
JAM 7

Database Guide

August 1995

This software manual is documentation for JAM) 7. It is as accurate as possible at this time; however, both
this manual and JAM itself are subject to revision.

JAM and Jterm are registered trademarks and JAM/CASE interface, JAM/TPi, and JAM/ReportWriter are
trademarks of JYACC, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

DEC, OpenVMS, ACMS, Rdb/VMS, VMS, ULTRIX, VAX, VT100, and VT220 are trademarks of the Dig-
ital Equipment Corporation.

DynaText is a trademark of Electronic Book Technologies.

HP is a trademark of Hewlett-Packard Company.

INFORMIX and C-ISAM are registered trademarks of Informix Software, Inc.

INGRES is a registered trademark of Ingres Corporation.

IBM, DB2, OS/2, Presentation Manager, and RISC System/6000 are registered trademarks and CICS is a
trademark of International Business Machines Corporation.

InterBase is a trademark of Borland International, Inc.

Oracle and SQL*Net are registered trademarks and Oracle7, PL/SQL, Pro*C and Oracle*XA are trade-
marks of Oracle Corporation.

PROGRESS is a registered trademark of Progress Software Corporation.

Scalable SQL is a trademark of BTRIEVE Technologies.

SQLBase is a registered trademark and SQLTalk is a trademark of Gupta Technologies, Inc.

SYBASE is a registered trademark and SQLServer is a trademark of Sybase, Inc.

Windows and ODBC are trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

TUXEDO, NetWare, and Novell are registered trademarks of Novell, Inc.

OSF/Motif is a trademark of the Open Software Foundation.

UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec-
tive owners, and they are used for identification purposes only.

Send suggestions and comments regarding this document to:
Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038
(212) 267±7722

W 1995 JYACC, Inc.
All rights reserved.
Printed in USA.

iii

Table of Contents
About this Guide xi.

Organization of this Guide xi.
Conventions xii.

Text Conventions xii.
Keyboard Conventions xii.

JAM Documentation xiii.

Section I: JDB 1.

Chapter 1 Introduction to JDB 3.
Using JDB with JAM 4.
JDB Executables 6.
Unsupported Features 7.
Terminology 7.

Chapter 2 Introduction to Databases 9.
Structure of a Relational Database 9.

Tables 9.
Columns 10.
Rows 11.

iv JAM 7.0 Database Guide

Primary Keys 11.
Foreign Keys 12.
Naming Tables and Columns 13.
Entering Data in Columns 13.

Designing Your Database 14.

Chapter 3 Introduction to SQL 17.
Building SQL 18.

SQL Statements 18.
SQL Concepts 22.

Executing SQL 24.

Chapter 4 Database Elements 27.
Naming Conventions 27.

Databases 27.
Identifiers 28.

Data Types 28.
JDB Files 29.

Journal Files 29.
JISQL Scripts 29.
JISQL Log Files 29.
JISQL Output Files 30.

System Tables 30.
Configuration 32.

Environment Variables 32.
Message File 32.

Chapter 5 Using JISQL 33.
Starting JISQL 33.

Connecting to a Database 34.
Disconnecting from a Database 35.
Exiting JISQL 35.
Executing Operating System Commands from JISQL 35.

Creating a New Database 36.
Creating Database Tables 36.
Defining Columns in a Database Table 38.

Defining a New Column 38.
Modifying and Deleting Columns 38.
Re-arranging Columns 39.

Table of Contents v

Defining Keys for a Database Table 39.
Primary Key and Unique Keys 39.
Foreign Keys 41.

Maintaining an Existing Database 45.
Displaying Database and Table Definitions 46.
Dropping Tables 46.
Dropping a Database 47.

Running SQL Interactively 47.
Entering and Editing SQL Scripts 47.
Script Format and Syntax 49.
JISQL Macro Commands 49.
Executing SQL Scripts 50.

Chapter 6 SQL Reference Guide 57.
Using the SQL Reference Guide 57.

SQL Reference Summary 57.
Notation Conventions 58.

Chapter 7 Error Messages 111.
Error Message Listing 111.

Chapter 8 Using T ransactions 115.

Chapter 9 JDB Utilities 117.

Chapter 10 Keywords in JDB 125.

Section II: Database Reference 129.

Chapter 11 DBMS Statements and Commands 131.
DBMS Command Summary 131.
Command Descriptions 134.

Chapter 12 DBMS Global V ariables 183.
Variable Overview 183.

Error Data 184.
Status Data 184.

Variable Reference 184.

vi JAM 7.0 Database Guide

Chapter 13 Keywords in JAM' s Database Drivers 199.

Section III: Database Drivers 203.

Chapter 14 Database Driver for Informix 205.
Initializing the Database Engine 206.

Engine Name 206.
Support Routine Name 207.
Case Flag 207.

Connecting to the Database Engine 207.
Importing Database Tables 208.

Table Views 209.
Links 209.
Widgets 210.

Formatting for Colon Plus Processing and Binding 211.
Formatting Dates 211.

Declaring Cursors 212.
Scrolling 213.
Error and Status Information 214.

Errors 214.
Warnings 216.
Row Information 218.

Using Stored Procedures 218.
Executing Stored Procedures 218.
Viewing SELECT Results 219.

Using Transactions 221.
Transaction Control on a Single Connection 222.

Transaction Manager Processing 224.
Transaction Model for Informix 224.

Informix-Specific Commands 224.
Command Directory for Informix 234.

Chapter 15 Database Driver for JDB 237.
Initializing the Database Engine 238.

Engine Name 238.
Support Routine Name 239.
Case Flag 239.

Table of Contents vii

Connecting to the Database Engine 239.
Importing Database Tables 240.

Table Views 240.
Links 241.
Widgets 241.

Formatting for Colon Plus Processing and Binding 242.
Declaring Cursors 242.
Scrolling 243.
Error and Status Information 243.

Errors 244.
Row Information 245.

Using Transactions 245.
Transaction Control on a Single Connection 246.

Transaction Manager Processing 247.
Transaction Model for JDB 247.

JDB-Specific Commands 248.
Command Directory for JDB 251.

Chapter 16 Database Driver for ODBC 255.
Initializing the Database Engine 257.

Engine Name 257.
Support Routine Name 257.
Case Flag 258.

Connecting to the Database Engine 258.
Importing Database Tables 261.

Table Views 262.
Links 263.
Widgets 263.

Formatting for Colon Plus Processing and Binding 265.
Declaring Cursors 265.
Scrolling 266.
Error and Status Information 266.

Errors 267.
Row Information 268.

Using Stored Procedures 268.
Using Transactions 268.

Transaction Control on a Single Connection 269.
Transaction Manager Processing 271.

Transaction Model for ODBC 271.

viii JAM 7.0 Database Guide

ODBC-Specific Commands 272.
Command Directory for ODBC 278.
Library Functions for ODBC 281.

Chapter 17 Database Driver for ORACLE 285.
Initializing the Database Engine 286.

Engine Name 286.
Support Routine Name 287.
Case Flag 287.

Connecting to the Database Engine 287.
Connecting to the XA Library 289.

Importing Database Tables 290.
Table Views 290.
Links 291.
Widgets 291.

Formatting for Colon Plus Processing and Binding 293.
Formatting Dates 293.
Formatting Character Strings 293.

Declaring Cursors 294.
Scrolling 294.
Error and Status Information 295.

Errors 295.
Row Information 296.

Using Stored Subprograms 296.
Executing Stored Procedures 297.
Executing Stored Functions 299.

Using Transactions 300.
Transaction Control on a Single Connection 301.

Transaction Manager Processing 303.
Transaction Model for ORACLE 303.
Specifying FOR UPDATE Clauses 303.

Using the XA Interface 303.
ORACLE-Specific Commands 305.
Command Directory for ORACLE 315.

Chapter 18 Database Driver for SYBASE CT Library 319.
Initializing the Database Engine 320.

Engine Name 321.
Support Routine Name 321.

Table of Contents ix

Case Flag 321.
Connecting to the Database Engine 322.
Importing Database Tables 324.

Table Views 325.
Links 325.
Widgets 326.

Formatting for Colon Plus Processing and Binding 328.
Formatting Dates 328.
Formatting Currency Values 328.
Using Text and Image Data Types 329.

Declaring Cursors 329.
Setting Cursor Options 330.

Scrolling 331.
Error and Status Information 331.

Errors 331.
Using Stored Procedures 332.

Executing Stored Procedures 333.
Controlling the Execution of a Stored Procedure 333.

Using Transactions 334.
Transaction Control on a Single Cursor 335.

Transaction Manager Processing 337.
Transaction Model for SYBASE 337.
Using Version Columns 337.

SYBASE-Specific Commands 338.
Command Directory for SYBASE 351.

Chapter 19 Database Driver for SYBASE DB Library 355.
Initializing the Database Engine 356.

Engine Name 356.
Support Routine Name 357.
Case Flag 357.

Connecting to the Database Engine 357.
Importing Database Tables 359.

Table Views 360.
Links 360.
Widgets 361.

Formatting for Colon Plus Processing and Binding 363.
Formatting Dates 363.
Formatting Currency Values 363.

x JAM 7.0 Database Guide

Using Text and Image Data Types 364.
Declaring Cursors 364.
Scrolling 365.
Locking Behavior 365.
Error and Status Information 368.

Errors 368.
Row Information 370.

Using Stored Procedures 370.
Executing Stored Procedures 371.
Getting Output Parameter Values 372.
Using Remote Procedure Calls 373.
Getting a Return Code from a Stored Procedure 376.
Controlling the Execution of a Stored Procedure 377.

Using Transactions 378.
Transaction Control on a Single Cursor 379.
Transaction Control on Multiple Cursors 381.

Transaction Manager Processing 385.
Transaction Model for SYBASE 385.
Using Version Columns 386.

SYBASE-Specific Commands 386.
Command Directory for SYBASE 418.

Chapter 20 Videobiz Database 423.
Videobiz Schema 424.

Index 431.

xi

About this Guide
The Database Guide contains reference information to help you build database
applications with JAM.

For those of you that are new to relational databases, the section on JDB explains
basic database terminology. The other sections of the guide will be most helpful if
you are familiar with building database applications. The Database Drivers section
assumes that you are familiar with the procedures and functionality of your
database engine.

Organization of this Guide

The Database Guide is organized into the following sections:

Section One: JDB
Chapters 1 through 10 provide instructions for JDB, JYACC's database prototyping
tool. JDB is a relational database system using SQL. Instructions are given about
database components as well as how to build SQL statements in JDB.

Section Two: Database Reference
Chapters 11 through 13 provide reference information concerning JAM's database
drivers. This includes information about the DBMS commands and about the global
variables available for error and status information.

Conventions

xii JAM 7.0 Database Guide

Section Three: Database Drivers
This section contains documentation about the major database drivers available
with your installation of JAM. This includes documentation about the database
driver for JDB as well as Oracle, SYBASE, Informix, and ODBC.

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

Monospace (fixed-spaced) text is used to indicate:

� Code examples.

� Words you're instructed to type exactly as indicated.

� Filenames, directories, library functions, and utilities.

� Error and status messages.

Uppercase, fixed-space font is used to indicate:

� SQL keywords.

� Mnemonics or constants as they appear in JAM include files.

Italicized helvetica is used to indicate placeholders for information you supply.

Items inside square brackets are optional.

One of the items listed inside curly brackets needs to be selected.

Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

Italicized text is used:

� To indicate defined terms when used for the first time in the guide.

� Occasionally for emphasis.

Keyboard Conventions

JAM logical keys are indicated with uppercase characters.

expression

KEYWORDS

numeric_value

[option_list]

{x | y}

x ...

new terms

XMIT

JAM Documentation

About this Guide xiii

Physical keys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

The JAM documentation set includes the following guides and reference material:

Read Me First Ð Consists of three sections:

w What's New in JAM Ð Briefly describes what's new in JAM 7.

w Installation Guide Ð Describes how to install JAM on your specific
platform and environment.

w License Manager Installation Ð Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

Getting Started Ð Contains useful information for orienting you to JAM. Includes
a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guide Ð Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen editor, screen wizard, menu
bar editor, and styles editor. The Editors Guide is also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor.

Application Development Guide Ð Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repository, hook functions, and menu bars,
as well as sections on the SQL executor, SQL generator and the transaction
manager.

Language Reference Ð Describes JPL, JAM's proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti-
cally.

Database Guide Ð Instructions for using JDB, JYACC's prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver.

Configuration Guide Ð Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys

Alt+A

JAM Documentation

xiv JAM 7.0 Database Guide

and input/output. Also includes information on GUI resource and initialization
files.

Glossary and Master Index Ð Provides a dictionary of terms used in the
documentation set and an index into the entire documentation set. This is in
addition to the indexes in the individual volumes.

Upgrade Guide Ð Online only. Information for upgrading from JAM 5.

JAM's documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynatextTM browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
Dynatext's read-only browser from the command line or by clicking on the
Dynatext icon. For instructions on using Dynatext, request Help while you have a
browser window open.

The following information is also provided with your JAM installation:

� Database Driver Notes Ð JAM 7 has database drivers for most popular
relational database engines, as well as JDB, JAM's proprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guide; others are included separately.

� Online help Ð The Editors Guide is provided in online form through the
Dynatext browser on GUI platforms. It can be accessed by choosing Help
from the screen editor. For instructions on using Dynatext, request Help while
you have a browser window open.

� Online README file.

JYACC provides the following product support services; contact JYACC for more
information.

� Technical Support

� Consulting Services

� Educational Services

Online
Documentation

Collateral
Documentation

Additional Help

SECTION ONE

JDB

Chapter 1 Introduction to JDB. 3

Chapter 2 Introduction to Databases. 9

Chapter 3 Introduction to SQL. 17

Chapter 4 Database Elements. 27

Chapter 5 Using JISQL . 33

Chapter 6 SQL Reference Guide. 57

Chapter 7 Error Messages. 111

Chapter 8 Using Transactions. 115

Chapter 9 JDB Utilities . 117

Chapter 10 Keywords in JDB. 125

3

Introduction to JDB
JDB is a simple relational database manager which can be used for building
application prototypes. Working with JDB, you can make a model of the data with
the designated tables and columns. JPL procedures using standard SQL syntax can
be added to the JAM screens in your application. These procedures allow you to
add, modify or remove information stored in JDB. Alternatively, JAM's transaction
manager can also access your JDB database information.

With the addition of JDB to the JYACC family of products, you can:

� Create a database using JDB.

� Create menus and screens for an application using JAM.

� Enter data into your JDB database using JAM's database driver for JDB.

� Obtain reports of information in your database with JAM/ReportWriter.

� Test the entire application, including data entry.

In previous releases of JAM, you could design the screens and menus needed for
an application, but were unable to test the data entry until a database engine and
database interface became available. The addition of JDB allows you to do this,
which gives you greater control over the entire development cycle.

In addition to the database access available through the transaction manager or JPL
procedures, you can also access JDB from an interactive SQL editor, JISQL, which
allows you to enter any SQL command. Refer to Chapter 5 for more information
on JISQL.

11

Using JDB with JAM

4 JAM 7.0 Database Guide

If you already have data that you would like to enter into a JDB database, a utility
is available to transfer data into a database table from an ASCII text file. Refer to
Chapter 9 for more information on JDB utilities.

Using JDB with JAM

The following steps illustrate a sample development cycle which uses JDB to build
the database and JAM to build the application screens:

1. Create the database and database tables using JDB.

2. Use that database information to create JAM repository entries. Inside the
screen editor, you can connect to the database and import the database tables
to a repository.

Using JDB with JAM

51 Introduction to JDBChapter

3. Once the repository is created, copy the repository objects to a JAM
application screen.

4. Edit your property settings, if necessary.

JDB Executables

6 JAM 7.0 Database Guide

5. Enter database information using the transaction manager.

In a few steps, you can easily prototype an application screen and test the data
entry needed for that screen.

JDB Executables

The installation program for JDB installs the following executables in the
$SMBASE/jdb/bin directory:

isql command-line interactive SQL editor

jdbroll utility for running log files

mksql translate a JDB database into its related CREATE TABLE and IN-
SERT statements

tbldata import/export utility for database information

The installation program also installs the following executable in the
$SMBASE/util directory:

jisql graphical interactive SQL editor

Unsupported Features

71 Introduction to JDBChapter

Under Microsoft Windows, the installation program places the following icon in
the JAM program group:

JISQL graphical interactive SQL editor for Windows

To access a JDB database from your JAM screens, you need to have a JAM
executable linked to the database driver for JDB. Refer to the installation notes for
more information.

Unsupported Features

The following database features are not supported in this release of JDB:

� concurrency controls/locking

� indexes

� outer joins

� stored procedures

� triggers

� views

Terminology

The following terms are used throughout this manual. Additional terms are
explained as they are encountered under each topic.

database
A physical database consisting of tables and other data.

DBMS
Database Management System

engine
A DBMS product. An engine is identified by a specific vendor and version
numberÐORACLE 7 or SYBASE 4.9, for example.

Terminology

8 JAM 7.0 Database Guide

SQL
Structured Query Language, the procedure language used by relational database
management systems. SQL was originally developed by IBM in the early 1970s
and then adapted by other software vendors.

9

Introduction to
Databases

A database is a collection of information organized into different areas. Generally,
a database covers information about a specific subject. For example, a company
might have one database for personnel and another database for customer orders.

What sets a database system apart from other computer applications is that a
structure exists which organizes the information. This structure allows each piece
of information to be tagged. In some database systems, this structure is called the
data model or database schema. Since there is a structure, the information stored in
a database can be easily accessed for display to a screen or for printing in a report.

Structure of a Relational Database

Tables

JDB is an Relational Database Management System (RDBMS). An RDBMS
organizes its information into tables. Generally, a table contains a subset of related
information about the main subject.

For example, if inventory is the main subject for your database, you might have
tables for the following categories:

22

Structure of a Relational Database

10 JAM 7.0 Database Guide

� inventory

� orders

� suppliers

The sample application provided with JAM uses a database called videobiz . This
database was designed for a video rental store, so it needs information about
customers, video titles, and video rentals. Table 1 lists the database tables in the
videobiz database.

Table 1. Videobiz Database

Table Name Description

customers Address, phone number and membership information for
each customer.

titles Title, director, length, rating and price category for each
video.

title_dscr Description of each video.

tapes Status of each copy of a video.

pricecats Listing of the various price categories.

actors Actors appearing in the videos.

roles Roles played by the actors in each video.

rentals Video title, customer, and date information for each video
rental.

codes Listing of the various codes used in the database.

users Login names for users of the database.

flag Yes/No flag used in the videobiz application.

Columns

Each table is divided into columns and rows. The columns are the various
subcategories of the table, each containing a piece of the table information. The
columns in the titles table, described in Table 2, have information about a video
title, such as the director, the type of video, and the running time.

Structure of a Relational Database

112 Introduction to DatabasesChapter

Table 2. Titles Table

Column Name Description Status

title_id Identification code for the video. Primary key

name Name of the video.

genre_code Code describing the video type.

dir_last_name Director's last name.

dir_first_name Director's first name.

film_minutes Length of the video.

rating_code Rating code.

release_date Year the original film/video was released.

pricecat Price category used when this video is rented.Foreign key

Rows
When you insert information into a database table, you can enter a value for each
column. Each entry is called a row. In some database systems, the equivalent of a
column is called a field and the equivalent of a row is called a record.

titles

title_id name genre_code

Table Name

Column Names

Rows 2 Aliens SCFI
70 Matewan DRAM
14 Cinema Paradiso DRAM
20 F/X ADV

Figure 1. An illustration of the titles table, showing a portion of the columns and rows.

When you define a table in JDB, each row of data cannot exceed 1K. For more
information, refer to page 66.

Primary Keys
Every table in a relational database should have a primary key. A primary key is
the column, or set of columns, that uniquely identifies a row.

Structure of a Relational Database

12 JAM 7.0 Database Guide

Currently, JDB does not enforce unique entries for the primary key columns. Even
though you will not receive an error, you should define the primary key columns
when you create your database tables for the following reasons:

� The primary key definitions are copied to the table view properties when you
import database tables to the repository.

� For JDB databases, the transaction manager gives an error message if you
attempt to insert a duplicate primary key or update the primary key column to
a duplicate value.

� If you transfer your database schema to another database engine, the primary
key columns may need to be defined for that engine.

JDB stores the primary key information in one of its system tables. You should
choose which column or columns are the primary keys when you create your
database tables. In the titles table, the primary key is the title_id column so
you need to enter a unique value for each row in that column.

titles

name
genre_code
dir_last_name
dir_first_name
film_minutes

rating code
release_date
pricecat

title_id

In some tables, a unique value is not available unless two columns are combined.
For example, the tapes table contains a title_id column, but a store can have
several copies of a video title. In our sample database, a unique entry is created for
the tapes table by combining the title_id column and the copy_num column.
Table 3 lists the columns in the tapes table.

Table 3. Tapes Table

Column Name Description Status

title_id Title Primary key,
Foreign key

copy_num Copy number for this tape. Primary key

status Code detailing whether the tape is available.

times_rented Number of times this copy has been rented.

Foreign Keys
If a column in a database table is defined as a primary key in another table, the
column is referred to as a foreign key. Any value entered into a foreign key column

Structure of a Relational Database

132 Introduction to DatabasesChapter

should match a value previously entered into the primary key column in the other
table. For example, the title_id column is a foreign key in the tapes table. Any
value entered into the title_id column of the tapes table should already exist
as a value in the titles table.

tapes

title_id
copy_num

titles

name
genre_code
dir_last_name
dir_first_name
film_minutes

rating code
release_date
pricecat

status
times_rented

title_id

Naming Tables and Columns
In JDB, names for tables and columns are one-word descriptions consisting of
letters, numbers and underscores. Each name can be up to 31 characters in length.
The name of a table must be unique within the database. The name for a column
must be unique within the table.

When you create columns in a table, you tell the database whether the data in the
column will be character strings, dates or numbers. For numbers, you specify what
type will be enteredÐinteger or float, for example. For character strings, you must
specify the maximum length. The maximum allowable length for a character string
column is 255.

You cannot use any of the JDB keywords as a name of a table or column. For a list
of the keywords, refer to Chapter 10.

Entering Data in Columns
When you start to enter data into your database tables, you will not always have a
value for every column. In those cases, the value of the column is said to be NULL.
However, you must enter a value for your primary key columns and any column
specified as NOT NULL . Those columns are not allowed to have null values.

Null values are used when the column value is unknown or unavailable. A null
value is not synonymous with an entry of zero or with a blank.

Designing Your Database

14 JAM 7.0 Database Guide

Designing Your Database

The following steps describe the design process for building a database:

1. Choose the main subject.

First decide the main focus of the database, for example, customer orders,
inventory, or personnel. Generally, a database name indicates its main purpose.
The sample application included with JAM is for a video rental store so it is
called videobiz .

2. Build your database model.

Design your database model identifying your database tables and their
columns. First, choose your main subsets of information which will corre-
spond to the database tables. Then, decide which pieces of information will be
stored in each table. These pieces of information become the columns in each
table.

3. Eliminate duplicate data entry.

Although a database table can contain all the information that logically relates
to a subset of your database, this is not always the case. The table should also
be designed to avoid duplicate data entry wherever possible. For example, in
the sample application, information about video tapes was divided into two
separate tables: titles and tapes . The titles table contains the informa-
tion about the video titleÐits name, director, length, etc. The tapes table
contains the information about each copy of the videoÐthe copy number, the
status code, and the number of times this copy has been rented. By having two
tables, you do not have to re-enter the general video information, like the
director and the length, for each copy of the video. You simply enter the
title_id .

If you split the information into two or more tables, choose which column will
be found in all of the tables. In our sample application, the title_id column
is found in several tables. Having the same column in different tables allows
you to join the tables together when necessary to combine the information.

You can also combine some database tables. For example, in the sample
application, instead of having separate database tables for credit card codes
and for genre codes, you can combine the codes together into one table called
codes . In this table, entries into the columns code_type , code , and dscr
describe and identify each code.

Designing Your Database

152 Introduction to DatabasesChapter

4. Define unique entries.

For each table, you also need to choose which column or columns will
comprise the primary key, uniquely identifying each row. Since the titles
table has more than one row with an entry of Henry V in the name column,
the following statement would affect both rows:

DELETE FROM titles WHERE name = 'Henry V';

For the titles table, the title_id column is used to uniquely identify each
row.

In order to uniquely identify each copy of a video tape, the tapes table uses
both the title_id and the copy_num columns to make the primary key. The
following statement would affect all the rows with an entry of 1345 in the
title_id column:

DELETE FROM tapes WHERE title_id = 1345;

In order to change data about one copy of the tape, you would need to list both
the title_id and the copy_num columns in the WHERE clause.

DELETE FROM tapes WHERE title_id = 1345 AND copy_num = 4;

5. Chart the tables and their relationships.

Since information is stored in tables and the tables do not have any inherent
relationship, it is possible to update a column in one table and not update the
column in another table even if both columns correspond to the same value. In
order to preserve the integrity of the database, it is suggested that you chart the
relationships between the tables. Then, if you update the information in one
table, the chart illustrates the necessity of updating it in other tables.

Figure 2 displays the chart that was drawn for the videobiz database. Each
of the tables are in a box. The table name and primary key columns are listed
in the top of each box. The lines between the boxes illustrate the foreign key
definitions.

Designing Your Database

16 JAM 7.0 Database Guide

rentals

users

logon_name
password
last_name
first_name

tapes

title_id
copy_num

title_dscr

title_id
line_no

roles

titles

pricecats actors

codes

title_id
actor_id

last_name
first_name
address1
address2
city
state_prov
postal_code
phone
cc_code
cc_number
cc_exp_month
cc_exp_year
member_date
member_status
num_rentals
rent_amount
notes

name
genre_code
dir_last_name
dir_first_name
film_minutes

pricecat_dscr
rental_days
price
late_fee

last_name
first_name

code_type
code

rating code
release_date
pricecat

amount_paid
rental_status
rental_comment
modified_date
modified_by

status
times_rented

dscr_text role

title_id

actor_idpricecat

dscr

cust_id
title_id
copy_num
rental_date

due_back
return_date
price
late_fee

user_id

customers

cust_id

flag

yesno
customer_flag
admin_flag
marketing_flag
frontdesk_flag

Figure 2. Diagram of the videobiz database.

17

Introduction to SQL
SQL (Structured Query Language) is the database procedure language used by
relational database management systems. It was developed by IBM in the early
1970s and then adapted by other software vendors. The American National
Standards Institute (ANSI) issued a standard for SQL in 1986 and again in 1992.
Although this standard defines a basic set of features that is common to all versions
of SQL, each vendor also includes some extensions to SQL in their database
products; these extensions are implemented differently.

The scope of SQL gives you complete control over your database operations.
There are commands for database definition:

� CREATE DATABASE Ð Creates a database.

� CREATE TABLE Ð Adds a table to the database.

� DROP TABLE Ð Deletes a table from the database.

There are also commands to access and update the data:

� SELECT Ð Retrieves information from the database.

� INSERT Ð Adds information to the database.

� UPDATE Ð Updates information in the database.

� DELETE Ð Deletes information from the database.

This chapter contains instructions for using these SQL commands in order to
retrieve information from an existing database and to update the database
information.

33

Building SQL

18 JAM 7.0 Database Guide

Building SQL

SQL Statements
In SQL, the commands are called statements. A statement consists of one or more
keywords followed by various expressions and clauses. The keywords appearing at
the beginning of the statement describe the major function of the statement.
Besides the keywords, most statements also contain at least one table name. Since
the table is the main storage container for information in a relational database, the
tables to be accessed are included in some clause of the statement.

The SELECT statement retrieves information stored in the database tables.

SELECT * FROM titles;

In this example, the FROM clause lists the database tables which contain the needed
information. The * tells the database to bring back all of the columns from all of
the tables specified in the FROM clause. Therefore, our sample statement selects all
the columns and all the rows from the database table titles .

title_id: 56
name: 'After Hours'
genre_code: 'COM'
dir_last_name: 'Scorsese'
dir_first_name: 'Martin'
film_minutes: 96
rating_code: 'R'
release_date: 1985/01/01 00:00:00
pricecat: 'G'

The collection of rows retrieved from the database is called a result set.

It is not necessary to select all the columns. In place of the * , you can list the
desired columns by name, each name separated from the next by a comma. This is
called a select list.

SELECT title_id, name FROM titles;

title_id: 56
name: 'After Hours'

title_id: 1
name: 'Airplane!'

title_id: 2
name: 'Aliens'

SELECT
Statement

Building SQL

193 Introduction to SQLChapter

Generally, the select list consists of a series of column names, but it can also
include any expression. An expression is a constant, column name, function,
subquery, or any combination of these connected by arithmetic and bitwise
operators.

The following statement uses the arithmetic operator / to calculate the running
time of the video in hours instead of minutes:

SELECT title_id, name, film_minutes / 60 FROM titles;

title_id: 56
name: 'After Hours'
 : 1.600000

title_id: 1
name: 'Airplane!'
 : 1.433333

title_id: 2
name: 'Aliens'
 : 2.250000

SQL also provides aggregate functions that compute sums, minimum values, and
other such operations over all selected rows. The following statement uses the
aggregate function COUNT in order to determine the number of rows in the titles
table.

SELECT COUNT(*) FROM titles;

: 76

If you want to select specific rows in a database table, you simply add a WHERE
clause to the SELECT statement:

SELECT title_id, name, film_minutes FROM titles
WHERE name = 'Henry V';

title_id: 51
name: 'Henry V'
film_minutes: 138

title_id: 52
name: 'Henry V'
film_minutes: 137

WHERE Clause

Building SQL

20 JAM 7.0 Database Guide

The result set now contains information for all the videos entitled Henry V .

The additional clause is known as a search condition. Additional search conditions
can be added to the WHERE clause through the use of the logical operators AND and
OR.

SELECT title_id, name, film_minutes FROM titles
WHERE name = 'Henry V'
AND dir_last_name = 'Olivier';

The result set now contains the information for the version directed by Sir
Laurence Olivier.

title_id: 52
name: 'Henry V'
film_minutes: 137

In addition to the WHERE clause, there are other clauses and keywords in SQL
which allow you to retrieve the specific data you need. These clauses retrieve:

� Rows with column values in a certain range (BETWEEN).

� Rows containing a certain pattern (LIKE).

� Rows in ascending or descending order (ASC, DESC).

� Rows meeting the search conditions listed in a subquery (IN , EXISTS).

� Summary values on specific columns (Aggregate Functions).

Chapter 6 of this manual contains a reference page for each of these SQL elements.

The UPDATE statement allows you to make modifications to the data stored in the
tables.

UPDATE titles SET pricecat = 'G' WHERE title_id = 62;

The format varies slightly from the SELECT statement. The first keyword defines
the purpose of the statement. This is followed by the table name. The SET clause
defines column names to be updated and the new values for those columns. The
WHERE clause specifies which rows need to be updated.

The syntax of the WHERE clause is very important. If the WHERE clause is not
included in the statement, every row in the table gets updated. Also, the WHERE
clause must include all the column specifications you need in order to uniquely
identify the rows to be updated. The following statement, without the copy number,
would update all the copies of this video title in the tapes table:

UPDATE
Statement

Building SQL

213 Introduction to SQLChapter

UPDATE tapes SET status = 'A'
WHERE title_id = 62;

To update a single row in the tapes table, you need the combination of the
title_id and copy_num columns, the primary keys for that table.

UPDATE tapes SET status = 'A'
WHERE title_id = 62 AND copy_num = 2;

The INSERT statement adds information to the database table. The syntax for this
statement can vary depending on whether you insert a value into every column in
the table or only into selected columns.

INSERT INTO tapes VALUES (62, 2, 'A', 0);

This statement inserts a value for every column. However, to construct this form of
the statement, you must enter the column values in the column order used by the
database table. Since this information is not always available, it is suggested that
when you construct an INSERT statement that you include a column list detailing
which columns have entries and the order of those entries. The following
statement, which includes a column list, would result in an identical entry to the
previous INSERT statement.

INSERT INTO tapes
(title_id, copy_num, status, times_rented)
VALUES (62, 2, 'A', 0);

The advantage of a column list is that you do not have to enter a column value for
each column. You can list only the columns where you plan to make an entry.

INSERT INTO tapes
(title_id, copy_num, status)
VALUES (62, 2, 'A');

Also, the columns can be in any order; however, the order of the column list and
the order of the value list must match.

INSERT INTO tapes
(status, title_id, copy_num)
VALUES ('A', 62, 2);

The DELETE statement removes information from the database table. The FROM
clause names the table to be modified. This statement utilizes the WHERE clause to
specify exactly which rows need to be deleted. In fact, if you do not include a
WHERE clause, the DELETE statement deletes every row in the table.

DELETE FROM titles WHERE title_id = 62;

Like the UPDATE statement, the WHERE clause needs to include all the column
specifications so that you only delete certain rows. To delete a single row, use the

INSERT
Statement

DELETE
Statement

Building SQL

22 JAM 7.0 Database Guide

row's primary key to identify the row. Remember that a primary key may involve
more than one column.

The following statement deletes a row from the tapes table by specifying values
in both the title_id and copy_num columns.

DELETE FROM tapes WHERE title_id = 62
AND copy_num = 2;

SQL Concepts

One advantage of a relational database is that you can join tables together in order
to get even more information. Joins allow you to connect multiple tables by
specifying the relationship between a column in one table with a column in another
table.

tapes

title_id
copy_num

titles

name
genre_code
dir_last_name
dir_first_name
film_minutes

rating code
release_date
pricecat

status
times_rented

title_id

You can join the two tables in our illustration by equating the title_id column in
the titles table with the title_id column in the tapes table. This is
accomplished in the WHERE clause, where the column name is qualified with the
table name.

SELECT * FROM titles, tapes
WHERE titles.title_id = tapes.title_id;

Using the following join, a database query can tell you which videos are available.

