
JAM 7

Getting Started

August 1995

This document supports JAM� 7.0. It is as accurate as possible at this time; however, both this manual and
JAM itself are subject to revision.

JAM is a registered trademark and JAM/CASE interface, JAM/TPi, and JAM/ReportWriter are trademarks
of JYACC, Inc.

PostScript is a trademark of Adobe Systems Incorporated. Macintosh is a registered trademark of Apple
Computer, Inc. Teamwork and ObjectTeam are trademarks and Teamwork/SA and Teamwork/IM are regis-
tered trademarks of Cadre Technologies, Inc. DEC, VMS, VAX, OpenVMS, ACMS are trademarks of the
Digital Equipment Corporation. HP is a trademark of Hewlett-Packard Company. INGRES is a registered
trademark of Ingres Corporation. INFORMIX is a registered trademark of Informix Software, Inc. IBM and
OS/2 are registered trademarks of International Business Machines Corporation. Windows and ODBC are
trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft Corp. Innovator Work-
Bench is a registered trademark of MID, GmbH. TOPEND is a trademark of NCR Corporation. TUXEDO
and Novell are registered trademarks of Novell, Inc. OSF/Motif is a trademark of the Open Software
Foundation. ORACLE is a registered trademark and ORACLE7 is a trademark Oracle Corporation. Sun is a
trademark of Sun Microsystems, Inc. SYBASE is a registered trademark and SQLServer is a trademark of
Sybase, Inc. Encina and Transarc are registered trademarks of Transarc Corporation. UNIX is a registered
trademark in the U.S. and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec-
tive owners, and they are used for identification purposes only.

Send suggestions and comments regarding this document to:
Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038
(212) 267±7722

W 1995 JYACC, Inc.
All rights reserved.
Printed in USA.

iii

Table of Contents
About this Guide vii.

Organization of this Guide vii.
Conventions viii.
JAM Documentation ix.

Chapter 1 Welcome to JAM 1.
What is JAM? 1.

Unrivaled Portability 2.
And Now Introducing... 3.

Graphical Screen Editor 3.
Visual Object Repository 3.
Screen Wizard 4.
Transaction Manager 4.
Menu Bar Editor 4.
Styles Editor 4.
Debugger 5.
JDB Ð JAM' s Built-in Database 5.
JPL (JYACC Procedural Language) 5.

Other Supporting Features... 5.
Source Control Support 5.
Database Support 6.

iv JAM 7.0 Getting Started

Properties API 6.
Library Functions 6.
Configuration 7.
Utilities 7.

What Can JAM Do for You? 8.
The JAM Product Family 11.

JAM/ReportWriter 11.
JAM/TPi 12.
JAM/CASE interface 14.

Chapter 2 JAM for Real W orld Requirements 17.

Chapter 3 VideoBiz T utorial 21.
Feature Presentation 22.

Lessons to Learn 22.
How Much Time Will it Take? 22.

Before You Start 23.
If You Are Evaluating JAM 23.
Preparing the Tutorial on Windows 24.
Preparing the Tutorial on Motif or Character Mode 25.

Starting the Screen Editor 25.
Starting the Sample Application: VideoBiz 26.
Questions? 27.

Module One: Create a One-Screen Application 29.
Lesson 1: Create a Screen 31.
Lesson 2: Query the Database 51.
Lesson 3: Control How Users View & Input Data 61.
Lesson 4: Improve the Screen's Appearance 77.

Module Two: Connect the Screens 97.
Lesson 5: Display Multiple Records 101.
Lesson 6: Create a Menu Bar and Toolbar 121.
Lesson 7: Send Data from One Screen to Another 135.
Lesson 8: Receive Data from Another Screen 143.
Lesson 9: Fine Tuning 163.

Module Three: Join Database T ables 181.
Lesson 10: Create a Master-Detail Screen 183.

Module Four: Graphical Presentations 201.
Lesson 11: Displaying Data in a Graph 203.

Table of Contents v

Appendix A Create and Populate a Repository 221.
Creating a Repository 221.
Importing Database Objects 222.
Editing Repository Contents 222.

vii

About this Guide
Getting Started serves as an introduction to JAM. It briefly describes JAM and its
various parts. It also provides you with a guided tutorial.

Both inexperienced and experienced programmers as well as new and experienced
JAM users can take advantage of the JAM Tutorial and the features it introduces.

The Tutorial is intended to give you an overview of JAM's features as well as a
general approach to application development using JAM. The tutorial will not
answer all your questions, but you can quickly see how easy it is to get a JAM
application up and running.

Some things you'll be doing in the Tutorial are specific to GUI and mouse-sup-
ported environments. If you're not yet comfortable with your GUI environment,
refer to your GUI users guide. For the most part, it is expected that you are using a
mouse. If you do not use a mouse, refer to Appendix A in the Editors Guide for a
listing of keyboard alternatives and accelerator keys for using JAM's screen editor
in character mode environments that don't support a mouse.

Organization of this Guide

This guide is organized into three chapters:

� The first introduces you to JAM, its components, and its features as well as
providing information about JYACC's product line.

Conventions

viii JAM 7.0 Getting Started

� The second addresses real-world issues to help you learn how JAM can help
you stay abreast of the fast-moving and ever-changing technological
challenges that you are faced with in the ªreal world.º

� And, finally, the VideoBiz Tutorial which is comprised of four modules for a
total of 11 lessons. This chapter also includes the information you need to run
the tutorial.

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

Monospace (fixed-spaced) text is used to indicate:

� Code examples.

� Words you're instructed to type exactly as indicated.

� Filenames, directories, library functions, and utilities.

� Error and status messages.

Uppercase, fixed-space font is used to indicate:

� SQL keywords.

� Mnemonics or constants as they appear in JAM include files.

Italicized helvetica is used to indicate placeholders for information you supply.

Items inside square brackets are optional.

One of the items listed inside curly brackets needs to be selected.

Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

Italicized text is used:

� To indicate defined terms when used for the first time in the guide.

� Occasionally for emphasis.

expression

KEYWORDS

numeric_value

[option_list]

{x | y}

x ...

new terms

JAM Documentation

About this Guide ix

Keyboard Conventions

JAM logical keys are indicated with uppercase characters.

Physical keys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

The JAM documentation set includes the following guides and reference material:

Read Me First Ð Consists of three sections:

w What's New in JAM Ð Briefly describes what's new in JAM 7. Printed
and online.

w Installation Guide Ð Describes how to install JAM on your specific
platform and environment. Printed only.

w License Manager Installation Ð Instructions for installing the License
Manager (used on many UNIX and VMS platforms). Printed and online.

Getting Started Ð Printed and online. Contains useful information for orienting
you to JAM. Includes a description of the JAM environment and features, how
JAM addresses real-world application development issues, and a guided tutorial for
building a mini-JAM database application.

Editors Guide Ð Online and available in hardcopy. Instructions about using the
JAM authoring environment; learn how to use the graphical tools for creating,
editing, and designing your application interface. Includes detailed descriptions of
the screen editor, screen wizard, menu bar editor, and styles editor. The Editors
Guide is also provided online on GUI platforms. It is installed with the installation
of the JAM software and can be accessed by selecting help from within the screen
editor.

Application Development Guide Ð Online and available in hardcopy. Information
by topic to guide you in developing your JAM application. This includes
components of the JAM development environment such as the repository, hook
functions, and menu bars, as well as sections on the SQL executor, SQL generator
and the transaction manager.

Language Reference Ð Online and available in hardcopy. Describes JPL, JAM's
proprietary programming language. Also includes reference sections for JPL
commands, built-in functions and JAM library functions. The man pages in the
reference sections are arranged alphabetically.

XMIT

Alt+A

JAM Documentation

x JAM 7.0 Getting Started

Database Guide Ð Online and available in hardcopy. Instructions for using JDB,
JYACC's prototyping database, and for the commands and variables available in
the database interfaces. Includes an Database Drivers section containing instruc-
tions unique to each database driver.

Configuration Guide Ð Online and available in hardcopy. Instructions for
configuring JAM on various platforms and to your preferences. Some options that
can be set relate to messages, colors, keys and input/output. Also includes
information on GUI resource and initialization files.

Master Index and Glossary Ð A vailable in hardcopy only. Provides a dictionary of
terms used in the documentation set and an index into the entire documentation set.
This is in addition to the indexes in the individual volumes.

Upgrade Guide Ð Online only. Information for upgrading from JAM 5.

JAM's documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynatextTM browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
Dynatext's read-only browser from the command line or by clicking on the
Dynatext icon. For instructions on using Dynatext, request Help while you have a
browser window open.

Printed copies of the online JAM documentation set are available on request.

The following information is also provided with your JAM installation:

� Database Driver Notes Ð JAM 7 has database drivers for most popular
relational database engines, as well as JDB, JAM's proprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guide; others are included separately.

� Online help Ð The Editors Guide is provided in online form through the
Dynatext browser on GUI platforms. It can be accessed by choosing Help
from the screen editor. For instructions on using Dynatext, request Help while
you have a browser window open.

� Online README file.

JYACC provides the following product support services; contact JYACC for more
information.

� Technical Support

� Consulting Services

� Educational Services

Online
Documentation

Collateral
Documentation

Additional Help

1

Welcome to JAM
Your first look at JAM introduces you to the most powerful and flexible client/
server application development tool on the market today.

Typically, large scale client/server and distributed applications must integrate
diverse databases, hardware platforms, and presentation environments. To meet
these requirements, the application developer needs tools that enable rapid
construction of the less demanding components and yet permit a high degree of
customization and control in the most complex and performance-critical areas.
This guide and the VideoBiz Tutorial show you how JAM excels at meeting these
demanding and potentially conflicting requirements.

What is JAM?

JAM from JYACC is the leading cross-platform development tool for building
client/server and distributed applications. JAM is equally well-suited to building
new applications and preserving the value of existing applications by adding a new,
full-featured GUI.

While other development tools let you build simple applications, you quickly run
into a brick wall when you try to meet the performance and functionality
requirements of real world applications.

JAM, with its visual object repository, screen wizard, transaction manager and
SQL generator, also makes it easy to build simple applications. As application

11

What is JAM?

2 JAM 7.0 Getting Started

complexity increases, the ease with which you can customize JAM processing or
attach your own functionality pays dramatic dividends in increased productivity.
With JAM, you have the power and flexibility you need to build even the most
complex applications!

Complexity

Effort

JAM

Other tools

���

���

���

���

���

���

���

���

���

���

���

���

���

Figure 1. JAM enables rapid development of complex applications with no brick walls.

Unrivaled Portability

JAM applications can run unmodified on more than 100 platforms and operating
environments, including Microsoft� Windows� , Motif� , Macintosh� , OS/2�
Presentation Manager, VAX/VMS� , and virtually every implementation of UNIX.
Your application screens adopt the look and feel of the local GUI, but JAM
functionality remains consistent.

JAM also integrates seamlessly with more than twenty of the most popular
RDBMS products, and provides transparent access to legacy systems via DRDA
and Microsoft ODBC� . And since JYACC charges no runtime fees, all of your
JAM applications run royalty-free!

And Now Introducing...

1 Welcome to JAMChapter 3

And Now Introducing...
...some of the main components of JAM. The tutorial introduces most of these
components, showing you how your development team can use them to build an
application quickly and efficiently.

Graphical Screen Editor
Properties window
View and set property values for screens
and widgets. Properties define the look and
behavior of application objects.

Menu bar
Contains commands
and options for invoking
editor functions.

Status line
Displays state of
the workspace.
Provides micro-
help for properties,
too.

Color palette
Lets you set fore-
ground and back-
ground colors for
screens and wid-
gets.

Tool box
Holds icons to let
you add widgets to
your screen.

Screen area
Provides the area on which you
arrange widgets. You can display
and edit multiple screens at once.

Toolbar
Provides quick
and easy access
to commonly used
commands.

JAM's screen editor provides a powerful and fully graphical environment for
creating and refining the screens and the widgets (controls) that make up your JAM
application. It lets you build client/server and distributed applications simply by
dragging and dropping application objects onto JAM screens.

Visual Object Repository
The visual object repository is the core of the JAM development environment. In a
repository, you can create, store, and gain access to collections of refined and
reusable application objects, each equipped with a discrete set of display and
behavioral attributes called properties.

And Now Introducing...

4 JAM 7.0 Getting Started

Unlike text-only repositories, JAM repositories also store labels, visual attributes,
embedded procedures, integrity constraints, and more. So you can define, access,
and maintain application objects exactly as they appear in the applicationÐobjects
that are fully functioning, instantly recognizable, and available enterprise-wide. In
addition, the repository can store information imported from external sources, such
as database tables and CASE (Computer Aided Systems Engineering) data
definitions.

Screen Wizard
The screen wizard is a tool intended to help you design database application
screens. You need no expertise with data types, widget types, primary or foreign
keys, editor functions, or properties. The screen wizard collects basic design
information by prompting you with a series of simple dialogs. It's easy to use!
Once the wizard finishes the screen, complete with the controls of choice (push
buttons/menu bar/toolbar), you have a screen that can be used immediately to
retrieve and update data in your database.

Transaction Manager

By minimizing the need for you to write SQL code for the common database
interactions, JAM's transaction manager technology greatly simplifies the process
of building database applications. A transaction model, optimized for your target
database, determines what actions occur and how the SQL is generated. The source
code for these models is provided with JAM. You can effect global changes by
modifying the model or by substituting your own model.

Menu Bar Editor
JAM's integrated menu bar editor lets you create menus (with pulldowns and
submenus) which can be attached to your screens as menu bars and/or toolbars.
Pulldown menus and their submenus can be nested as deep as you wish. You can
associate menu bars with specific screens or widgets. You can also install a menu
bar as the application-wide default to appear when no other menu bar has been
specified. Menus can also be invoked as pop-ups (by using the right mouse button)
from a screen or field. In addition, JAM's library functions allow you to change a
menu bar dynamically at runtime.

Styles Editor
A style is a collection of properties that can be applied to a widget or menu item.
The transaction manager applies styles to widgets in order to change their
appearance and behavior based upon the state of the transaction at runtime.

Other Supporting Features...

1 Welcome to JAMChapter 5

Debugger
Using JAM's application debugger, you can visually monitor the execution of JPL
code as well as screen, widget, and transaction events. The debugger is linked to
the screen editor, so you can easily switch between editing, testing, and debugging
sessions.

JDB Ð JAM' s Built-in Database

JDB is a fully integrated, single-user SQL database included with JAM. It is a
powerful prototyping tool that lets you test and refine multi-user database
applications without the need for an external database. The tutorial makes
extensive use of JDB.

JAM also includes JISQL, a graphical tool for creating JDB databases and for
writing and executing interactive SQL scripts. With JISQL, you can:

� Create a JDB database and database tables for new or existing JDB databases.

� Display table definitions.

� Write and execute interactive SQL scripts for use with your JDB databases.

JPL (JYACC Procedural Language)

JPL is a powerful scripting language that provides a procedural component to
JAM's event-driven environment. In addition to the built-in JPL functions, you can
invoke JAM library functions and developer-written functions from JPL
procedures. Under Windows, you can also make calls to DLLs directly from your
JPL code.

You will find that JPL can be used for most types of application-specific
programming.

Other Supporting Features...

JAM is a comprehensive tool; it includes all the things you need to build
sophisticated applications.

Source Control Support
To ensure that all members of your development and design team have access to
the same information and sets of standards, you want to allow multi-user access to

Other Supporting Features...

6 JAM 7.0 Getting Started

your application libraries and repositories. JAM libraries and repositories can be
maintained under your source code management system. JAM supports source
control, specifically SCCS on UNIX and PVCS on DOS, by providing an interface
to these systems within the screen editor environment. In this way, write-access to
files can be controlled and monitored.

In addition, if you do not use or have a source code management system, JAM
provides a default warning mechanism for monitoring and controlling multi-user
access to screens stored in libraries and repositories.

Database Support

The SQL generator uses the properties of screen objects to generate SQL
statements, and then executes the generated statements using the SQL executor.
The transaction models, by default, call the SQL generator to generate and execute
SQL statements for the transaction manager.

� To change the generated SQLÐ You change the properties of widgets, links,
and table views.

� To provide custom SQL Ð You use the SQL executor, directly or from within
the transaction manager (by modifying the transaction model or by supplying a
transaction manager hook function to replace the default SQL generator call).

The SQL executor provides a simple and powerful interface for the execution of
SQL statements and other database directives. You can execute your own SQL
statements that you wrote with the SQL dialect supported by your database. This
means that you can take advantage of the most powerful (although possibly
non-portable) features of your database.

Properties API

All JAM objects and their properties can be accessed and modified programmati-
cally through JPL or C function calls. With JPL, you can identify any application
object, including the application itself, and get or set its properties. Similarly, you
can use JAM library functions in your own C routines to access the properties of a
JAM object.

Library Functions

The JAM runtime function library allows you to control all aspects of your
application, such as:

SQL Generator

SQL Executor

Other Supporting Features...

1 Welcome to JAMChapter 7

� Initialization

� Validation

� Storage and retrieval

� Screen and widget property manipulation

Configuration

JAM provides configuration files for your particular installation, and conversion
utilities so you can:

� Adapt your application to varied hardware and software constraints.

� Set application-wide preferences.

� Allow for cross-platform and inter-environment operability.

Utilities

JAM provides a set of utilities (available on full JAM installations) that make
development and maintenance of JAM applications and JAM configuration files
easier.

What Can JAM Do for You?

8 JAM 7.0 Getting Started

What Can JAM Do for You?

The tutorial introduces you to some of JAM's rapid application development
(RAD) features: the visual object repository, the graphical screen editor, the screen
wizard, and the transaction manager. These features and others, like the debugger
and menu bar editor, provide a complete arsenal of tools for efficient development
of real-world applications.

JAM succeeds where others fail!

You want to go from RAD to complex application development.

JAM was designed with a flexible architecture that supports rapid application
development and also facilitates power programming. JAM can help you solve
complex application issues where simple RAD tools cannot. JAM provides the
power you need to successfully implement your application.

You want easy access and control over your DBMS.

JAM divides the processing of database transactions into a series of access
layersÐranging from its highly automated transaction manager to direct access via
the database's API. Each layer permits increasingly fine control over low level
transaction details. This multi-layered approach maximizes your control while
automating the process of building sophisticated and highly efficient database
applications. Refer to Figure 2.

You want to take advantage of JAM' s automated transaction manager ,
but you also want to customize its behavior .

When a command is invoked by the user, the transaction manager sends transaction
requests to the database-specific transaction model, which determines how to
service the command. Typically, the model causes JAM to generate and execute
SQL statementsÐso you can concentrate on presenting end user-level commands
to the transaction manager rather than writing detailed SQL statements.

The behavior of the transaction manager is largely determined by the transaction
model. JYACC provides the source for these models, thereby letting you effect
global changes by modifying the model or substituting your own.

To optimize individual transactions, you can write transaction manager hook
functions using JPL or C. Hook functions allow you to perform custom processing,
such as accessing non-SQL databases, and invoking hand-coded SQL that calls
stored procedures or RPCs.

What Can JAM Do for You?

1 Welcome to JAMChapter 9

SQL Generator

Transaction Manager

Database

Transaction Model

SQL Executor

Database API

Transaction requests

Transaction commands
invoke transaction manager
events

SQL generation request
passed to SQL generator

SQL statement
created by SQL generator

SQL statement
executed by SQL executor

Custom hook functions to
different access layers

TM Hook Function

Figure 2. Independent JAM layers process database transactions.

You have written your own SQLÐor you want to optimize the
performance of a particular transaction.

You might, at times, prefer to execute your own SQL statements rather than those
generated by JAM. Consequently, JAM provides an easy-to-use and powerful
database-independent interface for executing SQL statements and other database
directives.

What Can JAM Do for You?

10 JAM 7.0 Getting Started

Using JAM's SQL executor, you can execute any statement written in the SQL
dialect supported by the target database. This allows you to take advantage of the
most powerful features of each supported database.

You would like to use a 4GL, but you also want to use a 3GL, like C.

JAM's power and flexibility give you the option of programming in JPL, JAM's
scripting language, or in a 3GL, like C, for any type of production environment.

JPL, besides having standard language features like in-line function calls and
looping constructs, provides such specialized functions as inter-screen messaging
and database access. While developing your application, you can write, edit, and
execute JPL code within the screen editor without interrupting your work flow.

Regardless of the mix of languages you ultimately choose, you can use JAM's JPL
functions, JAM's extensive library of C functions, or your own library functions. In
addition, you can mix and match the different types of function calls throughout
your 4GL and 3GL code, creating a more powerful and robust development
structure.

You want easy integration of 3GL code and the power of an extensive
API library .

JAM's open architecture is designed to allow you to easily integrate any 3GL
customization into its environment. Using JAM's extensive library of functions,
you can easily modify JAM's behavior to suit your needs by adding your own
functionality. Once a function is installed into JAM, you can call it at any time
directly through JPL or from a screen.

JAM's runtime libraries allow you to control every aspect of your applicationÐ
such as object properties, database access, screen behavior, and application look
and feel. Moreover, these functions can be called directly from JPL, thereby adding
unlimited power and performance to JPL's ease-of-use and flexibility.

The JAM Product Family

1 Welcome to JAMChapter 11

The JAM Product Family

Do you have other requirements that seem unique or complicated? JYACC
currently offers three auxiliary products to enhance the JAM development
environment and facilitate your application development process:

� JAM/ReportWriter Ð Report writing tool.

� JAM/TPi Ð T ransaction Processing interface.

� JAM/CASE interface Ð Computer Aided Systems Engineering (CASE)
interface.

As extensions to JAM, they all share JAM's advantagesÐa graphical editor, a
concise scripting language, multiple-access database architecture, and portability.
They enrich JAM's feature set by contributing their own advanced features.

JAM/ReportWriter

JAM/ReportWriter is a powerful, flexible, and dependable report writing tool.

While you're developing an application you want to easily generate
reports.

JAM/ReportWriter helps you format and present information out of raw data by
providing the means of extraction, analysis, and presentation from within the
graphical screen editor. ReportWriter combines a user-friendly graphical editor
with a powerful and flexible report scripting language to produce a robust tool for
creating production-level reports.

A report previewer provides instant onscreen feedback using ªrealº data from your
database. Alternatively, you can send the report output to a file or directly to the
printer.

You want your reports to look good, but you want them to be easy to
create and maintain.

All the power of JAM is available to you as you create reports for your application.

� The graphical screen editor simplifies the report development process.

� The imported objects from your DBMS provide a perfect match to the
database columns' data type and length.

� JAM's transaction manager fetches dataÐso there's no need for you to write
SQL.

The JAM Product Family

12 JAM 7.0 Getting Started

� Drag-and-drop operations allow you to customize the report elements like
page headers.

� Point-and-click properties customize your reports.

JAM/ReportWriter also contributes its own advanced features, such as intelligent
paging and subreport capabilities.

Your application requires reporting capabilities; does the end user
need to start up the application to get a report?

JAM reports can be generated from within a JAM application, from a report
browser, as a stand-alone application, or as part of a batch execution.

You need complicated reports, lots of themÐand on all kinds of
hardware. Y ou need power and flexibility .

JAM/ReportWriter is a tool for the professional. It never lets its ease of use
compromise its power. Reports have a fully modular design with reusable
components. Report design never depends on an output device, whether you use
ASCII or PostScript� . There is no limit to the complexity of the report. Among
other features, you can have:

� Multiple queries

� Nested data groups

� Context-sensitive page footers

You can control any aspect of a reportÐeven at runtime.

JAM/TPi

JAM/TPi is a development tool that allows you to construct sophisticated
Distributed Online Transaction Processing (DOLTP) applications, handling both
client and server components.

JAM/TPi integrates JAM with Novell's TUXEDO and Transarc's Encina. Future
support includes: IBM's CICS/6000, DEC's ACMS, and NCR's TOP END.

Would you benefit from a TP monitor for your application?

Transaction Processing monitors provide many benefits in a distributed applica-
tion, particularly if your application uses multiple databases on different machines.

The JAM Product Family

1 Welcome to JAMChapter 13

You can benefit from a TP monitor if you:

� Want to use a 3-tiered architecture.

� Have high transaction rate requirements.

� Need advanced security mechanisms.

� Need transparent access to legacy data.

� Need high availability and reliability.

� Need dynamic administration of your application.

� Want a clear, abstract client/server interface.

� Want to centralize parts of your business logic.

If you make the decision to purchase a TP monitorÐyou will want JAM/TPi.
JAM/TPi is easy to learn and is fully integrated with JAM. You can be confident
that JAM/TPi will efficiently manage the transactions between your application
and your servers.

You are using TUXEDO or Encina and need a graphical client tool.

