0 Language Reference

sm_ldb_get_active
Gets the handle of the most recently loaded active LDB

int sm_lbd_get_active(void);

. 0 Success: The integer handle of the most recently activated LDB.
-1 Failure: No LDBs are active.

sm_ldb_get_active searches the stack of loaded LDBs and returns the integer
handle of the topmost LDB that is marked as active.

Note: The order in which LDBs are activated can be different from the order in
which they were loaded.

The following example uses this function to iterate over the active LDBs in order
of most to least recently loaded.

int h;
 for (
 h = sm_ldb_get_active();
 h != ±1;
 h = sm_ldb_get_next_active())
 {
 / * Do stuff with h * /
 }

sm_ldb_get_next_active

Returns

Description

Example

See Also

sm_ldb_get_inactive

3256 JAM Library FunctionsChapter

sm_ldb_get_inactive
Gets the handle of the most recently loaded inactive LDB

int sm_lbd_get_inactive(void);

. 0 Success: The integer handle of the most recently inactivated LDB.
-1 Failure: No LDBs are inactive.

sm_ldb_get_inactive searches the stack of loaded LDBs and returns the inte-
ger handle of the topmost LDB that is also inactive.

sm_ldb_get_next_inactive

Returns

Description

See Also

sm_ldb_get_next_active

326 JAM 7.0 Language Reference

sm_ldb_get_next_active
Gets the active LDB loaded before the one specified

int sm_ldb_get_next_active(int prev_handle);

The handle of an active LDB.

. 0 Success: The handle of an activated LDB.
-1 No LDB was active before prev_handle .
-2 prev_handle is invalid.

sm_ldb_get_next_active takes the handle of an active LDB and returns with
the handle of the LDB that was most recently loaded before it and is also active.

The following example uses this function to iterate over the active LDBs in order
of most to least recently loaded.

int h;
 for (
 h = sm_ldb_get_inactive();
 h != ±1;
 h = sm_ldb_get_next_inactive(h))
 {
 / * Do stuff with h * /
 }

sm_ldb_get_next_active

prev_handle

Returns

Description

Example

See Also

sm_ldb_get_next_inactive

3276 JAM Library FunctionsChapter

sm_ldb_get_next_inactive
Gets the inactive LDB loaded before the one specified

int sm_ldb_get_next_inactive(int prev_handle);

The handle of an inactive LDB.

. 0 Success: The handle of an inactivated LDB.
-1 No LDB was inactivated before prev_handle .
-2 prev_handle is invalid.

sm_ldb_get_next_inactive takes the handle of an inactive LDB and returns
with the handle of the LDB most recently loaded before it that is also inactive.

The following example uses this function to iterate over the inactive LDBs in order
of most to least recently loaded.

int h;
 for (
 h = sm_ldb_get_inactive();
 h != ±1;
 h = sm_ldb_get_next_inactive(h))
 {
 / * Do stuff with h * /
 }

sm_ldb_get_inactive

prev_handle

Returns

Description

Example

See Also

sm_ldb_getfield

328 JAM 7.0 Language Reference

sm_

* ldb_

* getfield

Gets the contents of an LDB entry

int sm_ldb_getfield(char *buffer, int field_number, char *ldbname);

int sm_i_ldb_getfield(char *buffer, char *field_name, int occurrence,
char *ldbname);

int sm_n_ldb_getfield(char *buffer, char *field_name, char *ldbname);

int sm_o_ldb_getfield(char *buffer, int field_number, int occurrence,
char *ldbname);

int sm_ldb_h_getfield(char *buffer, int field_number, int ldbhandle);

int sm_i_ldb_h_getfield(char *buffer, char *field_name, int occurrence,
int ldbhandle);

int sm_n_ldb_h_getfield(char *buffer, char *field_name, int ldbhandle);

int sm_o_ldb_h_getfield(char *buffer, int field_number, int occurrence,
int ldbhandle);

The buffer to get the LDB data.

The LDB field with the data to obtain.

The occurrence that contains the data to obtain.

The name of the LDB that contains the field.

The handle of the LDB that contains the field.

. 0 The length of the data in the LDB entry.
-1 Unable to find the specified field.
-2 Unable to find the specified LDB.
-3 The occurrence number is out of range.

sm_ldb_getfield gets the contents of an entry or array occurrence in the speci-
fied LDB. This function and its variants let you specify an LDB by name or by
handle. The LDB must be among one of the LDBs loaded into memory. If multiple
instances of the same LDB are loaded, you can get the value from the desired
instance by specifying its handle; if you specify the LDB by name, JAM gets the
value from the last-loaded instance.

buffer

field_name,
field_number

occurrence

ldbname

ldbhandle

Returns

Description

sm_ldb_handle

3296 JAM Library FunctionsChapter

sm_ldb_handle
Gets the handle of an LDB

int sm_ldb_handle(char *ldbname);

The name of the LDB to get.

. 0 Success: The handle of ldbname.
-1 Failure: Cannot find ldbname among the loaded LDBs.

sm_ldb_handle takes the name of an LDB and returns with its integer handle of
the specified LDB. The LDB can be active or inactive; however, it must be loaded
into memory.

ldbname

Returns

Description

sm_ldb_init

330 JAM 7.0 Language Reference

sm_ldb_init
Initializes or reinitializes local data blocks

void sm_ldb_init(void);

sm_ldb_init unloads all LDBs from memory, whether active or not. It then loads
and activates the same LDBs as as at application startup. At application startup,
JAM calls this function and attempts to load and activate LDBs as follows:

1. Looks for the configuration variable SMLDBLIBNAME and opens all screens in
the specified libraries as LDBs.

2. Looks for the configuration variable SMLDBNAME and opens the specified
screens as LDBs. For example:

SMLDBNAME = screen1.jam screen2.jam screen3.jam

3. Looks for the library ldb.lib and the screens stored in it.

4. If ldb.lib does not exist, JAM searches the path for the screen ldb.jam .

Description

sm_ldb_is_loaded

3316 JAM Library FunctionsChapter

sm_ldb_is_loaded
Tests whether an LDB is loaded

int sm_ldb_is_loaded(char *ldbname);

The name of the LDB to test.

0 The LDB is not loaded.
1 The LDB is loaded.

sm_ldb_is_loaded takes the name of an LDB and tests whether it is loaded into
memory or not. It returns a value of true (1) or false (0).

ldbname

Returns

Description

sm_ldb_load

332 JAM 7.0 Language Reference

sm_ldb_load
Loads an LDB into memory

int sm_ldb_load(char *ldbname);

The name of the LDB to load.

. 0 The handle of the loaded LDB.
-1 Failure. JAM was unable to load the LDB for one of these reasons:

- Unable to open the specified file.
- Unable to read the file.
- The file type is invalid.

sm_ldb_load loads a screen into memory as an LDB. Multiple LDBs can be
loaded into memory; of these, one or more can be active at any time. Once an LDB
is loaded, you can activate it by calling sm_ldb_state_set ; only active LDBs
are open to read and write operations.

You can load multiple instances of the same LDB. For example, you might do this
to prevent data from multiple invocations of the same screen from overwriting
each other. Because JAM assigns a unique handle to each loaded LDB, you can
reference these LDBs either collectively by their common name, or individually by
their separate handles.

sm_ldb_state_set , sm_ldb_unload

ldbname

Returns

Description

See Also

sm_ldb_name

3336 JAM Library FunctionsChapter

sm_ldb_name
Gets the name of an LDB of the specified handle

char *sm_ldb_name(ldbhandle);

The handle of the LDB to look up.

w Success: A pointer to the name of the LDB specified by handle .
w Failure: NULL pointer.

sm_ldb_name takes the integer handle of an LDB and returns a pointer to the
LDB's name.

ldbhandle

Returns

Description

sm_ldb_next_handle

334 JAM 7.0 Language Reference

sm_ldb_next_handle
Gets the handle of a previously loaded LDB with the same name as the specified LDB

int sm_ldb_next_handle(int ldbhandle);

The handle of a loaded LDB whose name is sought among previously loaded
LDBs.

. 0 Success: The handle of a previously loaded LDB with the same name as
ldbhandle.

-1 No LDB was loaded before ldbhandle .
-2 ldbhandle is not a valid handle.

sm_ldb_handle takes a handle of a loaded LDB and looks for a previously
loaded instance of the same LDB. If an earlier instance exists, the function returns
with its handle. You can call this function iteratively to ascertain how many
instances of an LDB are loaded into memory and their order of precedence.

ldbhandle

Returns

Description

sm_ldb_pop

3356 JAM Library FunctionsChapter

sm_ldb_pop
Pops LDBs off the LDB save stack

int sm_ldb_pop (void);

0 Success.
-1 The stack is empty.

sm_ldb_pop removes all loaded LDBs from memory. It then restores to memory
the LDBs in the LDB save stack's topmostÐthat is, most recently pushedÐlist. If
any LDBs were active at the time they were unloaded, sm_ldb_pop restores them
to active status. If the stack is empty, sm_ldb_pop removes all loaded LDBs from
memory and returns with -1 .

sm_ldb_push

Returns

Description

See Also

sm_ldb_push

336 JAM 7.0 Language Reference

sm_ldb_push
Pushes all LDBs onto a save stack

int sm_ldb_push (void);

0 Success: one or more LDBs are pushed.
-1 No LDBs are currently loaded.
-2 A memory allocation error occurred.

sm_ldb_push makes all loaded LDBs unavailable to the application. It writes
their identities and statusÐwhether active or notÐto a list that it pushes onto the
LDB save stack. Each call to sm_ldb_push pushes another list of LDBs onto the
stack; the stack stores these lists in first-in/last-out order. The number of lists you
can save depends on the amount of memory available on your system. To restore
the last-pushed list of LDB's to memory, call sm_ldb_pop .

sm_ldb_pop

Returns

Description

See Also

sm_ldb_putfield

3376 JAM Library FunctionsChapter

sm_

* ldb_

* putfield

Reads data into an LDB entry

int sm_ldb_putfield(int field_number, char *ldbname, char *buffer);

int sm_i_ldb_putfield(char *field_name, int occurrence, char *ldbname,
char *buffer);

int sm_n_ldb_putfield(char *field_name, char *ldbname, char *buffer);

int sm_o_ldb_putfield(int field_number, int occurrence, char *ldbname,
char *buffer);

int sm_ldb_h_putfield(int field_number, int ldbhandle, char *buffer);

int sm_i_ldb_h_getfield(char *field_name, int occurrence, int ldbhandle,
char *buffer);

int sm_n_ldb_h_putfield(char *field_name, int ldbhandle, char *buffer);

int sm_o_ldb_h_putfield(int field_number, int occurrence, int ldbhandle,
char *buffer);

The LDB field to read the data in buffer ..

The occurrence to read the data.

The name of the LDB that contains the field.

The handle of the LDB that contains the field.

The buffer that contains the data to read.

0 Success.
-1 Unable to find the specified field.
-2 Unable to find the specified LDB.
-3 The occurrence number is out of range.

sm_ldb_putfield reads the contents of the specified buffer into an entry or array
occurrence in the specified LDB. This function and its variants let you specify an
LDB by name or by handle. The LDB must be among one of the LDBs loaded into
memory. If multiple instances of the same LDB are loaded, you can get the value
from the desired instance by specifying its handle; if you specify the LDB by
name, JAM gets the value from the last-loaded instance.

field_name,
field_number

occurrence

ldbname

ldbhandle

buffer

Returns

Description

sm_ldb_state_get

338 JAM 7.0 Language Reference

sm_ldb_

* state_get

Gets the current state of the LDB

int sm_ldb_state_get(char *ldbname, int state_type);

int sm_ldb_h_state_get(int ldbhandle, int state_type);

The name of the LDB whose state you want to get.

The integer handle of the LDB whose state you want to get.

Specifies the state to get with one of these constants:

LDB_ACTIVE

A Yes/No flag that specifies whether the LDB is active. Only active LDBs
participate in LDB write-through.

LDB_READ_ONLY

A Yes/No flag that specifies whether the LDB is read-only. Screens can read from
this LDB on screen entry but cannot modify it on exit; consequently, a read-only
LDB cannot be used to transfer values from one screen to another.

0 state_type is set to No.
1 state_type is set to Yes.

-1 Unable to find ldbname .

sm_ldb_state_get lets you determine whether a loaded LDB is active or wheth-
er it is read-only. Call this function before changing an LDB's state through
sm_ldb_state_set .

ldbname

ldbhandle

state_type

Returns

Description

sm_ldb_state_set

3396 JAM Library FunctionsChapter

sm_ldb_

* state_set

Changes the state of the LDB

int sm_ldb_state_set(char *ldbname, int state_type, int new_value);

int sm_ldb_h_state_set(int ldbhandle, int state_type, int new_value);

The name of the LDB whose state you want to set.

The integer handle of the LDB whose state you want to set.

Specifies the state to set with one of these constants:

LDB_ACTIVE

A Yes/No flag that specifies whether the LDB is active. Only active LDBs
participate in LDB write-through.

LDB_READ_ONLY

A Yes/No flag that specifies whether the LDB is read-only. The default for newly
activated LDBs is set to No. Screens can read from this LDB on screen entry but
cannot modify it on exit; consequently, a read-only LDB cannot be used to transfer
values from one screen to another.

A value of 1 (Yes) or 0 (No) to set for state_type .

0 Success.
1 No change: the LDB was already set to the specified state.

-1 Unable to find ldbname .

sm_ldb_state_set lets you change the status of an LDB in one of two ways:

� Allow or disallow participation in LDB write-through. If a loaded LDB has its
active state (LDB_ACTIVE) set to Yes, screens can, at a minimum, read its data;
if the LDB's LDB_READ_ONLY state is set to No, screens can also write data to
it. For more information about LDB write-through, refer to page 191 in the
Application Development Guide.

ldbname

ldbhandle

state_type

new_value

Returns

Description

sm_ldb_state_set

340 JAM 7.0 Language Reference

� Set the LDB data to be read-only. If an active LDB is read-onlyÐ
LDB_READ_ONLY is set to YesÐa screen can read that LDB's data but cannot
use it to propogate data to other screens. By default, newly activated LDBs
have LDB_READ_ONLY set to No.

Note: You can call sm_ldb_state_set only on LDBs that are already loaded
into memory. To load an LDB at runtime, call sm_ldb_load .

sm_ldb_load , sm_ldb_state_getSee Also

sm_ldb_unload

3416 JAM Library FunctionsChapter

sm_ldb_

* unload

Unloads LDBs from memory

int sm_ldb_unload(char *ldbname);

int sm_ldb_h_unload(int ldbhandle);

The name of the LDB to unload.

The integer handle of the LDB to unload.

0 Success.
-1 Failure. JAM is unable to find the specified LDB.

sm_ldb_unload unloads LDBs and free the memory allocated for it. If the LDB
is loaded more than once, use sm_ldb_unload to unload all instances; to unload a
specific instance, supply its handle with sm_ldb_h_unload .

ldbname

ldbhandle

Returns

Description

sm_leave

342 JAM 7.0 Language Reference

sm_leave
Prepares to leave a JAM application temporarily

void sm_leave(void);

sm_leave lets you leave a JAM application temporarilyÐfor example, to escape
to the command interpreter or execute some graphics functions. When you call this
function before leaving, sm_leave performs these tasks:

� Clears the physical screen, but not the internal screen image.

� Resets the operating system channel.

� Resets the terminal with the RESET sequence found in the video file.

#include ºsmdefs.hº

/* Escape to the UNIX shell for a directory listing */

sm_leave ();
system (ºls ±lº);
sm_return ();
sm_c_off ();
sm_d_msg_line (ºHit any key to continueº,

 BLINK | WHITE);
sm_getkey ();
sm_d_msg_line (ºº, WHITE);
sm_rescreen ();

sm_return

Description

Example

See Also

sm_lngval

3436 JAM Library FunctionsChapter

sm_lngval
Gets the long integer value of a field

long sm_lngval(int field_number);

long sm_e_lngval(char *field_name, int element);

long sm_i_lngval(char *field_name, int occurrence);

long sm_n_lngval(char *field_name);

long sm_o_lngval(int field_number, int occurrence);

The field whose value is sought.

The element in field_name that contains the data to get.

The occurrence in the specified field that contains the data to get.

. 1 The long value of the field.
30 The field is not found.

sm_lngval returns the contents of the specified field as a long integer. It recog-
nizes only digit characters and a leading plus or minus sign.

#include ºsmdefs.hº

/* Retrieve the number of fish in one particular sea
 * (a big number) from the screen. */

#define MEDITERRANEAN 4
long fish;

fish = sm_e_lngval (ºseasº, MEDITERRANEAN);

sm_intval , sm_ltofield

field_name,
field_number

element

occurrence

Returns

Description

Example

See Also

sm_lstore

344 JAM 7.0 Language Reference

sm_lstore
Copies everything from screen to LDB

int sm_lstore(void);

0 Success.
-3 Insufficient memory.

sm_lstore copies data from the screen to local data block entries with matching
names.

JAM's executive automatically calls sm_lstore when it brings up a new screen or
before it closes a window. You should explicitly call this function only for special
circumstances.

sm_allget

Returns

Description

See Also

sm_ltofield

3456 JAM Library FunctionsChapter

sm_ltofield
Writes a long integer value to a field

int sm_ltofield(int field_number, long value);

int sm_e_ltofield(char *field_name, int element, long value);

int sm_i_ltofield(char *field_name, int occurrence, long value);

int sm_n_ltofield(char *field_name, long value);

int sm_o_ltofield(int field_number, int occurrence, long value);

The field to receive value .

The element in field_name to receive value .

The occurrence in the specified field to receive value .

A long integer to put into the specified field.

0 Success.
-1 The field is not found.

The long integer passed to this function is converted to user-readable format and
placed in field_number . If the number is longer than the field, it is truncated
without warning, on the right or left depending on the field's justification.

#include ºsmdefs.hº

/* Set the number of fish in the sea to a
 * smallish number. */

#define MEDITERRANEAN 4

sm_i_ltofield (ºseasº, MEDITERRANEAN, 14L);

sm_itofield , sm_lngval

field_name,
field_number

element

occurrence

value

Returns

Description

Example

See Also

sm_m_flush

346 JAM 7.0 Language Reference

sm_m_flush
Flushes the status line

void sm_m_flush(void);

sm_m_flush forces JAM to display updates to the status line. This is useful if you
want to display the status of an operation with sm_d_msg_line without flushing
the entire display like sm_flush .

#include <smdefs.h>

/* Process a big pile of records, providing
 * status as we go.
 */
char buf[80];
int k;

k = 0;
do {
 sprintf (buf, ºProcessing record %dº, k + 1);
 sm_d_msg_line (buf, REVERSE | WHITE);
 sm_m_flush ();
} while (process (records[k++]) >= 0);

sm_flush

Description

Example

See Also

sm_menu_bar_error

3476 JAM Library FunctionsChapter

sm_menu_bar_error
Returns the last error returned by a menu function

int sm_menu_bar_error(void);

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-2 MNERROR_EMPTY_SCOPE: Menu not installed at specified scope.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.
-6 MNERR_DATA: Invalid data.
-7 MNERR_MALLOC: Memory allocation error.
-8 MNERR_NULL: Property has a value of null string pointer.
-9 MNERR_READ_ONLY: Property is read-only.
-10 MNERR_LOCATION: Invalid memory location.

sm_menu_bar_error returns the error generated by the last call to a menu func-
tion. This is particularly useful for calls to sm_menu_get and sm_mnitem_get
and their variants. These functions return the value of the specified property when
successful; otherwise, they return -1 for failure of the _get_int variants, and 0 for
the _get_str variants. sm_menu_bar_error returns the actual cause of failure.
It also lets you determine whether a return of -1 indicates the property's actual
value or an error condition.

Because JAM retains the error code only for the last call to one of the menu
functions, call sm_menu_bar_error immediately afterward to evaluate the call's
return status.

Returns

Description

sm_menu_bar_error

348 JAM 7.0 Language Reference

/*enable and disable menu tear±offs*/

int ToggleTearOffs(void)
{
 int errorCode;
 switch
 (sm_menu_get_int (MNL_SCREEN, ºmenucomº, ºmainº,
 MN_TEAR)
 {
 /*enable tear±offs */
 case 0: sm_menu_change
 (MNL_SCREEN, ºmenucomº, ºmainº, MN_TEAR, 1,
 NULL);
 break;

 /*disable tear±offs */
 case 1: sm_menu_change
 (MNL_SCREEN, ºmenucomº, ºmainº, MN_TEAR, 0,
 NULL);
 break;

 /* if error returned, find out why */
 case ±1:
 errorCode = sm_menu_bar_error();
 menuErrorHandler (errorCode);
 break;
 }
}

Example

sm_menu_change

3496 JAM Library FunctionsChapter

sm_menu_change
Sets a menu's properties

int sm_menu_change(int mem_location, char *script, char *menu, int prop,
int intval, char *strval);

The menu's memory location, one of these constants:

MNL_ANY
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

If set to MNL_ANY, JAM looks for the menu in all memory locations. If the menu is
installed in more than one location, the call fails and returns MN_ERR_LOCATION.

The name of a memory-resident script that contains the menu to change. The script
must already be loaded into memory at mem_location by sm_mnscript_load .
If you supply NULL, JAM searches among the most recently loaded script in
mem_location for the specified menu.

The menu to change. If set to NULL, JAM uses the first menu in script .

The property to change. Table 9 lists the properties that you can change and their
constants.

The integer value to set for prop . If the property takes a string value, supply 0.

The string value to set for prop . If the property takes an integer value, supply
NULL.

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-6 MNERR_DATA: Invalid data.
-8 MNERR_NULL: Null string argument.
-9 MNERR_READ_ONLY: Property is read-only.
-10 MNERR_LOCATION: Invalid memory location.

sm_menu_change sets a menu property. Menu properties are derived from a
memory-resident script. Because sm_menu_change changes the specified script,
all instances of menus from this script get the requested property change.

Specify the property to change through one of the constants in Table 9. Menu-spe-
cific properties begin with a prefix of MN. Properties that begin with MNI set

mem_location

script

menu

prop

intval

strval

Returns

Description

sm_menu_change

350 JAM 7.0 Language Reference

defaults for new items that are added to the menu at runtime. If you call
sm_menu_change to reset item property defaults, the changes only affect items
that are added after this call; it leaves existing menu items unchanged. To reset
item properties for individual items, call sm_mnitem_change .

Table 9. Menu properties that can be changed at runtime

Property Type* Description

MN_EXTERNAL int A value of PROP_ON or PROP_OFF specifies whether to find this menu's
definition in another script.

MN_NAME str The name of this menu. The function does not check for duplicate names.

MN_TEAR int A value of PROP_ON or PROP_OFF enables or disables this submenu as a
tear-off menu.

MN_TITLE str A title to display with pop-up menus.

MNI_ACCEL_ACTIVE int A value of PROP_ON or PROP_OFF specifies whether menu item acceler-
ators are active.

MNI_ACTIVE int A value of PROP_ON or PROP_OFF allows or disallows access to menu
items. If MNI_ACTIVE is set to PROP_OFF, menu items are greyed out.

MNI_INDICATOR int A value of PROP_ON or PROP_OFF specifies whether to show the toggle
indicator on items.

MNI_SEP_STYLE int The default style used by separator-type items, specified by one of these
integer constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED
SEP_MENUBREAK
SEP_TYPE_MASK

MNI_SHOW_ACCEL int A value of PROP_ON or PROP_OFF specifies whether menu items display
the accelerator key next to their labels.

* For integer-type properties, supply an argument for the intval parameter and set the strval parameter to NULL; for string-proper-
ties, supply an argument for the strval parameter and set the intval parameter to 0.

sm_menu_change

3516 JAM Library FunctionsChapter

/*enable and disable menu tear±offs*/

int ToggleTearOffs(void)
{
 int errorCode;
 switch
 (sm_menu_get_int (MNL_SCREEN, ºmenucomº, ºmainº,
 MN_TEAR)
 {
 /*enable tear±offs */
 case 0: sm_menu_change
 (MNL_SCREEN, ºmenucomº, ºmainº, MN_TEAR, 1,
 NULL);
 break;

 /*disable tear±offs */
 case 1: sm_menu_change
 (MNL_SCREEN, ºmenucomº, ºmainº, MN_TEAR, 0,
 NULL);
 break;

 /* if error returned, find out why */
 case ±1:
 errorCode = sm_menu_bar_error();
 menuErrorHandler (errorCode);
 break;
 }
}

sm_mnitem_change

Example

See Also

sm_menu_create

352 JAM 7.0 Language Reference

sm_menu_create
Defines a menu at runtime

int sm_menu_create(int mem_location, char *script, char *menu);

The memory location in which to load this menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script to contain the menu. The script can be one
previously loaded into memory at mem_location by sm_mnscript_load ;
otherwise, JAM creates a script in memory with the name that you supply.

The name of the menu to create. The menu name must be unique in script .

0 MNERR_OK: Success.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-6 MNERR_DATA: Menu name already exists or not supplied.
-7 MNERR_MALLOC: Memory allocation error.

sm_menu_create defines a menu and loads it into memory as part of the specified
script. After you create this menu, you can set its properties and create items for it
through sm_menu_change and sm_mnitem_create , respectively. Like other me-
nus that are loaded into memory, you can attach this menu to an application com-
ponentÐscreen or widgetÐand make it available for display through
sm_menu_install .

mem_location

script

menu

Returns

Description

sm_menu_delete

3536 JAM Library FunctionsChapter

sm_menu_delete
Removes a menu from the specified script

int sm_menu_delete(int mem_location, char *script, char *menu);

The menu's memory location, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script that contains the menu. The script must
already be loaded into memory at mem_location by sm_mnscript_load . If you
supply NULL, JAM searches in the most recently loaded script in mem_location
for the specified menu.

The name of the menu to delete. If you supply NULL, JAM uses the first menu in
script .

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.

sm_menu_delete removes a menu from memory at runtime and frees the memory
allocated for it. This function also destroys all items in the menu and frees the
memory associated with them. After you call this function, you can restore this
menu only by reloading its script, provided the script's source file already contains
the menu definition.

sm_menu_create

mem_location

script

menu

Returns

Description

See Also

sm_menu_get

354 JAM 7.0 Language Reference

sm_menu_get

*

Gets a menu's property

int sm_menu_get_int(int mem_location, char *script, char *menu, int prop);
char *sm_menu_get_str(int mem_location, char *script, char *menu, int prop);

The menu's memory location, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script that contains the menu. The script must
already be loaded into memory at mem_location by sm_mnscript_load . If you
supply NULL, JAM searches in the most recently loaded script in mem_location
for the specified menu.

The menu's name. If you supply NULL, JAM uses the first menu in script .

The property to get. Table 10 lists the properties that you can get and their
constants.

w The property's current value, returned either as an integer or as a pointer to a
string value.

0 Error returned by a _get_str variant. Call sm_menu_bar_error to get the
error code.

-1 Error returned by a _get_int variant. Call sm_menu_bar_error to get the
error code.

sm_menu_get_int and sm_menu_get_str returns the current setting of the spe-
cified property. Use the _int variant for those properties that have an integer val-
ueÐfor example, MN_TEAR; use the _str variant for properties that take string
values, such as MN_NAME and MN_TITLE.

Table 10. Menu properties

Property Type* Description

MN_EXTERNAL int A value of PROP_ON or PROP_OFF specifies whether to find this
menu's definition in another script.

MN_NAME str The name of this menu.

* For integer-type properties, use sm_menu_get_int; for string-properties, use sm_menu_get_str.

mem_location

script

menu

prop

Returns

Description

sm_menu_get

3556 JAM Library FunctionsChapter

Property DescriptionType*

MN_NUM_ITEMS int Number of items in this menu.

MN_TEAR int A value of PROP_ON or PROP_OFF enables or disables this submenu
as a tear-off menu.

 MN_TITLE str A title to display with pop-up menus.

MNI_SHOW_ACCEL int A value of PROP_ON or PROP_OFF specifies whether menu items
display the accelerator key next to their labels.

MNI_ACCEL_ACTIVE int A value of PROP_ON or PROP_OFF specifies whether menu item
accelerators are active.

MNI_ACTIVE int A value of PROP_ON or PROP_OFF allows or disallows user access
to menu items. If MNI_ACTIVE is set to PROP_OFF, menu items are
greyed out.

MNI_INDICATOR int A value of PROP_ON or PROP_OFF specifies whether to show the
toggle indicator on items

MNI_SEP_STYLE int The default style used by separator-type items, specified by one of
these constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

* For integer-type properties, use sm_menu_get_int; for string-properties, use sm_menu_get_str.

sm_menu_get

356 JAM 7.0 Language Reference

/*enable and disable menu tear±offs*/

nint ToggleTearOffs(void)
{
 int errorCode;
 switch
 (sm_menu_get_int (MNL_SCREEN, ºmenucomº, ºmainº,
 MN_TEAR)
 {
 /*enable tear±offs */
 case 0: sm_menu_change
 (MNL_SCREEN, ºmenucomº, ºmainº, MN_TEAR, 1,
 NULL);
 break;

 /*disable tear±offs */
 case 1: sm_menu_change
 (MNL_SCREEN, ºmenucomº, ºmainº, MN_TEAR, 0,
 NULL);
 break;

 /* if error returned, find out why */
 case ±1:
 errorCode = sm_menu_bar_error();
 menuErrorHandler (errorCode);
 break;
 }
}

Example

sm_menu_install

3576 JAM Library FunctionsChapter

sm_menu_install
Makes a menu available for display

int sm_menu_install (int scope, int mem_location, char *script, char *menu);

Specifies the menu's scope within the application with one of these constants:

MNS_APPLIC

Associates menu with the application and displays it. An application menu displays
with all screens unless you install another menu at screen scope (MNS_SCREEN).
Under Motif, the application menu can display on the base window along with the
active screen's menu if you set the baseWindow and formMenus resources to true.
You can install an application menu only from a script that is loaded into
application (MNL_APPLIC) memory.

MNS_SCREEN

Associates menu with the current screen and displays it. The menu displays when
its screen is invoked or reexposed. You can install a screen menu from a script that
is loaded into application (MNL_APPLIC) or screen (MNL_SCREEN) memory.

MNS_FIELD

Associates a menu with the current field, and makes it available for display as a
pop-up that the user invokes while in that field. You can install a field menu from a
script in any memory location.