SELECT tapes.title_id, tapes.copy_num, titles.name
FROM titles, tapes
WHERE titles.title_id = tapes.title_id
AND tapes.status = 'A';

Joins

Building SQL

233 Introduction to SQLChapter

title_id: 3
copy_num: 1
name: 'All of Me'

title_id: 12
copy_num: 3
name: 'Bull Durham'

title_id: 43
copy_num: 1
name: 'Year of Living Dangerously, The'

For more information on different types of joins and on joining multiple tables,
refer to page 81.

When using joins, instead of using the entire table name throughout the statement,
you might choose to give the table a correlation name. The following example
repeats the previous query using a as the correlation name for the titles table
and b as the correlation name for the tapes table.

SELECT b.title_id, b.copy_num, a.name
FROM titles a, tapes b
WHERE a.title_id = b.title_id
AND b.status = 'A';

You can also use correlation names to perform a self-join, which joins a table to
itself so that you can compare values in the same column.

Correlation names must follow the naming conventions for identifiers. They can be
31 characters long, containing letters, numbers, and underscores.

Aggregate functions calculate different types of summary information on rows in a
database table including:

� Sums of numeric columns.

� Average, maximum and minimum values in columns.

� Number of rows containing a specific column value.

For more information on aggregate functions, refer to page 59.

Transactions are units of work on a database. A transaction consists of a series of
database statements to be completed as a unit. If the unit is unable to be completed,
the statements can then be rolled back in order to ensure the integrity of the
database. For example, in the videobiz database, each new entry in the titles
table also needs entries in the tapes table, and possibly in the actors and roles

Correlation
Names

Aggregate
Functions

Transactions

Executing SQL

24 JAM 7.0 Database Guide

tables. All these entries could be grouped into one transaction so that you know the
entry is complete.

Database engines implement transactions differently. Refer to Chapter 8 for more
information on implementing transactions in JDB.

Executing SQL
In JAM, you can execute SQL commands using JISQL, using JPL procedures, or
using the transaction manager to access the SQL generator. The examples in this
manual use the JISQL syntax unless otherwise indicated.

To use JISQL, you need to start the JISQL utility and connect to a database. In the
SQL scripting area, enter the text of the SQL statement followed by the termina-
tion character, a semicolon (;), to end the statement. Any date values or character
strings must be enclosed in single quotation marks. For example,

SELECT title_id, name, dir_first_name, dir_last_name
FROM titles
WHERE name = 'Henry V';

retrieves the following rows:

title_id: 51
name: 'Henry V'
dir_first_name: 'Kenneth'
dir_last_name: 'Branagh'

title_id: 52
name: 'Henry V'
dir_first_name: 'Laurence'
dir_last_name: 'Olivier'

Refer to Chapter 5 for more information on using the JISQL utility.

The same SQL command appearing in a JPL procedure named query1 would look
like this:

proc query1
dbms sql SELECT title_id, name, dir_first_name, \

dir_last_name FROM titles \
WHERE name = 'Henry V'

return

Notice that the JPL continuation character (\) is needed whenever a command is
not completed on one line. A termination character does not need to be entered
since is added automatically by JAM's database interface to JDB.

JISQL

JPL

Executing SQL

253 Introduction to SQLChapter

For more information on JPL, refer to the Language Reference. For more
information on mapping data to JAM variables, refer to Chapter 14 in the
Application Development Guide.

27

Database Elements
For a new database, you first create the database and then create all the database
tables. These database table definitions contain the column information such as the
name and data type for each column. You can also enter information about the
database table itself such as the primary and foreign keys. This information is then
stored in the system tables for your database.

This chapter contains information about naming conventions and data types that
you might need to create your database. In addition, system tables, automatically
created by the DBMS for each database, are described here. Even though you
cannot modify the system tables, you can query them for information.

Naming Conventions

Databases

Each database is stored as an operating system file. Therefore, the name for the
database must follow operating system naming conventions. If the database name
contains characters that are not alphanumeric, the name specified in the CREATE
DATABASE statement must be enclosed in single quotation marks.

You can create databases when you are connected to @system or when you are
connected to another database. For more information on the CREATE DATABASE
statement, refer to page 64.

44

Data Types

28 JAM 7.0 Database Guide

Identifiers
Identifiers, such as table names and column names, must start with a letter, but they
may contain letters, numbers, and underscores in any combination. Unlike JAM
fields, they cannot contain dollar signs or periods. The maximum length of an
identifier is 31 characters. If more than 31 characters are entered, the value is
truncated.

Each table name must be unique within the database. Each column name in a
database table must be unique within that table.

Since column names can be duplicated in different tables, there may be statements
where you need to uniquely identify a column name by including the table name.
For example, in our sample database, the last_name column appears in more than
one table. To specify the last_name column in the actors table, use the
following syntax:

actors.last_name

You cannot use any of the JDB keywords as an identifier. For a list of the
keywords, refer to Chapter 10.

JDB is case insensitive. JDB stores the identifiers in lower case regardless of which
case is used to enter them. If you enter address1 , ADDRESS1, or Address1 , JDB
stores the column as address1 .

Data Types
The following data types are available in JDB:

Table 4. Data Types

Data Type Description

INT Numeric values (stored as LONG)

LONG Numeric values

FLOAT Numeric values

DOUBLE Numeric values

DATETIME Date and time valuesÐdatetime values are stored in the
format yyyy/mm/dd hh:mm:ss

CHAR Character strings

For more information on data types, refer to page 69.

JDB Files

294 Database ElementsChapter

JDB Files

Journal Files

JDB creates journal files for recording your actions on the current database. These
journal files are created in your database directory. The current journal file is
named j1 database-name. When you start a JDB session, this journal file is copied
to a file named j0 database-name. If the file j0 database-name already exists, its
contents are replaced. Journal files can be reinstated using the utility jdbroll . For
more information on the jdbroll utility, refer to page 121.

JISQL Scripts

SQL scripts to be run under the JISQL utility can be stored as ASCII files. You can
create a script file with any text editor, or you can enter the script directly into the
JISQL scripting area and later save it to a file.

It is recommended that you use the .sql extension in naming SQL script files,
since this extension is used to display files in the file selection dialog box.
However, any name which is valid for the operating system can be used.

For more information on JISQL script files, refer to page 47.

JISQL Log Files

Under JISQL, you can log pertinent data about the execution of your SQL scripts:

� Type of script execution chosen.

� Text of each SQL statement or JISQL macro and the line number, as it is
encountered.

� Status of execution for each statement or macro, including any error messages
generated.

� Start and end times of script execution.

It is recommended that you use the .log extension in naming log files, since this
extension is used to display files in the file selection dialog box. However, any
name which is valid for the operating system can be used.

For more information on creating and viewing JISQL log files, refer to page 53.

System Tables

30 JAM 7.0 Database Guide

JISQL Output Files
When you run a SQL script under JISQL, you have the option of saving to an
ASCII file all output generated:

� Select sets from SQL SELECT statements.

� CREATE TABLE statements from $DESCRIBE macros.

� CREATE TABLE and INSERT statements from $DUMP macros.

It is recommended that you use the .out extension in naming output files, since
this extension is used to display files in the file selection dialog box. However, any
name which is valid for the operating system can be used.

For more information on directing JISQL output to a file, refer to page 52.

System Tables

When you create a new database, five system tables are automatically built in order
to contain information about the database itself:

� systabs Ð Contains information about each database table.

� syscols Ð Contains information about the columns in each database table.

� syskeys Ð Specifies the primary and foreign keys.

� syskeycols Ð Contains information about each primary and foreign key
column.

� sysrkeycols Ð Contains information about the columns listed in the
REFERENCES clause of a CREATE TABLE statement.

You can query for information stored in these tables just like any other database
table; however, you must not edit these tables.

Table 5. systabs System Table

Column Name Description

tname Table name

ttype Table type

ncols Number of columns

seek Column for internal use

System Tables

314 Database ElementsChapter

Table 6. syscols System Table

Column Name Description

tname Table name

cname Column name

ctype Column typeÐthe numeric values in this column corre-
spond to the following data types:

101 INT (stored as LONG in the current release)
102 LONG
103 FLOAT
104 DOUBLE
105 DATETIME
106 CHAR
1125 INT, NOT NULL (stored as LONG, NOT NULL)
1126 LONG, NOT NULL
1127 FLOAT, NOT NULL
1128 DOUBLE, NOT NULL
1129 DATETIME, NOT NULL
1130 CHAR, NOT NULL

length Column length

Table 7. syskeys System Table

Column Name Description

tname Table name

keyno Number assigned to the key column in this tableÐthe
primary key is always 1

resolved Column for internal use

hasreflist Indicator specifying whether a reference list was included
in the REFERENCES clause of the CREATE TABLE state-
ment

rtname Name of the database table specified in the REFERENCES
clause of the CREATE TABLE statement

keytype Indicator specifying a primary key (P), a foreign key (F),
or a unique entry (U)

Configuration

32 JAM 7.0 Database Guide

Table 8. syskeycols System Table

Column Name Description

tname Table name

keyno Number assigned to the key column in syskeys

position Order of the column in a composite key, if applicable

cname Column name

Table 9. sysrkeycols System Table

Column Name Description

tname Table name

keyno Number assigned to the key column in syskeys

position Order of the column in a composite key, if applicable

cname Column name

Configuration

Environment Variables

The environment variables SMEDITOR or EDITOR determine which text editor is
available in JISQL or in isql . When using JISQL, the specified editor can be used
to make changes to the SQL text window. When using isql , entering the edit
command displays the last statement in the specified text editor.

Message File

The error messages for JDB are stored in the JAM message file. If the program has
trouble locating the error messages, check the setting of the variable SMVARS.

33

Using JISQL
JISQL is a graphical tool for creating JDB databases and for writing and executing
interactive SQL scripts.

With JISQL, you can:

� Create a JDB database.

� Create database tables for a new or existing JDB database.

� Display table definitions for the current database.

� Write and execute interactive SQL scripts for use with your JDB databases.

Starting JISQL

To start JISQL, do either of the following:

� At the operating system command line, type:

$SMBASE/util/jisql (on UNIX systems)

$SMBASE\util\jisql (in Windows)

� Double-click on the JISQL icon.

55

Starting JISQL

34 JAM 7.0 Database Guide

The JDB ISQL window opens.

Scripting area

Script starting marker

Output area

This window provides an area for you to enter a SQL script. Menu choices
available at this point allow you to:

� Execute SQL commands, either from the scripting area or from a file.

� Select options for executing the SQL script.

� Connect to an existing JDB database.

� Create a new JDB database.

� Drop an existing JDB database.

Connecting to a Database
Before you can create or view database tables or perform any other database
operations, you must first connect to the database. (If your SQL script includes a
command to connect to the database, you need not connect as described here
before executing the script.)

To connect to an existing database:connecting to an
existing database

Starting JISQL

355 Using JISQLChapter

1. From the JDB ISQL window, choose Database%Connect. A file selection
dialog box opens.

2. Specify the name of the database you want to open, and choose OK. The file
selection dialog box closes and you are returned to the JDB ISQL window.

When you create a new database, you must connect to it before defining any of its
tables. In the Create Database window, you can specify that you want to automati-
cally connect to the new database at the time it is created. Refer to page 36 for
instructions on creating and connecting to a new database.

Once you are connected to a database, additional menu choices become available
to you:

� Create a database table.

� Drop a database table.

� Display a table's definition.

Disconnecting from a Database

To disconnect from the current database, choose Database%Disconnect.

Since you can be connected to only one database at a time, if you connect to a
database while a previous connection is still current, JISQL automatically
disconnects from the first database before connecting to the next one.

JDB performs an automatic COMMIT when you close a database connection. You
must issue a $ROLLBACK macro command if you do not want to save your database
changes.

Exiting JISQL

To exit JISQL, choose File%Exit.

JDB performs an automatic COMMIT when you leave a JISQL session. You must
issue a $ROLLBACK macro command if you do not want to save your database
changes.

Executing Operating System Commands from JISQL

To execute an operating system command from JISQL:

connecting to a new
database

now you can...

Creating a New Database

36 JAM 7.0 Database Guide

1. Choose Options%System Command. A dialog box opens with a field for you
to enter the command.

2. Enter the system command you want to execute, and choose OK. The
command you have specified is executed.

3. When the command has finished executing, a prompt appears instructing you
to press any key to continue. Do so. You are returned to the JDB ISQL
window.

Creating a New Database

1. From the JDB ISQL window, choose Database%Create Database. The Create
Database window opens.

2. (Optional) Choose the Browse push button to view the names of existing files.
A file browse dialog box opens. When you have finished with this dialog box,
choose OK to return to the Create Database window.

3. Enter the name of the database you want to create.

4. (Optional) Select the Connect after creation check box if you want to
automatically connect to this database after it is created in order to create
tables and enter data.

5. Choose OK. An appropriate message is displayed on the status line.

If you selected the Connect after creation check box, the message confirms
that you are connected to the database. If you did not select this check box, the
message indicates only that the database was successfully created.

Creating Database Tables

Use the JISQL graphical interface to add tables to a newly created database or to
an existing database.

connecting to the new
database automatically

Creating Database Tables

375 Using JISQLChapter

To create a database table:

1. Connect to the applicable database.

2. Choose Database%Create Table. The Create Table window opens.

3. Enter the table name in the Table field.

4. Define each column, one at a time, in the Column Definition Entry area. Refer
to page 38 for a more detailed explanation of column definition.

5. Specify the keys for this table. Refer to page 39 for information on specifying
primary, unique, and foreign keys.

6. (Optional) Choose the Preview SQL push button to display the SQL command
that JISQL will generate to create the table, as it is currently defined.

When you have finished reviewing the SQL command, choose Done to
resume in the Create Table window.

7. Choose OK to create the table you have just defined. A message is displayed
confirming that the table has been created.

To populate the table, create and run a SQL script containing the applicable
INSERT statements. For information on entering and running SQL scripts under
JISQL, refer to page 47.

Defining Columns in a Database Table

38 JAM 7.0 Database Guide

Defining Columns in a Database Table

The Column Definition Entry area of the Create Table window allows you to add,
modify, or delete columns in the database table you are creating. In addition, the
Create Table window provides push buttons that enable you to re-arrange the
columns in the table.

Defining a New Column

To add a new column to the table you are creating:

1. In the Column Definition Entry area, specify the column name and data type.
For some data types, you must also specify the length.

2. If null values are not to be permitted in this column, select the NOT NULL
check box. NULL values are not permitted in primary key columns.

3. Choose the Add push button. Once the column is added, its position in the
table is shown in the middle portion of the Column No. field. It is also added
to the column summary for the table, displayed in the lower portion of the
Create Table window.

4. Repeat the preceding steps for each column you want to define for this table.

Modifying and Deleting Columns

You can modify or delete a column at any point prior to completing the table
definition. To change or delete a column's definition:

1. Specify the applicable column by doing either of the following:

w Select its entry in the summary area of the Create Table window.

w Choose the Column No. up/down indicators in the Column Definition
Entry area; continue choosing the appropriate indicator until the desired
column definition is displayed. The column number of the current column
is shown in the middle of the Column No. field. Click on < to display the
previous column, or > to display the next column. Click on |< to display
the first column in the table, or >| to display the last.

The definition for the specified column is shown in the Column Definition
Entry area.

2. Change any of the column definition parameters as desired. Note, however,
that you cannot remove NOT NULL from a primary key column.

Defining Keys for a Database Table

395 Using JISQLChapter

3. Choose Modify to change the column definition. Choose Delete to remove the
column from the table.

Re-arranging Columns

To change the order of columns in the table, select a column in the summary area
of the Create Table window. Choose the Move Up or Move Down push button to
move it one place up or down. Continue until the column is in the desired location.

Defining Keys for a Database Table

Push buttons in the Create Table window allow you to define primary, unique, and
foreign keys into the table. Refer to page 11 for an explanation of primary keys.
Refer to page 12 for an explanation of foreign keys.

1. Define all columns that will be keys into the table. If you are defining foreign
keys, the referenced table must have been created previously.

2. Choose the applicable push button: Primary Key, Unique Key, or Foreign Key.
The corresponding key definition window opens.

3. Create, modify, or delete the applicable key definition(s). Refer to page 39 for
instructions on using the Primary and Unique Key Definition windows. Refer
to page 41 for instructions on using the Foreign Key Definition window.

4. When you have finished with the key definitions in this window, choose OK.
You are returned to the Create Table window.

If any column required for a key was not defined as NOT NULL when it was
created, JISQL makes the necessary change to the column definition and
displays an appropriate message. Acknowledge the message by choosing OK.

5. Continue creating, modifying, and deleting keys for the table as needed. You
can create a new key or modify or delete an existing key at any point prior to
completing the table definition.

Primary Key and Unique Keys

The Primary Key and Unique Key Definition windows are similar in appearance
and function. Each consists of:

� A text area showing the SQL definition that will be generated for each key
defined on the screen. When you want to modify or delete an existing key, you

Defining Keys for a Database Table

40 JAM 7.0 Database Guide

select it from this area. As you create or modify a key definition, its SQL text
area is updated to reflect any changes.

� Push buttons (Add New and Delete) to specify that you want to add a new key
or delete an existing one.

� A Select Columns area listing the table columns not used in the selected key.

� A Key Columns area listing, in order, the table columns belonging to the
selected key.

� Push buttons (Add±±> and <±±Remove) to add a selected column in the Select
Columns area to the key and to remove a selected column in the Key Columns
area from the key.

� Push buttons (Move Up and Move Down) to re-arrange the order of columns
in the selected key.

From the Create Table window, choose the Primary Key button to open the
Primary Key Definition window, or choose Unique Key to open the Unique Key
Definition window.

When you are finished working in the Primary Key or Unique Key Definition
window, choose OK to save your changes and return to the Create Table window;
or choose Cancel to simply return without saving your changes.

Once the applicable key definition window is open, you can add, modify, or delete
keys as follows:

To add a new primary key or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), choose
Add New. All the table columns are listed in the Select Columns area.

Adding a
Primary Key or
Unique Key

Defining Keys for a Database Table

415 Using JISQLChapter

If a primary key is currently defined for the table, the Add New push button is
not available, since only one primary key statement is permitted. Either delete
the existing key or modify it.

2. For each column you want in the key, select the column from the Select
Columns area and choose Add±±>. The column name is removed from the
Select Columns area and appears in the Key Columns area.

3. To change the order of a column in the key, select it in the Key Columns area
and choose the Move Up or Move Down push button to move it to the desired
location.

To modify an existing primary key or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), select
the SQL definition corresponding to the key you want to modify. The Select
Columns and Key Columns areas reflect the current definition of the key.

2. For each column you want to add to the key, select it from the Select Columns
area and choose Add±±>. The column name is removed from the Select
Columns area and appears in the Key Columns area.

3. For each column you want to remove from the key, select it from the Key
Columns area and choose <±±Remove. The column name is removed from the
Key Columns area and appears in the Select Columns area.

4. To change the order of a column in the key, select it in the Key Columns area
and choose the Move Up or Move Down push button to move it to the desired
location.

To delete an existing primary or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), select
the SQL definition corresponding to the key you want to delete. The Select
Columns and Key Columns areas reflect the current definition of the key.

2. Choose Delete. The SQL definition for this key is deleted from the text area,
and the Select Columns and Key Columns areas are emptied.

Foreign Keys
The Foreign Key Definition window consists of:

� A text area showing the SQL definition that will be generated for each key
defined on the screen. When you want to modify or delete an existing key, you
select it from this area. As you create or modify a key definition, the SQL text
area is updated to reflect any changes.

Modifying a
Primary Key or
Unique Key

Deleting a
Primary Key or
Unique Key

Defining Keys for a Database Table

42 JAM 7.0 Database Guide

� Push buttons (Add New and Delete) to specify that you want to add a new key
or delete an existing one.

� A Select Columns area listing the table columns not used in the selected key.

� A Select Table/Cols area with:

w An option menu for you to choose the referenced table.

w A listing of the columns in the chosen table not used in the selected key.

� Push buttons (Add and Quick Match) to add a selected column in the Select
Columns area and its foreign table column reference to the key. The Quick
Match button allows you to reference all columns in the current table to
identically-named primary key columns in the chosen table without having to
explicitly choose any columns from the lists.

� A Foreign Key area listing the table columns used in the selected key. Each
column name in this area is lined up beside the corresponding column in the
Referenced Key area.

� A Referenced Key area listing each column in the chosen table that is
referenced in the selected key. Each column name in this area is lined up
beside the corresponding column in the Foreign Key area.

� Push buttons (Move Up and Move Down) to re-arrange the order of columns
in the selected key.

� Push button (Remove) to remove a selected Foreign Key/Referenced Key
column pair from the selected key.

From the Create Table window, choose the Foreign Key button to open the Foreign
Key Definition window.

Defining Keys for a Database Table

435 Using JISQLChapter

When you are finished working in the Foreign Key Definition window, choose OK
to save your changes and return to the Create Table window; or choose Cancel to
simply return without saving your changes.

When the Foreign Key Definition window is open, you can add, modify, or delete
foreign keys as follows:

To add a new foreign key:

1. On the Foreign Key Definition window, choose Add New. All the table
columns are listed in the Select Columns area.

2. Select the option menu in the Select Table/Cols area and choose the table to be
referenced.

Adding a New
Foreign Key

Defining Keys for a Database Table

44 JAM 7.0 Database Guide

3. Once you have chosen the table, a list of columns in that table is displayed.
Reference the columns for the key in one of the following ways:

w For each column in the foreign key, select the current table column from
the Select Columns area and select the foreign column to be referenced
from the Select Table/Cols area. Choose Add.

w Choose Quick Match to reference the selected columns in the current
table with identically-named primary key columns in the chosen table.

The column names are removed from the Select Columns area and the Select
Table/Cols area; they appear in the Foreign Key and Referenced Key areas,
respectively.

4. To change the order of a Foreign Key/Referenced Key column pair in the key,
select either column in the pair and choose the Move Up or Move Down push
button to move the pair to the desired location.

To modify an existing foreign key:

1. On the Foreign Key Definition window, select the SQL definition correspond-
ing to the key you want to modify. The Select Columns, Select Table/Cols,
Foreign Key, and Referenced Key areas reflect the current definition of the
key.

Modifying a
Foreign Key

Maintaining an Existing Database

455 Using JISQLChapter

2. For each column you want to add to the foreign key, select the current table
column from the Select Columns area and select the foreign column to be
referenced from the Select Table/Cols area. Choose Add.

OR

Choose Quick Match to reference columns in the current table to identically-
named primary key columns in the chosen table.

3. For each column pair you want to remove from the key, select either column
in the pair and choose Remove. The column names are removed from the
Foreign Key and Referenced Key areas and appear in the Select Columns and
the Select Table/Cols areas, respectively.

4. To change the order of a column in the key, select it in the Key Columns area
and choose the Move Up or Move Down push button to move it one place up
or down. Continue until the column is in the desired location.

To delete an existing foreign key:

1. On the Foreign Key Definition window, select the SQL definition correspond-
ing to the key you want to delete. The Select Columns, Select Table/Cols,
Foreign Key, and Referenced Key areas reflect the current definition of the
key.

2. Choose Delete. The SQL definition for this key is deleted from the text area,
and the Select Columns, Select Table/Cols, Foreign Key, and Referenced Key
areas are emptied.

Maintaining an Existing Database

JISQL enables you to perform the following database maintenance functions
without having to write SQL code:

� Display the definition of any or all tables in the current database.

� Drop a database.

� Drop specified tables from a database.

Note: To perform database maintenance operations involving the data itself, such
as populating tables, viewing data, etc., you must explicitly write and execute the
required SQL statements. Refer to page 47 for information on running SQL
interactively under JISQL.

Deleting a
Foreign Key

Maintaining an Existing Database

46 JAM 7.0 Database Guide

Displaying Database and T able Definitions

1. Connect to the database whose definitions you want to display.

2. Choose Database%Describe. The Describe Table window opens, displaying a
scrollable list of all the tables in the database.

3. Select the table whose definition you want to display. The column definitions
and key information for this table are displayed.

4. Select the next table you want to display, and so forth, displaying table
definitions one at a time.

5. Choose Done when you are finished viewing table definitions for this
database. You are returned to the JDB ISQL window.

Dropping Tables

1. Connect to the database from which you want to drop a table.

2. Choose Database%Drop Table. The Drop Table window opens.

3. Select the applicable table from the drop-down list for the Table Name field.

Running SQL Interactively

475 Using JISQLChapter

4. Choose OK. A message is displayed confirming that the table has been
dropped.

Dropping a Database

1. Make sure that you are not connected to the database you want to drop.

2. Choose Database%Drop Database. The Drop Database window opens.

3. Enter the database name, or choose the Browse push button to specify the
database from a file selection dialog box.

4. With the database to be dropped specified in the Database Name field, choose
OK. A message is displayed confirming that the database has been dropped.

Running SQL Interactively

Using the JISQL tool, you can run SQL commands either by entering them into the
onscreen scripting area or by specifying an ASCII file that contains the desired
SQL script. In addition, when you create a SQL script in JISQL, you can save it to
a file for future use.

Under JISQL, you can execute any SQL statement that is available in JDB. Refer
to Chapter 6 of this manual for a detailed description of the SQL commands that
can be used with a JDB database.

Your SQL script can also contain JISQL macro commands. These macros simplify
transaction processing and database maintenance. Refer to page 49 for a complete
description of the JISQL macros.

JISQL runtime options enable you to control the execution and output of your SQL
script. Refer to page 50 for a description of the available options and commands.

Entering and Editing SQL Scripts

The JDB ISQL window contains an area for entering and editing your SQL script.

Running SQL Interactively

48 JAM 7.0 Database Guide

To enter a SQL script, you can either type directly into the scripting area, or you
can read your script in from an ASCII text file. To read a text file into the scripting
area, choose File%Open Script; a file selection dialog box opens for you to specify
the file you want to read in. By default, only filenames ending with the *.sql
extension are listed in the dialog box.

You can use either JISQL's editing capability or your default editor to edit the
contents of the scripting area.

To edit directly in the scripting area, use the editing keys on your keyboard, or
choose the desired editing function from JISQL's Keys menu.

To use the default editor, choose File%Editor (or press PF2). The editor specified
in the JAM environment variable SMEDITOR is invoked. (Refer to the JAM
Configuration Guide for information on specifying the SMEDITOR variable.)

To save the SQL script that appears in the scripting area, choose either File%Save
Script or File%Save as:

� Save Script Ð Saves the script back to the file from which it was read,
replacing the original contents of that file with the current script.

� Save as Ð Brings up a file selection dialog box so that you can specify a new
filename for the script.

It is recommended that you use the *.sql extension in naming SQL script files,
since only files with this extension appear in the file selection dialog box when you
choose File%Open Script.

Entering a SQL
Script

Editing a SQL
Script

Saving a SQL
Script

Running SQL Interactively

495 Using JISQLChapter

To clear the scripting area in preparation for entering and running a new script,
choose File%New. The data output area is also cleared.

Script Format and Syntax

SQL scripts to be executed under JISQL can consist of:

� Any SQL statement available for JDB. Refer to Chapter 6 for a description of
each statement and its syntax.

� Any JISQL macro command. Refer to page 49 for information on these
macros.

� Comment lines. Any line beginning with a pound sign (#) is treated as a
comment.

� Blank lines.

Only one statement is permitted per line. Each SQL statement and JISQL macro
command must be terminated with a semicolon (;). A line without a trailing
semicolon is concatenated with the next line until the semicolon is reached.
Therefore, one statement can span multiple lines.

JISQL Macro Commands

The macros provided in JISQL are listed in Table 10. Each macro begins with a
dollar sign ($) and can be typed in either all uppercase or all lowercase, but not in
mixed case. Each macro command must be terminated with a semicolon (;).

Clearing the
Scripting Area

Running SQL Interactively

50 JAM 7.0 Database Guide

Table 10. JISQL Macro Commands

Command Syntax Description

$COMMIT Same as DBMS COMMIT. Commits a transaction.
Data changes pending in the transaction are
applied to the database. (JDB performs an auto-
matic COMMIT when you leave a JISQL session or
close a database connection.)

$DESCRIBE table-name Displays a CREATE TABLE statement equivalent
to the definition of the specified table. Example:
$DESCRIBE titles;

Output of this macro can be re-directed to a file
by choosing Options%Output to File.

$DUMP table-name Displays a CREATE TABLE statement and an
INSERT statement for each row in the table.
Example:
$DUMP tapes;

Output of this macro can be re-directed to a file
by choosing Options%Output to File.

$LOGON database-name Connects to the specified database. Example:
$LOGON videobiz;
Since JISQL allows only one database connection
at a time, this macro closes the previous connec-
tion, if there is one, before initiating a new con-
nection.

$ROLLBACK Same as DBMS ROLLBACK. Backs out a transac-
tion. The database is restored to its state prior to
the start of the pending transaction.

Executing SQL Scripts

1. Enter your SQL script into the scripting area. Refer to page 47 for instructions
on entering and editing SQL scripts.

2. Connect to the database. (Refer to page 34 for instructions on connecting to a
database.) Omit this step if your script contains the $LOGON macro to perform
the connection.

3. Choose the desired execution and output options from the Options menu. All
the following options are toggles; select as many as are applicable:

output and execution
options

Running SQL Interactively

515 Using JISQLChapter

w Continue After Error Ð If an error occurs during batch mode execution,
JISQL continues execution after you acknowledge the error message. If
this option is not selected, execution stops at the statement that caused the
error.

w Output to File Ð All output from execution of the SQL script is saved to
a file. Select sets from SQL SELECT statements are directed only to the
file and are not displayed on the screen. Output from $DESCRIBE and
$DUMP macros is displayed on the screen as well as being saved in the file.
If this option is not selected, the select sets are displayed in the lower
portion of the JDB ISQL window. Refer to page 52 for more information
on capturing and displaying query results.

w Record in Log Ð Information about execution of the SQL script is saved
in a log file. Refer to page 53 for information on creating and viewing the
log file.

4. Position the starting marker on the line of your script where you want
execution to begin. The starting marker appears to the right of the scroll bar
for the scripting area.

To move the starting marker, click in the space to the right of the scroll bar,
lining up the mouse cursor with the SQL statement you want to execute next.
Initially, the starting marker is beside the first line of the script.

5. Execute the ISQL script by choosing one of the following execution
commands. These commands are available both as push buttons on the screen
and as choices on the Run menu:

w Run to End Ð Start batch mode execution from the starting marker.
Execution continues to the end of the script unless an error is encountered.
The setting of the Continue After Error toggle determines whether
execution is terminated at the point of the error or if it continues after the
error message has been acknowledged.

w Run to Query Ð Start batch mode execution from the starting marker.
Execution stops after the first SQL SELECT statement or JISQL
$DESCRIBE or $DUMP macro is encountered or at the end of the script. If
an error is encountered, the setting of the Continue After Error toggle
determines whether or not execution is terminated.

w Single Step Ð Execute the current line of the script. (If the current line is
blank or a comment, the next SQL statement or JISQL macro command
encountered is executed.)

As execution proceeds, the script scrolls so that the current line is always in view.
A bounce bar highlights the current line.

execution commands

Running SQL Interactively

52 JAM 7.0 Database Guide

JDB does not enforce referential integrity, so an error is not returned if you insert
duplicate primary keys. To prevent duplicate insertions of the same statement, you
may need to move the starting marker before query execution, clearing the screen,
or editing the current statement.

Once you initiate execution of the SQL script, JISQL remains in execution mode
until the end of the script is encountered or until you terminate execution by
choosing Reset. (For information on terminating SQL execution and resetting the
status of the JISQL utility, refer to page 55.)

When a SQL SELECT statement or a JISQL $DESCRIBE or $DUMP macro is
executed, the data retrieved are either saved to an ASCII text file or displayed on
the screen.

To save the output in a file:

1. If the Output to File toggle is not currently selected, choose Options%Output
to File. A file selection dialog box opens.

2. Specify the name of the file for the output, and choose OK. The file selection
dialog box closes.

It is recommended that you use the *.out extension in naming output files,
since only files with this extension appear in the file selection dialog box.

3. Execute the script. All output generated will be saved to the file you have
specified.

Note: When output is saved to a file, select sets generated by SQL QUERY
statements are only directed to the file and are not displayed on the screen. Output
from $DESCRIBE and $DUMP macros, however, is both saved in the file and
displayed on the screen.

If you want select sets displayed on the screen:

1. Make sure that the Output to File toggle is not selected.

2. Execute the script.

When a SQL SELECT statement is executed, the data retrieved are displayed in
the lower section of the JDB ISQL window. This area can be scrolled both
vertically and horizontally to view the select set.

Capturing and
Displaying
Query Results

Running SQL Interactively

535 Using JISQLChapter

Output from JISQL $DESCRIBE or $DUMP macros is also displayed on the
screen.

The following information about execution of your script can be saved to a log file:

� Type of script execution chosen.

� Text of each SQL statement or JISQL macro and the line number, as it is
encountered.

� Status of execution for each statement or macro, including any error messages
generated.

� Start and end times of script execution.

To begin a log session, choose Options%Record in Log. A file selection dialog box
opens for you to specify the name of the log file.

It is recommended that you use the *.log extension in naming log files, since only
files with this extension appear in the file selection dialog box.

If you specify the name of an existing file, data from the current log session will
overwrite the previous contents of the file. Within a log session, however, data is
appended to the file, even if you execute more than one script.

Creating and
Viewing the Log
File

beginning a log session

Running SQL Interactively

54 JAM 7.0 Database Guide

To view the information stored in the log file for the current session, choose
Run%View Log File.

To end a log session, deselect the Record in Log option.