With JAM/TPi:

� You can create complex distributed applications without resorting to the
low-level APIs provided by DOLTP vendors.

� You don't need to program in C, and, therefore, you don't need to compile and
link as you build your application.

� You can use JAM to construct screens, access databases, and attach application
logic to events. The application logic can include requests for service through
the DOLTP system. These requests are invoked using the syntax of normal
subroutine calls, though the actual processing is routed to remote servers.

� A tight integration between JAM and the DOLTP system is created, allowing
data to flow automatically between your JAM screens and your servers.

You are using TUXEDO or Encina and need to build servers to access
multiple DBMS products.

JAM/TPi's server component expedites the creation of sophisticated DOLTP
servers. It does this while insulating you from the inherent complexities of server
construction. TPi/Server inherits all the power and flexibility of JAM's 4GL
programming language and multiple-access database architectureÐadding

The JAM Product Family

14 JAM 7.0 Getting Started

productivity and portability to your server development. TPi/Server supports all the
major XA-compliant RDBMS products, including Oracle7� , INFORMIX-OnLine
version 5, Sybase� SQLServer� V10, and Ingres� , so you can extend your
DOLTP transactions.

JAM/TPi eliminates the complicated task of having to explicitly allocate packets or
buffers, load them with data, and initiate a calling sequence. It allows you to
benefit from JAM's rapid application development capabilities and cross-database
portability.

JAM/CASE interface

JAM/CASE interface adds JAM's rapid application development capabilities to the
structured analysis and design techniques of Computer Aided Systems Engineer-
ing.

JAM/CASE interface is available for Cadre Technologies Teamwork/IM,
Teamwork/SA, and ObjectTeam, as well as MID GmbHT's Innovator Workbench.
Future support is planned for other CASE vendors and methodologies.

You have CASE models, such as data flow diagrams (DFD) or
entity-relationship diagrams (ERD) that you want to use to build your
application.

You can specify you DFDs and ERDs with JAM/CASE interface. These models
are then applied to create production-ready objects for you to test, modify, and
utilize.

You want to jump back and forth between your CASE models and
your application screens.

JAM/CASE interface is a bi-directional development tool. It interprets all CASE
analysis including entity relationship diagrams, data flow diagrams, and objects to
create JAM screens. JAM widgets and properties can, likewise, be translated into
CASE objects and attributes and attached to the appropriate places in the respective
CASE models.

You want assurance that there is consistency and synchronization
between your CASE models and your application screens.

JAM/CASE interface helps you maintain consistency among your JAM and CASE
repositories throughout the development life cycle using the following features:

� JAM-CASE inheritance links Ð Provide a constant connection between each
JAM screen object and its corresponding CASE object.

The JAM Product Family

1 Welcome to JAMChapter 15

� Customizable semantic translation rules Ð Provide a flexible framework for
the movement of changes between JAM and CASE.

� JAM Analyst Ð Displays CASE hierarchies of CASE objects that correspond
to JAM screens and repository entries. You can use these hierarchies to
compare the structure of JAM screens against the associated CASE models,
compare properties of individual objects, and make necessary revisions if
anything has fallen out of sync.

You want to take advantage of all the standard features provided by
CASE tools as well as vendor-specific features.

JAM/CASE interface supports DFDs, ERDs, and methods customization.
JAM/CASE interface also supports vendor-specific features, such as Cadre's
Teamwork desktop and data dictionary.

You don't want to choose a specific methodology for developing your
applicationsÐnot until you get some feedback from your users.

JAM/CASE interface helps you iteratively develop high-quality applications
without dictating a specific methodologyÐallowing you to choose between RAD,
structured analysis, rapid systems engineering, or any hybrid method. You can
translate your CASE analysis into JAM application screens that are more easily
understood by your users. These screens give users the context they need to review
CASE designs.

Your business dictates that your application be ISO 9000 compliant.

JAM/CASE interface helps you produce the level of documentation required to
achieve and maintain ISO 9000 compliance by:

� Letting you maintain CASE models throughout your project's life cycle.

� Constantly updating your CASE models with the design and implementation
changes you have made to your application.

� Providing up-to-date documentation of your application.

17

JAM for Real World
Requirements

JAM combines technical sophistication with considerable flexibility to address
issues and challenges posed by real-world systemsÐproviding a development
approach that is incremental, iterative, and interactive.

This segment of �����	�� ���
��� is aimed at addressing some of your ªrealº world
concerns and showing you how JAM can help.

In an ideal world, an application has clearly defined specifications which can be
implemented in one pass by a single programmer. When development is com-
pleted, the application is deployed, and the code is filed away. The application
never needs to be modified, enhanced, or ported. Ah, if that were true!

In the real world, most applications have incomplete specifications and are
implemented in multiple passes by teams of developers. When development ends,
the application is deployed, but the code undergoes multiple revisions as business
rules evolve, user demands escalate, and bugs emerge.

As an application gains user acceptance, the load increases until it becomes more
cost efficient to upgrade to new technology than to make do with the old. This, in
turn, leads to issues of application porting and, possibly, multi-platform support. In
the midst of it all, the development methodology might undergo its own metamor-
phosis.

22

18 JAM 7.0 Getting Started

Your database tables need revisingÐthis can be a re-engineering
nightmare.

With JAM, you simply make your changes to the database tables and reimport
them into the JAM repository. The changes can then be propagated throughout
your application via JAM's inheritance mechanism. If new columns are added or
removed from the database tables, you can quickly insert or delete them from the
corresponding application screens. In addition, the transaction manager automati-
cally incorporates the changes into the next dynamic SQL generation, so that all
columns in your database are properly represented.

You need to modify some of the fields that appear throughout your
applicationÐtracking down each occurrence on every screen in your
application can be an arduous and error-prone task.

With JAM, you only need to modify the original repository object. All copies
derived from the original can be updated automatically via inheritance. Customiza-
tions will not be overwritten during change propagation since they take precedence
over repository values. JAM's flexible inheritance mechanism allows you to
override selected attributes while maintaining the inheritance link for other
attributes. It also allows inheritance links to be broken for all attributes of the
fieldÐuseful when you want to make a disassociated copy of the repository object.

You want your application to have a common look and feelÐone that
is universally recognized, reduces the end user 's learning curve and,
at the same time, promotes user acceptance.

JAM's shared object repository helps you achieve this goal. The visual object
repository provides you with a fixed location where standard object appearance
and behavior can be defined. The objects in the repository can be used as templates
by all members of your development team for the application's screen objects.

JAM also enables you to specify an application wide font and color scheme, as
well as color/font aliases and alternate key mappings.

You want assurances that members of your development team won't
overwrite critical changes made to the application' s screens and
code.

JAM addresses team development coordination via an integrated interface to third
party source control management software (PVCS on DOS and SCCS on UNIX).
The check-in/check-out features eliminate simultaneous writes, which are
particularly problematic when your development team members are spread out
among different offices or sites. The change log mechanism further ensures that
accidental overwrites in subsequent sessions are recorded and reversible.

2 JAM for Real World RequirementsChapter 19

Within a large project, individual developers often need to focus on a subset of the
application's screens and code. JAM lets you maintain multiple screen and JPL
libraries to store logical groups of files. Each developer can open the relevant
libraries during each phase of development and unit testing. When the whole team
is ready for integration testing, all the libraries can be openedÐproviding a global
view of the application.

Your application is successful, but you want to continue to make
enhancements as well as identify bugs.

JAM provides a set of tools to facilitate, as well as alleviate, the tasks associated
with maintaining applications. JAM can't eliminate all required maintenance work,
but it can make the work less of a burden.

JAM's fully functional debugger allows you to:

� Step through your application.

� Select code and event break points.

� View data and event stacks.

� Examine contents of JPL and screen variables.

� Trace the generation of SQL.

� Examine a history of revisions using the integrated source control manage-
ment software.

Your application was developed on and for a particular platform. Now
your end users are changing from one platform to anotherÐfor
instance, from Motif to W indows.

As an open systems pioneer, JYACC has made portability, scalability, and
interoperability key elements of the JAM product line. JAM is platform-, GUI-,
and database-independent. The application screens and logic you developed on one
platform can run in multiple environments, thereby minimizing or even eliminating
modification requirements and, at the same time, maintaining continuity through
the transition period.

JAM's presentation interface layer insulates application logic from the GUI
environment. This results in highly portable applications, since screens and
application logic operate in all supported GUI platforms without modification.
Regardless of where; you develop your application, for example, under Motif,
Windows, Macintosh, or OS/2, you can easily port that application from one
platform to another.

20 JAM 7.0 Getting Started

You want to port your application to multiple platforms; you don't
want to redevelop your screens, modify source code, or account for
database interactions.

JAM's unparalleled portability insulates you from massive porting efforts. JAM
runs on Windows, Macintosh, Sun� , HP� , OpenVMS� , and numerous other
platforms. In fact, JAM supports more platforms than any other development tool
kit on the market.

The effort required to port a JAM application is minimal. When the need arises,
simply move the desired system components (for example, screens) to the new
platform and replace the relevant, platform-specific JAM components to reflect the
new environment. Your screens and the corresponding application and database
logic work automatically. If you've used environment-dependent code, those are
the only adjustments you must account for.

You're using a database engine that has supported you faithfully
throughout your application' s life cycle, but another database engine
has been recommended.

JAM's database interface layer provides a buffer between your application's
database logic and the DBMS engine. Since JAM's database access architecture is
multi-layered, you can plan for database portability by using the highest access
level for your interfacing needs. You can still take full advantage of your database
engine's native capabilities by utilizing the lower access levels. You can even
utilize multiple database engines simultaneouslyÐJAM handles interfacing, such
as multiple server joins, automatically for you.

You need to utilize different development methodologies depending
on the situation.

JAM doesn't try to enforce any single methodologyÐyou can decide whether to
use structured information modeling, freeform iterative development, or a hybrid
strategy. Because JAM is object-based, it even lets you decide if you want to take a
strict or relaxed approach to object-oriented programming. By not dictating a
specific development methodology, JAM lets you develop your applications in the
manner that is most efficient for you.

You want to build applications for distribution across multiple
divisions of your company , or for resale to other companies, but you
don't want to be concerned about runtime costs or license restric -
tions.

JYACC does not require licenses or fees for runtime-only environments.

21

VideoBiz Tutorial
The VideoBiz Tutorial is designed to give you an overview of rapid application
development using JAMÐproviding you with a general methodology for
client/server application development.

Whether you are new to JAM or are already a JAM user, a novice programmer or
an experienced software engineer, you can build this mini-application to learn
something about JAM's effortless application development process. In addition,
you can use the tutorial's examples, principles, code, and concepts as a template for
your own applications.

The application you build in the tutorial is a subset of, and based loosely on, the
VideoBiz sample application provided with JAM. The screens are not identical to
their counterparts in the sample application; they have been modified to be more
suitable for instructional purposes.

This chapter includes:

� A description of the tutorial.

� Instructions on how to install and start the tutorial.

� Instructions for starting the VideoBiz sample application.

� The tutorial instructions.

33

Feature Presentation

22 JAM 7.0 Getting Started

Feature Presentation

You are now ready for the feature presentationÐget ready to begin the tutorial!

You will create four screens that implement some of the functions that would be
used by or performed by the front desk clerk at a video store. The first two screens
allow the clerk to search the database for a specific customer and to add and update
customer records. The third screen displays summary information about any
selected video title in the database. The last screen displays the status of all video
titles currently owned by the video store in a graphical presentation.

You use the following components of JAM to build the VideoBiz application:

� Database import utility Ð To access the database directly from JAM and
import database elements, such as columns and their definitions to be used as
building blocks in the application.

� Visual object repository Ð To centralize reusable objects and thereby enhance
productivity and facilitate application maintenance.

� Screen editor and screen wizard Ð To create the screens with the appropriate
widgets (push buttons, data entry fields, etc.).

� Menu bar editor Ð To create a menu bar and toolbar for the application.

� JPL editor Ð To write simple, yet powerful, 4GL code to control your
application.

� JDB database Ð To provide the database tables you will use in the application.

� Transaction manager Ð To dynamically build SQL at runtime.

Lessons to Learn

The tutorial is organized into four modules. An introduction precedes each module
and describes some basic concepts you'll learn and what you can expect to
accomplish as a result of completing the module. Each module includes from one
to five lessonsÐfor a total of 11 lessons. The lessons are designed to be completed
in sequence.

How Much T ime Will it T ake?

In general, a lesson can take anywhere from 15 to 45 minutes. Don't expect to go
through the entire tutorial in one sitting, or even in one day. Take time to absorb the
concepts.

Before You Start

3 VideoBiz TutorialChapter 23

Before You Start

Before you begin the VideoBiz Tutorial, note the following:

� VideoBiz, and JAM itself, might look different on your terminal from the
illustrations in the tutorial lessons. The lessons attempt to address the
differences between windowing environments and character mode, where
applicable.

� Some things you'll be doing in the Tutorial are specific to GUI and mouse-
supported environments. If you're not yet comfortable with your GUI
environment, refer to your specific platform's users guide. For the most part, it
is expected that you are using a mouse. If you do not use a mouse, refer to
Appendix A in the Editors Guide for a listing of keyboard alternatives and
accelerator keys for using JAM's screen editor in character mode environ-
ments that don't support a mouse.

� Remember to periodically save your work...it's just good practice! There are
reminders throughout the lessons.

If You Are Evaluating JAM

If you have a complete JAM installation, skip this section and proceed to the
section that is specific to your environment, otherwise follow the directions for
installing the JAM tutorial kit. Take a moment to make sure your computer meets
the minimum requirements needed to run the tutorial kit software.

To run the JAM Tutorial, you need:

� 386SX personal computer or higher

� at least 4MB of memory required; 8MB is recommended

� MS-DOS operating system, version 3.31 or higher

� Microsoft Windows 3.1 or higher

� a 3.5º high-density diskette drive for installation

� approximately 4MB hard disk space for JAM files

� VGA color display

� a mouse supported by your Windows system

What You Need

Before You Start

24 JAM 7.0 Getting Started

The JAM Tutorial Kit installation program creates the directory \JAMTUT on your
PC and installs the files and subdirectories required by the tutorial software. It is
recommended that you not modify or move any of these files.

To install the JAM Tutorial software:

1 Start Windows.

2 Insert the JAM Tutorial Kit diskette in drive A (or B).

3 From either the Program Manager or File Manager, choose Run from the File
menu.

4 Enter a:\install (or b:\install) in the Command Line box.

5 Respond to the setup prompts and select the installation options you want.

Once all the files are copied, the installation is complete. The installation
program creates the program group, JAM Tutorial Kit, in the Program
Manager.

6 Proceed to the instructions for starting the screen editor (page 25).

If you have installed JAM and specified that the tutorial be automatically installed,
you are ready to start the tutorial (refer to page 25).

If you did not install the tutorial, follow the directions in Preparing the Tutorial on
Windows.

Preparing the Tutorial on W indows

It is assumed that JAM is already installed on your PC and a JAM program group
has been created in the Program Manager. If you chose to setup the tutorial during
installation, you are ready to start the tutorial (proceed to page 25), otherwise,
following these directions:

1 Create a working directoryÐcall it tutorial .

2 Via the File Manager or from the command line, copy all files in
$SMBASE\samples\tutorial to your working directory.

Note: Replace $SMBASE with the appropriate pathname.

The files include: videobiz (JDB database provided for this tutorial), the
prebuilt repository (data.dic), pixmaps, JPL code files, and a copy of the
default styles sheet.

Installing the
JAM Tutorial Kit

Installing a Full
JAM Evaluation

Starting the Screen Editor

3 VideoBiz TutorialChapter 25

3 In Windows, create a program group called JAM Tutorial.

4 Copy (Ctrl+drag) the JAM for Windows and Menu Bar Editor icons from the
main JAM program group to the JAM Tutorial program group.

5 Select the JAM for Windows icon in the JAM Tutorial group, and choose
File%Properties.

6 In the Program Item Properties dialog box, specify the full pathname of your
working directoryÐtutorial Ðin the Working Directory field.

7 Repeat steps 5 and 6 for the Menu Bar Editor icon.

8 Proceed to the instructions for Starting the Screen Editor.

Preparing the Tutorial on Motif or Character Mode

It is assumed that JAM has already been installed, including licensing and
environment variables (refer to your JAM Installation notes for details), and that
you know the full pathname of its location and the JAM executable ($SMBASE/
util/jamdev).

1 Create a local directory.

2 Copy all the files in $SMBASE/samples/tutorial to your local directory.

They include: videobiz (JDB database provided for this tutorial), the prebuilt
repository (data.dic), pixmaps, JPL code files, and a copy of the default
styles sheet.

3 Proceed to the instructions for starting the screen editor.

Starting the Screen Editor

Each lesson begins with the assumption that you are in the screen editor
workspace.

To start the screen editor, following the directions for your environment:

� In Windows Ð Open the JAM Tutorial (Kit) program group. Then double-
click on the JAM for Windows icon (or JAM Tutorial Kit).

� In Motif or character mode Ð Type jamdev (or the full pathname of the JAM
executable) at the command line.

Starting the Sample Application: VideoBiz

26 JAM 7.0 Getting Started

The JAM screen editor workspace is displayed. You can now proceed to Module 1.

Starting the Sample Application: VideoBiz

To start VideoBiz under Windows:

Note: To start VideoBiz under UNIX, refer to page 33 in the Application
Development Guide.

1 In the Windows Program Manager, open the JAM program group.

2 Double-click on the VideoBiz icon.

The VideoBiz Welcome screen is displayed.

3 Log in to VideoBiz by doing either of the following:

w Choose the Customer radio button, then choose the movie reel push
button (or press Enter). The Search for a Video screen is displayed.

w Choose the Employee radio button. Enter the name sheila in the Name
field, press Tab. Enter trade3 in the Password field, then choose the

Questions?

3 VideoBiz TutorialChapter 27

movie reel push button (or press Enter). The Search for a Customer screen
is displayed.

4 Have fun at the movies!

For more information about the sample application, refer to Chapter 2 in the
Application Development Guide.

Questions?

If you are evaluating JAM and need assistance or have any questions about the
tutorial kit installation, tutorial steps, or the sample application, contact JYACC's
Technical Support Services (refer to the front of this guide for telephone numbers)
or contact your local JYACC distributor.

Direct all other inquiries about JAM and the JYACC family of products to a
JYACC Account Representative at 800-458-3313 in the US/Canada, or
212-267±7722 outside the US/Canada.

This first look at JAM is just a glimpse at how powerful JAM is. Have fun on this
initial guided tour. If you want to see more, don't hesitate to contact a JYACC
Account Representative to learn more. Your feedback, comments, and questions
are welcome.

29

MODULE ONE

Create a One-Screen
Application

Module 1 consists of four lessons that guide you through the process of creating a
single screen application. The screen you will build, via the JAM screen wizard,
allows a user to view, update, add, and delete customer records in the videobiz
database.

When you have completed the lessons in this module, you will have a screen that
resembles the following illustration:

This screen allows the user to search for data by a variety of on-screen fields
(query-by-example)Ðby customer ID number, by a full or partial last name, by

30 JAM 7.0 Getting Started

both, or none. The push buttons, automatically included via the screen wizard,
provide the user with an easy way to save new or updated information. The fields
on the screen that are derived from database tables are created in such a way that
they can be changed automatically from a central location (repository) whenever
relevant properties of the corresponding columns are changed.

In the process of developing this screen, you will be introduced to a few of JAM's
powerful and flexible development tools:

� The visual object repository which serves as a central location from which
screen objects can be defined and copied, and in which database objects are
stored and serve as building blocks for creating a database application. The
repository can be used to impose standards and enforce business rules for
various widget types that you use throughout your application.

� The screen wizard which guides you through the automatic creation of a
database application screen and uses the data definitions that have been
imported into a JAM repository.

� An easy-to-use graphical screen editor that allows you to create widgets and
refine the appearance and behavior of your applications screens.

� A fully-functional test mode for testing screens under development, including
execution of command button events and database commands.

� A Properties window where you assign attributes to all application objects,
such as fonts, colors, date and currency formats, input filters, and edit masks.

� Transaction manager which automatically generates SQL statements for
database interactionÐwithout your having to write any code.

31

Lesson 1: Create a Screen

Create a simple screen that allows the user to view and edit information on an indi-
vidual customer. This is a detail screen that displays one customer record at a time,
and is used to maintain customer information.

JAM's screen wizard creates this screen for you using objects and database
columns from a repository, data.dic . You will save this screen with the filename
custedit.jam .

In this lesson you learn how to:

� Open a repository, data.dic .

� Connect to the videobiz database and import a database table to the
repository.

� Create a functional database screen using one of JAM's most powerful
features, the screen wizard.

� View, update, add, and delete customer records using JAM's testing
capabilities.

Lesson 1: Create a Screen

32 JAM 7.0 Getting Started

� Save the screen.

1 Start the screen editor (refer to page 25 for details).

Many of the screen editor's more commonly used commands and tasks can be
executed by choosing the appropriate toolbar item. In the next few lessons,
you will become familiar with the commands associated with these file-spe-
cific toolbar buttons:

New Open Import
Objects

Save Test Mode

You'll also become familiar with the ability to reverse and redo your last
several actions by choosing the Undo and Redo buttons, respectively.

Undo Redo

Lesson 1: Create a Screen

33VideoBiz TutorialChapter 3

More About T oolbars
The screen editor's toolbar:

� Makes using the screen editor easy and facilitates your screen design
process.

� Includes tool tips so you can quickly learn what the buttons do.

In addition, with JAM you can use the menu bar editor to create your application's
toolbar.

JAM, on start up, automatically opens the repository with the name data.dic (the
default repository is defined in your setup file). The tutorial provides you with a
prebuilt repository (data.dic) which consists of repository entries that are the
result of the importation process. Some of these entries have been edited so that
you don't have to edit them yourself.

Note: If, at any time in this tutorial, you should get the message Error: No
repository open , you might have inadvertently closed the repository. If this
occurs, choose File%Open%Repository. From the Open Repository dialog box,
select data.dic . Then try the step again.

Appendix A provides you with directions for creating a repository from scratch
and importing database definitions. The appendix also includes a list of the edits
that were made to the repository entries for this tutorial.

More About Repositories
You can define and refine the look and feel of application objects that you store in
a repository. From this centralized location, you can use and re-use the objects
throughout your application. Changes that you make to repository objects will
automatically propagate to the various screens that contain copies of the objects.
This greatly simplifies both application development and maintenance.

Connecting to the database lets you import data definitions already defined in the
database and gives you access to ªliveº data while testing your application screens.

2 Choose File%Open%Database.

The Choose Engine dialog box opens.

Open a repository

Connect to the JDB
database

Lesson 1: Create a Screen

34 JAM 7.0 Getting Started

en
gc

on

3 Choose OK to accept the defaults (in this case, jdb is the engine and the
connection is dm_jdb0_conn). A database-specific dialog box appears.

More About JDB
JDB is a fully-functional single-user SQL database included with JAM. You can use
it to quickly prototype your application and refine multi-user database applications
without the need for an external third-party database.

4 Select or specify videobiz in the File Name (or Selection) field, and then
choose OK.

vb
iz

You are now connected to the database.

Note: If the videobiz database is not in your current directory, you need to
enter the full pathname.

Lesson 1: Create a Screen

35VideoBiz TutorialChapter 3

When you import database objects into the repository, you can take advantage of
the data definitions already defined in the database. The import process automati-
cally creates one screen in the repository for each selected database object. The
resulting repository screen can be used to access ªliveº data without any further
work on your part. The next few steps show you just how easy it is to import data-
base information into JAM.

5 Choose File%Import%Database Objects or the Import Objects button on the
toolbar.

The Import Database Objects dialog box opens.

im
po

rt

Database table names are listed. When you select a table, the detail informa-
tion for the table is displayed in the Column Descriptions list boxes: column
name, data type, and length. You can select multiple tables simultaneously:
click+drag or Shift+click to select contiguous objects; Ctrl+click to select
noncontiguous objects.

6 Select customers from the list of database tables.

7 Choose the Import push button. The progress of the import is displayed in the
status line.

A repository screen is created for the customers table. The screen is
automatically saved to the open repository (in this example, data.dic).

Note: If you are running under Windows on a network, you are prompted for a
user name. Enter your user name to continue. This information is used by JAM
to coordinate multiuser access to JAM libraries and repositories.

Import database
table

Lesson 1: Create a Screen

36 JAM 7.0 Getting Started

More About Importing Database Objects
You can import database table definitions into the repository at the outset of your
development processÐand then again whenever the database schema changes.
In addition, if your database engine supports other database object types, such as
views and synonyms, JAM lets you import those as well.

All screen objects that inherit from repository objects are maintained without you
having to access the database or manually edit application screens. Development
can continue even when the database is inaccessible or unavailable.