Specifies the memory location in which script is loaded. A script's memory loca-
tion determines the scope at which you can install its menusÐfor example, you can
install a screen menu only from a script that is loaded into screen (MNL_SCREEN) or
application (MNL_APPLIC) memory. You load a menu script into memory with
sm_mnscript_load with one of the arguments in the following table. The table
shows which scope arguments are valid for each memory location:

Memory location Valid scopes

MNL_APPLIC All

MNL_SCREEN MNS_SCREEN, MNS_FIELD

scope

mem_location

sm_menu_install

358 JAM 7.0 Language Reference

Memory location Valid scopes

MNL_FIELD MNS_FIELD

MNL_ANY JAM searches for the menu's script in all memory locations
that are valid for the menu's scope, starting with the ªlowestº
location. For example, if you want to install a screen-level
menu, (MNS_SCREEN), JAM first looks in screen memory,
(MNL_SCREEN), then in application memory (MNL_APPLIC).

Refer to sm_mnscript_load for more information about these arguments.

The name of a memory-resident script that contains the menu to install. The script
must already be loaded into memory at mem_location by sm_mnscript_load .
If you supply NULL, JAM searches for menu in the script most recently loaded in
mem_location . A NULL value requires you to supply a non-NULL value for menu.

Specifies a menu definition in script to install. If you supply an empty string,
JAM installs the first menu definition in script . Make sure that menu names
among all scripts loaded at the same memory location are unique; otherwise,
results can be unpredictable.

If you supply NULL, JAM uses the first menu in script . A NULL value requires
you to supply a non-NULL value for script .

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Invalid scope or Menus not supported.
-4 MNERR_MENU: Menu name not found.
-7 MNERR_MALLOC: Memory allocation error.
-10 MNERR_LOCATION: Invalid memory location for specified scope.

sm_menu_install finds a menu in the specified script and memory location and
reads its definition. If the menu contains external references, JAM resolves these; it
then makes the menu available for display.

Except for Motif versions, JAM applications can display only one menu bar at a
time. For example, if an application contains multiple screens and each screen has
its own menu, JAM displays only the menu bar of the active screen. Under Motif,
an application menu and screen menu can display simultaneously.

The scope at which you install a menu determines when JAM displays it; its
memory location determines whether you can have identical instances of the same
menu.

script

menu

Returns

Description

sm_menu_install

3596 JAM Library FunctionsChapter

Menus display according to their scope assignment as follows:

� An application menu displays at all times unless a screen menu is installed.
Note that under Motif, an application menu bar can display along with a
screen menu.

� A screen menu displays when its screen is invoked or reexposed. This menu
also displays with successive screens that lack their own menus: with sibling
and child windows; and, if invoked as a form, with other forms invoked later.

� A field menu displays as a pop-up that the user invokes while on that field.

You can install a menu at any scope that is the same or higher than the scope of its
caller. For example, the application's startup routines in jmain.c can only install a
menu at application scope, while a screen's entry procedure can install a menu at
all scopes except field (MNS_FIELD); a field's entry procedure can install menus at
all scopes, including field.

JAM installs a screen menu with the current screen, a field menu with the current
field. If another menu is already installed at the specified scope, JAM removes the
previous menu. If the same menu is already installed from the same memory
location, JAM does not try to reinstall it.

Because a script can be loaded only once into a given memory location, all menus
installed from that location are identical. JAM provides only one memory location
at the application level (MNL_APPLIC). So, all scripts in application memory are
unique, and all instances of a menu installed from application memory are the
same: changes in one are immediately propagated to all others.

You can install the same menu from application memory for different screens and
fields; if you do, all instances of this menu are always the same. If you install the
same menu from screen memory for different fields on that screen; all pop-up
menus of those fields are identical.

For example, the following JPL procedure in an application's startup screen loads a
menu script into application memory; it then installs the menu scr_mn for the
startup screen from application memory:

if sm_mnscript_load (MNL_APPLIC, ºmnscript_myprogº) \
 == MNERR_OK
 call sm_menu_install \
 (MNS_SCREEN, MNL_APPLIC,ºmnscript_myprogº, ºscr_mnº)
else
 {
 msg emsg ºNo menu found for application. Goodbyeº
 call jm_exit
 }
return

Installing Menus with
Shared Content

sm_menu_install

360 JAM 7.0 Language Reference

Subsequently, other screens in this application can install their own instances of
this menu with the following call:

call sm_menu_install \
 (MNS_SCREEN, MNL_APPLIC, ºmnscript_myprogº, ºscr_mnº)

All screens that display the scr_mn menu display the same menu. Thus, if one
screen makes a menu option inactive, that option is inactive when other screens
display that menu.

Conversely, you can install multiple copies of the same menu for screens and
widgets, where each copy is unique. Because screens and widgets can load menu
scripts into their private memory locations, each location can maintain its own
copy of a menu; changes to one have no effect on the others.

To install unique copies of the same menu for several screens, repeat these steps for
each screen:

1. Load the menu script into screen memoryÐcall sm_mnscript_load with an
argument of MNL_SCREEN.

2. Install the menu from screen memoryÐcall sm_menu_install with
arguments of MNS_SCREEN and MNL_SCREEN.

Similarly, you can make sure that several widgets on a screen have unique copies
of the same pop-up menu. Repeat these steps for each field:

1. Load the menu script into field memory for the widgetÐcall
sm_mnscript_load with an argument of MNL_FIELD.

2. Install the menu from the widget's memoryÐcall sm_menu_install with
arguments of MNS_FIELD and MNL_FIELD.

A menu definition can specify submenus whose contents are defined outside the
current scriptÐthat is, the submenu's External property is set to Yes. For
maximum flexibility, the external flag contains no information about this menu's
script name. Consequently, when you install a menu, JAM resolves external
references by searching first among scripts in the same memory location, then
among scripts in the next highest memory location, and so on.

For example, given a menu installed from screen memory, JAM tries to resolve
each of its external references first by searching among other scripts in screen
memory; if no match is found in screen memory, JAM continues the search among
the scripts loaded into application memory. If no menu is found in any memory
location, JAM displays an empty submenu.

You can explicitly remove any instance of a menu by calling sm_menu_remove .
Otherwise, the menu remains installed until its screen or widget is removed from

Installing Menus with
Unique Content

External Menus

Removing Menus from
Memory

sm_menu_install

3616 JAM Library FunctionsChapter

memoryÐfor example, when a screen with its own menu is removed from the
form or window stack. JAM automatically removes all menus and frees their
memory when the application exits.

sm_menu_remove

362 JAM 7.0 Language Reference

sm_menu_remove
Removes a menu from display

int sm_menu_remove (int scope);

Specifies which menu to remove from display:

MNS_APPLIC

Removes the application menu.

MNS_SCREEN

Removes the current screen's menu, either installed with the current screen or
inherited from another screen.

MNS_FIELD

Removes the current field's menu.

0 MNERR_OK: Success.
-2 MNERROR_EMPTY_SCOPE: Menu not installed at specified scope.
-3 MNERR_NOT_SUPPORTED: Invalid scope or Menus not supported.

sm_menu_remove makes a menu unavailable for display at the specified scope.
Because the script remains loaded, any subsequent changes to the menu's proper-
ties become visible when you reinstall it.

This function has no effect on other instances of the menu that are installed from
the same memory location.

sm_menu_install

scope

Returns

Description

See Also

sm_message_box

3636 JAM Library FunctionsChapter

sm_message_box
Displays a message in a dialog box

int sm_message_box(char *text, char *title, unsigned int options, char *icon);

The text of the message. The text can contain format options shown in
ªDescription.º

The title of the dialog box. A null pointer or an empty string specifies no title.

A bit mask that specifies message box display and behavior. Arguments that set
different bits can be OR'd together. Table 11 shows the flags that you can set on
this mask.

Specifies the icon to use in the dialog box, valid only in Motif. The icon specified
here overrides any icon set through options . This argument is ignored by
character-mode and Windows applications.

An integer that indicates which button was pushed:

1 SM_IDOK: OK
2 SM_IDCANCEL: Cancel
3 SM_IDABORT: Abort
4 SM_IDRETRY: Retry
5 SM_IDIGNORE: Ignore
6 SM_IDYES: Yes
7 SM_IDNO: No
8 SM_IDHELP: Help
9 SM_IDYESALL: Yes to All

10 SM_IDOKALL: OK to All

sm_message_box creates a dialog box that displays a message and requests the
user to select a button. JAM prevents further interaction with the application until
the function returns with the user's selection.

The message text is a single string that wraps within the window. The text can
contain these % format options:

text

title

options

icon

Returns

Description

sm_message_box

364 JAM 7.0 Language Reference

%Kkeyname

Displays the specified key, where keyname is a logical key constant. When JAM
displays the message, it replaces keyname with the key label string defined for that
key in the key translation file. If there is no label, the %K is stripped out and the
constant remains. Key constants are defined in smkeys.h

%B

Beeps the terminal with sm_bel before the message displays. This escape
character must precede the message text.

%N

Creates a new line.

You control message box display and behavior by setting one or more flags in
Table 11. You can set one flag from each group. Flag settings from different groups
can be OR'd together.

Table 11. Message box settings

Flag settings (by group) Display/Action

Button Combinations

SM_MB_OK OK

SM_MB_OKCANCEL OK, Cancel

SM_MB_ABORTRETRYIGNORE Abort, Retry, Ignore

SM_MB_YESNOCANCEL Yes, No, Cancel

SM_MB_YESNO Yes, No

SM_MB_RETRYCANCEL Retry, Cancel

SM_MB_YESALLNOCANCEL Yes, Yes to All, No, Cancel

SM_MB_OKALL OK, OK to All

SM_MB_OKHELP OK, Help

SM_MB_OKCANCELHELP OK, Cancel, Help

SM_MB_ABORTRETRYIGNOREHELP Abort, Retry, Ignore, Help

SM_MB_YESNOCANCELHELP Yes, No, Cancel, Help

SM_MB_YESNOHELP Yes, No, Help

SM_MB_RETRYCANCELHELP Retry, Cancel, Help

sm_message_box

3656 JAM Library FunctionsChapter

Flag settings (by group) Display/Action

SM_MB_YESALLNOALLCANCEL Yes, Yes to all, No,
No to all, Cancel

System Icon Display

SM_MB_ICONNONE No icon.

SM_MB_ICONSTOP Stop

SM_MB_ICONQUESTION Question

SM_MB_ICONWARNING Warning

SM_MB_ICONINFORMATION Information

Default Button

SM_MB_DEFBUTTON1 First button

SM_MB_DEFBUTTON2 Second button

SM_MB_DEFBUTTON3 Third button

Modality

SM_MB_APPLMODAL

SM_MB_SYSTEMMODAL

The following sections describe these settings in more detail.

User options are controlled through the message box buttons. The message box can
contain a subset of one or more buttons from one of these configurations:

OK Cancel Help

Yes No Cancel Help

Abort Retry Ignore Help

Table 11 shows the permissible combinations and the constants that set them. Only
the first five button display settings in the earlier tableÐSM_MB_OK through
SM_MB_RETRYCANCELÐare fully functional across all platforms:

Two platform-specific restrictions apply to button combinations:

� Windows does not support the Help button; if the sm_message_box call
specifies a button combination that includes HelpÐfor example,
SM_MB_OKHELPÐthe message box omits this button. You can give Windows
users alternative access to help through a function keyÐtypically, PF1.

Button Combinations

sm_message_box

366 JAM 7.0 Language Reference

� Motif displays only the first three buttons of any combination. If the button
display setting specifies four buttons, Motif omits the last button. For example,
if you set the flag SM_MB_YESNOCANCELHELP, Motif displays the message box
with Yes, No, and Cancel , and omits Help .

Your message file defines the labels of message box buttons. You can edit this file
and modify the label text. For more information on button label text, refer to page
70 in the Configuration Guide.

You can use the options parameter to set a flag for the system icon you want to
display in the message window, if any. The actual icon that appears is platform-
specific. In character mode, JAM searches in the message file for the tag that
corresponds to the specified icon and its associated text; this text appears in front
of the title text. For information on modifying message file tags, refer to page 70 in
the Configuration Guide.

The options parameter can set the default button. The default button is specified
by positionÐyou can set the first, second , or third button as the default. You
cannot set the Help button as the default button.

JAM requires the user to respond to the message before continuing interaction with
the application. You can extend this restriction to the entire system, and thereby
prevent interaction with other applications, by setting SM_MB_APPLMODAL on the
options parameter. The default modality setting is SM_MB_SYSTEMMODAL, which
constrains user interaction only within the JAM application.

proc clean_exit()
{
 vars btnPush
 btnPush = sm_message_box(ºSave changes before exiting?º,\
 ºº,SM_MB_YESNOCANCEL|SM_MB_ICONQUESTION,ºº)

 if (btnPush == SM_IDCANCEL)
 {
 return
 }
 if (btnPush == SM_IDYES)
 {
 call save_changes()
 }
 if (btnPush == SM_IDNO)
 {
 call sm_jclose()
 }

}

System Icon

Default Buttons

Modality

Example

sm_mncrinit

3676 JAM Library FunctionsChapter

sm_mncrinit
initializes support for JAM's menu subsystem

void sm_mncrinit(void);

sm_mncrinit is usually called automatically when you enable menus in your ap-
plication. This function is called and menu support is enabled if you set MENUS to 1
in the main function.

sm_mncrinit sets a global variable to point to a control function. All screen
manager functions that need menu support check the variable and, if it is non-zero,
call indirectly with the request.

Call this function explicitly only if you write your own executive. You must call
sm_mncrinit in the main function before the call to sm_initcrt .

Description

sm_mnitem_change

368 JAM 7.0 Language Reference

sm_

* mnitem_change

Sets a menu item's property

int sm_mnitem_change(int mem_location, char *script, char *menu, int item_no,
int prop, int intval, char *strval);

int sm_n_mnitem_change(int mem_location, char *script, char *menu,
char *item_name, int prop, int intval, char *strval);

The memory location of the item's menu, one of the following constants:

MNL_ANY
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

If you supply MNL_ANY, JAM looks for the menu in all memory locations. If the
menu is installed in more than one location, the function call fails and returns
MN_ERR_LOCATION.

The name of a memory-resident script that contains the menu to change. The script
must already be loaded into memory at mem_location by sm_mnscript_load .
If you supply NULL, JAM searches in the most recently loaded script in
mem_location for the specified menu.

The name of the item's menu. If you supply NULL, JAM uses the first menu in
script .

Specifies the menu item to change by its number or name:

� sm_mnitem_change identifies the item by its numeric offset within the menu,
where the first menu item is 0.

� sm_n_mnitem_change identifies the item by its name.

The property to change, one of the constants listed in Table 12.

The integer value to set for prop . If the property takes a string value, supply 0.

The string value to set for prop . If the property takes an integer value, supply
NULL.

mem_location

script

menu

item_no,
item_name

prop

intval

strval

sm_mnitem_change

3696 JAM Library FunctionsChapter

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.
-6 MNERR_DATA: Invalid data.
-7 MNERR_MALLOC: Memory allocation error.
-8 MNERR_NULL: Null string argument.
-9 MNERR_READ_ONLY: Property is read-only.

sm_mnitem_change sets the property of a menu item. Menu item properties are
derived from a memory-resident script. Because sm_mnitem_change changes the
specified script, all instances of items from this script get the property change.

Table 12 lists menu item property constants and the values you can set these to.
Integer and string properties are listed in separate groups.

Table 12. Menu item properties that can be changed at runtime

Constant Property values

Integer properties:

 MNI_ACCEL An accelerator keystroke that specifies the keyboard
equivalent for selecting this menu item, valid only
for action and toggle menu items.

You cannot set this property for main menu items.
Accelerator keys for edit-type items such as Edit Cut
or Edit Paste are set by the GUI platformÐfor exam-
ple, in Windows, through the JAM initialization file;
on Motif, in the XJam file. To change edit item ac-
celerators, modify the appropriate GUI file.

 MNI_ACCEL_ACTIVE A value of PROP_ON or PROP_OFF specifies whether
the menu item accelerator is active.

 MNI_ACTIVE A value of PROP_ON or PROP_OFF allows or disal-
lows user access to this menu item. If MNI_ACTIVE
is set to PROP_OFF, the menu item is greyed out.

* Ignored in character-mode.

Returns

Description

Menu Item Property
Constants

sm_mnitem_change

370 JAM 7.0 Language Reference

Constant Property values

 MNI_DISPLAY_ON Specifies whether to display the menu item on the
menu and/or the tool bar. Supply one of these argu-
ments:

DISPLAY_MENU: Menu only (default)
DISPLAY_TOOL: Tool bar only
DISPLAY_BOTH: Menu and tool bar
DISPLAY_NEITHER: Neither

 MNI_INDICATOR A value of PROP_ON or PROP_OFF specifies whether
to show the toggle indicator.

 MNI_IS_HELP A value of PROP_ON or PROP_OFF specifies whether
to display this item as the rightmost item on the
menu bar.

 MNI_MNEMONIC A zero-based offset into the item's label that speci-
fies which character users can type to select this
item, provided the menu is displayed. A value of -1
specifies no mnemonic for this item.

 MNI_ORDER* The order in which this item appears on the toolbar.
The default value is 100. You can enter any value
between 0 and 200, inclusive. If all toolbar items are
set to the same value, they appear in the same order
as they do in the menu.

 MNI_SEP_STYLE The style used by an item separator, specified by one
of these constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

 MNI_SHOW_ACCEL A value of PROP_ON or PROP_OFF specifies whether
a menu item displays the accelerator key next to the
item label.

* Ignored in character-mode.

sm_mnitem_change

3716 JAM Library FunctionsChapter

Constant Property values

 MNI_TM_CLASS The transaction manager class assigned to this menu
item. This property determines how the item behaves
in each of the transaction manager modes. Refer to
page 285 in the Editors Guide for more information
on transaction manager classes.

String properties:

 MNI_ACT_PIXMAP * The name of an image file whose contents are shown
for an active toolbar itemÐthat is, accessible but not
pressed. Refer to page 225 in the Editors Guide for
valid file types, and for information about path and
extension options.

 MNI_ARM_PIXMAP* The name of an image file whose contents are shown
for an armed toolbar itemÐthat is, in its pressed
state. If this property is blank, Motif uses the
MNI_ACT_PIXMAP property for the item's armed
state. Windows uses a modified version of the Active
Pixmap property to display a toolbar item's armed
state and ignores this property.

 MNI_CONTROL A control string that specifies the action that occurs
when this item is selected.

 MNI_EXT_HELP_TAG A help context identifier that specifies the help to
invoke from an external help program.

 MNI_INACT_PIXMAP * The name of an image file whose contents are shown
for an inactive or unavailable (grayed) item. If this
property is blank, Motif displays an empty toolbar
item. Windows uses a grayed version of the Active
Pixmap property to display a toolbar item's inactive
state and ignores this property.

 MNI_JAM_HELP The name of a JAM screen to invoke as a help
screen.

 MNI_LABEL A string expression to display as this item's label.

 MNI_MEMO A string expression for this menu item's Memo Text
property.

 MNI_NAME The menu item's name. This function does not check
for duplicate names.

* Ignored in character-mode.

sm_mnitem_change

372 JAM 7.0 Language Reference

Constant Property values

 MNI_STAT_TEXT A string expression to display on the screen's status
line when this item has focus.

 MNI_SUBMENU Name of the submenu to invoke when this item is
selected.

 MNI_TOOL_TIP * The balloon help to display when the cursor remains
over the toolbar item.

* Ignored in character-mode.

sm_mnitem_change and sm_n_mnitem_change have too many parameters to
allow installation by sm_install ; consequently, they are not directly accessible to
JPL modules. (Refer to page 121 in the Application Development Guide for
function installation requirements.) A number of wrapper functions that call
sm_mnitem_change and sm_n_mnitem_change are declared and installed in
funclist.c . You can call these functions from JPL to modify menu items.

Table 13 lists the provided wrapper functions and their parameter declarations.
Each wrapper function is narrowly defined to look for a menu in a discrete
memory locationÐapplication, screen, or fieldÐor to look in all memory locations
(the change_i_any and change_s_any variants). Also, the change_i variants
set only integer properties; the change_s variants set only string properties. All
parameters are identical in type and purpose to those declared for
sm_mnitem_change and sm_n_mnitem_change .

Table 13. Wrapper functions for changing menu item properties from JPL

Function names Parameter declarations

To modify integer properties, call:

sm_n_mnitem_change_i_any*
sm_n_mnitem_change_i_app
sm_n_mnitem_change_i_screen
sm_n_mnitem_change_i_field

(char *script, char *menu, char *item_name,
int prop, int intval)

sm_mnitem_change_i_any*
sm_mnitem_change_i_app
sm_mnitem_change_i_screen
sm_mnitem_change_i_field

(char *script, char *menu, int item_no,
int prop, int intval)

* JAM looks for the menu in all memory locations. If the menu is installed in more than one location, the function call fails and
returns MN_ERR_LOCATION.

 Calling from JPL

sm_mnitem_change

3736 JAM Library FunctionsChapter

Function names Parameter declarations

To modify string properties, call:

sm_n_mnitem_change_s_any*
sm_n_mnitem_change_s_app
sm_n_mnitem_change_s_screen
sm_n_mnitem_change_s_field

(char *script, char *menu, char *item_name,
int prop, char *strval)

sm_mnitem_change_s_any*
sm_mnitem_change_s_app
sm_mnitem_change_s_screen
sm_mnitem_change_s_field

(char *script, char *menu, int item_no
int prop, char *strval)

* JAM looks for the menu in all memory locations. If the menu is installed in more than one location, the function call fails and
returns MN_ERR_LOCATION.

sm_mnitem_create

374 JAM 7.0 Language Reference

sm_

* mnitem_create

Inserts a new item into a menu

int sm_mnitem_create(int mem_location, char *script, char *menu,
int next_item_no, int item_type, char *item_name);

int sm_n_mnitem_create(int mem_location, char *script, char *menu,
char *next_item_name, int item_type, char *item_name);

The memory location of the item's menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script that contains the item's menu. The script
must already be loaded into memory at mem_location by sm_mnscript_load .
If you supply NULL, JAM searches in the most recently loaded script in
mem_location for the specified menu.

The name of the item's menu. If you supply NULL, JAM uses the first menu in
script .

Specifies the new item's position by the number or name of the item to follow it:

� sm_mnitem_create identifies the next item by its numeric offset within the
menu, where the first menu item is 0. Supply -1 to append the new item to the
end of the menu.

� sm_n_mnitem_create identifies the next item by its name. Supply NULL to
append the new item to the end of the menu.

The item's type. Supply one of the constants described in Table 14.

The name to assign this item. Item names must be unique within the same menu.
Supply NULL to create an unnamed item.

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.

mem_location

script

menu

next_item_no,
next_item_name

item_type

item_name

Returns

sm_mnitem_create

3756 JAM Library FunctionsChapter

-5 MNERR_ITEM: Item name not found.
-6 MNERR_DATA: Item name already exists.
-7 MNERR_MALLOC: Memory allocation error.

sm_mnitem_create inserts a new menu item into a menu. After you create this
item, you can set its properties through sm_mnitem_change . The menu displays
this item at the next delayed write.

Table 14 lists menu item type constants.

Table 14. Menu item type constants

Item type constants Item behavior

MI_SEPARATOR Draws a separator between the previous and next
menu items, according to the specified separator
style (MNI_SEP_STYLE).

MI_SUBMENU Invokes another menu. If a MI_SUBMENU-type item is
on the menu bar, its submenu displays as a pulldown;
otherwise, the submenu displays to its right.

MI_ACTION_BTTN Invokes an action through a control string.

MI_TOGGLE_BTTN Invokes an action through a control string and
toggles the indicator on or off.

MT_WINDOWS_OPT Invokes the windows menu of the current platformÐ
for example, under Windows, the Windows menu
with Arrange Icons, Tile, and Cascade. This item is
ignored in character mode.

MT_WINDOWS_LIST Invokes a menu that lists all open windows.

MT_EDIT_CUT* Cuts selected text to the clipboard.

MT_EDIT_DELETE* Deletes the selected text.

MT_EDIT_PASTE* Pastes the clipboard contents.

MT_EDIT_SELECT* Selects the current widget's contents.

MT_EDIT_COPY* Copies selected text to the clipboard.

MT_EDIT_CLEAR* Replaces the selected text with blank spaces.

*Under Windows and Motif, use edit-type items only on a pulldown or pop-up menu. Windows and
Motif inactivate edit-type menu items when they appear on a menu bar.

Description

sm_mnitem_delete

376 JAM 7.0 Language Reference

sm_

* mnitem_delete

Removes an item from a menu

int sm_mnitem_delete(int mem_location, char *script, char *menu, int item_no);

int sm_n_mnitem_delete(int mem_location, char *script, char *menu,
char *item_name);

The memory location of the item's menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script that contains the item's menu. If you supply
NULL, JAM searches in the most recently loaded script in mem_location for the
specified menu.

The name of the item's menu. If you supply NULL, JAM uses the first menu in
script .

Specifies the menu item to delete by its number or name:

� sm_mnitem_delete identifies the item by its numeric offset within the menu,
where the first menu item is 0.

� sm_n_mnitem_delete identifies the item by its name.

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.

sm_mnitem_delete removes an item from a menu and frees the memory
associated with it. JAM updates the menu display at the first delayed write.

mem_location

script

menu

item_no,
item_name

Returns

Description

sm_mnitem_get

3776 JAM Library FunctionsChapter

sm_

* mnitem_get

*

Gets a menu item's property

int sm_mnitem_get_int(int mem_location, char *script, char *menu, int item_no,
int prop);

int sm_n_mnitem_get_int(int mem_location, char *script, char *menu,
char *item_name, int prop);

char *sm_mnitem_get_str(int mem_location, char *script, char *menu, int item_no,
int prop);

char *sm_n_mnitem_get_str(int mem_location, char *script, char *menu,
char *item_name, int prop);

The memory location of the item's menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The name of a memory-resident script that contains the item's menu. The script
must already be loaded into memory at mem_location by sm_mnscript_load .

The name of the item's menu.

Specifies the menu item by its number or name:

� sm_mnitem_get identifies the item by its numeric offset within the menu,
where the first menu item is 0.

� sm_n_mnitem_get identifies the item by its name.

The property to get. Supply one of the constants described in in Table 15.

w The property's current value, returned either as an integer or as a pointer to a
string value. Because this function stores a returned string in a pool of buffers
that it shares with other functions, copy or process this data immediately.

0 Error returned by _get_str variants. Call sm_menu_bar_error to get the
error code.

-1 Error returned by _get_int variants. Call sm_menu_bar_error to get the
error code.

mem_location

script

menu

item_no,
item_name

prop

Returns

sm_mnitem_get

378 JAM 7.0 Language Reference

sm_mnitem_get_int and sm_mnitem_get_str return the current setting of the
specified property. Use the _int variant for those properties that have an integer
valueÐfor example, MNI_SEP_STYLE; use the _str variant for properties that
take string values, such as MNI_NAME and MNI_ACCEL.

Table 15 lists the menu item property constants that you can supply as arguments
to the prop parameter and the values that these return. Integer and string properties
are listed in separate groups.

Table 15. Menu item properties

Constant Property values

Integer properties:

 MNI_ACCEL An accelerator keystroke that specifies the keyboard
equivalent for selecting this menu item, valid only
for action and toggle menu items.

 MNI_ACCEL_ACTIVE A value of PROP_ON or PROP_OFF specifies whether
the menu item accelerator is active.

 MNI_ACTIVE A value of PROP_ON or PROP_OFF allows or disal-
lows user access to this menu item. If MNI_ACTIVE
is set to PROP_OFF, the menu item is greyed out.

 MNI_DISPLAY_ON Specifies whether to display the menu item on the
menu and/or the tool bar. Supply one of these argu-
ments:

DISPLAY_MENU: Menu only (default).
DISPLAY_TOOL: Tool bar only.
DISPLAY_BOTH: Menu and tool bar.
DISPLAY_NEITHER: Neither.

 MNI_INDICATOR A value of PROP_ON or PROP_OFF specifies whether
to show the toggle indicator.

 MNI_IS_HELP A value of PROP_ON or PROP_OFF specifies whether
to display this item as the rightmost item on the
menu bar.

 MNI_MNEMONIC A zero-based offset into the item's label that speci-
fies which character users can type to select this
item, provided the menu is displayed. A value of -1
indicates that the item has no mnemonic set.

* Ignored in character-mode.

Description

sm_mnitem_get

3796 JAM Library FunctionsChapter

Constant Property values

 MNI_ORDER* The order in which this item appears on the toolbar.
The default value is 100. You can enter any value
between 0 and 200, inclusive. If all toolbar items are
set to the same value, they appear in the same order
as they do in the menu.

 MNI_SEP_STYLE The style used by an item separator, specified by one
of these constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

 MNI_SHOW_ACCEL A value of PROP_ON or PROP_OFF specifies whether
a menu item displays the accelerator key next to the
item label.

 MNI_TM_CLASS The transaction manager class assigned to this menu
item. This property determines how the item behaves
in each of the transaction manager modes. Refer to
page 285 in the Editors Guide for more information
on transaction manager classes.

 MNI_TYPE The menu item's type, specified by one of the fol-
lowing constants:

MI_SEPARATOR
MI_SUBMENU
MI_ACTION_BTTN
MI_TOGGLE_BTTN
MT_WINDOWS_OPT
MT_WINDOWS_LIST
MT_EDIT_CUT
MT_EDIT_DELETE
MT_EDIT_PASTE
MT_EDIT_SELECT
MT_EDIT_COPY
MT_EDIT_CLEAR

* Ignored in character-mode.

sm_mnitem_get

380 JAM 7.0 Language Reference

Constant Property values

String properties:

 MNI_ACT_PIXMAP * The name of an image file whose contents are shown
for an active toolbar itemÐthat is, accessible but not
pressed. Refer to Table 15 in the Editors Guide for
valid file types. File paths and extensions are option-
al; for more information, refer to page 225 in the
Editors Guide.

 MNI_ARM_PIXMAP* The name of an image file whose contents are shown
for an armed toolbar itemÐthat is, in its pressed
state. If this property is blank, Motif uses the
MNI_ACT_PIXMAP property for the item's armed
state. Windows uses a modified version of the Active
Pixmap property to display a toolbar item's armed
state and ignores this property.

 MNI_CONTROL A control string that specifies the action that occurs
when this item is selected.

 MNI_EXT_HELP_TAG A help context identifier that specifies the help to
invoke from an external help program.

 MNI_INACT_PIXMAP * The name of an image file whose contents are shown
for an inactive or unavailable (grayed) item. If this
property is blank, Motif displays an empty toolbar
item. Windows uses a grayed version of the Active
Pixmap property to display a toolbar item's inactive
state and ignores this property.

 MNI_JAM_HELP The name of a JAM screen to invoke as a help
screen.

 MNI_LABEL A string expression to display as this item's label.

 MNI_MEMO A string expression for this menu item's Memo Text
property.

 MNI_NAME The menu item's name.

 MNI_STAT_TEXT A string expression to display on the screen's status
line when this item has focus.