The text of log file SESSION.LOG follows:

ISQL FOR JAM 7, Copyright 1995 JYACC Inc.
Record Log <SESSION.LOG>: Friday May 19 1995
<#14>:

***** Run To End execution from line 14 of 18 at 05:54:34 *****
<#14>: select * from ads;
 [ERROR] Table not found
********** Execution stop in line 14 of 18 at 05:54:36 **********

***** Run To End execution from line 1 of 18 at 05:54:43 *****
<#4>: $logon marketng;
 [SUCCESS]
<#6>: create table ads(ad_num int NOT NULL, magazine char(20) NOT
 NULL, date datetime NOT NULL, product char(20), cost float,
 PRIMARY KEY (ad_num));
 [SUCCESS] 0 row(s).
<#9>: insert into ads values (467, 'PC Week', '1995/04/23
9:00:00', 'HR System', 215.00);
 [SUCCESS] 1 row(s).
<#10>: insert into ads values (468, 'DBMS Magazine', '1995/04/28
9:00:00', 'Accounting', 550.30);
 [SUCCESS] 1 row(s).
<#11>: insert into ads values (469, 'Datamation', '1995/07/12
9:00:00', 'HR System', 312.99);
 [SUCCESS] 1 row(s).
<#12>: select * from ads;
 [SUCCESS] 3 row(s).
<#14>: $logon videobiz;
 [SUCCESS]
<#16>: select * from titles where name like 'A%';
 [SUCCESS] 13 row(s).
********* Execution stop in line 19 of 18 at 05:55:03 *********

***** New Script File *****

***** Run To Query execution from line 1 of 6 at 05:57:22 *****
<#1>: $logon pubs;
 [SUCCESS]
<#3>: $describe titles;
 [SUCCESS]
********** Execution stop in line 4 of 6 at 05:57:29 **********

***** Single Step execution from line 4 of 6 at 05:57:34 *****
<#4>: select * from titles;
 [SUCCESS] 18 row(s).
********** Execution stop in line 5 of 6 at 05:57:40 **********

ending a log session

sample log file

Running SQL Interactively

555 Using JISQLChapter

Terminate execution of your SQL script at any time by choosing either the Reset
push button or Run%Reset.

The Reset command stops execution of the SQL script, clears the output buffer,
and resets the status of the JISQL utility so that you can edit the text of your script
or restart execution.

Stopping SQL
Execution

57

SQL Reference Guide
This chapter contains an explanation of the SQL commands and concepts in
alphabetical order. Execute the SQL commands described in this chapter using JPL
procedures or using JISQL. For an example, refer to page 24.

Using the SQL Reference Guide

SQL Reference Summary

Information in the reference section is listed alphabetically for the following
topics:

CREATE DATABASE

CREATE TABLE

DELETE

DROP DATABASE

DROP TABLE

INSERT

66

SQL Statements

58 JAM 7.0 Database Guide

UPDATE

SELECT

BETWEEN

GROUP BY

HAVING

LIKE

ORDER BY

WHERE

Aggregate Functions

Data Types

Joins

Null Values

Operators

Subqueries

Notation Conventions

This chapter includes a section for each command or topic. Each section can
include the following subsections:

� Syntax

� Arguments

� Description

� Examples

� Variants

� See Also

The examples included in this section use the JISQL syntax and are based on the
videobiz database. For a complete description of this database, refer to Appendix
A.

SQL Clauses
and Keywords

SQL Concepts

Aggregate Functions

596 SQL Reference GuideChapter

Aggregate Functions
Obtain information about rows or groups of rows

function-name ([DISTINCT] expression)

One of the following aggregate functions: AVG, COUNT, MAX, MIN or SUM.

Eliminates duplicate values before the function is applied. This keyword can be
used with AVG, COUNT or SUM. It is not allowed with COUNT(*) , MAX or MIN.

A constant, column name, subquery, or any combination of these connected by
arithmetic or bitwise operators (AND and OR).

Aggregate functions calculate different types of summary information on rows in a
database table. All of the aggregate functions ignore null values, with the exception
of COUNT(*) .

The aggregate functions supported in JDB include:

Aggregate
Function

Description

COUNT Counts the total number of rows retrieved with the SELECT state-
ment. COUNT(*) calculates the number of rows retrieved.
COUNT(column-name) calculates the number of rows containing a
value in the specified column; therefore, it ignores null values.

AVG Calculates and returns the average value of the specified numeric
column or expression.

MAX Returns the largest value of the specified column or expression.

MIN Returns the lowest value of the specified column or expression.

SUM Returns the sum of the values entered in the specified numeric col-
umn or expression.

Aggregate functions generally appear in a select list, in a HAVING clause, or in
conjunction with a GROUP BY clause. When appearing in the same statement as a

function±name

DISTINCT

expression

Description

Aggregate Functions

60 JAM 7.0 Database Guide

GROUP BY clause, aggregate functions are used to obtain summary information on
each group of data. Aggregate functions are not valid in the WHERE clause of
SELECT statements.

The following statement finds the number of video titles entered in the database by
querying for a count of the rows in the titles table:

SELECT COUNT(*) FROM titles;

: 76

The following statement uses the DISTINCT keyword to calculate the number of
video titles that have a copy of the tape available for rental.

SELECT COUNT(distinct title_id) FROM tapes
WHERE status = 'A';

: 71

The following statement calculates the average number of rentals per customer and
the average rental amount:

SELECT AVG(num_rentals), AVG(rent_amount) FROM customers;

: 95
: 312.295442

The following statement queries for the least number of times a copy of a video has
been rented:

SELECT MIN(times_rented) FROM tapes;

: 20

Example

Aggregate Functions

616 SQL Reference GuideChapter

The following statement calculates the money collected from video rentals for a
particular day:

SELECT SUM(amount_paid) FROM rentals
WHERE rental_date LIKE '1993/10/22%';

: 71.50

The following statement calculates the number of times a particular title has been
rented:

SELECT SUM(times_rented) FROM tapes
WHERE title_id = 12;

: 211

GROUP BY Clause, HAVING ClauseSee Also

BETWEEN Predicate

62 JAM 7.0 Database Guide

BETWEEN Predicate
Specify a range of data values

[NOT] BETWEEN x AND y

The BETWEEN predicate, located in the WHERE clause, specifies a range of database
values to be used in determining a result set. The range specified is inclusive of x
and y.

If the NOT keyword is specified, only rows outside the specified range are included
in the result set.

The following statement lists videos whose length is between an hour and two
hours:

SELECT title_id, name, film_minutes FROM titles
WHERE film_minutes BETWEEN 60 AND 120;

title_id: 56
name: 'After Hours'
film_minutes: 96

title_id: 1
name: 'Airplane!'
film_minutes: 86

The following statement deletes all the film rentals that occurred in 1989:

DELETE FROM rentals WHERE rental_date
BETWEEN '1989/01/01 00:00:00' AND '1989/12/31 23:59:59';

The following statement finds which current customers live in a series of postal
codes:

SELECT cust_id, first_name, last_name FROM customers
WHERE postal_code BETWEEN 10200 AND 10299
AND member_status <> 'I';

Description

Example

BETWEEN Predicate

636 SQL Reference GuideChapter

cust_id: 1
first_name: 'Kelly'
last_name: 'Robinson'

cust_id: 2
first_name: 'Alexander'
last_name: 'Scott'

The following statement performs the same query, finding the current customers in
the designated series of postal codes, without the BETWEEN predicate:

SELECT cust_id, first_name, last_name FROM customers
WHERE postal_code >= 10000 AND postal_code <= 10199
AND member_status <> 'I';

WHERE Clause

Variants

See Also

CREATE DATABASE Statement

64 JAM 7.0 Database Guide

CREATE DATABASE Statement
Create a new database

CREATE DATABASE database-name

A unique identifier for the database. Since the database appears as a file on the
operating system, its identifier must follow the naming conventions for the
operating system. If the database name contains characters that are not
alphanumeric or if you are including a pathname, the name must be enclosed in
single quotation marks.

This statement creates a new database. A database must be created before you can
declare a connection to it. You can create a database when you are connected to
JDB using the identifier @system, when you are connected to another JDB data-
base, or when you are using JISQL.

You can create your first database in JDB either by using JISQL or by writing a
JPL procedure.

To create the database in JISQL, first you need to start the program. For UNIX
systems, it is usually located in $SMBASE/util . To start it, type:

jisql

Or, click on the JISQL icon.

The JDB ISQL window opens.

To create the database, choose Database%Create Database. The Create Database
window opens.

Enter the name of the database you want to create, select the Connect after creation
check box, and choose OK. This creates the database and automatically connects to
it so that you can then create database tables.

The equivalent JPL procedure is as follows:

dbms declare syscon connection for database @system
dbms sql create database database-name
dbms close connection syscon
dbms declare c1 connection for database database-name
dbms sql create table table-name ...

database±name

Description

Creating the First
Database

JISQL

JPL

CREATE DATABASE Statement

656 SQL Reference GuideChapter

CREATE DATABASE videobiz;

If the database name contains non±alphanumeric characters or if you are including
a pathname, enclose the name in single quotation marks:

CREATE DATABASE 'video.db';

CREATE DATABASE '/usr/home/videobiz';

Example

CREATE TABLE Statement

66 JAM 7.0 Database Guide

CREATE TABLE Statement
Creates a new database table

CREATE TABLE table-name (
column-name data-type [(length)] [NOT NULL] [, column-name ...]
[PRIMARY KEY (column-name [, column-name ...]),]
[UNIQUE (column-name [, column-name ...]),]
[FOREIGN KEY (column-name [, column-name ...])

REFERENCES table-name (column-name [, column-name ...]) [,]]
)

Identifier for the table to be created. This identifier must be unique to the database.
Identifiers in JDB must start with a letter but may contain letters, numbers, and
underscores.

Identifier for the column. Each column identifier must be unique within the table.

Data type for the column. For char data types, a length must also be specified. For
more information on data types, refer to page 69.

Specifies that a value must be entered for the column. The value for the column
cannot be null.

Specifies the primary key column(s) for this table. Any column specified as a
primary key must be specified as NOT NULL .

Specifies that a column or group of columns must contain a unique entry. Any
column specified as unique must be specified as NOT NULL . Column(s) specified
in a PRIMARY KEY clause do not need to be declared as UNIQUE.

Specifies the foreign key columns for this table. Any such column must refer to a
primary or unique key in the referenced table. Matching between the foreign and
primary keys is performed in the order the columns are listed, not by their names.

Specifies the database table and the column name in that table for the foreign key
column. If more than one column is listed, the order of the columns listed in the
FOREIGN KEY clause must match the order of the columns in the REFERENCES
clause.

table±name

column-name

data±type

NOT NULL

PRIMARY KEY

UNIQUE

FOREIGN KEY

REFERENCES

CREATE TABLE Statement

676 SQL Reference GuideChapter

This statement creates a new table in the current database with the specified col-
umns. For each column, you must specify the following:

� column name

� data type

� length, if the data type is char

JDB is a case-insensitive database system. No matter which case you use to enter
your table and column names, JDB stores the names in lower case.

You need to specify the primary and foreign keys when you create the table. The
primary key is the column containing a different value in every row, which ensures
that all rows are unique. In cases where one column does not perform this function,
you must specify two or more columns whose values together form a unique entry.
This is called a composite key. Null values are not allowed in the primary key
columns; therefore, the column definitions for those columns should contain the
keyword NOT NULL .

Foreign keys are columns in the database table that are primary or unique keys in
another database table. Data entered into a foreign key column should exist as a
value in the other database table. The data type for the foreign key column and its
corresponding primary or unique key must be the same.

Although JDB does not enforce referential integrity based on your primary and
foreign keys, it is recommended that you enter primary and foreign key informa-
tion for your database tables.

In JDB, there is a maximum row length of 1K. In other words, the sum of the
table's column sizes cannot exceed 1K. The base length of the various columns is:

Data Type Base Length

CHAR Specifed length

INT 4 bytes (stored as LONG in the current release)

LONG 4 bytes

FLOAT 12 bytes

DOUBLE 12 bytes

DATETIME 9 bytes

The length of a column is defined as its base length plus an additional 2 bytes for
flags.

Description

Specify Primary and
Foreign Keys

Maximum Row Length

CREATE TABLE Statement

68 JAM 7.0 Database Guide

The following statement creates a table whose size equals 1028 ((255+2) * 4).
Since that total is greater than 1024, JDB reports the error ªMaximum record
length exceeded.º

CREATE TABLE toobig (
a CHAR (255),
b CHAR (255),
c CHAR (255),
d CHAR (255));

The following statement creates the actors table with actor_id as the primary
key:

CREATE TABLE actors (
 actor_id INT NOT NULL,
 last_name CHAR (25) NOT NULL,
 first_name CHAR (20) ,
 PRIMARY KEY (actor_id));

The following statement creates the rentals table:

CREATE TABLE rentals (
 cust_id INT NOT NULL,
 title_id INT NOT NULL,
 copy_num INT NOT NULL,
 rental_date DATETIME NOT NULL,
 due_back DATETIME NOT NULL,
 return_date DATETIME ,
 price FLOAT NOT NULL,
 late_fee FLOAT NOT NULL,
 amount_paid FLOAT NOT NULL,
 rental_status CHAR (1) NOT NULL,
 rental_comment CHAR (76) ,
 modified_date DATETIME NOT NULL,
 modified_by CHAR (8) NOT NULL,
 PRIMARY KEY (cust_id, title_id, copy_num, rental_date),
 FOREIGN KEY (cust_id) REFERENCES customers (cust_id),
 FOREIGN KEY (title_id, copy_num)
 REFERENCES tapes (title_id, copy_num),
 FOREIGN KEY (modified_by) REFERENCES users (user_id));

Data types

Example

See Also

Data Types

696 SQL Reference GuideChapter

Data Types
List the data types available in JDB

The JDB data types are described in this section.

CHAR (n)
Character column containing ASCII characters (letters, numbers and symbols).
Specify the maximum size of the column with n. n can range in value from 1 to
255. The size of a CHAR column is n no matter how many characters are entered
into the column. If the character string is longer than n, the string is truncated to
the specified length. If the character string is shorter than n, the string is blank±
padded to the specified length. For example, an entry of

'A12'

in a CHAR(4) column would be stored as

'A12 '

The storage size of a CHAR column is n plus 2 bytes for flags.

To enter values into CHAR columns using JISQL, enclose the character string in
single quotation marks. To include a single quotation mark as part of the entry,
enter two consecutive single quotation marks.

If you use colon plus processing or binding in a JPL procedure, JAM automatically
formats the character string by enclosing the character string in single quotation
marks and converting each single quotation mark to two single quotation marks.

INT
Numeric column containing whole numbers. In the current version of JDB, all INT
values are stored as LONG values.

LONG
Numeric column containing whole numbers ranging from ±2,147,483,647 to
+2,147,483,647. The storage size for an LONG column is 4 bytes plus 2 bytes for
flags.

FLOAT
Numeric column containing positive or negative floating point numbers. The
hardware platform determines the precision and range of FLOAT columns. The
storage size is 12 bytes plus 2 bytes for flags.

Description

JISQL

JPL

Data Types

70 JAM 7.0 Database Guide

DOUBLE
Numeric column containing double precision numbers. The hardware platform
determines the precision and range of DOUBLE columns. The storage size is 12
bytes plus 2 bytes for flags.

DATETIME
Date column containing both a date and time of day. The storage size is 9 bytes,
plus 2 bytes for flags. The default format for a DATETIME column is:

yyyy/mm/dd hh:mm:ss

For example, January 28, 1993 at 2:40 p.m. is entered as follows:

1993/01/28 14:40:00

Alternate formats for DATETIME values include using periods instead of colons to
separate time entries and using spaces instead of slashes to separate date entries.

To enter DATETIME values in JISQL, enclose the date entry in single quotes as in:

'1993/01/28 14:40:00'

To enter DATETIME values in JPL, the date should both be enclosed in single
quotes and contain double colons:

DBMS SQL UPDATE titles \
SET release_date = '1994/01/28 00::00::00' \
WHERE title_id = :+title_id

If DT_DATETIME is the JAM type of the widget containing the entry, JAM
automatically formats the date according to the specified Date/Time format.

The data type of each column is stored in the system table, syscols . You can
query this table to find the data type for any column. Refer to page 30 for more
information on the syscols table.

In JDB, you cannot enter numbers with leading zeros in numeric columns.

The following statement creates the titles table:

CREATE TABLE titles (
 title_id INT NOT NULL,
 name CHAR (60) NOT NULL,
 genre_code CHAR (4) ,
 dir_last_name CHAR (25) ,
 dir_first_name CHAR (20) ,
 film_minutes INT ,
 rating_code CHAR (4) ,
 release_date DATETIME ,
 pricecat CHAR (1) NOT NULL,
 PRIMARY KEY (title_id),
 FOREIGN KEY (pricecat) REFERENCES pricecats (pricecat));

JISQL

JPL

Numeric Columns

Example

Data Types

716 SQL Reference GuideChapter

The titles table contains columns of various data types. The following statement
inserts a row into this table:

INSERT INTO titles (title_id, name, genre_code,
dir_last_name, dir_first_name, film_minutes, rating_code,
release_date, pricecat)
VALUES (72, 'Howards End', 'DRAM', 'Ivory', 'James', 140,
'PG', '1992/01/01 00:00:00', 'G');

DELETE Statement

72 JAM 7.0 Database Guide

DELETE Statement
Remove information from a database table

DELETE FROM table-name [WHERE search-conditions]

Identifier for the database table.

The WHERE clause specifies which rows will be deleted. Refer to page 105 for more
information on the WHERE clause.

This statement deletes a row or rows from the specified table. Remember that in
order to keep your data consistent, you may need to delete or update rows in other
tables whose values depend on the deleted row.

If no WHERE clause is specified, all the information in the table is deleted.

If a customer drops his membership, you can delete that customer from the
database:

DELETE FROM customers WHERE cust_id = 123;

To delete a video title from the database, you would need to delete rows from
titles , title_dscr , tapes and roles :

DELETE FROM title_dscr WHERE title_id = 134;

DELETE FROM roles WHERE title_id = 134;

DELETE FROM tapes WHERE title_id = 134;

DELETE FROM titles WHERE title_id = 134;

You can delete rows using a subquery in the WHERE clause:

DELETE FROM actors WHERE actor_id IN
(SELECT actor_id FROM roles WHERE title_id = 134);

WHERE Clause

table±name

WHERE

Description

Example

See Also

DROP DATABASE Statement

736 SQL Reference GuideChapter

DROP DATABASE Statement
Remove a database

DROP DATABASE database-name

Name of the database to be removed.

This statement deletes the specified database. The file containing the database is
removed from the operating system. If the database name contains characters that
are not alphanumeric, you must enclose the name in single quotation marks.

You cannot drop the current database. First, you must close the connection with the
current database and connect either to another database or to the system catalog.

When you drop a database, the journal files are not deleted.

DROP DATABASE videobiz;

Remember to enclose the name in single quotation marks if it contains non-alpha-
numeric characters.

DROP DATABASE 'video.db';

database±name

Description

Example

DROP TABLE Statement

74 JAM 7.0 Database Guide

DROP TABLE Statement
Remove a table from the database

DROP TABLE table-name

Name of the table to be deleted.

This statement deletes the specified table from the database, including the data
stored in the table.

DROP TABLE rentals;

table±name

Description

Example

GROUP BY Clause

756 SQL Reference GuideChapter

GROUP BY Clause
Divide the returned data into groups according to the specified column(s)

GROUP BY [correlation-name.]column-name[, ...]

Identifier which substitutes for the table name.

Column used to group the data.

A GROUP BY clause included in a SELECT statement allows you to specify the col-
umn or columns to be used to divide the table into groups. Rows having an identi-
cal value in the specified columns are grouped together.

A GROUP BY clause is most often combined with an aggregate function in order to
obtain summary information on each group. A GROUP BY clause can also be
followed by a HAVING clause in order to define which groups appear in the result
set.

In a SELECT statement containing a GROUP BY clause, the columns specified in the
select list or in the HAVING clause must either be listed in the GROUP BY clause or
be parameters of aggregate functions.

This statement finds the number of videos in each rating category:

SELECT rating_code, COUNT(*) FROM titles
GROUP BY rating_code;

genre_code : 'NULL'
 : 6

genre_code : 'G'
 : 3

correlation±name

column±name

Description

Example

GROUP BY Clause

76 JAM 7.0 Database Guide

A GROUP BY clause can be used to find unique entries in a SELECT statement;
however, the DISTINCT keyword is generally used for this purpose. The following
statement lists the types of videos found in the titles table:

SELECT genre_code FROM titles GROUP BY genre_code;

genre_code: 'ADV'

genre_code: 'CHLD'

genre_code: 'CLAS'

genre_code: 'COM'

This statement using both a GROUP BY clause and a HAVING clause determines the
people who directed more than three videos:

SELECT dir_last_name FROM titles GROUP BY dir_last_name
HAVING COUNT(*) > 3;

dir_last_name: Allen

dir_last_name: Weir

If your SELECT statement also includes a WHERE clause, place the GROUP BY
clause after WHERE clause.

SELECT title_id, COUNT (*) FROM tapes WHERE status = 'A'
GROUP BY title_id;

title_id : 1
 : 1

title_id : 2
 : 2

Aggregate Functions, HAVING Clause, SELECT StatementSee Also

HAVING Clause

776 SQL Reference GuideChapter

HAVING Clause
Set search conditions in order to obtain a subset of data

HAVING search-conditions

Specifies the conditions for the selection of data. For a complete listing of available
conditions, refer to page 105.

A HAVING clause included in a SELECT statement allows you to select a subset of
data which has a certain value.

Generally, a HAVING clause appears in conjunction with a GROUP BY clause. When
this occurs, the HAVING clause selects its subsets after the GROUP BY clause has
been applied.

Unlike the WHERE clause, a HAVING clause may include aggregate functions.

In statements using both a WHERE clause and a HAVING clause, the following steps
occur:

1. The WHERE clause selects the rows meeting its search conditions.

2. The GROUP BY clause divides these rows into groups according to the
specified column(s).

3. The HAVING clause excludes groups not meeting its search conditions.

4. Any aggregate function specified in the select list performs its calculations for
each group.

The following statement finds the customers that are frequent renters for the
month:

SELECT cust_id FROM rentals
WHERE rental_date
BETWEEN '1993/10/01 00:00:00' AND '1993/10/31 23:59:59'
GROUP BY cust_id
HAVING COUNT (*) > 4;

search±conditions

Description

Example

HAVING Clause

78 JAM 7.0 Database Guide

cust_id: 3

cust_id: 5

Aggregate Functions, GROUP BY Clause, SELECT Statement, WHERE ClauseSee Also

INSERT Statement

796 SQL Reference GuideChapter

INSERT Statement
Add information to a database table

INSERT INTO table-name [(column-list)]
VALUES (literal | NULL [, ...])

INSERT INTO table-name [(column-list)] query-expression

Unique identifier for the database table.

Columns which will have values inserted. See the description below.

Columns which will have values inserted. See the description below.

Subquery used to specify data to be inserted.

This statement enters information into the specified table. There are two forms of
the INSERT statement. In the first form, you insert a single row by specifying val-
ues for the specified columns. In the second form, you use a query to select rows
from other tables to be inserted into the specified table.

Within the first form of the INSERT statement, several format variations exist. The
simplest format includes a VALUES clause without a column list. In this format, you
must provide a value for each column in the table. The values are listed in the same
order that was used to create the columns in the database table.

INSERT INTO roles
VALUES (72, 144, 'Margaret Schlegel');

In a VALUES clause, the column values are separated by commas. You can enter
character strings, date strings, and numeric constants as column values. If you are
entering the data using JISQL, character strings and date values must be enclosed
with single quotation marks.

If you do not know the column order or if you do not want to enter a value for each
column, you can add a column list to the statement:

INSERT INTO roles (title_id, actor_id, role)
VALUES (72, 144, 'Margaret Schlegel');

table±name

column±list

VALUES

query±expression

Description

Inserting Rows Using a
Column List

INSERT Statement

80 JAM 7.0 Database Guide

With this format, the first column value, 72, is entered into the first column found
in the column list, title_id . The second value goes into the second column
listed, etc.

If you do not specify a value for a column, its value will be set to NULL.

You can also enter an unknown value for any column using NULL as the column
value:

INSERT INTO roles (title_id, actor_id, role)
VALUES (72, 144, NULL);

However, this syntax is not available if the column was specified as NOT NULL in
the CREATE TABLE statement.

The second syntax statement illustrates the insertion of rows using a subquery.
Multiple rows can be inserted with this format; however, you cannot have the same
table named in the INTO clause and the SELECT statement of the query.

INSERT INTO roles
(title_id)
SELECT title_id FROM titles WHERE title_id > 75;

Null Values

Inserting Rows
Containing a Null Value

Inserting Rows Using a
Subquery

See Also

Joins

816 SQL Reference GuideChapter

Joins
Specify the interconnection between two tables

... FROM table-name, table-name
WHERE table-name. column-name join-operator table-name. column-name
[{AND | OR | NOT} table-name. column-name join-operator table-name. column-name ...]

The FROM clause lists the tables included in the join.

Identifier for the database table.

The WHERE clause specifies the relationship between each set of tables in addition
to the search conditions to be used for the statement.

Column from one of the specified database tables.

One of the following operators: =, >, <, >=, <=, or <>.

A join connects two or more database tables by specifying the relationship between
each set of tables. To specify the relationship, you connect one column from one
table to a column in another table. The column names must be qualified with the
table name if the table location is ambiguous. A join can be part of a SELECT,
UPDATE, INSERT, or DELETE statement. A join can also be included in a subquery.
There are several types of joins which will be discussed in the following para-
graphs.

An equi-join is based on equality as indicated by the equal sign (=). In an equi-join,
all the columns in the tables being joined are included in the result set. For
example,

SELECT * FROM roles, actors
WHERE roles.actor_id = actors.actor_id;

This statement joins the actors and roles tables using the actor_id column in
each table. The result set lists the actor for each role included in the roles table.

FROM

table±name

WHERE

column±name

join±operator

Description

equi-joins

Joins

82 JAM 7.0 Database Guide

title_id: 1
actor_id: 15
role: 'McCroskey'
actor_id: 15
last_name: 'Bridges'
first_name: `Lloyd'

title_id: 77
actor_id: 178
role: 'Malcolm X'
actor_id: 178
last_name: 'Washington'
first_name: `Denzel'

A natural join is structured so that there is no duplication of data. The same query
as a natural join would appear as follows:

SELECT title_id, roles.actor_id, first_name, last_name, role
FROM roles, actors
WHERE roles.actor_id = actors.actor_id;

The select list names the columns to be included so that the actor_id is displayed
only once.

title_id: 1
actor_id: 15
first_name: `Lloyd'
last_name: 'Bridges'
role: 'McCroskey'

title_id: 77
actor_id: 178
first_name: `Denzel'
last_name: 'Washington'
role: 'Malcolm X'

A multiple table join involves more than two tables using one or more columns to
make the connection. The following statement adds the name of the video to the
result set.

SELECT roles.title_id, titles.name, actors.actor_id,
actors.first_name, actors.last_name, roles.role
FROM roles, titles, actors
WHERE roles.title_id = titles.title_id
AND roles.actor_id = actors.actor_id;

natural joins

Multiple Table Joins

Joins

836 SQL Reference GuideChapter

title_id: 1
name: 'Airplane!'
actor_id: 15
first_name: 'Lloyd'
last_name: 'Bridges'
role: 'McCroskey'

title_id: 77
name: 'Malcolm X'
actor_id: 178
first_name: 'Denzel'
last_name: 'Washington'
role: 'Malcolm X'

You could also use correlation names to formulate the query:

SELECT r.title_id, t.name, a.actor_id,
a.first_name, a.last_name, r.role
FROM roles r, titles t, actors a
WHERE r.title_id = t.title_id
AND r.actor_id = a.actor_id;

Additional search conditions can be added to the WHERE clause to further restrict
the result set:

SELECT roles.title_id, titles.name, actors.actor_id,
actors.first_name, actors.last_name, roles.role
FROM roles, titles, actors
WHERE roles.title_id = titles.title_id
AND roles.actor_id = actors.actor_id
AND titles.title_id = 19;

title_id: 19
name: 'Field of Dreams'
actor_id: 23
first_name: 'Kevin'
last_name: 'Costner'
role: 'Ray Kinsella'

title_id: 19
name: 'Field of Dreams'
actor_id: 141
first_name: 'Frank'
last_name: 'Whaley'
role: 'Archie Graham'

In addition to the equal sign, there are additional operators that can be specified.
Table 11 lists all the relational operators that can be used in joins.

Non-equi±joins

Joins

84 JAM 7.0 Database Guide

Table 11. Join Operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

You can also use a BETWEEN predicate to specify a range of values.

The following query lists the videos that have the same name but have been
directed by different people:

SELECT t.title_id, t.name, t.dir_last_name
FROM titles t, titles d
WHERE t.name = d.name
AND t.dir_last_name <> d.dir_last_name;

title_id: 3
name: 'All of Me'
dir_last_name: 'Reiner'

title_id: 60
name: 'All of Me'
dir_last_name: 'Flood'

title_id: 52
name: 'Henry V'
dir_last_name: 'Olivier'

The previous query is called a self-join which joins a table to itself so that you can
compare values in the same column. To make a self-join, use correlation names for
the database tables in the FROM clause and in the column names.

The following self-join finds the directors who have made two different types of
filmsÐfor example, directors who have made both comedy and adventure films.
All of this information is in the titles table. For this query, the join condition is
made on the director's last name. Then, the two genre_code entries in each join
are compared, and if they differ, the director's last name, the genre code and the
name of each corresponding video are written to the result set.

Self±joins

Joins

856 SQL Reference GuideChapter

SELECT dir.dir_last_name, dir.genre_code, dir.name
FROM titles gen, titles dir
WHERE gen.dir_last_name = dir.dir_last_name
AND gen.genre_code <> dir.genre_code

dir_last_name: 'Marshall'
genre_code: 'COM'
name: 'Big'

dir_last_name: 'Marshall'
genre_code: 'DRAM'
name: 'Awakenings'

The following self-join finds the actors in video #50 who are entered in the roles
table only for that video. It uses one version of the roles table to find all the
actor_id codes in video #50. It uses the other version of the table to find the
actor_id codes that are entered in the roles table only once.

SELECT r.actor_id FROM roles r, roles j
WHERE r.title_id = 50
AND r.actor_id = j.actor_id
GROUP BY r.actor_id HAVING COUNT(j.actor_id) = 1;

actor_id: 189

actor_id: 190

actor_id: 191

SubqueriesSee Also

LIKE Predicate

86 JAM 7.0 Database Guide

LIKE Predicate
Obtain data matching a specified pattern

column-name [NOT] LIKE literal [ESCAPE literal]

Column whose value you want to specify.

Wildcard characters intermixed with portions of column values.

A LIKE predicate selects rows in which a column value matches a specified pat-
tern. You can enter values for character strings or date strings. You can also enter a
wildcard character to substitute for a portion of the string. Table 12 lists the wild-
card characters that can be used in JDB.

Table 12. Wildcard Characters

Wildcard Description

% (percent sign) Substitutes for any string of zero or more characters

_ (underbar) Substitutes for any single character

With the specification of an ESCAPE clause, the special meaning given to ª_º and
ª%º can be disabled.

NOT LIKE selects rows that do not match the specified pattern.

The following query finds all the videos released in 1989:

SELECT title_id, name FROM titles
WHERE release_date LIKE '1989%';

title_id: 68
name: 'Born on the Fourth of July'

title_id: 14
name: 'Cinema Paradiso'

title_id: 17
name: 'Dead Poets Society'

column±name

literal

Description

Example

LIKE Predicate

876 SQL Reference GuideChapter

The following example returns rows where the dscr_text begins with an
underscore. The backslash removes the special meaning for the underscore, but not
for the percent sign:

SELECT * FROM title_dscr
WHERE dscr_text LIKE '_%' ESCAPE '\';

title_id: 40
line__no: 1
dscr_text: '_Intense_ film of self±destructive talk show host '

WHERE ClauseSee Also

Null Values

88 JAM 7.0 Database Guide

Null Values
Specify an unknown value

In INSERT statements,
... VALUES { literal | NULL} [, { literal | NULL}]

In SELECT statements,
... WHERE column-name IS [NOT] NULL

In UPDATE statements,
... SET column-name = { literal | NULL}

... [, column-name = { literal | NULL}]

When a column is set to NULL, it specifies an unknown or an unspecified value. A
NULL value is not the same as a blank or a zero entered into a column.

If you are using a comparison operator, be aware that NULL is not a value and
therefore cannot be compared to any other value. As an example, the following
WHERE clause would evaluate to true for all values of the times_rented column
that are greater than 75, but would evaluate to false if the column is set to NULL.

WHERE times_rented > 75

The examples illustrate the uses of NULL values in different types of statements.

The following statement inserts a null value into the role column:

INSERT INTO roles (title_id, actor_id, role)
VALUES (16, 276, NULL);

An error occurs if you attempt to insert a null value into a column which was
created as NOT NULL . The following statement returns the error NULL not
allowed since the column actor_id was specified as NOT NULL in the CREATE
TABLE statement for the roles table.

INSERT INTO roles (title_id, actor_id, role)
VALUES (27, NULL, 'Aunt Gussie');

Description

Example

Using NULL in an
INSERT Statement

Null Values

896 SQL Reference GuideChapter

The following statement selects rows where the rating_code column contains a
null value:

SELECT name FROM titles WHERE rating_code IS NULL;

name: 'All of Me'

name: 'Cinema Paradiso'

name: 'Das Boot'

name: 'Henry V'

name: 'My Brilliant Career'

name: 'Rashomon'

The following statement updates the rental_comment column to a null value for
every row in the rentals table:

UPDATE rentals SET rental_comment = NULL;

The following statement updates the rental_comment to a null value for a
specific rental:

UPDATE rentals SET rental_comment = NULL
WHERE cust_id = 6
AND title_id = 69
AND copy_num = 2
AND rental_date = '1993/10/29 18:00:00';

In order to obtain a unique entry for the rentals table, you must include an entry
for the cust_id , title_id , copy_num and rental_date columns.