8 Choose Close from the Import Database Objects dialog box to return to the
screen editor.

You can use the repository table of contents (TOC) to select and open repository
screens successively for copying and editing purposes. The TOC can remain open
during your editing session.

9 Choose View%Repository TOC.

This toggles the display of the Repository table of contents. The TOC opens
and displays a list of all screens in the open repository. These screens are the
result of a previous importation of the database tables and includes the one you
just imported.

re
pt

oc

A preformatted customers repository entry, named customers.fmt , is
among the list. Some changes have been made in this particular repository
entry (label names, column titles, and field lengths) to better serve the tutorial
and minimize the amount of editing you have to do. Refer to Appendix A for

View repository
contents

Lesson 1: Create a Screen

37VideoBiz TutorialChapter 3

directions on creating a repository from scratch, and for details on what edits
were made to the repository.

10 Select customers and choose Open.

A screen titled customers@[Repository] opens in the workspace. This is
the screen that resulted from your importation. It contains a label (represented
by a static label widget) and a field (represented as a single line text widget)
for each column in the customers database table. By default, repository
entries that are opened from the TOC are read-only.

Static label widgets

Single line text
widgets

cu
st

_r
ep

11 Select customers.fmt from the TOC and choose Open.

Note: To bring focus to an open screen/window (such as the TOC) or to the
foreground, choose the desired screen/window from the Windows menu option.

This is the repository entry provided with the tutorial and was derived from
the customers database table. You can review the contents of this screen and
compare it to the customers screen you imported.

Notice that the label widgets were changed to be more readable and several
text widget lengths were altered.

12 (Optional) Close the customers.fmt screen and then the customers screen
by doing either of the following:

Lesson 1: Create a Screen

38 JAM 7.0 Getting Started

w Bring focus to the screen, and choose File%Close%Screen.

w Select Close/Quit from the screen's system menu in the upper left corner
of the window.

cl
os

es
cr

13 (Optional) You can leave the Repository TOC open, so that you can easily
access repository screens. Or, you can close the TOC to free up screen space.
Choose View%Repository TOC, or choose Close/Quit from the TOC's system
menu.

Instead of creating a screen from scratch, use the screen wizard to build your data-
base screens.

14 Choose File%New%Screen or the New button from the toolbar.

The New Screen Tool dialog box opens.

w
iz

1

Create a screen
using screen wizard

Lesson 1: Create a Screen

39VideoBiz TutorialChapter 3

More About the Screen W izard
The screen wizard gives you step-by-step assistance in creating database screens
that automatically incorporate database tables and columns you import from your
database.

The screen wizard prompts you for basic design information and uses that
information to build fully functional screens which you can use as-is, or as a basis
for further screen development. The screen wizard is easy to use! And it
eliminates many of the mechanical steps of screen design, thereby increasing
productivity for both novice and advanced JAM users.

15 Choose Yes to use the screen wizard.

The Format Selection dialog box opens.

w
zf

or
m

at

16 Select the Master (only) option to define the section to include in your screen.

More About Screen W izard Formats
When you use the screen wizard, you are guided through the creation of database
screens. You can choose to create a Master only, Master-Detail, or Master-Detail-
Subdetail screen. You can use the final screen as is, or use it as a template for
further development.

17 Choose Next. The First Master dialog box opens.

The list of tables that display are the repository entries that were imported
from the database.

Lesson 1: Create a Screen

40 JAM 7.0 Getting Started

Up
reposition

Down
reposition

Adds selected columns

Adds all columns

Table views in repository

Columns associated with
selected table view

Columns that will appear
on your screen

Removes selected columns

Removes all columns

w
zm

as
te

r

18 Select customers.fmt as the master table for the screen.

The columns, or widgets, associated with the selected table (repository entry)
are displayed.

19 Select the following columns: last_name , first_name , address1 ,
address2 , city , state_prov , postal_code , phone , member_date ,
member_status , num_rentals , and rent_amount .

Note: You can click+drag or Shift+click to select contiguous items or use
Ctrl+click to select non-contiguous items.

20 Choose .

The selected columns are added to the list of columns already chosen. The
table's primary key (in this case, cust_id) is, by default, added to the list.

21 Select the last_name column and choose the Down reposition arrow to move
the last_name column between the first_name and address1 columns.

22 Choose Next. The Layout Selection dialog box opens.

The master table, by default, has a single row layout. Use the single row layout
for this screen.

Lesson 1: Create a Screen

41VideoBiz TutorialChapter 3

w
zl

ay
ou

t

More About Screen W izard Layout Options
You can choose the type of layout that will serve your immediate requirements for
the screen. You can select from two different format options:

� Single row Ð Each database column is represented as a single line text
widget and has a corresponding label.

� Grid display Ð Each database column is represented as a vertical column in
a grid frame and has a corresponding column title.

23 Choose Next.

The Style and Finish dialog box opens.

Lesson 1: Create a Screen

42 JAM 7.0 Getting Started

w
zs

ty
le

You can add your own customizations and preferences to the screen on the Style
and Finish dialog box.

24 Enter VideoBiz Customer Information in the Screen Title field.

This title displays in the screen's title bar at runtime (the screen's filename
displays in the title bar while in the screen editor).

25 Define the Onscreen Controls as Push Buttons (default).

26 (Optional) Enter more information about the screen in the Comments field.
These can be useful to you and to other developers who might use this same
screen as a template for their development.

27 Choose Done.

JAM displays the completed screen and the following prompt:

Customize the
Output Screen

Lesson 1: Create a Screen

43VideoBiz TutorialChapter 3

do
ne

m
sg

28 Examine the screen and choose Yes to confirm that the screen includes your
specifications.

The screen wizard has completed its job. The new screen appears in the screen
editor workspace. Its title bar indicates that it has not been saved yet;
Untitled followed by a number.

If you choose No to the prompt, you return to the screen wizard's Style and
Finish dialog box where you can change your preferences or backup to any
dialog box in the wizard to change your selections.

More About Controlling the W izard Output Screens
When you first use the wizard, it automatically places a template, called smwizard,
in the open repository. You can edit the smwizard repository entry. Then, whenever
you use the screen wizard to build screens, it will use your smwizard entry to
determine how your wizard screens look and what buttons to display on them.

With the screen wizard, you created a completely functional data maintenance
screen. You can immediately test the screen you are working on to see how it will
behave and appear to an end user. You can even do this without saving the screen.

29 Choose File%Test Mode or the Test Mode button on the toolbar.

The current screen reopens in Test mode. All text fields are enterable.

Test the screen

Lesson 1: Create a Screen

44 JAM 7.0 Getting Started

First Record

Last Record

Previous
Record

Next
Record

cu
st

ed
1a

30 Press TAB to move from field to field or click the mouse in fields where you
want to enter data.

More About T est Mode
Any changes you make to the screen in the screen editor can be tested immedi-
ately without saving or compiling your editsÐso you are free to experiment without
committing to the changes.

Test mode is fully functional. Your application screen appears and behaves as it
would in the final application. All screen attributes and logic can be executed and
tested (including data validation, database interactions, and 4GL/3GL code, etc.).
In addition, any screen that is connected to the current, or active, screen can be
invoked.

Test mode is a very flexible and powerful tool that lets you verify your application
design in its component modules as well as test the entire application as a whole.

You can access ªrealº data using the screen you just built. The commands
associated with the screen's buttons allow you to access and maintain data in the
database. When you choose to display data from the database, one record is dis-
played at a time because this particular screen is designed to show only a single
row of information. (In the next module you will learn how to display multiple
rows.)

31 Choose the View button.

View data

Lesson 1: Create a Screen

45VideoBiz TutorialChapter 3

The first record in the customers table is displayed.

Notice that some buttons become inactive while others become active
depending on which command has been executed. When a View command is
executed, the Save button is made inactive, because an update of the record
has not been requested, and therefore, a save is irrelevant.

32 Try to enter data in any field. JAM does not allow data entry, because the View
command implies read-only access.

JAM protects the widgets from data entry by applying a style to each widget.
Styles can affect the color and protections of widgets and, in this case, are used
to activate or deactivate (gray out) push buttons (and menu items) without you
having to write any code to do so. You can change the default styles with the
styles editor (described in a later module).

33 Choose .

The next record is displayed; continue to use the Next/Previous buttons to go
through each of the records, or choose the First/Last buttons to view the
first/last record.

Once you select a record for update, you can change the content of that record.
When you choose to update a record, JAM's default behavior is to protect the pri-
mary key fields from data entry. This is a result of JAM's application of a style to
each widget.

34 Choose the Select button.

Edit the data

Lesson 1: Create a Screen

46 JAM 7.0 Getting Started

The Select command means ªselect a record to update.º The first record in the
customers table is displayed.

35 Try to enter data in the cust_id field.

JAM won't allow the cust_id to be changed because it is defined as a
primary key in the customers table; primary key fields in database tables, in
general, cannot be changed.

36 Click in or TAB to the Address2 field and enter Apartment #15 . Here you
can enter data, as well as edit existing data on the screen.

protected
from user
input

updatable

Your changes are not saved to the database until you issue a Save command.

37 Choose the Save button to commit the update to the database.

More About the T ransaction Manager
You can create complex database query/update screens without having to write
any code. That's because the transaction manager ªknowsº about the interaction
between database tables and columns (via information retrieved from the
database during the importation process). Given this information, the transaction
manager generates the appropriate SQL statements for fetching or updating the
database, and keeps track of any data changes. When your application issues the
SAVE command, the transaction manager automatically generates SQL
commands to update the database to match the data on the screen.

Whether you are inserting, updating, or deleting a record (or all three on screens
that display more than one record at a time), the transaction manager ªknowsº
what to do.

If you change data and do not issue a Save command, JAM allows you to discard
the changes rather than saving them to the database.

38 Choose .

Save the changes

Discard changes

Lesson 1: Create a Screen

47VideoBiz TutorialChapter 3

JAM displays the next record in the customers table.

39 Enter Suite 2000 in the Address2 field.

40 Choose the Reset button to close the current database transaction.

The Reset button tells JAM to close the current transaction and clear the fields
of data. At this point, JAM detects that changes have not been saved, and
issues the following prompt:

41 Choose OK to discard the updates you made to the second record.

42 Confirm the changes by choosing the View button.

Notice that the address addition in the first record was saved.

43 Choose .

Notice that the address change you made on the second record was not saved.

You've edited existing customer records, you can also add a new customer record
to the database.

44 Choose the New button.

All values are cleared from the fields.

Notice that once you choose New, only the Delete, Save, and Reset buttons are
active. The other buttons are grayed to indicate that they are unavailable. The
appearance of the screen wizard-generated buttons is controlled by styles
(more on styles later in the tutorial).

45 Enter values in each of the following fields, for example:

In the field: Enter the following value:

Cust ID 30

First Name Robin

Add a new record

Lesson 1: Create a Screen

48 JAM 7.0 Getting Started

In the field: Enter the following value:

Last Name Renter

Address1 31 E. Video Drive

Address2 Suite 300

City Hollywood

State/Prov CA

Zip Code 94000

Phone 1234567890

Membership Date 8/1/94 0:00

Status A (for active)

46 Choose the Save button.

 JAM inserts the new record to the database.

Note: The JDB model enforces unique primary keys (cust_id , in this case).
Therefore, to create a new record, you are required to enter an ID that is
unique in the database. A message is displayed if the ID you enter is not
unique...just enter a different number. In a later lesson, you learn how to
assign the customer ID numbers programmatically, thus ensuring that each
will be unique.

47 Choose the Reset button to close the transaction.

To delete a customer record, you simply select the record and choose the Delete
button. You can execute the Delete when you have executed a Select command.

48 Choose the Select button.

49 Advance to the customer record that you want to delete by choosing .

50 Choose the Delete button.

All fields on the screen are cleared of data.

51 Choose the Save button.

JAM saves this change to the database, thereby deleting the record from the
database.

The screen works just fine, so this might be good time to save screen. And you can
continue to the next lesson.

52 Choose Options%Screen Editor to exit Test mode and return to the screen
editor.

Delete a record

Save the screen

Lesson 1: Create a Screen

49VideoBiz TutorialChapter 3

53 Choose File%Save or the Save button on the toolbar.

The Save As dialog box opens so that you can specify a name for the untitled
screen.

54 Enter custedit.jam as the name of the screen and choose OK.

The filename is displayed in the screen's title bar.

Note: If the file already exists, JAM prompts you to overwrite the existing one.
Choose Yes to overwrite.

55 If you want to take a break and exit the screen editor (Edit mode) now, choose
File%Exit.

In this lesson, you created and tested a single-screen data maintenance application
by:

� Connecting to the prototyping JDB database.

� Importing a database table to the repository.

� Using the screen wizard.

� Immediately testing the screen with ªrealº data.

You learned:

� The repository stores application objects that can be used and reused
throughout your application to minimize duplication of effort and enforce
application consistency.

What Did You Do?

What Did You
Learn?

Lesson 1: Create a Screen

50 JAM 7.0 Getting Started

� JDB is a prototyping database that can be used during application development
when an external database is not available or is in the design/development
phase.

� JAM's easy import process creates an entry in the repository for each database
table.

� The screen wizard uses the database-derived objects in the repository to build
fully functional screens.

Application maintenance is made easy by copying repository objects to your
application screens. These copied objects automatically inherit from the parent
widgets in the repository; therefore, changes made in a repository entry are propa-
gated to the child objects that inherit from them.

� You can test screens immediately without commitment to edits or compilation
of code.

� The buttons provided by the screen wizard can handle all your basic database
requests. You can easily retrieve and update data without having to write a
single line of code!

In the lessons that follow, you will improve both the behavior and appearance of
this screen. You will learn how to:

� Query the database for specific customer records (Lesson 2).

� Control user input and format data appropriately (Lesson 3).

� Use the screen editor to enhance the screen's appearance and to make it easier
to use (Lesson 4).

Where to Now?

51

Lesson 2: Query the Database

Enhance the custedit.jam screen to allow the user to query the database for a
specific customer record. The user should be able to search the database using a
variety of criteria: customer identification number, a partial or full name string, or
both. The transaction manager automatically generates the appropriate SQL query
statement based on the user's input. If a query field is empty, the transaction man-
ager ªknowsº that the criteria should not be included in the SQL generation.

In this lesson you learn how to:

� Use the Properties window to view and set widget property values, including
inherited property values.

� Specify and set particular widgets to act as query fields.

� Test the resulting query screen by searching for specific customer records
using a combination of search criteria.

1 If the screen editor is not running, start it now (refer to page 25 for details).

2 If the custedit.jam screen is not open, choose File%Open%Screen or the
Open button on the toolbar.

The Open Screen dialog box appears.

3 Select the custedit.jam screen.

The screen opens in the screen editor workspace.

Lesson 2: Query the Database

52 JAM 7.0 Getting Started

You can define the appearance and behavior of screens and widgets through the
Properties window. To invoke the Properties window, you do any of the following:

� Double-click on a widget or on the screen.

� With focus on the application screen or on a widget, press Enter.

� Choose View%Properties Window (if it hasn't been opened) or select it from
the Windows menu to bring the Properties window to the foreground.

More About the Properties W indow
The Properties window provides you with a straightforward method for viewing and
setting attributes for all JAM objectsÐfor one object at a time or for multiple
objects simultaneously. When more than one widget is selected, the Properties
window displays those properties that are common to all widgets in the selection
set. You can quickly and easily assign the same font, colors, and formats. Screen
properties are displayed when no widgets are selected.

Properties are grouped by category under descriptive headings on the left. By
default, the Properties window is collapsed and displays only the headings.

Use the Properties
window

Lesson 2: Query the Database

53VideoBiz TutorialChapter 3

Property headings

Screen name

Widget name*

Widget type

Setting field

Inheritance toggle

Expand button

Collapse button

*Three question marks indicate that more than one object is selected, and
the selected objects do not share a common value for the given property.

To view and set properties, you can expand all headings by choosing .

To expand a single heading, simply click on the heading. The properties are
displayed on the left and their respective property values on the right.

4 Select the text widgets associated with the Cust ID and Last Name label
widgets by using the method for your environment:

w For GUI environments: Shift+click on each of the specified widgets.

w For character JAM: Choose Options%Multiple Select Mode. Then click
on each of the specified widgets.

Lesson 2: Query the Database

54 JAM 7.0 Getting Started

Selecting multiple widgets creates a selection set, which is useful for defining
common property values.

5 Choose .

The headings expand and all the properties are displayed. Inherited property
values are displayed in reverse video. Notice that when you select more than
one widget, only those properties that apply to all objects in the selection set
are displayed in the Properties window. Values for the displayed properties are
shown where they are the same for all selected widgets; otherwise, three
question marks (???) are displayed to indicate that the selected widgets have
different values for that property.

Inherited property values are
displayed in reverse video

Indicates widgets in the selection
set do not share a common value

Non-inherited, or custom property
values are displayed in plain video

More About Inherited Property V alues
The reverse video display of property values in the Properties window lets you
quickly see which settings are inherited from another source. The Inherit From
property under the Identity heading identifies the source of inheritance. Widgets
that are imported directly from a database have their Inherit From property set to
@DATABASE.

6 Choose .

The properties list collapses and only the property headings are displayed.

Lesson 2: Query the Database

55VideoBiz TutorialChapter 3

You can define which fields on the screen are query fields. By setting Database
properties for these fields, you provide JAM's transaction manager with the in-
formation it needs to build the appropriate SQL statement to fetch, display, and
update the requested record. Since you want the user to be able to search by either
customer identification number or by last name, make Cust ID (cust_id) and Last
Name (last_name) query fields on this screen.

More About Using the Properties W indow
Since the list of properties can be rather long, you might find it easier to work in the
Properties window if you expand only the heading needed for the current task.

� To display the properties list for a single category, click on the heading.

� To collapse the properties list for a single category, click on the heading again.

� To edit a property value, click on it in the properties list, and enter the value in
the setting field.

Shortcuts
� With the list expanded, type the initial character of a property to advance to it

in the properties list.

� To commit a value setting to a property, click on your application screen or
another widget, select another property, or press Enter. You don't have to
choose the OK button.

� Choose Edit%Undo (or the Undo button on the toolbar) to undo a property
setting and restore it to its prior value. By default, you can undo the last 10
actions, including property specifications.

7 With both widgets still selected, select the Database heading in the Properties
window.

The Database properties are displayed.

8 Under the Database heading, select the Use In Where property.

Define query fields

Lesson 2: Query the Database

56 JAM 7.0 Getting Started

An option menu is made available at the top of the Properties window from
which you can select from predefined values.

9 Click on the option menu, and select Yes from the list of options. Then choose
OK, press Enter, or click on another property to confirm the setting.

This tells JAM to use this field in the WHERE clause of the database query. By
setting Use In Where to Yes for both widgets, you allow the user to search for
a customer record by either identification number or last name.

Notice that the inheritance link no longer exists for this property. Also,
additional properties, subproperties of Use In Where, are displayed.

Has no Inheritance link

Lesson 2: Query the Database

57VideoBiz TutorialChapter 3

More About Flexible Inheritance
For maximum customization, you can override inherited values on individual
properties. For instance, to enforce application standards, all your application
widgets can inherit colors and fonts from their respective parent widgets in the
repository, but you can also define a unique font or validation routine for a child
widget that differs from its parent. In this case the inheritance link is broken for
specific properties.

To reestablish inheritance for an individual property, you simply select the property
and choose the Inh button on the Properties window.

This selective inheritance mechanism gives you more flexibility in your application
design than other rigid and strict inheritance schemes.

A search condition acts as a filter for records, or rows, in the database table. In this
example, you want to define two different types of search conditions: (1) find the
customer record whose ID matches that entered by the user, (2) find the customer
record that matches the character string entered by the user.

By default, the Operator property, a subproperty of Use In Where, is set to = (equal
sign). At runtime, when a customer ID is entered (in the Cust ID field), JAM
searches the cust_id column in the customers database table for a row or record
with the same customer ID.

10 Select the last_name text widget and set its Operator property to like% .

The % sign is a wildcard. This comparison operator searches for all records
that begin with the string specified in the data entry field, specifically the Last
Name field.

Define the search
condition

Lesson 2: Query the Database

58 JAM 7.0 Getting Started

Now you can test the screen to find specific customer records.

11 Choose File%Test Mode or the Test Mode button on the toolbar to enter Test
mode.

12 If you are not connected to the database, choose Database%Connect and
specify the videobiz on the Connect to Database dialog box (refer to
Connect to the JDB database in Lesson 1).

13 Click (or Tab) in the Last Name field. Enter B (the search is case-sensitive;
make sure you enter an uppercase B), and then choose the View button.

The first customer record that has a last name starting with the letter B is
displayed.

View specific
customer records

Lesson 2: Query the Database

59VideoBiz TutorialChapter 3

14 Choose .

The next record that starts with the letter B is displayed.

15 Choose Reset to search for a different record.

The Reset button executes a Close command which closes the search
transaction on the letter B, and clears all fields of data so that you can search
for another record using different search criteria.

16 Enter an ID number (a number between 1 and 20) in the Cust ID field, and
choose View.

17 Choose Select.

Now you edit the record. Because of the = (equal) operator (or the like% for
the Last Name) applied to the Cust ID, JAM automatically uses the data in the
query field to select the appropriate record for update.

18 Choose Reset.

You can try all the buttons on the screen, just as you did in Lesson 1. However,
you must remember to choose the Reset button to close the transaction and
clear the fields.

19 Choose Options%Screen Editor to resume in the screen editor.

20 Choose File%Save or the Save button on the toolbar to save the
custedit.jam screen.

In this lesson, you created a powerful query screen that allows a user to search for
and enter data in the database using multiple criteria. You did this by:

� Defining query fields via the Properties window and setting the Use In Where
property under Database to the appropriate operator type.

What Did You Do?

Lesson 2: Query the Database

60 JAM 7.0 Getting Started

� Testing the resulting screen using the various search criteria.

You learned:

� The powerful and easy-to-use Properties window serves as a centralized
location for setting an object's behavior.

� How to set property values simultaneously for multiple widgets.

� Inherited property values can be selectively overridden, while still maintaining
inheritance links for other properties.

The screen is shaping up; however, to the novice user of this VideoBiz screen,
there are no clues as to what values are acceptable for data entry. In the next lesson,
you will implement data entry restrictions, add status line text, and define date/time
and currency fields. You'll also learn how easy it is to assign fonts and colors to
your widgets and screens.

What Did You
Learn?

Where to Now?

61

Lesson 3: Control How Users View & Input Data

You have created a basic query screen, now you can take advantage of JAM's pow-
erful input/format features to enhance the screenÐmaking it more ªuser-friendly!º
For example, if the data are numeric only, you can specify a filter that prevents
users from entering letters. Other widgets might require a filter that converts lower-
case characters to uppercase.

In most cases, you will want these format specifications to reside with the widget.
Therefore, rather than redefining formats every time you copy a database-derived
widget from the repository, you can assign properties to the parent widgets in the
repository and propagate these changes to your application screens.

In this lesson you learn how to:

� Edit a repository screen and learn the different ways you can use the Properties
window and change parent widget property values.

� Define user input by defining edit masks and regular expressions.

� Define date and currency fields.

Lesson 3: Control How Users View & Input Data

62 JAM 7.0 Getting Started

� Assign fonts and colors to screen objects.

1 If the screen editor is not running, start it now.

2 Open the custedit.jam screen, if it is not currently open.

3 Choose File%Open%Repository Entry.

The Open Repository Entry dialog box opens.

4 Select the customers.fmt repository screen and choose OK.

The customers.fmt@[Repository] screen opens.

Note: If you open the customers.fmt repository screen via the Repository
TOC window, be sure to deselect the Read Only check box so that you can edit
the screen.

Modify some of the widgets to suit your specific needs as well as comply with spe-
cific data requirementsÐsuch as changing the length of the Cust ID (cust_id)
text widget and restricting its input to digits only.

The following steps show you several different ways to navigate through the
Properties window and to selectively remove inheritance on properties.

5 Select the Cust ID text widget in the customers.fmt@[Repository]
screen.

Use inherited
properties

Lesson 3: Control How Users View & Input Data

63VideoBiz TutorialChapter 3

6 Under Format/Display, set the Justification property to Right.

The data will be aligned to the right edge of the widget and at runtime, data
will be entered from right to left.

7 Choose .

The Properties window expands to display the list of properties.

8 Type the initial letter k (lower- or uppercase is acceptable) to locate the
Keystroke Filter property under Input.

9 Select the property by pressing Enter.

10 Choose Digits Only from the drop-down options menu.

11 (Optional) Choose .

The properties list collapses making it easier to find specific property
headings.

Define an edit mask to provide end users with a visual cue as to what format is
expected when entering data.