* Ignored in character-mode.

sm_mnitem_get

3816 JAM Library FunctionsChapter

Constant Property values

 MNI_SUBMENU Name of the submenu to invoke when this item is
selected.

 MNI_TOOL_TIP * The balloon help to display when the cursor remains
over the toolbar item.

* Ignored in character-mode.

sm_mnscript_load

382 JAM 7.0 Language Reference

sm_mnscript_load
Loads a menu script into memory and makes its menus available for installation

int sm_mnscript_load (int mem_location, char *script);

Specifies where to load this script into memory. You can load a script only once
into a given memory location. The script's memory location determines the scope
at which its menus can be installed and whether you can install identical instances
of the same menu.

MNL_APPLIC

Loads the menu script into application memory. Menus in application memory can
be installed at any scopeÐapplication, screen, and field. All instances of a menu
installed from application memory are always identical; changes in one are
immediately propagated to the others.

MNL_SCREEN

Loads the menu script into the current screen's memory. Each screen maintains its
own memory location. You can install menus for a screen and its fields from that
screen's memory.

MNL_FIELD

Loads the menu script into the current field's memory. Each field maintains its own
memory location. You can install a pop-up menu for a field from its own memory
location.

The name of the menu script to load into memory.

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-7 MNERR_MALLOC: Memory allocation error.
-10 MNERR_LOCATION: Invalid memory location.

sm_mnscript_load loads the specified script into application, screen, or field
memory. All menus that are defined in that script are subsequently available for
installation and display through sm_menu_install .

mem_location

script

Returns

Description

sm_mnscript_load

3836 JAM Library FunctionsChapter

sm_mnscript_load lets you load a menu into any memory location that is the
same or higher than its caller, as shown in Table 16:

Table 16. Valid menu script load locations

sm_mnscript_load caller Valid memory locations

Application MNL_APPLIC

Screen MNL_SCREEN
MNL_APPLIC

Widget MNL_FIELD
MNL_SCREEN
MNL_APPLIC

For example, the application's startup routines in jmain.c can only load menu
scripts into application memory, while a screen's entry procedure can load scripts
into application memory and into its own memory.

A menu script's memory location determines the scope at which its menus can be
installed:

� Application memory menus can be installed at all scopes: application, screen,
and field. Instances of a menu installed from application memory all share the
same content; changes to one are propagated to all.

� Screen memory menus can be installed at screen and field scopes. All copies
of a screen menu installed from screen memory are unique; copies of a field
menu installed from screen memory all share the same content within that
screen.

� Field memory menus can be installed only at field scope. All instances of a
field menu installed from field memory are unique.

sm_mnscript_unloadSee Also

sm_mnscript_unload

384 JAM 7.0 Language Reference

sm_mnscript_unload
Removes a script from memory and destroys all menus installed from it

int sm_mnscript_unload (int mem_location, char *script);

The memory location that contains the menu script, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

The menu script to unload. An argument of NULL unloads the script last loaded in
mem_location .

0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found.
-10 MNERR_LOCATION: Invalid memory location.

sm_mnscript_unload removes script from the specified memory location and
destroys all menus that are installed from it. If any of those menus are currently
displayed, JAM removes them immediately. If a menu is referenced as an external
menu, JAM displays an empty menu in its place.

sm_mnscript_load

mem_location

script

Returns

Description

See Also

sm_ms_inquire

3856 JAM Library FunctionsChapter

sm_ms_inquire
Gets information about the mouse's current state

int sm_ms_inquire (int request);

Specifies the data to get, one of the following constants:

MOUSE_LINE

The line of the physical display on which the mouse click occurred.

MOUSE_COLM

The column of the physical display on which the mouse click occurred.

MOUSE_SHIFT

The state of the Shift, Control, and Alt keys during the mouse click. JAM returns
this information in an integer bit mask. For bit settings, refer to the Description.

MOUSE_BUTTONS

The state of all mouse buttons, left, middle, and right. JAM returns this information
in an integer bit mask. For states that are recognized by JAM and their correspond-
ing bit settings, refer to the Description.

MOUSE_FIELD

The number of the field in which the mouse click occurred. If the mouse click
occurs outside a field, the function returns ±1.

MOUSE_FORM_LINE

The number of the JAM screen line on which the mouse click occurred.

MOUSE_FORM_COLM

The number of the JAM screen column on which the mouse click occurred.

w The data specified by request .
±1 Unable to get the requested data.

request

Returns

sm_ms_inquire

386 JAM 7.0 Language Reference

sm_ms_inquire gets information about the mouse's current stateÐthe position of
the last mouse click on the physical or JAM screen, whether other keys are pressed
in combination with it, and which mouse buttons have been pressed and how re-
cently.

This function's returns an integer value whose bits are set according to the supplied
argument, MOUSE_SHIFT or MOUSE_BUTTONS.

MOUSE_SHIFT sets the three lowest-order bits in the return value to indicate which
of three keysÐShift, Ctrl, and AltÐare pressed at the same time as the mouse
click. sm_ms_inquire can set these bits as follows, from lowest- to highest-order
bit:

1 Shift key is down
1 Ctrl key is down
1 Alt key is down

For example, a return value of 2 (0 1 0) indicates that the Ctrl key is down,
while a return value of 5 (1 0 1) indicates that the Alt and Shift keys are both
down. The second of these returns can be represented as follows:

ShiftCtrlAlt

1 0 1

MOUSE_BUTTONS sets nine bits to indicate the state of the left, middle, and right
mouse buttons. sm_ms_inquire puts the requested data in three segments of three
bits each, where each segment represents one of three mouse buttonsÐleft, middle,
and right. The three lowest-order bits contain left button data; if the mouse has
only one button, only these bit settings are significant. The middle three bits
contain data for the middle button, if any; and the three highest-order bits contain
right button data.

Each bit within a three-bit segment can be set as follows, from lowest- to
highest-order bit:

0/1 Up/down
1 Just pressed
1 Just released

For example, the bit settings returned for a just-initiated point and click opera-
tionÐleft button is down and just pressedÐcan be represented as follows:

Right Button Middle Button Left Button

0 0 0 0 0 0 0 1 1

Description

Mouse Events with
Keyboard Modifiers

 Mouse Button States

sm_ms_inquire

3876 JAM Library FunctionsChapter

A click and drag operation that is in progressÐright button is downÐcan be
represented like this:

Right Button Middle Button Left Button

0 0 1 0 0 0 0 0 0

Only four combinations of bit settings are meaningful to JAM and recognized as
valid button states:

� Up Ð 0 0 0

� Down Ð 0 0 1

� Down and just pressed Ð 0 1 1

� Up and just released Ð 1 0 0

/*find out whether any button is down */

int is_any_button_down (void)
{
 int retval;
 retval = ±1;
 if (sm_ms_inquire (MOUSE_BUTTONS) > ±1)
 return retval & 0x49;
 return retval;
}

sm_mus_time

Example

See Also

sm_msg

388 JAM 7.0 Language Reference

sm_msg
Displays a message at a given column on the status line

void sm_msg(int column, int disp_length, char *text);

The message's start column on the status line. On terminals with onscreen
attributes, you might need to adjust the column position to allow for attributes
embedded in the status line. sm_d_msg_line explains how to embed attributes
and function key names in a status line message.

The number of characters to display.

The contents of the message.

sm_msg merges the specified message with the current contents of the status line
and displays it at the specified column. This function is called by the function that
updates the cursor position display (see sm_c_vis).

Note: Messages generated by sm _msg have the lowest of priority among status
line messages; consequently, its display is guaranteed only until the function
returns to its caller, or until another message routine is called. Any messages that
are subsequently posted to the status line overwrite the sm_msg-generated text.

#include <smdefs.h>

/* This code displays a message, then chops out
 * part of it.
 */

char *text0 = º º;
char *text1 = ºMessage is displayed on the status º
 ºline at col 1.º;

sm_msg(1, strlen(text1), text1);
sm_msg(12, strlen(text0), text0);

sm_d_msg_line

column

disp_length

text

Description

Example

See Also

sm_msg_get

3896 JAM Library FunctionsChapter

sm_msg_get
Finds a message

#include <smerror.h>

char *sm_msg_get(int msg_id);

Specifies the message to get through its number or name, defined in smerror.h .

w The text of msg_id 's message.
w A string that contains the message class and number if no message exists for

msg_id .

sm_msg_get gets a message from a message file previously loaded by
sm_msgread . Message files are binary files, created through the JAM utility
msg2bin , whose contents are accessible through JAM library functions like
sm_msg_get .

#include <smdefs.h>
#include <smerror.h>

/* Assume that an anxious programmer has just
 * typed in the question, ºWill my boss like
 * my new program?º This code fragment answers
 * the question.
 */

sm_n_putfield (ºanswerº, rand() & 1 ?
 sm_msg_get (SM_YES) :
 sm_msg_get (SM_NO));

sm_msgfind , sm_msgread

msg_id

Returns

Description

Example

See Also

sm_msgfind

390 JAM 7.0 Language Reference

sm_msgfind
Finds a message given its number

#include <smerror.h>

char *sm_msgfind(int msg_id);

Specifies the message to get.

w The message.
w 0: The message number is out of range.

sm_msgfind finds the message specified by number and returns the message
string. Unlike sm_msg_get , this function returns 0 if the message number is not
found.

Message numbers for JAM messages are defined in smerror.h .

#include <smdefs.h>
#include <smerror.h>

/* print out message #4 */

sprintf (buf, ºThe message reads: %s\nº, sm_msgfind
 (SM_BADKEY));
sm_fquiet_err (0, buf);

sm_msg_get , sm_msgread

msg_id

Returns

Description

Example

See Also

sm_msgread

3916 JAM Library FunctionsChapter

sm_msgread
Reads a message file into memory

#include <smerror.h>

int sm_msgread(char *msg_prefix, int class, int mode, char *location);

Specifies to read messages of this prefix in message class class . JAM messages
have the following prefixes:

CA CASE interface
DM Database interface
FM Screen editor
JM JAM runtime
JX Data dictionary and control strings
SM Screen manager
TM Transaction manager
UT Utilities

To read all messages in class , supply NULL or empty string ºº .

Specifies the class of messages to read, where 0-7 are reserved for user-defined
message classes, and the following classes, defined in smerror.h , are reserved for
JAM:

CA_MSGS JX_MSGS
DM_MSGS SM_MSGS
FM_MSGS TP_MSGS
JM_MSGS UT_MSGS

If the message file is not divided into sections, supply a value of 0.

Specifies where to find messages, or to remove messages of the specified class and
prefix, with one or more of these constants:

� MSG_DELETE removes the message class and recovers its memory.

� MSG_FILENAME uses the location -specified file.

� MSG_FILEPTR uses the file specified by location , where location is a file
pointer obtained by sm_fi_open .

� MSG_ENVIRON uses the message file named in the location -specified
environment variable.

msg_prefix

class

mode

sm_msgread

392 JAM 7.0 Language Reference

� MSG_MEMORY uses a memory-resident file of the location -specified address.

You can optionally modify sm_msgread 's behavior by OR'ing the aforementioned
constants with one or both of these arguments:

� MSG_NOREPLACE prevents overwriting previously installed messages. You can
OR this argument with any other mode argument except MSG_DELETE.

� MSG_DSK leaves file open and does not read the messages into memory. JAM
reads messages from disk as needed.

Specifies the location of the messages to read according to the value of mode.

0 Success.
1 The message class is already in memory and the mode includes

MSG_NOREPLACE.
2 mode is MSG_DELETE and the message file is not in memory.

-1 mode is MSG_ENVIRON and the environment variable is undefined.
-2 mode is MSG_ENVIRON or MSG_FILENAME and the message file cannot be read

from disk.
-n Other negative values if the message file is bad or insufficient memory is

available.

sm_msgread reads a single set of messages from a binary message file into
memory, according to the values of class and msg_prefix . When JAM reads
messages of prefix msg_prefix from the file, it numbers them sequentially, start-
ing from class*4096 . Later, you can access these messages through
sm_msg_get or sm_msgfind .

You can also use sm_msgread to delete messages of the specified class and prefix
by supplying MSG_DELETE as the argument for mode.

If you OR MSG_DSK with the mode, the messages are not read into memory.
sm_msg_get and sm_msgfind fetch them from disk when requested. If your
message file is large, this can save substantial memory. However, remember to
account for operating system file buffers in your calculations.

If sm_msgread fails, you can generate error messages through sm_inimsg . This
function creates formatted output that you can display through other library
functions like sm_fqui_msg .

location

Returns

Description

sm_msgread

3936 JAM Library FunctionsChapter

#include <smdefs.h>
#include <smerror.h>

int msginit (char *msg_file)
{
 int mode = (msg_file ? MSG_MEMORY : MSG_DEFAULT |
 MSG_NOREPLACE) | MSG_INIT;

 if (sm_msgread (ºSMº, SM_MSGS, mode,
 msg_file) < 0 ||
 sm_msgread (ºJMº, JM_MSGS, mode,
 msg_file) < 0 ||
 sm_msgread (ºFMº, FM_MSGS, mode,
 msg_file) < 0 ||
 sm_msgread (ºJXº, JX_MSGS, mode,
 msg_file) < 0)
 {
 sm_resetcrt();
 exit (RET_FATAL);
 }
 sm_msgread ((char *)0, 0, mode & ~MSG_INIT |
 MSG_QUIET, msg_file);
 return (0);
}

sm_msg_get , sm_msgfind

Example

See Also

sm_mus_time

394 JAM 7.0 Language Reference

sm_mus_time
Gets the system time of the last mouse click

double sm_mus_time (void);

The system time in milliseconds.

sm_mus_time reports the number of milliseconds that elapsed since an unspeci-
fied time. You can compare this value to the value reported on previous or subse-
quent mouse clicksÐfor example, to determine whether two successive mouse
clicks should be interpreted as a double mouse click.

sm_ms_inquire

Returns

Description

See Also

sm_mw_get_instance

3956 JAM Library FunctionsChapter

sm_mw_get_instance
Gets a handle to the current instance of a Windows program

#include <smmwuser.h>

HINSTANCE sm_mw_get_instance(void);

Windows

A handle to the application's instance.

sm_mw_get_instance gets a handle to the current instance of a Windows ap-
plication. Use this function to supply the handle required by Windows API routines
such as CreateWindow.

Environment

Returns

Description

sm_next_sync

396 JAM 7.0 Language Reference

sm_next_sync
Finds the next synchronized array

int sm_next_sync(int field_number);

Specifies the field for which a synchronized array is sought.

w The field number of the next synchronized array, if any.
w The field number the function was passed.

Given a field number, sm_next_sync finds the next array synchronized with
field_number and returns the field number of the corresponding element in that
array. JAM identifies the next synchronized array as the one to the right, unless
field_number is in the rightmost synchronized array. In that case, the function
returns the corresponding element in the leftmost array that is synchronized with
field_number Ðthat is, it wraps around the screen.

field_number

Returns

Description

sm_nl

3976 JAM Library FunctionsChapter

sm_nl
Positions the cursor to the first unprotected field beyond the current line

void sm_nl(void);

sm_nl moves the cursor to the next line of the screen or to the next occurrence of a
scrolling array. If the current field is non-scrolling, the cursor goes to the first un-
protected field, if any, on the screen's next line. If all fields below the current one
are protected, the cursor wraps to the screen's first unprotected field.

If the cursor is on the last allocated occurrence of a scrolling array and the number
of allocated occurrences is less than the maximum, JAM allocates an empty
occurrence.

If all fields are protected, the cursor goes to the first column of the next line. If the
cursor is on the screen's last line of the form, it wraps to the screen's top left-hand
corner (0,0).

sm_nl does not immediately trigger field entry, exit, or validation processing. Such
processing occurs according to the cursor position when control returns to
sm_input .

This function is usually bound to NL.

sm_backtab , sm_home, sm_last , sm_tab

Description

See Also

sm_null

398 JAM 7.0 Language Reference

sm_

* null

Tests whether a field is null

int sm_null(int field_number);

int sm_e_null(char *field_name, int element);

int sm_i_null(char *field_name, int occurrence);

int sm_n_null(char *field_name);

int sm_o_null(int field_number, int occurrence);

Specifies the field to test.

The element in field_name to test.

The occurrence in the specified field to test.

1 True: the field's Null Field property is set to Yes and contains a null value.
0 False: the field's Null Field property is set to No or it does not contain a null

value.
-1 The field does not exist.

Use sm_null to test whether a field's value is null or not. This function checks
whether a field's Null Field property is set to Yes; if it is, sm_null gets the field's
null indicator and compares it to the field's value.

You can specify the field's null indicator string through the message file and/or the
field's Null Text property.

field_name,
field_number

element

occurrence

Returns

Description

sm_obj_copy

3996 JAM Library FunctionsChapter

sm_obj_copy

*

Copies a widget

#include <smuprapi.h>

int sm_obj_copy(char *target_screen, char *source_widget);

int sm_obj_copy_id(int target_screen_id, int source_widget_id);

The screen to get the copied widget, specified either by name or by an integer
handle obtained from sm_prop_id .

The widget to copy, specified either by its name or by an integer handle obtained
from sm_prop_id . The widget to copy can be on any screen on the window stack.
If the widget is not on the current screen, supply its integer handle; or use the JPL
object syntax to specify the source screen. For example, supply this string to copy
cust_id from the custqry screen:

@screen(ºcustqry.jamº)!cust_id.

. 1 Object ID of the new widget.
PR_E_MALLOC: Insufficient memory available.
PR_E_OBJID: ID for source widget or target screen does not exist.
PR_E_OBJECT: Named object does not exist.
PR_E_TOO_BIG: Widget cannot fit on the target screen.

sm_obj_copy creates a copy of the specified widget and puts it on the target
screen. The data and all properties of the source widget are copied to the new one,
including its position on the screen. If the widget is copied onto the screen of the
source widget, the new widget overlays the original.

If the source widget is named and the target screen already has a widget with the
same name, JAM sets the new widget's name to an empty string to prevent
duplicate names.

sm_obj_copy can also copy a synchronized scrolling group or table view group;
the function copies an empty group to the target screenÐthat is, the member
widgets are not copied. You can subsequently copy one or more members of the
group through additional calls to sm_obj_copy .

target_screen,
target_screen_id

source_widget
source_widget_id

Returns

Description

 Copying Groups

sm_obj_copy

400 JAM 7.0 Language Reference

Selection groups cannot be copied directly; however if you copy a field that
belongs to a selection group to another screen, JAM copies the field and its group
to the target screen, provided that the target screen does not already contain a group
of the same name; if it does, the copied field is added to the existing group.

sm_obj_deleteSee Also

sm_obj_delete

4016 JAM Library FunctionsChapter

sm_obj_delete

*

Deletes a widget

#include <smuprapi.h>

int sm_obj_delete(char *widget);

int sm_obj_delete_id(int widget_id);

The widget to delete, specified either by its name or by an integer handle obtained
from sm_prop_id .

0: Success.
PR_E_OBJID: ID for source widget or target screen does not exist.
PR_E_OBJECT: Named object does not exist.

sm_obj_delete deletes the specified widget. The widget to delete can be on any
screen on the window stack. If the widget is not on the current screen, supply its
integer handle; or use the JPL object syntax to specify the source screen. For exam-
ple, this statement deletes cust_id from the custqry screen:

call sm_obj_delete(º@screen('custqry.jam')!cust_idº)

Note: This function has no effect on the screen definition; to restore deleted
widgets, close and reopen the screen.

sm_obj_copy

widget
widget_id

Returns

Description

See Also

sm_occur_no

402 JAM 7.0 Language Reference

sm_occur_no
Gets the current occurrence number

int sm_occur_no(void);

. 1 The occurrence number.
0 The cursor is not in a field.

sm_occur_no returns the number of the occurrence in the current field.

Returns

Description

sm_off_gofield

4036 JAM Library FunctionsChapter

sm_

* off_gofield

Moves the cursor into a field, offset from the left

int sm_off_gofield(int field_number, int offset);

int sm_e_off_gofield(char *field_name, int element, int offset);

int sm_i_off_gofield(char *field_name, int occurrence, int offset);

int sm_n_off_gofield(char *field_name, int offset);

int sm_o_off_gofield(int field_number, int occurrence, int offset);

Specifies the destination field.

The destination element in field_name .

The destination occurrence in the specified field.

The position in the destination field at which to place the cursor. If offset is
larger than the field's length, or greater than a shiftable field's maximum length,
the cursor is placed in the rightmost position.

0 Success.
-1 The field is not found.

sm_off_gofield moves the cursor into the specified field at position offset ,
regardless of the field's justification. If the data specified by offset is out of
view, JAM shifts the field's contents to make the data visible.

#include <smdefs.h>
#include <ctype.h>
/* Place cursor over the first embedded blank in */
/* the ºnamesº field.
 */

char buf[256], *p;
int length;

field_name,
field_number

element

occurrence

offset

Returns

Description

Example

sm_off_gofield

404 JAM 7.0 Language Reference

length = sm_n_getfield (buf, ºnamesº);
for (p = buf; p <buf + length; ++p)
{
 if (isspace (*p))
 break;
}
sm_n_off_gofield (ºnamesº, p ± buf);

sm_disp_off , sm_gofield , sm_sh_offSee Also

sm_option

4056 JAM Library FunctionsChapter

sm_option
Sets a setup variable

int sm_option(int option, int newval);

The setup variable to change, defined in smsetup.h .

The new value, defined in smsetup.h , to assign the option -specified option. To
get an option's current value, supply the value NOCHANGE.

w The old value for the specified option.
w -1: The option is out of range.

sm_option lets you change JAM setup variables at runtimeÐfor example, error
window attributes, delayed write options, cursor display, and zoom options. Refer
to Chapter 4 in the Configuration Guide for a list of all options and valid values.

Note: Use sm_keyoption to change the behavior of cursor control keys.

sm_keyoption , sm_soption

option

newval

Returns

Description

See Also

sm_pinquire

406 JAM 7.0 Language Reference

sm_pinquire
Gets the value of a global string

#include <smglobs.h>

char *sm_pinquire(int which);

Specifies the global string to get through one of these constants:

P_YES

Returns valid affirmative input for a field whose Keystroke Filter property is set to
Yes/No. The return is a null-terminated string that contains the lowercase yes value
and the uppercase yes value.

P_NO

Returns valid negative input for a field whose Keystroke Filter property is set to
Yes/No. The return is a null-terminated string that contains the lowercase no value
and the uppercase no value.

P_DECIMAL

Returns a three-character string: the user's decimal point marker, the operating
system's decimal point marker, and the null terminator.

P_DICNAME

Returns the repository's file name.

P_FLDPTRS

Returns a pointer to an array of field structures. The implementation of these
structures is release-dependent.

P_TERM

Returns the name JAM uses as the terminal identifier, or an empty string if not
found.

P_SPMASK

Returns a pointer to a memory-resident, full-size form containing all blanks.

P_USER

Returns a pointer to developer-specified region of memory for the current screen.
Each screen maintains its own pointer. This pointer is not set by JAM; it is set and
maintained by the application.

which

sm_pinquire

4076 JAM Library FunctionsChapter

SP_NAME

Returns the name of the active screen.

SP_STATATTR

Returns attributes of current status lineÐa pointer to an array of unsigned short
integers.

V_

One of the V_ constants defined in smvideo.h , returns video-related information.

w If the argument corresponds to a global pointer variable, the value of that vari-
able.

w 0: Failure.

sm_pinquire gets the current value of a global pointer variable. To modify a
global string, use sm_pset .

Because the objects pointed to by the pointers returned by sm_pinquire usually
have short duration, use or copy them quickly. This caution does not apply to
P_USER, which is maintained by the application. The P_ pointers point to the
actual objects in JAM. The SP_ pointers point to copies of the objects. Because an
object's characteristics is implementation dependent, it might change in future
releases of JAM. Except for P_USER, do not use the pointers returned by
sm_pinquire to modify objects directly. Use sm_pset instead.

/* Get next key from user. Return ±1 for 'n', 1 for 'y', and
 * 0 if unknown. 'n' and 'y' come from the message file,
 * and so can be changed to reflect the local language.
 */

int get_yes_no()
{
 unsigned key;
 char *yes;
 char *no;
 key = sm_getkey();
 yes = sm_pinquire(P_YES);
 no = sm_pinquire(P_NO);
 if (key == yes[0] || key == yes[1])

Returns

Description

Example

sm_pinquire

408 JAM 7.0 Language Reference

 return(1);
 if (key == no[0] || key == no[1])
 return(±1);
 return(0);
}

sm_inquire , sm_iset , sm_psetSee Also

sm_pm_add_res_map

4096 JAM Library FunctionsChapter

sm_pm_add_res_map
Installs tables that map string resource identifiers to integer identifiers

#include <smpmuser.h>

int sm_pm_add_res_map(symtab_t *res_map, HMODULE hmodule);

A pointer to a table that maps resource identifiers to integer identifiers.

An HMODULE handle to an instance of the library whose resources you want to
access. If resources are stored in the executable, supply NULLHANDLE.

OS/2

0 Success.
±1 Invalid argumentÐfor example, the specified table does not exist.
±2 Insufficient memory available.

sm_pm_add_res_map installs one or more tables that map string resource identifi-
ers to integer identifiers. These tables let JAM applications running under Presenta-
tion Manager specify resources such as bitmaps, cursors, and icons by their string
identifiers, and thereby facilitate cross-platform portability.

For example, the following header and resource modules define three resources for
a JAM application:

/*myres.h */
#define MYBMP 100
#define MYICON 200
#define MYCSR 300

/*myres.rc */
#include ºmyres.hº

BITMAP MYBMP LOADONCALL MOVEABLE DISCARDABLE ºmybitmap.bmpº
ICON MYICON LOADONCALL MOVEABLE DISCARDABLE ºmyicon.icoº
POINTER MYCSR LOADONCALL MOVEABLE DISCARDABLE ºmycursor.curº

res_map

hmodule

Environment

Returns

Description

sm_pm_add_res_map

410 JAM 7.0 Language Reference

At startup, JAM can install a table that maps string to integer identifiers for these
three resources by calling sm_pm_add_res_map as follows:

#include ºmyres.hº
symtab_t myresources[]
{

{ºmybitmapº, MYBMP }
{ºmyiconº, MYICON }
{ºmycursorº, MYCSR }
{NULL, 0 } /*last must be NULL */

};

HMODULE hmodule;

hmodule = WinLoadLibrary(ºmylib.dllº);
sm_pm_add_res_map(my_resources, hmodule);

sm_popup_at_cur

4116 JAM Library FunctionsChapter

sm_popup_at_cur
Invokes the current widget's pop-up menu

int sm_popup_at_cur(void);

0 MNERR_OK: Success.
±3 MNERR_NOT_SUPPORTED: Menu bars are not supported.

sm_popup_at_cur invokes the pop-up menu installed for the field or screen, de-
pending on which one has focus. This function lets users access pop-up menus via
the keyboard. For example, the following control string assignment lets a user in-
voke a pop-up menu by pressing the PF1 key:

PF1 = ^sm_popup_at_cur

sm_popup_at_cur uses one of the following two algorithms for finding and
displaying a pop-up menu:

� If a field has focus, sm_popup_at_cur displays the first menu that it finds
from the following:

1. The pop-up menu installed for the field.

2. The menu installed for the screen's menu bar.

3. The application-level menu.

� If the screen has focus, sm_popup_at_cur displays the first menu that it
finds from the following:

1. The menu installed for the screen's menu bar.

2. The application-level menu.

sm_menu_install

Returns

Description

See Also

sm_prop_error

412 JAM 7.0 Language Reference

sm_prop_error
Gets the error code returned by the last properties API function call

#include <smuprapi.h>

int sm_prop_error(void);

0: The last function call succeeded.
PR_E_ERROR: Failed for another reason.
PR_E_MALLOC: Insufficient memory.
PR_E_OBJID: Object ID does not exist.
PR_E_OBJECT: Object does not exist.
PR_E_ITEM: Invalid occurrence or element.
PR_E_PROP: Invalid property.
PR_E_PROP_ITEM: Invalid property item.
PR_E_PROP_VAL: Invalid property value.
PR_E_CONVERT: Unable to perform conversion.
PR_E_OBJ_TYPE: Invalid object type.
PR_E_RANGE: Property value is out of range.
PR_E_NO_SET: Property cannot be set.
PR_E_BEYOND_SCREEN: Widget extends beyond screen.
PR_E_WW_SCROLLING: Word wrap must be scrolling.
PR_E_NO_SYNC: Arrays cannot be synchronized.
PR_E_TOO_BIG: Widget too large for screen.
PR_E_BAD_MASK: Invalid edit mask or regular expression
PR_E_NO_KEYSTRUCT: Property requires previous execution of SELECT, NEW,

COPY, or COPY_FOR_UPDATE command.

sm_prop_error gets the error code returned by the last-called properties API
function: sm_prop_get , sm_prop_set , sm_prop_id , or one of their variants.
This function is especially useful for ascertaining the success or failure of calls to
variants that do not return an error codeÐfor example, sm_prop_get_s , which
returns 0 when an error occurs.

Because JAM internal processing also uses the properties API, you should call this
function and retrieve the desired error code immediately.

Note: A negative value returned by sm_prop_get_int and its variants usually
specifies an error. However, some integer properties accept negative values; in
these cases, you can differentiate between a negative property value and an error
condition only by calling sm_prop_err .

Returns

Description

sm_prop_get

4136 JAM Library FunctionsChapter

sm_prop_get

*

Gets a property setting

#include <smuprapi.h>

int sm_prop_get_int(int obj_id, int prop);

char *sm_prop_get_str(int obj_id, int prop);

double sm_prop_get_dbl(int obj_id, int prop);

int sm_prop_get_x_int(int obj_id, int array_item, int prop);

char *sm_prop_get_x_str(int obj_id, int array_item, int prop);

double sm_prop_get_x_dbl(int obj_id, int array_item, int prop);

int sm_prop_get_m_int(int obj_id, int prop, int prop_item);

char *sm_prop_get_m_str(int obj_id, int prop, int prop_item);

double sm_prop_get_m_dbl(int obj_id, int prop, int prop_item);

An integer handle that identifies the JAM object whose property you want to get,
obtained through sm_prop_id . For application properties, supply
PR_APPLICATION; for the current screen, PR_CURSCREEN.

The widget occurrence or element whose property you want to get.

The property to get. Refer to page 519 for a full list of property constants.

Specifies the item in a multi-item property whose value you want to get. For
example, if the prop value is SM_PR_CONTROL_STRING, supply a logical key
name such as XMIT to get that key's current control string assignment.