Using NULL in a
SELECT Statement

Using NULL in an
UPDATE Statement

Operators

90 JAM 7.0 Database Guide

Operators

This section describes the various operators available in JDB.

Arithmetic operators allow you to perform calculations on data in the database
without altering the data. They are available to use with any numeric column. If the
value in the column is NULL, the result will also be NULL.

Table 13 lists the arithmetic operators that are available in JDB.

Table 13. Arithmetic Operators

Operator Definition

+ Addition

± Subtraction

* Multiplication

/ Division

The arithmetic operators adhere to the following order of precedence:

1. multiplication, division

2. subtraction, addition

Among operators that have the same level of precedence, the order of execution is
from left to right. The order of precedence can also be explicitly specified using
parentheses. For more information, refer to the section on logical operators.

The following statement uses an arithmetic operator to calculate the price with
sales tax on an item:

SELECT pricecat, price * 1.0825 FROM pricecats
WHERE pricecat = 'N';

Arithmetic operators can also be used in calculations that perform comparisons.
The following statement finds rentals where the amount paid was greater than
double the rental fee:

SELECT cust_id, title_id, rental_date FROM rentals
WHERE amount_paid > price * 2;

Description

Arithmetic Operators

Operators

916 SQL Reference GuideChapter

Comparison operators allow you to compare one expression with another
expression, where an expression is defined as a column name, a constant, a
function, or any combination of column names, constants and functions.

Table 14 lists the comparison operators that are available in JDB.

Table 14. Comparison Operators

Operator Definition

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

When character or date strings are used in comparisons, they need to be enclosed
in single quotation marks. Also, in these comparisons, numbers are greater than
uppercase letters, and uppercase letters are greater than lowercase letters. For
character strings, > asks for character strings closer to the end of the alphabet, < for
character strings closer to the beginning of the alphabet. For date strings, > asks for
dates later than the one specified and < asks for dates earlier than the one specified.

The following query asks for the videos whose length is greater than three hours:

SELECT title_id, name FROM titles WHERE film_minutes > 180

title_id: 15
name: 'Dances With Wolves'

title_id: 31
name: 'Reds'

The following query lists the customers who joined during the current year:

SELECT cust_id, first_name, last_name FROM customers
WHERE member_date >= '1993/01/01 00:00:00';

Comparison Operators

Operators

92 JAM 7.0 Database Guide

cust_id: 13
first_name: 'Robert'
last_name: 'Hartley'

cust_id: 14
first_name: 'Howard'
last_name: 'Borden'

Querying for a specific range of values can be accomplished using a series of
comparison operators or a BETWEEN predicate. The following statements would
return the same data:

SELECT title_id, name FROM titles
WHERE film_minutes BETWEEN 150 AND 180;

SELECT title_id, name FROM titles
WHERE film_minutes >=150 AND film_minutes <= 180;

title_id: 15
name: 'Amadeus'

title_id: 47
name: 'Kagemusha'

title_id: 77
name: 'Malcolm X'

Logical operators join sets of search conditions together.

Table 15 lists the logical operators that are available in JDB.

Table 15. Logical Operators

Operator Definition

AND Joins two conditions and returns results when both condi-
tions are true.

OR Joins two conditions and returns results when either
condition is true.

AND operators take precedence over OR operators unless you change the order of
execution by using parentheses. Also, NOT takes precedence over AND.

If you wanted to find the science fiction videos that either have a PG or G rating or
that are over three hours long, the following query would not return the correct

Logical Operators

Operators

936 SQL Reference GuideChapter

results. This query first finds the science fiction videos that have a PG or G rating.
Then, it finds any videos over three hours long.

SELECT title_id, name, film_minutes FROM titles
WHERE genre_code = 'SCFI'
AND rating_code IN ('G', 'PG')
OR film_minutes > 180;

title_id: 15
name: 'Dances with Wolves'
film_minutes: 181

title_id: 31
name: 'Reds'
film_minutes: 200

title_id: 37
name: 'Starman'
film_minutes: 112

The addition of parentheses finds science fiction videos that either have a PG or G
rating or that are over three hours long.

SELECT title_id, name, film_minutes FROM titles
WHERE genre_code = 'SCFI'
AND (rating_code IN ('G', 'PG')
OR film_minutes > 180);

title_id: 37
name: 'Starman'
film_minutes: 112

title_id: 38
name: 'Star Trek: The Motion Picture'
film_minutes: 132

title_id: 45
name: 'Star Wars'
film_minutes: 121

Remember that if a column is set to NULL, no comparison operator will retrieve it.
The value of null is unknown. The following example would find the video titles
whose length is less than an hour but would not find the ones whose length is
entered as NULL:

SELECT title_id, name FROM titles
WHERE film_minutes < 60;

ORDER BY Clause

94 JAM 7.0 Database Guide

ORDER BY Clause
Specify the order for the query results

ORDER BY { integer | [correlation-name.] column-name} [, ...] [ASC | DESC]

If integer is specified instead of a column-name, it refers to the position of a
column or expression in the select list.

Identifier which substitutes for the table name.

Specifies the column or columns to be used for sorting the result set.

Specifies that the result set is to be sorted in ascending order. This is the default.

Specifies that the result set is to be sorted in descending order.

An ORDER BY clause sorts the result set according to the specified column or col-
umns. The columns specified in the ORDER BY clause must also be specified in the
select list of the SELECT statement. By default, the sort occurs in ascending order
which lists the smallest value first. You can set the sort order by specifying ASC for
ascending or DESC for descending order.

If you list more than one column in the ORDER BY clause, it creates a nested sort.
The sort for the first column takes precedence and occurs first. Then, within each
of these groups, the rows are sorted again according to the value of the second
column.

Instead of listing column names in the ORDER BY clause, you can use integers to
refer to the column position.

The following SELECT statement without an ORDER BY clause returns the list of
video titles in the order shown in the result set:

SELECT title_id, name, genre_code FROM titles;

integer

correlation±name

column±name

ASC

DESC

Description

Example

ORDER BY Clause

956 SQL Reference GuideChapter

title_id: 56
name: 'After Hours'
genre_code: 'COM'

title_id: 1
name: 'Airplane!'
genre_code: 'COM'

title_id: 5
name: 'All That Jazz'
genre_code: 'MUS'

title_id: 2
name: 'Aliens'
genre_code: 'SCFI'

With the addition of an ORDER BY clause on the genre code, followed by the video
name, the statement returns the data in the following order:

SELECT title_id, name, genre_code FROM titles
ORDER BY genre_code, name;

title_id: 20
name: 'F/X'
genre_code: 'ADV'

title_id: 76
name: 'Raiders of the Lost Ark'
genre_code: 'ADV'

title_id: 49
name: 'Romancing the Stone'
genre_code: 'ADV'

If you use integers in the ORDER BY clause to refer to the column position, the
previous statement appears in the following syntax:

SELECT title_id, name, genre_code FROM titles
ORDER BY 3, 2;

genre_code is the third column appearing in the select list, and name is the
second column in the select list.

SELECT Statement

96 JAM 7.0 Database Guide

SELECT Statement
Obtain information from a database table

SELECT [DISTINCT] { select-list | *} FROM table-name [correlation-name] [, ...]
[WHERE search-conditions]
[GROUP BY [correlation-name.] column-name[, ...]]
[HAVING search-conditions]
[ORDER BY { integer | [correlation-name.] column-name } [, ...]]

Exclude any duplicate rows from the result set.

A series of column names, qualified by the table name if more than one database
table is being accessed, and/or aggregate functions.

Selects every column from every table listed in the FROM clause.

Identifier for a database table.

Identifier which substitutes for the table name in the remainder of the statement.

The WHERE clause specifies a search condition or a join. For more information on
joins, refer to page 81. For more information on the WHERE clause, refer to page 105.

Specifies the conditions for the selection of data. For more information, refer to
page 105.

The GROUP BY clause specifies the column used to divide the result set into
groups. For more information, refer to page 75.

The HAVING clause specifies a search condition. For more information, refer to
page 77.

The ORDER BY clause specifies the column(s) used to sort the result set. For more
information, refer to page 94.

The SELECT statement obtains data from the specified database table or tables. In
its simplest form, the SELECT statement retrieves all the data from all the columns
in the named table:

SELECT * FROM titles;

DISTINCT

select±list

*

table±name

correlation±name

WHERE

search±condition

GROUP BY

HAVING

ORDER BY

Description

SELECT Statement

976 SQL Reference GuideChapter

title_id: 56
name: 'After Hours'
genre_code: 'COM'
dir_last_name: 'Scorsese'
dir_first_name: 'Martin'
film_minutes: 96
rating_code: 'R'
release_date: 1985/01/01 00:00:00
pricecat: 'G'

However, this syntax is not recommended for use inside an application. It is
recommended that you include a select list in a SELECT statement.

A select list determines which columns will be included in the result set. In the
following example, the select list contains the name, genre_code ,
dir_last_name and film_minutes columns:

SELECT name, genre_code, dir_last_name, film_minutes
FROM titles;

name: 'After Hours'
genre_code: 'COM'
dir_last_name: 'Scorsese'
film_minutes: 96

name: 'Aliens'
genre_code: 'SCFI'
dir_last_name: 'Cameron'
film_minutes: 135

The select list can also include aggregate functions.

SELECT AVG (film_minutes) FROM titles;

: 118

You can choose which rows will be a part of the result set by including a WHERE
clause:

SELECT name, genre_code, dir_last_name, film_minutes
FROM titles WHERE dir_last_name = 'Weir';

Specifying a Select List

Specifying a WHERE
Clause

SELECT Statement

98 JAM 7.0 Database Guide

name: 'Dead Poets Society'
genre_code: 'DRAM'
dir_last_name: 'Weir'
film_minutes: 130

name: 'Picnic at Hanging Rock'
genre_code: 'DRAM'
dir_last_name: 'Weir'
film_minutes: 110

There are other search conditions available. Refer to page 105 for information on
the WHERE clause.

You can include only unique rows in the result set by specifying the keyword
DISTINCT . The following statement gets a list of directors:

SELECT dir_last_name FROM titles;

dir_last_name: 'Scorsese'

dir_last_name: 'Spielberg'

dir_last_name: 'Branagh'

dir_last_name: 'Kasdan'

dir_last_name: 'Branagh'

By using DISTINCT , the duplicate names are excluded from the result set:

SELECT DISTINCT dir_last_name FROM titles;

dir_last_name: 'Scorsese'

dir_last_name: 'Spielberg'

dir_last_name: 'Kasdan'

dir_last_name: 'Branagh'

You can obtain information from more than one database table by using joins:

SELECT name, first_name, last_name, role
FROM actors, titles, roles
WHERE titles.title_id = roles.title_id
AND actors.actor_id = roles.actor_id;

Obtaining Unique
Entries

Obtaining Data from
Multiple Tables

SELECT Statement

996 SQL Reference GuideChapter

name: 'Amadeus'
first_name: 'F. Murray'
last_name: 'Abraham'
role: 'Salieri'

name: 'Moonstruck'
first_name: 'Danny'
last_name: 'Aiello'
role: 'Johnny Cammareri'

Refer to page 81 for more information on joins.

BETWEEN Clause, Joins, GROUP BY Clause, HAVING Clause, Subqueries, WHERE
Clause

See Also

Subqueries

100 JAM 7.0 Database Guide

Subqueries
Nest a SELECT statement within another statement

In a subquery, you can nest a SELECT statement within a SELECT, INSERT,
UPDATE, or DELETE statement. The main syntax restriction is that a subquery can-
not contain an ORDER BY clause. Refer to the sections on each keyword for any
additional syntax restrictions. The subquery is enclosed in parentheses. Many state-
ments using subqueries can alternatively be constructed using joins.

There are five keywords used for subqueries: EXISTS, IN , ANY, ALL, and SOME.
These are explained below.

EXISTS
WHERE [NOT] EXISTS (subquery)

The EXISTS keyword tests for the presence of a result set from the subquery. The
subquery can contain one or more columns. Since you are testing to see if any rows
are returned, you can use SELECT * instead of a select list in the subquery.

If the NOT keyword is also specified, the WHERE clause is satisfied if there are no
rows in the result set.

The following query checks to see if all of the video titles have entries in the
roles table:

SELECT title_id FROM titles WHERE NOT EXISTS
(SELECT * FROM roles
WHERE roles.title_id = titles.title_id);

title_id: 71

IN
WHERE expression [NOT] IN (subquery)

The IN subquery condition evaluates whether the expression in the WHERE clause
matches any row returned in the subquery. The subquery using IN can only return
one column, but it can return more than one row.

Description

Subqueries

1016 SQL Reference GuideChapter

A subquery using the keyword IN is equivalent to the same subquery using =ANY.

The following query lists which science fiction movies a customer has previously
rented:

SELECT title_id, name FROM titles WHERE genre_code = 'SCFI'
AND title_id IN
(SELECT title_id FROM rentals
WHERE cust_id = 6);

title_id: 37
name: 'Starman'

title_id: 45
name: 'Star Wars'

ANY, ALL, SOME
WHERE expression comparison-operator ANY (subquery)

WHERE expression comparison-operator ALL (subquery)

WHERE expression comparison-operator SOME (subquery)

The keywords ANY, ALL, or SOME are used with a subquery with one of the
following comparison operators: >, >=, <, <=, <>, or =.

A subquery using ANY or SOME tests to see if the comparison is true for at least one
of the values returned by the subquery. If the subquery returns no value, the search
condition is false.

SELECT title_id, name FROM titles WHERE title_id = ANY
(SELECT title_id FROM tapes WHERE status = 'I');

title_id: 1
name: 'Airplane!'

title_id: 2
name: 'Aliens'

A subquery using ALL tests to see if the comparison is true for every value returned
by the subquery. If the subquery returns no value, the search condition is true as
well.

The following query tests to see which actors are not in the roles table:

SELECT actor_id, first_name, last_name FROM actors
WHERE actor_id <> ALL
(SELECT actor_id FROM roles);

Subqueries

102 JAM 7.0 Database Guide

actor_id: 18
first_name: 'Stanislas Carre'
last_name: 'de Malberg'

actor_id: 120
first_name: 'Penelope Ann'
last_name: 'Miller'

The keywords ANY, ALL, or SOME can be omitted if you know that the subquery
will return exactly one value. The following example returns one value by using an
aggregate function. This query finds the customers whose rental amount was
higher than average:

SELECT cust_id, first_name, last_name FROM customers
WHERE rent_amount >
(SELECT AVG(rent_amount) FROM customers);

cust_id: 1
first_name: 'Kelly'
last_name: 'Robinson'

cust_id: 5
first_name: 'Michael'
last_name: 'Stedman'

A subquery can also contain another subquery.

The following query finds the videos depicting dramatic stories that are also in the
rentals table:

SELECT title_id, name FROM titles WHERE title_id IN
(SELECT title_id FROM rentals WHERE title_id IN
(SELECT title_id FROM titles WHERE genre_code = 'DRAM'));

title_id: 4
name: 'All the President's Men'

title_id: 6
name: 'Amadeus'

Joins

Nested Subqueries

See Also

UPDATE Statement

1036 SQL Reference GuideChapter

UPDATE Statement
Update information in a database table

UPDATE table-name SET column-name = value [, ...] [WHERE search-conditions]

Unique identifier for the database table.

The SET clause lists both the columns to be updated and the new values for those
columns.

Name of the column to be modified.

The WHERE clause specifies which rows will be updated. Refer to page 105 for more
information on the WHERE clause.

Specifies the conditions for the selection of data. For more information, refer to
page 105.

The UPDATE statement modifies the value of one or more columns in the specified
table.

If the UPDATE statement is part of a transaction, the update can be undone by
rolling back the transaction.

If you omit the WHERE clause, all rows in the table are updated.

The following statement increases each price category by 10%. Since there is no
WHERE clause, this statement updates each row in the pricecats table:

UPDATE pricecats SET price = price * 1.1;

The following statement updates the price category for a video:

UPDATE titles SET pricecat = 'G' WHERE title_id = 57;

table±name

SET

column±name

WHERE

search±conditions

Description

Example

UPDATE Statement

104 JAM 7.0 Database Guide

The following query updates the member status to the frequent renter category if a
customer rents over 10 videos a month:

UPDATE customers SET member_status = 'F'
WHERE cust_id IN
(SELECT cust_id FROM rentals
WHERE rental_date
BETWEEN '1993/09/01 00:00:00' AND '1993/10/01 00:00:00'
GROUP BY cust_id HAVING COUNT(*) > 10 ');

WHERE ClauseSee Also

WHERE Clause

1056 SQL Reference GuideChapter

WHERE Clause
Specify search conditions and/or specify the relationship between tables

WHERE search-conditions

WHERE column-name join-operator column-name

Specifies the conditions for the selection of data.

Specifies a column in each of the tables to be joined.

Specifies the join operator. Refer to page 81 for more information about joins.

The WHERE clause performs two functions:

� Specifying the search conditions for the result set.

� Specifying the connection between tables named in the FROM clause.

A result set contains only the rows in the database that meet the search conditions.
If more than one search condition is included in a WHERE clause, connect the
conditions with the logical operators AND or OR.

Search conditions can include the following:

BETWEEN
WHERE [NOT] expression [NOT] BETWEEN expression AND expression

The BETWEEN predicate specifies a range of database values. The following
statement returns all the customers who joined during a certain year:

SELECT cust_id, first_name, last_name FROM customers
WHERE member_date BETWEEN '1992/01/01 00:00:00'
AND '1993/01/01 00:00:00';

cust_id: 7
first_name: 'Felix'
last_name: 'Unger'

cust_id: 8
first_name: 'Oscar'
last_name: 'Madison'

search±conditions

column±name

join±operator

Description

Search Conditions

WHERE Clause

106 JAM 7.0 Database Guide

EXISTS
WHERE [NOT] EXISTS subquery

The EXISTS keyword tests for the presence of a result set from the subquery. If the
NOT keyword is also specified, the WHERE clause is satisfied if there are no rows in
the result set. The subquery is enclosed in parentheses.

Notice that the subquery uses an * instead of a select list since you are merely
testing whether rows meet the subconditions specified in the query.

SELECT title_id, name FROM titles WHERE EXISTS
(SELECT * FROM tapes WHERE title_id = tapes.title_id
AND status = 'I');

title_id: 1
name: 'Airplane!'

title_id: 4
name: 'All the President's Men'

IN
WHERE expression [NOT] IN subquery
WHERE expression [NOT] IN values-list

The IN keyword evaluates whether or not the expression in the WHERE clause
matches a row in the subquery or a value in the values list. The subquery using IN
can only return one column, but it can return more than one row.

The following query uses a values list to find the adventure and science fiction
videos. It tests whether the genre_code for each video matches ADV or SCFI .

SELECT name, rating_code FROM titles
WHERE genre_code IN ('ADV', 'SCFI');

name: 'Aliens'
rating_code: 'R'

name: 'F/X'
rating_code: 'R'

name: 'Raiders of the Lost Ark
rating_code: 'PG'

IS NULL
WHERE column-name IS [NOT] NULL

WHERE Clause

1076 SQL Reference GuideChapter

The keyword IS NULL searches for null values in the specified column.

SELECT name FROM titles WHERE rating_code IS NULL;

name: 'All of Me'

name: 'Cinema Paradiso'

name: 'Das Boot'

LIKE
WHERE column-name [NOT] LIKE literal [ESCAPE literal]

A LIKE predicate selects rows where a column value matches a specified pattern.
The following query finds the video titles that begin with ªM.º

SELECT title_id, name FROM titles WHERE name LIKE 'M%'

title_id: 77
name: 'Malcolm X'

title_id: 64
name: 'Marriage of Maria Braun, The'

title_id: 70
name: 'Matewan'

Operators
WHERE expression {> | < | >= | <= | = | <>}{ expression | subquery}

Operators allow you to compare column values. The following query finds the
customers who have rented more than 2000 videos. For more information on using
operators in subqueries, refer to page 100.

SELECT cust_id, first_name, last_name FROM customers
 WHERE num_rentals > 200;

cust_id: 1
first_name: 'Kelly'
last_name: 'Robinson'

cust_id: 2
first_name: 'Alexander'
last_name: 'Scott'

WHERE Clause

108 JAM 7.0 Database Guide

The WHERE clause also specifies the interconnecting columns between tables in
joins. The following statement illustrates a multiple join. For additional
information on joins, refer to page 81.

SELECT name, first_name, last_name, role
FROM titles, actors, roles
WHERE titles.title_id = roles.title_id
AND roles.actor_id = actors.actor_id
AND titles.title_id = 62;

name: 'Out of Africa'
first_name: 'Klaus Maria'
last_name: 'Brandauer'
role: 'Bror'

name: 'Out of Africa'
first_name: 'Robert'
last_name: 'Redford'
role: 'Denys'

BETWEEN Predicate, Joins, LIKE Predicate, Null Values, Operators, Subqueries

Specifying Joins

See Also

SQL Syntax Summary

1096 SQL Reference GuideChapter

SQL Syntax Summary

CREATE DATABASE database-name

CREATE TABLE table-name (
column-name data-type [(length)] [NOT NULL] [, column-name ...]
[PRIMARY KEY (column-name , column-name ...]),]
[UNIQUE (column-name [, column-name ...]),]
[FOREIGN KEY (column-name [, column-name ...])

REFERENCES table-name (column-name [, column-name ...]) [,]]
)

DELETE FROM table-name [WHERE search-conditions]

DROP DATABASE database-name

DROP TABLE table-name

INSERT INTO table-name [(column-list)]
VALUES (literal | NULL [, ...])

INSERT INTO table-name [column-name [, ...]] query-expression

SELECT [DISTINCT] { select-list | *} FROM table-name [correlation-name] [, ...]
[WHERE search-conditions]
[GROUP BY [correlation-name.] column-name[, ...]]
[HAVING search-conditions]
[ORDER BY { integer | [correlation-name.] column-name } [, ...]]

UPDATE table-name SET column-name = value [, ...] [WHERE search-conditions]

111

Error Messages
This chapter lists the error messages that can occur using JDB. The messages are
stored in the JAM message file.

If an error occurs using the isql utility, the error message is displayed on the
screen. If the error prompt appears followed by numbers instead of error message
text, check the setting of the variable SMVARS.

If an error occurs in an application, the message that appears on the screen depends
on the type of error handler currently installed. There are DBMS commands and
global variables available in JAM's database drivers for use in an error handler. For
more information, refer to Chapter 16 in the Application Development Guide.

Error Message Listing

Aggregate function not allowed in current context
(DM_JDB_AGGREGATE_NOT_ALLOWED)

Cause: Aggregate function appears in the wrong context.*
Action: Aggregate functions can appear in the select list of a SELECT statement or

in a HAVING clause.

Ambiguous column reference (DM_JDB_AMBIGUOUS_COLUMN_REF)

Cause: In a multiple join, a column name has been specified without its
corresponding table name.

Action: Add the table name to the column references.

77

Error Message Listing

112 JAM 7.0 Database Guide

Bad Input (DM_JDB_BAD_INPUT)

Cause: Data formatted incorrectly for tbldata utility.*
Action: Edit input file. For information on data types, refer to page 69.

Corrupt JDB Database detected (DM_JDB_DB_CORRUPT)

Action: Exit the database, restart that same database, and reissue the statement to
see if the message disappears. If not, use tbldata to unload the database.
Check the ASCII file before reloading the database.

Current cursor is not attached to a database (DM_JDB_NODB)

Cause: Executing a query or data modification statement while connected to the
system catalog or while not connected to a database.

Action: Logon to the desired database, and re-execute the command.

Duplicate column assignment (DM_JDB_DUP_COL_ASSIGNMENT)

Cause: The column has been specified twice in the SET clause of an UPDATE
statement.

Action: Edit statement and eliminate duplicate setting.

Duplicate column name (DM_JDB_DUP_CNAME)

Cause: The column name has already been specified for that table.
Action: Assign each column in the database table a unique name.

Duplicate table alias (DM_JDB_DUPTABLEALIAS)

Cause: Using the same table alias for more than one table.
Action: Assign each table alias a unique name.

Duplicate table name (DM_JDB_DUP_TNAME)

Cause: Creating a database table that matches an existing table name.
Action: Assign each table in the database a unique name.

File I/O Error (DM_JDB_FILE_IO_ERR)

Cause: 1) Database is not in the current directory. 2) Database does not exist.
3) Database name was misspelled.

Action: Depending on the desired outcome, either specify the database path or
create the database in the current directory.

Internal datatype conversion failed
(DM_JDB_CONVERSION_FAILED)

Cause: Inserting a character string into a datetime column in an INSERT or
UPDATE statement. Inserting a ; instead of a : when specifying a datetime
value.

Action: Check to see if the values match the data types of the columns.

Invalid Database/Table Handle (DM_JDB_BAD_HANDLE)

Cause: Internal error in opening and closing table structure.*
Action: Exit database and restart.

Error Message Listing

1137 Error MessagesChapter

Invalid Table operation (DM_JDB_INVALID_TABLE_OP)

Cause: Trying to update system tables.
Action: Only SELECT statements can be used on the system tables.

Journal error (DM_JDB_JOURNAL_ERROR)

Cause: Database is read±only.
Action: Change the file permissions.

Key columns must be specified as not null
(DM_JDB_KEY_MUST_BE_NULL)

Cause: Primary key column was specified in the CREATE TABLE statement
without the NOT NULL keywords.

Action: Insert the NOT NULL keywords for primary key columns.

Maximum record length exceeded (DM_JDB_MAX_RECLEN_EXCEEDED)

Cause: Row definition is greater than 1K.
Action: Edit table definition to a maximum of 1024 bytes for each row.

More than one primary key was specified (DM_JDB_MULT_PKEY)

Cause: An additional PRIMARY KEY clause was specified in the CREATE TABLE
statement.

Action: Specify one PRIMARY KEY clause using commas to separate the primary
key columns.

Must close Database first (DM_JDB_DATABASE_OPEN)

Cause: Attempting to drop a database while that database connection is still
active.

Action: Logon to another database or to the system catalog in order to drop the
database.

Must drop Database first (DM_JDB_DATABASE_EXISTS)

Cause: Attempting to create a database when that database already exists.
Action: Depending on the desired outcome, either 1) drop the database so that it

can be recreated, or 2) use another database name.

Not implemented (DM_JDB_NOT_IMPLEMENTED)

Cause: Feature not implemented in JDB.*
Action: n/a

Read±Only handle (DM_JDB_READONLY)

Cause: Database file is specified to be read-only.
Action: This appears as a warning when you log on and as an error if you attempt

to insert or update data in the database.

NULL not allowed (DM_JDB_NULL_NOT_ALLOWED)

Cause: Column has been defined in the CREATE TABLE statement as NOT NULL .
Action: In an INSERT statement, a value must be entered for all columns defined

as NOT NULL .

Error Message Listing

114 JAM 7.0 Database Guide

Syntax error (DM_JDB_SYNTAX_ERROR)

Cause: Character strings are not enclosed in single quotation marks in an INSERT
statement.

Action: Add quotation marks, and reissue statement.

Cause: Reserved keyword used as a table or column name in a CREATE TABLE
statement.

Action: Change table or column name.

Table not found (DM_JDB_TABLE_NOT_FOUND)

Cause: Database table does not exist.
Action: Create table, or query systabs for table names in the database.

Temporary database error (DM_JDB_TMPDATABASE_ERR)

Cause: Unable to create temporary database needed for processing.
Action: Check memory available.*

The number of values specified does not equal the number of
columns (DM_JDB_INVALID_VALUES_COUNT)

Cause: In an INSERT statement, the number of columns in the column list and the
number of column values in the values list is not the same.

Action: Check INSERT statements.

The subquery returned too many rows
(DM_JDB_SUBQ_TOO_MANY_ROWS)

Cause: Subquery returned multiple rows when statement needs one value.
Action: Edit query to use different search conditions.

Type mismatch (DM_JDB_TYPE_MISMATCH)

Cause: Inserting a character string into a column specified as integer.
Action: JDB performs the insertion converting the character string to 0. Edit the

statement to the correct value.

Unresolved column reference (DM_JDB_UNRESOLVED_COLUMN_REF)

Cause: 1) Misspelled column names in SQL statements. 2) Column values not
enclosed in single quotes. 3) Column listed in an ORDER BY clause is not
in the select list. 4)Incorrect table name included in correlation name or
alias.

Action: Correct syntax and reissue statement.

115

Using Transactions
A transaction is a unit of work that must be totally completed or not completed at
all. Once a transaction is defined, the database engine attempts to complete all of
the statements in that transaction. If all of the statements cannot be completed, the
database can be restored to its prior state before the transaction started.

Using the videobiz database example, a customer comes to the front desk to rent a
video. When the clerk checks out the video, a transaction is started to perform the
following actions:

� Insert the rental information into the rentals table.

� Update information about the customer's rentals in the customers table.

� Update information about the video tape status in the tapes table.

If any of the statements fail, the transaction must be rolled back. If all of the
statements execute without any errors, the transaction can then be committed.

Database engines implement transaction processing differently. In JDB, after you
declare a connection, a transaction automatically starts on that connection.
Additional transactions can then be defined using commit and rollback
commands.

The commit command saves the changes to the database. The rollback
command undoes any changes made to the database since the start of the
transaction. The execution of either commit or rollback starts a new transaction.

88

116 JAM 7.0 Database Guide

JDB performs an automatic commit when you leave an isql or JISQL session.
You must issue a rollback command if you do not want to save your database
changes.

The following statements from a JISQL script illustrate the sample rental
transaction which rents a video to a customer:

insert into rentals
(cust_id, title_id, copy_num, rental_date, due_back,
return_date, price, late_fee, amount_paid, rental_status,
rental_comment, modified_date, modified_by)
values
(3, 69, 2, '1993/10/29 19:56:00', '1993/11/01 00:00:00',
NULL, 3.50, 1.00, 3.50, 'C', NULL, '1993/10/29 19:56:00',
'jenny');

update customers set num_rentals = 75, rent_amount = 201.50
where cust_id = 3;

update tapes set status = 'O' where title_id = 69
and copy_num = 2;

$COMMIT;

117

JDB Utilities
This chapter describes the utilities available with JDB:

� isql Ð Accesses a command-line interactive SQL utility.

� jdbroll Ð Updates a database using its journal files.

� mksql Ð Outputs SQL statements for the specified database.

� tbldata Ð Imports/exports data to and from a database.

99

isql

118 JAM 7.0 Database Guide

isql
Access a command line interactive SQL utility

isql database-name

Specifies the name of the database or @system if no database is available.

isql is a command-line interactive editor for JDB that allows you to execute any
database statement. It is provided as a command-driven alternative to the JISQL
graphical environment described in Chapter 5.

While isql and JISQL are similar in many respects, they are not identical. JISQL
has a series of macro commands that are not available in isql ; any JISQL script
containing these commands will not run under isql . Although the SQL commands
in isql end with a ; as a termination character, all JISQL commands terminate
with a ; . Use the interactive SQL capability described in this chapter only if you
want to bypass the JISQL environment.

To start isql , type:

$SMBASE/jdb/bin/isql database-name

where database-name is the name of an existing database or the system identifier,
@system. The screen displays the following numeric prompt where you can enter
any JDB statement: 1>

If this is your first JDB session, or if you want to create a new database, first start
isql . Generally, on UNIX systems, it is located in $SMBASE/jdb/bin .

isql

At the prompt, logon to JDB using @system:

logon @system

Once you are connected, you can create a new database by typing:

create database database-name;

database-name must conform to the file naming conventions of the operating
system.

database-name

Description

Starting ISQL

Creating a New
Database

isql

1199 JDB UtilitiesChapter

To connect to the new database in order to create database tables and enter data,
enter the following command:

logon database-name

You can execute any SQL statement that is available in JDB in isql by ending
each database statement with ; as the command terminator. For example,

1> SELECT title_name, name, genre_code FROM titles;

A line without a trailing semi-colon is concatenated with the next line until a
semicolon is reached. Therefore, one statement can span multiple lines.

Table 16 lists the commands available in isql . These commands allow you to edit
a query, read in a query file, or execute an operating system command.

Note: These commands do not end with a semi-colon. Also, in order for these
commands to be recognized, each must start on the first character of a command
line.

Executing SQL
Statements

Executing ISQL
Commands

isql

120 JAM 7.0 Database Guide

Table 16. isql Commands

Command Syntax Description

clear clear Empties the input buffer. This command must start in
the first column of a new line.

comment # Specifies that the line is a comment.

commit commit Saves the additions and edits you have made to the data-
base since the last commit or rollback or since connect-
ing to the database.

edit edit Starts an editing shell for entering statements. The edit-
ing program is determined by the environment variable
EDITOR or SMEDITOR.

exit exit Exits isql .

list list Displays the last command that was executed.

logon logon database-name
logon @system

Connects to another database file or @system.

output output filename Redirects output to a file. If you specify output with-
out a filename, it redirects output to the screen.

quit quit Quits isql .

read read filename Reads and executes the SQL commands in a text file. To
execute more than one command, each command must
end with a semi-colon (;).

rollback rollback Undoes all additions and edits made to the database
since the last commit or rollback or since connecting to
the database.

system system command-name Executes the named operating system command.

To exit isql , type:

exit

An automatic commit is generated when you exit the isql session using either the
quit or exit commands. You must specify rollback if you do not want to keep
your database changes.

Exiting ISQL

jdbroll

1219 JDB UtilitiesChapter

jdbroll
Restore a transaction log

jdbroll database-name journal-name [journal-name ...]

Specifies the name of the database.

Specifies the name of the journal file(s).

jdbroll allows you to update the database based on your log files.