12 Select the Phone text widget.

Define user input

Lesson 3: Control How Users View & Input Data

64 JAM 7.0 Getting Started

13 Under Input, set the Keystroke Filter property to Edit Mask.

An Edit Mask subproperty appears, so that you can define the mask itself.

14 Define the Edit Mask subproperty as (\9\9\9)\9\9\9±\9\9\9\9 .

The widget displays () ± and will accept only numbers as input.

Note: A character that is preceded by a backslash allows a data character to
be entered in this position (for example, 9 denotes a digit specification, so the
user can only enter a number); a display character, like the open and close
parentheses, is protected and serves as a placeholder for static text or
numbers.

Lesson 3: Control How Users View & Input Data

65VideoBiz TutorialChapter 3

More About Input Filters
JAM provides you with a wealth of built-in input filters to help you effortlessly guide
the user's input and, at the same time, greatly reduce validation requirements.
Some input controls include:

� Digits-only Ð Allows entry of the digits 0 through 9 only .

� Alphanumeric Ð Allows entry of any digits, the letters a-z and A-Z, and the
space character.

� Yes/No fields Ð Allows entry of the initial letters of ªyesº and ªno.º

� Case style Ð Enforces upper-case, lower-case, mixed case conversion.

� Required data Ð Requires at least one non-blank character for validation to
succeed.

� Minimum/maximum value specifications Ð Specifies a range of values.

� Various protection modes Ð Protects data from being cleared, or the field
from receiving focus and therefore, protected from data entry.

� Edit masks Ð Imposed a pattern of symbols or characters that limit the kinds
of characters a user can type into a field.

� Regular expressions Ð Enforces or excludes a specific pattern of letters
and/or numbers.

� Table lookups Ð V erifies input against a list of possible values.

15 Under Input, set the Select on Entry property to Yes.

This causes the contents of the field to be selected when the user clicks or tabs
into the field. The contents are then overwritten as the user types.

You can provide the user with some helpful informational text via the status line.
For instance, when you define a range of values for a given field, the status line
text can provide the user with just enough information to know what is expected.

16 Select the Status text widget.

Provide status line
help

Lesson 3: Control How Users View & Input Data

66 JAM 7.0 Getting Started

17 Under Input, set the Keystroke Filter property to Regular Exp.

A Regular Exp subproperty appears, where you can define the expression
itself.

18 In the Regular Exp subproperty, enter the expression as [AFI] .

This expression specifies that only an uppercase A (active), F (frequent
renter), or I (inactive) are acceptable values.

19 Under Input, set the Convert Case property to Upper.

Now the user can type either an uppercase or lowercase A, I, or F, and JAM
will automatically convert it to an uppercase character.

20 Under the Help heading, enter the following text in the Status Line Text
property:

Enter A(ctive), F(requent Renter), or I(nactive).

This text displays in the status line whenever the cursor enters this particular
field at runtime.

More About Providing Help
You have many choices for providing help to users of your application:

� Status line text Ð Displays whenever the field has focus.

� Selection screens Ð Lets the user choose from a list of valid choices.

� External platform-specific help engines Ð Attach help topics via an external
engine, such as Winhelp for Windows.

� JAM help screens Ð Displays JAM screens that you have defined as help
screens.

JAM gives you the flexibility to choose the type and level of help that will best
serve the users of your application.

21 (Optional) Select the State/Prov text widget and set the Convert Case property
(under Input) to Upper.

JAM automatically converts the data to upper case characters as they are
typed.

Lesson 3: Control How Users View & Input Data

67VideoBiz TutorialChapter 3

You can format fields to accept specific types of data, for example, date/time for-
mats, using built-in Format/Display properties. Here you will define a custom date
format.

More About Format/Display Properties
There are a wide variety of formatting options you can use to define a widget's
look. JAM lets you choose from among 10 predefined date/time formats as well as
10 numeric formats. In addition, you can create customize data/time or numeric
formats. The format is automatically applied when data are entered into fields with
these format specifications. Other Format/Display properties include font
specifications, initial text, and justification.

22 Select the Membership Date text widget.

Assign a date
format

Lesson 3: Control How Users View & Input Data

68 JAM 7.0 Getting Started

23 Under Geometry, change its Length property from 20 to 8.

24 Under Format/Display, select Format Type (a subproperty of Data Formatting)
and change the current value of DEFAULT to Custom.

25 In Custom Format (a subproperty under Format Type), enter the following
format specification (exactly as indicated):

MON2/DATE2/YR2

These tokens describe components of the date. In addition to other tokens, you
can switch them around and use them in combination to create your own
custom date format.

26 Set the System Update property to Yes.

At runtime, the Membership Date field on your application screen will be
initialized to contain the date of your operating system's setting.

You can choose from among 10 predefined numeric formats which include cur-
rency formats. When numeric data are entered into the field at runtime, it is auto-
matically formatted. In addition to defining a format, you want to ensure that only
numbers are considered valid input.

27 Select the Total Rental text widget.

Create a currency
field

Lesson 3: Control How Users View & Input Data

69VideoBiz TutorialChapter 3

28 Under Input, change the Keystroke Filter to Numeric.

Only numeric data will be accepted into this field.

29 Under Format/Display, set the Data Formatting property to Numeric.

The Format Type property appears and is set for Local Currency. (The format
for Local Currency is defined in the message file; as distributed, it is set for
US currency, or $0.00.)

Lesson 3: Control How Users View & Input Data

70 JAM 7.0 Getting Started

Changes made to parent widgets in the repository are propagated to (child) widgets
on screens that are open in the screen editor when the repository entry is saved. As
soon as you save the repository screen, you will see how your application screens
inherit from the repository.

More About Inheritance
When you import columns from a database, the resulting widgets in the repository
inherit database-related properties from the database. You can then use these
widgets, just as the screen wizard did, as building blocks for your application
screens by copying them from repository entry to screen. The result is an
inheritance hierarchy of database to repository to application screen.

Changes made to the database, such as length specifications, can be reimported
to the repository and automatically propagated to all application objects that are
copies of those repository objects. In addition, any custom attributes that you have
applied (such as color, font specification, validation) to repository objects can also
be defined and propagated to the screens that inherit from these widgets.

This importation and inheritance feature greatly simplifies application maintenance
and facilitates your ability to enforce a consistent look and feel to an application's
interface.

30 While the customers.fmt@[Repository] entry has focus, choose
File%Save or the Save button on the toolbar.

You will immediately notice that all the changes you made to the repository
widgets are reflected in the custedit.jam screen; the edit mask appears just
as it did in the repository entry, and widget lengths are adjusted as specified.

You will assign a different font to all data entry widgets in the repository entry.
The typeface you choose for your screen and widgets can enhance the user inter-
face. In addition, by defining the font in the repository entry, you can easily change
the font for all widgets that inherit from that repository entry.

Note: In character mode you will not see the effects of assigning a font, but you
can still assign fonts in the event that your application is ported to a GUI platform.

Propagate changes
to application
screens

Choose a font

Lesson 3: Control How Users View & Input Data

71VideoBiz TutorialChapter 3

More About Font Specifications
JAM's flexibility allows you to choose JAM-specific fonts for maximum portability,
which map to your native system fonts, or choose a platform-specific font. And you
can set them in a variety of places so you get the look you want:

� As an application-wide font Ð Defined in the default_font assignment of
your cmap file (provided with your installation and specific to your terminal-
type).

� As a screen-wide font Ð All widgets on the screen acquire the specified font.

� On a widget-by-widget basis Ð The widget' s font takes precedence over
screen and application font specifications.

You can specify one font for label widgets and another for data entry-type widgets.
Fonts can facilitate readability and highlight important information.

31 Select all the text widgets in the customers.fmt repository screen.

Do this by moving the mouse to the top center of the screen. Hold the mouse
button down and draw a selection box downward that will surround or
intersect the desired widgets. Any widgets that are within or overlap the
selection box's border will be selected.

Lesson 3: Control How Users View & Input Data

72 JAM 7.0 Getting Started

32 Under Font, select JAM Helvetica from the list of platform-specific and alias
fonts available in the Font Name property.

This specification is platform-independent; however, it does map to a
GUI-specific font.

Note: If the font size is too large or small, you can change the default font size
in the Point Size property.

More About Font Aliasing
You can take advantage of JAM's flexibility by using its font aliasing capabilities.
You can assign JAM's GUI-independent font names. These aliases map to a
native font. Not only does this make the font specification portable across multiple
platforms (for example, from PCs running Windows to UNIX servers running
Motif), it also makes application maintenance easier.

For example, you can assign all data entry widgets to the JAM Times Roman font,
which maps to a Times Roman font that is installed on your system. You can even
define your own aliases names, and map them appropriately to GUI-specific fonts
on each platform you support. JAM provides you with a configuration map (cmap)
file where you can easily define aliases and control the mapping of those fonts
without having to change every widget specification on already developed
screens!

33 Choose File%Save or the Save button on the toolbar.

Lesson 3: Control How Users View & Input Data

73VideoBiz TutorialChapter 3

The font changes are saved and propagated to the custedit.jam screen.

Now it's time to add a little color!

More About Color
You can easily choose foreground and background colors for JAM objects via the
Color palette. However, when you start out, all widgets have a predefined color
assignment (scheme). The scheme is determined either from the cmap file of your
JAM installation or from your system's defaults if no scheme is defined in the cmap
file. (Refer to the Editors Guide and the Configuration Guide for more information on
setting colors.)

In addition, like fonts, you can assign color aliases; these can be mapped to JAM
colors or platform-specific colors.

34 Select all the label widgets on the customers.fmt@[Repository] screen.

35 Choose View%Color Palette if it is not already open.

Choose colors from
the Color palette

Lesson 3: Control How Users View & Input Data

74 JAM 7.0 Getting Started

Basic
Container

Scheme
Extended

JAM's basic colors are displayed on the Color palette; foreground colors in the
top row and background colors in the bottom row.

36 Click on the desired foreground color on the top row of the Color paletteÐtry
blue.

If you don't like the color you've selected, you can choose another color.

To make colors portable across platforms, you can use GUI-independent color
aliases or JAM basic colors in your application. To use color aliases, you must
define them in your cmap file; JAM basic color names are listed in the
Configuration Guide.

Note: Certain colors will not be visible when the screen's 3D property is set to
Yes (or if 3D is specified on an application-wide basis in the initialization file).

37 Choose File%Save or the Save button on the toolbar.

The changes are saved and propagated to the custedit.jam screen.

38 Choose Close/Quit from the customers.fmt repository screen's system
menu.

Note: As an alternative to the Color palette method described here, you can also
use the Properties window to assign colors.

Now you can try out each of the fields where you have specified filters and for-
mats.

39 Bring focus to the custedit.jam screen, and choose File%Test Mode or the
Test Mode button on the toolbar. The custedit screen opens.

Check the
appearance and
behavior

Lesson 3: Control How Users View & Input Data

75VideoBiz TutorialChapter 3

40 If you are not already connected to the database, choose Database%Connect
and specify videobiz .

41 Try typing letters into the Cust ID field.

JAM beeps at you to let you know that the characters are invalid.

42 Enter a phone number into the Phone field.

Notice how the digits you enter fit around the edit mask characters.

43 Delete the system date that displays in the Membership Date field, and then
enter a date using the format MM/DD/YY (type the slashes too).

44 Continue ªplayingº with this screen.

Notice, particularly, how your input is handled in fields that have the
Keystroke Filter and Convert Case properties. See how the status line text
appears when the Status field has focus.

45 Choose Options%Screen Editor when you are finished testing the screen.

You exit Test mode and re-enter the screen editor.

46 Remember to save the screen!

Lesson 3: Control How Users View & Input Data

76 JAM 7.0 Getting Started

In this lesson, you enhanced various repository widgets and automatically propa-
gated those changes to your application screen. These included:

� Defining input filters Ð Keystroke filters for digits and alphabetic data, an
edit mask for telephone numbers, a regular expression to enforce specific data
requirements, and case conversion specifications.

� Creating status line help Ð Display help on the status line when the user
enters a specific field.

� Assigning display formats Ð Custom system-updated date format and built-in
local currency format.

� Changing colors and fonts.

You learned:

� JAM provides a wide variety of built-in input filters that help you easily
control user-input and minimize data entry errors without extra coding.

� There are a variety of format/display options available, such as date/time and
numeric formats.

� Flexible font support allows you to set fonts on an application-wide,
screen-wide, and widget-by-widget basis.

� JAM lets you use your system's default colors on application objects or you
can assign colors on a screen-by-screen or widget-by-widget basis.

� JAM supports font and color aliasing to facilitate application maintenance and
application portability.

� Test mode allows you to quickly test all filters and formats without having to
compile your changesÐeffectively giving you true rapid application
development!

Now that the screen's functionality is complete, it's time to enhance its appearance.
When you design the user interface there are all sorts of things to consider, such as,
where the buttons should be positioned, how the labels should be aligned, and
which data are the most critical to view first when the screen opens.

The final lesson of this module gives you an overview of how to manipulate the
widgets on the screen so that they are positioned where you want themÐevenly
aligned and spacedÐcreating an aesthetically pleasing and logically designed
screen.

What Did You Do?

What Did You
Learn?

Where to Now?

77

Lesson 4: Improve the Screen's Appearance

Refine and polish up the custedit.jam screenÐmake it more aesthetically
pleasing. You can physically group widgets in a logical fashion. This can make the
screen easier to read, understand, and use.

In this lesson you learn how to:

� Reposition widgets within the screen by using the align and space edit
commands. You will become familiar with commands associated with the edit
and align buttons on the toolbar.

Align Left

Align Right

Align Top

Align Bottom

Cut Copy Paste Size Widths

Size Heights

Size Both Space
Vertical

Space
Horizontal

� Resize the screen.

� Use the Tool box to add decorative touches, such as lines and boxes, to
enhance the appearance of the screen.

Lesson 4: Improve the Screen's Appearance

78 JAM 7.0 Getting Started

1 If the screen editor is not running, start it now.

2 Open the custedit.jam screen if it is not currently open.

Move the widgets around the screen to group them logically. Remove unnecessary
labels and rename other labels to be more descriptive. If you don't like the way
something looks, or you moved a widget to the wrong place, just choose Undo
(from the toolbar or Edit menu), and try it again!

Note: Sometimes it is difficult to move small widgets (those with a Length property
setting of 2 or less). To move the widget, increase its length by dragging the widget
or by setting its Length property under Geometry to a number greater than 2. Once
you have moved the widget, restore its original length by resetting the Length
property or by turning inheritance back on (choose the Inh button in the Properties
window), if the length was originally inherited.

3 Select the Membership Date labels and its associated text widget.

4 Drag them to the the right of the Cust ID text widget at the top of the screen.

5 Select the Status label and text widgets and drag them to the right of the
Membership Date text widget at the top of the screen.

Move, remove, and
align widgets

Lesson 4: Improve the Screen's Appearance

79VideoBiz TutorialChapter 3

6 Select all three text widgets (Cust ID, Membership Date, and Status) and their
labels; make the Cust ID label the dominant widget.

The first widget you select is considered the dominant widget. Under GUI
environments, you can press Ctrl+click on any widget in your selection set to
make that widget dominant.

More About Using a Dominant W idget
By default, the first widget you select in a selection set is the dominant widget. The
dominant widget is indicated by little solid black boxes around its border (in
character mode, by square brackets). The position and size of the dominant widget
determines how the other widgets in your selection set will align or resize.

You can easily change the dominant widget by Ctrl+clicking on the intended widget
without deselecting the other widgets in the selection set.

Dominant widget in
the selection set

Lesson 4: Improve the Screen's Appearance

80 JAM 7.0 Getting Started

7 Choose Edit%Align%Middle.

The widgets align horizontally along the dominant widget's middle axis.

8 Select the Address1 label widget.

9 Under Identity, change the Label property to by Address .

10 Select the Address2 label widget, and choose the Cut button on the toolbar or
press the Delete key.

Lesson 4: Improve the Screen's Appearance

81VideoBiz TutorialChapter 3

11 Select the State/Prov label and its corresponding text widget and move them to
the right of the City text widget.

12 Select all four widgets (City label and text, and State/Prov label and text),
making the City label dominant.

13 Choose Edit%Align%Middle.

All widgets align along the middle axis of the dominant widget.

14 Select the Phone label and text widgets and move them to the right of the Zip
Code text widget.

Lesson 4: Improve the Screen's Appearance

82 JAM 7.0 Getting Started

15 Select the City text widget (making it dominant) and the Zip Code text widget.

16 Choose Edit%Space%Custom.

The Set Custom Space dialog box opens.

17 Enter 0 in the Distance field to designate that no space should exist between
the two widgets, and select the Vertical radio button.

Lesson 4: Improve the Screen's Appearance

83VideoBiz TutorialChapter 3

The number defines the amount of space (in grid units) between the selected
widgets.

The Zip Code widgets moved directly below the City text widget.

More About Arranging W idgets
Via the Edit options, you can let JAM automatically align, space, and size widgets
to match the dominant widget in a selection set. In addition, JAM also support
custom spacing options, for both horizontal and vertical dimensions. This
customization gives you the ability to specify the exact spacing required between
widgets. In fact, you can use the unit of measurement that works best for your
needs:

� Character units (c) Ð Based on the widget' s font size.

� Grid units (g) Ð The default unit of measure; based on the average character
size of the screen font.

� Inches (in) Ð Specifies size or position in inches.

� Millimeters (mm) Ð Specifies size or position in millimeters.

� Pixels (p) Ð Dependent upon screen resolution.

In character mode, the number specification always translates to a grid unit.

18 Select the Zip Code text widget (making it dominant) and add its label and the
Phone label and text widgets to the selection set.

Lesson 4: Improve the Screen's Appearance

84 JAM 7.0 Getting Started

19 Choose Edit%Align%Middle.

The widgets move up to align horizontally along the Zip Code text widget's
middle axis.

20 Select the First Name text widget (making it dominant) and the Last Name
text widget.

21 Choose Edit%Space%Custom.

The Set Custom Space dialog box opens.

22 Enter .5 in the Distance field, and select the Horizontal radio button. Choose
OK.

Lesson 4: Improve the Screen's Appearance

85VideoBiz TutorialChapter 3

The text widgets are spaced one-half grid unit apart. Under character mode,
this translates to one grid unit.

23 Now make the Last Name text widget dominant (Ctrl+click on the widget).

Both the Last Name and First Name text widgets should be selected, but the
Last Name is dominant instead of the First Name text widget.

24 Choose Edit%Align%Bottom or the Align Bottom button on the toolbar.

Now the First and Last Name text widgets are next to one another and aligned
on the same row.

25 Delete the First Name label widget.

26 Select the Last Name label widget.

27 Under Identity, change the Label property to Name.

Now the labels aren't aligned correctly...but that's easy to fix!

28 Select the City label widget (making it dominant) as well as the Name and
Address label widgets.

Align labels

Lesson 4: Improve the Screen's Appearance

86 JAM 7.0 Getting Started

29 Choose Edit%Align%Right or the Align Right button on the toolbar.

The labels align with the right edge of the dominant widget, making them
appear right justified.

Continue arranging widgets on the screen until they are grouped together in an or-
ganized fashion.

30 Select all widgets from the Cust ID label widget to the Phone text widget by
rubberbanding them.

31 Move the widgets down by 1 or 2 grid units and slightly to the left, making
room for the rental-related widgets.

Arrange other
widgets

Lesson 4: Improve the Screen's Appearance

87VideoBiz TutorialChapter 3

Make the screen large enough to allow you to easily move and rearrange widgets
within the screen's borders.

32 Resize the the screen by doing either of the following:

w Drag on an edge or corner of the screen until it's the size you want.

w Click in an empty area of the screen to deselect all widgets. The screen
properties are displayed in the Properties window. Under Geometry, set
the screen's Height and/or Width properties to the desired size (default is
grid units).

33 Select the No. Rentals and Total Rental labels and their corresponding text
widgets and drag them to the upper right corner of the screen.

Resize the screen

Lesson 4: Improve the Screen's Appearance

88 JAM 7.0 Getting Started

34 Stack them one above the other (as illustrated below) and choose
Edit%Align%Center.

This centers the widgets along the center axis of the dominant widget.

With all of the rearranging, it's probably a good time to save the screen if you
haven't been doing that all along. Continue to rearrange widgets until they are
pretty much where you want themÐso that your screen looks something like the
following illustration:

Save your work

Lesson 4: Improve the Screen's Appearance

89VideoBiz TutorialChapter 3

You've arranged the widgets pretty much the way you want them. You can enhance
the screen with a few decorative touchesÐwhich can also help visually group in-
formation.

There are basically two ways to create widgets: use the Create menu or the Tool
box. These next steps illustrate how to use the Tool box.

35 If the Tool box is not open, choose View%Tool Box.

Add lines and
boxes

Lesson 4: Improve the Screen's Appearance

90 JAM 7.0 Getting Started

More About the V iew Menu
You can access several JAM development tools by way of the View menu option,
such as:

� Tool box Ð For creating widgets.

� Repository table of contents Ð Lists repository entries in the open repository .

� Color palette Ð For setting colors of screens and widgets

� Widget list Ð Lists all widgets on your screen.

� DB Interactions window Ð Displays a graphical map of the relationships
between table views on your screen (more on this in later lessons).

You can toggle the display of these tools by selecting the item from the menu. An
indicator next to the menu item denotes that the tool is currently open.

Status label

Single line text

Push button

Check box

Toggle button

Combo box

Line

Link

Dynamic label

Multiline text

Radio button

List box

Option menu

Scale

Box

Select tool

Grid frame

Graph

36 Choose Create%Box or from the Tool box, choose .

In the custedit.jam screen, draw a box around the customer demographics
(from the upper left corner of the screen, diagonally to the right of the Phone
text widget).

Lesson 4: Improve the Screen's Appearance

91VideoBiz TutorialChapter 3

37 Choose Create%Line, or from the Tool box, choose .

Draw a horizontal line on the screen to separate the widgets at the top of the
screen (Cust ID, Membership Date, and Status text and label widgets) and the
customer demographic information below them.

Lesson 4: Improve the Screen's Appearance

92 JAM 7.0 Getting Started

38 Select the box widget (making it dominant) and the line widget on the screen
and choose Edit%Size%Adjust Widths (or the Size Widths button on the
toolbar).

The selected objects will all have the same horizontal size. (The width is
determined by the dominant object.)

39 Choose Edit%Align%Left (or the Left Align button on the toolbar).

This ensures that the box and line widgets start on the same grid column.
(They will align to the position of the dominant object.)

You can also add a title to box widgets.

40 Select the box around the customer demographic information.

41 Under Identity, enter CUSTOMER INFORMATION in the Label property.

An additional, label-specific subproperty is displayed

Note: If the box label overlaps the widgets within the box, make the box
bigger by dragging on its top, middle resize handle.

Add a title on the
box widget

Lesson 4: Improve the Screen's Appearance

93VideoBiz TutorialChapter 3

42 Change the Justification subproperty from Centered to Left.

The label on the box widget aligns to the left border of the box.

Now you can see how it will appear to the user. In a later lesson, you will replace
the screen's buttons with buttons that will better serve the screen's purpose. But, in
the meantime, you can use them to view, select, and scroll through data.

43 Choose File%Test Mode or the Test Mode button to enter Test mode.

The VideoBiz Customer Information screen is displayed.

How does it look?

Lesson 4: Improve the Screen's Appearance

94 JAM 7.0 Getting Started

44 Keep the following questions in mind when you test the look and feel of the
screen:

w Are fields lined up?

w Are the labels lined up with their corresponding text fields?

w Are all the widgets visible?

w Will a user know what data and format belong in all the updatable fields?

45 Go back to the screen editor to save the screen.

Adjust those things that need adjusting, add more status line help if that seems
useful, or change the colors. And remember to save the changes.

In this lesson, you rearranged and organized the Customer Information screen. You
also added a few decorations to improve the screen's appearance and layout. You
did this by:

� Adjusting the screen's size.

� Adjusting the spacing between widgets by using custom Space options.

� Aligning various widgets by using the Align options.

What Did You Do?

Lesson 4: Improve the Screen's Appearance

95VideoBiz TutorialChapter 3

� Using the Tool box to add a box and a line to visually group information.

� Resizing some widgets so that they would have a uniform dimension by using
the Size options.

You learned:

� JAM provides a variety of editing options that let you quickly and painlessly
manipulate widgets on the screen to the desired position: alignment, sizing
(height, width, both dimensions), spacing (vertical, horizontal, custom), and
centering (within the screen's borders).

� The significance of determining the dominant widget in a selection set. It
becomes the model for resizing and positioning other widgets in the selection
set.

� Enhancing the look of a screen doesn't have to be a ªdrag.º JAM does a lot for
you!