For sm_prop_get_int and its variants:
w The property's current value, returned as an integer

<0 The property's negative value or the error code returned by this function. To
ascertain whether an error condition exists, call sm_prop_error .

obj_id

array_item

prop

prop_item

Returns

sm_prop_get

414 JAM 7.0 Language Reference

For sm_prop_get_str , sm_prop_get_dbl , and their variants:
w The property's current value, returned either as a string or a double.
0 Failure. To ascertain the cause of failure, call sm_prop_error .

sm_prop_get has three basic variants: sm_prop_get_str , sm_prop_get_int ,
and sm_prop_get_dbl , which get string, integer, and double properties, respec-
tively. For example, sm_prop_get_str gets string properties such as title ,
while sm_prop_get_int gets integer properties such as max_occurrences .

Each of these variants have _x and _m variants. These let you access properties of
occurrences or elements, and offsets into properties that take multiple values,
respectively. These variant types are discussed in the following sections.

You can get properties for individual elements and occurrences in an array by
calling sm_prop_get_x_ prop-type. All variants of this function require an
obj-id handle to the array and an array_item argument. Depending on how the
obj±id handle was obtained, the function determines whether array_item
specifies an offset into the array's elements or its occurrences:

� To set the properties of an array's elements, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[[]] .

� To set the properties of an array's occurrences, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[] .

For example, this call to sm_prop_id gets a handle to the properties of cust_id 's
elements:

int elem_h;
elem_h = sm_prop_id(ºcust_id[[]]º);

This call gets a handle to the properties of cust_id 's occurrences:

int occ_h;
occ_h = sm_prop_id(ºcust_id[]º);

Given these two handles, you can use sm_prop_get_x_int to get the mdt
property setting for either cust_id 's first element or first occurrence as follows:

/* get the first element's MDT setting */
int elem_mdt;
elem_mdt = sm_prop_get_x_int(elem_h, 1, PR_MDT);

/* get the first occurrence's MDT setting */
int occ_mdt;
occ_mdt = sm_prop_get_x int(occ_h, 1, PR_MDT);

Description

Elements and
Occurrences

sm_prop_get

4156 JAM Library FunctionsChapter

sm_prop_get_m_ prop-type gets one of the settings in a multi-item property such
as PR_DROP_DOWN_DATA for an option menu, or PR_CONTROL_STRING for a
screen. For example, this code iteratively calls sm_prop_get_m_str to compare
the data in each item in option menu flavors to the current selection:

/* replace current item with contents of ºsubstituteº */
char cur_item[256], new_item[256];
char *option_txt;
int ct, f_id, err;

f_id = sm_prop_id(ºflavorsº);

/*get substitute data*/
sm_n_getfield(ºsubstituteº, new_item);

/*get selection data*/
sm_n_getfield(ºflavorsº, cur_item);

/* get offset of current selection */
for (ct = 1; ; ct++)
{
 option_txt = sm_prop_get_m_str(f_id,
 PR_DROP_DOWN_DATA, ct)
 if (!option_txt)
 {
 err = PR_E_ERROR;
 break;
 }
 if (strcmp(option_txt, cur_item) == 0)
 {
 err = sm_prop_set_m_str(f_id,
 PR_DROP_DOWN_DATA, ct, new_item);
 break;
 }
}

A return value of 0 from sm_prop_get_str , sm_prop_get_dbl , or one of its
variants usually indicates that the call failed. However, some string and double
properties accept NULL or 0 values. To determine with absolute certainty whether a
call failed and to get its error code, call sm_prop_error .

A negative value returned by sm_prop_get_int and its variants usually specifies
an error. However, some integer properties accept negative values; in these cases,
you can differentiate between a negative property value and an error condition only
by calling sm_prop_error .

sm_prop_error , sm_prop_id , sm_prop_set

Multi-item Properties

 Errors

See Also

sm_prop_id

416 JAM 7.0 Language Reference

sm_prop_id

*

Returns an integer handle for an application component

#include <smuprapi.h>

int sm_prop_id(char *obj_name);

A string that identifies an object in the current application. The string must
conform to JAM object name conventions. For information about valid formats,
refer to page 28.

For example, this call to sm_prop_id gets a handle to the cust_id widget in the
custlist screen:

err = sm_prop_id
 (º@screen('custlist')!@widget('cust_id')º);

A non-subscripted widget identifier returns a handle to the entire widget. If the
widget is an array, you can use this handle to get or set properties for all occur-
rences and elements. You can also create handle to an array that lets you get or set
properties for individual occurrences or elements. To do this, include an empty
subscript in the widget's string identifier, using one of these two formats:

� widget-spec[] enables access to properties of occurrences in widget-spec.

� widget-spec[[]] enables access to properties of elements in widget-spec.

For example, the handle returned by this call to sm_prop_id can be used as an
argument to variants of sm_prop_get_x_ prop-type to get or set properties of
elements in cust_id :

sm_prop_id(º@widget('cust_id')[[]]º);

Refer to Description for more information about obtaining access to the properties
of an array's occurrences or elements.

. 1 Integer handle to the specified object.
PR_E_ERROR: Failed for another reason.
PR_E_OBJID: Object ID does not exist.
PR_E_OBJECT: Object does not exist.
PR_E_ITEM: Invalid element or occurrence.

obj_name

Returns

sm_prop_id

4176 JAM Library FunctionsChapter

sm_prop_id gets an integer handle to an application component. You can use this
handle to get and change the component's properties with calls to functions like
sm_prop_get_str or sm_prop_set_int . The application components that you
can modify include the application itself, screens, widgets, LDBs, and array ele-
ments or occurrences.

You can get three kinds of handles to an array, depending on whether the array's
string identifier contains a subscript and the subscript's format:

� A non-subscripted identifier returns a handle that lets you get or set properties
for the array as a whole. The following sequence of calls changes the
reverse property for all elements and occurrences in array cust_id :

arr_h = sm_prop_id(ºcust_idº);
sm_prop_set_int(arr_h, PR_REVERSE, PV_YES);

� An empty subscript of single paired bracketsÐ[] Ðreturns a handle to an
array that you can supply to _x variants of sm_prop_get and sm_prop_set
to get and set properties of individual occurrences. The following sequence of
calls changes the reverse property for the first occurrence in array cust_id :

occ_h = sm_prop_id(ºcust_id[]º);
sm_prop_set_x_int(occ_h, 1, PR_REVERSE, PV_YES);

� An empty subscript of double paired bracketsÐ[[]] Ðreturns a handle to an
array that you can supply to _x variants of sm_prop_get and sm_prop_set ,
to get and set properties of individual elements. The following sequence of
calls changes the reverse property for the first element in array cust_id :

elem_h = sm_prop_id(ºcust_id[[]]º);
sm_prop_set_x_int(elem_h, 1, PR_REVERSE, PV_YES);

sm_prop_get , sm_prop_set

Description

Access to Occurrence
and Element Properties

See Also

sm_prop_set

418 JAM 7.0 Language Reference

sm_prop_set

*

Sets a property

#include <smuprapi.h>

int sm_prop_set_int(int obj_id, int prop, int val);

int sm_prop_set_str(int obj_id, int prop, char *val);

int sm_prop_set_dbl(int obj_id, int prop, double val);

int sm_prop_set_x_int(int obj_id, int array_item, int prop, int val);

int sm_prop_set_x_str(int obj_id, int array_item, int prop, char *val);

int sm_prop_set_x_dbl(int obj_id, int array_item, int prop, double val);

int sm_prop_set_m_int(int obj_id, int prop, int prop_item, int val);

int sm_prop_set_m_str(int obj_id, int prop, int prop_item, char *val);

int sm_prop_set_m_dbl(int obj_id, int prop, int prop_item, double val);

An integer handle that identifies the JAM object whose property you want to set,
obtained through sm_prop_id . For application properties, supply
PR_APPLICATION; for the current screen, PR_CURSCREEN.

The widget occurrence or element whose value you want to set.

The property to set. Refer to page 519 for a full list of property constants.

Specifies the item in a multi-item property whose value you want to set. For
example, if the prop value is SM_PR_CONTROL_STRING, supply a logical key
name to get that key's current control string assignment.

The value to set for the specified property or property item. The value's
typeÐstring, integer, or doubleÐmust be appropriate to the property itself. For a
list of properties and their valid values, refer to page 519.

PR_E_MALLOC: Insufficient memory.
PR_E_OBJID: Object ID does not exist.

obj_id

array_item

prop

prop_item

val

Returns

sm_prop_set

4196 JAM Library FunctionsChapter

PR_E_OBJECT: Object does not exist.
PR_E_ITEM: Invalid occurrence or element.
PR_E_PROP: Invalid property.
PR_E_PROP_ITEM: Invalid property item.
PR_E_PROP_VAL: Invalid property value.
PR_E_CONVERT: Unable to perform conversion.
PR_E_OBJ_TYPE: Invalid object type.
PR_E_RANGE: Property value is out of range.
PR_E_NO_SET: Property cannot be set.
PR_E_BEYOND_SCREEN: Widget extends beyond screen.
PR_E_WW_SCROLLING: Word wrap must be scrolling.
PR_E_NO_SYNC: Arrays cannot be synchronized.
PR_E_TOO_BIG: Widget too large for screen.
PR_E_ERROR: Failed for another reason.
PR_E_BAD_MASK: Invalid edit mask or regular expression
PR_E_NO_KEYSTRUCT: Property requires previous execution of SELECT, NEW,

COPY, or COPY_FOR_UPDATE command.

sm_prop_set has three basic variants: sm_prop_set_str , sm_prop_set_int ,
and sm_prop_dbl , which set string, integer, and double properties, respectively.
For example, sm_prop_set_str sets string properties such as title , while
sm_prop_set_int sets integer properties such as max_occurrences .

Each of these variants have _x and _m variants. These let you set properties of
occurrences or elements, and offsets into properties that take multiple values,
respectively. These variant types are discussed in the following sections.

You can set properties for individual elements and occurrences in an array by
calling sm_prop_set_x_ prop-type. All variants of this function require an
obj-id handle to the array and an array_item argument. Depending on how the
obj±id handle was obtained, the function determines whether array_item
specifies an offset into the array's elements or its occurrences:

� To set the properties of an array's elements, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[[]] .

� To set the properties of an array's occurrences, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[] .

For example, this call to sm_prop_id gets a handle to the properties of cust_id 's
elements:

int elem_h;
elem_h = sm_prop_id(ºcust_id[[]]º);

Alternatively, this call gets a handle to the properties of cust_id 's occurrences:

int occ_h;
occ_h = sm_prop_id(ºcust_id[]º);

Description

Elements and
Occurrences

sm_prop_set

420 JAM 7.0 Language Reference

Given these two handles, you can use sm_prop_get_x_int to set the foreground
color of either cust_id 's first element or first occurrence as follows:

/*set the first element's foreground color */
sm_prop_set_x int(elem_h, 1, PR_FG_COLOR_NUM, MAGENTA);

/*set the first occurrence's foreground color */
sm_prop_set_x_int(occ_h, 1,PR_FG_COLOR_NUM, MAGENTA);

Note: To set properties on the entire array, use a handle obtained by supplying
sm_prop_id with a widget string identifier that contains no subscript,

sm_prop_set_m_ prop-type sets one of the values in a multi-item property such as
PR_DROP_DOWN_DATA for an option menu, or PR_CONTROL_STRING for a screen.
For example, this code calls sm_prop_set_m_str to set the data for an item in
option menu flavors :

/* replace current item with contents of ºsubstituteº */
char cur_item[256], new_item[256];
char *option_txt[256];
int ct, f_id, err;

f_id = sm_prop_id(ºflavorsº);

/*get substitute data*/
sm_n_getfield(ºsubstituteº, new_item);

/*get selection data*/
sm_n_getfield(ºflavorsº, cur_item);

/* get offset of current selection */
for (ct = 1; ; ct++)
{
 option_txt = sm_prop_get_m_str(f_id,
 PR_DROP_DOWN_DATA, ct)
 if (!option_txt)
 {
 err = PR_E_ERROR;
 break;
 }
 if (strcmp(option_txt, cur_item) == 0)
 {
 err = sm_prop_set_m_str(f_id,
 PR_DROP_DOWN_DATA, ct, new_item);
 break;
 }
}

sm_prop_error , sm_prop_id , sm_prop_set

Multi-item Properties

See Also

sm_pset

4216 JAM Library FunctionsChapter

sm_pset
Modifies the value of a global string

#include <smglobs.h>

char *sm_pset(int which, char *newval);

Specifies the global string to modify with one of these constants:

P_YES

Set the affirmative input that is valid for a field whose keystroke filter is set to
Yes/No. Supply a two-character string that contains the lowercase yes value and
the uppercase yes value.

P_NO

Set the negative input that is valid for a field whose keystroke filter is set to
Yes/No. Supply a two-character string that contains the lowercase no value and the
uppercase no value.

P_DECIMAL

Set the user's decimal point marker and the operating system's decimal point
marker in a two-character string.

P_TERM

Set the terminal type. You must call sm_pset with this argument this before
initialization.

P_USER

Set a pointer to a developer-specified region of memory for the current screen.
Each screen maintains its own pointer. This pointer is not set by JAM; it is set and
maintained by the application.

SP_NAME

Set the name of the active screen.

SP_STATATTR

Return attributes of current status lineÐa pointer to an array of unsigned short
integers.

V_

One of the V_ constants defined in smvideo.h , returns video-related information.

which

sm_pset

422 JAM 7.0 Language Reference

The new value to assign to this global string.

Note: If you supply a V_ constant for which , declare this parameter as a static
variable.

w A pointer to a buffer with the old contents of the array specified by which .
The buffer's maximum size of 255 bytes, including the null terminator.

w 0: which is invalid.

sm_pset lets you modify the contents of the which -specified global string. To get
the value of a global string, use sm_pinquire .

/* Set things for ºGermanº: Ja == yes, */
/* Nein == no, and ',' is decimal point. */

void
set_german()
{
 sm_pset(P_YES,ºjJº);
 sm_pset(P_NO,ºnNº);
 sm_pset(P_DECIMAL,º,.º);
 sm_ferr_reset(0, ºJetzt spreche ich Deutsch!º);
}

sm_iset , sm_pinquire

newval

Returns

Description

Example

See Also

sm_putfield

4236 JAM Library FunctionsChapter

sm_putfield
Puts a string into a field

int sm_putfield(int field_number, char *data);

int sm_e_putfield(char *field_name, int element, char *data);

int sm_i_putfield(char *field_name, int occurrence, char *data);

int sm_n_putfield(char *field_name, char *data);

int sm_o_putfield(int field_number, int occurrence, char *data);

The field to receive the contents of data . If field_name is a group, use
sm_select and sm_deselect to change the group's value.

The element in array field_name to receive the string.

The occurrence in the field to receive the string.

A pointer to the string to put in the specified field or occurrence.

0 Success.
- 1 Failure.

sm_putfield moves the string in data into the specified field. If the string is too
long, JAM truncates it without warning. If the string is shorter than the destination
field, JAM blank fills it according to the field's justification. If data points to an
empty string, the field is cleared. This refreshes date and time fields that take sys-
tem values.

sm_putfield sets the field's mdt property to 1 (true) to indicate that it is
modified, and clears its valided property to 0 (false) to indicate that the field
must be revalidated upon exit. If you use variants sm_n_putfield or
sm_i_putfield and field_name is absent from the screen, the value of data is
put in the corresponding LDB entry unless the entry has a scope of 1. In that case,
the entry's contents remain unchanged and the function fails.

#include <smdefs.h>

sm_putfield (1, ºThis string has 29 charactersº);

sm_deselect , sm_dtofield , sm_getfield , sm_itofield , sm_ltofield

field_name,
field_number

element

occurrence

data

Returns

Description

Example

See Also

sm_receive

424 JAM 7.0 Language Reference

sm_receive
Executes a JPL receive command

int sm_receive(char *receive_args);

A string constant that contains receive command arguments.

[bundle bundle-name] [item item-no] [keep] data field-expr

For a description of receive command arguments, refer to page 70.

0 Success.
-1 Unable to execute the function, or execution aborted prematurely. See the re-

ceive command for potential error conditions.
-2 Memory allocation failure.

sm_receive reads data from a bundle that was written by an earlier call to
sm_send or the JPL send commandÐtypically, from another screen.
sm_receive reads the data into its field-expr arguments in the same order that it
was sent. Unless you supply the keep argument, the bundle data is discarded after
sm_receive completes execution.

For more information, refer to the receive command on page 70.

sm_send

receive_args

Returns

Description

See Also

sm_rescreen

4256 JAM Library FunctionsChapter

sm_rescreen
Refreshes the data displayed on the screen

void sm_rescreen(void);

sm_rescreen repaints the entire display from JAM's internal screen and attribute
buffers. This function erases anything written to the screen by means other than
JAM library functions. This function is normally bound to the REFR key and
executes automatically within sm_getkey .

You might need to call this function explicitly under the following conditions:

� Screen I/O occurs with the flag sm_do_not_display turned on.

� Escape fro an JAM application to another program through sm_leave .

To force writes to the display, use sm_flush .

sm_flush , sm_return

Description

See Also

sm_resetcrt

426 JAM 7.0 Language Reference

sm_

* resetcrt

Resets the terminal to the operating system's default state

void sm_resetcrt(void);

void sm_jresetcrt(void);

void sm_jxresetcrt(void);

sm_resetcrt resets terminal characteristics to the operating system's normal
state. Use this function only for your own executive. Call sm_resetcrt when
leaving the screen manager environment before program exit.

All the memory associated with the display and open screens is freed. However,
the buffers that hold the message file, key translation file, and so on, are not
released. A subsequent call to sm_initcrt finds them in place. sm_resetcrt
then clears the screen and turns on the cursor, transmits the RESET sequence
defined in the video file, and resets the operating system channel.

JAM's executive automatically calls sm_resetcrt through sm_jresetcrt
orÐin the case of the screen editorÐsm_jxresetcrt as part of its exit
processing. These two functions should not be called by application programs
except in case of abnormal termination.

/* If an effort to read the first form results in
 * failure, clean up the screen and leave. */

if (sm_r_form (ºfirstº) < 0)
{
 sm_resetcrt ();
 exit (1);
}

sm_cancel , sm_leave

Description

Example

See Also

sm_resize

4276 JAM Library FunctionsChapter

sm_resize
Notifies JAM of a change in the display size

int sm_resize(int rows, int columns);

Specifies the new display size, where the maximum value of rows and columns is
255. If the specified rectangle is larger than the physical display, results can be
unpredictable.

w 0: Success.
w -1: Failure. A parameter is less than 0 or greater than 255.
w Program exit on memory allocation failure.

sm_resize lets you change the default display set by the video file's LINES and
COLMS entries. This function lets you use a single video file in a windowing envi-
ronment. Applications can run in different-sized windows by setting their individu-
al display sizes at runtime. Also use sm_resize to switch between normal and
compressed modesÐfor example, 80 and 132 columns on VT100-compatible ter-
minals.

#include <smdefs.h>
#include <smkeys.h>
#include <smglobs.h>
#define WIDTH_TOGGLE PF9

/* Somewhat irregular code to switch a VT±100
 * between 80± and 132±column mode by pressing PF9. */

switch (sm_input (IN_DATA))
{
...
case WIDTH_TOGGLE:
 if (sm_inquire(I_MXCOLMS) == 80)
 {
 printf (º\033[?3hº);
 sm_resize (sm_inquire(I_MXLINES), 132);
 }

rows,
columns

Returns

Description

Example

sm_resize

428 JAM 7.0 Language Reference

 else
 {
 printf (º\033[?3lº);
 sm_resize (sm_inquire(I_MXLINES), 80);
 }
 break;
...
}

sm_restore_data

4296 JAM Library FunctionsChapter

sm_restore_data
Restores previously saved data to the screen

int sm_restore_data(char *buffer);

The address of an area initialized by sm_save_data that contains the data to
restore. Data items are stored in buffer as null-terminated character strings. The
contents of a scrollable array is preceded by 2 bytes giving the total number of
items saved (high order byte first); each item is preceded by two bytes of display
attribute, and followed by a null. There is an additional null following all the
scrolling data.

0 Success.
-1 Error, usually memory allocation failure.

sm_restore_data restores all data items, on- and off-screen, to the current
screen from buffer , previously initialized by sm_save_data . Passing a buffer
not returned by sm_save_data , or attempting to restore to a screen other than the
one saved, can yield unpredictable results.

sm_save_data , sm_sv_free

buffer

Returns

Description

See Also

sm_return

430 JAM 7.0 Language Reference

sm_return
Prepares for return to JAM application

void sm_return(void);

Call sm_return on returning to a JAM application after a temporary exit. This
function sets up the operating system channel and initializes the display with the
video file's SETUP string.

Note that sm_return does not restore the screen to its state before the call to
sm_leave . To restore the screen to its previous state, use sm_rescreen .

#include <smdefs.h>

/* Escape to the UNIX shell for a directory listing */

sm_leave ();
system (ºls ±lº);
sm_return ();
sm_c_off ();
sm_d_msg_line (ºHit any key to continueº,
 BLINK | WHITE);
sm_getkey ();
sm_d_msg_line (ºº, WHITE);
sm_rescreen ();

sm_leave , sm_resetcrt

Description

Example

See Also

sm_rmformlist

4316 JAM Library FunctionsChapter

sm_rmformlist
Purges the memory-resident form list

void sm_rmformlist(void);

sm_rmformlist erases the memory-resident form list established by
sm_formlist , and releases the memory used to hold it. It does not release any of
the memory-resident JPL modules or screens. Calling this function prevents
sm_r_window , sm_jplcall , and related functions from finding memory-resident
objects.

/* Hide all the memory±resident screens, perhaps
 * because the disk versions have been modified. */

sm_rmformlist ();

sm_formlist

Description

Example

See Also

sm_rs_data

432 JAM 7.0 Language Reference

sm_rs_data
Restores saved data to some of the screen

void sm_rs_data(int first_field, int last_field, char *buffer);

Specifies the range of data items to restore, where all data between first_field
and last_field are restored to the screen.

The address of a buffer, initialized by sm_sv_data , that stores the data to restore.
Data items are stored in buffer as null-terminated character strings. The contents
of a scrollable array is preceded by 2 bytes giving the total number of items saved
(high order byte first); each item is preceded by two bytes of display attribute, and
followed by a null. There is an additional null following all the scrolling data.

0 Success.
-1 Error, usually memory allocation failure.

sm_rs_data restores all data items between first_field and last_field ,
both off- and onscreen, from a buffer initialized by sm_sv_data .

The range of fields passed to sm_rs_data must match those passed to
sm_sv_data and buffer must be a value returned by that function; otherwise,
serious errors can occur. For more information on saving data for later retrieval by
sm_rs_data , see sm_sv_data .

sm_sv_data

first_field,
last_field

buffer

Returns

Description

See Also

sm_s_val

4336 JAM Library FunctionsChapter

sm_s_val
Validates the current screen

int sm_s_val(void);

0 Success.
-1 A field failed validation.

sm_s_val validates all fields and their occurrences, on- and offscreen, that are not
protected from validation. JAM calls this function whenever screen validation
takes placeÐfor example, when a screen exits. sm_s_val also validates groups.

sm_s_val validates array occurrences sequentially, whether onscreen or offscreen.
Thus, offscreen occurrences that precede the first onscreen occurrence are
validated first.

sm_s_val validates synchronized arrays by processing parallel occurrences se-
quentially. The function begins by validating the first occurrence (on- or offscreen)
of the array with the lowest base field number, then the first occurrence of the array
with the next base field number, and so on. sm_s_val completes validation when
it processes the last occurrence of the array with the highest base field number.

For each field, sm_s_val checks the property settings shown in the table to
determine whether to validate a field according to the following conditions:

Property setting Skip if valid Skip if empty

Required = Yes y n

Must Fill = Yes y y

Regular Exp = expr y y

Minimum Value = value y y

Maximum Value = value y y

Check Digit = value y y

*For fields with a numeric format, the Empty Format property affects this; see Chapter 14
in the Editors Guide.

Returns

Description

sm_s_val

434 JAM 7.0 Language Reference

Property setting Skip if emptySkip if valid

Table Lookup = expr y y

JPL Validation n n

Calculation n n

No Validation = No n n

Data Formatting = Date/Time y y

Data Formatting = Numeric y n *

*For fields with a numeric format, the Empty Format property affects this; see Chapter 14
in the Editors Guide.

To force validation for an empty field, make the field required. sm_s_val regards
a field with embedded punctuation as empty if it has only blank and punctuation
characters. If it contains another character type, sm_s_val regards it as non-empty.

If an occurrence fails validation, sm_s_val repositions the cursor to it and
displays an error message. If the occurrence is offscreen, sm_s_val scrolls the
array until it is visible. The function then stops validation and returns. Data that is
after the offending occurrence remain unvalidated.

#include ºsmdefs.hº
#include ºsmkeys.hº

/* Treat the SPF1 key as transmit, for a change. */

int key;

sm_d_msg_line (ºPress %KSPF1 when done.º, WHITE | REVERSE);

while ((key = sm_input (IN_DATA)) != EXIT)
{
 if (key == SPF1)
 {
 if (sm_s_val ())
 sm_ferr_reset (0, ºPlease correct the º
 ºmistake(s).º);
 else
 break;
 }
}
...

sm_fval

Example

See Also

sm_save_data

4356 JAM Library FunctionsChapter

sm_save_data
Saves screen contents

char *sm_save_data(void);

w The address of a memory area that contains the screen's data.
w 0: Insufficient memory.

sm_save_data saves the current screen's data for external access or subsequent
retrieval and returns the address of the save area. sm_save_data ignores selec-
tions from the following widgets: radio buttons, toggle buttons, check boxes, and
list boxes.

To restore the saved data, use sm_restore_data . Use sm_sv_free to discard a
save area.

You can get the size of the data with this statement:

length = ((unsigned int *)buffer)[±1];

sm_restore_data , sm_sv_data , sm_sv_free

Returns

Description

See Also

sm_sdtime

436 JAM 7.0 Language Reference

sm_sdtime
Gets the formatted system date and time

char *sm_sdtime(char *format);

Specifies the format to use with an expression that starts with y or n, followed by
any combination of date/time tokens and literal text. y indicates a 12-hour clock; n
or any other character indicates a 24-hour clock. This character is required even if
the format does not include time tokens. The table in Description shows the
date/time tokens that you use to build a format expression.

w A pointer to the current date/time in the specified format.
w Empty: format is invalid.

sm_sdtime gets the current date and/or time from the operating system and re-
turns it in the format -specified format.

The following table lists the tokens you use to build a format expression. All
tokens are prefixed by the percent sign (%) and are case-sensitive.

Table 17. Day/time format options

Unit Description Token

year 4 digit (e.g., 1990) %4y

2 digit (e.g., 90) %2y

month 1 or 2 digit (1 - 12) %m

2 digit (01 - 12) %0m

full name (e.g., January) %*m

3 character name (e.g., Jan) %3m

day 1 or 2 digit (1 - 31) %d

2 digit (01 - 31) %0d

day of the week full name (e.g., Sunday) %*d

format

Returns

Description

sm_sdtime

4376 JAM Library FunctionsChapter

Unit TokenDescription

3 character name (e.g., Sun) %3d

day of the year digit (1 - 366) %+d

hour 1 or 2 digit (1 - 12 or 0 - 23) %h

2 digit (01 -12 or 00 -23) %0h

minute 1 or 2 digit (0 - 59) %M

2 digit (00 - 59) %0M

second 1 or 2 digit (0 - 59) %s

2 digit (00 - 59) %0s

AM or PM for use with a 12-hour clock %p

literal percent use % as a literal character %%

default formats from the message
file; refer to page 61 in the Config-
uration Guide for details.

SM_0DEF_DTIME

SM_1DEF_DTIME

...

%0f

%1furation Guide for details.
...
SM_9DEF_DTIME

...

%09f

At runtime, JAM strips off the first character of format . If the character is y, it
uses a 12-hour clock; otherwise, it uses the 24-hour clock. Next, it examines the
rest of format , replacing any tokens with the appropriate values. All non-token
characters are treated as literal values.

The message file contains the text for day and month names, AM and PM, and the
tokens for the default formats. You can modify these. Refer to page 61 in the
Configuration Guide for details.

sm_sdtime uses a 256-byte static buffer that it shares with other date and time
formatting functions. Because JAM does not check for overflow, process the
returned string or copy it to a local variable immediately.

#include ºsmdefs.hº
/* Put current date MONTH±DAY±YEAR in the field ªtimeº. */
char *format;
format = ºn%m±%0d±%2yº;
sm_n_putfield (ºtimeº, sm_sdtime (format));

sm_udtime

Example

See Also

sm_select

438 JAM 7.0 Language Reference

sm_select
Selects an occurrence in a selection widget group

int sm_select(char *group_name, int group_occurrence);

The name of the target group.

The number of the occurrence to select from group_name .

1 Occurrence is already selected.
0 Occurrence not previously selected.

-1 Invalid reference to group or occurrence.

sm_select lets you select an occurrence within a selection widget group. If the
group's # of Selections property allows no more than one selection, JAM first dese-
lects the current selection before it selects group_occurrence . For more in-
formation about selection widgets, refer to page 199 in the Editors Guide.

To deselect an occurrence, call sm_deselect .

sm_deselect

group_name

group_occurrence

Returns

Description

See Also

sm_send

4396 JAM Library FunctionsChapter

sm_send
Executes a JPL send command

int sm_send(char *send_args);

A string constant that contains send command arguments:

[bundle bundle-name] [append] data data-expr[,...]

For a description of send command arguments, refer to page 73.

0 Success.
-1 Unable to execute the function, or execution aborted prematurely. See the JPL

send command for potential error conditions.
-2 Memory allocation failure.

sm_send executes a JPL send command exactly as if called from JPL. sm_send
writes screen data to a buffer that is accessible to other screens through calls to
sm_receive or the JPL receive command. sm_send can send one or more val-
ues from fields and array occurrences on a screen. It can also send character string
constants as well as parts of arrays or the current occurrence of an array.

JAM writes the data that you specify in sm_send to a temporary buffer, or bundle,
which you can optionally name. JAM can maintain up to ten bundles. If you omit a
bundle name, JAM writes the data to an unnamed bundle; this data is accessed by
the next call to sm_receive or receive that also omits a bundle name argument
or specifies it as an empty string.

For more information, refer to the send command on page 73.

sm_receive

send_args

Returns

Description

See Also

sm_setbkstat

440 JAM 7.0 Language Reference

sm_setbkstat
Sets background text for status line

void sm_setbkstat(char *message, int display_attr);

Specifies the message to display as background text.

The display attributes to use for message , one of the constants defined in
smattrib.h .