When you logon to a database for the first time, JDB creates a journal file named
j1 database-name. For the sample database supplied with JAM, the name would
be j1videobiz . The next time you log on, the information in this file will be
copied to the file j0 database-name. If this file already exists, it will be overwrit-
ten.

database-name

journal-name

Description

mksql

122 JAM 7.0 Database Guide

mksql
Translate an existing JDB database into its CREATE TABLE and INSERT statements

mksql database-name

Specifies the name of the database.

mksql uses an existing JDB database to output a set of SQL statements from
which the database could be rebuilt. For each table, it writes a CREATE TABLE
statement, followed by a series of INSERT statements for the data in the table.

The following result set illustrates a portion of the output for the actors table in
the videobiz database.

create table actors (
actor_id long not null,
last_name character(25) not null,
first_name character(20),
primary key (actor_id)

);

insert into actors (
actor_id,
last_name,
first_name)

values (
1,
'Abraham'
'F. Murray'

);

database-name

Description

Example

tbldata

1239 JDB UtilitiesChapter

tbldata
Read rows in a database table to/from text files

tbldata [±d delimiter] ±x export-file database-name table-name

tbldata [±d delimiter] ±i import-file database-name table-name

Specifies the column delimiter. The delimiter character may need to be enclosed in
quotation marks. For example, to specify a space as the delimiter:

tbldata ±d º º ±x export-file database-name table-name

If no delimiter is specified, tbldata uses TAB as the delimiter.

Logs onto the specified database and writes each row of the specified table to the
specified text file.

Logs onto the specified database and inserts each row of the specified text file into
the specified table.

Name of the text file where the data will be written.

Name of the text file containing the data to be inserted into JDB.

Name of the JDB database.

Name of the database table.

tbldata can be used two different ways:

� tbldata ±x can convert rows in a database table to a text file.

� tbldata ±i can insert rows into a database table from a text file.

For both options, you must specify both the database and the database table.

When using tbldata ±i , the database table must already exist. Also, the column
values must be listed in the same order as the columns in the database table.

±d

±x

±i

export-file

import-file

database-name

table -name

Description

125

Keywords in JDB
This chapter lists the keywords specified in the ANSI standard for SQL. These
keywords cannot be used in JDB expressions and are, thus, unavailable for use as
table, column or database names.

all alter and

any as asc

authorization avg

begin between by

char character check

clear close cobol

commit continue count

create current cursor

database datetime dec

decimal declare default

delete desc distinct

1010

126 JAM 7.0 Database Guide

double drop

edit end escape

exec exists exit

fetch float for

foreign fortran found

from

go goto grant

group

having

in indicator insert

int integer into

is is null

key

language like list

logon long

max min module

not null numeric

of on open

option or order

output

12710 Keywords in JDBChapter

pascal pli precision

primary precision primary

privileges procedure public

quit

read real references

rollback

save schema section

select set smallint

some sql sqlcode

sqlerror sum system

table to

union update user

using values

view whenever where

with work

SECTION TWO

Database Reference

Chapter 11 DBMS Statements and Commands. 131

Chapter 12 DBMS Global Variables . 183

Chapter 13 Keywords in JAM's Database Drivers. 199

131

DBMS Statements and
Commands

This chapter describes the DBMS commands supported by all database engines.
These commands are executed with the JPL command DBMS or the C library
function dm_dbms. DBMS commands that are specific to a database engine are
described in the Database Drivers section. This includes the transaction commands
and any special feature commands.

Since DBMS is a JPL command, using these commands inside a JPL statement must
follow all the conventions for JPL.

DBMS Command Summary

The following listing is a summary of the DBMS commands by category. Some
commands may appear in more than one category.

ENGINE
Sets the default database engine for the application.

WITH ENGINE
Sets the default engine for the duration of a command.

1111

Selecting a
Database
Engine

132 JAM 7.0 Database Guide

CLOSE CONNECTION
Closes a named connection.

CLOSE_ALL_CONNECTIONS
Closes all connections on the named or default engine.

CONNECTION
Sets a default connection and engine for the application.

DECLARE CONNECTION
Declares a named connection to a database engine.

WITH CONNECTION
Sets the default connection for the duration of a command.

CLOSE CURSOR
Closes a cursor.

CONTINUE
Fetches the next screenful of rows from a select set.

DECLARE CURSOR
Declares a named cursor.

EXECUTE
Executes a named cursor.

WITH CURSOR
Specifies the cursor to use for a statement.

SQL
Specifies a SQL statement to be passed to the database engine for processing.

ALIAS
Names a JAM variable as the destination of a selected column or an aggregate
function.

BINARY
Creates a JAM variable for fetching binary values.

Using
Connections

Using Cursors

Executing SQL
Statements

Changing
SELECT
Behavior

13311 DBMS Statements and CommandsChapter

CATQUERY
Redirects SELECT results to a file or a JAM variable.

COLUMN NAMES
Maps a database column name to a JAM variable.

FORMAT
Formats the results of a CATQUERY.

OCCUR
Sets the number of rows for JAM to fetch to an array and choose an occurrence
where JAM should begin writing result rows.

START
Sets the first row for JAM to return from a select set.

UNIQUE
Suppresses repeating values in a selected column.

CONTINUE
Fetches the next screenful of rows from a select set.

CONTINUE_BOTTOM
Fetches the last screenful of rows from a select set.

CONTINUE_DOWN
Fetches the next screenful of rows from a select set.

CONTINUE_TOP
Fetches the first screenful of rows from a select set.

CONTINUE_UP
Fetches the previous screenful of rows from a select set.

STORE FILE
Stores the rows of a select set in a temporary file so that the application may scroll
through the rows.

BINARY
Defines one or more binary variables.

Paging through
Multiple Rows

Handling Binary
Data

134 JAM 7.0 Database Guide

ONENTRY
Installs a function or JPL procedure which JAM will call before executing a DBMS
statement.

ONERROR
Installs a function or JPL procedure which JAM will call whenever a DBMS
statement fails.

ONEXIT
Installs a function or JPL procedure which JAM will call after executing a DBMS
statement.

Command Descriptions

The rest of this chapter contains a reference page for each DBMS command, in
alphabetical order. The commands in this chapter may be executed with the JPL
command DBMS or the library function dm_dbms. Some database engines may
support additional commands. For a list of the DBMS commands supported on each
engine, refer to the Database Drivers section.

Each reference page contains the following information:

� The command name.

� Usage synopsis, where

[x] indicates an optional element, x; the brackets should not be typed.

x... indicates the element may be repeated one or more times.

literal indicates a word to be typed verbatim; includes examples and
literal entries.

italics indicates screen names, file names, column names, and variables;
replace them with the appropriate values for your application.

� A full description of the command, with an explanation of its parameters,
outputs, and actions.

� One or more examples of JPL procedures demonstrating how the command is
used.

Status and Error
Processing

ALIAS

13511 DBMS Statements and CommandsChapter

ALIAS
Sets aliases for a declared or default SELECT cursor

DBMS [WITH CURSOR cursor] ALIAS [column jamvar \
[, column jamvar ...]]

DBMS [WITH CURSOR cursor] ALIAS [jamvar [, jamvar ...]]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Name of the column in the database table.

Name of the JAM variable to contain the data.

By default, database values are written to JAM variables with the same names as
the selected columns. Use DBMS ALIAS to map a database column or value to any
JAM variable.

If a column name is given, the column is associated with the variable name that
follows it. For example:

DBMS ALIAS name title, film_minutes length

If the database column name is selected with the default cursor, its value is written
to the JAM variable title . If the column film_minutes is selected with the
default cursor, its value is written to the JAM variable length . For all other
columns selected with the default cursor, the column's value is written to a variable
with the same (unqualified) name as the selected column.

If column contains characters not permitted in JAM identifiers, enclose column in
quotes to ensure correct parsing. For example:

DBMS ALIAS ºlast±nameº last_name

The case of column needs to match the setting of the case flag used to initialize the
database engine. For example, if the case flag is DM_FORCE_TO_LOWER_CASE,
column must be typed in lower case. The case of jamvar must be the case used to
name the JAM variable. If jamvar does not exist, JAM ignores the column when it
executes the SELECT. The case setting for each database engine is described in the
Database Drivers section of the documentation.

WITH CURSOR cursor

column

jamvar

Description

ALIAS

136 JAM 7.0 Database Guide

If no column arguments are given, the association is positional. For example:

DBMS ALIAS title_var, , abc

If the above statement is executed, then each time values are selected with the
default cursor, JAM will write the values of the first and third columns to the JAM
variables title_var and abc respectively. For all other columns selected with the
default cursor, JAM will write to a variable with the same (unqualified) name as
the selected column. The order of column names in the SELECT statement
determines the mapping. The case of jamvar must be the case used to name the
JAM variable. If jamvar does not exist, JAM simply ignores the column when it
executes the SELECT. Named and positional aliases may not be assigned in a single
statement.

Only one DBMS ALIAS statement is allowed for each cursor. The last DBMS ALIAS
statement called is the one currently in effect.

If aliases are declared for a CATQUERY cursor with the HEADING ON option, JAM
uses the aliases rather than the column names to build the heading. The alias for a
column selected with a CATQUERY cursor may be enclosed in quotes. This permits
a column heading to use embedded spaces. For example:

DBMS DECLARE t_cursor CURSOR FOR \
SELECT title_id, name, pricecat FROM titles

DBMS WITH CURSOR t_cursor CATQUERY TO FILE t_list
DBMS WITH CURSOR t_cursor ALIAS \

ºTitle IDº, Name, ºPrice Categoryº
DBMS WITH CURSOR t_cursor EXECUTE

Aliasing for a cursor is turned off by executing the DBMS ALIAS command with no
arguments. Closing a cursor also turns off aliasing. If a cursor is redeclared without
being closed, the cursor keeps the aliases. Aliases do not affect INSERT, UPDATE,
or DELETE statements.

The ALIAS command is necessary if the name of a selected column is not a valid
JAM variable name, if the application is selecting values from different tables
which use the same column name for different values, or if a selection is not a
column value, but the value of an aggregate function or select expression.

Assign named aliases for a declared cursor.

DBMS DECLARE x CURSOR FOR \
SELECT title_id, copy_num, status FROM tapes

DBMS WITH CURSOR x ALIAS \
title_id code, copy_num copy, status current_status

DBMS WITH CURSOR x EXECUTE
DBMS WITH CURSOR x ALIAS

Example

ALIAS

13711 DBMS Statements and CommandsChapter

Set a positional alias for the 2nd and 4th columns.
Use automatic mapping for the 1st and 3rd columns.

DBMS ALIAS , var_x, , var_y
DBMS SQL SELECT title_id, name, genre_code, release_date \

FROM titles

JAM will write
Column title_id to Variable title_id,
Column name to Variable var_x,
Column genre_code to Variable genre_code, and
Column release_date to Variable var_y.

Note how the mappings change when the columns are
listed in another order.

DBMS SQL SELECT name, genre_code, release_date, title_id \
FROM titles

JAM will write
Column name to Variable name,
Column genre_code to Variable var_x,
Column release_date to Variable release_date, and
Column title_id to Variable var_y.

CATQUERY, WITH CURSORSee Also

BINARY

138 JAM 7.0 Database Guide

BINARY
Defines JAM variables for fetching binary values

DBMS BINARY variable [, variable ...]

Name of the binary variable JAM will create. The variable can contain the number
of occurrences and/or a length. Refer to the Description for more information.

Many database engines support a binary data type for bytes strings and other non-
printable data. There are two ways an application can fetch binary values to JAM
variables (widgets, LDB variables, or JPL variables):

� Fetch to variables created with the command DBMS BINARY.

� Fetch to text widgets which have the C Type property set to Hex Dec.

Variables created with DBMS BINARY can hold binary data. For variables with the
C Type property set to Hex Dec, JAM converts the binary data to hexadecimal
strings.

The definition for a variable created with DBMS BINARY may include a number of
occurrences and/or a length. If a number of occurrences is supplied, it must be
enclosed in square brackets. If a variable length is supplied, it must be enclosed in
parentheses. If both are supplied, the number of occurrences must be first. Any of
the following are permitted:

db_binvar
db_binvar [10] (255)
db_binvar [5]
db_binvar (8)

Any valid JAM variable name is a legal BINARY variable name. The default
number of occurrences is 1, and the default length is the maximum, 255. Memory
is allocated for the occurrences when they are used (that is, when a binary column
is fetched).

If an application is selecting a binary column, use this command to create a binary
variable for the column. The variable may have the same name as the column, or it
may be mapped to the column with DBMS ALIAS . Because a binary variable is a

variable

Description

BINARY

13911 DBMS Statements and CommandsChapter

target of a SELECT, JAM will examine its number of occurrences when determin-
ing how many rows to fetch. Therefore, the binary variable should have the same
number of occurrences as the other JAM target variables. When searching for
target variables, JAM searches among the binary variables before searching among
the JAM variables. You are responsible for ensuring that the binary variable names
do not conflict with JAM variable names.

Binary variables can also be included in the USING clause of a DBMS EXECUTE
statement. If no occurrence is given for the variable, the first occurrence is the
default.

Once defined, a binary variable is available to the rest of the application. Note that

DBMS BINARY db_binvar[10]
DBMS BINARY timestamp[100]

is the same as

DBMS BINARY db_binvar[10] timestamp[100]

To delete all binary variables, execute DBMS BINARY with no arguments:

DBMS BINARY

Several JAM library functions are provided for accessing and manipulating binary
variables. These functions are only available in C. For more information on each
function, refer to the Language Reference.

ºtimestampº is a binary column and ºtimevalº
is a binary variable.

DBMS BINARY timeval
DBMS ALIAS timestamp timeval
DBMS SQL SELECT id, name, price, timestamp FROM products
�
�
�

DBMS DECLARE upd_cursor CURSOR FOR \
UPDATE products SET price = ::priceval \
WHERE id = ::idval and timestamp = ::timeval

DBMS WITH CURSOR upd_cursor EXECUTE \
USING priceval, idval, timeval

dm_bin_create_occur , dm_bin_delete_occur , dm_bin_get_dlength ,
dm_bin_get_occur , dm_bin_length , dm_bin_max_occur ,
dm_bin_set_dlength

Example

See Also

CATQUERY

140 JAM 7.0 Database Guide

CATQUERY
Concatenates a full result row to a JAM variable or a file

DBMS [WITH CURSOR cursor] CATQUERY TO jamvar \
[SEPARATOR º textº] [HEADING [ON | OFF]]

DBMS [WITH CURSOR cursor] CATQUERY TO FILE file \
[SEPARATOR º textº] [HEADING [ON | OFF]]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Names a JAM variable as the destination.

Names a text file as the destination. If the file already exists, it is overwritten when
the SELECT is executed.

Specifies that JAM should use text to separate column values in a result row. The
default is two blank spaces.

Specifies that JAM should put a heading at the beginning of the select results. This
is the default for a catquery to a file. The heading is built using the column names
or any aliases assigned to the cursor. The maximum length of a heading is 255
characters. Any additional characters are truncated.

Specifies that JAM should not use a heading. This is the default for a catquery to a
JAM variable.

The result columns of a SELECT statement are usually mapped to individual vari-
ables. Use CATQUERY to map full result rows to a variable's occurrences or to a text
file.

JAM attempts to format the column values by searching for JAM variables of the
same name and using their attributes for length, precision, and date-time or
currency edits. The application may override any default formatting with the
command DBMS FORMAT.

The catquery for a cursor is turned off by executing the DBMS CATQUERY
command with no arguments. Closing a cursor also turns off the catquery. If a
cursor is redeclared without being closed, the cursor keeps the catquery destination
as the cursor's SELECT destination.

WITH CURSOR cursor

TO jamvar

TO FILE file

SEPARATOR ºtextº

HEADING ON

HEADING OFF

Description

CATQUERY

14111 DBMS Statements and CommandsChapter

When the catquery destination is a JAM variable, JAM concatenates a result row
and writes it to jamvar when the SELECT is executed. If jamvar is an LDB or
onscreen array, JAM writes the result rows to the array occurrences. If there are
more result rows than occurrences in jamvar, use DBMS CONTINUE to fetch the
additional rows.

If the clause HEADING ON is used, JAM creates a heading by using the cursor's
aliases and column names. If jamvar has two or more occurrences, JAM will put
the heading in the first occurrence of jamvar.

When the catquery destination is a text file, JAM writes all the result rows to the
specified text file when the SELECT is executed. Any existing file with the same
name is overwritten. If a result row is longer than the page width, JAM wraps the
row to the next line.

If aliases have been specified for the cursor, JAM uses those aliases as column
headings in the text file. If there are no aliases, JAM uses the columns' names. If
the clause HEADING OFF is used, JAM does not print a heading.

Since all result rows are written to the file, the DBMS CONTINUE commands should
not be used with a CATQUERY TO FILE cursor while the file is open.

The file remains open until DBMS CATQUERY is reset or the cursor is closed.

Select a customer's first and last name
and concatenate the values in the field ºfullnameº.

DBMS DECLARE name_cursor CURSOR FOR \
SELECT last_name, first_name FROM customers \
WHERE cust_id = :+cust_id

DBMS WITH CURSOR name_cursor CATQUERY TO fullname \
SEPARATOR º, º

DBMS WITH CURSOR name_cursor EXECUTE

Select the maximum value from the column ºcostº
and write it to the JPL variable ºhi_costº
formatting it with currency edit saved with the
LDB variable ºmoney_varº.

vars hi_cost
DBMS DECLARE max_cursor CURSOR FOR \

SELECT MAX(price) FROM pricecats
DBMS WITH CURSOR max_cursor CATQUERY TO hi_cost
DBMS WITH CURSOR max_cursor FORMAT money_var
DBMS WITH CURSOR max_cursor EXECUTE

Catquery to a Variable

Catquery to a Text File

Example

CATQUERY

142 JAM 7.0 Database Guide

Write the results of the default SELECT cursor
to a file with heading. Turn off ALIAS and CATQUERY
when finished.

proc file_list
DBMS CATQUERY TO FILE titlelist
DBMS ALIAS title_id ºTitle IDº, name ºTitleº,\

film_minutes ºLengthº, pricecat ºPrice Categoryº
DBMS SQL SELECT title_id, name, film_minutes, pricecat

FROM titles
DBMS CATQUERY
DBMS ALIAS
return

ALIAS , FORMATSee Also

CLOSE_ALL_CONNECTIONS

14311 DBMS Statements and CommandsChapter

CLOSE_ALL_CONNECTIONS
Closes all connections on an database engine

DBMS [WITH ENGINE engine] CLOSE_ALL_CONNECTIONS

Names the engine for which connections are to be closed. If the clause is not used,
JAM closes all the connections on the default engine.

When DBMS CLOSE_ALL_CONNECTIONS is executed, JAM closes every connec-
tion which the application declared either on the named database engine or on the
default engine. For each connection, it closes all cursors belonging to the connec-
tion, disconnects from the database engine, and frees all structures associated with
the connection.

If the application accesses multiple engines, you should include the WITH ENGINE
clause and issue the statement for each engine used in the application.

This procedure closes the error handler and
then closes all connections.

proc logoff
DBMS ONERROR
DBMS CLOSE_ALL_CONNECTIONS
return

DBMS CLOSE CONNECTION [connection]

DECLARE CONNECTION, dm_is_connection

Application Development Guide, Chapter 12.

WITH ENGINE
engine

Description

Example

Variants

See Also

CLOSE CONNECTION

144 JAM 7.0 Database Guide

CLOSE CONNECTION
Closes a declared connection

DBMS CLOSE CONNECTION [connection]

Names the connection to be closed. If the connection name is not included, it
closes the connection on the default connection.

Executing DBMS CLOSE CONNECTION closes all open cursors associated with the
named or default connection, logs off the connection from its database engine, and
frees the connection data structure.

This procedure closes the error handler and
then closes the specified connection.

proc logoff
DBMS ONERROR
DBMS CLOSE CONNECTION c1
return

DECLARE CONNECTION, WITH CONNECTION, CLOSE_ALL_CONNECTIONS,
dm_is_connection

Application Development Guide, Chapter 12.

connection

Description

Example

See Also

CLOSE CURSOR

14511 DBMS Statements and CommandsChapter

CLOSE CURSOR
Closes a named or default cursor

DBMS CLOSE CURSOR [cursor]

DBMS WITH CONNECTION connection CLOSE CURSOR

Name of the cursor to be closed. If cursor is not listed, JAM closes the default
SELECT cursor.

Names the connection having the default cursor to be closed.

DBMS CLOSE CURSOR closes an open cursor. Closing a cursor frees all structures
associated with the cursor.

Closing a cursor is convenient way of turning off all attributes assigned to the
cursor with the DBMS commands ALIAS , CATQUERY, COLUMN_NAMES, FORMAT,
OCCUR, START, STORE FILE , TYPE, and UNIQUE.

If cursor is not given, JAM closes the default SELECT cursor. A connection may
also be specified when closing a default cursor. JAM will automatically declare
another default SELECT cursor when needed. A connection name should not be
given when closing a named cursor.

Closing a connection also closes all cursors associated with the connection.

Assign a catquery and aliases to the default SELECT
cursor. Close the cursor when finished.

DBMS CATQUERY TO FILE titlelist
DBMS ALIAS title_id ºTitle IDº, name ºTitleº,\

film_minutes ºLengthº, pricecat ºPrice Categoryº
DBMS SQL SELECT title_id, name, film_minutes, pricecat

FROM titles
DBMS CLOSE CURSOR

DECLARE CURSOR, EXECUTE, WITH CURSOR, CLOSE_ALL_CONNECTIONS, CLOSE
CONNECTION, dm_is_cursor

cursor

WITH CONNECTION
connection

Description

Example

See Also

COLUMN_NAMES

146 JAM 7.0 Database Guide

COLUMN_NAMES
Map column names into JAM variables using a SQL SELECT statement

DBMS [WITH CURSOR cursor] COLUMN_NAMES [jamvar [, jamvar ...]]

Name of the JAM variable to contain the column name.

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

DBMS COLUMN_NAMES fetches the column names, not the column data, into JAM
variables when a SQL SELECT statement is executed.

The correspondence between the JAM variable and the column is positional. The
first JAM variable named in the DBMS COLUMN_NAMES command will contain the
name of the first column listed in the SQL SELECT statement. If the number of
JAM variables is greater than the number of columns, the remaining JAM variables
will be ignored. If the number of columns is greater than the number of JAM
variables, the remaining columns are ignored.

If the SQL SELECT statement includes data which is not a column, like an
aggregate function, then the value written to the JAM variable is whatever is
returned from the database engine.

A JAM variable can be a JAM widget or JPL variable. If the JAM variable is an
array or multi-occurrence widget, the column name will appear in the first
occurrence unless a particular occurrence is specified.

Only one DBMS COLUMN_NAMES statement is allowed for each cursor. The last
DBMS COLUMN_NAMES statement called is the one currently in effect.

Column name aliasing for a cursor is turned off by executing the DBMS COL-
UMN_NAMES command with no arguments. Closing a cursor also turns it off. If a
cursor is redeclared without being closed, the cursor keeps the aliases.

jamvar

WITH CURSOR cursor

Description

COLUMN_NAMES

14711 DBMS Statements and CommandsChapter

Assign column name aliases for a declared cursor.
The column names are written to id_title, copy_title
and status_title.
The data is written is title_id, copy_num and status.

DBMS DECLARE x CURSOR FOR \
SELECT title_id, copy_num, status FROM tapes

DBMS WITH CURSOR x COLUMN_NAMES \
id_title, copy_title, status_title

DBMS WITH CURSOR x EXECUTE
DBMS WITH CURSOR x COLUMN_NAMES

Assign column name aliases for the default cursor

DBMS COLUMN_NAMES id_title, copy_title, status_title
DBMS SQL SELECT title_id, copy_num, status \

FROM tapes
DBMS COLUMN_NAMES

Example

CONNECTION

148 JAM 7.0 Database Guide

CONNECTION
Sets or changes the default connection

DBMS CONNECTION connection

Names the connection to set as the default.

If an application has declared two or more connections, the application may set a
default connection with DBMS CONNECTION. The default connection is used for all
subsequents statements that do not use a WITH CONNECTION or WITH CURSOR
clause.

con1 is set to be the default connection.
The INSERT statement has a WITH CONNECTION clause
using connection con2.
The SELECT statement uses the default connection.

DBMS ENGINE sybase
DBMS DECLARE con1 CONNECTION FOR USER º:unameº \

PASSWORD º:pwordº SERVER ºs1º DATABASE ºmasterº
DBMS DECLARE con2 CONNECTION FOR USER º:unameº \

PASSWORD º:pwordº SERVER ºs2º DATABASE ºvideobizº
DBMS CONNECTION con1
DBMS WITH CONNECTION con2 DECLARE c1 CURSOR FOR \

INSERT INTO tapes (title_id, copy_num, status) \
VALUES (::title_id, ::copy_num, ::status)

DBMS WITH CURSOR c1 EXECUTE USING title_id, copy_num, status
DBMS SELECT title_id, name FROM titles

CLOSE CONNECTION, DECLARE CONNECTION, WITH CONNECTION,
dm_is_connection

connection

Description

Example

See Also

CONTINUE

14911 DBMS Statements and CommandsChapter

CONTINUE
Fetches the next set of rows associated with a default or named SELECT cursor

DBMS [WITH CURSOR cursor] CONTINUE

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

If a SELECT statement retrieves more rows than will fit in its destination variables,
JAM will return only as many rows as will fit. It continues fetching more rows
from the select set when the application executes this command. If there are pend-
ing rows, executing this command clears the destination variables, and fetches the
next screenful of rows from the select set. If there are no pending rows, executing
this command does nothing.

Note that if the cursor's aliases have changed between the execution of the SELECT
and the execution of DBMS CONTINUE, DBMS CONTINUE uses the new settings.

This command should not be used with a CATQUERY TO FILE cursor. CATQUERY
TO FILE always writes out the entire select set to the CATQUERY file.

This procedure fetches the specified rows
and calls the JPL procedure check_count.

proc get_selection
DBMS DECLARE movie_list CURSOR FOR \

SELECT * FROM titles WHERE genre_code = ::genre_code
DBMS WITH CURSOR movie_list EXECUTE USING genre_code
call check_count
return

This procedure sets the message line according
to the number of rows available.

proc check_count
if @dmretcode != DM_NO_MORE_ROWS

msg setbkstat ºPress %KPF1 to see more films º \
ºor press %KPF2 to specify another type.º

else
msg setbkstat ºThat's all folks!º

return

WITH CURSOR cursor

Description

Example

CONTINUE

150 JAM 7.0 Database Guide

This procedure is called by pressing PF1.
It retrieves the next set of rows.

proc get_more
DBMS WITH CURSOR movie_list CONTINUE
call check_count
return

CONTINUE_DOWN, CONTINUE_BOTTOM, CONTINUE_TOP, CONTINUE_UP, STORESee Also

CONTINUE_BOTTOM

15111 DBMS Statements and CommandsChapter

CONTINUE_BOTTOM
Fetches the last page of rows associated with the default or named SELECT cursor

DBMS [WITH CURSOR cursor] CONTINUE_BOTTOM

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

DBMS CONTINUE_BOTTOM fetches the last screenful of rows from the cursor's
select set. If the number of rows in the select set is less than the number of occur-
rences in the JAM variables, JAM will ignore the request.

Some database engines automatically support this command. Other engines require
a temporary storage file created by the command DBMS STORE FILE . If JAM
returns the DM_BAD_CMD error when the application executes this command, the
engine needs a scrolling file. For information about a specific engine, refer to the
Database Drivers section of the documentation.

This command should not be used with a CATQUERY TO FILE cursor.

Engines not requiring STORE FILE.
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_last
DBMS WITH CURSOR t_cursor CONTINUE_BOTTOM
return

Engines requiring STORE FILE.
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_last
DBMS WITH CURSOR t_cursor CONTINUE_BOTTOM
return

CONTINUE, CONTINUE_DOWN, CONTINUE_TOP, CONTINUE_UP, STORE

WITH CURSOR cursor

Description

Example

See Also

CONTINUE _DOWN

152 JAM 7.0 Database Guide

CONTINUE _DOWN
Fetches the next set of rows associated with the default or named SELECT cursor

DBMS [WITH CURSOR cursor] CONTINUE_DOWN

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

DBMS CONTINUE_DOWN is identical to DBMS CONTINUE.

This procedure selects the rows from the table.

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

This procedure fetches the next set of rows.

proc get_more
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

CONTINUE, CONTINUE_BOTTOM, CONTINUE_TOP, CONTINUE_UP, STORE

WITH CURSOR cursor

Description

Example

See Also

CONTINUE_TOP

15311 DBMS Statements and CommandsChapter

CONTINUE_TOP
Fetches the first page of rows associated with the default or named SELECT cursor

DBMS [WITH CURSOR cursor] CONTINUE_TOP

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

DBMS CONTINUE_TOP fetches the first screenful of rows from the cursor's select
set. If the number of rows in the select set is less than the number of occurrences in
the JAM variables, JAM will ignore the request.

Some database engines automatically support this command. Other engines require
a temporary storage file created by the command DBMS STORE FILE . If the
engine needs such a file and the application tries to execute DBMS CONTINUE_TOP
without executing DBMS STORE, JAM returns the error DM_BAD_CMD. For
information about a specific engine, refer to the Database Drivers section of the
documentation.

Engines not requiring STORE FILE
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_to_start
DBMS WITH CURSOR t_cursor CONTINUE_TOP
return

Engines requiring STORE FILE
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_to_start
DBMS WITH CURSOR t_cursor CONTINUE_TOP
return

CONTINUE, CONTINUE_BOTTOM, CONTINUE_DOWN, CONTINUE_UP, STORE

WITH CURSOR cursor

Description

Example

See Also

CONTINUE_UP

154 JAM 7.0 Database Guide

CONTINUE_UP
Fetches the previous page of rows associated with the default or named SELECT
cursor

DBMS [WITH CURSOR cursor] CONTINUE_UP

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

DBMS CONTINUE_UP scrolls backwards through a select set. If number of rows in
the select set is less than the number of occurrences in the JAM variables, JAM
will ignore the request.

Some database engines automatically support this command. Other engines require
a temporary storage file created by the command DBMS STORE FILE . If the
engine needs such a file and the application tries to execute DBMS CONTINUE_UP
before executing DBMS STORE, JAM returns the error DM_BAD_CMD. For
information about a specific engine, refer to the Database Drivers section of the
documentation.

This command should not be used with a CATQUERY TO FILE cursor.

Engines not requiring STORE FILE
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_back
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

WITH CURSOR cursor

Description

Example

CONTINUE_UP

15511 DBMS Statements and CommandsChapter

Engines requiring STORE FILE
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM title
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_back
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

CONTINUE, CONTINUE_BOTTOM, CONTINUE_DOWN, CONTINUE_TOP, STORESee Also

DECLARE CONNECTION

156 JAM 7.0 Database Guide

DECLARE CONNECTION
Creates a named connection to a database engine

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR option arg ...]

Names the engine to associate with the connection. If the clause is not used, JAM
opens the connection on the default engine.

Names the connection to be opened.

Names an option for the connection. The names and number of available options is
engine-specific.

The value assigned to the option.

DBMS DECLARE CONNECTION opens a session on a database engine. If this state-
ment executes successfully, it allocates a connection structure and adds it to the list
of open structures.

Applications which must connect to two or more servers should declare a named
connection to each server. If you are connecting to two or more database engines,
you must declare a connection for each engine.

The combination of necessary or supported options is engine-specific. Common
options include USER, PASSWORD, DATABASE, and SERVER. For a list of the valid
options, refer to the Database Drivers section of the documentation.

The connection remains open until it is closed with DBMS CLOSE CONNECTION or
DBMS CLOSE_ALL_CONNECTIONS.

This procedure connects to the database.
#
proc logon
DBMS DECLARE c1 CONNECTION FOR USER º:userº

PASSWORD º:pwordº DATABASE º:dbaseº
return

CLOSE CONNECTION, CLOSE_ALL_CONNECTIONS, CONNECTION, WITH
CONNECTION, dm_is_connection

Database Drivers section.

WITH ENGINE
engine

connection

option

arg

Description

Example

See Also

DECLARE CURSOR

15711 DBMS Statements and CommandsChapter

DECLARE CURSOR
Declares a named cursor for a DBMS SQL statement

DBMS [WITH CONNECTION connection] DECLARE cursor CURSOR \
FOR SQL-statement

Names the connection to associate with the cursor. If the clause is not used, JAM
opens the cursor on the default connection.

Names the cursor to be created.

The SQL statement to be performed when the cursor is executed.

Use DBMS DECLARE CURSOR to create or redeclare a named cursor.

If the application has not already declared cursor, JAM allocates a new cursor
structure and adds its name to the list of declared cursors.

If a structure already exists for cursor and the connection is the same, JAM
reinitializes the structure. Re-initialization clears any information on SELECT
columns and binding parameters. It does not clear any attributes assigned to the
cursor with the statements:

� DBMS ALIAS

� DBMS CATQUERY

� DBMS COLUMN_NAMES

� DBMS FORMAT

� DBMS OCCUR

� DBMS START

� DBMS STORE FILE

� DBMS TYPE

� DBMS UNIQUE

WITH CONNECTION
connection

cursor

SQL-statement

Description

DECLARE CURSOR

158 JAM 7.0 Database Guide

JAM will use these settings if the cursor is redeclared with a SELECT statement. It
will ignore the attributes if the cursor is redeclared with an INSERT, UPDATE, or
DELETE statement. To redeclare the cursor with a new (empty) structure, close the
cursor with DBMS CLOSE CURSOR before executing the new declaration.

If a cursor is redeclared on another connection, JAM automatically closes the
cursor and declares a new structure.

The cursor remains open until it is explicitly closed with the command DBMS
CLOSE CURSOR. Closing a connection also closes all cursors on the connection.

There are few restrictions on valid cursor names. However, you should avoid using
any DBMS, JDB, or JAM keyword as a cursor name. Please note that JAM is case
sensitive regarding cursor names; for example, it interprets cursor c1 as distinct
from cursor C1.