Congratulations! You have created a complete one-screen application that lets you
view, update, and add customer records to the videobiz database. However, most
applications call for more than one screen. In the next module, you'll create anoth-
er screen that will ultimately be attached to the Customer Information screen.
While custedit.jam displays one database record at a time, the next screen you
create can display multiple records at once.

What Did You
Learn?

Where to Now?

97

MODULE TWO

Connect the Screens
Module 2 consists of five lessons that teach you how to build a screen that displays
multiple records, and allows users to invoke the data entry screen
(custedit.jam) you created in Module 1.

In the first two lessons of this module, you create a screen that:

� Allows the user to query the database.

� Displays all the records that meet the query criteria in a grid frame.

� Uses a custom menu bar and toolbar you create with JAM's menu bar editor.

The Customer Search you create will resemble the following illustration:

In the process of creating and refining this screen, you will use JAM's built-in
scripting language, JPL. The JPL procedures you create in these lessons will be

98 JAM 7.0 Getting Started

stored in the screen JPL module, making them accessible from the screen or from
any widget on the screen. You will learn to:

� Write JPL procedures without leaving the screen editor.

� Read in JPL procedures from ASCII files.

� Invoke JPL procedures as screen entry and field validation functions, from
other JPL procedures, and from menu/toolbar items.

In the third and fourth lessons of this module, you will connect the two screens.
Upon completion, the user will be able to specify search criteria on the Customer
Search screen, select a record, and choose the Edit option from the screen's menu
bar/toolbar. The Customer Information screen you created in Module 1 will then
open with the current data displayed for the selected customer. Once the user has
finished updating the record, the Customer Information screen will close, and the
Customer Search screen will again be displayed, with the customer listing updated
to reflect the latest customer information.

In this module, you will become familiar with the following techniques:

� Passing data between screens via JAM's send and receive feature.

� Displaying error messages and prompts to the user.

99VideoBiz TutorialChapter 3

� Specifying the sort order for records retrieved from the database.

� Distinguishing programmatically whether a screen is newly opened or has
been re-exposed by virtue of the window above it closing.

� Formatting data programmatically as well as dynamically controlling the
appearance of widgets at runtime.

� Opening another screen from a menu/toolbar item or as a double-click event.

In addition, you will learn to use the styles editor to define widget behavior and
appearance during various database transactions. (For example, you probably want
all data entry widgets on a screen protected from editing during a View transaction,
but you will want some or all of them to be accessible for editing during a Select
for update transaction.)

101

Lesson 5: Display Multiple Records

Build a screen from which a user can query the database for customer records. If
more than one record matches the search criteria, display all the relevant database
rows. Name this screen custlist.jam .

In this lesson you learn how to:

� Display records in a grid frameÐthis will allow more than one record to be
displayed at a time.

� Copy query fields from one screen to another and thereby provide users with a
means of specifying search criteria.

� Write and attach a JPL procedure to the screen.

� Create a push button that will execute the search procedure when the user
chooses the button.

1 If the screen editor is not running, start it now.

2 Choose File%New%Screen or the New button on the toolbar.

The New Screen Tool dialog box opens.

Lesson 5: Display Multiple Records

102 JAM 7.0 Getting Started

3 Choose Yes to use the screen wizard.

The Format Selection dialog box opens.

4 Select the Master (only) option to define the format for the screen.

5 Choose Next.

The First Master dialog box opens.

6 Select the customers.fmt repository screen as the master table for the
screen.

The database columns associated with the selection column are displayed.

m
st

er
5

7 Select last_name , first_name , and phone (Ctrl+click on each item).

8 Choose .

The selected columns are added to the list of fields that will be included on the
screen.

9 Select the first_name column and choose the Up reposition arrow to move it
directly above the last_name column.

10 Choose Next.

The Layout Selection dialog box opens.

Lesson 5: Display Multiple Records

103VideoBiz TutorialChapter 3

11 Select Grid Display as the preferred layout for this screen.

la
yo

ut
5

12 Choose Next.

The Style and Finish dialog box opens.

13 Enter VideoBiz Customer Search in the Screen Title field.

14 Deselect the Push Buttons as the Onscreen Controls.

(You'll use the menu bar editor in the next lesson to create a customized menu
bar/toolbar for this screen.)

st
yl

e5

Lesson 5: Display Multiple Records

104 JAM 7.0 Getting Started

15 Choose Done.

JAM prompts you to confirm that the screen is complete.

16 Choose Yes.

The new screen appears in the screen editor workspace.

c_
lis

t5
a

17 Increase the screen vertical and horizontal dimensions by either setting the
Height and Width properties or by dragging on the window's lower right
corner.

18 Select the grid frame widget by rubberbanding a portion of the frame, or select
it from the Widget list, or by doing one of the following:

w Under Windows, click in the center of the grid frame.

w Under Motif, click in any area of the grid frame that does not contain a
column (grid member).

19 Under Geometry, set the Onscreen Columns to 4.

All four columns will display in full within the grid.

Lesson 5: Display Multiple Records

105VideoBiz TutorialChapter 3

20 Choose Edit%Center%Vertical or the Center Vertical button on the toolbar.

This positions the grid frame in the vertical center of the screen. Optionally, if
it will look better, center the grid horizontally as well.

ce
nt

er

21 Choose File%Save (or the Save button on the toolbar).

The Save As dialog box opens.

22 Enter custlist as the name of the new screen.

If a file by this name already exists, JAM lets you know. Choose Yes to
overwrite the file.

You can make copies of a few widgets to serve as query fields. The widgets you
copy have an inheritance link to the parent widget in the repository even though
you don't copy them directly from a repository entry.

23 If the custedit screen is not open in the workspace, open it now by choosing
File%Open%Screen or the Open button on the toolbar. Select custedit
from the list of files on the Open Screen dialog box.

Copy widgets and
inherit properties

Lesson 5: Display Multiple Records

106 JAM 7.0 Getting Started

24 Copy the Cust ID label and its corresponding text widget from the custedit
screen to the top of the custlist screen.

Do this by selecting the widgets (click on one and Shift+click on the other)
and simply drag them from one screen to the other.

Lesson 5: Display Multiple Records

107VideoBiz TutorialChapter 3

25 Copy the text widget (last_name) that displays the customer's last name
from the custedit screen to the top of the custlist screen; place it to the
right of the Cust ID widget.

Lesson 5: Display Multiple Records

108 JAM 7.0 Getting Started

26 Create a label on the screen to identify the last_name text widget you just
copied. Do this by doing either of the following:

w Choosing Create%Static Label, and then click to the left of the Last
Name text widget.

w Choose the static text icon in the Tool box, and then click to the left of the
Last Name text widget.

27 Under Identity, enter customers.fmt!LLast_name in the Inherit From
property.

Lesson 5: Display Multiple Records

109VideoBiz TutorialChapter 3

The following message is displayed:

The Inherit From property identifies the widget's source of inheritance. By
setting this property you can apply all or specific properties to the selected
widget.

28 Choose Yes.

The static label widget immediately adopts its property values (except for
Name and position) from the named repository object, in this case,
LLast_name in the customers.fmt repository entry. The text is blue and the
label now displays the words Last Name.

29 Select the Cust ID label (making it dominant) and its corresponding text
widget as well as the Last Name label and text widgets.

30 Choose Edit%Align%Middle so the widgets are aligned horizontally along
the middle axis of the Cust ID label.

Lesson 5: Display Multiple Records

110 JAM 7.0 Getting Started

Widget names must be unique on a screen, in the same way that column names
must be unique in a given database table.

Since the Cust ID and Last Name text widgets are already represented on the
custlist screen, the copies you made from the custedit screen are left
unnamed. The next step is to provide names for the copies. It's good programming
practice to provide names for all data fields.

31 Select the Cust ID text widget on the custlist screen.

This widget will serve one of the query fields on this screen.

32 Under Identity, enter cust_id_qbe in the Name property.

33 Select the Last Name text widget on the custlist screen.

34 Under Identity, enter last_name_qbe in the Name property.

This widget will serve as the data entry field for entering a full or partial name
string.

Provide the transaction manager with information it needs, via Database properties:
identify the query fields, define what data are to be retrieved, and ensure that the
data the user enters in the query fields are not used to select or update the database.

35 Select both the cust_id_qbe and last_name_qbe widgets.

se
le

ct
5

Provide names for
widgets

Define the query
fields

Lesson 5: Display Multiple Records

111VideoBiz TutorialChapter 3

36 Under Database, set the Use In Select, Use In Insert, and Use In Update
properties to No.

These settings ensure that the content of the widgets at runtime are not used in
the SELECT, INSERT, or UPDATE statements of the automatically generated
SQL. These two widgets are only used to query the database.

db
pr

op
5

Selected widget is used in
the WHERE clause of the
auto-generated SQL

Selected widget is not used
in SELECT, INSERT, or UP-
DATE statements of the
auto-generated SQL

Note: You'll notice that both widgets you copied from the custedit screen
were already defined as query fields on that screen and, therefore, the Use In
Where property is already set appropriately.

37 Under Input, set the Select on Entry property to Yes.

The contents of each field will be selected when the user tabs into the field,
and will be overwritten as the user types.

Lesson 5: Display Multiple Records

112 JAM 7.0 Getting Started

se
le

nt
ry

Note: At runtime, moving the mouse cursor, as opposed to tabbing to the field
does not always select the contents of the field on entry.

38 (Optional) Close the custedit screen to give yourself more space to work.

(Choose Close/Quit from the screen's system menu or choose
File%Close%Screen.)

To query the database, you can provide a push button on the screen which will exe-
cute a search procedure.

39 Add a push button to the right of the Last Name (last_name_qbe) text
widget.

Create a push
button widget

Lesson 5: Display Multiple Records

113VideoBiz TutorialChapter 3

40 Under Identity, enter Search in the Label property.

41 Under Identity, set the Default/Cancel property to Default.

A push button defined as the Default button can be activated at runtime by
simply pressing Enter.

If you have not yet saved this screen, do so now.

Note: You should develop the habit of saving your work frequently. Reminders are
few and far between in the lessons that follow. Save your work periodically, even
though the instructions do not always tell you to do so.

You now can write a JPL procedure that initiates a search of the customers table.
The user can enter a full or partial name string in the Last Name field.

Save the screen

Write the customer
search procedure

Lesson 5: Display Multiple Records

114 JAM 7.0 Getting Started

More About JPL 's Ease-of-Use and Flexibility
JPL lets you easily and quickly attach code to handle complex validations or to
handle situations beyond the capabilities of built-in controls. Most complex
application development requires some coding; it's inevitableÐJPL makes this
part of the development simpler.

JPL procedures can be stored in a variety of locationsÐas properties encapsu -
lated within the screen or widget definition, stored in external files, or compiled into
binaries and/or libraries for maximum execution efficiency. You have complete
control and flexibility over when and where JPL procedures can be invoked:

� From validation functions and control strings associated with widgets

� On screen entry/exit.

� On field entry/exit, row entry/exit.

� Via logical keys.

� From other JPL procedures.

� As double-click events.

42 Select the screen (by clicking in an empty area to deselect all widgets).

43 Under Focus, select JPL Procedures.

The JPL Program Text dialog box opens.

You'll see there is some JPL code already attached to this screen. This calls a
JPL procedure that was automatically generated by the screen wizard. Leave
the JPL code here. You can just add to it.

Lesson 5: Display Multiple Records

115VideoBiz TutorialChapter 3

44 Enter the new JPL code by doing one of the following:

w Position the cursor after the screen wizard JPL. Type directly into the JPL
Program Text window.

w Choose the Editor button to invoke the default local editor. (For example,
under Windows, Notepad is the local editor; for UNIX operating systems,
vi is the local editor. JAM provides a configuration variable so that you
can define your preferred editor.) When you exit your external editor, you
are returned to the JPL Program Text dialog box.

45 Press Enter once or twice to provide some space between procedures (for
readability). Then type the following JPL procedure after the existing code:

proc custsearch ()
{

call sm_tm_command(ºVIEWº)

if (sm_tm_inquire(TM_OCC_COUNT) == 0)
{

call sm_message_box \
(ºNo customers matching search criteria foundº,\
ªSearch Resultsº, 0, ªº)

return ±1
}
return 0

}

Note: The backslash (\) is the JPL continuation character.

More About JPL T ext
When entering JPL procedures, keep the following points in mind:

� JPL keywords are not case-sensitive.

� Variable names, screen names, and widget names are case-sensitive.

� White spaces within a line are ignored.

The custsearch procedure begins with the sm_tm_command(ºVIEWº)
statement. It invokes the VIEW command, which fetches data from the
database for display purposes. In other words, this statement initiates the
database search.

The library function sm_tm_inquire gets the value of an integer attribute of
the current transaction, in this case, the value stored in TM_CURRENT_OCC. If
the search results in no rows returned (sm_tm_inquire(TM_OCC_COUNT)
equals zero), custsearch displays an appropriate message, as shown in the
sm_message_box function.

Lesson 5: Display Multiple Records

116 JAM 7.0 Getting Started

The specified message displays in a message box with the title, Search
Results. The zero and null parameters specify a default dialog box with no
icon. JAM waits for user acknowledgment (by choosing OK) after displaying
the message.

More About Message Dialog Boxes
You can provide informational messages using the JPL function,
sm_message_box which causes the message to appear in a pop-up dialog box.

You can query the user for a simple Y/N response or for a more complex button
combination; for example, OK, Cancel, Retry, Help, etc.

JAM's wide variety of user message options allow you to format the message text
to different fonts and colors as well as implement informational icons (stop,
warning, etc.)

46 Choose OK on the JPL Program Text dialog box when you are done entering
the JPL procedure.

Note: All remaining JPL procedures in this tutorial are provided as ASCII files in
your JAM distribution. In the next lesson you will learn how to read a file into the
screen JPL module.

You attach control strings to a push button so that it invokes the appropriate com-
mand. You want to associate the custsearch JPL procedure with the Search push
button so that it can be executed when the user chooses the button.

47 Select the Search button on the custlist screen.

Define push button
behavior

Lesson 5: Display Multiple Records

117VideoBiz TutorialChapter 3

48 Under Validation, enter ̂custsearch in the Control String property.

More About Control Strings and Control String Syntax
You can attach actions to widgets, menu items, and specific logical keys by
assigning control strings. Control strings are a shorthand notation for doing
common tasks:

� Execute a function Ð A caret (^) precedes function names. It tells JAM to
search for and execute the named function.

� Display another screen as a form Ð Supply the screen name to tell JAM to
search for and open the named screen as a form (closing the calling screen).

� Display another screen as a stacked or child window Ð An ampersand (&)
precedes a screen name. It tells JAM to search for and open the named
screen as a stacked window. A stacked window becomes the top window and
is the only window that can have focus.

� Display another screen as a sibling window Ð A double ampersand (&&)
precedes a screen name. It tells JAM to search for and open the named
screen as a sibling of the calling screen. Users can bring focus to any window
that is a sibling of the active window.

� Invoke a system command or program Ð An exclamation point (!) precedes
commands. It tells JAM to invoke the specified operating system command.

Lesson 5: Display Multiple Records

118 JAM 7.0 Getting Started

Now you are ready to test the custlist.jam screen. First you will search for a
customer by entering a partial name in the Last Name field. Then you can search
for a customer by entering an ID number in the Cust ID field.

49 Choose File%Test Mode or the Test Mode button on the toolbar.

c_
lis

t5
c

50 Choose Database%Connect and connect to videobiz if you are not already
connected.

51 Enter the letter B in the Last Name field, and choose the Search button or press
Enter.

All the records that match your entry display in the grid frame.

c_
lis

t5
d

Search for
customers

Lesson 5: Display Multiple Records

119VideoBiz TutorialChapter 3

If you now try to specify a new search criteria, you'll notice that the data entry
fields are protected. A beep is issued when you try to type into either the Cust
ID or Last Name fields.

52 Now choose Options%Screen Editor or Shift+F5 to return to the screen editor
to learn how to control this behavior.

When you executed the View command, via the JPL procedure custsearch , JAM
automatically protects all fields from data entry. That's because JAM knew you
were just viewing the data. This default behavior is appropriate for most fields on
the screen, but not for fields defined as search criteria widgets. You want the
cust_id_qbe and last_name_qbe widgets to be exempt from the default behav-
ior.

53 Select the Cust ID (cust_id_qbe) and Last Name (last_name_qbe) text
widgets.

54 Under Transaction, change their Class property from Default to None. (You'll
learn more about transaction classes in a later lesson.)

At runtime, you will now be able to reenter data in the query fields even when
a View command is executed, because no class specification is being applied.

55 Now retest the screen. See if the message you included in the JPL code is
issued when you enter an invalid ID number or a last name that is not in the
database.

Changing JAM's
default behavior

Lesson 5: Display Multiple Records

120 JAM 7.0 Getting Started

56 Before leaving this lesson, return to the screen editor and save the screen.

In this lesson, you built a new screen that queries the database based on multiple
criteria, and retrieves and displays multiple database rows. You did this by:

� Copying database-derived widgets from one screen to another.

� Setting database properties for the query fields.

� Writing a simple JPL procedure that queries the database, and displays an
error message box when no database records match the search criteria.

� Creating a default push button and attaching the JPL procedure to it, so that
when the button is pressed, the code is executed.

You learned:

� JAM lets you use your favorite editor to write and edit JPL procedures.

� It' s easy to define a widget's source of inheritance and thereby apply formats
and behavior by setting a single property.

� Control strings are a shorthand method for carrying common actions.

� JPL represents a simple, yet powerful method for customizing and extending
your application.

� JPL can be stored in a variety of accessible locationsÐwith the screen itself,
in a widget, in a library, in external files, or even compiled within the
deliverable executable.

� JAM automatically protected the data entry fields when the transaction
manager VIEW command was executed. If you want to override that behavior,
you change just a single property.

Consider how much processing this screen performs and how little coding was re-
quired on your part to accomplish it.

There are still a few cosmetic and functional improvements to be made on this
screen. You'll get to those in later lessons.

What Did You Do?

What Did You
Learn?

Where to Now?

121

Lesson 6: Create a Menu Bar and Toolbar

When you created the Customer Search screen with the screen wizard, you speci-
fied that no controls should be created (you deselected push buttons and menu/tool-
bar). You will now create a customized menu bar and tool bar for the screen using
JAM's menu bar editor.

The menu and toolbar are created at the same time, however, the toolbar does not
display under character-mode platforms.

In this lesson you learn how to:

� Use the menu bar editor.

� Create a menu that will be used as both menu bar and toolbar.

� Attach the menu bar/toolbar to the custlist.jam screen.

1 Invoke the menu bar editor by doing one of the following:

w Under Motif or character JAM, from the command line, enter mbedit and
press Enter.

w Under Windows or Macintosh, double-click on the menu bar editor icon.

Lesson 6: Create a Menu Bar and Toolbar

122 JAM 7.0 Getting Started

The menu bar editor workspace opens.

Menu bar

Toolbar

Menu design window

End-of-menu marker

Item Properties window

Status line

More About the Menu Bar Editor
Menu bars, pop-up menus, and toolbars are all derived from menus that you
define through the menu bar editor and save to a binary resource file, or menu
script.

Depending on how a menu is installed, it can display as a menu bar on a screen or
be invoked as a pop-up from a screen or widget. If the menu is installed as a menu
bar and one or more of its items have their Toolbar property set, JAM also displays
a toolbar with the menu bar.

Just like the screen editor, you define the components of a menu by assigning val-
ues in the Properties window. When you define a menu item, the menu bar editor
creates the item in the design window immediately before the end-of-menu marker.
Here you will create a menu item that, when chosen by the user, will exit and close
the Customer Search (custlist.jam) screen.

2 Bring focus to the Item Properties window by clicking in the Label property.

Create an Exit
option

Lesson 6: Create a Menu Bar and Toolbar

123VideoBiz TutorialChapter 3

3 Enter Exit in the Label property, and then press TAB.

The Type property defaults to Action. That's appropriate for this item.

More About Menu Bar/T oolbar T ypes
A menu item's type determines the item's purpose. For example, a menu item can:

� Invoke an action.

� Invoke a submenu.

� Act as a separator between other menu items.

� Toggle the state of the item itself.

� Invoke platform-specific windows submenus (under the Windows menu bar
option, you can specify, for example, the submenu items Tile or Cascade for
Windows applications or Raise All for Motif applications).

� Provide standard menu bar editing-type items (Edit Cut, Edit Paste, etc.)

4 Click or TAB to the Ctrl property and enter ^jm_exit . Press TAB.

At runtime, when this item is selected, JAM executes the built-in function
jm_exit which exits and closes the active screen.

5 Click on the Toolbar property check box to select it or TAB to the Toolbar
check box and select it by pressing Spacebar. Press TAB.

This specifies that the item is a toolbar item as well as a menu bar item.
Additional toolbar-specific properties are displayed.

Lesson 6: Create a Menu Bar and Toolbar

124 JAM 7.0 Getting Started

The Order property determines in what order the items appear from left to
right on the toolbar. Therefore, if one item is set to 100, all items with an
Order number less than 100 appear to the left of it; those toolbar items having
an Order number greater than 100 appear to the right. Order property values
can be between 1 and 200. If all toolbar items are set to the same value, they
appear in the same order as they do in the menu.

You can associate different pixmaps for each state of a toolbar item: active, inac-
tive, and armed (or pressed).

More About Displaying Images on W idgets and T oolbar Buttons
In general, a textual label is displayed on push buttons, toggle buttons, radio
buttons, check boxes, and static and dynamic labels. JAM provides properties for
you to specify the name of a pixmapped image that will display instead of the text
on these particular widgets as well as on toolbar items.

JAM supports Bitmap (.bmp), GIF (.gif), and JPEG (.jpg) files under Windows
and Motif as well as XPM1, XPM3, and XBM files on Motif.

6 Click or TAB to the Active Pixmap property. Do either of the following to
specify a filename:

w Enter exit.bmp in the property field. Press TAB.

Display an icon on
the toolbar item

Lesson 6: Create a Menu Bar and Toolbar

125VideoBiz TutorialChapter 3

w Press Ctrl+Z. The Select Pixmap dialog box opens where you can select
exit.bmp from the list of available bitmap files. Choose OK. Then press
TAB when the Properties window redisplays.

Note: Specify the full pathname if you are not working in the tutorial
directory, or if you have not copied the pixmap files to your working directory.

At runtime, the pixmap identified in this property displays on the button when
it is available or active. The toolbar button will be blank if the pixmap is not
found.

Since the tutorial only provides you with an active pixmap, JAM displays the
same pixmap when the button is armed, and a grayed version when the button
is inactive.

You can provide users with two types of help so that they can learn to use the ap-
plication more easily: tooltips and status line text.

7 Click or TAB to the Tooltip property and enter Exit . Press TAB.

This text appears whenever the mouse pointer pauses over the toolbar item.

8 Click or TAB to the Status Text property and enter Exit Application .
Press TAB.

Provide help

Lesson 6: Create a Menu Bar and Toolbar

126 JAM 7.0 Getting Started

The status text will appear whenever the mouse pointer pauses over the toolbar
item, when the button or menu item has focus.

9 Press Enter when the property settings are the way you want them.

The cursor in the design window moves to the next item in the untitled menu,
which in this case, is the end-of-menu marker. You can now add another menu
item.

More About Editing Menu Items
Use the menu bar editor's Edit menu to move and rearrange the menu items. You
can select a menu item and then cut, copy, paste, or delete it. New menu items are
always inserted or pasted above the one (including the end-of-menu marker) you
currently have selected.

You can provide a toolbar button that will allow the user to add a new customer
record. When the toolbar item is selected, the custedit screen will open and will
be ready to accept new data.

10 In the Label property, enter New. Press TAB.

Use the default Type property setting: Action.

Create a New
option

Lesson 6: Create a Menu Bar and Toolbar

127VideoBiz TutorialChapter 3

11 Click or TAB to the Ctrl property and enter:

^(0=&custedit)send_data(ºADDº)

This looks complex, but it's quite simple! When the user chooses New, JAM
invokes the send_data procedure using (ªADDº) as a parameter. (The
send_data procedure is described later.) If the procedure succeeds (that is,
returns 0), JAM opens the custedit screen as a stacked window.

More About Complex Control Strings
Notice how much processing you were able to specify in just a single line. Control
string syntax lets you not only invoke a function or procedure, open a screen, or
execute an operating system command, but it also lets you do these in combina-
tion and conditionally.

12 Click on the Toolbar property check box to select it or TAB to the Toolbar
check box and select it by pressing Spacebar. Press TAB.

The toolbar-specific properties are displayed.

13 Click or TAB to the Active Pixmap property. Do either of the following to
specify a filename:

w Enter new.bmp in the property field. Press TAB.

w Press Ctrl+Z. The Select Pixmap dialog box opens where you can select
new.bmp from the list of available bitmap files. Choose OK. Then press
TAB when the Properties window redisplays.