Foreground colors can be used alone or OR'd with one or more highlights, a
background color, and a background highlight. If you do not specify a highlight or
a background color, the attribute defaults to white against a black background.
Omitting a foreground color causes the attribute to default to black.

sm_setbkstat saves the contents of message for display on the status line when
there is no other message with a higher priority to display. The highest priority
messages are those passed to sm_d_msg_line , sm_ferr_reset , or
sm_fquiet_err ; the next highest are those attached to a field by means of the
status text option. Background status text has lowest priority.

sm_setstatus sets the background status to an alternating ready/wait flag; turn
this feature off before calling sm_setbkstat .

sm_d_msg_line shows how to embed attributes and function key names in
messages.

sm_d_msg_line , sm_setstatus

message

display_attr

Description

See Also

sm_setsibling

4416 JAM Library FunctionsChapter

sm_setsibling
Specifies to open the next screen as a sibling of the current window

int sm_setsibling(void);

0 Success.
±1 Failure.

sm_setsibling forces sibling status onto the next screen opened as a window.
Usually, you can open a screen as a sibling window by prepending the screen name
with double ampersands (&&) in a control stringÐfor example, in a widget's Con-
trol String property or as an argument to sm_jwindow . This operation fails if the
specified screen is already open as the current window or as a sibling of the current
window. If you want to open multiple instances of the same screen as sibling win-
dows, precede each call to open these windows with a call to sm_setsibling .

Also, you can use this function to set sibling status for a screen to be opened with
sm_r_window , sm_r_at_cur , or one of their variants. Otherwise, JAM opens all
windows opened by these functions as stacked windows.

To change stacked windows into siblings and vice-versa, set their sibling
property to 1 and 0, respectively.

Note: sm_setsibling temporarily sets a static variable that is immediately
unset after the next window-open operation, even if the operation fails. All
subsequent window-open operations revert to their default behavior.

Returns

Description

sm_setstatus

442 JAM 7.0 Language Reference

sm_setstatus
Turns alternating background status message on or off

void sm_setstatus(int mode);

Specifies whether to turn the alternating status message on or off:

1 Turns the status message on.
0 Turns the status message off.

When alternating messages are turned on, one messageÐtypically ReadyÐdis-
plays on the status line while JAM awaits input, and anotherÐnormally Wait Ð
when it is not. If mode is 0, the messages are turned off.

The status flags are replaced temporarily by messages passed to sm_ferr_reset
and related functions. They overwrite messages posted by sm_d_msg_line and
sm_setbkstat .

You can edit the the text of alternating messages in the message file, where they are
stored as SM_READY and SM_WAIT. You can also embed attribute changes and
function key names in these messages, as described in sm_d_msg_line .

#include ºsmdefs.hº
#include ºsmerror.hº
#define PAUSE (sm_flush (), sleep (3))
char buf[100];

/* Tell people what you're gonna tell 'em. */
sprintf (buf, ºYou will soon see %s alternating º
 ºwith %s below.º,
 sm_msg_get (SM_READY), sm_msg_get (SM_WAIT));
sm_do_region (3, 0, 80, WHITE, buf);

/* Now tell 'em. */
sm_setstatus (1);
PAUSE; /* Shows WAIT */
sm_input (IN_DATA); /* Shows READY */

mode

Description

Example

sm_setstatus

4436 JAM Library FunctionsChapter

/* Finally, tell 'em what you told 'em. */
sprintf (buf, ºThat was %s alternating with %s º
 ºon the status line.º,
 sm_msg_get (SM_READY), sm_msg_get (SM_WAIT));
sm_ferr_reset (0, buf);

sm_setbkstatSee Also

sm_sh_off

444 JAM 7.0 Language Reference

sm_sh_off
Gets the cursor location relative to the start of a shifting field

int sm_sh_off(void);

. 0 The difference between the current cursor position and the start of shiftable
data in the current field.

-1 The cursor is not in a field.

sm_sh_off returns the difference between the start of data in a shiftable field and
the current cursor location. If the current field is not shiftable, it returns the differ-
ence between the field's leftmost column and the current cursor location.

#include ºsmdefs.hº

/* Fancy test to see whether the current field is shifted
 * to the left. */

if (sm_sh_off () != sm_disp_off ())
 sm_ferr_reset (0, ºHa! You shifted!º);

sm_disp_off , sm_off_gofield

Returns

Description

Example

See Also

sm_shell

4456 JAM Library FunctionsChapter

sm_shell
Executes a system call

int sm_shell(char *cmdstr, int wait);

The operating system command to execute.

Used only in character mode, specifies whether to display an acknowledgement
message before returning to the JAM application:

� 1 (Yes): Display a message that the user must acknowledge before the JAM
application resumes execution.

� 0 (No): Return immediately to the JAM application after cmdstr executes.
JAM refreshes the screen and resumes screen processing.

System-dependent.

In character mode, sm_shell clears the screen and displays any output from the
specified program; on GUI platforms, display output is system-dependent.

Return values are system dependent. For example, UNIX systems typically supply
sm_shell with the executed command's return value; under Windows, sm_shell
returns ±1 only if cmdstr contains an invalid command; if cmdstr is a valid DOS
command, sm_shell returns 0 (true) regardless of the command's success or
failure.

On a UNIX system, check a directory listing.
call sm_shell(ºls ±lº, 1)
#open a file...

jm_system

cmdstr

wait

Returns

Description

Example

See Also

sm_shrink_to_fit

446 JAM 7.0 Language Reference

sm_shrink_to_fit
Removes trailing empty array elements and shrinks the screen

void sm_shrink_to_fit(void);

sm_shrink_to_fit lets you dynamically reduce the current screen size accord-
ing to the number of array elements that contain data at runtime. This function re-
moves the trailing elements in all arrays on a screen and then shrinks the screen to
a size just large enough to accommodate the displayed data. If there is no data in
the array, then the entire array is removed. Only the currently displayed copy of the
screen in memory is altered.

sm_shrink_to_fit never minimizes screen size at the expense of the screen's
first or last line. For example, given a five-line screen with a five-element array in
which only four elements have data, sm_shrink_to_fit leaves the last empty
element alone because it occupies the screen's last line.

/* Put ^shrink in the auto control */
/* to have window shrink to fit before */
/* user gets a chance to see it! */

int
shrink (ignored_data)
char *ignored_data;
{
 sm_shrink_to_fit();
 return (0);
}

Description

Example

sm_slib_error

4476 JAM Library FunctionsChapter

sm_slib_error
Gets the system return for the last call to sm_slib_load

int sm_slib_error(void);

Windows

sm_slib_error gets the system-specific error value set when a DLL is loaded by
sm_slib_load . This is the return code from the Windows API function LoadLi-
brary .

sm_slib_load

Environment

Description

See Also

sm_slib_install

448 JAM 7.0 Language Reference

sm_slib_install
Installs a function from a DLL into a JAM application

int sm_slib_install(char *fnc_name, int language, int return_type);

The name of the function to install. JAM searches all libraries loaded by
sm_slib_load , starting with the one most recently loaded.

Specifies which language calling convention to use when pushing this function's
arguments onto the code stack. The convention that you specify must conform to
the order in which the function expects to find its arguments stacked. Supply one
of these identifiers:

SLIB_C

Arguments are pushed onto the stack in left-to-right order.

SLIB_PASCAL

Arguments are pushed onto the stack in right-to-left order. Most Windows
functions use this convention.

fnc_name 's return type, specified by one of these arguments:

SM_INTFNC
SM_STRFNC
SM_DBLFNC
SM_ZROFNC

SM_ZROFNC specifies to ignore fnc_name 's return value and always to return 0.

Windows

0 Success
±1 Cannot find fnc_name in the loaded libraries.
±2 Invalid argument.

sm_slib_install installs the specified function from a shared library previously
installed by sm_slib_load . This function is installed as a prototyped function and
can be called directly from JPL modules.

fnc_name

language

return_type

Environment

Returns

Description

sm_slib_install

4496 JAM Library FunctionsChapter

Note: In the Windows distribution, JAM automatically loads the DLLs KEYBOARD,
KERNEL, and USER, in that order. All functions in these libraries are available for
installation.

sm_slib_loadSee Also

sm_slib _load

450 JAM 7.0 Language Reference

sm_slib _load
Loads a dynamic link library (DLL)

int sm_slib_load(char *lib_name);

The name of the dynamic library to load. The name can include its path. If
lib_name is already loaded, JAM moves the library to the top of the stack of
loaded libraries.

Windows

0 Success.
±1 Unable to load lib_name . Call sm_slib_error to get the system-specific

error code.

sm_slib_load makes the functions and other resources in lib_name available
for installation. Resources can include bitmaps and icons. The library must be shar-
ableÐon Windows, a dynamic link library (DLL). To install a function from a
loaded library, call sm_slib_install . After a function is installed, it can be
called directly from a JPL module.

If the argument supplied for lib_name omits a path, JAM searches for the library
in these locations:

1. JAM's working directory

2. Windows directory

3. Windows system directory

4. The executable's startup directory

5. SMPATH

6. The list of directories mapped in a network

Note: In the Windows distribution, JAM automatically loads the DLLs KEYBOARD,
KERNEL, and USER, in that order. All functions in these libraries are available for
installation.

lib_name

Environment

Returns

Description

sm_slib _load

4516 JAM Library FunctionsChapter

All loaded libraries are automatically unloaded on program exit.

sm_slib_installSee Also

sm_soption

452 JAM 7.0 Language Reference

sm_soption
Sets a string option

char *sm_soption(int option, char *newval);

Specifies the option to set with one of these constants from smsetup.h :

SO_EDITOR

Editor to use in JPL windows. Equivalent to setup variable SMEDITOR.

SO_FEXTENSION

Screen file extension. Equivalent to setup variable SMFEXTENSION.

SO_LPRINT

Operating system print command. Equivalent to setup variable SMLPRINT.

SO_PATH

Search path for screens and JPL procedures. Equivalent to setup variable SMPATH.

SO_LDBLIBNAME

An LDB library to open. Equivalent to SMLDBLIBNAME. Set this option in
jmain.c or jxmain.c before the call to sm_ldb_init .

SO_LDBNAME

An LDB screen to open. Equivalent to SMLDBNAME.

The new value to assign to option .

w The old value for the specified option or an empty string if the specified option
was not set.

w 0: The option is invalid or a malloc error occurred.

sm_soption lets you change at runtime the default string options defined in
smsetup.h .

char *default_lp;
default_lp = sm_soption (SO_LPRINT, ºlp ±dny %sº);

sm_option

option

newval

Returns

Description

Example

See Also

sm_strip_amt_ptr

4536 JAM Library FunctionsChapter

sm_

* strip_amt_ptr

Strips amount editing characters from a string

char *sm_strip_amt_ptr(int field_number, char *inbuf);

char *sm_e_strip_amt_ptr(char *field_name, int element, char *inbuf);

char *sm_i_strip_amt_ptr(char *field_name, int occurrence, char *inbuf);

char *sm_n_strip_amt_ptr(char *field_name, char *inbuf);

char *sm_o_strip_amt_ptr(int field_number, int occurrence, char *inbuf);

The field with the string to strip.

The element with the string to strip.

The occurrence with the string to strip.

Contains the string to strip. To use the field data, supply NULL.

w A pointer to a buffer containing the stripped text.
w 0 if inbuf is 0 and the field number is invalid.

sm_strip_amt_ptr strips all non-digit characters from the string, except for an
optional leading minus sign and decimal point. If you supply a value for inbuf
sm_strip_amt_ptr processes its contents. Otherwise, it uses the field data.

Note: sm_strip_amt ptr stores its return value in a pool of buffers that it
shares with other functions. Consequently, you should use this data immediately.

#include ºsmdefs.hº

char *strip_text;
in amount;

strip_text = sm_strip_amt_ptr (0, º$1,234º);
amount = atoi(strip_text);

sm_amt_format , sm_dblval

field_name,
field_number

element

occurrence

inbuf

Returns

Description

Example

See Also

sm_sv_data

454 JAM 7.0 Language Reference

sm_sv_data
Saves partial screen contents

char *sm_sv_data(int first_field, int last_field);

Specifies the area to save. All data between first first_field and last_field ,
inclusive, is saved to the specified address.

w The address of an area containing the saved data.
w 0: The current screen has no fields, first_field or last_field is invalid,

or insufficient free memory.

sm_sv_data saves the current screen's data from all fields numbered from
first_field to last_field for external access or subsequent retrieval. Use
sm_rs_data to restore the saved data to the screen.

Data items are stored as null-terminated character strings. The contents of a
scrollable array is preceded by 2 bytes giving the total number of items saved (high
order byte first); each item is preceded by two bytes of display attribute, and
followed by a null. There is an additional null following all the scrolling data.

sm_rs_data , sm_save_data , sm_sv_free

first_field,
last_field

Returns

Description

See Also

sm_sv_free

4556 JAM Library FunctionsChapter

sm_sv_free
Frees a buffer that contains saved screen data

void sm_sv_free(char *buffer);

The address of the the buffer to free.

sm_sv_free releases the save area at buffer , created by sm_save_data or
sm_sv_data . Once released, this data is no longer accessible.

sm_save_data and related functions record up to 10 save area addresses. If you
save more than 10 times during a JAM session, JAM frees existing buffers on a
first-in/first-out basis. Consequently, you should use this function only if you need
to manipulate the save buffers manually.

sm_save_data , sm_sv_data

buffer

Description

See Also

sm_svscreen

456 JAM 7.0 Language Reference

sm_svscreen
Registers a list of screens on the save list

int sm_svscreen(char **screen_list, int count);

Specifies the screens to add to the save list.

The number of screens to add to screen_list .

0 Success.
1 Failure: Insufficient memory.

sm_svscreen adds screens to the JAM-managed list of screens that are saved in
memory. You can call this function to add screens to this list anywhere in your
code; however, these screens and the data entered in them are saved in memory
only when you close the screens for the first time. Consequently, access to the
saved screens is more efficient only on subsequent opens of those screens.

If a screen is already on the save list, JAM leaves that list entry unchanged. You
can remove screens from the list with sm_unsvscreen . To check whether a screen
is on the save list, use sm_issv .

This function saves processing time at the expense of memory. It is especially
useful with read-only screens that use large amounts of external data, for example,
from databases or other files. For instance, use this function to save in memory a
help screen that gets its data from a database and is repeatedly opened.

/* sm_issv */
/* sm_svscreen */
/* sm_unsvscreen */
char *screens[] =
{
 ºstart.jamº,
 ºdemo.jamº,
 ºhelp.jamº
};

int num_screens = sizeof(screens) / sizeof(char *);

screen_list

count

Returns

Description

Example

sm_svscreen

4576 JAM Library FunctionsChapter

void
save_screens()
{
 /* Put 'screens' onto the save list. */
 sm_svscreen(screens, num_screens);
}

void
release_screens()
{
 /* Remove 'screens' from the save list. */
 sm_unsvscreen(screens, num_screens);
}

void
release_screen(name)
char *name;
{
 char *temp[1];
 if (sm_issv(name))
 {
 temp[0] = name;
 sm_unsvscreen(temp,1);
 }
}

sm_issv , sm_unsvscreenSee Also

sm_tab

458 JAM 7.0 Language Reference

sm_tab
Moves the cursor to the next unprotected field

void sm_tab(void);

sm_tab moves the cursor to first enterable position in the next tab-accessible field
on the screen. If the cursor is in a field with a next-field property and one of the
fields specified by the property is tab-accessible, the cursor moves to that field's
first enterable position. This function is normally bound to the TAB key.

This function does not immediately trigger field entry, exit, or validation
processing. Such processing occurs based on the cursor position when control
returns to sm_input .

#include ºsmkeys.hº

/* This moves the cursor to the next field. */
sm_tab ();

sm_backtab , sm_home, sm_last , sm_nl

Description

Example

See Also

sm_tm_clear

4596 JAM Library FunctionsChapter

sm_tm_clear
Clears all fields in the table view

#include <tmusubs.h>

int sm_tm_clear(int suppress);

A flag that, if set to other than 0, indicates that before-image processing should be
suppressed while the clearing is being done.

0 Success.
<0 Failure.

sm_tm_clear clears all fields in the current table view. A positive value of
suppress indicates that before-image processing should be suppressed while the
clearing is being done.

suppress

Returns

Description

sm_tm_clear_model_events

460 JAM 7.0 Language Reference

sm_tm_clear_model_events
Empties the transaction event stack

#include <tmusubs.h>

sm_tm_clear_model_events(void);

sm_tm_clear_model_events clears the transaction event stack. Events can be
pushed onto the event stack by the transaction manager, a transaction model, or a
user hook function. The events generated by the transaction manager and those by
the standard transaction models can be found in the include file tmusubs.h .

This function can be used by transaction models or by transaction hook functions
associated with a table view.

 For more information on the event stack, refer to page 337 in the Application
Development Guide.

sm_tm_push_model_event , sm_tm_pop_model_event

Description

See Also

sm_tm_command

4616 JAM Library FunctionsChapter

sm_tm_command
Executes a transaction command

#include <tmusubs.h>

int sm_tm_command(char *cmd_string);

Contains one of the following transaction commands and its associated parameters:

CHANGE CONTINUE_DOWN COPY_FOR_VIEW REFRESH
CLEAR CONTINUE_TOP FETCH SAVE
CLOSE CONTINUE_UP FINISH SELECT
CONTINUE COPY FORCE_CLOSE START
CONTINUE_BOTTOM COPY_FOR_UPDATE NEW VIEW

When specifying a command, the table view name is case sensitive; however, the
command name and the optional parameters following the table view name are not
case sensitive.

w STATUS of the current transaction.
-1 Unable to execute command because transaction is already in progress.

sm_tm_command executes the specified transaction manager command. Before the
command is processed, a test is performed to see if the specified command is
available with the current mode.

By definition, a command is in progress from the moment sm_tm_command is
called until the moment it returns. As it processes most commands, sm_tm_com-
mand invokes transaction hook functions and transaction models. These, in turn,
should not invoke transaction manager commands, because the transaction
manager cannot process its commands recursively. This implies that they should
not close the active screen (which triggers a FINISH command), or cause any other
screen to be displayed that contains table views (which triggers a CHANGE
command).

For the transaction command START, the command keyword is followed by the
transaction name and can also be followed by a table view name and scope.

cmd_string

Returns

Description

sm_tm_command

462 JAM 7.0 Language Reference

int sm_tm_command(START transaction-name [table-view-name scope]);

For the transaction command CHANGE, the command keyword is followed by the
transaction name.

int sm_tm_command(CHANGE transaction-name);

For other transaction commands, the transaction name is set by the previous START
or CHANGE command and the parameter following the command is interpreted as a
table view name.

If there is an additional scope parameter, it specifies a portion of the table view
tree. The command is then applied only to those table views.

int sm_tm_command(command [table-view-name] [scope]);

The scope parameter must be preceded by a table view name and takes one of
these arguments:

TV_AND_BELOW

Applies the command to the specified table view and all table views below it on
the tree. If no parameter is specified, the transaction manager acts as though
TV_AND_BELOW was supplied.

BELOW_TV

Applies the command to the table views below the specified table view.

TV_ONLY

Applies the command to the specified table view only.

SV_ONLY

Applies the command only to the table views of the specified server view.

Special processing occurs for the FETCH command. For FETCH, the scope
parameter is either FETCH_SIMPLE or FETCH_SPECIAL which specifies the type
of fetch processing.

For infomation on the syntax of each command, refer to Chapter 23 in the
Application Development Guide.

int sm_tm_command (ºSELECT titles BELOW_TVº);

Chapters 21 and 23 in the Application Development Guide

Example

See Also

sm_tm_command_emsgset

4636 JAM Library FunctionsChapter

sm_tm_command_emsgset
Initiates error message processing for a transaction manager error code

#include <tmusubs.h>

int sm_tm_command_emsgset(char *caller_id, int code);

A string used for identification; in JAM transaction models this is set to the module
name followed by the function name where the event was triggered.

One of the transaction manager DM_TM_ERR_XXXX return codes.

STATUS value of the current transaction.

sm_tm_command_emsgset reports an error to the transaction manager error
processor (sm_tm_error). code is one of the DM_TM_ERR_XXX return codes
returned from sm_tm_command. The error severity level is set to TM_EMSG. The
error text generated corresponds to the error message for code .

If the TM_STATUS value of the current transaction is 0, this function sets
TM_STATUS to -1. If both TM_STATUS and TM_MSG values of the current
transaction are 0, this function sets TM_MSG to the value of code .

caller_id

code

Returns

Description

sm_tm_command_errset

464 JAM 7.0 Language Reference

sm_tm_command_errset
Initiates error processing for a transaction manager error code

#include <tmusubs.h>

int sm_tm_command_errset(char *caller_id, int code);

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

One of the transaction manager DM_TM_ERR_XXXX return codes.

STATUS value of the current transaction.

sm_tm_command_errset reports an error to the transaction manager error
processor (sm_tm_error). code is one of the DM_TM_ERR_XXX return codes
returned from sm_tm_command. The error severity level is set to TM_ERROR. The
error text generated corresponds to the error message for code .

If the TM_STATUS value of the current transaction is 0, this function sets
TM_STATUS to -1. If both TM_STATUS and TM_MSG values of the current
transaction are 0, this function sets TM_MSG to the value of code .

caller_id

code

Returns

Description

sm_tm_continuation_validity

4656 JAM Library FunctionsChapter

sm_tm_continuation_validity
Checks to see if the CONTINUE events are permitted for the current table view

#include <tmusubs.h>

int sm_tm_continuation_validity(int report);

Controls whether an error message is generated. If this parameter is non-zero, the
message is generated.

w TM_OK if the TM_CONTINUE_UP, TM_CONTINUE_TOP, TM_CONTINUE_DOWN,
and TM_CONTINUE_BOTTOM events are permitted.

w TM_FAILURE if these events are not permitted. If report is non-zero, an error
message is also generated.

This function is used in the standard transaction models as part of the transaction
manager processing for the SELECT and VIEW commands. It checks the value of
the Fetch Directions property for the current table view to see if the TM_CON-
TINUE_UP, TM_CONTINUE_TOP, TM_CONTINUE_DOWN, and TM_CONTINUE_BOT-
TOM events are permitted.

If the Fetch Directions property is specified as Down only±all modes , only
TM_CONTINUE fetches additional data. TM_CONTINUE_DOWN is not permitted.

If the Fetch Directions property is specified as Up/Down±view mode , the
TM_CONTINUE_UP, TM_CONTINUE_TOP, TM_CONTINUE_DOWN, and TM_CON-
TINUE_BOTTOM events are allowed in addition to TM_CONTINUE if the current
transaction mode is view .

If the Fetch Directions property is specified as Up/Down±all modes , the
TM_CONTINUE_UP, TM_CONTINUE_TOP, TM_CONTINUE_DOWN, and TM_CON-
TINUE_BOTTOM events are allowed in addition to TM_CONTINUE in view and
update mode. Note that data must be re-fetched in order for updates to be
displayed from the continuation file used with these events. For more information
about using these events in update mode, refer to page 377 in the Application
Development Guide.

If the table view's Fetch Directions property is specified as default , the screen's
Fetch Directions property is consulted. If the screen's Fetch Directions property is
specified as default , this is the equivalent of Down only±all modes .

report

Returns

Description

sm_tm_dbi_checker

466 JAM 7.0 Language Reference

sm_tm_dbi_checker
Tests for common database errors during transaction manager processing

#include <tmusubs.h>

int sm_tm_dbi_checker(int event);

TM_TEST_ERROR to check for database errors, TM_TEST_ONE_ROW to check that
one row was affected by the processing, or TM_TEST_SOME_ROWS to check that
one or more rows was affected by the processing.

w TM_FAILURE:
- If a database error is recognized.
- If no database error is recognized but event is TM_TEST_ONE_ROW and more

than one row has been affected by SQL executor processing.
- If no database error is recognized but event is TM_TEST_SOME_ROWS and no

rows have been affected by SQL executor processing.
w TM_OK if no database error has been recognized, nor an error because of an

event condition as described above.

sm_tm_dbi_checker tests the JAM database variables @dmretcode and
@dmengerrcode for any errors in database processing. If it finds an error, it logs it
and sets error messages.

If no database errors are encountered but event is TM_TEST_ONE_ROW,
sm_tm_dbi_checker returns the error status TM_FAILURE if @dmrowcount is
not 1.

Similarly, if event is TM_TEST_SOME_ROWS, sm_tm_dbi_checker returns the
error status TM_FAILURE if @dmrowcount is 0.

/* The following example taken from the standard
transaction model for JDB shows the processing for
these events. */

case TM_TEST_ERROR:
case TM_TEST_ONE_ROW:
case TM_TEST_SOME_ROWS:

retcode = sm_tm_dbi_checker(event);
break;

event

Returns

Description

Example

sm_tm_error

4676 JAM Library FunctionsChapter

sm_tm_error
Reports an error condition

#include <tmusubs.h>

void sm_tm_error(char *caller_id, char *text, char *user_use, int severity);

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

Null-terminated character string containing a message.

Null-terminated character string for user's message.

Severity level of the error.

sm_tm_error reports an error to the transaction manager error processor. The
error is identified by the caller_id , text , user_use (if one exists) and sever-
ity . Errors are written to an error log file. If an error log file is not specified or if
severity is less than the severity limit, nothing is written.

The character string parameters can contain white space but the first NULL
character indicates the end of the string.

sm_tm_errorlog, sm_tm_msg_count_error, sm_tm_msg_emsg,
sm_tm_command_emsgset, sm_tm_command_errset

caller_id

text

user_use

severity

Description

See Also

sm_tm_errorlog

468 JAM 7.0 Language Reference

sm_tm_errorlog
Controls error log processing

#include <tmusubs.h>

int sm_tm_errlog(int call_type, int call_type_code, char *log_file);

Determines which aspect of error log processing is affected. One of the following
constants: TM_ERR_KEEP, TM_ERR_SUPPRESS, TM_ERR_FILE,
TM_ERR_NEW_COMMAND, as defined below.

A value that is used depending on the argument supplied for call_type .

The name of the file in which the error log is maintained; ignored unless
call_type is TM_ERR_FILE.

0 Success.
-1 Failure.

sm_tm_errlog controls error log processing according to the value of
call_type .

TM_ERR_KEEP specifies the existence of the error log. A call_type_code value
of 0 clears the error log when a new command begins processing. A value of 1
indicates not to clear out the log. The last parameter is ignored.

TM_ERR_SUPPRESS specifies which errors to suppress depending on a severity
level, where call_type_code determines which errors to suppress. Any errors
passed to sm_tm_error with a severity greater than 0 and less than or equal to
call_type_code are not logged. If call_type_code is 0, there is no
suppression.

TM_ERR_FILE specifies the error log file that is named by log_file . The file is
appended to if it exists, but a call to this function with TM_ERR_KEEP might
override this. If there is no call to sm_tm_errorlog , there is no sm_tm_error
error logging.

If call_type_code is 0, the file is not flushed or closed unnecessarily after it is
written to. If call_type_code is 1, the file is closed after each entry is written.

call_type

call_type_code

log_file

Returns

Description

sm_tm_errorlog

4696 JAM Library FunctionsChapter

If log_file is a null pointer or empty string, there is no further error logging until
a subsequent call to sm_tm_errorlog reinstates it.

TM_ERR_NEW_COMMAND specifies that processing of a new command is starting.

sm_tm_errorSee Also

sm_tm_event

470 JAM 7.0 Language Reference

sm_tm_event
Returns the event number for the specified transaction manager event name

#include <tmusubs.h>

int sm_tm_event(char *event_name);

One of the names in the table of request and event numbers defined in tmusubs.h .

w The number for the specified event.
0 Error: event_name is not found.

sm_tm_event returns the event number corresponding to the specified transaction
manager event name. As part of its processing, event_name is converted from
lower case letters to upper case.

event_name

Returns

Description

sm_tm_event_name

4716 JAM Library FunctionsChapter

sm_tm_event_name
Returns the transaction manager event name for the specified event number

#include <tmusubs.h>

char *sm_tm_event_name(int event_number);

One of the request and event numbers defined in tmusubs.h .

w Pointer to the name of the specified event number.
w A string that contains the event number if the number does not correspond to

one of the events

sm_tm_event_name returns the event name corresponding to the specified event
number. Because this function stores the returned data in a pool of buffers that it
shares with other functions, copy or process this data immediately.

JPL Procedure called as a hook function that displays
each event name as it is processed.

proc getname (event)
vars retname
retname=sm_tm_event_name(event)
msg_emsg ºEvent name is º retname
return TM_PROCEED

event_number

Returns

Description

Example

sm_tm_failure_message

472 JAM 7.0 Language Reference

sm_tm_failure_message
Specify an error message to report for a transaction manager error

#include <tmusubs.h>

int sm_tm_failure_message(int type, char *caller_id, char *text);

The event calling this function. This event must be TM_NOTE_FAILURE or
TM_NOTE_UNSUPPORTED.

Identifier for the calling program. If this is not supplied, the generated caller_id
has embedded in it the previous event name or number and the previous transaction
model or transaction hook function name.

The text for the error message. If this is not supplied, a generic error message is
generated.

w TM_OK

When the transaction manager generates either the TM_NOTE_FAILURE or the
TM_NOTE_UNSUPPORTED event, the standard transaction models call
sm_tm_failure_message to generate an error message for the previous event.

sm_tm_failure_message checks the value of TM_STATUS and sets it to ±1 if the
value is 0.

/* The following example taken from the standard
transaction model for JDB shows the processing for
these events. */

case TM_NOTE_FAILURE:
case TM_NOTE_UNSUPPORTED:

retcode = sm_tm_failure_message(event, ºº, ºº);
break;

type

caller_id

text

Returns

Description

Example

sm_tm_inquire

4736 JAM Library FunctionsChapter

sm_tm_inquire
Gets an integer attribute of the current transaction

#include <tmusubs.h>

int sm_tm_inquire(int attribute);

Specifies the integer attribute of the current transaction to get with one of the
constants shown in Table 18.

. 1 The current value of attribute .
0 The current transaction is null.

-1 Invalid argument supplied for attribute .

sm_tm_inquire gets the value of an integer attribute of the current transaction.
This includes the data in the current transaction structure itself and data that can be
found indirectlyÐfor example, information about the current table view.

Table 18 describes the constants defined in tmusubs.h that specify the attributes
to get with this function.

Table 18. Transaction integer attributes

Attribute constant Description

TM_AT_OR_BELOW Traversal specifier.

TM_CONTINUATION Value of Fetch Directions property for current
table view: PV_CONT_DEFAULT, PV_CONT_AL-
WAYS, PV_CONT_NEVER,
PV_CONT_VIEW_ONLY.

TM_CURRENT_MODE Current transaction mode.

TM_CURRENT_OCC Current occurrence number of current table
view.

TM_CURRENT_REQUEST Current request being processed.

TM_EMSG_USED Error message indicator.

attribute

Returns

Description

sm_tm_inquire

474 JAM 7.0 Language Reference

Attribute constant Description

TM_FULL Full or partial command indicator.