For information on the format of parameters in the SQL statement, refer to
Chapters 13 and 15 in the Application Development Guide.

When the following statement is executed, it fetches
a list of actors in the specified video.

proc s_entry
DBMS WITH CONNECTION c1 DECLARE act_cursor CURSOR FOR \

SELECT actors.first_name, actors.last_name, roles.role \
FROM actors, roles \
WHERE actors.actor_id = roles.actor_id \
AND roles.title_id = ::film_code

�
�
�

proc exec1
DBMS WITH CURSOR t_cursor EXECUTE USING film_code
return

CLOSE CURSOR, EXECUTE, WITH CURSOR, dm_is_cursor

Example

See Also

ENGINE

15911 DBMS Statements and CommandsChapter

ENGINE
Sets or changes the default database engine

DBMS ENGINE engine

Names the default database engine when two or more engines are initialized.
engine is the mnemonic assigned to the database engine in the file dbiinit.c or
in JAM7.INI .

If an application has initialized two or more database engines, the application may
use DBMS ENGINE to set a default engine. If an application has only one initialized
engine, JAM automatically assigns that engine as the default.

For more information on initializing database engines, refer to Chapter 11 in the
Application Development Guide.

This procedure declares two connections,
sets oracle to be the default engine, and
then declares and executes a cursor on the
default engine.

proc entry
DBMS WITH ENGINE oracle DECLARE c1 CONNECTION FOR \

USER º:userº PASSWORD º:pwordº
DBMS WITH ENGINE sybase DECLARE c2 CONNECTION FOR \

USER º:userº PASSWORD º:pwordº SERVER ºmapleº \
DATABASE ºsalesº

DBMS ENGINE oracle
DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

WITH ENGINE, dm_is_engine

engine

Description

Example

See Also

EXECUTE

160 JAM 7.0 Database Guide

EXECUTE
Executes the DBMS SQL statement declared for a named cursor

DBMS WITH CURSOR cursor EXECUTE [USING args]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

The JAM variables containing parameter values.

Use DBMS EXECUTE to execute the statement associated with a declared cursor.

This statement does not support the WITH CONNECTION clause. JAM uses the
database engine that was specified either by name or by default when the cursor
was declared. The only way to change the cursor's engine or connection is to
redeclare the cursor.

If an application is executing a similar statement many times, it is often more
efficient to declare a cursor for the statement. Usually the database engine saves
the parsed statement, executing it when the application executes the cursor. It is not
necessary to redeclare the cursor to supply new data for a WHERE or VALUES
clause. Instead, the application may declare the cursor and use a substitution
parameter for each value that the application will supply when it executes the
cursor. Substitution parameters begin with a double colon (::). For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM titles WHERE name LIKE ::name_parm

name_parm is simply a place holder for the value that will be supplied when the
cursor is executed. For example:

DBMS WITH CURSOR c1 EXECUTE USING ºSt%º

This command would fetch rows where name began with the characters ªSt.º The
application could execute the cursor repeatedly, each time with a new value. It may
use the value of a field to supply a value. For example:

DBMS WITH CURSOR c1 EXECUTE USING aname

WITH CURSOR cursor

args

Description

EXECUTE

16111 DBMS Statements and CommandsChapter

Since aname is not quoted, JAM assumes it is a JAM variable. If an argument in
the USING clause is a widget or LDB variable with a date-time, currency, null field,
or type edit, JAM formats the variable's value before passing it to the database
engine.

This topic is covered in detail in Chapter 15 of the Application Development
Guide.

DBMS DECLARE x CURSOR FOR \
SELECT * FROM tapes WHERE title_id=::p1 AND copy_num=::p2

bind by position:

DBMS WITH CURSOR x EXECUTE USING code, copy_id

or bind by name:

DBMS WITH CURSOR x EXECUTE \
USING p1 = code, p2 = copy_id

DECLARE CURSOR, CLOSE CURSOR, CONTINUE, WITH CURSOR

Application Development Guide, Chapter 15.

Example

See Also

FORMAT

162 JAM 7.0 Database Guide

FORMAT
Formats CATQUERY values

DBMS [WITH CURSOR cursor] FORMAT [[column] format \
[, [column] format ...]]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Names a selected column. The case of column should match the setting of the case
flag for the database engine. If columns are not named, the formats are applied by
position.

Describes how JAM should format the value. format is either a JAM variable or a
quoted precision edit.

Use DBMS FORMAT to format CATQUERY values before writing them to a variable
or a text file. The options are explained below.

If format is a JAM variable, JAM formats the column value as if it were writing to
the field. In particular, the following characteristics will affect the formatting:

� variable's maximum shifting length

� variable's JAM type

For more information about formatting select results, refer to page 234 in the
Application Development Guide.

format may also be a precision edit. A precision edit is a quoted string beginning
with a percent sign. It supplies the length of the value, and optionally, a decimal
precision for numeric values.

 A precision is given in the form

º%widthº

º%width.precisionº

To turn off formatting on the default or named cursor, execute the command with
no arguments.

WITH CURSOR cursor

column

format

Description

FORMAT

16311 DBMS Statements and CommandsChapter

use column ºtitle_idº and ºcopy_numº exactly as returned
format column ºdue_backº with the LDB variable ºtodayº,
format column ºpriceº to width 5 with 2 decimal places
format column ºrental_commentº to width 25 and truncate,

proc tapes_due
DBMS CATQUERY TO FILE rentlist
DBMS FORMAT due_back today, price º%5.2º, \

rental_comment º%25º
DBMS SQL SELECT title_id, copy_num, due_back, price, \

rental_comment FROM rentals
return

Example

OCCUR

164 JAM 7.0 Database Guide

OCCUR
Changes the behavior of a SELECT cursor that writes to JAM arrays

DBMS [WITH CURSOR cursor] OCCUR occ-int [MAX int]

DBMS [WITH CURSOR cursor] OCCUR CURRENT [MAX int]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Specifies the occurrence number where JAM should begin placing SELECT results.

Specifies that JAM should use the occurrence number of the ªcurrentº field. JAM
begins writing at this occurrence number in the target arrays. Note that the current
field is the one containing the JAM screen cursor and is not necessarily a target
variable.

Specifies the maximum number of rows to fetch for a SELECT or CONTINUE. If int
is less than 1, no rows are fetched.

By default, if the destination of a SELECT is one or more arrays, JAM fetches as
many rows as will fit in the arrays and begins writing at the first occurrence in the
arrays. DBMS OCCUR changes this default behavior for a SELECT cursor.

The setting is turned off by executing the DBMS OCCUR command with no
arguments. Closing a cursor also turns off the setting. If a cursor is redeclared
without being closed, the cursor continues to use the setting for SELECT statements
and CONTINUE commands.

DBMS OCCUR is ignored with a CATQUERY cursor.

When executed, this procedure starts writing
the result set at the current occurrence.

proc select_type
DBMS DECLARE genre_cursor CURSOR FOR \

SELECT * FROM titles WHERE genre_code = :+code
DBMS WITH CURSOR title_cursor OCCUR CURRENT
DBMS WITH CURSOR title_cursor EXECUTE
return

WITH CURSOR

WITH CURSOR cursor

occ-int

CURRENT

MAX int

Description

Example

See Also

ONENTRY

16511 DBMS Statements and CommandsChapter

ONENTRY
Installs an entry function

DBMS ONENTRY CALL function

DBMS ONENTRY JPL jpl-entry-point

Name of a prototyped function.

Name of a JPL procedure.

Use this command to install a function or JPL procedure which JAM will call
before it executes a DBMS statement.

Currently, this function is for informational purposes only. For instance, you may
wish to log statements to a text file before executing them. You may use this
function with an exit handler to track the start and complete time for a query or any
other database operation.

The function is passed three arguments:

1. A copy of the first 255 characters of the statement; if the statement was
executed from JPL, this is the first 255 characters after the command word
DBMS SQL or DBMS.

2. The name of the database engine for the statement.

3. Context flag; for the entry handler its value is 0.

The function's return code is not used.

function

jpl-entry-point

Description

ONENTRY

166 JAM 7.0 Database Guide

The following sample function logs the current statement in a
text file.

/* This function is installed as a prototyped function.*/
/* It writes the current time, name of the current */
/* engine, and the command which JAM will execute */
/* to a file called dbi.log. */

/* dbms ONENTRY CALL dbientry */

#include ºsmdefs.hº

int
dbientry (stmt, engine, flag)
char *stmt;
char *engine;
int flag;
{

FILE *fp;
time_t timeval;

fp = fopen (ºdbi.logº, ºaº);
timeval = time(NULL)
fprintf (fp, º%s\n%s\n%s\n\nº,

ctime(&timeval), engine, stmt);
fclose (fp);
return 0;

}

This sample function displays a message before performing any database
operations.

dbms ONENTRY JPL entrymsg

proc entrymsg
msg setbkstat ºProcessing. Please be patient...º
flush
return 0

ONEXIT

Application Development Guide, Chapter 16.

Example

See Also

ONERROR

16711 DBMS Statements and CommandsChapter

ONERROR
Sets the behavior of the error handler

DBMS ONERROR CALL function

DBMS ONERROR CONTINUE

DBMS ONERROR JPL jpl-entry-point

DBMS ONERROR STOP

These commands install a user function as the error handler. If JAM or the
database engine find an error, JAM updates the global error and status variables
(the @dm variables) and calls the installed function.

Name of a prototyped C function.

Name of a JPL procedure.

This command prevents the default error handler from aborting a JPL procedure
where a JAM error occurs. Message display is not changed.

This command restores the default error handler.

Use this command to set or change the behavior of the JAM database error handler
for the application. The default error handler displays the following:

� Statement which caused the error.

� Source of the message. If the database engine generated the message, only the
engine name is listed. If JAM's database driver generated the message,
database interface is listed along with the engine name.

� Error code number from JAM's database driver or from the database engine.

� Error message from JAM's database driver or from the database engine.

If an error occurs while executing a JPL procedure, the default handler aborts the
procedure, returning ±1 to the calling procedure.

An application may override the default error handler with the command DBMS
ONERROR and an argument. Please note that the error handler is global to the
application. Each execution of this command overrides the previous error handler.

ONERROR CALL
ONERROR JPL

function

jpl-entry-point

ONERROR CONTINUE

ONERROR STOP

Description

ONERROR

168 JAM 7.0 Database Guide

The function displays any error messages and its return code controls whether or
not JPL execution is aborted.

The function is passed three arguments:

1. The first 255 characters of the statement; if the statement was executed from
JPL, this is the first 255 characters after the command word DBMS SQL or
DBMS.

2. The name of the database engine for the attempted statement.

3. Context flag; for the error handler its value is 2.

The function's return code is returned to the application. Note that if an ONEXIT
function and an ONERROR function are both installed, the return code from the
ONERROR function takes precedence.

If the error occurred while executing a JPL statement with a DBMS command:

� 0 returns control to the JPL procedure where the error occurred

� 1 aborts the JPL procedure where the error occurred and returns 1 to the
procedure's caller (either JAM or another JPL procedure)

If the error occurred while executing a statement with the dm_dbms library
function, the function returns the error handler's return code.

To use a C function as an error handler, you must first install the function as a
prototyped function. Refer to Chapter 8 in the Application Development Guide for
more information on prototyped function.

#This example shows an error handler installed in JPL.

proc entry
DBMS ONERROR JPL dbi_err
return

proc dbi_err (stmt, engine)
if @dmengerrcode == 0

msg emsg stmt º%Nº ºJAM error: º @dmretmsg
else

msg emsg stmt º%Nº ºJAM error: º @dmretmsg º%Nº\
º:engine error: º @dmengerrcode º º @dmengerrmsg

return

The next example first checks to see if the JAM error is DM_ALREADY_ON. In this
case, it simply displays a message and returns 0. For all other errors, it checks for
an engine error code. If there is an engine error, it calls another subroutine to check

Example

ONERROR

16911 DBMS Statements and CommandsChapter

for engine-specific errors. For any other errors, it displays the standard JAM
message.

proc entry
DBMS ONERROR JPL dbi_error_handler
return

proc dbi_error_handler (stmt, engine, flag)

if (@dmretcode == DM_ALREADY_ON)
{

msg emsg ºYou are already logged on.º
return 0

}

if (@dmengerrcode != 0)
{

msg emsg @dmretmsg
call engine_errors (engine)

}
else
{

msg emsg ºApplication Error: º \
@dmretmsg \
ºSee the DBA for assistance.º

}

return 1

proc engine_errors (engine_name)
if engine_name == ºxyzdbº
...

Examine DBMS error codes here.

ONEXIT

Application Development Guide, Chapter 16.

Database Guide, Chapter 12.

See Also

ONEXIT

170 JAM 7.0 Database Guide

ONEXIT
Installs an exit handler

DBMS ONEXIT CALL function

DBMS ONEXIT JPL jpl-entry-point

Name of a prototyped C function.

Name of a JPL procedure.

Use this command to install a function which JAM will call after executing a DBMS
command from JPL or C. You may use this function to process error and status
codes after every command.

Installing an ONEXIT function will override the default error handler. Please note
that the exit handler is global to the application. Each execution of this command
overrides the previous exit handler.

The function is passed three arguments:

1. The first 255 characters of the statement. If the statement was executed from
JPL, this is the first 255 characters after the command word DBMS SQL or
DBMS.

2. The name of the database engine for the attempted statement.

3. Context flag; for the exit handler its value is 1.

The function's return code is returned to the application. Note that if an ONEXIT
function and an ONERROR function are both installed, the return code from the
ONERROR function takes precedence.

If an error occurred while executing a JPL statement with a DBMS command and
there is no ONEXIT function, then

� 0 returns control to the JPL procedure where the error occurred.

� 1 aborts the JPL procedure where the error occurred and returns 1 to the
procedure's caller (either JAM or another JPL procedure).

function

jpl-entry-point

Description

ONEXIT

17111 DBMS Statements and CommandsChapter

If the error occurred while executing a statement with the dm_dbms library
function and there is an ONEXIT function, the function returns the exit handler's
return code.

To use a C function as an exit handler, you must first install the function as a
prototyped function. For more information, refer to Chapter 16 in the Application
Development Guide.

#This JPL example processes warnings from the
database engine.

proc entry
DBMS ONEXIT JPL dbi_warn
return

proc dbi_warn (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg stmt º%Nº ºError: º @dmretmsg
else

msg emsg stmt º%Nº ºError: º @dmretmsg º%Nº\
º:engine error: º @dmengwarncode º º @dmengwarnmsg

return

ONENTRY, ONERROR

Application Development Guide, Chapter 16.

Database Guide, Chapter 12.

Example

See Also

SQL

172 JAM 7.0 Database Guide

SQL
Specifies a SQL statement to be sent to the database engine for processing

DBMS [WITH CONNECTION connection] SQL SQL-statement

Names the connection to associate with the statement. If the clause is not used,
JAM issues the statement on the default connection.

The SQL statement to be sent to the database engine. The syntax of the statement
can be the format needed by your database engine.

DBMS SQL sends the specified statement to the database engine for execution after
colon expansion is performed. If a connection is not specified, JAM uses the
default cursor on the default connection.

SQL-statement can be in the format needed by your database engine. This allows
you to access all the features of your database engine.

DBMS SQL SELECT title_id, name, dir_first_name, \
dir_last_name FROM titles

DBMS SQL INSERT INTO actors \
(actor_id, last_name, first_name) VALUES \
(:+actor_id, :+last_name, :+first_name)

WITH CONNECTION
connection

SQL-statement

Description

Example

START

17311 DBMS Statements and CommandsChapter

START
Specifies a starting row in a SELECT set

DBMS [WITH CURSOR cursor] START [int]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Specifies a number indicating the row at which to begin the fetch.

By default, when a select set contains more than one row, JAM fetches them
sequentially beginning with the first row in the select set. Use DBMS START to
begin fetching at row int. JAM will read and discard int ± 1 rows from the select set
before returning the requested rows to the application. If the application is counting
the rows fetched, the discarded rows do not update @dmrowcount . If int is greater
than the number of rows in the select set, no rows are displayed.

The setting is turned off by executing DBMS START with no arguments. Closing a
cursor also turns off the setting. If a cursor is redeclared without being closed, the
cursor continues to use the setting for SELECT statements.

proc discard_100
DBMS START 100
DBMS SQL SELECT * FROM actors
if @dmrowcount == 0

msg emsg ºThere are less than 100 rows.º
DBMS START
return

WITH CURSOR

WITH CURSOR cursor

int

Description

Example

See Also

STORE

174 JAM 7.0 Database Guide

STORE
Sets up a continuation file for a named or default cursor

DBMS [WITH CURSOR cursor] STORE [FILE [filename]]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Specifies the name of a temporary binary file.

When this command is used with a SELECT cursor, JAM maintains a copy of the
result rows in a temporary binary file. The use of a file permits an application to
scroll forward and backward in a select set, even if the database has no native sup-
port for backward scrolling.

A continuation file remains open for the life of the cursor, or until the feature is
turned off with the command,

DBMS [WITH CURSOR cursor] STORE

Executing the command without the keyword FILE closes and deletes the file and
turns off the feature for the named or default cursor. Closing the cursor also closes
and deletes the file. If a cursor is not closed but simply redeclared for another
SELECT statement, the file is cleared. Therefore, a continuation file holds the
results of one SELECT statement only.

The use of a continuation file does not force the database engine to return the entire
select set when the SELECT is executed. In its usual manner, JAM examines the
number of occurrences in the destination variable to determine the number of rows
to fetch. Each time it fetches rows from the database engine by executing the
SELECT or a DBMS CONTINUE, JAM updates the screen and appends the new data
to the continuation file. If the application wishes to see rows already fetched, JAM
uses the continuation file to get the rows and update the screen. If JAM reaches the
end of the continuation file and the application executes another DBMS CONTINUE,
JAM will attempt to get more rows from the database engine. When the engine
returns the no-more-rows code, JAM sets @dmretcode to the value of
DM_NO_MORE_ROWS. Similarly, if the application attempts to scroll back past the
first row in the continuation file, JAM sets @dmretcode to DM_NO_MORE_ROWS.
Write errors are not reported.

WITH CURSOR cursor

filename

Description

STORE

17511 DBMS Statements and CommandsChapter

This command provides several advantages:

� A means for displaying very large select sets without keeping all rows in
memory at once.

� Better response time for very large select sets; since fetches are incremental, it
is not necessary to get the entire select set at once.

� A means for forcing an database engine to release a shared lock on a large
select set.

For information on engine-specific scrolling issues, refer to the Database Drivers
section of the documentation.

This example shows the use of STORE FILE with
JPL procedures to fetch more rows.

proc title_select
DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_next
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

proc get_previous
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

This example illustrates how to use STORE FILE and
how to map keys in order to fetch more rows.

proc select_titles
DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

This procedure is called on screen entry.
proc entry (name, flag)
if (flag & K_ENTRY)
{

call sm_keyoption (SPGD, KEY_XLATE, APP1)
call sm_keyoption (SPGU, KEY_XLATE, APP2)

}
...
return

Example

STORE

176 JAM 7.0 Database Guide

#This procedure is called on screen exit.
proc exit (name, flag)
if (flag & K_EXIT)
{

call sm_keyoption (SPGU, KEY_XLATE, SPGU)
call sm_keyoption (SPGD, KEY_XLATE, SPGD)

}
...
return

proc scroll_up
Control strings contains:
APP1 = ^scroll_up
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down
Control strings contains:
APP2 = ^scroll_down
DBMS WITH CURSOR t_cursor CONTINUE
return

CONTINUE_BOTTOM, CONTINUE_TOP, CONTINUE_UPSee Also

UNIQUE

17711 DBMS Statements and CommandsChapter

UNIQUE
Suppresses repeating values in selected columns

DBMS [WITH CURSOR cursor] UNIQUE column [, column ...]

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor.

Specifies a column name in the SELECT statement.

UNIQUE suppresses repeating values in each named column of a select set when the
values are in adjacent rows. Typically, this feature is set for a column named in an
ORDER BY clause.

If the destination variable has a null edit, an occurrence containing a suppressed
value is blank, not null.

The setting is turned off by executing the DBMS UNIQUE command with no
arguments. Closing a cursor also turns off the setting. If a cursor is redeclared
without being closed, the cursor continues to use to the setting for SELECT
statements and CONTINUE commands.

Since several titles may be rented to the same customer,
suppress repeating customer numbers when listing
outstanding rentals.

proc rent_list
DBMS DECLARE rent_cursor CURSOR FOR \

SELECT cust_id, title_id, copy_num, due_back FROM rentals
WHERE due_back < today \
ORDER BY cust_id

DBMS WITH CURSOR rent_cursor UNIQUE cust_id
DBMS WITH CURSOR rent_cursor EXECUTE
DBMS WITH CURSOR rent_cursor UNIQUE
return

WITH CURSOR

WITH CURSOR cursor

column

Description

Example

See Also

WITH CONNECTION

178 JAM 7.0 Database Guide

WITH CONNECTION
Uses a named connection for the duration of a statement

DBMS WITH CONNECTION connection DBMS-statement...

This clause specifies a connection for the execution of the command, overriding
the default connection. connection must be declared and open. Colon expansion on
the connection name is allowed.

Text of the DBMS command.

The most frequent use of this clause is in a DECLARE CURSOR statement.

DBMS WITH CONNECTION connection DECLARE cursor CURSOR...

Once a cursor is declared it remains associated with the connection on which it was
declared. After declaring the cursor, the WITH CONNECTION clause should not be
used in statements that manipulate the cursor. However, the WITH CONNECTION
clause may be used on statements that manipulate the default cursor on any
declared connection. Therefore, the following commands

DBMS WITH CONNECTION connection ALIAS ...
DBMS WITH CONNECTION connection CATQUERY ...
DBMS WITH CONNECTION connection CLOSE CURSOR
DBMS WITH CONNECTION connection COLUMN_NAMES
DBMS WITH CONNECTION connection CONTINUE
DBMS WITH CONNECTION connection CONTINUE_BOTTOM
DBMS WITH CONNECTION connection CONTINUE_TOP
DBMS WITH CONNECTION connection CONTINUE_UP
DBMS WITH CONNECTION connection FORMAT ...
DBMS WITH CONNECTION connection OCCUR ...
DBMS WITH CONNECTION connection SQL ...
DBMS WITH CONNECTION connection START ...
DBMS WITH CONNECTION connection STORE ...
DBMS WITH CONNECTION connection UNIQUE ...

perform the request on the default SELECT cursor on the named connection.

Some engine-specific DBMS commands may also support the WITH CONNECTION
clause. For more information, refer to the Database Drivers section of the
documentation.

WITH CONNECTION
connection

DBMS-statement

Description

WITH CONNECTION

17911 DBMS Statements and CommandsChapter

This example performs a commit before closing the
connection.

proc cleanup (connection)
DBMS WITH CONNECTION :connection COMMIT
DBMS CLOSE CONNECTION :connection
return 0

CONNECTION, CLOSE_ALL_CONNECTIONS, CLOSE CONNECTION, DECLARE
CONNECTION, WITH CURSOR, WITH ENGINE, dm_is_connection

Database Drivers section.

Example

See Also

WITH CURSOR

180 JAM 7.0 Database Guide

WITH CURSOR
Uses a named cursor for the duration of a statement

DBMS WITH CURSOR cursor DBMS±statement

Names a declared SELECT cursor. If the clause is not used, JAM uses the default
SELECT cursor. Colon expansion of the cursor name is allowed.

Text of the DBMS command.

This clause specifies the name of a declared cursor on which JAM will execute the
DBMS command. Once a cursor has been declared, the application may manipulate
or execute the cursor by using the WITH CURSOR clause in the following com-
mands:

DBMS WITH CURSOR cursor ALIAS ...
DBMS WITH CURSOR cursor CATQUERY ...
DBMS WITH CURSOR cursor COLUMN_NAMES
DBMS WITH CURSOR cursor CONTINUE
DBMS WITH CURSOR cursor CONTINUE_BOTTOM
DBMS WITH CURSOR cursor CONTINUE_TOP
DBMS WITH CURSOR cursor CONTINUE_UP
DBMS WITH CURSOR cursor EXECUTE ...
DBMS WITH CURSOR cursor FORMAT ...
DBMS WITH CURSOR cursor OCCUR ...
DBMS WITH CURSOR cursor START ...
DBMS WITH CURSOR cursor STORE ...
DBMS WITH CURSOR cursor UNIQUE ...

If the WITH CURSOR clause is not used with these commands, JAM uses the
default SELECT cursor. The application may also manipulate the default cursor by
using the WITH CONNECTION clause.

Some engine-specific DBMS commands may also support the WITH CURSOR clause.
For more information, refer to the Database Drivers section of the documentation.

WITH CURSOR cursor

DBMS-statement

Description

WITH CURSOR

18111 DBMS Statements and CommandsChapter

This example uses colon expansion on the cursor name
to remove the command attributes for named cursors.

proc cursor_refresh (cursor_name)
DBMS WITH CURSOR :cursor_name ALIAS
DBMS WITH CURSOR :cursor_name CATQUERY
return 0

DECLARE CURSOR, CLOSE CURSOR, WITH CONNECTION, dm_is_cursor

Database Drivers section.

Example

See Also

WITH ENGINE

182 JAM 7.0 Database Guide

WITH ENGINE
Uses a named database engine for the duration of a statement

DBMS WITH ENGINE engine command...

Names the engine to associate with the command. If the clause is not specified,
JAM uses the default engine.

The mnemonic associated with the engine when you make your JAM executables.
The engine must be initialized when the command is executed. Colon expansion of
the engine name is allowed.

Text of the DBMS command.

This clause specifies which database engine JAM should use when executing a
command. If only one database engine is initialized, that engine is automatically
the default. An application using two or more engines may set the default engine
with the DBMS ENGINE command.

The following commands accept an optional WITH ENGINE clause:

DBMS WITH ENGINE engine DECLARE connection CONNECTION ...
DBMS WITH ENGINE engine CLOSE_ALL_CONNECTIONS

Once a connection is declared, it remains associated with the database engine on
which it was declared. After declaring the connection, the WITH ENGINE clause is
no longer necessary or valid in any statement except for DBMS_CLOSE_ALL_CON-
NECTIONS which allows you to close the connections for the default or named
engine.

ENGINE, WITH CONNECTION, WITH CURSOR, dm_is_engine

Application Development Guide, Chapter 12.

WITH ENGINE

engine

command

Description

See Also

183

DBMS Global
Variables

This chapter summarizes and categorizes the global variables available in JAM's
database drivers.

Variable Overview

The global variables available through JAM's database drivers are automatically
defined at initialization. All the global variable names used in the database drivers
begin with the characters @dm. Since the character @ is not permitted in user-de-
fined JAM variables, these variables will never conflict with any screen, LDB or
JPL variables defined by your application.

These variables and their values are available to JPL commands and to JAM
library functions like sm_getfield and sm_fptr .

The variables are automatically maintained by JAM. Before executing a DBMS
command, JAM clears the contents of all its global variables. After executing the
command and before returning control to the application, JAM updates the
variables to indicate the current status.

1212

184 JAM 7.0 Database Guide

Error Data

Variable Description

@dmretcode Error code from JAM's database driver. Codes are
the same for all engines.

@dmretmsg Error message from JAM's database driver. Mes-
sages are the same for all engines.

@dmengerrcode Engine error code. Codes are unique to the engine.

@dmengerrmsg Engine error message. Messages are unique to the
engine. Some engines do not supply messages.

Status Data

Variable Description

@dmretcode Status code available for ªno more rowsº or ªend of
procedure.º

@dmretmsg Status message available for ªno more rowsº or ªend
of procedure.º

@dmengreturn Engine return code from a stored procedure. Not
used by all engines.

@dmrowcount Count of the number of rows fetched to JAM by the
last SELECT or CONTINUE. Used by all engines.

@dmserial A serial value returned after inserting a row into a
table with a serial column. Not used by all engines.

@dmengwarncode A code or byte signalling a non-fatal error or unusual
condition. Not used by all engines.

@dmengwarnmsg A message corresponding to an engine warning code.
Not used by all engines.

Variable Reference

The rest of this chapter contains a reference page for each global variable, listed in
alphabetical order. Since some variables store engine-specific values, additional
information is provided in the Database Drivers section of the documentation.

18512 DBMS Global VariablesChapter

Each reference page has the following sections:

� A description of the variable.

� A list of related variables and commands.

� An example.

For more information on using the global variables as part of your error proces-
sing, refer to Chapter 16 in the Application Development Guide.

@dmengerrcode

186 JAM 7.0 Database Guide

@dmengerrcode
Contains an engine-specific error code

@dmengerrcode is set to 0 before executing a DBMS command. If the database
engine detects an error, JAM writes the engine's error code to this variable. In
cases where the database engine generates multiple error codes for one statement,
@dmengerrcode is an array, and each error code is written to a different occur-
rence.

Note that a 0 value in this variable does not guarantee that the last statement
executed without error. Some errors are detected by JAM's database driver before a
request is made to the engine. For example, if an application attempts a SELECT
before declaring a connection, JAM detects the error. Use the global variable
@dmretcode to check for errors in JAM's database drivers.

Because the value of @dmengerrcode is engine-specific, it is strongly recom-
mended that you install an error handler to test for these errors. In a multi-engine
application, the error handler may call another function to do this.

If the default error handler is in use, JAM displays the statement which failed and
an error message from either JAM's database driver or from the database engine. If
the application has installed its own error handler, the installed function controls
what messages are displayed.

Refer to the Database Drivers section for more information about the codes for a
particular engine.

proc dbi_errhandle (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg @dmretmsg
else if engine == ºxyzdbº

call xyzerror (@dmengerrcode)
else if engine == ºoracleº

call oraerror (@dmengerrcode)
else

msg emsg ºUnknown engine.º
return 1

Description

Example

@dmengerrcode

18712 DBMS Global VariablesChapter

proc xyzerror (error)
Check for specific xyzdb error codes.
if error == 90931

msg emsg ºInvalid user name.º
else if error == ...

...
else

msg emsg @dmengerrmsg
return

ONERROR, @dmengerrmsg, @dmretcode , @dmretmsgSee Also

@dmengerrmsg

188 JAM 7.0 Database Guide

@dmengerrmsg
Contains an engine-specific error message

@dmengerrmsg is set to 0 before executing a DBMS command. If the database en-
gine returns an error message after attempting to execute the command, JAM
writes the message to this variable. In cases where the database engine generates
multiple error messages for one command, @dmengerrmsg is an array, and each
error message is written to a different occurrence.

If @dmengerrcode is 0, this variable contains no message. This variable will also
be blank if the engine does not supply error messages.

Refer to the Database Drivers section for more information about the availability
of this variable.

proc dbi_errhandle (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg @dmretmsg
else

msg emsg @dmretmsg º%Nº @dmengerrmsg
return 1

ONERROR, @dmengerrcode , @dmretcode , @dmretmsg

Description

Example

See Also

@dmengreturn

18912 DBMS Global VariablesChapter

@dmengreturn
Contains a return code from a stored procedure

If your engine supports stored procedures and stored procedure return codes, use
@dmengreturn to get a procedure's return or status code.

By default, JAM will pause the execution of a stored procedure if the procedure
executes a SELECT statement and the number of rows in the select set is greater
than the number of occurrences in the JAM destination variables. The application
must execute DBMS CONTINUE or DBMS NEXT to resume execution. If the value of
@dmengreturn is null after calling a stored procedure, the procedure may be
pending. If the engine has completed the execution of the procedure, @dmretcode
will contain the DM_END_OF_PROC code and @dmengreturn will contain the
procedure's return code.

Note that the value of this variable will be cleared once another DBMS command is
executed. If the application needs this value for a longer period of time, it should
copy it to a standard JAM variable or some other static location.

Since database engines implement stored procedures differently, more information
and examples are found in the Database Drivers section of the documentation.

This is an example of a SYBASE stored procedure:
create proc checkid @id int as
if (SELECT COUNT (*) FROM titles WHERE title_id = @id) = 1
return 1
else
return 2

DBMS SQL EXEC checkid :+title_id
if @dmengreturn == 1

call addrow
else if @dmengreturn == 2

msg emsg ºSorry, º title_id º is not a valid code.º
return

proc addrow
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, 'O', 0)
return

NEXT, SET, @dmretcode , @dmretmsg

Database Drivers section.

Description

Example

See Also

@dmengwarncode

190 JAM 7.0 Database Guide

@dmengwarncode
Contains an engine-specific warning code

Most engines supply a mechanism for signalling an unusual, but non-fatal condi-
tion.

Some engines use an eight-element array. If there is a warning, it sets the first
element to indicate a warning and then sets one or more additional elements to
describe the warning. Other engines use codes and messages similar to those used
for errors. Those of a high severity are handled as errors and those of a low
severity are handled as warnings. Please consult the Database Drivers section for
information about your engine and for an example.

By default, JAM ignores warnings. If an application needs to alert users to warning
codes, it must use a JPL or C function to check for them. There is no default
warning handler. The most efficient way to process warning codes is with an
installed exit handler using DBMS ONEXIT

ONEXIT, @dmengwarnmsg

Database Drivers section.

Description

See Also

@dmengwarnmsg

19112 DBMS Global VariablesChapter

@dmengwarnmsg
Contains an engine-specific warning message

Most engines supply a mechanism for signalling an unusual, but non-fatal condi-
tion. Some engines uses a warning array or byte. These engines do not supply
warning messages and therefore do not use @dmengwarmsg. Others use a code and
message for low-severity errors. Please consult the Database Drivers section for
information about your engine and for an example.

By default, JAM ignores warnings. If an application needs to alert users to warning
codes or messages, it must use a JPL or C function to check for them. There is no
default warning handler. The most efficient way to process warning values is with
an installed exit handler.