Note: Specify the full pathname if you are not working in the tutorial
directory, or if you have not copied the pixmap files to your working directory.

This identifies the active image to display on the button.

14 Click or TAB to the Tooltip property and enter New. Press TAB.

15 Click or TAB to the Status Text property and enter Create new customer
record . Press TAB.

Lesson 6: Create a Menu Bar and Toolbar

128 JAM 7.0 Getting Started

16 If everything looks OK, press Enter.

You can now add another menu item.

By adding an Edit option on the men bar/toolbar, you provide your users with an
easy method for indicating that the selected record requires updating. When the
option is selected, the custedit screen will open and display the selected custom-
er record. The screen will be ready for updating.

17 In the Label property, enter Edit . Press TAB.

Use the default Type property setting: Action.

18 Click or TAB to the Ctrl property and enter:

^(0=&custedit)send_data(ºCHANGEº)

This control string is virtually identical to the one you assigned to the New
button. However, now the send_data procedure uses (ªCHANGEº) as a
parameter.

19 Click on the Toolbar property check box to select it or TAB to the Toolbar
check box and select it by pressing Spacebar. Press TAB.

20 Click or TAB to the Active Pixmap property. Do either of the following to
specify a filename:

Create an Edit
option

Lesson 6: Create a Menu Bar and Toolbar

129VideoBiz TutorialChapter 3

w Enter change.bmp in the property field. Press TAB.

w Press Ctrl+Z. The Select Pixmap dialog box opens where you can select
change.bmp from the list of available bitmap files. Choose OK. Then
press TAB when the Properties window redisplays.

Note: Specify the full pathname if you are not working in the tutorial
directory, or if you have not copied the pixmap files to your working directory.

This identifies the active image to display on the button.

21 Click or TAB to the Tooltip property and enter Edit . Press TAB.

22 Click or TAB to the Status Text property and enter Edit selected
customer record . Press TAB.

Before returning to the custedit screen, you can test the menu bar and toolbar
right here while you are still in the menu bar editor.

23 Choose File%Test Mode or the Test Mode button on the toolbar.

The toolbar you just created is displayed.

Test the toolbar

Lesson 6: Create a Menu Bar and Toolbar

130 JAM 7.0 Getting Started

Note: Typically, GUI applications do not have action items as top-level menu
options (e.g., Exit); however, both the menu bar and toolbar were implemented
for the purpose of this tutorial. The display of the menu bar can be controlled
via the menu bar editor or at runtime.

More About T esting a Menu Bar or T oolbar
The menu bar editor's test mode lets you view the appearance of a menu and its
toolbar independently of an application. The selected menu bar or toolbar item
simulates the behavior associated with its type and property settings: submenu
types invoke submenus, toggle and action items display their associated control
strings, tear-off menus can be torn off, etc. You can also view a toolbar item's
tooltip and status line text by positioning the cursor over the item.

24 With the mouse, point to each of the buttons on the toolbar.

The tooltip and status line text are displayed as you move the mouse pointer to
each button.

25 Choose the Exit menu option or the Exit button on toolbar.

The control string associated with the selected item is displayed.

Lesson 6: Create a Menu Bar and Toolbar

131VideoBiz TutorialChapter 3

26 Check the other options/buttons as well. Make sure the control strings are
correct for each item.

27 Press Esc or Ctrl+E (on Motif) to exit test mode and return to the menu bar
editor workspace.

When the menu bar and toolbar are the way you want them, you can save the menu
file. The menu is saved in binary format to its source file. Since this is a new menu,
JAM prompts you to supply a filename.

28 Choose File%Save or the Save button on the toolbar.

The Save As Binary dialog box opens.

29 Enter custlist.mnu in the File Name (or Selection) field. Choose OK.

Note: Be sure to save the file to the tutorial directory.

30 You can exit the menu bar editor (choose File%Exit) or, if you are in a
windowing environment, you can simply minimize it.

The menu is created, and now you can attach it to your application screen.

More About Menus and Menu Scripts
When you load a menu script, all of its menus are stored in memory and are
available for installation and display in your application. You can load menus in
your application at three different levels:

� Application memory Ð Menus are accessible throughout your application.

� Screen memory Ð A menu can be associated with a screen and is available
to that screen and its widgets.

� Field memory Ð A menu can be associated with a specific widget.

Save the menu

Connect the
menu/toolbar to the
screen

Lesson 6: Create a Menu Bar and Toolbar

132 JAM 7.0 Getting Started

31 If the screen editor is not running, start it now.

32 Open the custlist screen if it is not currently open in the screen editor
workspace.

33 Select the screen by clicking in an empty space on the screen.

34 Under Focus, enter custlist.mnu in the Menu Script File property.

Note: Optionally, choose the More button on the Properties window to open
the Select File dialog box. You can select the menu file from the list of
filenames.

Lesson 6: Create a Menu Bar and Toolbar

133VideoBiz TutorialChapter 3

That's it! The Customer Search screen now has a toolbar attached to it.

Although no real processing can take place just yet, you can test how the toolbar
looks now that it's attached to the screen.

35 If you are not already connected to videobiz , choose File%Open%Data-
base.

36 Choose File%Test Mode or the Test Mode button on the toolbar.

The Customer Search screen opens. The menu bar and corresponding toolbar
are displayed with your screen.

37 To return in the screen editor from test mode, you can do any of the following:

w Press EXIT (Esc or Ctrl+E) twice.

w Choose Close/Quit from the application's system menu.

w Press Shift+F5.

w Switch menu scope to display JAM's menu (under Windows, press
Ctrl+S; under Motif, Esc S). Then choose Options%Screen Editor.

Test the screen with
the toolbar

Lesson 6: Create a Menu Bar and Toolbar

134 JAM 7.0 Getting Started

More About Menu Scope
The Switch Scope key allows you to toggle between the JAM menu bar/toolbar
and your application menu bar/toolbar while you are testing your application. In
this way, you can easily see and try your own menu, but still switch to JAM's menu
when you need to access the debugger or other JAM-specific operations.
However, the accelerator keys associated with JAM commands can be activated
even when your menu bar is displayed.

In this lesson, you provided your users with an easy means of executing com-
mands. You did this by:

� Creating a menu that serves as both menu bar and toolbar for the Customer
Search screen.

� Attaching pixmaps to the toolbar items as well as providing tooltips and status
line text.

� Attaching control strings to the menu/toolbar items.

You learned:

� JAM's menu bar editor is easy to use and supports its own test mode where
you can quickly see how the menu will work.

� The menu bar editor has a separate executable so that you can create and edit a
menu while you are still in the screen editorÐand iteratively develop your
application menu bars and toolbars.

� Control strings are very powerful and quite compact in the amount of
processing that can be carried out.

It' s time to connect the two screensÐthe Customer Search screen and the Custom-
er Information (custedit) screen that you created in Module 1.

The user will be able to add or edit customer records by choosing the appropriate
menu bar or toolbar item on the Customer Search screen. The appropriate
information will then be passed to the Customer Information screen.

What Did You Do?

What Did You
Learn?

Where to Now?

135

Lesson 7: Send Data from One Screen to Another

In Module 1 you created the custedit.jam screen, and in Lesson 5 of this mod-
ule, you created custlist.jam . Now you can connect the two screens and, at the
same time, pass data from one (custlist.jam , foreground) to the other
(custedit.jam , background).

Send the customer ID (or the last name string if it's a new customer record).

In this lesson you learn how to:

� Send data from one screen to the other.

� Implement error handling, and display a message to the user when an error
occurs.

� Define a double-click event so that the user can edit a customer record by
simply double-clicking on the record in the grid.

1 If the screen editor is not running, start it now.

Lesson 7: Send Data from One Screen to Another

136 JAM 7.0 Getting Started

2 Open the custlist.jam screen, if it is not open in the workspace.

Now you will write a JPL procedure that sends information from this screen so that
the data can be used by another screen or procedure. The user can select a record
by clicking on any item in the grid frame, and the necessary information will be
sent to the next screen, depending on what action (menu/toolbar item) is selected.

3 Select the screen (no widgets selected).

4 Under Focus, select JPL Procedures.

The JPL Program Text dialog box opens. The custsearch procedure is here
(as well as the screen wizard-generated code).

Write a procedure
to send data

Lesson 7: Send Data from One Screen to Another

137VideoBiz TutorialChapter 3

5 Position the cursor at the end of the existing JPL code, and press Enter once or
twice to open a new line.

6 Choose the Read File button.

The Read JPL File dialog box opens.

7 Select the file senddata.jpl . The following procedure is read into the
window:

Lesson 7: Send Data from One Screen to Another

138 JAM 7.0 Getting Started

proc send_data(function)
{

vars occ

if (function == ºADDº)
{

//Clear field since customer IDs will be
//program-generated
cat cust_id_qbe
send DATA ªCOPYº, ªº, last_name_qbe, ªAº

}
else
{

occ = Master±>grid_current_occ

if (cust_id[occ] == ªº)
{

call sm_message_box (ºYou must first \
select a customer.º, ªº, 0, ªº)

return 1
}
send DATA ªSELECTº, cust_id[occ], ªº, ªº

}
return 0

}

The value for the function parameter is passed to the send_data procedure
on invocation. In this case, the procedure will be invoked from control strings
attached to the toolbar buttons you created in Lesson 6. Each button specifies a
different functionÐNew is defined as the ADD function and Edit is defined as
the CHANGE function.

If the specified function is CHANGE and a customer record is not selected, an
error message is issued.

The occ variable is assigned to the current occurrence in the grid frame
(named Master by the screen wizard). grid_current_occ is a JAM
runtime-only property that is being set by the user's selection in the grid
frame.

More About the Properties API
All JAM objects and their properties can be accessed and modified programmati-
cally through JPL or C function calls. You can identify any application objectÐin -
cluding the application itselfÐand get or set its properties at runtime.

Lesson 7: Send Data from One Screen to Another

139VideoBiz TutorialChapter 3

The send command sends four arguments:

ADD parameters CHANGE parameters

TM function COPY SELECT

cust_id Null cust_id[occ]

new customer last namelast_name_qbe Null

new customer status A Null

Each function requires different parameters. Since the same screen is being
used to perform both functions, all parameters, in both cases, must be sent.
Therefore, the Null string serves as a placeholder as needed.

More About Interscreen Communications
The send/receive commands provide you with an easy way for communicating
information between screens in your applicationÐeven if the receiving screen is
not open. The send command specifies the data to be sent and stores them in
JAM buffers. When the target screen executes the corresponding receive
command, the buffered data is retrieved.

In addition, you can use named bundles to coordinate the sending and receiving of
data.

Other mechanisms for interscreen communication include:

� The JPL !-operator Ð Y ou can reference variables/fields on other screens by
using the screen_name!widget_name syntax.

� JPL global variables.

� Local Data Block (LDB) Ð Create a library of global widgets that are
automatically populated on screen entry and exit.

JAM's support of a wide variety of interscreen communication mechanisms
ensures that your application development, regardless of its complexity and
modularity, proceeds with flexibility and ease.

8 Choose OK from the JPL Program Text dialog box to save the procedure.

Double-click events allow the user to select a record by double-clicking on it. You
decide, by specifying the control string, what will happen when a double-click oc-
curs. When a user double-clicks on a customer record in the grid frameÐon the
ID, name, or phone numberÐyou allow the user to edit that customer's record.

9 Select the ID, First_name, Last_name, and Phone columns in the grid frame.

Add double-click
functionality

Lesson 7: Send Data from One Screen to Another

140 JAM 7.0 Getting Started

w Under Windows Ð Shift+click on the columns' title.

w Under Motif Ð Shift+click directly on each column.

w Under character-mode Ð Click directly on each column with Multiple
Select mode active (choose Options%Multiple Select Mode).

10 Under Validation, enter ̂(0=&custedit)send_data(ºCHANGEº) in the
Double Click property.

When the user double-clicks in any of columns of the grid, the send_data
procedure is executed (just like choosing the Edit option on the menu/toolbar)
and sends the selected record to the custedit.jam screen for editing.

11 Save the custlist screen now.

In the next lesson, you'll complete the picture by receiving the data and
applying it appropriately.

In this lesson, you defined how and what information will be sent from the
custlist screen when the user double-clicks on a customer record or chooses a
menu/toolbar option. You did this by:

� Writing a JPL procedure that sends a user-chosen transaction manager
command (COPY or SELECT), the customer ID, customer name, and initial
membership status to the target screen.

� Implementing a double-click event so that a user can select and edit a record
by double-clicking on any field in the grid.

What Did You Do?

Lesson 7: Send Data from One Screen to Another

141VideoBiz TutorialChapter 3

You learned:

� JAM provides flexible interscreen communication mechanisms to make your
job of passing data between screens easy and intuitive.

� The JPL Program Text window lets you read in JPL procedures that you have
stored on disk.

� Control strings can be used to define double-click events.

Preparing the screen to receive data is quite simple. Once you have completed the
next lesson you will have two screens that function togetherÐone sends data and
the other receives data.

What Did You
Learn?

Where to Now?

143

Lesson 8: Receive Data from Another Screen

In the previous lesson you prepared the custlist.jam screen to send data to
another screen. In this lesson, you will modify the custedit screen to receive that
data and apply it appropriately.

You will also enhance the custlist screen so that it will automatically show the
new or updated information when the New and Edit operations are completed.

In this lesson you learn how to:

� Write a JPL procedure that receives transmitted data.

� Write a JPL procedure to execute a database query automatically when the
screen is redisplayed.

� Enhance the functionality of the Customer Information screen by creating
buttons that save additions and changes to the database, and cancel actions.

1 If the screen editor is not running, start it now.

Lesson 8: Receive Data from Another Screen

144 JAM 7.0 Getting Started

2 Open the custedit.jam screen.

The push buttons on the custedit screen were created via the screen wizard.
However, their functionality is not really needed for the purpose of this screen and
therefore, the buttons (and the associated code) can be deleted.

3 Select all of the push buttons (and the positioning box around them) by
rubberbanding them.

Delete push buttons

Lesson 8: Receive Data from Another Screen

145VideoBiz TutorialChapter 3

4 Press Delete on your keyboard.

This deletes your selection and removes it from the clipboard. You can
perform an Undo to restore deleted items.

5 (Optional) Resize the screen to remove some of the excess space at the bottom
of the screen.

JAM needs to know what action is taking place and what to do. So, you will write
a procedure that defines how the custedit.jam screen behaves when the com-
mand specifies COPY (New) and how it behaves when the command specifies
SELECT (Edit).

6 Select the screen (no widgets are selected).

7 Under Focus, choose JPL Procedures.

The JPL Program Text dialog box opens. The screen wizard-generated
comments and code can be deleted, because you are going to provide your
own screen functionality.

8 Choose the Read File button and select custedit.jpl from the Read JPL
File dialog box.

Note: Reading in a file overwrites existing text from the cursor position down.
Any procedure that was here before is overwritten by the new code that you
are reading into the window.

Write a procedure
to receive data

Lesson 8: Receive Data from Another Screen

146 JAM 7.0 Getting Started

The custedit_se procedure, shown below, is read into the JPL Program
Text dialog box.

proc custedit_se(screen_name, context)
{

// get data from previous screen
vars cmd
receive DATA cmd, cust_id, last_name, member_status

// execute the passed TM command
if sm_tm_command(cmd) != 0

return 1

//hide the rental fields/labels if creating
//new customer
if (cmd == ªCOPYº)
{

num_rentals±>hidden = 1
rent_amount±>hidden = 1
call sm_obj_delete(ºLNum_rentalsº)
call sm_obj_delete(ºLRent_amountº)

}
return 0

}

The _se suffix in the procedure name is a useful convention that serves to
identify this procedure as custedit 's screen entry procedure.

Lesson 8: Receive Data from Another Screen

147VideoBiz TutorialChapter 3

More About Function Default Parameters
JAM passes default arguments to JPL procedures for the following objects:

� Screens Ð screen_name and status_flag are passed to entry and exit
functions.

� Widgets Ð field_number , context , occurrence_number , and
status_flag are passed to the entry/exit, double-click, and validation
functions.

� Groups Ð group_name and status_flag are passed to the entry and exit
functions.

The status_flag is a context indicator that specifies the screen's/widget's
current state and why the function was called (refer to the Language Reference for
more details).

The custedit.jam screen serves two purposes: to add a customer record and
to edit a customer record. The custlist.jam screen passes the specified
transaction manager command (COPY or SELECT) and the data. The custedit
screen receives that information into the corresponding fields (Cust ID, Last
Name, and Status) and into the locally defined variable, cmd.

If the user chooses the New menu/toolbar option on the Customer Search
screen, and the transaction manager's COPY command is sent and executed.
The COPY command prepares the screen for an INSERT. It differs from the New
command in that it uses data on the screen for the new entry. Both the Last
Name and Status fields on the Customer Information screen receive the
appropriate informationÐthe Last Name field displays any string the
Customer Search screen sent from the Last Name (last_name_qbe) data
entry field, and Status is set to A(ctive). In this way, the user needn't type the
customer's last name again if one has already been supplied.

In addition, when a new customer record is being added, the rental-related
fields are hidden and their respective labels are temporarily deleted (static
labels do not have the Hidden property available to them). The syntax of the
properties API identifies the widget and sets the Hidden property appropriately
(1 sets the Hidden property to true).

If the user chooses the Edit menu/toolbar option, the SELECT (for update)
command is sent and executed. In this mode, JAM automatically protects the
primary key fieldsÐin this case, the customer ID field.

Later in this lesson you will write a screen entry procedure that uses some of
the information passed in the context argument.

9 Choose OK from the JPL Program Text dialog box to save the procedure.

Lesson 8: Receive Data from Another Screen

148 JAM 7.0 Getting Started

Set the screen's Entry Function property. This lets JAM know what procedure to
execute when the screen opens.

10 Under Focus, enter custedit_se in the Entry Function property (this will
overwrite the screen wizards procedure call).

Note: Unlike control strings which can invoke screens and system commands,
the Entry Function property expects a function name, so no caret is required in
the property specification.

pw
_e

nt
ry

You need to provide your user with a means of navigating the screen. Basically,
you want to provide a way of saving data as well as cancelling modifications that
the user does not want to save, and then close the screen. Here you create the push
buttons.

11 Create two push buttonsÐplace them, one above the other, in the lower right
corner.

You can do this by creating one push button and then copying it by Ctrl+drag-
ging on it. (In character mode: With the first push button selected, choose
Edit%Copy, and then choose Edit%Paste. Move the new push button widget
to the desired location on your screen.)

Establish behavior
on screen entry

Create OK and
Cancel buttons

Lesson 8: Receive Data from Another Screen

149VideoBiz TutorialChapter 3

More About Creating W idgets
You can create widgets successively by using Ctrl+click in the Tool boxÐthis puts
the cursor into Multiple Create mode. Each time you click the mouse on your
screen, a new widget is created. To cancel Multiple Create mode, choose the
Select tool from the Tool box or select a different icon.

In character mode, choose Options%Multiple Create Mode to simulate the same
behavior.

Now you can define what displays on the OK button and how it will behave by
setting its properties.

12 Select the topmost push button.

13 Under Identity, enter OK in the Label property.

The word OK appears in the center of the button.

Define the look and
behavior of the OK
button

Lesson 8: Receive Data from Another Screen

150 JAM 7.0 Getting Started

14 Under Identity, set the Default/Cancel property to Default.

This button can be activated at runtime by pressing Enter.

Now write a JPL procedure to validate information that the user adds or edits, and
then save the information to the database. You will associate this procedure with
the OK button on the custedit.jam screen.

15 With the OK button selected, under Validation, enter ̂ok_proc in the Control
String property.

This control string will invoke the ok_proc procedure when the OK button is
chosen.

16 Select the screen (no widgets should be selected).

17 Select the JPL Procedures property.

The JPL Program Text dialog box opens.

18 Position the cursor immediately after the existing procedure (custedit_se),
and press Enter once or twice to open a new line.

19 Choose the Read File button, and specify ok_proc.jpl in the Read JPL File
dialog box.

The ok_proc procedure, shown below, is read into the JPL Program Text
dialog box.

Write a procedure
that saves new and
changed data

Lesson 8: Receive Data from Another Screen

151VideoBiz TutorialChapter 3

//This procedure is called when the user selects OK
proc ok_proc
{

vars mesg

if (sm_s_val() == ±1)
return 0

mesg = ªCustomer :first_name :last_nameº

if (cust_id == ªº)
{

//Generate the next customer ID
DBMS ALIAS cust_id
DBMS SQL SELECT MAX(cust_id)+1 from customers
DBMS ALIAS // clears prior aliasing
mesg = mesg ## ª added.º

}
else
{

mesg = mesg ## º updated.º
}
if (sm_tm_command(ºSAVEº) != 0)

return 1

call sm_message_box (mesg, ªº, 0,ºº)

call jm_exit // exits the screen
return 0

}

Lesson 8: Receive Data from Another Screen

152 JAM 7.0 Getting Started

When a user adds or edits a customer record and then chooses the OK button,
the ok_proc procedure is executed, and the following events take place:

w Each field on the screen is validated.

w If validation fails, the procedure returns with no further action.

w If the validation succeeds and the Cust ID is blank (signifying this is a
new customer record), a new identification number will be assigned.

w A SAVE command is issued to update the database. An appropriate
confirmation message is displayed, showing the customer's name
concatenated (##) with the type of action (add or update).

The library function sm_s_val forces validation of the screen, checking each
field to make sure the data are correct for the given property settings, like date
formats or required data specifications. If any field fails validation, a message
is displayed (by the validation routine), and the user is given the opportunity to
correct the error.

The first DBMS ALIAS command in this procedure ensures that the database
value from the DBMS SQL statement is written to the variable cust_id . The
DBMS ALIAS command with no arguments turns aliasing off.

More About SQL DBMS Statements
In general, you'll use JAM's transaction manager to automatically generate SQL
statements. But, if you want to write your own SQL, JAM provides the DBMS
statements that let you:

� Declare open connections

� Manage cursors explicitly

� Execute SQL statements, stored procedures, RPC calls

� Execute a variety of database-related tasks quickly and easily.

Refer to the Database Guide for more information.

To generate a unique identification number, the DBMS SQL statement is used.
It specifies a SELECT to find the highest customer ID number in the
customers database table and increments that number by one.

20 Choose OK to save the procedure on the JPL Program Text dialog box.

With every OK button, you need a Cancel button! This will allow the user to can-
cel the current action, and in this case, exit the screen.

21 Select the second push button you created.

Define the look and
behavior of a
Cancel button

Lesson 8: Receive Data from Another Screen

153VideoBiz TutorialChapter 3

ca
nc

el
pb

22 Under Identity, enter Cancel in the Label property.

The word Cancel is displayed in the center of the button.

23 Set the Default/Cancel property to Cancel.

A push button defined as the Cancel button can be activated at runtime by
pressing the EXIT key (usually mapped to Esc on your keyboard; on Motif,
EXIT is mapped to Ctrl+E).

24 Under Validation, enter ̂jm_exit in the Control String property.

This JAM built-in function closes the active screen and returns to the previous
screen.

25 Save the screen.

Now you can try out the connection between the screens; make sure that data is
being passed correctly from one to the other. In addition, you can update a custom-
er's record and save it to the database.

26 Choose File%Open%Database and connect to videobiz if you are not
already connected.

27 Bring focus to the custlist.jam screen, or open it now if it is not currently
open in the screen editor workspace.

28 Choose File%Test Mode or the Test mode button on the toolbar to enter Test
mode.

The Customer Search screen appears.

Note: If JAM's menu bar is displayed instead of your application menu,
switch menu scope (under Windows, press Ctrl+S; under Motif, Esc S).

Add and edit a
customer record

Lesson 8: Receive Data from Another Screen

154 JAM 7.0 Getting Started

29 Enter Seagull in the Last Name field, and choose Search or press Enter.

The query message displays:

30 Choose OK to acknowledge the message and then choose the New option on
the menu/toolbar.

The VideoBiz Customer Information (custedit.jam) screen opens as a
stacked window. It is modal, and therefore an action must occur on the

Lesson 8: Receive Data from Another Screen

155VideoBiz TutorialChapter 3

Customer Information screen (specifically, by choosing OK or Cancel) before
you can resume in the Customer Search screen.

Also notice that the rental information doesn't display.

31 Enter data in the First Name, Last Name, and Phone fields to create a new
record. Then choose OK or press Enter.

Choosing OK saves the record to the database, and your confirmation message
displays, indicating that the customer was successfully added. Notice that an
ID number is automatically assigned.

Lesson 8: Receive Data from Another Screen

156 JAM 7.0 Getting Started

32 Choose OK to acknowledge the message.

The VideoBiz Customer Information screen closes and the Customer Search
screen redisplays.