TM_HOOK_IN_USE Indicates whether a transaction model or trans-
action hook function is in use. Values include:

TM_NOTHING_IN_USE: Nothing in use.
TM_MODEL_IN_USE: Transaction model in use.
TM_UHOOK_IN_USE: Hook function in use.

TM_LINK Link from a table view to its parent table view.

TM_MSG User specified message code to use for exit
condition after a call to sm_tm_command.

TM_OCC Occurrence number being processed.

TM_OCC_COUNT The number of occurrences in the table view.

TM_OCC_TYPE Code reflecting the nature of change, if any, of
an occurrence from its before-image.

TM_PARENT_OCC Current occurrence of parent of current table
view.

TM_PARENTING_OCC Occurrence that was valid in parent when table
view last fetched.

TM_PREVIOUS_EVENT Indicates the previous transaction manager
event. Used when writing an error handler to
log the event which generated the error.

TM_PREVIOUS_HOOK_IN_USEIndicates whether the transaction model or a
hook function was used in the previous event.
Used when writing an error handler. Values in-
clude:

TM_NOTHING_IN_USE: Nothing in use.
TM_MODEL_PREV_IN_USE: Transaction model
used for previous event.
TM_UHOOK_PREV_IN_USE: Hook function used
for previous event.

TM_QUERY_ACTION Return code from TM_QUERY. Models return:

TM_DISCARD_ACTION: Discard changes
TM_EXIT_ACTION: Return to screen without
discarding changes

TM_STATUS Error indicator.

sm_tm_inquire

4756 JAM Library FunctionsChapter

Attribute constant Description

TM_SV_SEL_REQUEST Request that gave rise to the current select cur-
sor for the table view (either SELECT or VIEW).

TM_USER_VALUE Reserved for user use.

TM_VALUE General purpose integer.

TM_VALUE2 General purpose integer.

sm_tm_iset , sm_tm_pcopy , sm_tm_pinquire , sm_tm_psetSee Also

sm_tm_iset

476 JAM 7.0 Language Reference

sm_tm_iset
Sets the value of a transaction attribute

#include <tmusubs.h>

int sm_tm_iset(int attribute, int value);

Specifies the integer attribute of the current transaction to change with one of the
constants shown in Table 19.

attribute 's new value.

0 Success.
-1 Invalid argument supplied for attribute .
-2 Unable to make the requested change.

sm_tm_iset changes the value of an integer attribute of the current transaction.
This includes not only data in the current transaction structure itself, but also data
that can be found indirectly, such as data relating to the current table view.

Table 19 describes the constants, defined in tmusubs.h , that specify the attributes
to change with this function.

Table 19. Transaction integer attributes that can be changed

Attribute constant Description

TM_EMSG_USED If set to 1, no error message is displayed when
sm_tm_command returns to its caller. Indicates that
the error message was displayed by sm_tm_com-
mand.

TM_MSG User specified message code to use for exit condition
after a call to sm_tm_command.

TM_OCC Occurrence number being processed.

TM_OCC_COUNT The number of occurrences in the table view.

attribute

value

Returns

Description

sm_tm_iset

4776 JAM Library FunctionsChapter

Attribute constant Description

TM_PROPOSE_MSG A conditional value for TM_MSG; used only if there is
no existing value.

TM_PROPOSE_STATUS A conditional value for TM_STATUS; used only if
there is no existing value.

TM_QUERY_ACTION Return code from TM_QUERY. Models return:

TM_DISCARD_ACTION: Discard changes
TM_EXIT_ACTION: Return to screen without discard-
ing changes

TM_STATUS Error indicator.

TM_SV_SEL_REQUEST Request that gave rise to the current select cursor for
the table view (either SELECT or VIEW).

TM_USER_VALUE Reserved for user use.

TM_VALUE General purpose integer.

TM_VALUE2 General purpose integer.

sm_tm_inquire , sm_tm_pcopy , sm_tm_pinquire , sm_tm_psetSee Also

sm_tm_msg_count_error

478 JAM 7.0 Language Reference

sm_tm_msg_count_error
Reports a transaction manager error

#include <tmusubs.h>

void sm_tm_msg_count_error(char *caller_id, int msg, int count);

A string used for identification; in JAM transactions models, this is set to the
module name followed by the function name where the event was triggered.

Identifier for a predefined error message.

Any integer value useful for display in the message string.

sm_tm_msg_count_error reports an ERROR severity error to the transaction
manager error processor (sm_tm_error). The error text includes the name of the
function where the error occurred identified by caller_id , the message text
string corresponding to msg (obtained by a call to sm_msg_get), and the value
identified in count . A typical use for count would be to display an error return
code from the function that triggered the error event.

If msg is DM_TM_ALREADY or 0, this function does nothing.

sm_tm_error , sm_tm_msg_emsg, sm_tm_msg_error

caller_id

msg

count

Description

See Also

sm_tm_msg_emsg

4796 JAM Library FunctionsChapter

sm_tm_msg_emsg
Reports an error of message severity

#include <tmusubs.h>

void sm_tm_msg_emsg(char *caller_id, int msg);

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

Identifies an error message.

sm_tm_msg_emsg reports an EMSG severity error to the transaction manager error
processor. The error text includes the name of the function where the error oc-
curred identified by caller_id and the message text string corresponding to msg,
obtained by a call to sm_msg_get .

If msg is DM_TM_ALREADY or 0, this function does nothing.

sm_tm_error , sm_tm_msg_count_error , sm_tm_msg_error

caller_id

msg

Description

See Also

sm_tm_msg_error

480 JAM 7.0 Language Reference

sm_tm_msg_error
Reports an error

#include <tmusubs.h>

void sm_tm_msg_error(char *caller_id, int msg);

A string used for identification; in JAM transactions models this is set to the
module name followed by the function name where the event was triggered.

Identifies an error message.

sm_tm_msg_error reports an ERROR severity error to the transaction manager
error processor. The error text includes the name of the function where the error
occurred identified by caller_id and the message text string corresponding to
msg, obtained by a call to sm_msg_get .

If msg is DM_TM_ALREADY or 0, this function does nothing.

sm_tm_error , sm_tm_msg_emsg, sm_tm_msg_count_error

caller_id

msg

Description

See Also

sm_tm_pcopy

4816 JAM Library FunctionsChapter

sm_tm_pcopy
Gets a string attribute of the current transaction

#include <tmusubs.h>

int sm_tm_pcopy(int attribute, char *attr_value, int length);

Specifies the string attribute of the current transaction to get with one of the
constants shown in Table 20.

A string buffer where the specified attribute's value is copied.

Specifies the maximum length of data to copy to attr_value , excluding the
NULL string terminator. If length has a 0 or negative value, it is set to 255.

0 Success.
w DM_TM_ERR_NO_TRANSACTION: The current transaction is null.
w DM_TM_ERR_ARGS: value is a null pointer.
w DM_TM_ERR_BAD_MEMBER: attribute is invalid.
w DM_TM_ERR_GENERAL: The length of attr_value exceeds length or 255.

sm_tm_pcopy is used to obtain the current value of an string attribute of the
current transaction. This includes not only data in the current transaction structure
itself, but also data that can be found indirectly, such as data relating to the current
table view.

Table 20 lists the constants, defined in tmusubs.h , that specify the string
attributes to get with this function.

Table 20. Transaction string attributes

Transaction Attribute Description

TM_BUFFER General purpose string.

TM_COMMAND_PARM Text string passed to sm_tm_command.

TM_MSG_TEXT Text of sm_tm_command exit message.

attribute

attr_value

length

Returns

Description

sm_tm_pcopy

482 JAM 7.0 Language Reference

Transaction Attribute Description

TM_PARENT_NAME Name of parent table view of current table view.

TM_PREVIOUS_HOOK Name of the previous hook function. Used when
writing an error handler.

TM_ROOT_NAME Name of root table view of the transaction.

TM_SAVE_CURSOR SAVE or VALIDATION cursor name.

TM_SV_NAME Name of server view containing current table view.

TM_SV_SELECT_CURSORSELECT cursor name.

TM_TRAN_NAME Name of the current transaction.

TM_TRANS_MODEL_NAMEName of the transaction model.

TM_TV_NAME Name of the current table view.

TM_USER_BUFFER Buffer reserved for user use.

Data is only copied if no errors are encountered.

sm_tm_inquire , sm_tm_iset , sm_tm_pinquire , sm_tm_psetSee Also

sm_tm_pinquire

4836 JAM Library FunctionsChapter

sm_tm_pinquire
Gets the value of a string±valued attribute of the current transaction

#include <tmusubs.h>

char *sm_tm_pinquire(int attribute);

Specifies the string attribute of the current transaction to copy with one of the
following constants defined in tmusubs.h and described in Table 20:

TM_BUFFER
TM_COMMAND_PARM
TM_MSG_TEXT
TM_PARENT_NAME
TM_PREVIOUS_HOOK
TM_ROOT_NAME
TM_SAVE_CURSOR
TM_SV_NAME
TM_SV_SELECT_CURSOR
TM_TRAN_NAME
TM_TRANS_MODEL_NAME
TM_TV_NAME
TM_USER_BUFFER

w Success: copy of the string value of attribute .
w Failure: empty string.

sm_tm_pinquire gets the current value of a string attribute of the current
transaction. This includes not only data in the structure itself, but also data that can
be found indirectly, such as data relating to the current table view.

An empty string is returned if any of the following errors occurs: the current
transaction is null, attribute is invalid, the value of attribute is a
non-existent string, or the length of the value of attribute is greater than 255.

For a description of the attribute values that can be returned by this function,
refer to Table 20 in the description for sm_tm_pcopy .

sm_tm_inquire , sm_tm_iset , sm_tm_pset , sm_tm_pcopy

attribute

Returns

Description

See Also

sm_tm_pop_model_event

484 JAM 7.0 Language Reference

sm_tm_pop_model_event
Pops an event off the transaction event stack

#include <tmusubs.h>

int sm_tm_pop_model_event(void);

The event popped off the event stack.
0: The stack is empty.

sm_tm_pop_model_event pops the next event in the transaction event stack.
Events can be pushed onto the event stack by the transaction manager, a transaction
model, or a user hook function. The events generated by the transaction manager
and those by the standard transaction models can be found in the include file
tmusubs.h .

This function can be used by transaction models or by transaction hook functions
associated with a table view.

sm_tm_clear_model_events , sm_tm_push_model_event

Returns

Description

See Also

sm_tm_pset

4856 JAM Library FunctionsChapter

sm_tm_pset
Sets the value of a string transaction attribute

#include <tmusubs.h>

int sm_tm_pset(int attribute, char *value);

Specifies the string attribute of the current transaction to change with one of the
constants shown below.

attribute 's new value.

0 Success.
-1 Invalid argument supplied for attribute .
-2 Unable to make the requested change.

sm_tm_pset changes the value of a string attribute of the current transaction. This
includes not only data in the current transaction structure itself, but also data that
can be found indirectly, such as data relating to the current table view.

Table 21 describes the constants, defined in tmusubs.h , that specify the attributes
to change with this function.

Table 21. Transaction string attributes for sm_tm_pset

Transaction Attribute Description

TM_BUFFER General purpose string.

TM_MSG_TEXT Text of sm_tm_command exit message.

TM_PROPOSE_MSG_TXTUsed to conditionally set TM_MSG_TEXT.

TM_SAVE_CURSOR SAVE or VALIDATION cursor name.

TM_SV_SELECT_CURSORSELECT cursor name.

TM_USER_BUFFER Reserved for user use.

attribute

value

Returns

Description

sm_tm_pset

486 JAM 7.0 Language Reference

void set_msg_text (msg);
char *msg;
{

/*
 * Set the sm_tm_command exit message, possibly overriding
 * any previously set message.
 */

 sm_tm_pset (TM_MSG_TEXT, msg);
}

sm_tm_inquire , sm_tm_pinquire , sm_tm_pcopy , sm_tm_pset

Example

See Also

sm_tm_push_model_event

4876 JAM Library FunctionsChapter

sm_tm_push_model_event
Pushes an event onto the transaction event stack

#include <tmusubs.h>

int sm_tm_push_model_event(int event);

Any transaction event.

0 Success: event pushed on stack and stack was not full.
-1 event is 0.
w The event value pushed off the stack because the stack was full.

sm_tm_push_model_event pushes an event onto the transaction event stack. If
event is 0, the stack is unchanged and a warning is logged. If the stack is full
before the event is pushed, the event that is pushed off the stack is returned.

The transaction manager generates requests in response to commands. It calls this
function to push each request onto the stack as an event, to commence event
processing for the request. This function can also be used by transaction models or
by transaction hook functions associated with a table view. The events generated
by the transaction manager and those generated by the standard transaction models
are defined in tmusubs.h . For a description of these events, refer to Chapter 23 of
the Application Development Guide.

/* The following example taken from the standard
transaction model for JDB shows the processing for the
TM_UPDATE request. */

case TM_UPDATE:
/* Do nothing, except for updates */

occ_type = sm_bi_compare();
if (occ_type != BI_UPDATED)
{

break;
}

if (!reuse_cursor)
{

save_cursor_type = 0;
}
reuse_cursor = 0;

event

Returns

Description

Example

sm_tm_push_model_event

488 JAM 7.0 Language Reference

sm_tm_push_model_event(TM_UPDATE_EXEC);
sm_tm_push_model_event(TM_UPDATE_DECLARE);
sm_tm_push_model_event(TM_GET_SAVE_CURSOR);
break;

sm_tm_clear_model_events , sm_tm_pop_model_eventSee Also

sm_translatecoords

4896 JAM Library FunctionsChapter

sm_translatecoords
Translates screen coordinates to display coordinates

int sm_translatecoords(int column, int line, int *column_ptr, int *line_ptr);

Zero-based coordinates relative to the current screen, where 0,0 specifies the
screen's upper-left corner.

On return, contain the pixel coordinates relative to the drawing area.

Motif, Windows

0 Success.
-1 line or column is out of range

sm_translatecoords translates the JAM line and column relative to a screen,
into pixel line and column relative to the upper left hand corner of the drawing
area. line and column are zero based. This function in conjunction with
sm_drawingarea is useful when placing objects such as bitmapped graphics or
custom widgets on a JAM screen.

#include <windows.h>
#include <windowsx.h>
#include <stdlib.h>
#include ºsmdefs.hº
#include ºdrawbmp.hº
/*
 * The following program shows how to display a bitmap file
 * on the current JAM screen in Windows. The routine uses
 * several functions from sample code in Programming Windows
 * 3.1, pp. 610±616 by Charles Petzold (Microsoft Press,
 * 1992). All other functions are either standard C, JAM API,
 * or Windows API calls
 */

int JAM_display_bmp_file(char *file_name, int ln, int col)
{

column,
line

column_ptr,
line_ptr

Environment

Returns

Description

Example

sm_translatecoords

490 JAM 7.0 Language Reference

 static BYTE huge *lpDib;
 HWND hwnd;
 HDC hdc;
 BYTE huge *lpDibBits;
 short cxDib, cyDib, pix_ln, pix_col;

 if (lpDib != NULL) {
 GlobalFreePtr(lpDib);
 lpDib = NULL;
 }

 lpDib = ReadDib(file_name); /* Petzold, pp. 613±614 */

 if (lpDib == NULL) {
 sm_message_box(ºCould not open DIB fileº, ºERRORº,
 SM_MB_OK | SM_MB_ICONSTOP, 0);
 return RET_FATAL;
 }
 hwnd = sm_mw_drawingarea();

 hdc = GetDC(hwnd);

 if (hdc != NULL) {
 lpDibBits = GetDibBitsAddr(lpDib);/* Petzold,p. 612 */
 cxDib = GetDibWidth(lpDib); /* Petzold, p. 612 */
 cyDib = GetDibHeight(lpDib); /* Petzold, p. 612 */

 if (sm_translatecoords(col, ln, &pix_col, &pix_ln) < 0) {
 char buf[100];
 sprintf(buf,
 ºJAM_display_bmp_file: invalid line/column: %d/%dº,
 ln, col);
 sm_message_box(buf, ºERRORº,
 SM_MB_OK | SM_MB_ICONSTOP, 0);
 return RET_FATAL;
 }

 SetStretchBltMode(hdc, COLORONCOLOR);
 SetDIBitsToDevice(
 hdc, pix_col, pix_ln, cxDib, cyDib, 0, 0, 0, cyDib,
 (LPSTR) lpDibBits, (LPBITMAPINFO) lpDib,
 DIB_RGB_COLORS);
 }
 else {
 sm_message_box(ºCould not get handle to drawing areaº,
 ºERRORº, SM_MB_OK | SM_MB_ICONSTOP, 0);
 }
 ReleaseDC(hwnd, hdc);
 return RET_SUCCESS;
}

sm_tst_all_mdts

4916 JAM Library FunctionsChapter

sm_tst_all_mdts
Finds the first modified occurrence on the current screen

int sm_tst_all_mdts(int *occurrence);

On output, the address of a variable that contains the number of the first occurrence
with its MDT bit set.

. 1 The number of the first field on the current screen for which some occurrence
has its MDT bit set. In this case, the number of the first occurrence with MDT
set is returned in the variable addressed by occurrence .

0 No MDT bit is set anywhere on the screen.

sm_tst_all_mdts tests the MDT bits of all on- and offscreen occurrences of all
fields on the current screen. If it finds an occurrence with its MDT bit set, the func-
tion returns with the base field and occurrence number. Use this function to ascer-
tain whether any occurrence has been modified on the screen, either from the key-
board or by the application program, since the screen was displayed, or since its
mdt property was last cleared.

#include ºsmdefs.hº

/* Clear MDT for all fields on screen. Then write data to
 * last field, and check that its MDT is the first one set.
 */

int occurrence;
int numflds;

sm_cl_all_mdts();
numflds = sm_inquire (I_NUMFLDS);
sm_putfield (numflds, ºHelloº);
if (sm_tst_all_mdts (&occurrence) != sm_inquire(SC_NFLDS)
 sm_ferr_reset (0,
 ºSomething is rotten in the state of Denmark.º);

occurrence

Returns

Description

Example

sm_udtime

492 JAM 7.0 Language Reference

sm_udtime
Formats a user-supplied date and time

char *sm_udtime(struct tm *dt_tm_data, char *format);

A pointer to the date and time data to format. dt_tm_data is a tm structure,
defined in the standard C header file time.h .

Specifies the format to use with an expression that starts with y or n, followed by
any combination of date/time tokens and literal text. y indicates a 12-hour clock; n
or any other character indicates a 24-hour clock. This character is required even if
the format does not include time tokens. Refer to page 436 for a list of the
date/time tokens that you use to build a format expression.

w A pointer to the user date/time in the specified format.
w Empty if format is invalid.

sm_udtime formats the date and time data in dt_tm_data according to the speci-
fied format .

This function uses a static buffer that it shares with other date and time formatting
functions. The buffer is 256 bytes long. JAM does not check for overflow.
Consequently, you should process the returned string or copy it to a local variable
before making additional function calls.

/* Put the date 135 days from now into the field ºmaturityº
*/
#include smdefs.h
time_t tim;
struct tm *matdate;
char *ptr;

/* calculate local time in seconds */
tim = time ((time_t *)0) + 135L * 24 * 60 * 60;
matdate = localtime (&tim);
ptr = sm_udtime (matdate, º %0fº);
sm_n_putfield (ºmaturityº, ptr);

sm_sdtime

dt_tm_data

format

Returns

Description

Example

See Also

sm_ungetkey

4936 JAM Library FunctionsChapter

sm_ungetkey
Pushes a translated key onto the input queue

#include <smkeys.h>

int sm_ungetkey(int key);

The key to push onto the input stack.

w The value of key .
w -1: Insufficient memory.

sm_ungetkey saves the translated key given by key so it can be retrieved by the
next call to sm_getkey . Multiple calls are allowed. The key values are pushed
onto a stack in last-in/first-out order.

When sm_getkey reads a key from the keyboard, it flushes the display first so the
user sees a fully updated display before typing on. This is not the case for keys
pushed back by sm_ungetkey .

#include ºsmkeys.hº

/* Force tab to next field */
sm_ungetkey (TAB);

sm_getkey

key

Returns

Description

Example

See Also

sm_unsvscreen

494 JAM 7.0 Language Reference

sm_unsvscreen
Removes screens from the save list

void sm_unsvscreen(char *screen_list, int count);

The screens to remove from the save list.

The number of screens to remove from the save list.

sm_svscreen removes screens from the list of screens that are saved in memory
and frees the memory associated with them. You can call this function to remove
screens from this list anywhere in your code, whether or not the screen is open.
Note that if a screen is open, JAM frees its memory only when it closes.

sm_issv , sm_svscreen

screen_list[]

count

Description

See Also

sm_upd_select

4956 JAM Library FunctionsChapter

sm_upd_select
Updates the contents of an option menu or combo box

int sm_upd_select(int fldno);

int sm_n_upd_select(char *fldname);

The option menu or combo box to update.

0 Success.
-1 Invalid widget type.
-2 Widget's list contains constant data.

sm_upd_select updates the contents of an option menu or combo box with data
from another screen. The widget must be defined to accept data from an external
screen; otherwise, the function returns an error.

An option menu or combo box that gets its data from a screen can be initialized
either on screen entry or each time the widget list displays, depending whether its
Initialization property is set to Fill at Popup or Fill at Init . Use
sm_upd_select to force updates only if the Initialization property is set to
Fill at Init .

Note: If fields on the external screen have initial data, LDB write-through is
disabled for those fields.

field_name,
field_number

Returns

Description

sm_vinit

496 JAM 7.0 Language Reference

sm_

* vinit

Initializes video translation table

int sm_vinit(char *video_address);

int sm_n_vinit(char *video_file);

The address of a memory-resident video file. Create this file with vid2bin and
bin2c utilities, then compile it into the application.

The name of a video file, set in the SMVIDEO variable that is specified in the setup
file or in the environment.

0 Success.
w Non-zero value: failure.

sm_vinit and sm_n_vinit initialize the video translation table. JAM uses one of
these functions during program initialization, depending on whether the video file
is memory-resident or resides on disk. These functions can also be called directly
by an application program.

If sm_vinit fails, you can generate error messages through sm_inimsg . This
function creates formatted output that you can display through other library
functions like sm_fqui_msg .

/* Install a memory±resident video file */

extern char special_vid[];

sm_vinit (special_vid);

video_address

video_file

Returns

Description

Example

sm_wcount

4976 JAM Library FunctionsChapter

sm_wcount
Obtains the number of currently open windows

int sm_wcount(void);

. 1 The number of windows open.
0 The base window is the only open screen.

-1 There is no current screen.

sm_wcount returns the number of windows currently open. The number is equiva-
lent to the number of windows in the window stack, excluding the base window.

Use this function with sm_wselect to activate another window from the window
stack. For example, the following statement selects the screen beneath the current
window:

sm_wselect(sm_wcount()±1);

sm_wselect

Returns

Description

See Also

sm_wdeselect

498 JAM 7.0 Language Reference

sm_wdeselect
Restores the previously active window

int sm_wdeselect(void);

0 Success.
-1 No window to restore.

sm_wdeselect restores a window to its original position in the window stack after
it has been moved to the top by a call to sm_wselect . Successive calls to
sm_wdeselect recursively restore windows selected by sm_wselect .

sm_wcount , sm_wselect

Returns

Description

See Also

sm_widget

4996 JAM Library FunctionsChapter

sm_

* widget

Gets a handle to a widget

#include <smmcuser.h>

CPane *sm_mc_widget(int widgetnumber);

CPane *sm_mcn_widget(char *widgetname);

CPane *sm_mce_widget(char *widgetname, int element);

#include <smmwuser.h>

HWND sm_mw_widget(int widgetnumber);

HWND sm_mwn_widget(char *widgetname);

HWND sm_mwe_widget(char *widgetname, int element);

#include <smxmuser.h>

Widget sm_xm_widget(int widgetnumber);

Widget sm_xmn_widget(char *widgetname);

Widget sm_xme_widget(char *widgetname, int element);

Specifies the widget whose handle you want to get.

If the widget is an array, specifies element whose handle you want to get.

w Success: For Macintosh, a CPane pointer; for Windows, an HWND handle; for
Motif, a Widget ID.

w Null pointer: the widget does not exist.

sm_widget gets a handle to the specified widget or widget elementÐin the case of
Macintosh applications, a CPane pointer; on Windows, a HWND handle; under
Motif, a Widget ID. You can pass this handle to Macintosh, Windows and Motif
functions when you want the window manager to act directly on a JAM widget.

widgetname,
widgetnumber

element

Returns

Description

sm_widget

500 JAM 7.0 Language Reference

For more information about corresponding Macintosh, Motif and JAM widget
types, refer to page 178 in the Configuration Guide.

Note: For scale widgets, list box widgets, and multiline text widgets in Motif
applications, sm_xm_widget and its variants return the widget ID of the scroll
bar. Use XtParent to obtain the ID of the scale, list box or multiline text widget.
For list boxes in Windows applications, sm_mw_widget and its variants return a
handle to the list box itself. SDK function calls such as GetScrollPos use the list
box's handle and a flag that identifies the desired scroll bar.

sm_window

5016 JAM Library FunctionsChapter

sm_

* window

Displays a window at a given position

int sm_d_window(char *address, int start_line, int start_column);

int sm_d_at_cur(char *address);

int sm_l_window(int lib_desc, char *name, int start_line, int start_column);

int sm_l_at_cur(int lib_desc, char *name);

int sm_r_window(char *name, int start_line, int start_column);

int sm_r_at_cur(char *name);

The address of the screen in memory.

Specifies the library in which the window is stored, where lib_desc is an integer
library descriptor returned by sm_l_open . You must call sm_l_open before you
read any screens from a library.

The name of the window.

Specifies the window's top left corner, where start_line and start_column
are zero-based offsets from the physical display's top left corner. Thus, setting
start_line to 1 starts the window at the screen's second line. If the window does
not fit on the display at the specified location, JAM adjusts it as needed.

A negative value for start_line specifies to clear the current screen before
displaying the window. The screen's contents are discarded and cannot be restored.

0 Success.
-1 Screen file's format is incorrect.
-2 Screen cannot be found.
-3 Insufficient memory available to display the screen; the current screen remains

displayed.
-4 Read error occurred after the current screen was cleared and start_line is

-1. Consequently, JAM cannot restore the screen.
-5 System ran out of memory after the current screen was cleared and

start_line is -1. Consequently, JAM cannot restore the screen.
-6 Library is corrupted.
-7 The window is larger than the physical display and there are fields that over-

hang the display.

address

lib_desc

name

start_line ,
start_column

Returns

sm_window

502 JAM 7.0 Language Reference

Use sm_d_window , sm_l_window , or sm_r_window to display the window at the
specified line and column. Use sm_d_at_cur , sm_l_at_cur , or sm_r_at_cur
to display a window at the current cursor position, offset by one line to avoid hid-
ing that line's current display.

The area of the display that surrounds the window remains visible. However, only
the last-invoked window is active, and only its fields are accessible to input and
library functions. To change the active window, use sm_wselect .

When you use sm_r_window , JAM looks for the named screen in the following
places in this order:

� The memory-resident screen list; if found there, it uses sm_d_window to
display it.

� The open libraries; if found there, it uses sm_l_window to display it.

� On disk in the current directory.

� Along the path supplied to sm_initcrt .

� Along all the paths in the setup variable SMPATH. If any path exceeds 80
characters, it is skipped.

If the entire search fails, the function displays an error message and returns.

You can save processing time by using sm_d_window and sm_d_at_cur to
display screens that are memory-resident. Use bin2c to convert screens from disk
files to program data structures that you can compile into your application.

A memory-resident screen never changes at runtime and therefore can be made
sharable on systems let you share read-only data. sm_r_window and
sm_r_at_cur can also display memory-resident screens if they are properly
installed with sm_formlist . Memory-resident screens are especially useful in
applications with a limited number of screens, or in environments with a slow disk.

You can also save processing time with sm_l_window and sm_l_at_cur to
display screens from a library. A library is a single file that stores screens, JPL
modules, and menus. You can assemble a library from individual screen files with
formlib . Libraries let you distribute a large number of screens with an applica-
tion, and can improve efficiency by reducing the number of search paths.

To display a form use sm_r_form or one of its variants. Use sm_close_window
to close the window.

Description

sm_window

5036 JAM Library FunctionsChapter

/* Bring up a window from a library. */
 int ld;

if ((ld = sm_l_open (ºmyformsº)) < 0)
 sm_cancel ();
...
sm_l_window (ld, ºpopupº, 5, 22);
...
sm_l_close (ld);

sm_close_window , sm_form , sm_jwindow

Example

See Also

sm_win_shrink

504 JAM 7.0 Language Reference

sm_win_shrink
Trims the current screen

int sm_win_shrink(void)

Motif, Windows

PI_ERR_NONE: Success

sm_win_shrink trims all space on a screen to the right of the rightmost widget
and below the bottom widget. It does not change the number of JAM lines and col-
umns. It is primarily useful after repositioning fields. Call sm_adjust_area to
restore a screen to its original size.

Environment

Returns

Description

sm_winsize

5056 JAM Library FunctionsChapter

sm_winsize
Lets users interactively move and resize a window

int sm_winsize(void);

0 Success.
-1 Failure.

sm_winsize invokes the viewport status line and lets the user move, resize and
change the offset of the current screen and any sibling windows. XMIT restores the
previous status line. To resize the viewport programmatically, set the applicable
viewport properties for the screen.

Returns

Description

sm_wrotate

506 JAM 7.0 Language Reference

sm_wrotate
Rotates the display of sibling windows

int sm_wrotate(int step);

A positive or negative integer that specifies the number of times to rotate the
windows. A positive value makes the topmost sibling window the last sibling
window for each instance of step . A negative value makes the last sibling window
first window. A value of 0 specifies to perform no rotations.

. 1 The number of sibling windows, less one, on top of the window stack.
0 Failure: There are no sibling windows.

sm_wrotate rotates the sequence of sibling windows according to the value of
step . For example, given the following sequence of sibling windows A, B, and C:

A

B

C

this following function call:

sib_windows = sm_wrotate (1);

rotates the top sibling window C to the bottom of the sibling stack and leaves
screen B on top.

C

A

B

step

Returns

Description

sm_wrotate

5076 JAM Library FunctionsChapter

Conversely, this function call supplies a value of -1:

sib_windows = sm_wrotate (±1);

This rotates the bottom sibling window C to the top:

A

B

C

sm_wrotate can take any value, positive or negative, as the step value. If the
value of step is greater than one, JAM rotates the windows that many times. For
example, given the previous window order, this call:

sib_windows = sm_wrotate (2);

tells JAM to perform two rotations, thus moving the top two windows to the
backÐfirst C, then B. This leaves window A as the topmost window:

B

C

A

sm_setsibling , sm_wselectSee Also

sm_wselect

508 JAM 7.0 Language Reference

sm_

* wselect

Activates a window

int sm_wselect(int window_number);

int sm_n_wselect(char *window_name);

Specifies the window to activate, where window_number is its zero-based offset in
the window stack. Windows are numbered sequentially from the bottom of the
stack, where the bottom-most screen, or base window, is 0. Calling sm_wselect
changes the number of the specified window and all windows previously above it.