ONEXIT, @dmengwarncode

Description

See Also

@dmretcode

192 JAM 7.0 Database Guide

@dmretcode
Contains an engine-independent error or status code

@dmretcode is set to 0 before JAM executes a new DBMS command. If the com-
mand fails because of an error detected either by the engine or by JAM's database
driver, JAM writes an error code to @dmretcode describing the failure.

Usually a non-zero value in @dmretcode indicates that an error occurred. The
default or an installed error handler is called for an error. If the default handler is in
use, JAM displays the statement which failed and an error message from either
JAM's database driver or from the database engine. If the application has installed
its own error handler, the installed function controls what messages are displayed.

There are two non±zero codes for @dmretcode which are not errors:
DM_NO_MORE_ROWS and DM_END_OF_PROC. When an engine indicates that it has
returned all rows for a select set, JAM writes the DM_NO_MORE_ROWS code to
@dmretcode . Since this is not considered an error, JAM does not call the default
or installed error handler. You may test for DM_MORE_ROWS after executing a
SELECT or in an exit handler.

JAM uses DM_END_OF_PROC with engines that support stored procedures. When
an engine indicates that it has completed executing the stored procedure, JAM
writes the DM_END_OF_PROC code to @dmretcode . This is not an error. An
application may test for this code in an exit procedure or after calling a stored
procedure. Refer to the Database Drivers section for information on stored
procedures.

The values for @dmretcode listed in Table 17 are taken from dmerror.h .

Table 17. @dmretcode error codes and messages.

Constant Code Message

DM_NODATABASE 53249 No database selected.

DM_NOTLOGGEDON 53250 Not logged in.

DM_ALREADY_ON 53251 Already logged in.

DM_ARGS_NEEDED 53252 Arguments required.

DM_LOGON_DENIED 53253 Logon denied.

Description

@dmretcode

19312 DBMS Global VariablesChapter

Constant MessageCode

DM_BAD_ARGS 53254 Bad arguments.

DM_BAD_CMD 53255 Bad command.

DM_NO_MORE_ROWS 53256 No more rows indicator.

DM_ABORTED 53257 Processing aborted due to DB er-
ror.

DM_NO_CURSOR 53258 Cursor does not exist.

DM_MANY_CURSORS 53259 Too many cursors.

DM_KEYWORD 53260 Bad or missing keyword.

DM_INVALID_DATE 53261 Invalid date.

DM_COMMIT 53262 Commit failed.

DM_ROLLBACK 53263 Rollback failed.

DM_PARSE_ERROR 53264 SQL parse error.

DM_BIND_COUNT 53265 Incorrect number of bind vari-
ables.

DM_BIND_VAR 53266 Bad or missing bind variable.

DM_DESC_COL 53267 Describe select column error.

DM_FETCH 53268 Error during fetch.

DM_NO_NAME 53269 No name specified.

DM_END_OF_PROC 53270 End of procedure.

DM_NOCONNECTION 53271 No connection active.

DM_NOTSUPPORTED 53272 Command not supported for the
specified engine.

DM_TRAN_PEND 53273 Transaction pending.

DM_NO_TRANSACTION 53274 Transaction does not exist.

DM_ALREADY_INIT 53275 Engine already installed.

@dmretcode

194 JAM 7.0 Database Guide

proc entry
DBMS ONERROR JPL dbi_errhandle
DBMS ONEXIT JPL dbi_exithandle
...
return

proc dbi_errhandle (stmt, engine, flag)
Check for logon errors.
if @dmretcode == DM_ALREADY_ON

return 0
else if @dmretcode == DM_LOGON_DENIED

msg emsg @dmretmsg º%Nº @dmengerrmsg
....
return 1

proc dbi_exithandle (stmt, engine, flag)
if @dmretcode == DM_NO_MORE_ROWS

msg emsg ºAll rows returned.º
return 0

ONERROR, ONEXIT, @dmengerrcode , @dmengerrmsg, @dmretmsg

Example

See Also

@dmretmsg

19512 DBMS Global VariablesChapter

@dmretmsg
Contains an engine-independent error or status message

@dmretmsg is cleared before JAM executes a new DBMS command. If the com-
mand fails because of an error detected either by the engine or by JAM's database
driver, JAM writes an error message to @dmretmsg describing the failure. These
messages are defined in dmerror.h and are engine-independent. Refer to Table 17
(page 192) for a listing of the codes and messages.

Note that if @dmretcode is 0, @dmretmsg is always empty.

proc dbi_errhandle (stmt, engine, flag)
msg emsg ºStatement º stmt º failed.º º%Nº\
@dmretmsg º%Nº @dmengerrmsg
return 1

ONERROR, ONEXIT, @dmengerrcode , @dmengerrmsg, @dmretcode

Description

Example

See Also

@dmrowcount

196 JAM 7.0 Database Guide

@dmrowcount
Contains a count of the number of rows either fetched to JAM or affected by the
previous statement

The use of this variable is dependent on the database engine. On all engines,
@dmrowcount is set to the number of rows fetched to JAM variables in a SELECT
statement or CONTINUE command. On some engines, it can also reflect the number
of rows affected by an INSERT, UPDATE, or DELETE statement.

@dmrowcount is set to 0 before each new DBMS command is executed. You must
copy its value to another location if you wish to use the value in subsequent
commands.

If the command fetches rows, JAM updates @dmrowcount writing the number of
rows fetched to JAM variables. Most SQL syntaxes provide an aggregate function
COUNT to count the number of values in a column or the number of rows in a select
set. The value of @dmrowcount is not the number of rows in a select set; rather, it
is the number of rows returned to JAM variables. Therefore if a select set has 14
rows in total, and its target JAM variables are arrays, each with ten occurrences,
@dmrowcount will equal 10 after the SELECT is executed, and 4 after the DBMS
CONTINUE is executed. If DBMS CONTINUE were executed a second time,
@dmrowcount would equal 0.

The integer written to @dmrowcount is either less than or equal to the maximum
number of rows that can be written to the targeted JAM destinations; the maximum
number of rows is the number of occurrences in a destination variable. If the value
in @dmrowcount is less than the maximum number of occurrences, then the entire
select set was written to the target variables and no further processing is needed. If
@dmrowcount equals the maximum number of occurrences, then the SELECT may
have fetched more rows than will fit in the variables. To display the rest of the
select set, the application must execute DBMS CONTINUE until @dmrowcount is
less than the maximum number of occurrences (or equals 0) or until @dmretcode
receives the DM_NO_MORE_ROWS code.

For information on whether the variable can be used to obtain the number of rows
affected by an INSERT, UPDATE, or DELETE statement, refer to the Database
Drivers section for the specified engine.

If you are using the transaction manager, call sm_tm_pinquire(TM_OCC_COUNT)
to find the number of rows fetched in the current server view. Since a transaction
command may consist of more than one DBMS command, @dmrowcount may have
already been overwritten.

Description

@dmrowcount

19712 DBMS Global VariablesChapter

proc get_selection
DBMS SQL SELECT * FROM titles WHERE genre_code=:+type
call check_count
return

proc check_count
 # If rows are returned but not the NO_MORE_ROWS code,
 # let the user know there are rows pending.
 if (@dmrowcount > 0) && \

(@dmretcode != DM_NO_MORE_ROWS)
msg setbkstat ºPress %KPF1 to see more.º

else
msg setbkstat ºAll rows returned.º

return

proc get_more
 # This function is called by pressing PF1.
 # It retrieves the next set of rows.

DBMS CONTINUE
call check_count
return

ONEXIT, @dmretcode

Database Drivers section, Application Development Guide, Chapter 14.

Example

See Also

@dmserial

198 JAM 7.0 Database Guide

@dmserial
Contains a serial column value after performing INSERT

Some engines supply the data type serial to assist applications that need to as-
sign a unique numeric value to each row in a table. When an application inserts a
row in a table with a serial column, the engine generates a serial number, inserts
the row with the number, and returns the number to the application. Refer to the
Database Drivers section for information about support for this on your engine.

Before executing a new DBMS command, JAM writes a 0 to @dmserial . If the
statement is an INSERT and the engine returns a serial value, JAM writes the value
to @dmserial . Since this variable is cleared before executing a new DBMS
command, you must copy its value to another location if you wish to use the value
in subsequent commands.

proc new_order
vars i(3), order_id(5)

DBMS BEGIN
First INSERT row into invoices table.
Column order_id in table invoices is a SERIAL.

DBMS SQL INSERT INTO invoices \
(order_id, order_date, cust_num) VALUES \
(0, :+today, :+cust_num)

Copy the serial value to a JPL variable for use with
subsequent INSERTS.
order_id = @dmserial

Use order number to insert new rows to the orders
table. Column order_id in table orders is an INT.

for i=1 while i<=max step 1
DBMS SQL INSERT INTO orders \

(order_id, part_id, quant, u_cost) VALUES \
(:order_id, :+part_id[i], :+quant[i], :+u_cost[i])

DBMS COMMIT

msg emsg ºOrder completed. Invoice number is º order_id
return

Database Drivers for your database engine.

Description

Example

See Also

199

Keywords in JAM's
Database Drivers

This chapter lists the keywords for JAM's database drivers. Avoid using these
keywords as identifiers, particularly for cursors, connections, engines, and
transactions. It is also recommended that you avoid using these keywords when
naming JAM variables which will be used in a DBMS statement. Since keywords are
not case-sensitive, the following two statements are equivalent:

dbms close_all_connections

DBMS CLOSE_ALL_CONNECTIONS

Table 18. Keywords in the database drivers.

alias application autocommit

begin binary browse

call cancel catalog_function

catquery checkpt_interval close

close_all_connections commit completion

1313

200 JAM 7.0 Database Guide

conn_string connect connected

connection continue continue_bottom

continue_down continue_top continue_up

create_proc create_trigger count

ct_command ct_cursor current

cursor cursors

database datasource db

dbms declare disconnect

drop_proc drop_trigger

end engine error

error_continue exec execute

execute_all

flush file for

format

heading host

interfaces

jpl

locklevel locktimeout logon

logoff

max

next null

20113 Keywords in JAM's Database DriversChapter

occur off on

onentry onerror onexit

options out output

parsing_mode password prepare_commit

print proc proc_control

redirect return retvar

rfjournal rollback rpc

run run_default

save schema select

select_aliases separator serial

server set set_buffer

single_step sql sqltimeout

start stop stop_at_fetch

store supreps

tee timeout to

tranid transaction transport

type

unique update use

user using

warn width

SECTION THREE

Database Drivers

Chapter 14 Database Driver for Informix. 205

Chapter 15 Database Driver for JDB. 237

Chapter 16 Database Driver for ODBC. 255

Chapter 17 Database Driver for Oracle. 285

Chapter 18 Database Driver for SYBASE-CT Library. 319

Chapter 19 Database Driver for SYBASE-DB Library. 355

205

Database Driver for
Informix

This chapter provides documentation specific to Informix. It discusses the
following:

� Engine initialization (page 206)

� Connection declaration (page 207)

� Import conversion (page 208)

� Formatting for colon-plus processing and binding (page 211)

� Cursors (page 212)

� Errors and warnings (page 214)

� Stored procedures (page 218)

� Database transaction processing (page 221)

� Transaction manager processing (page 224)

� Informix-specific DBMS commands (page 224)

� Command directory for JAM for Informix (page 234)

1414

Initializing the Database Engine

206 JAM 7.0 Database Guide

This document is designed as a supplement to information found in the Application
Development Guide and other sections of the Database Guide.

Initializing the Database Engine

When you run the makefile for JAM for Informix, it creates the source file
dbiinit.c . For Informix, the vendor_list structure in dbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{

{ºinformixº, dm_infsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

informix Engine name. May be changed.

dm_infsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name

In the makefile, you may change the engine name associated with the support
routine dm_infsup . The application then uses that name in DBMS ENGINE
statements and in WITH ENGINE clauses. For example, if you wish to use
ªtrackingº as the engine name, change the following makefile parameter:

INF_ENGNAME=tracking

When the makefile is run again, it generates a new dbiinit.c file with the new
settings.

If the application is accessing multiple engines, it makes Informix the default
engine by executing:

DBMS ENGINE informix-engine-name

Connecting to the Database Engine

20714 Database Driver for InformixChapter

where informix-engine-name is the string used in vendor_list . For example,

DBMS ENGINE informix

or

DBMS ENGINE tracking

Support Routine Name

dm_infsup is the name of the support routine for Informix. This name should not
be changed.

Case Flag

The case flag, DM_DEFAULT_CASE, determines how JAM's database drivers use
case when searching for JAM variables for holding SELECT results. This setting is
used when comparing Informix column names to either a JAM variable name or to
a column name in a DBMS ALIAS statement.

Informix is case insensitive. Regardless of the case in a SQL statement, Informix
creates all database objectsÐtables, views, columns, etc.Ðwith lower case names.
For Informix, the DM_DEFAULT_CASE setting is treated as
DM_FORCE_TO_LOWER_CASE. Since Informix uses only lower case, the
DM_FORCE_TO_LOWER_CASE setting is the same as DM_PRESERVE_CASE. For
either of these flags, JAM attempts to match Informix column names to lower case
JAM variables when processing SELECT results. If your application is using this
default, use lower case names when creating JAM variables.

If you wish to use upper case variable names, substitute the u option in the
makefile which sets the DM_FORCE_TO_UPPER_CASE flag.

INF_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chapter 11 in the Application Development Guide.

Connecting to the Database Engine

Informix allows your application to use one connection at a time. Simultaneous
multiple connections are not supported in this release.

Importing Database Tables

208 JAM 7.0 Database Guide

The following options are supported for connections to Informix:

Table 1. Database connection options.

Option Argument

DATABASE database-name

The syntax for declaring a connection in a JPL statement is:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR DATABASE database-name

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
DATABASE ºvideobizº

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for Informix, it is
treated as an error.

Importing Database Tables

The Import%Database Objects option in the screen editor creates JAM repository
entries based on database tables in a Informix database. When the import process is
complete, each selected database table has a corresponding repository entry screen.

In JAM for Informix, the following database objects can be imported as repository
entries:

� database tables

� database views

� synonyms

Once the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column's characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table, database table view, or synonym.

� Links which describe the relationship between table views.

Importing Database Tables

20914 Database Driver for InformixChapter

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repository, the new repository
screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name Ð The name of the table view, generally the same as the database table.

� Table Ð The name of the database table.

� Primary Keys Ð The columns that are defined as primary keys for the
database table.

� Columns Ð A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable Ð A setting which determines if the data in the table can be
modified. The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. First, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on table views.

Links

Links are created from the foreign key definitions entered in the database. If you
are working with a version of Informix that does not support foreign keys, you
must create the links needed by the transaction manager manually if the application
screen contains more than one table view.

Importing Database Tables

210 JAM 7.0 Database Guide

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each Informix data type.

Table 2. Importing Database Tables

Informix Data
Type

JAM Type C Type JAM Widget Length JAM Widget
Precision

char FT_CHAR Char String Column length

date DT_DATETIME Default 20

datetime DT_DATETIME Default 20

decimal FT_DOUBLE Double Column length plus 2 for +/±
sign and decimal point

Column scale

float FT_DOUBLE Double 16 2

integer FT_LONG Long Int 11

interval FT_CHAR Char Varies according to column
qualifiers

money DT_CURRENCY Default 16

serial FT_LONG Long Int 11

smallfloat FT_FLOAT Float 16 2

smallint FT_INT Int 6

varchar FT_CHAR Char Column length

Precision in Informix is equivalent to length in JAM, and scale in Informix is equivalent to precision in JAM.

Based on the column's data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

Other Widget
Properties

Formatting for Colon Plus Processing and Binding

21114 Database Driver for InformixChapter

DT_CURRENCY widgets have the Format/Display%Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETIME widgets also have the Format/Display%Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL , the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id , actor_id and role . title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role , without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in the Application Development Guide.

Formatting Dates

Informix supports three types of date data types:

� DATE

� DATETIME

� INTERVAL

JAM equates DATE and DATETIME with the JAM type, DT_DATETIME. Therefore,
if the JAM target for a DATE or DATETIME column is a widget or LDB variable
with a date-time format, JAM formats the database value using the JAM edit. JAM
fetches the INTERVAL data type as a character string.

The format for an Informix DATETIME column is flexible using any precision in
the range of a year to a fraction of a second. Since JAM DT_DATETIME formats
range from year to second, you may need to edit your JAM format to match your
Informix specification.

DT_CURRENCY

DT_DATETIME

Null Field property

Declaring Cursors

212 JAM 7.0 Database Guide

You can insert DT_DATETIME formats into either DATE or DATETIME columns. If
you are using colon-plus processing, DT_DATETIME formats are converted into
Informix literal DATETIME segments. If you are using binding, DT_DATETIME
formats are converted to Informix dtime_t structs.

To insert an INTERVAL into an Informix database, use one of the following
methods:

� Use the standard colon processor and quote the character strings:

DBMS SQL INSERT INTO table
VALUES (':datetime', ':interval')

� Use colon-plus processing with a FT_CHAR type. With this method:

w Set the C Type property to Char String.

w Set a Date/Time format to match the Informix syntax.

w Set the Data Formatting property to Digits Only and use embedded
punctuation or an edit mask for delimiters.

Declaring Cursors

When a connection is declared to an Informix engine, JAM automatically declares
a default cursor for SQL SELECT statements executed with the JPL command
DBMS SQL . For all non-SELECT operations performed with DBMS SQL , JAM uses
Informix's EXECUTE IMMEDIATE feature rather than another default cursor. If the
application needs to select multiple rows and update the rows one at a time, the
application does not need to declare named cursors.

If you use Informix 5, SELECT cursors can be either HOLD cursors or non-HOLD
cursors. If the cursor is a HOLD cursor, it maintains its positioning information
while other cursors perform INSERT, UPDATE, and DELETE statements. This allows
you to fetch additional data with DBMS CONTINUE after committing or rolling back
another transaction. If a cursor is a non-HOLD cursor, it is closed at the end of a
transaction. Informix closes all non-HOLD cursors when it commits or rolls back a
transaction.

By default, JAM for Informix declares all cursors as HOLD cursors. To cause all
subsequently declared cursors to be non-HOLD cursors, issue the following
command:

DBMS SET HOLD_DEFAULT OFF

Scrolling

21314 Database Driver for InformixChapter

This can be reversed and cause cause all subsequently declared cursors to be HOLD
cursors by issuing the following:

DBMS SET HOLD_DEFAULT ON

Both of these commands affect only cursors declared after the command is
executed. Currently active cursors are not affected.

In addition, one can set the HOLD behavior for an individual cursor with the
command:

DBMS [WITH CURSOR cursor-name] SET HOLD OFF

If the command is issued for the default cursor, all subsequent SELECT statements
are with non-HOLD cursors. If the command is issued on a named cursor, then all
subsequent executions and declarations of SELECT statements on the cursor are on
a non-HOLD cursor. To restore the default behavior, issue the following command:

DBMS [WITH CURSOR cursor-name] SET HOLD ON

For Informix 5, JAM does not put any limit on the number of cursors an
application may declare to an Informix engine. For previous versions, JAM defines
10 cursors for an application accessing Informix. It reserves one for itself (i.e., the
ªdefaultº cursor); the other nine are available for the application's use. If the
application attempts to declare a tenth cursor, JAM returns the DM_MANY_CURSORS
error. In this case, the application must close a cursor using DBMS CLOSE CURSOR
before it can declare a new one. If nine cursors are not enough for your application,
the makefile can be modified to allow for additional cursors.

For more information on cursors, refer to Chapter 13 in the Application Develop-
ment Guide.

Scrolling

Informix has native support for non-sequential scrolling in a select set. This
capability is available on any cursor. As an alternative, you can switch to JAM
scrolling. Both systems allow you to use the following commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

For native scrolling, use the command

Error and Status Information

214 JAM 7.0 Database Guide

DBMS [WITH CURSOR cursor-name] SET_BUFFER 1

To turn off native scrolling, use the command

DBMS [WITH CURSOR cursor-name] SET_BUFFER 0

Then, set JAM scrolling using the command:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off JAM scrolling and close the continuation file, use the command

DBMS [WITH CURSOR cursor-name] STORE

or close the JAM cursor with DBMS CLOSE CURSOR.

With Informix-based scrolling, Informix maintains a temporary table to hold the
select set. With JAM-based scrolling, JAM maintains a temporary binary file to
hold the select set. A cursor using Informix-based scrolling cannot use the SQL
syntax SELECT FOR UPDATE. Use JAM-based scrolling if you need SELECT FOR
UPDATE.

For more information on scrolling, refer to Chapter 14 in the Application
Development Guide.

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other
engines and for use in future releases of JAM for Informix.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode Informix error code.

@dmengerrmsg Informix error message.

@dmengreturn Not used in JAM for Informix.

Error and Status Information

21514 Database Driver for InformixChapter

In JAM for Informix, @dmengerrcode and @dmengerrmsg are arrays which
contain both Informix and ISAM information.

@dmengerrcode [1] Informix error message.

@dmengerrcode [2] ISAM error code.

@dmengerrmsg [1] Informix error message.

@dmengerrmsg [2] ISAM error message.

If the error handler queries for the values of @dmengerrcode and @dmengerrmsg
without any occurrence numbers, both sets of codes and messages are returned.

Informix returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes Informix
error codes to the global variable @dmengerrcode and writes Informix messages
to @dmengerrmsg.

All Informix errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode[1] == 0

msg emsg ºJAM error: º @dmretmsg
else

msg emsg ºJAM error: º @dmretmsg º %Nº \
ºINFORMIX error: º @dmengerrcode[1] º º @dmengerrmsg[1] \
ºISAM error: º @dmengerrcode[2] º º @dmengerrmsg[2]

return 1

Using the
Default Error
Handler

Using an
Installed Error
Handler

Error and Status Information

216 JAM 7.0 Database Guide

For additional information about engine errors, refer to your Informix documenta-
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guide and Chapter 12 in the Database Guide.

Warnings

JAM initializes the following global variables for warning information:

@dmengwarncode Informix warning code.

@dmengwarnmsg Not used in JAM for Informix.

Informix uses a warning byte called SQLAWARN to signal conditions it considers
unusual but not fatal. @dmengwarncode derives its value from this byte.
@dmengwarncode is an 8-occurrence array. If Informix sets a bit in SQLAWARN,
JAM puts a ªWº in the corresponding occurrence of @dmengwarncode.

In Informix, the meaning of these settings depends on the statement that was just
executed. Also, Informix may change the value of SQLAWARN between releases.
The settings for SQLAWARN after connecting to a database are:

Array Index Meaning (Informix 5.x)

1 Set to W if any of 2 through 8 are set to W. If this is blank, the
other fields do not need to be checked.

2 Set to W if the database has a transaction log which makes transac-
tions available.

3 Set to W if the database is an ANSI database.

4 Set to W if the database server is an Informix On-Line engine.

5 Set to W if the database server stores FLOATs as DECIMALs.

6 Not used.

7 Not used.

8 Not used.

Error and Status Information

21714 Database Driver for InformixChapter

The settings for SQLAWARN for all other operations are:

Array Index Meaning

1 Set to W if any of 2 through 8 are set to W. If this is blank, the
other fields do not need to be checked.

2 Not applicable in JAM for Informix.

3 Set to W if an aggregate function encounters a NULL value.

4 Not applicable in JAM for Informix.

5 Set to W when a cursor is declared for an UPDATE or DELETE state-
ment and the statement does not contain a WHERE clause.

6 Set to W if the Informix environment variable DBANSIWARN is set
and the executed statement does not conform to ANSI SQL syntax.

7 Not used.

8 Not used.

Before using @dmengwarncode, you should verify these settings for your release
of Informix by consulting your Informix documentation.

You may wish to use an exit hook function to process warnings. An exit hook
function is installed with DBMS ONEXIT . A sample exit hook function is shown
below.

proc check_status (stmt, engine, flag)

if @dmretcode == 0
{
 if @dmengwarncode [1] == ºWº
 {

if @dmengwarncode [3] == ºWº
msg emsg ºA NULL value was found.º

if @dmengwarncode [5] == ºWº
msg emsg ºThe operation did not use a WHERE clause.º

if @dmengwarncode [6] == ºWº
msg emsg ºThis does not conform to ANSI standards.º

 }
}
return

Using Stored procedures

218 JAM 7.0 Database Guide

Row Information
JAM initializes the following global variables for row information:

@dmrowcount Count of the number of Informix rows affected by
an operation.

@dmserial Informix-generated value for a serial column.

Informix returns a count of the rows affected by an operation. JAM writes this
value to the global variable @dmrowcount .

As explained on the manual page for @dmrowcount , the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

The value of @dmserial is updated when an application inserts a row into a table
with a serial column. Since this variable is cleared when a new DBMS statement is
executed, you must copy its value to another location if you wish to use it in
subsequent statements.

Using Stored procedures
A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differences in the engine implementation.

Executing Stored Procedures
An application may execute a stored procedure with the command DBMS SQL and
the engine's command for execution, EXECUTE PROCEDURE. For example:

DBMS SQL EXECUTE PROCEDURE procedure-name

Using Stored procedures

21914 Database Driver for InformixChapter

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

create procedure update_tapes (parm1 int, parm2 int)
update tapes set status = 'O'

where title_id = parm1 and copy_num = parm2
end procedure

The following statement executes this stored procedure, updating the status
column of the tapes table using the onscreen values of the widgets title_id and
copy_num .

DBMS SQL EXECUTE PROCEDURE update_tapes \
(:+title_id, :+copy_num)

A DECLARE CURSOR statement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executed with a USING
clause which gets the onscreen values of the widgets title_id and copy_num .

DBMS DECLARE x CURSOR FOR EXECUTE PROCEDURE update_tapes \
(::parm1, ::parm2)

DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guide for more information.

Viewing SELECT Results

In order to return data from a stored procedure in Informix, you must include a
RETURN statement and a RETURNING clause when you create the stored procedure.
You can return multiple rows by including a RETURN WITH RESUME statement. In
addition, your application must define positional aliases for the result columns
using a DBMS ALIAS statement. The order of the variables in this statement must
match the order of the variables in the RETURNING clause of the stored procedure.

This stored procedure, avail_video , selects the video titles that are available for
rental and returns values for title_id , name, and genre_code to the applica-
tion.

Example

Using Stored procedures

220 JAM 7.0 Database Guide

CREATE PROCEDURE avail_video ()
RETURNING integer, char(60), char(4);

DEFINE p_title_id integer;
DEFINE p_name char(60);
DEFINE p_genre_code char(4);
DEFINE vcount int;
LET vcount = 1;
FOREACH
SELECT titles.title_id, name, genre_code
INTO p_title_id, p_name, p_genre_code
FROM titles, tapes WHERE titles.title_id = tapes.title_id
AND tapes.status = 'A';
RETURN p_title_id, p_name, p_genre_code WITH RESUME;
LET vcount = vcount +1;
END FOREACH;
END PROCEDURE
;

The JAM application screen contains three widgets named title_id , name, and
genre_code . When the application executes the following statements, the screen
displays the available videos.

proc get_video
DBMS ALIAS title_id, name, genre_code
DBMS SQL EXECUTE PROCEDURE avail_video ()
return

The next example, unpaid_orders , uses the stores database and returns data
about unpaid orders to the application.

Using Transactions

22114 Database Driver for InformixChapter

CREATE PROCEDURE unpaid_orders ()
RETURNING integer, date, integer, char(10), date;

DEFINE p_order_num integer;
DEFINE p_order_date date;
DEFINE p_customer_num integer;
DEFINE p_po_num char(10);
DEFINE p_ship_date date;
DEFINE lcount int;
LET lcount = 1;
FOREACH
SELECT order_num, order_date, customer_num, po_num, ship_date
INTO p_order_num, p_order_date, p_customer_num, p_po_num,
 p_ship_date
FROM informix.orders
WHERE paid_date is NULL
ORDER BY ship_date
RETURN p_order_num, p_order_date, p_customer_num, p_po_num,
 p_ship_date WITH RESUME;
LET lcount = lcount +1;
END FOREACH;
END PROCEDURE
;

The application contains JAM variables named order_num , order_date ,
customer_num , po_num, and ship_date . The procedure is executed using the
following statements. The order of the variables in the DBMS ALIAS statement and
in the RETURNING clause of the procedure are the same.

proc unpaid
DBMS ALIAS order_num, order_date, customer_num, po_num, \

ship_date
DBMS SQL EXECUTE PROCEDURE unpaid_orders ()
return

Using Transactions
A transaction is a unit of work that must be totally completed or not completed at
all. Informix has one transaction for each connection. Therefore, in a JAM
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on Informix:

� Executing DBMS COMMIT.

The following events roll back a transaction on Informix:

� Executing DBMS ROLLBACK.

� Closing the transaction's connection before the transaction is committed.

Using Transactions

222 JAM 7.0 Database Guide

Informix keeps a record of the database modifications performed in each
transaction in a transaction log. It uses this log to undo the database changes when
a ROLLBACK command is executed. However, Informix databases do not
automatically have a transaction log. If transaction processing is not available, see
your database administrator to activate this feature.

As noted earlier in the document, the behavior of named cursors differs between
JAM and Informix when transactions are terminated. A named cursor has actually
two representations. One is a JAM structure and the other is an Informix cursor in
the database. The two representations have the same lifetime (declaring the JAM
cursor creates the Informix cursor, closing the JAM cursor closes the Informix
cursor) except when a transaction is terminated. When Informix commits or rolls
back a transaction, it closes all Informix cursors. Therefore, if an application has a
select set pending when it begins a transaction, it cannot fetch the remaining rows
after executing a rollback or commit because Informix has closed its cursors and
the positioning information is no longer available. To begin the fetch again, the
application must simply re-execute the cursor using DBMS EXECUTE; it is not
necessary to re-declare the JAM cursor.

If your application needs to keep the positioning information, you can use the
continuation file in JAM. Before issuing the select statement, set up the continua-
tion file. Then, fetch all the rows to the continuation file before continuing with the
application. For example:

proc getrows
Set up a continuation file. Use WITH CURSOR if needed.
DBMS STORE FILE
#Execute the select.
DBMS SQL SELECT ...
#Fetch all the rows to the continuation file.
DBMS CONTINUE_BOTTOM
#Reposition to the top of the select.
DBMS CONTINUE_TOP
return

Transaction Control on a Single Connection
After an application declares a connection, an application may begin a transaction
on the default connection or on any declared connection.

Informix supports the following transaction commands:

� Begin a transaction on a default or named connection.

DBMS [WITH CONNECTION connection] BEGIN

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

Using Transactions

22314 Database Driver for InformixChapter

� Rollback to the beginning of the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] ROLLBACK

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ºnew_title()º

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ºTransaction succeeded.º
}
else
{

msg emsg ºAborting transaction.º
DBMS ROLLBACK

}
}

proc new_title
DBMS BEGIN

DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application's transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

Example

Transaction Manager Processing

224 JAM 7.0 Database Guide

The application executes the transaction by executing

call tran_handle ºnew_title()º

The procedure tran_handle receives the argument ªnew_titleº and writes it to
the variable subroutine . It declares a JPL variable, jpl_retcode . After
performing colon processing, :subroutine is replaced with its value,
new_title , and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle . JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title , JAM calls the applica-
tion's error handler. The error handler should display any error messages and return
the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedure new_title (therefore, the third INSERT is not attempted). JAM returns
1 to jpl_retcode in the calling procedure tran_handle . JPL evaluates the if
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the table titles .

Transaction Manager Processing

Transaction Model for Informix

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For Informix, the name of the standard transaction model is
tminf1.c .

Informix-Specific Commands

JAM for Informix provides commands for Informix-specific features. This section
contains a reference page for each command. If you are using multiple engines or

Informix-Specific Commands

22514 Database Driver for InformixChapter

are porting an application to or from another engine, please note that these
commands may work differently or may not be supported on some engines.

Using Cursors

SET HOLD Control behavior of Informix cursors for
SELECT statements.

SET HOLD_DEFAULT Set connection behavior for Informix cursors
when executing SELECT statements.

Using Scrolling

BUFFER_DEFAULT Set buffer size for scrolling for entire
application.

SET_BUFFER Control availability of Informix-based scrol-
ling for DBMS CONTINUE_BOTTOM, DBMS
CONTINUE_TOP, DBMS CONTINUE_UP.

Using Transactions

BEGIN Begin a transaction.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

Informix-Specific Commands

226 JAM 7.0 Database Guide

BEGIN
Start a transaction

DBMS [WITH CONNECTION connection-name] BEGIN

Specify the connection for this command. Since Informix does not support
multiple connections, the WITH CONNECTION clause is necessary only in
applications using more than one engine.

A transaction is a logical unit of work on a database. In Informix, transaction
behavior differs for ANSI and non-ANSI databases.

For non-ANSI Informix databases, a transaction is contained within DBMS BEGIN
and DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction.
Once a transaction is begun, changes to the database are not committed until a
DBMS COMMIT is executed. Changes are undone by executing DBMS ROLLBACK.
Before beginning a new transaction, the application should COMMIT or ROLLBACK
any pending work. Otherwise, you may receive an error.

For ANSI Informix databases, all statements up to a DBMS COMMIT are contained
within a transaction. DBMS BEGIN has no effect. Changes can be undone by
executing DBMS ROLLBACK.

Refer to the example in Using Transactions on page 221.

Using Transactions on page 221

COMMIT

ROLLBACK

WITH CONNECTION
connection-name

Description

Example

See Also

Informix-Specific Commands

22714 Database Driver for InformixChapter

BUFFER_DEFAULT
Specifies setting for engine-based non-sequential scrolling

DBMS [WITH CONNECTION connection-name] BUFFER_DEFAULT value

Disable Informix-based scrolling on all cursors on the specified connection.

Enable Informix-based scrolling on all cursors on the specified connection.

Informix supports sequential and scroll cursors. By default, JAM creates Informix
sequential cursors.

An Informix sequential cursor can fetch only the next row in sequence from the
select set. The sequential cursor can read through the active set once; to reread the
rows, the application must re-execute the cursor.