33 Enter Pe in the Last Name field and choose Search.

34 Double-click on the customer record for Rob Petrie.

Remember back in Lesson 7, how you assigned a control string in the Double
Click property for each column in the grid? You can double-click on any part
of the row to invoke the double-click event.

The Customer Information screen opens in Update mode. You can edit the
customer record.

Lesson 8: Receive Data from Another Screen

157VideoBiz TutorialChapter 3

cu
st

ed
8c

35 Enter 1234567890 in the Phone field, and choose OK.

A message is displayed indicating that the record was updated.

36 Choose OK to acknowledge the message.

The Customer Search screen redisplays. Notice that the changes are not
displayed. This is easy to fix!

37 Choose Search to fetch the latest records in the database.

Now you will see that the phone number is updated. In the next part of this
lesson you will learn how you can display the new or edited record immediate-
ly on the custlist screen without having to choose the Search button.

38 Press Shift+F5 to return to the screen editor.

Now write a procedure on the custlist.jam screen that will display the latest
records in the database after a user edits or adds data on the custedit.jam
screen.

You can achieve this behavior by invoking the procedure on screen entry. The
procedure will force the search query to be executed. However, you don't need the
procedure to execute on initial entry (that is, when the screen is opened for the first
time). Instead, you want to tell JAM to only execute the procedure when the screen

Write a screen
entry function that
executes when the
screen is exposed

Lesson 8: Receive Data from Another Screen

158 JAM 7.0 Getting Started

is redisplayed, or exposed. In other words, the search procedure should be executed
when the window overlapping it, the Customer Information screen
(custedit.jam) closes.

39 Select the custlist.jam screen (no widgets can be selected).

40 Under Focus, select JPL Procedures property.

The JPL Program Text dialog box opens. The other procedures that are
invoked from the custlist screen are still here.

41 Position the cursor at the end of the existing JPL code, and press Enter once or
twice to open a new line.

42 Choose the Read File button, and specify custlist.jpl in the Read JPL File
dialog box.

The custlist_se procedure, shown below, is read into the JPL Program
Text dialog box.

//Screen entry function
proc custlist_se(screen_name,context)
{

// do a reselect
if (K_EXPOSE & context)
{

if (sm_tm_command(ºVIEWº) != 0)
return 1

return 0
}

Lesson 8: Receive Data from Another Screen

159VideoBiz TutorialChapter 3

The procedure states that if the K_EXPOSE bit in the context argument is true
(that is, if the screen was reexposed), a View command should be executed.
This will cause the updated database records to be redisplayed. If the
K_EXPOSE bit is not set, custlist_se simply returns without performing any
actions.

Note: This procedure uses the context parameters that were passed by JAM to
the calling procedure.

43 Choose OK on the JPL Program Text dialog box to save the procedure.

44 Under Focus, enter custlist_se in the Entry Function property.

This tells JAM to search for this procedure when the screen opens.

45 Just a reminder...now is a good time to save the screen.

Now when you edit a record, those changes should be immediately evident when
you return to the Customer Search screen.

46 Choose File%Test Mode or the Test Mode button on the toolbar to retest the
screen.

47 Enter T in the Last Name field and choose Search or press Enter.

c_
lis

t8
b

48 Select the record for Lawrence Tate and choose Edit from the menu/toolbar.

The record for Lawrence Tate is displayed in the Customer Information
screen.

49 Change the customer's phone number to 5155554567 . Choose OK or press
Enter.

Try it again!

Lesson 8: Receive Data from Another Screen

160 JAM 7.0 Getting Started

50 Choose OK to acknowledge the update message.

The VideoBiz Customer Search screen is redisplayed. Notice that the
customer's phone number is now updated to reflect the latest information in
the database.

51 Press Shift+F5 to go back to the screen editor...and then save your screen.

In this lesson, you connected two screens so that a user can choose to add or edit a
customer record. Both actions invoke the Customer Information screen
(custedit.jam). You did this by:

� Adding (writing) the custedit_se screen entry function to receive data and
initialize the custedit screen.

What Did You Do?

Lesson 8: Receive Data from Another Screen

161VideoBiz TutorialChapter 3

� Attaching the ok_proc function to the OK button to validate the custedit
screen and update the database.

� Adding (writing) the custlist_se screen entry function to automatically
reselect updated customer information when the user returns from the
Customer Information screen.

You learned:

� There are a variety of hook points for procedure invocation, including entry,
exit, and validation. Screens, widgets, and groups pass default parameters to
these functions to allow you to customize its functionality to suit your needs.

� JAM's property API lets you dynamically change the appearance of your
screens.

� You can use JAM's powerful commands to perform database-related activities,
including SQL execution; you saw how easy it is to embed SQL statements, if
you need to.

The two screens are connected and your application is becoming more functional;
now it's time for the fine tuning. Often, this is when you make sure that the data
are displaying correctly, in the correct order, and in the correct formats. In the next
lesson, you'll be guided through these issues and will also learn more about JAM's
transaction manager and how it applies styles to widgets. Styles control the look
and behavior of widgets at runtime. You will use JAM's styles editor to alter the
default settings.

What Did You
Learn?

Where to Now?

163

Lesson 9: Fine Tuning

The screens are now connected and performing correctly. As you test an applica-
tion and become more familiar with it, however, ideas for further improvement
often occur to you. At this stage of development, you might want to add the finish-
ing touches.

On the Customer Search screen, for example, you can display the customer records
in alphabetical order instead of by ID number. On the Customer Information
screen, you might want certain fields protected from user input, such as the
customer ID field when a new record is added. (Remember, the ID is provided
programmatically by a JPL procedure.)

This lesson introduces you to the styles editor. You'll use the styles editor to
fine-tune how widgets behave and appear during each of the executed transaction
commands.

Protect from user input

Display last names in
alphabetical order

In this lesson you learn how to:

� Identify table views and modify them to suit the screen's specification.

� Change the way data are displayed.

Lesson 9: Fine Tuning

164 JAM 7.0 Getting Started

� Use styles and transaction classes, and create a new transaction class using the
styles editor.

1 Start the screen editor if it is not running.

2 Choose File%Open%Screen or the Open button from the toolbar and open the
custlist.jam screen if it is not open.

When you search for customer records, you might have noticed that the records are
displayed by customer ID in ascending order. Your database's default sort order
might not be the most useful way to display data for a particular application. On
the custlist screen, for example, you would probably want to display the re-
cords in alphabetical order by last name. The sort order on a screen is a property of
the table view. Now you will select and modify the customers table view.

Edit table view
properties

Lesson 9: Fine Tuning

165VideoBiz TutorialChapter 3

More About T able Views
When you or the screen wizard copies database-derived widgets from the
repository to a screen, a table view is also copied to the screen. The table views
are automatically created on the repository screens as a by-product of the
importation process. They are invisible widgets that store database table
information. Each table view corresponds to one database table.

Table views store the following types of information:

� Primary key

� Table columns

� Database attributes such as, sort order, distinct, etc.

JAM's transaction manager uses the information stored in table views, and their
links (which specify the join relationships between multiple table views), to
determine what SQL statements should be generated for each transaction
command.

In addition, table views provide you with a quick entry point for modifying the
default transaction manager behavior.

You can access table views and, therefore their properties, from the Widget list, or
by choosing View%DB Interactions.

3 Choose View%Widget List.

The Widget list window opens.

More About the W idget List
You can use the Widget list as an alternative way to access widgets. All widgets on
the current screen are listed in the Widget list, including invisible widgets, such as
selection groups, synchronization groups, and table views.

When you select an item from the list, its corresponding widget (if visible) in the
screen is also selected. The Properties window displays the properties associated
with your selection.

You can select multiple widgets with a click+drag; Shift+click to select contiguous
widgets; Ctrl+click to select non-contiguous widgets.

4 Select the item (in the left column) identified as the customers table view.

Lesson 9: Fine Tuning

166 JAM 7.0 Getting Started

Note: The Properties window should specify Table View in the Type field at
the top of the window.

5 With the table view selected, under Database, select the Sort Widgets property.
Choose the More button on the Properties window. A zoom window opens.

6 Enter last_name and choose Close. The zoom window closes.

This tells the transaction manager to sort the customer records by last name.
The default is ascending order; alternatively, enter last_name DESC if you
prefer descending order.

Lesson 9: Fine Tuning

167VideoBiz TutorialChapter 3

7 (Optional) To give yourself more space, close the Widget list by selecting
Close from its system menu or by choosing View%Widget List to toggle the
display off.

Take a look at the improvements you just made to the Customer Search screen.

8 Choose File%Open%Database, and specify the videobiz database if you are
not connected.

9 Choose File%Test Mode or the Test Mode button on the toolbar to test the
screen.

10 Choose Search on the VideoBiz Customer Search screen.

All the customer records are fetched and listed in alphabetical order by last
name.

11 Press EXIT (Esc or Ctrl+E) twice or choose Close/Quit from the application's
system menu to return to the screen editor.

You might consider changing a number of things on the custedit.jam screen in
order to facilitate data entry for your end users. For example, when a new customer
record is added, an ID number is automatically generatedÐyou used JPL to do
this. When a customer record is modified, the ID has already been assigned, so it
shouldn't be changed either. Therefore, the user doesn't need to access the ID field
at all.

Modify the customer ID field so it will be protected from focus and data entry
regardless of the transaction command.

Try it out

Protect ID field from
input

Lesson 9: Fine Tuning

168 JAM 7.0 Getting Started

12 If the custedit.jam is not open, choose File%Open%Screen or the Open
button on the toolbar and select it from the Open Screen dialog box.

13 Select the Cust ID text widget.

14 Under Transaction, change default to non_updatable in the Class
property.

The non_updatable transaction class protects the cust_id field from
receiving focus and input, and it cannot be cleared of data. This particular
behavior specification is called a style, specifically the show style (more on
this later).

Lesson 9: Fine Tuning

169VideoBiz TutorialChapter 3

Now try the screen out! See which fields are protected, and determine which addi-
tional fields should also be protected.

15 Bring focus to the custlist.jam screen.

16 Choose File%Test Mode or the Test Mode button on the toolbar to test the
screen.

When prompted to save the custedit.jam screen, choose Yes to save your
changes. The Customer Search screen opens.

17 Choose the New menu/toolbar option.

The Customer Information screen opens and is ready for you to add a new
customer record.

Notice that the Cust ID field no longer gets focus. When the screen is in New
mode (when the COPY command is executed), the Cust ID field is protected;
therefore, the cursor goes to the next unprotected fieldÐin this case,
Membership Date.

Since the membership date and status data are also generated programmatical-
ly at runtime, perhaps these fields should also be protected. Sometimes,
however, these fields should be updatableÐsuch as when the user is editing a
customer record.

18 Choose Cancel to return to the Customer Search screen.

What's new and
what's not

Lesson 9: Fine Tuning

170 JAM 7.0 Getting Started

You want your database application to collect, maintain, and present data with a
clear and consistent interface. For example, make all primary key fields invisible,
or toggle protections on and off for data entry fields as they switch between display
and edit modes. You can also provide visual cues to a field's behavior by using
color. These are simple, but important application considerations. JAM controls
these manipulations from a centralized location Ð the styles file. You can edit the
styles file via the styles editor.

19 From Test mode, access the styles editor by doing either of the following:

w Switch menu scope (Ctrl+S or Esc S) to redisplay the JAM menu bar and
choose Options%Styles Editor.

w Press Shift+F7.

A copy of the default styles.sty file opens.

Styles

Transaction classes

Transaction modes

Widgets that are assigned
the non_updatable class can
be edited in Initial mode only.

Access the styles
editor

Lesson 9: Fine Tuning

171VideoBiz TutorialChapter 3

More About Styles
JAM's styles file provides a mapping between field types and their appearance and
behavior during various screen modes. The default styles file lists:

� Built-in field types called transaction classes (for example, primary_key ,
updatable , save_button).

� Style templates that define the look and feel (for example, edit allows focus,
clearing, input, and validation; show allows validation, but protects fields from
input, clearing, and from getting focus; active displays menu/toolbar items
and buttons in an ungrayed state; inactive displays menu/toolbar items and
buttons in a grayed, or inactive, state).

� Transaction manager screen modes or transaction modes (for example, New,
View, Update).

The transaction manager automatically switches transaction modes after
executing a transaction command. JAM, in turn, applies the appropriate style to
each screen field as dictated by the widget's transaction class.

You can customize the default styles fileÐchanging or adding styles and
transaction classes as needed. If a particular configuration doesn't work, you can
simply modify the styles file again. The newly defined behavior (or appearance)
will propagate throughout your application.

Protect the Membership Date and Status fields from input during New mode (when
the COPY command is executed). The data are provided programmaticallyÐvia
JPL or JAM. However, you want the fields to be updatable when a record is being
edited (via the SELECT command).

Look down the New mode column. Notice that the non_updatable class is the
only class that protects the field from input (show style), but a field assigned to this
class will also be protected in update mode. To achieve the desired behavior, you
must create a new transaction class.

Define a new
transaction class

Lesson 9: Fine Tuning

172 JAM 7.0 Getting Started

non_updatable class

The show style is
assigned to all widgets
that belong to the
non_updatable class

20 Choose Create%Class.

A new row of empty widgets appears below the view_button class.

21 Select the leftmost unnamed widget (in the Class column).

22 Under Class in the Properties window, enter generated in the Name
property.

This identifies the new class. The name generated now appears in the Class
widget.

Lesson 9: Fine Tuning

173VideoBiz TutorialChapter 3

23 Select both unnamed Class-Style widgets under the New and View mode
columns by Shift+clicking or rubberbanding them.

24 Under Style, specify show in the Style Name property.

The style name show now appears in the Class-Style widgets. The show style
protects widgets from input and from receiving focus at runtime.

Lesson 9: Fine Tuning

174 JAM 7.0 Getting Started

25 Select both unnamed Class-Style widgets under the Update Occ and Update
mode columns.

26 Under Style, specify edit in the Style Name property.

The edit style allows the data to be edited at runtime.

27 Select the Initial mode and QBE mode widgets and set their Style Name
properties to ±default± .

This setting causes the transaction manager at runtime to restore the widget's
property values saved with the screen (as defined in the screen editor), and
undoes any property settings made by a previous mode.

Lesson 9: Fine Tuning

175VideoBiz TutorialChapter 3

28 Choose File%Save.

This saves the changes to the styles.sty file.

29 Choose OK to confirm the save message.

30 Choose File%Exit to close the styles editor.

You return to Test mode. The style changes cannot take effect until the widgets
are assigned to the appropriate class (in this case, generated).

Now that you have defined a new transaction class, you can apply it to widgets on
your screen. Specifically, you want the membership date and membership status to
exhibit the behavior defined by the generated class.

By using the generated class, those fields will be protected when you VIEW the
record, but can be edited when you are updating the record (when the screen is in
UPDATE mode).

31 Press EXIT (Esc or Ctrl+E) twice or Shift+F5 to return to the screen editor.

32 Select both the Membership Date and Status text widgets on the
custedit.jam screen.

Assign the new
class

Lesson 9: Fine Tuning

176 JAM 7.0 Getting Started

33 Under Transaction, change the Class property value from ±default± to
generated .

Try out the screen again to test the latest enhancements.

34 Change focus to the custlist.jam screen, and choose File%Test Mode or
the Test Mode button on the toolbar to test the process.

35 If you have not saved the changes you made to the custedit.jam screen,
choose Yes when you prompted to save the changes.

36 When the Customer Search screen displays, choose the New menu/toolbar
option.

The Customer Information screen opens. The cursor goes directly to the First
Name field and bypasses the Cust ID, Membership Date, and Status fields as

Add and edit a
customer record

Lesson 9: Fine Tuning

177VideoBiz TutorialChapter 3

well as the hidden fields. In fact, you can't bring focus to those fields, even
with the mouse. (This is the behavior imposed by the show style.)

The First Name field gets
focus on screen entry.

Protected fields are bypassed.

37 Choose Cancel.

The Customer Search screen redisplays.

38 Double-click on one of the customer records in the list.

The Customer Information screen opens, and now the cursor goes directly to
the Membership Date.

39 Press TAB or click into the Status field. You can edit this fieldÐdelete the A
and then enter F. Refer to the status line text for this field.

Note: Back in Lesson 1, you implemented a regular expression for this field
that specified that only A, I , and F are valid entries.

40 Choose OK to accept and save your changes.

The update message displays.

41 Choose OK to acknowledge the save. You return to the Customer Search
screen.

42 Press Shift+F5 to return to the screen editor.

In this lesson, you fine tuned the screens by:

� Editing the customers table view to sort the customer records by last name in
ascending order.

What Did You Do?

Lesson 9: Fine Tuning

178 JAM 7.0 Getting Started

� Changing the customer ID field to be non-updatable via its Class property.

� Creating a new transaction class (generated) that assigns the show style
(input and focus protected) during New and View modes, and the edit style
(editable) during Update modes.

� Attaching the Membership Date and Status text widgets to the generated
class.

You learned:

� JAM's Widget list gives you a literal representation of the graphical objects on
your screen.

� A table view stores database table information and serves as a quick entry
point for modifying default transaction manager behavior.

� Styles, transaction classes, and transaction modes are powerful time-savers
that allow you assign each widget to a transaction class which automatically
applies a style (color, protections, etc.) for each transaction mode.

Congratulations are in order! You have completed a fairly complicated, two-screen
application with minimal coding.

The application:

� Allows a user to query the database for customer records using multiple
criteria and display well-formatted results.

� Lets a user edit a customer record by selecting it from the results either by
double-clicking on the record or by choosing the Edit button on the toolbar.
This automatically invokes the customer detail screen.

� Lets a user add a new customer record by choosing the New button on the
toolbar which invokes the detail screen where new data can be entered.

� Automatically generates a customer ID and dynamically applies the
appropriate protection modes for various fields depending on user input.

But, like most application development, there are still a few areas where you can
improve or refine these screens. Consider:

� Testing the tab order.

� Determining if there are other fields that should have the Select on Entry
property set.

What Did You
Learn?

Where to Now?

Lesson 9: Fine Tuning

179VideoBiz TutorialChapter 3

� Implementing additional status line text.

� Enforcing the Required property for the customer phone number.

When you're done tinkering with these screens, move onto Module 3 where you
will create a screen that uses multiple database tables and more complex database
queries!

181

MODULE THREE

Join Database Tables
Module 3 consists of a single lesson in which you use the screen wizard to build a
mast-detail screen combining data from several tables in the videobiz database.
The screen displays a variety of information about a specified video:

Note: The Video Detail screen created in this module is unrelated to the customer
maintenance portion of the VideoBiz application that you worked on in the first
three modules of this tutorial.

The upper section of the screen consists of data from the titles table; for this
screen, it is the master table. The video description, however, is stored in a separate
table (titles_dscr), and information on the roles and actors comes from two
additional tables (roles and actors).

When the screen is completed, it will display detailed information (ID, title,
director, etc.) for each movie as well as a description and a list of actors and their

182 JAM 7.0 Getting Started

roles. You will see how easy this multi-table application can be built using JAM's
screen wizard.

In the process of creating this screen, you will learn more about table views and the
links between table views.

183

Lesson 10: Create a Master-Detail Screen

Using the screen wizard, you create a screen that combines data from different
database tablesÐcall it viddtl.jam , or, for the purposes of this application, the
VideoBiz Video Detail screen. When the screen is complete, a total of four tables
will be represented on the screen.

vd
dt

l1
0

In this lesson you learn how to:

� Create a master-detail screen.

� Copy repository widgets, including a link, from the title_dscr repository
entry.

� Use the DB Interactions window to see a graphical representation of the
relationships between table views and links.

� Learn how links are used to define the relationship between tables.

1 Start the screen editor.

Use the screen wizard to build the basic structure of your master-detail screen.

2 Choose File%New%Screen or the New button from the toolbar.

Create a screen
that joins two tables

Lesson 10: Create a Master-Detail Screen

184 JAM 7.0 Getting Started

The New Screen Tool dialog box opens.

3 Choose Yes to use the screen wizard.

The Format Selection dialog box opens.

4 Accept the default Master-Detail format and choose Next.

The First Master dialog box opens.

m
st

er
10

a

Define the master table for your screen by selecting the repository entry.

5 Select titles from the list available table views.

The columns associated with the titles table display. The primary key,
title_id is automatically included as one of the fields that will be on the
screen.

Define the master
columns

Lesson 10: Create a Master-Detail Screen

185VideoBiz TutorialChapter 3

m
st

er
10

b

6 Choose .

All columns are added to the list of columns to be included on the screen.

de
ta

il1
a

7 Choose Next.

Lesson 10: Create a Master-Detail Screen

186 JAM 7.0 Getting Started

The First Detail dialog box opens.

You can now choose from the list of remaining tables. On the screen you are
creating, you want to display a movie title and all the roles that are associated with
that movie.

8 Select roles from the list of tables.

de
ta

il1
b

9 Choose .

The role column is added to the list of fields to be included on the screen. As
a result, the roles table will be joined to the titles table via the title_id
(the foreign key specification). Therefore, all the roles associated with a given
video title will be displayed on your application screen.

If you want to include additional information on your screen from another
tableÐyou can do that too! In addition to displaying the roles associated with a
specific video, it would be nice to display the name of the actor who played each
role.

More About Including Additional T ables on the W izard Screen
The screen wizard lets you include information from additional tables on your
master-detail screens. The screen wizard uses the foreign key assignments in
your master table or detail table to determine how they are related to other tables
in the open repository.

Define the detail
columns

Add details from
another table

Lesson 10: Create a Master-Detail Screen

187VideoBiz TutorialChapter 3

10 Select the Include columns from related tables check box.

The roles table's foreign keys determine which tables in your database, via
the repository, are related to the roles table.

11 Choose Next.

The Additional Detail dialog box opens. The tables listed are viable candidates
with which the roles table can be joined.

de
ta

il1
c

12 Select actors from the list of tables.

The list of columns associated with the table are displayed.

13 Select the last_name and first_name columns and choose .

The columns are added to the list of fields to be included on the screen.

14 With the columns still selected, choose the Up reposition arrow to move the
last_name and first_name above role .

15 Select last_name , and choose the Down reposition arrow to move it below
first_name .

Lesson 10: Create a Master-Detail Screen

188 JAM 7.0 Getting Started

de
ta

il1
d

16 Choose Next.

The Layout Selection dialog box opens.

la
yo

ut
10

Lesson 10: Create a Master-Detail Screen

189VideoBiz TutorialChapter 3

The master table, by default, has a single row layout and the detail displays in
a grid (with multiple rows). Use these specification as the layout for this
screen. However, you can easily try others to see how it might look.

17 Choose Next.

The Style and Finish dialog box opens.

18 Change the Screen Title to VideoBiz Video Detail .

19 Deselect Push Buttons to indicate that the screen has no onscreen controls.

20 Deselect the Generate Item Selection Screens check box.

st
yl

e1
0

21 Choose Done.

JAM displays the completed screen and the confirmation prompt.

Lesson 10: Create a Master-Detail Screen

190 JAM 7.0 Getting Started

vd
dt

l1
0a

22 Examine the screen and choose Yes if everything looks okay.

At this point, you can rearrange the widgets. You might want to increase the
screen's size so that you can move objects around more easily. Make the screen
look the way you want your users to see it.

23 Select the Director First Name label widget.

24 Under Identity, change the Label property to Director .

25 Delete the Director Last Name label widget.

26 Move and align the Director Last Name (dir_last_name) text widget next to
the text widget associated with the first name.

Customize the
screen

Lesson 10: Create a Master-Detail Screen

191VideoBiz TutorialChapter 3

al
gn

di
r

27 Arrange the text widgets and their corresponding labels in the untitled screen
so that your screen looks similar to the following illustration.

Note: If you make a mistake, don't forget that you can Undo!

ar
ra

ng
e

Lesson 10: Create a Master-Detail Screen

192 JAM 7.0 Getting Started

28 Save the screen as viddtl.jam .

In addition to information about the actors it would be nice to provide a description
of the movie. You can add widgets associated with columns from the title_dscr
table. This table was also imported into the data.dic repository, so that's where
you'll find the widgets.

29 Choose View%Repository TOC.

re
pt

oc
10

30 Select the title_dscr repository entry and choose Open.

The title_dscr@[Repository] opens in the screen editor workspace.

In the titles_dscr table, each line of descriptive text is a separate record.
Since most descriptions require more than one line, a single video record in
the titles table can be associated with multiple records in the titles_dscr
table (a one-to-many relationship). Each record in the titles_dscr table
also contains a line number so that the records associated with a single
description can be assembled in the correct order.