The window's screen name.

. 1 The number of the window that was made activeÐeither the value of win-
dow_number , or the maximum if window_number is out of range.

-1 Failure: The window was not found or the window was not open.

sm_wselect lets you change the active window in a multi-window display. This
function is typically used in routines that update information in windows that
might be inactive.

Only one windowÐthe one at the top of the window stackÐcan be active at a
time, and thereby accessible to library functions and user input. These functions
activate a window by bringing it to the top of the window stack and restores the
cursor to its last position in it. If the window is hidden by an overlying window,
JAM brings it to the forefront of the display.

You can specify a window by its offset into the window stack with sm_wselect ,
or by its screen name with sm_n_wselect . sm_wselect involves more work
inasmuch as you must keep track of the inactive window's position on the stack.
However, sm_wselect can find windows displayed with sm_d_window or related
functions, which do not record the screen name.

In character mode, sm_wselect selects sibling windows as a group. If any one of
a set of sibling windows is activated by this function, then all of the siblings are
brought to the top of the window stack. The selected window becomes the active
window at the top of this set. Otherwise, the sequence within the set of siblings
remains the same.

window_number

window_name

Returns

Description

sm_wselect

5096 JAM Library FunctionsChapter

sm_wselect and sm_n_wselect can be used in the following ways:

� Select a hidden screen, update it with sm_putfield , then deselect it with
sm_wdeselect . JAM updates the visible portion of the hidden screen with the
new data. Because of delayed write, JAM updates the screen only when
keyboard input is sought.

� Select a hidden screen and open the keyboard. In this case, the selected screen
becomes visible, and can hide part or all of the previously active screen. This
lets you implement multi-page forms, or switch among several tiled windows.
You can let the user select among windows by defining them as siblings.

sm_wcount , sm_wdeselectSee Also

sm_ww_length

510 JAM 7.0 Language Reference

sm_

* ww_length

Gets the number of characters in a word wrap field

int sm_ww_length(int field_number);

int sm_n_ww_length(char *field_name);

Specifies the field whose length is required. Word wrapped text is allowed only in
multiline text widgets whose Word Wrap property is set to Yes.

. 0 The number of bytes in the specified field, excluding the null terminator.
±1 Failure.

sm_ww_length returns the number of bytes in a word wrap fieldÐthat is, a
multiline text widget whose Word Wrap property is set to Yes. You can call this
function to get the offset into the end of word wrap field data, then use that offset
to append data to the field with sm_ww_write . You can also use it to decide how
large a buffer you need to allocate for reading word wrap field data with
sm_ww_read .

/* this JPL procedure reads text from a filestream and
 * reads each line into a word wrapped field. It uses
 * sm_ww_write to reformat the file text so that it
 * wraps within the field.
 */

proc wrapFileTextToMulti
{
 vars str, last_char, wwErr, err, fileStream

 call sm_fio_error_set(0)

 /* get file stream sent from previous dialog */
 receive DATA fileStream
 err = 0

 while (err == 0)
 {

field_number
field_name

Returns

Description

Example

sm_ww_length

5116 JAM Library FunctionsChapter

 str = sm_fio_gets(fileStream, 255)
 /* check for error condition like EOF */
 if (str != ºº)
 {
 last_char = sm_n_ww_length(ºcommentsº)

 /* if writing to empty array */
 if (last_char = 0)
 {
 wwErr = sm_n_ww_write(ºcommentsº, str, last_char)
 }

 /* otherwise add space after last char before write*/
 else
 {
 wwErr = sm_n_ww_write(ºcommentsº, º º, last_char)
 wwErr = sm_n_ww_write(ºcommentsº, str, last_char+1)
 }
 }
 else
 {
 err = sm_fio_error()
 }
 }
 call sm_fio_close(fileStream)
 return
}

sm_ww_read , sm_ww_writeSee Also

sm_ww_read

512 JAM 7.0 Language Reference

sm_ww_read
Copies the contents of a word wrap field into a text buffer

int sm_ww_read(int field_number, char *buffer, int nbytes, int offset);

int sm_n_ww_read(char *field_name, char *buffer, int nbytes, int offset);

Specifies the field whose contents you want to read. Word wrapped text is allowed
only in multiline text widgets whose Word Wrap property is set to Yes.

A pointer to the buffer into which the field's contents are to be read. To determine
the size required by this buffer, call sm_ww_length to get the length of the word
wrapped text.

The size of buffer in bytes.

The offset into the word wrap field at which to start reading. Supply a value of 0 to
start reading from the beginning of the field.

. 0 The number of bytes read into buffer, excluding the null terminator.
±1 Failure.

sm_ww_read copies word wrapped text from a multiline text widget into buffer ,
starting at offset . Use sm_ww_length to determine the size required for buff-
er .

sm_ww_length , sm_ww_write

field_name,
field_number

buffer

size

offset

Returns

Description

See Also

sm_ww_write

5136 JAM Library FunctionsChapter

sm_ww_write
Writes text into a word wrap field

int sm_ww_write(int field_number, char *text, int offset);

int sm_n_ww_write(char *field_name, char *text, int offset);

Specifies the field to receive the contents of buffer . The field must be a multiline
text widget whose Word Wrap property is set to Yes.

A pointer to a null-terminated buffer that contains the text to write.

The offset into the word wrap field at which to start writing. Supply a value of 0 to
start writing at the beginning of the field. If supplied value is greater than the
field's total length, JAM recalculates the value of offset to the field's length + 1;
the contents of buffer are thereby appended to the end of the field.

. 0 The number of bytes written to the field.
±1 Failure.

sm_ww_write copies text into the specified word wrap fieldÐthat is, a multiline
text widget whose Word Wrap property is set to Yes. sm_ww_write wraps at the
end of words and leaves a space at the end of each line. If a word is equal to or
longer than the length of the field, sm_ww_write breaks the word one character
before the end of the field, appends a space, and wraps the rest of the word on the
next line.

If you try to copy data that is too large for the field to hold, sm_ww_write
truncates the excess text. If the field's original contents exceeds the amount of text
in buffer , the leftover text remains in the field. To avoid this, first clear the field
with sm_clear_array or one of its variants before calling sm_ww_write .

/* this procedure reads text from a filestream and
 * reads each line into a word wrapped field. It uses
 * sm_ww_write to reformat the file text so that it
 * wraps within the field.
 */

field_name,
field_number

buffer

offset

Returns

Description

Overflow and
Underflow

Example

sm_ww_write

514 JAM 7.0 Language Reference

proc wrapFileTextToMulti
{
 vars str, last_char, wwErr, err, fileStream

 call sm_fio_error_set(0)

 /* get file stream sent from previous dialog */
 receive DATA fileStream
 err = 0

 while (err == 0)
 {
 str = sm_fio_gets(fileStream, 255)
 /* check for error condition like EOF */
 if (str != ºº)
 {
 last_char = sm_n_ww_length(ºcommentsº)

 /* if writing to empty array */
 if (last_char = 0)
 {
 wwErr = sm_n_ww_write(ºcommentsº, str, last_char)
 }

 /* otherwise add space after last char before write*/
 else
 {
 wwErr = sm_n_ww_write(ºcommentsº, º º, last_char)
 wwErr = sm_n_ww_write(ºcommentsº, str, last_char+1)
 }
 }
 else
 {
 err = sm_fio_error()
 }
 }
 call sm_fio_close(fileStream)
 return
}

sm_clear_array , sm_ww_length , sm_ww_readSee Also

sm_xlate_table

5156 JAM Library FunctionsChapter

sm_xlate_table
Installs or deinstalls an 8±bit character translation table

char *sm_xlate_table(int which, char *new);

Determines whether the table is for keyboard input or screen output through
arguments of XLATE_INPUT or XLATE_OUTPUT.

The name of the new translation table, where new can hold at least 256 bytes.

w Pointer to the previous table.
w NULL: No previous table found.

sm_xlate_table installs the translation table pointed to by new. To deinstall and
deactivate translation, supply a value of NULL for new.

which

new

Returns

Description

sm_xm_get_base_window

516 JAM 7.0 Language Reference

sm_xm_get_base_window
Gets a Widget ID to the base window

#include <smxmuser.h>

Widget sm_xm_get_base_window(void);

Motif

w The base window's Widget ID.
w Failure: 0

sm_xm_get_base_window gets a Widget ID to the base window that you can
pass to the Motif window manager.

sm_drawingarea

Environment

Returns

Description

See Also

sm_xm_get_display

5176 JAM Library FunctionsChapter

sm_xm_get_display
Gets a Widget ID to the current display

#include <smxmuser.h>

Widget sm_xm_get_display(void);

Motif

w A Widget ID to the current display.
w Failure: 0

sm_xm_get_display gets a Widget ID to the current display that you can pass to
the Motif window manager.

Environment

Returns

Description

519

JAM Properties
This appendix contains tables that list all JAM properties that are accessible in JPL
or through calls to properties API functions. Each table contains three columns
with the following information:

� The property's JPL mnemonic. The corresponding C constant uses the same
string in upper case, prefixed by PR_. For example, the equivalent constant for
font_name is PR_FONT_NAME.

� Values that are valid for this property.

� Special requirements for this propertyÐfor example, if a subproperty, the
prerequisite setting for its ªparentº property; or whether it is read-only or
GUI-specific.

This appendix contains major sections to describe the properties of each JAM
application component: the application itself, screens, and widgets. Four widget
types have their own sections: selection groups, synchronized scrolling groups,
table views, and link widgets. Properties are subdivided under the headings used in
the properties window: Identity, Geometry, and so on. Within each subdivision,
properties are listed alphabetically.

Note: Properties that are denoted as runtime properties are not accessible at
design timeÐthat is, through the screen editor or setup variables. Several
properties that are visible in the properties window are not accessible at
runtimeÐfor example, the Inherit From and Columns properties.

AA

Application Properties

520 JAM 7.0 Language Reference

Application Properties

Application properties are referenced by @jam modifier, which always refers to the
current application and takes no arguments. For example, this if statement tests
whether the application is running on a GUI platform:

if(@jam±>in_gui)

Table 22. Application properties

Property Values Constraints

bold PV_DEFAULT
PV_YES/PV_NO

control_string[log-key] str

field_below[int] objid Runtime, Read-only

font_name str

id int Read-only

in_gui PV_YES/PV_NO Read-only

in_zoom PV_YES/PV_NO Read-only

italic PV_DEFAULT
PV_YES/PV_NO

mouse_field int Ð field number Read-only

mouse_field_name str Ð field name Read-only

mouse_field_occ int Ð occurrence number Read-only

mouse_form_name str Read-only

num_fields_below int Runtime, Read-only

num_svs_below int Runtime, Read-only

num_tvs_below int Runtime, Read-only

point_size str

sv objid Runtime, Read-only

sv_below[int] objid Runtime, Read-only

tv_below[int] objid Runtime, Read-only

Screen Properties

Appendix 521A JAM Properties

Property ConstraintsValues

underlined PV_DEFAULT
PV_YES/PV_NO

widget_type PV_APPLICATION Runtime, Read-only

Screen Properties

Screen properties can be referenced by @screen or @screen_num modifiers.
These modifiers are optional for properties that are unique to screensÐfor
example, numflds . Thus, these two statements are equivalent:

total_flds = sales_data.jam±>numflds
total_flds = @screen(ºsales_data.jamº)±>numflds

@screen takes the screen name as an argument; the .jam extension is optional if it
is specified as the default by setup variable SMFEXTENSION.

@screen_num takes an integer argument that specifies the screen's position on the
window stack: 0 refers to the current window, ±1 to the window below it, and so
on. For example, this statement gets the number of fields on the current screen:

total_flds = @screen_num(0)±>numflds

Identity

Table 23. Screen identity properties

Property Values Constraints

dialog PV_YES/PV_NO

fldnum int Runtime, Read-only

id int Read-only

memo1..memo9 str

name str Runtime

numflds int Runtime, Read±only

numgrps int Runtime, Read±only

Screen Properties

522 JAM 7.0 Language Reference

Property ConstraintsValues

sibling int Runtime

title str

widget_type PV_SCREEN Runtime, Read-only

Geometry

Table 24. Screen geometry properties

Property Values Constraints

grid_height str
see Editors Guide, page 41

GUI

grid_width GUI

height str
see Editors Guide, page 41

max_min PV_NEITHER
PV_BOTH
PV_MAXIMIZEABLE
PV_MINIMIZEABLE

GUI

min_horiz_space str
see Editors Guide, page 41

GUI

min_vert_space str
see Editors Guide, page 41

GUI

region_margin str
see Editors Guide, page 41

GUI

resize_function str

resizeable PV_YES/PV_NO

startup PV_NORMAL
PV_ICONIFIED
PV_MAXIMIZED

GUI

vncolms int Runtime

vnlines int Runtime

vofcolm int Runtime

Screen Properties

Appendix 523A JAM Properties

Property ConstraintsValues

vofline int Runtime

vstcolm int Runtime

vstline int Runtime

width int

Color

Table 25. Screen color properties

Property Values Constraints

bg_color_name str bg_color_type =
 PV_EXTENDED

bg_color_num int Ð JAM basic color;
see page 140 in the Configuration
Guide

bg_color_type =
 PV_BASIC

bg_color_type PV_BASIC
PV_EXTENDED
PV_SCHEME

Font

Table 26. Screen font properties

Property Values Constraints

bold PV_DEFAULT
PV_YES/PV_NO

font_name str

italic PV_DEFAULT
PV_YES/PV_NO

point_size str

underlined PV_DEFAULT
PV_YES/PV_NO

Screen Properties

524 JAM 7.0 Language Reference

Focus

Table 27. Screen focus properties

Property Values Constraints

control_string[log-key] str

entry_function str

exit_function str

menu_name str

menu_script_file str

Help

Table 28. Screen help properties

Property Values Constraints

external_help_tag str

jam_help_screen str

status_line_text str

Display

Table 29. Screen display properties

Property Values Constraints

border PV_YES/PV_NO

border_bg_color_name str border_bg_color_type =
 PV_EXTENDED

border_bg_color_num int Ð JAM basic color;
see page 140 in the Configu-
ration Guide.

border_bg_color_type =
 PV_BASIC

border_bg_color_type PV_BASIC
PV_EXTENDED
PV_SCHEME

border = PV_YES

Screen Properties

Appendix 525A JAM Properties

Property ConstraintsValues

border_fg_color_name str border_fg_color_type =
 PV_EXTENDED

border_fg_color_num int Ð JAM basic color;
see page 140 in the Configu-
ration Guide.

border_fg_color_type =
 PV_BASIC

border_fg_color_type PV_BASIC
PV_EXTENDED
PV_SCHEME

border = PV_YES

border_style int Ð 0..9 character mode
border = PV_YES

close_item PV_YES/PV_NO GUI
system_menu = PV_YES

icon str GUI

pointer str GUI

system_menu PV_YES/PV_NO

title_bar PV_YES/PV_NO

wallpaper_pixmap str GUI

wallpaper_style PV_CENTER
PV_TILE

GUI
wallpaper_pixmap = string

Transaction

Table 30. Screen transaction manager properties

Property Values Constraints

fetch_directions PV_CONT_ALWAYS
PV_CONT_DEFAULT
PV_CONT_NEVER
PV_CONT_VIEW_ONLY

model str

root str
If str is ±none± , then the trans-
action manager is not active in
this screen.

Read-only

Widget Properties

526 JAM 7.0 Language Reference

Widget Properties

Widget properties can be referenced by @widget or @field_num modifiers. These
modifiers are optional for properties that are unique to widgetsÐfor example,
hidden . Thus, these two statements are equivalent:

emp_salary±>hidden = PV_YES
@widget(ºemp_salaryº)±>hidden = PV_YES

@widget takes the widget's name as an argument. @field_num takes an integer
argument that specifies a field's position on the screen. For example, this code gets
the name of the first field that allows data entry:

for i = 1 while field_num(i)±>input_protection != PV_YES
{}
fname = @field_num(i)±>name

Identity

Table 31. Widget identity properties

Property Values Constraints

active PV_YES/PV_NO

column_title str

c_type PV_DEFAULT
PV_OMIT
PV_CHAR_STRING
PV_INT
PV_UNSIGNED_INT
PV_SHORT_INT
PV_LONG_INT
PV_FLOAT
PV_DOUBLE
PV_ZONED_DEC
PV_PACKED_DEC
PV_HEX_DEC

drop_down_data[int] str drop_down_source =
 PV_SRC_CONSTANT_DATA

drop_down_screen str Ð screen name drop_down_source =
 PV_SRC_EXTERNAL_SCREEN

drop_down_size int

Widget Properties

Appendix 527A JAM Properties

Property ConstraintsValues

drop_down_source PV_ CONSTANT_DATA

default_cancel PV_NEITHER
PV_BOTH
PV_DEFAULT_BUTTON
PV_CANCEL_BUTTON

fldnum int Runtime, Read-only

grid objid Runtime, Read-only

grid_column int grid != ºº

group objid Runtime, Read-only

hidden PV_YES
PV_NO
PV_ALWAYS

id int Runtime, Read-only

listbox_type PV_ACTION
PV_SELECT_ANY

memo1...memo9 str

mnemonic_character str Runtime

mnemonic_position int

name str

precision int c_type =
 PV_DOUBLE | PV_FLOAT |
 PV_PACKED | PV_ZONED

sign PV_YES/PV_NO c_type = FT_PACKED|FT_ZONED

sync_group objid Runtime, Read-only

Widget Properties

528 JAM 7.0 Language Reference

Property ConstraintsValues

tableview objid Runtime, Read-only

widget_type PV_RELEASE_5
PV_DYNAMIC_LABEL
PV_SINGLE_LINE_TEXT
PV_MULTILINE_TEXT
PV_PUSH_BUTTON
PV_TOGGLE_BUTTON
PV_RADIO_BUTTON
PV_CHECK_BOX
PV_OPTION_MENU
PV_LIST_BOX
PV_HORIZONTAL_SCALE
PV_VERTICAL_SCALE
PV_COMBO_BOX
PV_BOX
PV_HORIZONTAL_LINE
PV_VERTICAL_LINE
PV_GRID_FRAME
PV_GRAPH
PV_LINK
PV_GROUP
PV_STATIC_LABEL
PV_TABLE_VIEW
PV_SYNC_GROUP

Geometry

Table 32. Widget geometry properties

Property Values Constraints

alt_scroll_func str

array_size int

auto_horiz_resize PV_YES/PV_NO GUI

auto_vert_resize PV_YES/PV_NO GUI

circular PV_YES/PV_NO

column_move_resize PV_YES/PV_NO

current_offset int Runtime

Widget Properties

Appendix 529A JAM Properties

Property ConstraintsValues

end_column int

end_row int

first_occurrence int Runtime

grid_current_occ int Runtime

height str
see Editors Guide, page 41

hor_scroll_bar PV_YES/PV_NO word_wrap = PV_NO &&
 max_data_length > length

horiz_anchor PV_LEFT
PV_RIGHT
PV_CENTER

GUI

horiz_max_size str
see Editors Guide, page 41

GUI
auto_horiz_resize = PV_YES

horiz_min_size str
see Editors Guide, page 41

GUI
auto_horiz_resize = PV_YES

horizontal PV_YES/PV_NO array_size > 1

length int

max_data_length int

max_occurrences int scrolling = PV_YES

num_occurrences int Runtime

onscreen_columns int

onscreen_rows int

position_region PV_YES/PV_NO

scroll_increment int scrolling = PV_YES

scrolling PV_YES/PV_NO

shift_increment int max_data_length > length

size_to_contents PV_YES/PV_NO

spacing int array_size > 1

start_column int

start_row int

Widget Properties

530 JAM 7.0 Language Reference

Property ConstraintsValues

vertical_anchor PV_TOP
PV_BOTTOM
PV_MIDDLE

GUI

vert_max_size str
see Editors Guide, page 41

GUI
auto_vert_resize = PV_YES

vert_min_size str
see Editors Guide, page 41

GUI
auto_vert_resize = PV_YES

vert_scroll_bar PV_YES/PV_NO

width str
see Editors Guide, page 41

Positioning

Table 33. Widget positioning properties

Property Values Constraints

horiz_shrinking PV_DECREASE_REGION_SIZE
PV_KEEP_REGION_SIZE
PV_PREVENT_GRID_SHRINKING

GUI

min_horiz_space str
see Editors Guide, page 41

GUI

min_vert_space str
see Editors Guide, page 41

GUI

region_margin str
see Editors Guide, page 41

GUI

vert_shrinking PV_DECREASE_REGION_SIZE
PV_KEEP_REGION_SIZE
PV_PREVENT_GRID_SHRINKING

GUI

Widget Properties

Appendix 531A JAM Properties

Color

Table 34. Widget color properties

Property Values Constraints

bg_color_name str bg_color_type = PV_EXTENDED

bg_color_num int Ð JAM basic color;
see page 140 in the Config-
uration Guide.

bg_color_type = PV_BASIC

bg_color_type PV_BASIC
PV_EXTENDED
PV_SCHEME

blink PV_YES/PV_NO bg_color_type = PV_BASIC

dim PV_YES/PV_NO bg_color_type = PV_BASIC

fg_color_name str fg_color_type = PV_EXTENDED

fg_color_num int Ð JAM basic color;
see page 140 in the Config-
uration Guide.

fg_color_type = PV_BASIC

fg_color_type PV_BASIC
PV_EXTENDED
PV_SCHEME

reverse PV_YES/PV_NO bg_color_type = PV_BASIC

Font

Table 35. Widget font properties

Property Values Constraints

bold PV_YES/PV_NO

font_name str Ð font name

italic PV_YES/PV_NO

point_size str

underlined PV_YES/PV_NO

Widget Properties

532 JAM 7.0 Language Reference

Focus

Table 36. Widget focus properties

Property Values Constraints

alt_next_tab_stop str Ð field name next_tab_stop = widget-name

alt_prev_tab_stop str Ð field name prev_tab_stop = widget-name

autotab PV_YES/PV_NO

entry_function str

exit_function str

focus_protection PV_YES/PV_NO

next_tab_stop str Ð field name

prev_tab_stop str Ð field name

row_entry_func str

row_exit_func str

selected PV_YES/PV_NO Runtime

Help

Table 37. Widget help properties

Property Values Constraints

auto_help PV_YES/PV_NO jam_help_screen = screen-name

auto_item PV_YES/PV_NO selection_screen = screen-name

external_help_tag str

jam_help_screen str

popup_menu str

popup_script_file str

selection_screen str

status_line_text str

Widget Properties

Appendix 533A JAM Properties

Input

Table 38. Widget input properties

Property Values Constraints

all_protect PV_YES/PV_NO Runtime

clearing_protect PV_YES/PV_NO

convert_case PV_MIXED
PV_UPPER
PV_LOWER

edit_mask str
see Editors Guide, page 164

keystroke_filter = PV_EDIT_MASK

input_protection PV_YES/PV_NO

keystroke_filter PV_UNFILTERED
PV_DIGITS_ONLY
PV_YES_NO
PV_ALPHABETIC
PV_NUMERIC
PV_ALPHANUMERIC
PV_REGULAR_EXP
PV_EDIT_MASK

maximum_value str

minimum_value str

must_fill PV_YES/PV_NO

reg_exp_filter str
see Editors Guide, page 162

keystroke_filter = PV_REGULAR_EXP

regular_expr str
see Editors Guide, page 166

required PV_YES/PV_NO

select_on_entry PV_YES/PV_NO

table_lookup str Ð screen name

Widget Properties

534 JAM 7.0 Language Reference

Validation

Table 39. Widget validation properties

Property Values Constraints

calculation str
see Editors Guide, page 316

control_string str

double_click str Ð control string

mdt PV_YES/PV_NO Runtime

no_validation PV_YES/PV_NO

validation_func str

valided PV_YES/PV_NO Runtime

Format/Display

Table 40. Widget format and display properties

Property Values Constraints

active_pixmap str Ð file name
see Editors Guide, page 266

GUI

armed_pixmap str Ð file name
see Editors Guide, page 266

GUI
active_pixmap = file-name

border PV_YES/PV_NO character mode

border_style int Ð 0..9
see Editors Guide, page 265

character mode
border = PV_YES

clock_type PV_12_HOUR
PV_24_HOUR

data_formatting = PV_DATE_TIME

column_separators PV_YES/PV_NO

column_titles PV_NONE
PV_AUTO_NUMBER
PV_AUTO_LETTER
PV_PER_COLUMN

currency_symbol str numeric_type = PV_CUSTOM

Widget Properties

Appendix 535A JAM Properties

Property ConstraintsValues

custom_format str
see Editors Guide, page 245

date_format = PV_CUSTOM

customer_drawn PV_YES/PV_NO GUI

data_formatting PV_NONE
PV_DATE_TIME
PV_NUMERIC

date_format PV_DEFAULT_0
..
PV_DEFAULT_9
PV_CUSTOM

data_formatting = PV_DATE_TIME

decimal_places int

decimal_symbol PV_DOT
PV_COMMA

numeric_type = PV_CUSTOM

empty_format PV_YES/PV_NO data_formatting = PV_NUMERIC

fill_character str data_formatting = PV_NUMERIC

frequency int system_update = PV_YES

frozen_columns int

inactive_pixmap str Ð file name
see Editors Guide, page 266

GUI
active_pixmap = file-name

justification PV_LEFT
PV_RIGHT
PV_CENTERED

max_decimals int numeric_type = PV_CUSTOM

min_decimals int numeric_type = PV_CUSTOM

null_field PV_YES/PV_NO

null_text str null_field = PV_YES

numeric_type PV_DEFAULT_0
..
PV_DEFAULT_9
PV_CUSTOM

data_formatting = PV_NUMERIC

password_field PV_YES/PV_NO

password_char str password_field = PV_YES

Widget Properties

536 JAM 7.0 Language Reference

Property ConstraintsValues

placement PV_LEFT
PV_RIGHT
PV_MIDDLE

data_formatting = PV_NUMERIC

repeating PV_YES/PV_NO null_field = PV_YES

rounding PV_ROUND_ADJUST
PV_ROUND_DOWN
PV_ROUND_UP

data_formatting = PV_NUMERIC

row_separators PV_YES/PV_NO

row_titles PV_NONE
PV_AUTO_NUMBER
PV_FIRST_COLUMN

stripe_current_row PV_YES/PV_NO

thousand_sep PV_COMMA
PV_DOT
PV_BLANK
PV_NONE

numeric_type = PV_CUSTOM

system_update PV_YES/PV_NO data_formatting = PV_DATE_TIME

word_wrap PV_YES/PV_NO

zero_format PV_YES/PV_NO data_formatting = PV_NUMERIC

Transaction

Table 41. Widget transaction manager properties

Property Values Constraints

class str
see Editors Guide, page 287

synchronization PV_DEFAULT
PV_YES
PV_NO

Read-only

Widget Properties

Appendix 537A JAM Properties

Database

Table 42. Widget database properties

Property Values Constraints

column_name str Read-only

group_by str

having str

in_delete_where PV_YES/PV_NO Read-only

in_update_where PV_YES/PV_NO Read-only

insert_expression str
see Editors Guide, page 356

Read-only
use_in_insert = PV_YES

select_expression str
see Editors Guide, page 354

use_in_select = PV_YES

select_force_valid PV_YES/PV_NO use_in_select = PV_YES

select_set_valid PV_YES/PV_NO use_in_select = PV_YES

sv objid Runtime, Read-only

tv objid Runtime, Read-only

update_expression str
see Editors Guide, page 357

Read-only
use_in_update = PV_YES

use_if_null PV_YES/PV_NO use_in_where = PV_YES

use_in_insert PV_YES/PV_NO Read-only

use_in_select PV_YES/PV_NO Read-only

use_in_update PV_YES/PV_NO Read-only

use_in_where PV_YES/PV_NO

validation_link str

Widget Properties

538 JAM 7.0 Language Reference

Property ConstraintsValues

version_column PV_YES/PV_NO Read-only

where_operator PV_WHERE_EQUAL
PV_WHERE_GREATER
PV_WHERE_IN
PV_WHERE_LESS
PV_WHERE_LIKE
PV_WHERE_LIKE_R
PV_WHERE_LIKE_LR
PV_WHERE_NONE
PV_WHERE_NOT_EQUAL
PV_WHERE_NOT_GREATER
PV_WHERE_NOT_IN
PV_WHERE_NOT_LESS
PV_WHERE_NOT_LIKE
PV_WHERE_NOT_LIKE_R
PV_WHERE_NOT_LIKE_LR

use_in_where= PV_YES

Graphs
Graphs and their properties are valid only on GUI platforms.