Add another
database table to
the screen

Lesson 10: Create a Master-Detail Screen

193VideoBiz TutorialChapter 3

31 Copy the line_no and dscr_text text widgets and the
titles+title_dscr link widget to the viddtl screen.

td
sc

r1

32 (Optional) Close the title_dscr@[Repository] screen to give you more
working space.

You can see what table views and links are on the current screen by accessing the
DB (database) Interactions window.

View the table view
and link

Lesson 10: Create a Master-Detail Screen

194 JAM 7.0 Getting Started

More About the Database Interactions W indow
You can easily verify and modify the underlying database structure of a screenÐ
that is, the database tables used and the relationships between themÐby using
the DB Interactions window. The window displays an interactive, graphical
representation of the relationships between parent and child table views and the
links that connect them.

In an earlier lesson you used the Widget list to select a table view; you can also
select table views and links via the DB Interactions window. Both methods allow
you to access their respective properties.

33 Choose View%DB Interactions.

The DB Interactions window opens in the screen editor workspace.

When you selected the titles , roles , and actors tables in the screen
wizard, the wizard copied the table view widgets as well as their correspond-
ing links (based on the tables' foreign key definitions) to your screen. When
you copied the dscr_text and line_no widgets from the title_dscr
repository entry to the viddtl.jam screen, the table view is automatically
copied as well. When you copied the titles+title_dscr link widget to
your screen, you provided JAM with the information it needs to link, or join,
the title_dscr table view to the titles table view.

Parent table view

Child table view

Sequential link

Server link

db
i1

0a

The titles table view, or master table, is identified as the parent table view
at the top of the graphical tree. The title_dscr table view is a child table

Lesson 10: Create a Master-Detail Screen

195VideoBiz TutorialChapter 3

view and is joined to the parent by the titles+title_dscr link. A valid
link widget is represented as either a server link, marked with a | (pipe), or a
sequential link, marked with a ^ (caret).

The sequential link between the titles and title_dscr table views
retrieves the movie title first, and then all the associated lines of description.

The roles+actors link is a server link. Server links are used when there's a
one±to-one relationship between parent and child tables. The result is a single
SQL statement that retrieves the appropriate data from both tables. So, in this
case, both the roles and associated actors information are retrieved with a
single SQL statement that joins the two tables.

More About Sequential and Server Links
When your screen contains multiple table views, it must also contain links to
describe their relationship with one another. A link widget is automatically created
for each foreign key that is defined for a database table. The links provide JAM
with the defined relationships between two table views.

Links are not visible at runtime, but are visible in the screen editor so that you can
access link properties.

There are two type of linksÐsequential and server:

� Sequential links are used to join two tables with a one-to-many relationship.
SQL SELECT statements for the parent table view are generated and
executed before any SQL statements are generated for the child table view.
Sequential links are also used for multiple server joins.

� Server links are used to join two tables having a one-to-one relationship. The
database server is used to join the two tables, and a single SQL SELECT
statement is generated to retrieve the data.

34 (Optional) Close the DB Interactions screen by choosing Close/Quit from the
screen's system menu, or choose View%.DB Interactions to toggle the display
off.

Since the description for any video title is likely to consist of multiple lines, you
will want to display several lines at once and allow the user to easily scroll the in-
formation. Each line of description is defined as a row in the database table. All the
lines together comprise the description.

35 Select the line_no text widget in the viddtl screen.

Note: You can move the line_no text widget out of the way if you want. You
can also move the titles+title_dscr link widget to the bottom of the
screen with the other link widgets, so it too will be out of the way.

Display multiple
lines of the
description at once

Lesson 10: Create a Master-Detail Screen

196 JAM 7.0 Getting Started

36 Under Identity, set the Hidden property to Always.

The line_no field specifies the order in which the descriptions should be
displayed (since more than one line of description is associated with most
video titles). You want to hide this widget because, although it needs to be on
the screen in order to synchronize the actual description text, it doesn't need to
be visible to the user.

37 Select both the line_no and dscr_text widgets.

38 Under Identity, change the Widget Type property from Single Line Text to List
Box.

td
sc

r2
39 (Optional) Under Format/Display, remove the text in the Initial Text property.

Once you selected the property, just press the Spacebar to delete the text.

More About W idget Identity
You have complete control over a widget, including the widget type. A widget, as
originally created or as it exists in a repository, is not always the appropriate type
for its purpose on a particular screen. JAM lets you change a widget from one type
to another, while still preserving its relevant property values. You are given the
flexibility to experiment with the most appropriate widget for the task, without
having to recreate and redefine all the widget's attributes.

Lesson 10: Create a Master-Detail Screen

197VideoBiz TutorialChapter 3

40 Set the following Geometry properties for both widgets as indicated:

Property Value

Onscreen Rows 3

Scrolling Yes

Max Occurrences delete any values; leave blank

td
sc

r3

JAM automatically synchronizes scrolling for widgets that belong to the same
table view and have the same number of onscreen occurrences.

That's all there is to it! Now try out the viddtl.jam screen.

41 Choose File%Test Mode or the Test Mode button to test the screen.

42 Choose Database%Connect and specify videobiz if you are not connected to
the database.

43 Choose Database%Trace On to see the DBMS commands and SQL that is
being automatically generated.

Test the sequential
link

Lesson 10: Create a Master-Detail Screen

198 JAM 7.0 Getting Started

More About DBMS T race
You can see the exact DBMS commands and SQL statements that are generated
by the transaction manager by choosing the Trace On option. This is a useful and
powerful debugging tool that shows you what the transaction manager and SQL
generator are doing behind the scenes.

44 Choose Transaction%View.

Many transaction trace messages will be displayed. Each will display portions
of the constructed SQL statement being used to fetch the first video record.

45 Choose OK to acknowledge each of the trace messages.

The fields are populated as the data is fetched. You can see in what order this
occurs.

46 Choose Transaction%Continue to fetch the next record.

Lesson 10: Create a Master-Detail Screen

199VideoBiz TutorialChapter 3

vd
dt

l1
0b

47 Choose Database%Trace Off to turn the transaction messaging off.

48 Choose Options%Screen Editor to return to the workspace and save the
screen.

In this lesson, you used the screen wizard to build a master-detail screen (video
detail) that displays for each video title, specific information about the actors and
their roles in a given movie. You also added a table view to the screen to display a
multiline description about the movie. You did this by:

� Copying widgets, including the links, from title_dscr repository entry to
your application screen.

� Changing various label and text widgets to enhance the screen's appearance
and usability.

� Hiding the line_no widget; changing it and the dscr_text widget from
single line to list box widgets so that multiple lines of data can be displayed at
once.

You learned:

� The DB Interactions window gives you a map of what table views (represent-
ing database tables) are used on the screen and how they interact with one
another.

What Did You Do?

What Did You
Learn?

Lesson 10: Create a Master-Detail Screen

200 JAM 7.0 Getting Started

� You can modify table views and links via the Properties windowÐjust like all
other JAM widgetsÐand thereby, alter the behavior of the data and the
relationships between table views.

� The transaction manager automatically generates the appropriate SQL for this
master-detail screen given the proper link information for defining the table
view relationships.

� You learned that by simply copying widgets from repository entries (and
adjusting link properties, if necessary), you can build a complex application
involving multiple database tables and master-detail situations without writing
any code.

� How to easily change widgets from one type to another, while still retaining
the widget's relevant properties.

� You can examine the SQL statements being generated by the transaction
manager via the Trace On menu option.

You'll notice that the video detail screen is similar to the custedit screen from
Module 1. Where custedit provides information about a single customer,
viddtl provides information about a single video title. Similarly, you could devel-
op a query and selection screen analogous to the custlist you created in Module
2. The search criteria on such a screen could allow a user to search for videos by
supplying a title ID, director, or the name of the video for example.

Obviously, there are additional screens, not covered in this tutorial, that would be
included if this was a complete video rental application. Hopefully, by creating the
three screens covered in these lessons, you have learned some of the basics of
using JAM and have gotten a feel for the iterative development methodology that
JAM is so well-suited to.

Where to Now?

201

MODULE FOUR

Graphical
Presentations

Module 4 introduces you to how easy it is to display data in a graphical format.
You will build a screen from scratch that will display data from the videobiz
database in a graph. The graph will display information about videos that have
been rented and returned to the video rental store.

The graph can be changed dynamically. Initially, the rentstat screen displays as
a bar chart.

202 JAM 7.0 Getting Started

The user can press the Chart button to change the chart type. The same data is
displayed, but in a pie chart presentation.

203

Lesson 11: Displaying Data in a Graph
Create a graph that displays data in a chart. You can present data on your applica-
tion screens in chart format by using graph widgets. The graph data can be gener-
ated at runtime or obtained from static sources and can be displayed in a variety of
formats. In this lesson, you will use a single graph widget to display video rental
status in two different chart type formats: as bar chart and as pie chart. The statis-
tics that will be charted are how many videos are currently out, how many are in
stock and have no balance, and how many have a balance due (overdue videos).

When you complete the lesson, your screen will initially resemble the following
illustration:

In this lesson you learn how to:

� Determine and define how the graph gets its data.

� Create an expression that will be used in the SELECT statement of the
automated SQL generation.

� Control the appearance of the chartÐassign font specifications and colors.

� Provide a push button on the screen to allow users to dynamically change the
chart type at runtime.

Note: In character JAM, an empty rectangle is displayed when you create a graph
widget. Graphs are not visible in character JAM, although you can set all graph
widget properties; the graph will be displayed when the screen is opened in a GUI
environment.

Lesson 11: Displaying Data in a Graph

204 JAM 7.0 Getting Started

1 Start the screen editor if it is not currently running.

2 Do either of the following to create a new screen from scratch:

w Use an empty, untitled screen currently open in the workspace.

w Choose File%New%Screen or the New button on the toolbar. The New
Screen dialog box opens.

Choose No. Rather than using the wizard, you'll create the screen from
scratch. A new, untitled screen opens in the workspace.

You will include two arrays on this screen. One field displays the values of the
rental status column (there are three possible valuesÐ(C)urrently out, (P)aid and
returned, and (B)alance due). The other displays the total that applies to each sta-
tus. In other words, how may videos are currently out, how many are back and paid
for in full, and how many videos have a balance due.

3 Choose File%Open%Repository Entry.

The Open Repository Entry dialog box opens.

4 Select rentals and choose OK

Provide a data
source

Lesson 11: Displaying Data in a Graph

205VideoBiz TutorialChapter 3

The rentals repository entry opens.

5 Copy the single line text widget associated with rental_status to your
untitled screen.

6 Bring focus to the rentals repository screen and close the screen by doing
either of the following:

Lesson 11: Displaying Data in a Graph

206 JAM 7.0 Getting Started

w Choose File%Close%Screen.

w Choose Close/Quit from the screen's system menu.

7 With the rental_status text widget selected in the untitled screen, under
Geometry, set the Array Size property to 3.

This array will display the rows associated with the rental_status
database column.

8 Copy the array (press Ctrl+click) and place the copy to the right of the
original.

9 With the copy selected, set the following properties:

Property Setting

Identity: Name property ct

Geometry: Length property 3

Database: Column Name property Remove rental_status , leaving
the value blank

Database: Use In Select: Expressioncount(*)

The copy of rental_status will display the results of the expressionÐa
total for each each status type in the rentals table.

Lesson 11: Displaying Data in a Graph

207VideoBiz TutorialChapter 3

The transaction manager automatically performs a Group By (rental_sta-
tus in this case) when you supply an aggregate expression.

10 Select the screen (by clicking in an empty area to deselect the widgets).

11 Under Focus, enter sm_tm_command(ºVIEWº) in the Entry Function
property.

This specifies that the VIEW command be executed when the screen opens;
therefore, the fields will be populated on screen entry.

12 Be sure you are connected to the database before you enter test modeÐchoose
File%Open%Database and specify videobiz if you are not connected to the
database.

On screen entry, you can immediately see the values associated with the rent-
al_status column in the database. And you get a total, or count, of each status
type.

13 Choose File%Test Mode or the Test Mode button.

The screen opens. The number of each rental status typeÐ(B)alance due,
(C)urrently out, (P)aid and returnedÐis listed.

Display the data

Lesson 11: Displaying Data in a Graph

208 JAM 7.0 Getting Started

14 Choose Options%Screen Editor to return to the workspace and save the screen
as rentstat .

Rather than display the values in fields, you can display the values graphically by
adding a graph widget to the screen.

15 (Optional) Move the array widgets to the upper left corner so that they are out
of the way.

16 (Optional) Increase the screen's height and/or width to make enough room for
a square graph widget. Do this by either:

w Dragging on the border of the screen.

w Under Geometry, set the screen's Height and/or Width properties.

17 Select Create%Graph or choose the graph icon on the Tool box.

Add a graph widget

Lesson 11: Displaying Data in a Graph

209VideoBiz TutorialChapter 3

18 Click and drag a square to define the size of the graph frame. Make the graph
widget large enough to fill the space next to the arrayed widgets.

A default pie chart is created. The chart displays stock data while in the screen
editor.

More About Chart T ypes
You can present data on your application screens in a variety of formats:

� Pie chart Ð Displays data from a single source as proportional segments of a
circle.

� Bar/Line graph Ð Bar , line, curve, trend, point, or area plots for up to 12 data
sources.

� XY plot Ð Line, curve, and point plots for up to six data sources.

� High/Low chart Ð High, low , close, and open values plotted together on a
single marker that resembles an I-beam. (Used, for example, to track the
performance of a single stock over a period of time.)

19 Under Identity, enter G in the Name property.

Lesson 11: Displaying Data in a Graph

210 JAM 7.0 Getting Started

Graph properties define how the graph actually looks to the user. You define the
title, subtitle, and how legends and labels appear on the chart itself. Each element
of the chart has its own characteristics.

20 Under Graph, enter Rental Status in the Title property. A subproperty Text
Size is displayed (this can remain at the default size).

The Title property defines the title of the graph and displays at the top, center
of the graph frame.

21 In the Subtitle property, enter (B)alance due, (C)urrently out,
(P)aid and returned.

When you define the subtitle, the Text Size subproperty, specific to the subtitle
is displayed.

22 In the Text Size subproperty for the subtitle, enter 3 (or smaller) to ensure that
the subtitle fits within the graph border.

This is not a font size, but rather a specification of the text size as a proportion
of the graph.

Provide titles and
text size
specifications

Lesson 11: Displaying Data in a Graph

211VideoBiz TutorialChapter 3

More About Graph W idget T ext Size
Text size within a graph widget is always specified relative to the graph size. This
way, if you change the size of the graph widget, the text size increases or
decreases proportionately.

Text size is specified as a value between 0.0 and 100.0, inclusive, representing a
percentage of the widget size. You set these sizes independently for the title,
subtitle, legend, and labels.

23 In the Text Size property (not to be confused with the subproperties for
title/subtitle), set the value to 3.

This sets the text size for the labels (axis, tick mark, and pie segment labels) in
the chart portion of the graph.

By default, the chart is displayed in two dimensions. You can, however, specify
that the graph elements (pie segment, bar, etc.) appear in three dimensions.

24 Under Graph, set the 3D property to Yes.

The graph tilts just enough to give you a 3-dimensional effect and additional
3D-related subproperties are displayed.

Add 3-dimensional
effect to the chart

Lesson 11: Displaying Data in a Graph

212 JAM 7.0 Getting Started

You specify the data for a graph under the Data Series properties. A data series
represents not only the source for one set of data values, but also the plot style, Y
axis specification, and labelling information for the data in the series.

25 Under Data Series, enter ct in the Value Source subproperty.

This defines the chart's source of data as the array that you identified as ct .

26 Expand the Pie Segments subheading, enter rental_status in the Label
Source property.

Define the data
series

Lesson 11: Displaying Data in a Graph

213VideoBiz TutorialChapter 3

When the graph displays as a pie chart it will acquire its label values from the
rental_status database column by way of the rental_status array you
copied to the screen.

You can easily change chart types; in fact, you can even change the chart type dy-
namically at runtime. Here you will change the graph from a pie chart to a bar
chart. You can set any bar chart-specific properties.

27 Under Graph, change the Chart Type property from Pie to Bar.

The graph immediately changes to the specified type. In addition, different
properties are displayed in the Properties window, that are specific to the chart
type that you choose. Properties that are common to both (or all) chart types
are retained.

Specify the graph
type

Lesson 11: Displaying Data in a Graph

214 JAM 7.0 Getting Started

More About Changing Graph T ypes
If you later (either in the screen editor or at runtime) change the type of graph
widget, some of the properties initially specified will not be applicable to the new
graph. These properties no longer appear in the Properties window, but they are
retained in the widget. If you change the widget back to the previous type, these
properties will again appear in the Properties window, their settings the same as
before the type was changed.

28 Under Data Series #1, set the Color property to Green.

29 Under Graph, expand the X Tick Marks subheading, and enter rental_sta-
tus in the Label Source property.

Lesson 11: Displaying Data in a Graph

215VideoBiz TutorialChapter 3

The bar chart acquires its labels for the values from the rental_status
database column by way of the rental_status array.

30 (Optional) You can change the font for the entire graph widget by setting the
Font Name property under the Font heading.

The next couple of steps are optional. Since the data is being displayed graphically,
you can hide the arrays that are collecting the data.

31 Select both arrays (ct and rental_status).

32 Under Identity, set the Hidden property to Always.

33 (Optional) Select the graph widget and move it to the upper left corner, so that
it actually covers the two arrayed widgets.

It' s quite easy to provide your users with a means of viewing data in a variety of
formats. You can add a push button to the screen that will simply change a single
property when it is pressed.

34 Create a push button in the lower right corner of the screen.

Hide the arrays

Allow the chart type
to be changed at
runtime

Lesson 11: Displaying Data in a Graph

216 JAM 7.0 Getting Started

35 Under Identity, enter Chart in the Label property.

36 Under Validation, select JPL Validation. The JPL Text Program window
opens.

37 Type the following procedure:

if G±>chart_type=PV_PIE
G±>chart_type=PV_BAR

else
G±>chart_type=PV_PIE

return 0

Lesson 11: Displaying Data in a Graph

217VideoBiz TutorialChapter 3

This procedure will be executed whenever the Chart button is chosen. It
toggles the chart type. A simple syntax is used to identify the widget (in this
case, the graph widget named G) and determine its chart type. If the graph
widget currently has a chart type specification of PIE , it changes the chart type
to BAR, otherwise, it changes to a pie chart.

38 Choose OK

The JPL Program Text window closes and focus returns to the Properties
window.

Now you can see the data presented graphically.

Note: You must be connected to the videobiz database before entering test mode
because the query is executed on screen entry.

39 Choose File%Test Mode or the Test Mode button on the toolbar.

The Rental Status chart appears as a bar chart and reflects the values as they
currently exist in the database.

40 Choose the Chart button.

A picture is worth
1,000 words

Lesson 11: Displaying Data in a Graph

218 JAM 7.0 Getting Started

That's all there is to it!

In this lesson, you displayed data from the database in a variety of graphical repre-
sentations. You did this by:

� Copying a database-derived widget from the repository to use as a source of
data for the graph.

� Making a copy of the database-derived widget to store data. Then you defined
an expression to count the number of rows associated with each status type.

� Creating a graph widget and defining that the data from the onscreen widgets
appear in a chart.

� Providing users with push button that toggles the type of chart at runtime.

You learned:

� Graph widgets are defined by a myriad of propertiesÐthese allow you to
create a chart type with a title, subtitle, legends, and labels.
You can assign colors to each of the data series.

� JAM provides you with the ability to create several types of charts. You can
easily change from one type to another without losing chart type±specific
property settings, and you can change types at runtime as well.

What Did You Do?

What Did You
Learn?

Lesson 11: Displaying Data in a Graph

219VideoBiz TutorialChapter 3

Congratulations on completing the VideoBiz tutorial!

You have built a fairly complex application and have been introduced to some of
the power and flexibility that is inherent to JAM. While this tutorial cannot
demonstrate all of JAM's features, hopefully it serves as a good starting point.

Where to Now?

221

Create and Populate a
Repository

The tutorial uses a prebuilt repository to expedite the development process.
However, when you first create an application, you will probably create a new
repository to capture your database definitions. In this way, you and the screen
wizard can use the resulting database-derived objects to start creating application
screens.

In this appendix, you will learn how to create a repository in the screen editor as
well as populate the repository with database objects. The last section of the
appendix describes the changes you can make to your repository so that it will,
essentially, mirror the one used in the tutorial.

Creating a Repository

You must first create a repository in order to import or store screens as repository
entries.

1. Start the screen editor if it is not running.

2. Choose File%New%Repository.

The New Repository dialog box opens.

AA

Importing Database Objects

222 JAM 7.0 Getting Started

3. Enter mydata.dic as the name of a repository in the File Name (or Selection)
field.

By default, on initialization JAM opens the repository with the name
data.dic . Therefore, if you use mydata.dic for the tutorial, you must
remember to explicitly open your repository after you access the screen editor
(choose File%Open%Repository and select mydata.dic from the Open
Repository dialog box).

4. Choose OK.

Creating a new repository automatically closes any repository that is currently
open. You can now save a screen as a repository entry in this newly created
repository by choosing Save As%Repository Entry.

Importing Database Objects
1. Choose File%Open%Database if you are currently not connected to the

videobiz database (refer to Lesson 1, Connect to the JDB database for
details).

2. Choose File%Import%Database Objects or the Import Objects button on the
toolbar.

The Import Database Objects dialog box opens. All tables in the videobiz
database are listed.

3. Choose Select All to select all of the tables in the database.

4. Choose Import.

The status line informs you of each table being processed and when the
importation is completed.

Note: You will be prompted for a user name if you are running under
Windows on a network. Your user ID allows JAM to notify other users if
simultaneous access of the library or repository is attempted.

5. Choose Close to return to the screen editor.

Editing Repository Contents
It is assumed that you know how to access repository entries, select screen objects,
and edit their properties via the Properties window. This section simply outlines
what edits were made to the prebuilt repository. You can implemented these same
edits to your own repository.

Editing Repository Contents

Appendix 223A Create and Populate a Repository

For the most part, the only edits that were required include:

� Changing the Length property specification on certain data entry widgets
(refer to the tables in this appendix).

� Changing the Label property for the static labels so that their content is more
useful and descriptive (refer to the tables in this appendix).

� Changing the Column Title property from the default specification to ID for
all data entry widgets that are associated with identification numbers (these are
primary keys for each of the database tables). The Column Title property is
used as a textual, column identifier when the widget is used in a grid frame.

Note: Not all table and columns listed here are necessarily used in this tutorial,
but are included here for completeness.

The following tables describe the edits you can impose on your repository entries
so that it can be used in the tutorial instead of data.dic :

Table 1. Edits to text widgets and corresponding labels in the actors repository entry.

For text widget
Change Length
property to:

For corresponding label, change Label
property to:

actor_id 5 Actor ID

last_name 15 Last Name

first_name 15 First Name

Table 2. Edits to text widgets and corresponding labels in the customers repository entry.

For text widget
Change Length
property to:

For corresponding label, change Label
property to:

cust_id 5 Cust ID

last_name Last Name

first_name First Name

state_prov State/Prov

postal_code Zip Code

cc_code Credit Card

cc_number Card Number

cc_exp_month 2 Exp. Month

Editing Repository Contents

224 JAM 7.0 Getting Started

For text widget
For corresponding label, change Label
property to:

Change Length
property to:

cc_exp_year 4 Exp. Year

member_date Membership Date

member_status Status

num_rentals 6 No. Rentals

rent_amount 11 Total Rental

Table 3. Edits to text widgets and corresponding labels in the rentals repository entry.

For text widget
Change Length
property to:

For corresponding label, change
Label property to:

cust_id 5 Cust ID

title_id 5 Title ID

copy_num 4 Copy Number

rental_date Rental Date

due_back Due Date

return_date Return Date

price 6

late_fee 6 Late Fee

amount_paid 6 Amount Paid

rental_status Rental Status

rental_comment Rental Comment

modified_date Modification Date

modified_by Modified By

Editing Repository Contents

Appendix 225A Create and Populate a Repository

Table 4. Edits to text widgets and corresponding labels in the roles repository entry.

For text widget
Change Length
property to:

For corresponding label, change Label
property to:

title_id 5 Title ID

actor_id 5 Actor ID

role 30

Table 5. Edits to text widgets and corresponding labels in the title_dscr repository
entry.

For text widget
Change Length
property to:

For corresponding label, change Label
property to:

title_id 5 Title ID

line_no 4 Line

dscr_text 55 Description

Table 6. Edits to text widgets and corresponding labels in the titles repository entry.

For text widget
Change Length
property to:

For corresponding label, change
Label property to:

title_id 5 Title ID

name Title

genre_code Genre

dir_last_name Director Last Name

dir_first_name Director First Name

film_minutes 3 Length (minutes)

rating_code Rating

release_date Release Date

price_cat Price Category