Table 43. Graph general properties

Property Values Constraints

bar_chart_type PV_ABSOLUTE
PV_STACK
PV_STEP
PV_100
PV_OVERLAP

chart_type =PV_BAR

chart_3d PV_YES/PV_NO

chart_type PV_PIE
PV_BAR
PV_XY_PLOT
PV_HIGH_LOW

depth str Ð 0.0..100.0 3d = PV_YES

horiz_rotation str Ð 0..90 3d = PV_YES
chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Widget Properties

Appendix 539A JAM Properties

Property ConstraintsValues

orientation PV_HORIZONTAL
PV_VERTICAL

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

subtitle str

subtitle_text_size str Ð 0.0..100.0 subtitle = str

text_size str Ð 0.0..100.0

title str

title_text_size str Ð 0.0..100.0 title = str

vert_rotation str Ð 0..90 3d = PV_YES

Table 44. Graph data properties

Property Values Constraints

bar_style PV_BAR
PV_LINE
PV_CURVE
PV_POINT
PV_TREND
PV_AREA

chart_type = PV_BAR
y_value_source[int] = str

data_basic_color int Ð JAM basic color;
see Configuration Guide, page
140

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW
y_value_source[int] = str

data_value_location PV_NONE
PV_IN
PV_OUT

chart_type = PV_BAR
y_value_source[int] = str

legend[int] str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW
y_value_source[int] = str

Widget Properties

540 JAM 7.0 Language Reference

Property ConstraintsValues

line_style[int] PV_NONE
PV_SOLID
PV_DASHED
PV_DOTTED
PV_LONG_DASH
PV_DASH_DOT

If one of the following:

bar_style =
 PV_LINE | PV_CURVE |
 PV_TREND

xy_style =
 PV_LINE | PV_CURVE

line_width[int] str Ð 0..100 If one of the following:

bar_style =
 PV_LINE | PV_CURVE |
 PV_TREND

xy_style =
 PV_LINE | PV_CURVE

point_marker[int] PV_NONE
PV_DOT
PV_PLUS
PV_STAR
PV_O
PV_X
PV_SQUARE
PV_DIAMOND
PV_TRIANGLE
PV_CIRCLE
PV_FILLED_SQUARE
PV_FILLED_DIAMOND
PV_FILLED_TRIANGLE
PV_FILLED_CIRCLE

If one of the following:

bar_style =
 PV_LINE | PV_CURVE |
 PV_POINT | PV_TREND

xy_style =
 PV_LINE | PV_CURVE |
 PV_POINT

x_value_source[int] str
see Editors Guide, page 156

chart_type = PV_XY_PLOT
y_value_source[int] = str

xy_style PV_CURVE
PV_LINE
PV_POINT

chart_type = PV_XY_PLOT
y_value_source[int] = str

y_axis[int] PV_Y1
PV_Y2

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW
y_value_source[int] = str

y_value_source[int] str
see Editors Guide, page 137

Widget Properties

Appendix 541A JAM Properties

Table 45. Pie graph properties

Property Values Constraints

pie_diameter str Ð 0.0..200.0 chart_type = PV_PIE

pie_direction PV_CLOCKWISE
PV_COUNTERCLOCKWISE

chart_type = PV_PIE

pie_start_angle str Ð 0..359 chart_type = PV_PIE

pie_x_position str Ð 0.0..100.0 chart_type = PV_PIE

pie_y_position str Ð 0.0..100.0 chart_type = PV_PIE

Table 46. Pie graph segment properties

Property Values Constraints

seg_label_location PV_OUT
PV_LEGEND

chart_type = PV_PIE

seg_label_source str
see Editors Guide, page 147

chart_type = PV_PIE

seg_percent_location PV_NONE
PV_IN
PV_OUT

chart_type = PV_PIE

seg_style_source str
see Editors Guide, page 148

chart_type = PV_PIE

seg_value_location PV_NONE
PV_IN
PV_OUT

chart_type = PV_PIE

Table 47. Graph legend properties

Property Values Constraints

legend_border_width str Ð 0..100 legend_placement =
 PV_DEFAULT |
 PV_LOCATION |
 PV_POSITION

legend_in_data_space PV_YES/PV_NO legend_placement =
 PV_LOCATION

Widget Properties

542 JAM 7.0 Language Reference

Property ConstraintsValues

legend_text_size str Ð 0.0..100.0 legend_placement =
 PV_DEFAULT |
 PV_LOCATION |
 PV_POSITION

legend_placement PV_DEFAULT
PV_NONE
PV_LOCATION
PV_POSITION

legend_title str legend_placement =
 PV_DEFAULT |
 PV_LOCATION |
 PV_POSITION

legend_x_anchor PV_LEFT
PV_CENTER
PV_RIGHT

legend_placement =
 PV_POSITION

legend_x_location PV_LEFT
PV_CENTER
PV_RIGHT

legend_placement =
 PV_LOCATION

legend_x_position str Ð 0.0..100.0 legend_placement =
 PV_POSITION

legend_y_anchor PV_TOP
PV_MIDDLE
PV_BOTTOM

legend_placement =
 PV_POSITION

legend_y_location PV_TOP
PV_MIDDLE
PV_BOTTOM

legend_placement =
 PV_LOCATION

legend_y_position str Ð 0.0..100.0 legend_placement =
 PV_POSITION

Table 48. Graph axis properties

Property Values Constraints

x_axis_label str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Widget Properties

Appendix 543A JAM Properties

Property ConstraintsValues

x_axis_label_location PV_ALONG_SIDE
PV_DOWN_SIDE
PV_TOP

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_axis_location PV_EDGE
PV_OPPOSITE_EDGE
PV_ZERO
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_axis_maximum str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_axis_minimum str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_axis_scale PV_LINEAR
PV_COMMON_LOG

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_axis_label str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_axis_label_location PV_ALONG_SIDE
PV_DOWN_SIDE
PV_TOP

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_axis_location PV_EDGE
PV_OPPOSITE_EDGE
PV_ZERO
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_axis_maximum str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_axis_minimum str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_axis_scale PV_LINEAR
PV_COMMON_LOG

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_axis_label str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Widget Properties

544 JAM 7.0 Language Reference

Property ConstraintsValues

y2_axis_label_location PV_ALONG_SIDE
PV_DOWN_SIDE
PV_TOP

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_axis_location PV_EDGE
PV_OPPOSITE_EDGE
PV_ZERO
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_axis_maximum str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_axis_minimum str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_axis_scale PV_LINEAR
PV_COMMON_LOG

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Table 49. Graph tick mark properties

Property Values Constraints

x_tick_grid_style PV_SOLID
PV_DASHED
PV_DOTTED
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_tick_label_source str
see Editors Guide, page 134

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_tick_major_increment str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_tick_minor_increment str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

x_tick_style PV_IN
PV_OUT
PV_BOTH
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Widget Properties

Appendix 545A JAM Properties

Property ConstraintsValues

x_tick_width str Ð 0..100 chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_tick_grid_style PV_SOLID
PV_DASHED
PV_DOTTED
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_tick_label_source str
see Editors Guide, page 134

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_tick_major_increment str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_tick_minor_increment str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_tick_style PV_IN
PV_OUT
PV_BOTH
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y1_tick_width str Ð 0..100 chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_tick_grid_style PV_SOLID
PV_DASHED
PV_DOTTED
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_tick_label_source str
see Editors Guide, page 134

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_tick_major_increment str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_tick_minor_increment str chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Selection Group

546 JAM 7.0 Language Reference

Property ConstraintsValues

y2_tick_style PV_IN
PV_OUT
PV_BOTH
PV_NONE

chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

y2_tick_width str Ð 0..100 chart_type =
 PV_BAR | PV_XY_PLOT |
 PV_HIGH_LOW

Selection Group
Selection group properties can be referenced by the @widget modifier. This
modifier is optional for properties that are unique to widgetsÐfor example,
num_of_selections .

Identity

Table 50. Selection group identity properties

Property Values Constraints

c_type PV_DEFAULT
PV_OMIT
PV_CHAR_STRING
PV_INT
PV_UNSIGNED_INT
PV_SHORT_INT
PV_LONG_INT
PV_FLOAT
PV_DOUBLE
PV_ZONED_DEC
PV_PACKED_DEC
PV_HEX_DEC

id int Runtime, Read-only

memo1...memo9 str

name str

num_of_selections PV_0_OR_1
PV_1
PV_ANY

Selection Group

Appendix 547A JAM Properties

Property ConstraintsValues

precision int c_type =
 PV_DOUBLE | PV_FLOAT |
 PV_PACKED | PV_ZONED

sign PV_YES/PV_NO c_type = FT_PACKED|FT_ZONED

Geometry

Table 51. Selection group geometry properties

Property Values Constraints

num_occurrences int Runtime

Focus

Table 52. Selection group focus properties

Property Values Constraints

alt_next_tab_stop str Ð field name next_tab_stop = widget-name

alt_prev_tab_stop str Ð field name prev_tab_stop = widget-name

entry_function str

exit_function str

next_tab_stop str Ð field name

prev_tab_stop str Ð field name

Synchronized Scrolling Group

548 JAM 7.0 Language Reference

Validation

Table 53. Selection group validation properties

Property Values Constraints

mdt PV_YES/PV_NO Runtime

validation_func str

valided PV_YES/PV_NO Runtime

Synchronized Scrolling Group

Synchronized scrolling group properties can be referenced by the @widget
modifier. This modifier is optional for properties that are unique to widgetsÐfor
example, scroll_increment .

Identity

Table 54. Synchronized scrolling group identity properties

Property Values Constraints

id int Runtime, Read-only

memo1...memo9 str

name str

widget_type PV_SYNC_GROUP Runtime, Read-only

Geometry

Table 55. Synchronized scrolling group geometry properties

Property Values Constraints

array_size int

circular PV_YES/PV_NO

Table View

Appendix 549A JAM Properties

Property ConstraintsValues

max_occurrences int

scroll_increment int

Table View

Table view properties can be referenced by the @widget modifier. This modifier is
optional for properties that are unique to widgetsÐfor example, primary_key .

Identity

Table 56. Table view identity properties

Property Values Constraints

id int Runtime, Read-only

name str

widget_type PV_TABLE_VIEW Runtime, Read-only

Transaction

Table 57. Table view transaction manager properties

Property Values Constraints

fetch_directions PV_CONT_ALWAYS
PV_CONT_DEFAULT
PV_CONT_NEVER
PV_CONT_VIEW_ONLY

function str

model str

updatable PV_YES/PV_NO Read-only

Table View

550 JAM 7.0 Language Reference

Database

Table 58. Table view database properties

Property Values Constraints

columns[int] str Read-only

distinct PV_YES/PV_NO

field_below[int] objid Runtime, Read-only

primary_key[int] str Read-only

sort_widgets[int] str

table str Read-only

Traversal

Table 59. Table view traversal properties

Property Values Constraints

bi_status[int] int
See App. Dev. Guide, page 380

Runtime, Read-only

child[int] objid Runtime, Read-only

field[int] objid Runtime, Read-only

field_below[int] objid Runtime, Read-only

key_constant[int] str Runtime, Read-only

key_field[int] objid Runtime, Read-only

num_children int Runtime, Read-only

num_fields int Runtime, Read-only

num_fields_below int Runtime, Read-only

num_key_columns int Runtime, Read-only

num_sorts int Runtime, Read-only

num_sv_fields int Runtime, Read-only

num_svs_below int Runtime, Read-only

Link Widget

Appendix 551A JAM Properties

Property ConstraintsValues

num_tvs int Runtime, Read-only

num_tvs_below int Runtime, Read-only

parent objid Runtime, Read-only

parent_link objid Runtime, Read-only

source_occ int Runtime, Read-only

sv objid Runtime, Read-only

sv_below[int] objid Runtime, Read-only

sv_field[int] objid Runtime, Read-only

tv[int] objid Runtime, Read-only

tv_below[int] objid Runtime, Read-only

sv_field[int] objid Runtime, Read-only

sort_widgets[int] str Runtime, Read-only

For a description of each traversal property, refer to page 380 in the Application
Development Guide.

Link Widget

Link widget properties can be referenced by the @widget modifier. This modifier
is optional for properties that are unique to link widgetsÐfor example, child .

Identity

Table 60. Link identity properties

Property Values Constraints

id int Read-only

name str

widget_type PV_LINK Runtime, Read-only

Link Widget

552 JAM 7.0 Language Reference

Transaction

Table 61. Link transaction manager properties

Property Values Constraints

child str Read-only

delete_order PV_CHILD_FIRST
PV_PARENT_FIRST

Read-only

insert_order PV_CHILD_FIRST
PV_PARENT_FIRST

Read-only

parent str Read-only

relations[int] str Read-only

type PV_LNK_SEQUENTIAL
PV_LNK_SERVER
PV_LNK_NONE

Read-only

update_order PV_CHILD_FIRST
PV_PARENT_FIRST

Read-only

Traversal

Table 62. Link traversal property

Property Values Constraints

num_relations int Runtime, Read-only

553

Index
Symbols

@date, in JPL, 36

@length, in JPL, 37

@sum, in JPL, 37

A
Application

aborting, 182, 296
escaping to operating system, 342
handle to instance, getting, 395
initialization, 282
properties. See Application runtime properties
referencing in JPL, 25
resetting display to system defaults, 426
returning after escape, 430
start, 308

Application components, referencing, 24
with object modifiers, 25

Application runtime properties, 520
getting, 406, 413

cursor offset in field, 444
decimal symbol, 406

Application runtime properties (continued)
getting (continued)

no value, 406
repository name, 406
screen name, 407
status line attributes, 407
terminal identifier, 406
video settings, 407
yes value, 406

getting handle to, 416
setting, 418, 421

decimal symbol, 421
no value, 421
screen name, 421
status line attributes, 421
through global variables, 297
video settings, 421
yes value, 421

Argument passing in JPL, 14

Array
clearing all data, 186
copying data, 189
declaring in JPL, 76
deleting occurrence, 219
editing contents with external editor, 235
getting

current occurrence number, 402
runtime properties. See Array runtime properties

554 JAM 7.0 Language Reference

Array (continued)
inserting occurrence, 291
reading file contents into, 239
scrolling. See Scrolling array
setting runtime properties. See Array runtime prop-

erties
sum of occurrences, 37
synchronizing. See Synchronized arrays
trimming, 446
writing contents to file, 233

Array data, accessing in JPL, 27

Array runtime properties
accessing in JPL, 30
getting, 413±415

for element, 414
for occurrence, 414

getting handle to elements, 417
getting handle to occurrences, 417
setting, 418±420

for element, 419
for occurrence, 419

B
Backtab, 169

Base window, getting Widget ID, 516

Before image processing
comparing values, 171±172
copying current values, 173
initializing, 174±175

Bell
invoking, 170
setting in messages, 60, 224

Binary variables
deleting occurrence, 111
getting

maximum number of occurrences, 115
occurrence data, 113
occurrence data length, 112
occurrence length, 114
pointer to occurrence, 110

setting, occurrence data length, 116

Bitmap, mapping string ID to integer ID, 409

Bitwise expression, 39

Bitwise operators, 37

Built±in control functions, 81±87

Bundle. See Send data

C
Calling JPL procedure, 14

as hook function, 15
from control string, 16
through call command, 17
within expression, 17

Check digit function, executing, 183

Colon preprocessing, 20
simulating from C, 124±125
substring specifier, 22

Combo box widget, updating contents, 495

Comments, in JPL, 7

Constants in JPL, 23

Continuation character, 6

Continuation file, using in transaction manager, 465

CONTINUE, availability in transaction manager, 465

Control flow in JPL, 6

Control string, calling JPL, 16

Conversion utilities, jpl2bin, 11

Copying widgets, at runtime, 399

Currency format, stripping from string, 453

Cursor
backtabbing to previous field, 169
changing delay state, 212
controlling behavior in group, 318
getting location in field, 444
getting offset in field, 216
moving to

field, 275, 403
first field, 280
last field, 323
next field, 458
next line, 397

toggling position display, 180
turning off, 178
turning on, 179

Cursor (database), checking status, 152

Index 555

D
Data type, JPL, 32

Database columns, fetching binary values, 110

Database connections, checking status, 151

Database engines
checking status, 153
deinstalling, 154
initializing, 149±150

Database interface
execute dbms command in JPL, 49
initializing, 117

Date, using in JPL expressions, 36

Date/time format
applying to supplied value, 492
applying to system date/time, 436

DBMS commands
executing from C, 118, 120, 265
last executed command, 148

DDE
callback function, installing, 207
cold links, creating for JAM client, 196
cold paste links, creating for JAM client, 202
destroying links on JAM client, 199
disabling JAM as client, 200
disabling JAM as server, 210
enabling JAM as client, 201
enabling JAM as server, 211
executing command from JAM client, 206
hot links, creating for JAM client, 197
hot paste links, creating for JAM client, 203
paste links, creating for JAM client, 202
poking data from JAM client, 209
requesting link data, 205
warm links, creating for JAM client, 198
warm paste links, creating for JAM client, 204

Decimal symbol
getting default, 406
setting default, 421

Delay cursor, 212

Delayed write
flush, 50
forcing, 251

Deleting widgets, at runtime, 401

Deselect in selection group, 214

Display
getting HWND handle, 517
getting Widget ID, 517

Display attributes, setting
for area, 176
in status line, 59, 224

DLL
getting load error, 447
installing function from, 448
loading, 450

Double clicking, getting time between clicks, 394

Drawing function, attaching to widget, 165

Dynamic link library. See DLL

E
Editor

invoking for JPL procedures, 12
invoking from JPL dialog box, 13
invoking to edit array at runtime, 235
setting, 452

Error handling
DLL loading, 447
for menu API, 347
for properties API, 412

Error messages. See Message

Error messages (database), testing in transaction man-
ager, 466

EXECUTE, dbms statement, changing in SQL genera-
tion, 127

Exit screen, 82

Expressions. See JPL expression

External menu, 360

F
Field, copying array data, 189

Field data
accessing in JPL, 27, 30
accessing substring, 28
clearing all fields, 185

556 JAM 7.0 Language Reference

Field data (continued)
clearing all fields in table view, 459
clearing from array, 186
copying to buffer, 270
getting length, 37, 217

of word wrapped text, 510
reading, 256

double precision float, 194
from LDBs, 157
integer, 290
long integer, 343
unformatted data, 453
word wrapped text, 512

testing
all fields for changes, 491
for yes value, 295
if null, 398

testing for no value, 294
forcing validation, 262
validating with check digit function, 183
writing, 423

double precision floating point, 221
formatted data, 158
integer, 300
long integer, 345
word wrapped text, 513

Field runtime properties. See Widget runtime proper-
ties

File
getting path name, 229
opening as binary read±only, 228

File I/O
closing file stream, 234
error handling, 236
getting file stream handle, 244
invoking external editor for array, 235
opening file for read/write, 245
reading characters from file, 241
reading line from file, 242
rewinding file stream, 250
setting error code, 238
writing array to file, 233
writing character to file, 247
writing file contents to array, 239
writing line to file, 248

File selection dialog box, 230
adding to file type option menu, 232

File stream. See File I/O

Floating point
reading from field, 194
writing to field, 221

Flush buffered output, 50

For loop, 51
skip to next iteration, 63

Form
closing, 301
opening, 303

Form list. See Memory±resident list

Form stack, return to base screen, 83

Function, calling from JPL, 47

G
Global JPL variable

clearing, 20
declaring, 19, 53

Global string
getting, 406
setting, 421

Global variables
getting values, 285
setting values, 297

Group
converting to field number, 277
controlling cursor movement, 318
forcing validation, 278
getting name from field reference, 261
referencing in JPL as variable, 31

GROUP BY clause, changing generated SQL,
133±134

H
Handle. See HINSTANCE handle; HWND handle;

Widget ID

HAVING clause, changing generated SQL, 135±136

Help screen, 182, 296

HINSTANCE handle, 395

Index 557

Hook functions
installing, 218, 288
invoking, 15

HWND handle, getting for
display, 517
drawing area, 220
screen±resident widget, 499

I
I/O processing. See File I/O

If logic, 55

Include JPL module, 57

Included JPL modules, 6

Initialization
application, 282
database engines, 149±150
database interface, 117
key translation table, 315
menu system, 367
messages, 391
video translation table, 496

Input
simulating from keyboard, 85, 493
test for keyboard activity, 313

Instance, getting handle, 395

Integer value
reading from field, 290
writing to field, 300

Interrupt handler, 182

J
JAM help screen

See also Help screen
displaying, 279

JPL
calls. See JPL calls
choosing an editor, 13
commands, summary, 41±43
comments, 7
constants, 23
control flow, 6

JPL (continued)
displaying messages, 58
modules. See JPL module; JPL procedure
null statement, 6
optimizing performance, 39
reading send data. See Send data
sending data. See Send data
validation, 8
variables. See JPL variable

JPL calls, 14
arguments, 14
from C function, 305
from control string, 16
from screen, 15
from widget, 15
inline calls, 17
return value, 15
search order, 17
to JPL and installed functions, 47

JPL expression, 38
bitwise, 39
logical, 39
numeric, 38
numeric format, 38
operand conversion, 35
precision, 38
specifying substring in variable, 36
string, 38

JPL module, 3
adding to memory±resident list, 254
calling by name, 10
compiling, 11

with jpl2bin, 11
compiling at runtime, 10
continuation character, 6
external modules, 9
include module, 57
including external modules, 6
line length, 6
loading as public, 10, 68, 306
unloading public, 307
memory±resident, 11
named procedure, 3
screen, 9
storing in library, 10
types, 7
unloading public, 75
unnamed procedure, 3
widget validation, 8

558 JAM 7.0 Language Reference

JPL operators, 33
@date, 36
@length, 37
@sum, 37
bitwise, 37
concatenation, 35
precedence, 35
substring specifier, 36

JPL procedure, 3
declaring parameters, 4
declaring return type, 5, 66
execution, 6
getting standard arguments, 5
named, 3
returning from, 15, 72
unnamed, 3

JPL program text window, 12
compiling and saving, 14
invoking local editor, 13
reading and writing files, 13

JPL variable, 18
allocate size, 76
declaring, 18, 76

as array, 76
global, 19, 53

expanding to literal value, 20
initialize, 76
name conventions, 76
referencing group selection, 31
resolving name ambiguity, 26
scope and lifetime, 20
substring specifier, 36

jpl2bin, 11

K
Key

changing cursor control key behavior, 317
disabling, 317
getting integer value, 311
getting logical value, 272
logical. See Logical key
pushing onto input queue, 493

Key label, displaying in messages, 60, 224

Key translation
initializing table, 315
installing file, 315

Keyboard, opening for input, 284

Keyboard interface, Invoking pop±up menu without
mouse, 411

L
LDB

activating at runtime, 339
changing to read±only at runtime, 339
changing to read/write at runtime, 339
default library, 452
default screen, 452
disabling write±through, 195
forcing read from screen, 344
getting

contents of entry, 328
current state , 338
LDB name, 333
most recently activated, 324
most recently inactivated, 325
previously activated, 326
previously inactivated, 327

handle
getting, 329
getting to another instance, 334

inactivating at runtime, 339
initializing, 330
loading, 332
popping, 335
pushing, 336
reading data from all, 157
referencing in JPL, 26
testing whether loaded, 331
unloading at runtime, 341
writing to entry, 337

Library
See also DLL
closing, 320
opening, 321

screen as form, 252
screen as window, 501

storing JPL modules, 10

Line length of JPL statement, 6

Link widget, runtime properties, 551

Index 559

Logical expression, 39

Logical key
getting integer value, 311
getting label, 316

Long integer
reading from field, 343
writing to field, 345

Loop
breaking from, 46
for condition, 51
skipping to next iteration, 63
while condition, 78

M
Math expression, specifying in function call, 181

MDT bit
clearing for all fields, 184
testing to find first modified field, 491

Memory
allocating for application, 282
deallocating on exit, 426

Memory±resident, JPL modules, 11

Memory±resident list
purging, 431
updating, 254

Menu
changing properties, 349
creating at runtime, 352
deleting at runtime, 353
external reference, 360
getting error on menu function calls, 347
getting property, 354
identical instances of, 359
installing, 357
memory location constants, 382
pop±up for field, invoking from keyboard, 411
property constants, 350
removing from display, 362
scope assignment and display, 359
scope constants, 357
unique instances of, 360

Menu item
changing properties, 368
getting properties, 377
inserting at runtime, 374
property constants, 378
removing at runtime, 376
type constants, 375

Menu script
loading into memory, 382
unloading from memory, 384

Message
acknowledgment, 59, 61, 223, 225, 226
acknowledgment key, 60, 224
bell, 60, 224
default display

in status line, 59, 223, 226
in window, 59, 223, 226

display attributes in, 59, 224
displaying

error tag, 58, 258, 259
forcing to window, 61, 225
in dialog box, 363
through JPL commands, 58
through library functions, 223, 226, 258, 259

forcing to status line, 61, 225
automatic dismissal, 60, 224

key labels in, 60, 224
line break insertion, 61, 225
Ready/Wait status, displaying, 442
removing from memory, 391
retrieving from message file, 389, 390
status line. See Status line
transaction manager errors, 463, 464

Message dialog box, 363
button combinations, 364, 365
default button, 365, 366
modality setting, 365, 366
system icon, 365, 366
text format options, 363

Message file, initialization, 391

Mouse events
getting state of buttons, 385
getting system time for mouse click, 394

Multi-item properties
accessing in JPL, 29
getting at runtime, 415
setting at runtime, 420

560 JAM 7.0 Language Reference

N
Null statement in JPL, 6

Numeric expression, JPL, 38

Numeric format
JPL, 38
properties

getting application defaults, 406
setting application defaults, 421

Numeric format properties, setting application de-
faults, 421

O
Occurrence

deleting, 219
getting current number, 402
inserting, 291
referencing in JPL, 26

Operands, conversion in JPL, 35

Operating system
date/time, getting, 436
escaping from application, 342
executing command

from JPL, 86
through library function, 445

print command specification, 452
returning to JAM application, 430

Operators, JPL. See JPL operators

Option menu widget, updating contents, 495

ORDER BY clause, changing generated SQL,
139±140

P
Parameters

declaring in JPL, 4
named procedure, 66
unnamed procedure, 64

name requirements, 64

Path, 452

Percent escapes
in JPL message commands, 59
in message functions, 224

Playback function, turn on or off, 312

Pop±up menu, invoking, through function call, 411

Precision, JPL, 38

Presentation Manager, mapping to string resource IDs,
409

Procedure, declaring in JPL, 66

Properties
See also Application runtime properties; Array run-

time properties; Screen runtime properties;
Widget runtime properties

accessing in JPL, 28
application properties, 28
editor properties, 28
multi-item properties, 29
runtime properties, 28
substring of setting, 29

error handling, 412
getting at runtime, 413

for array element, 414
for array occurrences, 414

getting handle to object, 416
getting multi-item settings, 415
setting at runtime, 418

for array element, 419
for array occurrences, 419

setting item, 420
value types, 29

Public module
loading, 68, 306
unloading, 75, 307

R
Ready/Wait status, displaying, 442

receive command, emulating through sm_receive, 424

Record function, turning on or off, 312

Reposition widgets at runtime, 156

Repository, getting name, 406

Resources
mapping string to integer IDs, 409

Index 561

Return value, 15, 72
declaring type in JPL, 5, 66

Runtime properties
See also Properties
accessing in JPL, 28
getting, 413
setting, 418

S

Screen
calls to JPL from, 15
change window through keyboard, 87
closing, 82, 84, 187, 301
file extension, 452
forcing validation, 433
forcing write to LDB, 344
freeing saved data, 455
getting name of current, 407
HWND handle, 220
JPL module, 9
memory±resident, adding to list, 254
opening

as a form, 252, 303
as a window, 309, 501
through dialog box, 84

referencing in JPL
by name, 25
by number, 26

refreshing, 156
removing from save list, 494
restoring saved data, 429, 432
saving, in memory, 456
saving data, 435, 454
search path for opening, 253
setting name of current, 421
shrinking, 446
translating coordinates to pixels, 489
trim, 504±517
widget ID, 220

Screen data transfer. See Send data

Screen editor, setting defaults, 452

Screen module, 9

Screen runtime properties, 521
getting, 413
getting handle to, 416
setting, 418

Screen save list, check for screen, 299

Script. See Menu script

Scrolling array, getting next synchronized array, 396

Search path, screen, 253

SELECT statement
changing generated SQL, 131±146
free memory for statement, 126
generating SQL, 147

Selection group
deselecting, 214
getting selection data, 31
runtime properties, 546
selecting, 438

Send data
appending to bundle, 160
counting bundle item occurrences, 268
counting bundle items, 267
creating bundle item, 163
destroying bundle, 260
emulating send command in C, 439
getting previous bundle name, 269
initializing bundle, 191
optimizing bundle storage, 162
reading bundle data through JPL, 70
reading bundle data through sm_receive, 424
reading occurrence from bundle, 266
verifying bundle name, 293
writing data to bundle, 439

through JPL, 73

Setup variables, changing at runtime, 405

Sibling window
changing focus, 506
setting for next-opened window, 441

SM_NO
getting value, 406
setting value, 421

SM_YES
getting value, 406
setting value, 421

Source code, main routines
jmain.c, 91
jxmain.c, 91

562 JAM 7.0 Language Reference

SQL
automated, SELECT statement, 147
changing generated SQL, 131±146
generation, 121±123
last executed command, 148

SQL generation
appending to the SELECT statement, 141±142
changing bind values in DBMS EXECUTE,

127±130
changing the FROM clause, 131
changing the GROUP BY clause, 133±134
changing the HAVING clause, 135±136
changing the ORDER BY clause, 139
changing the select list, 137±138
changing the WHERE clause, 143±145
getting the correlation name, 146

Standard arguments
passing into JPL procedure, 5
passing into unnamed procedure, 5
types, 15

Status line
cursor position display, 180
default message, 58

overriding, 58, 192
setting, 440

display attributes
getting, 407
setting, 421

flushing, 346
message, 388
Ready/Wait status, toggling, 442

Status line function, cursor position display, 180

String
getting length, 37
reading from file, 242
writing to file, 248

String expression, JPL, 38

Substring specifier, 36
colon variables, 22

Synchronized arrays
getting next, 396
runtime properties, 548

T
Table views

clearing fields, 459
getting correlation name, 146
��	����� ��
������
�� ���

Terminal
changing display size, 427
flush delayed write, 50
flushing output, 251
getting identifier, 406
initializing, 282
refreshing, 425
resetting to system defaults, 426

Text editor, invoking for JPL procedures, 12

Timeout function, testing input, 313

Transaction commands, executing, 461

Transaction events
emptying event stack, 460
getting the event name, 471
getting the event number, 470
popping event from stack, 484
pushing event onto stack, 487

Transaction manager
accessing traversal properties, 31
attributes

getting integer values, 473±475
getting string values, 481±482, 483
setting integer values, 476±477
setting string values, 485±486

before image processing, 171±172, 173, 174±175
errors

logging errors, 468
message processing, 463, 464
reporting, 467, 478±481
specifying message, 472
testing for database errors, 466

event stack
emptying, 460
popping event off stack, 484
pushing event onto stack, 487

non±sequential scrolling, 465
processing transaction commands, 461
transaction events, 470, 471

Traversal properties, accessing at runtime, 31

Index 563

U
Unnamed procedure, 3

getting standard arguments, 5

V
Validation

clearing MDT bit, 184
executing check digit function, 183
forcing

for field, 262
for group, 278
for screen, 433

testing screen for modified data, 491

Variable
See also JPL variable
declaring global in JPL, 53
declaring in JPL, 76

Video mapping, initializing, 496

Viewport, enabling user to change, 505

VWPT key (viewport), 505

W
WHERE clause, changing generated SQL, 143±145

While loop, 78

�
�	��� ���� 	���
�	� ��

base window, 516
display, 517
drawing area, 220
screen±resident widget, 499

Widget runtime properties, 526
getting, 413±415
getting handle to, 416
setting, 418±420

Widgets
calls to JPL from, 15
copying, at runtime, 399
deleting, at runtime, 401
getting runtime properties. See Widget runtime

properties
JPL validation, 8
reading data. See Field data
referencing in JPL

by name, 26
by number, 26

repositioning at runtime, 156
setting runtime properties. See Widget runtime prop-

erties
writing to. See Field data

Window
changing focus among siblings, 506
closing, 187, 301
deselecting, 498
giving focus to, 508
opening, 309, 501
setting next-opened as sibling, 441
sibling, 508

Window stack
changing order, 508
counting windows, 497
deselecting window, 498

Word wrapped text
getting length, 510
reading from field, 512
writing to field, 513