An Informix scroll cursor allows an application to fetch rows in any sequence. The
scroll cursor can re-fetch rows without re-executing the cursor.

A JAM application can use either JAM-based or Informix-based scrolling to
execute DBMS CONTINUE, DBMS CONTINUE_TOP, DBMS CONTINUE_UP, and DBMS
CONTINUE_BOTTOM.

To enable JAM-based scrolling an application executes DBMS STORE FILE for a
specified cursor. To enable Informix-based scrolling an application executes DBMS
SET_BUFFER for a specified cursor or DBMS BUFFER_DEFAULT for all cursors on
an Informix connection.

To support Informix±based scrolling, Informix buffers the select rows in a
temporary table. You may want to change the cursor's isolation level to prevent
other users from modifying the rows when using Informix±based scrolling. See
your Informix documentation for more information.

SET_BUFFER

O

1

Description

See Also

Informix-Specific Commands

228 JAM 7.0 Database Guide

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. This clause is necessary only in
applications using more than one engine since Informix does not support multiple
connections.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Once a transaction is terminated, the engine automatically begins a new transac-
tion.

Before beginning a new transaction, the application should COMMIT or ROLLBACK
any pending transactions. Otherwise, you will receive an error.

Refer to the example in Using Transactions on page 221.

Using Transactions on page 221

BEGIN

ROLLBACK

WITH CONNECTION
connection-name

Description

Example

See Also

Informix-Specific Commands

22914 Database Driver for InformixChapter

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK

This clause is necessary only in applications using more than one engine since
Informix does not support multiple connections.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
receive an error when it starts the next transaction.

JAM's database driver for Informix issues a DBMS ROLLBACK before closing a
connection.

Refer to the example in Using Transactions on page 221.

Using Transactions on page 221

BEGIN

COMMIT

WITH CONNECTION
connection-name

Description

Example

See Also

Informix-Specific Commands

230 JAM 7.0 Database Guide

SET_BUFFER
Use engine-based scrolling

DBMS [WITH CURSOR cursor-name] SET_BUFFER 1

DBMS [WITH CURSOR cursor-name] SET_BUFFER 0

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling commands DBMS
CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS CONTINUE_UP. In one
method, an application uses JAM-based scrolling by setting up a continuation file
with DBMS STORE FILE . In the other method, an application uses Informix-based
scrolling by setting a flag for a cursor with DBMS SET_BUFFER.

By default, JAM declares Informix cursors without sequential scrolling. Use this
command to allow a SELECT cursor to use Informix-based scrolling.

The argument for this command sets the availability of the scrolling. To turn on
Informix-based scrolling, use the command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER 1

To turn off Informix-based scrolling, use the command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER 0

If the WITH CURSOR clause is used, JAM sets the flag for the named cursor. If the
WITH CURSOR clause is not used, JAM sets the flag for the default SELECT cursor.

Note that:

� When Informix-based scrolling is used, Informix prohibits the cursor from
using some features, such as SELECT FOR UPDATE.

� Only a few engines support native scrolling. Therefore, this command may not
be supported with other engines. JAM-based scrolling is supported on all
engines with DBMS STORE FILE .

WITH CURSOR cur-
sor-name

Description

Informix-Specific Commands

23114 Database Driver for InformixChapter

� Each DBMS CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS
CONTINUE_UP requires a trip to the server. With JAM-based scrolling, the
rows are fetched once. When the application attempts to view rows already
fetched, JAM reads them from the continuation file rather than requesting
them from the server.

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor SET_BUFFER 1

proc scroll_up
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

CONTINUE_BOTTOM

CONTINUE_TOP

CONTINUE_UP

STORE

Example

See Also

Informix-Specific Commands

232 JAM 7.0 Database Guide

SET HOLD
Set the HOLD behavior for a cursor

DBMS [WITH CURSOR cursor-name] SET HOLD { OFF | ON }

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Non-hold cursors in Informix are closed at the end of a transaction, even if the cur-
sor only executed SELECT statements. Hold cursors remain open and keep their
position even if other cursors execute and commit UPDATE, INSERT and DELETE
statements.

In the current release, JAM for Informix declares all cursors to be hold cursors.

If DBMS SET HOLD OFF is issued for the default SELECT cursor, all subsequent
SQL SELECT statements are on non-hold cursors. Therefore, once a transaction is
committed or rolled back, positioning information for a select set is no longer
available, and the SELECT statement needs to be re-executed. To reset the default
behavior, issue DBMS SET HOLD ON .

If DBMS SET HOLD OFF is issued for a named cursor, it is a non-hold cursor
throughout all subsequent executions and redeclarations of the cursor. To reset the
default behavior, issue DBMS WITH CURSOR cursor-name SET HOLD ON .

proc select_titles
DBMS DECLARE t_cursor CURSOR FOR \

SELECT title_id, name, genre_code FROM titles
DBMS WITH CURSOR t_cursor SET HOLD OFF
DBMS WITH CURSOR t_cursor EXECUTE

WITH CURSOR cur-
sor-name

Description

Example

Informix-Specific Commands

23314 Database Driver for InformixChapter

SET HOLD_DEFAULT
Set the connection's default behavior for HOLD cursors

DBMS SET HOLD_DEFAULT { OFF | ON }

Non-hold cursors in Informix are closed at the end of a transaction, even if the cur-
sor only executed SELECT statements. Hold cursors remain open and keep their
position even if other cursors execute and commit UPDATE, INSERT and DELETE
statements.

In the current release, JAM for Informix declares all connections to create SELECT
cursors as hold cursors.

If DBMS SET HOLD_DEFAULT OFF is issued for a connection, all subsequent SQL
SELECT statements are on non-hold cursors. Therefore, once a transaction is
committed or rolled back, positioning information for a select set is no longer
available, and the SELECT statement needs to be re-executed. To reset the default
behavior, issue DBMS SET HOLD_DEFAULT ON.

proc connect_nonhold
DBMS DECLARE non_conn CONNECTION FOR \

DATABASE ºvideobizº
DBMS WITH CONNECTION non_conn SET HOLD_DEFAULT OFF
DBMS CONNECTION non_conn
DBMS SQL SELECT title_id, name, genre_code FROM titles

Description

Example

Command Directory for Informix

234 JAM 7.0 Database Guide

Command Directory for Informix

The following table lists all the commands available in JAM's database driver for
Informix. The table lists the command, a short description of the command, and the
location of the reference page for that command. If the location is described as
Database Drivers, that information is enclosed in this document. If the location is
described as the Database Guide, refer to Chapter 11 of the Database Guide.

Table 3. Commands for Informix

Command Name Description Documentation
Location

ALIAS Name a JAM variable as the
destination of a selected col-
umn or aggregate function

Database Guide

BEGIN Begin a transaction Database Drivers

BINARY Create a JAM variable for
fetching binary values

Database Guide

BUFFER_DEFAULT Set engine-based scrolling Database Drivers

CATQUERY Redirect select results to a
file or a JAM variable

Database Guide

CLOSE_ALL_CONNECTIONSClose all connections on all
engines

Database Guide

CLOSE CONNECTION Close a named connection Database Guide

CLOSE CURSOR Close a named cursor Database Guide

COLUMN_NAMES Return the column name, not
column data, to a JAM vari-
able

Database Guide

COMMIT Commit a transaction Database Drivers

CONNECTION Set a default connection and
engine for the application

Database Guide

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for Informix

23514 Database Driver for InformixChapter

Command Name Documentation
Location

Description

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

ENGINE Set the default engine for the
application

Database Guide

EXECUTE Execute a named cursor Database Guide

FORMAT Format the results of a CAT-
QUERY

Database Guide

OCCUR Set the number of rows for
JAM to fetch to an array and
set the occurrence where
JAM should begin writing
result rows

Database Guide

ONENTRY Install a JPL procedure or C
function which JAM will call
before executing a DBMS
statement

Database Guide

ONERROR Install a JPL procedure or C
function which JAM will call
when a DBMS statement fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function which JAM will call
after executing a DBMS state-
ment

Database Guide

ROLLBACK Roll back a transaction Database Drivers

SET_BUFFER Set engine-based scrolling
for a cursor

Database Drivers

Command Directory for Informix

236 JAM 7.0 Database Guide

Command Name Documentation
Location

Description

SET HOLD Set behavior for SELECT cur-
sors

Database Drivers

SET HOLD_DEFAULT Set SELECT cursor behavior
for the connection

Database Drivers

START Set the first row for JAM to
return from a select set

Database Guide

STORE Store the rows of a select set
in a temporary file so the
application can scroll through
the rows

Database Guide

UNIQUE Suppress repeating values in
a selected column

Database Guide

WITH CONNECTION Specify the connection to use
for a command

Database Guide

WITH CURSOR Specify the cursor to use for
a command

Database Guide

WITH ENGINE Specify the engine to use for
a command

Database Guide

237

Database Driver for
JDB

This chapter provides documentation specific to JDB. It discusses the following:

� Engine initialization (page 238)

� Connection declaration (page 239)

� Import conversion (page 240)

� Formatting for colon-plus processing and binding (page 242)

� Cursors (page 242)

� Errors and warnings (page 243)

� Database transaction processing (page 245)

� Transaction manager processing (page 247)

� JDB-specific DBMS commands (page 248)

� Command directory for JAM for JDB (page 251)

This document is designed as a supplement to information found in the Application
Development Guide and other sections of the Database Guide.

1515

Initializing the Database Engine

238 JAM 7.0 Database Guide

Initializing the Database Engine

When you run the makefile for JAM for JDB, it creates the source file dbiinit.c .
For JDB, the vendor_list structure in dbiinit.c appears as follows:

static vendor_t vendor_list[] =
{

{ºjdbº, dm_jdbsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

jdb Engine name. May be changed.

dm_jdbsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name
In the makefile, you may change the engine name associated with the support
routine dm_jdbsup . The application then uses that name in DBMS ENGINE
statements and in WITH ENGINE clauses. For example, if you wish to use
ªtrackingº as the engine name, change the following makefile parameter:

JDB_ENGNAME=tracking

When the makefile is run again, it generates a new dbiinit.c file with the new
settings.

If the application is accessing multiple engines, it makes JDB the default engine by
executing:

DBMS ENGINE jdb-engine-name

where jdb-engine-name is the string used in vendor_list . For example,

DBMS ENGINE jdb

or

DBMS ENGINE tracking

Connecting to the Database Engine

23915 Database Driver for JDBChapter

Support Routine Name

dm_jdbsup is the name of the support routine for JDB. This name should not be
changed.

Case Flag

The case flag, DM_DEFAULT_CASE, determines how JAM's database drivers use
case when searching for JAM variables for holding SELECT results. This setting is
used when comparing JDB column names to either a JAM variable name or to a
column name in a DBMS ALIAS statement.

JDB is case insensitive. Regardless of the case in a SQL statement, JDB creates all
database objectsÐtables, views, columns, etc.Ðwith lower case names. For JDB,
the DM_DEFAULT_CASE setting is treated as DM_FORCE_TO_LOWER_CASE. Since
JDB uses only lower case, the DM_FORCE_TO_LOWER_CASE setting is the same as
DM_PRESERVE_CASE. For either of these flags, JAM attempts to match JDB
column names to lower case JAM variables when processing SELECT results. If
your application is using this default, use lower case names when creating JAM
variables.

If you wish to use upper case variable names, substitute the u option in the
makefile which sets the DM_FORCE_TO_UPPER_CASE flag.

JDB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chapter 11 in the Application Development Guide.

Connecting to the Database Engine

JDB allows your application to use one or more connections. The application may
declare any number of named connections with DBMS DECLARE CONNECTION
statements; however, you should not have multiple connections to the same
database.

The following options are supported for connections to JDB:

Table 1. Database connection options.

Option Argument

DATABASE database-pathname

Importing Database Tables

240 JAM 7.0 Database Guide

database-pathname is a pathname to an existing database.

The syntax for declaring a connection in a JPL statement is:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR DATABASE database-name

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
DATABASE ºvideobizº

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for JDB, it is treated
as an error.

Importing Database Tables

The Import%Database Objects option in the screen editor creates JAM repository
entries based on database tables in a JDB database. When the import process is
complete, each selected database table has a corresponding repository entry screen.

Once the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column's characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table.

� Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repository, the new repository
screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

Importing Database Tables

24115 Database Driver for JDBChapter

The import process inserts values in the following table view properties:

� Name Ð The name of the table view, generally the same as the database table.

� Table Ð The name of the database table.

� Primary Keys Ð The columns that are defined as primary keys for the
database table.

� Columns Ð A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable Ð A setting which determines if the data in the table can be
modified. The default setting for Updatable is Yes.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on table views.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each JDB data type.

Formatting for Colon Plus Processing and Binding

242 JAM 7.0 Database Guide

Table 2. Importing Database Tables

JDB Data Type JAM Type C Type JAM Widget Length JAM Widget
Precision

char FT_CHAR Char String Column length

datetime DT_DATETIME Default 20

double FT_FLOAT Double 16 2

float FT_FLOAT Float 16 2

int FT_LONG Long Int 11

long FT_LONG Long Int 11

Based on the column's data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

DT_DATETIME widgets also have the Format/Display%Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL , the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id , actor_id and role . title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role , without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide.

Formatting for Colon Plus Processing and Binding
This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in the Application Development Guide.

Declaring Cursors
JAM uses two cursors for operations performed by DBMS SQL . One cursor is used
for SQL SELECT statements and the other for non-SELECT statements. These two

Other Widget
Properties

DT_DATETIME

Null Field property

Scrolling

24315 Database Driver for JDBChapter

cursors may be sufficient for small applications. Larger applications often require
more; an application may declare named cursors using DBMS DECLARE CURSOR.
For example, master and detail applications often need to declare at least one
named cursor: one cursor selects the master rows and additional cursors select
detail rows. In short, if an application is processing a SELECT set in increments
(i.e., by using DBMS CONTINUE) while it is executing other SELECT statements,
two or more cursors are necessary.

JAM does not put any limit on the number of cursors an application may declare to
an JDB engine. Since each cursor requires memory and JDB resources, however, it
is recommended that applications close a cursor when it is no longer needed.

For more information on cursors, refer to Chapter 13 in the Application Develop-
ment Guide.

Scrolling

Even though JDB does not have native support for non-sequential scrolling in a
select set, JAM scrolling is available. Before using any of the following com-
mands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with the
command

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off JAM scrolling and close the continuation file, use the command

DBMS [WITH CURSOR cursor-name] STORE

or close the JAM cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 14 in the Application
Development Guide.

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not

Error and Status Information

244 JAM 7.0 Database Guide

be used in the current release; however, these variables are reserved for use in other
engines and for use in future releases of JAM for JDB.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode JDB error code.

@dmengerrmsg JDB error message.

@dmengwarncode Not used in JAM for JDB.

@dmengwarnmsg Not used in JAM for JDB.

@dmengreturn Not used in JAM for JDB.

JDB returns error codes and messages when it aborts a command. It usually aborts
a command because the application used an invalid option or because the user did
not have the authority required for an operation. JAM writes JDB error codes to the
global variable @dmengerrcode and writes JDB messages to @dmengerrmsg.

All JDB errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Transactions

24515 Database Driver for JDBChapter

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ºJAM error: º @dmretmsg
else

msg emsg ºJAM error: º @dmretmsg º %Nº \
º:engine error is º @dmengerrcode º º @dmengerrmsg

return 1

For additional information about engine errors, refer to your JDB documentation.
For more information about error processing in JAM, refer to Chapter 16 in the
Application Development Guide and Chapter 12 in the Database Guide.

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of JDB rows affected by an
operation.

@dmserial Not used in JAM for JDB.

As explained on the manual page for @dmrowcount , the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. JDB has one transaction for each connection. Therefore, in a JAM application,
a transaction controls all statements executed with a single named connection or
the default connection.

The following events commit a transaction on JDB:

� Executing DBMS COMMIT.

� Closing the connection.

Using Transactions

246 JAM 7.0 Database Guide

The following events roll back a transaction on JDB:

� Executing DBMS ROLLBACK.

Transaction Control on a Single Connection
After an application declares a connection, a transaction automatically starts on
that connection.

JDB supports the following transaction commands:

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to the beginning of the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] ROLLBACK

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ºnew_title()º

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ºTransaction succeeded.º
}
else
{

msg emsg ºAborting transaction.º
DBMS ROLLBACK

}
}

Example

Transaction Manager Processing

24715 Database Driver for JDBChapter

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application's transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ºnew_title()º

The procedure tran_handle receives the argument ªnew_titleº and writes it to
the variable subroutine . It declares a JPL variable, jpl_retcode . After
performing colon processing, :subroutine is replaced with its value,
new_title , and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle . JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title , JAM calls the applica-
tion's error handler. The error handler should display any error messages and return
the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedure new_title (therefore, the third INSERT is not attempted). JAM returns
1 to jpl_retcode in the calling procedure tran_handle . JPL evaluates the if
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the table titles .

Transaction Manager Processing

Transaction Model for JDB
Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the

JDB-Specific Commands

248 JAM 7.0 Database Guide

main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For JDB, the name of the standard transaction model is tmjdb1.c .

Even though JDB does not enforce referential integrity, the transaction manager
checks for duplicate primary key values each time data is inserted or updated. This
is performed through processing found in the standard transaction model for JDB.
If it finds any duplicate value in the primary key columns, the transaction manager
gives an error.

JDB-Specific Commands

JAM for JDB provides commands for JDB-specific features. This section contains
a reference page for each command. If you are using multiple engines or are
porting an application to or from another engine, please note that these commands
may work differently or may not be supported on some engines.

Using Transactions

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

JDB-Specific Commands

24915 Database Driver for JDBChapter

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the commit on the default connection.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Once a transaction is terminated, the engine automatically begins a new transac-
tion.

When an application closes its connections with CLOSE_ALL_CONNECTIONS or
CLOSE CONNECTION, JDB commits any pending transactions on those connec-
tions. However, this procedure is not recommended. Instead, it is strongly
recommended that applications use explicit COMMIT and ROLLBACK statements to
terminate transactions.

Refer to the example in Using Transactions on page 245.

Using Transactions on page 245

ROLLBACK

WITH CONNECTION
connection-name

Description

Example

See Also

JDB-Specific Commands

250 JAM 7.0 Database Guide

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the rollback on the default connection.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 245.

Using Transactions on page 245

COMMIT

WITH CONNECTION
connection-name

Description

Example

See Also

Command Directory for JDB

25115 Database Driver for JDBChapter

Command Directory for JDB

The following table lists all the commands available in JAM's database driver for
JDB. The table lists the command, a short description of the command, and the
location of the reference page for that command. If the location is described as
Database Drivers, that information is enclosed in this document. If the location is
described as the Database Guide, refer to Chapter 11 of the Database Guide.

Table 3. Commands for JDB

Command Name Description Documentation
Location

ALIAS Name a JAM variable as the
destination of a selected col-
umn or aggregate function

Database Guide

BINARY Create a JAM variable for
fetching binary values

Database Guide

CATQUERY Redirect select results to a
file or a JAM variable

Database Guide

CLOSE_ALL_CONNECTIONSClose all connections on all
engines

Database Guide

CLOSE CONNECTION Close a named connection Database Guide

CLOSE CURSOR Close a named cursor Database Guide

COLUMN_NAMES Return the column name, not
column data, to a JAM vari-
able

Database Guide

COMMIT Commit a transaction Database Drivers

CONNECTION Set a default connection and
engine for the application

Database Guide

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for JDB

252 JAM 7.0 Database Guide

Command Name Documentation
Location

Description

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

ENGINE Set the default engine for the
application

Database Guide

EXECUTE Execute a named cursor Database Guide

FORMAT Format the results of a CAT-
QUERY

Database Guide

OCCUR Set the number of rows for
JAM to fetch to an array and
set the occurrence where
JAM should begin writing
result rows

Database Guide

ONENTRY Install a JPL procedure or C
function which JAM will call
before executing a DBMS
statement

Database Guide

ONERROR Install a JPL procedure or C
function which JAM will call
when a DBMS statement fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function which JAM will call
after executing a DBMS state-
ment

Database Guide

ROLLBACK Roll back a transaction Database Drivers

START Set the first row for JAM to
return from a select set

Database Guide

STORE Store the rows of a select set
in a temporary file so the
application can scroll through
the rows

Database Guide

Command Directory for JDB

25315 Database Driver for JDBChapter

Command Name Documentation
Location

Description

UNIQUE Suppress repeating values in
a selected column

Database Guide

WITH CONNECTION Specify the connection to use
for a command

Database Guide

WITH CURSOR Specify the cursor to use for
a command

Database Guide

WITH ENGINE Specify the engine to use for
a command

Database Guide

255

Database Driver for
ODBC

ODBC (Open Database Connectivity) defines a library of function calls and SQL
syntax based on the X/Open and SQL Access Group specification. It provides
application builders with a standard programming interface, standard set of error
codes, standard way to connect to a DBMS, and a standard repository of data
types.

The ODBC architecture has four components:

� Application Ð Calls ODBC functions to submit SQL statements and fetch
results. This includes JAM, JAM's ODBC driver, and the applications screens,
JPL scripts, and menus.

� Driver Manager Ð Loads ODBC drivers for an application. This software is
usually supplied by Microsoft or Visigenics. On Windows, Microsoft supplies
a dynamically linked library ODBC.DLL. This software is not supplied with
JAM.

� ODBC DriverÐ Processes ODBC function calls, submits SQL statements to a
data source, and fetches results to an application. The ODBC driver is supplied
by any of a number of third±party vendors. In some cases, the database vendor
may supply an ODBC driver. Other companies, such as Intersolv, supply a
package of drivers for several DBMS products. This software is not supplied
with JAM.

1616

256 JAM 7.0 Database Guide

� Data source Ð Comprises the data and its operating system, DBMS, and any
network software. For example, a data source may be a local xBase file, a
SYBASE RDMBS running on Unix workstation accessed by TCP/IP, or an
Oracle RDBMS running on Windows NT accessed by Windows sockets. This
software is not supplied with JAM.

The ODBC API defines a set of core functions that correspond to the functions in
the X/Open and SQL Access Group CLI (Call Level Interface) specification. In
addition, ODBC defines two sets of extended functions, Level 1 and Level 2.
Unless otherwise documented, JAM functions use ODBC core functions. If JAM
requires a Level 1 or 2 function for some feature, the application's ODBC driver
must support the function to use the feature.

This chapter provides documentation specific to ODBC. It discusses the following:

� Engine initialization (page 257)

� Connection declaration (page 258)

� Import conversion (page 261)

� Formatting for colon-plus processing and binding (page 265)

� Cursors (page 265)

� Errors and warnings (page 266)

� Stored procedures (page 268)

� Database transaction processing (page 268)

� Transaction manager processing (page 271)

� ODBC-specific DBMS commands (page 272)

� Command directory for JAM for ODBC (page 278)

� ODBC-specific C functions (page 281)

This document is designed as a supplement to information found in the Application
Development Guide and other sections of the Database Guide.

Initializing the Database Engine

25716 Database Driver for ODBCChapter

Initializing the Database Engine
When you run the makefile for JAM for ODBC, it creates the source file
dbiinit.c . For ODBC, the vendor_list structure in dbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{

{ºodbcº, dm_odbsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

odbc Engine name. May be changed.

dm_odbsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name
In the makefile, you may change the engine name associated with the support
routine dm_odbsup . The application then uses that name in DBMS ENGINE
statements and in WITH ENGINE clauses. For example, if you wish to use
ªtrackingº as the engine name, change the following makefile parameter:

ODB_ENGNAME=tracking

When the makefile is run again, it generates a new dbiinit.c file with the new
settings.

Using ODBC, your application may access multiple database engines. However, in
such cases, JAM views the application as accessing one database engine, odbc .
The information to access each of the subsequent database engines is set in the
DBMS DECLARE CONNECTION statement using the DATASOURCE keyword. For
more information, refer to page 258.

Support Routine Name
dm_odbsup is the name of the support routine for ODBC. This name should not be
changed.

Connecting to the Database Engine

258 JAM 7.0 Database Guide

Case Flag

The case flag, DM_DEFAULT_CASE, determines how JAM's database drivers use
case when searching for JAM variables for holding SELECT results. This setting is
used when comparing ODBC column names to either a JAM variable name or to a
column name in a DBMS ALIAS statement.

When the case flag is set to DM_DEFAULT_CASE, JAM for ODBC tests for the
value of SQL_IDENTIFIER_CASE using the ODBC SQLGetInfo function. For
case sensitive engines, JAM then sets the case flag to DM_PRESERVE_CASE. This
matches the engine column name to a JAM variable of the same name and case
when processing SELECT results. For case insensitive engines, it sets the case flag
to DM_FORCE_TO_LOWER_CASE. This means that JAM attempts to match the
engine column names to lower case JAM variables when processing SELECT
results. If your application is using this default, use lower case names when
creating JAM variables.

The case setting may be changed. If you wish to use upper case JAM variable
names, use the u option in the makefile for the DM_FORCE_TO_UPPER_CASE flag.

ODB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chapter 11 in the Application Development Guide.

Connecting to the Database Engine

ODBC allows your application to use one or more connections. The application
may declare any number of named connections with DBMS DECLARE CONNEC-
TION statements, up to the maximum number permitted by the ODBC driver and
data source.

To access multiple database engines using ODBC, there needs to be a data source
name for each database engine. Refer to your ODBC database driver documenta-
tion for additional information.

The following options are supported for connections to ODBC:

Connecting to the Database Engine

25916 Database Driver for ODBCChapter

Table 1. Database connection options.

Option Argument Conformance Level

USER user-name core

PASSWORD password core

DATABASE database-name 1 using SQLDriverConnect

DATASOURCE data-source-name core

CONN_STRING connection-parameters 1 using SQLDriverConnect

COMPLETION connection±mode 1 using SQLDriverConnect

The USER, PASSWORD and DATASOURCE options are supported by all ODBC
database drivers. The CONN_STRING and COMPLETION options are available if the
ODBC driver has Level 1 conformance. The DATABASE option is only available
with certain ODBC drivers. If you are unsure of the driver's conformance level,
use only the core conformance arguments.

DATASOURCE specifies the data source entered in the ODBC Administrator to use
for connecting to the database. This data source entry typically contains the name
of the data source, the virtual node, and the full path of the database files. A data
source is created with the ODBC utility ODBCADM.

The application must supply the DATASOURCE using this flag or by prompting the
user with a COMPLETION dialog.

Some drivers support or require additional logon arguments. The program may
supply them with the argument CONN_STRING. Alternately, the application may
prompt the user for the data using the dialogs of the ODBC driver manager and the
ODBC database driver. The connection flag COMPLETION determines whether or
not dialogs are used.

CONN_STRING allows you to enter any number of driver-defined keywords and
values. The format for the connection string is:

º keyword=value; keyword=valueº

If, for example, the driver supports the attribute MS to determine whether the driver
modifies SQL statements to conform to ODBC specifications and the attribute
LANG to specify national language, the CONN_STRING argument is:

CONN_STRING ºMS=1;LANG=FRENCHº

Consult your ODBC driver documentation about the supported connection
attributes for your database. Note that JAM does not attempt to validate the
CONN_STRING value.

Connecting to the Database Engine

260 JAM 7.0 Database Guide

COMPLETION specifies the mode used by the Driver Manager and the ODBC
database driver to establish a connection to a data source. The mode can be set to
any of the following:

COMPLETE NOPROMPT

COMPLETE_REQUIRED PROMPT

For PROMPT, the ODBC Driver Manager always initiates a dialog box containing
the installed data source names and prompts for information.

For COMPLETE, the ODBC Driver Manager initiates a dialog box only if there is
not enough information in the connection string to connect to the data source.

COMPLETE_REQUIRED is similar to COMPLETE. The ODBC Driver Manager
initiates a dialog box only if there is not enough information in the connection
string to connect to the data source. In addition, it grays and disables any prompts
on the dialog that are not required.

For NOPROMPT, the ODBC Driver Manager attempts to connect to the data source
and does not display a dialog box. NOPROMPT is the default.

JAM for ODBC also supports the argument DATABASE. This argument corresponds
to the connection attribute DB. Driver vendors such as Q+E Software often use DB
to supply the database name. If your driver supports the DB attribute, the
application may set it using the CONN_STRING keyword:

DECLARE c1 CONNECTION FOR DATASOURCE ºSYB49º \
CONN_STRING ºDB=pubs2º

or with the DATABASE keyword:

DECLARE c1 CONNECTION FOR DATASOURCE ºSYB49º \
DATABASE ºpubs2º

If the Driver Manager finds the data source specification in the ODBC.INI file, it
loads the DLL associated with the database driver. If the Driver Manager cannot
find the data source specification and if there is no default specification, it returns
an error.

The syntax for declaring a connection in a JPL statement is:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION FOR \
USER user-name PASSWORD password \
{ [DATASOURCE data-source-name] |
[CONN_STRING connection-parameters] |
[COMPLETION connection-mode] }

Importing Database Tables

26116 Database Driver for ODBCChapter

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
USER º:unameº PASSWORD º:pwordº DATASOURCE ºengine1º

DBMS DECLARE dbi_session CONNECTION FOR \
USER º:unameº PASSWORD º:pwordº DATASOURCE ºQEingresº\
CONN_STRING ºOPTS=±1;DB=payrollº

DBMS DECLARE dbi_session CONNECTION FOR \
COMPLETION ºpromptº

where uname and pword are JAM widget names.

If you get the error message ªLogin Deniedº when you issue the connection
statement, check the data source name. This message is issued when the data
source name is invalid.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for ODBC, it is
treated as an error.

Importing Database Tables

The Import%Database Objects option in the screen editor creates JAM repository
entries based on database tables in a ODBC database. When the import process is
complete, each selected database table has a corresponding repository entry screen.

The JAM importer requires the ODBC catalog functions:

� SQLTables Ð Level 1

� SQLColumns Ð Level 1

If these functions are not supported, the importer will fail.

In JAM for ODBC, the following database objects can be imported as repository
entries:

� database tables

� database views

� synonyms

Once the import process is complete, the repository entry screen contains:

Importing Database Tables

262 JAM 7.0 Database Guide

� A widget for each column in the table, using the column's characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table, database table view, or synonym.

� Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repository, the new repository
screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name Ð The name of the table view, generally the same as the database table.

� Table Ð The name of the database table.

� Primary Keys Ð The columns that are defined as primary keys or unique
indexes for the database table. The importer calls SQLPrimaryKeys or
SQLStatistics to find a primary key. If the ODBC driver does not support
either function, the importer cannot set this property.

� Columns Ð A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable Ð A setting which determines if the data in the table can be
modified. The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. First, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on table views.

Importing Database Tables

26316 Database Driver for ODBCChapter

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

If the database engine does not support foreign key definitions or if the ODBC
driver does not support SQLForeignKeys , the links needed by the transaction
manager will have to be created manually if the application screen contains more
than one table view.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each ODBC data type.

Table 2. Importing Database Tables

ODBC Data Type Code JAM Type C Type JAM Widget
Length

JAM Widget
Precision

SQL_BIGINT ±5 FT_LONG Long Int column length + 1

SQL_BINARY ±2 DT_BINARY Hex Dec column length * 2

SQL_BIT ±7 FT_INT Int column length + 1

SQL_CHAR 1 FT_CHAR Char String column length

SQL_DATE 9 DT_DATETIME Default 20

SQL_DECIMAL 3

 (ODBC scale = 0) FT_INT Int column length

Importing Database Tables

264 JAM 7.0 Database Guide

ODBC Data Type JAM Widget
Precision

JAM Widget
Length

C TypeJAM TypeCode

 (ODBC scale > 0) FT_DOUBLE Double column length + 2 Same as col-
umn scale

SQL_DOUBLE 8 FT_DOUBLE Double 22 2

SQL_FLOAT 6 FT_DOUBLE Double 22 2

SQL_INTEGER 4 FT_LONG Long Int column length + 1

SQL_LONGVARBI-
NARY

±4 DT_BINARY Hex Dec column length * 2

SQL_LONGVARCHAR ±1 FT_CHAR Char String column length

SQL_NUMERIC 2

 (ODBC scale = 0) FT_INT Int column length

 (ODBC scale > 0) FT_DOUBLE Double column length + 2 Same as col-
umn scale

SQL_REAL 7 FT_FLOAT Float 13

SQL_SMALLINT 5 FT_INT Int column length + 1

SQL_TIME 10 DT_DATETIME Default 20

SQL_TINYINT ±6 FT_INT Int column length + 1

SQL_TIMESTAMP 11 DT_DATETIME Default 20

SQL_VARBINARY ±3 DT_BINARY Hex Dec column length * 2

SQL_VARCHAR 12 FT_CHAR Char String column length

Based on the column's data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

If a column's length is defined as larger than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types, such as the
timestamp column in .

Other Widget
Properties

UseInUpdate property

Formatting for Colon Plus Processing and Binding

26516 Database Driver for ODBCChapter

DT_DATETIME widgets also have the Format/Display%Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL , the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id , actor_id and role . title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role , without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in the Application Development Guide.

Declaring Cursors

When a connection is declared to an ODBC engine, JAM automatically declares a
default cursor for SQL SELECT statements executed with the JPL command DBMS
SQL. For all non-SELECT operations performed with DBMS SQL , JAM uses
ODBC's SQLExecDirect function rather than another default cursor. This feature
is also known as EXECUTE IMMEDIATE . If the application needs to select multiple
rows and update the rows one at a time, the application does not need to declare
named cursors.

If the driver is unable to perform the operation using SQLExecDirect , JAM
returns the error DM_CANNOT_EXEC_IMMED. In this case, the application should
declare and execute a named cursor for the operation.

Applications should also use a named cursor to execute a catalog function or a
stored procedure.

JAM does not put any limit on the number of cursors an application may declare to
an ODBC engine. Since each cursor requires memory and ODBC resources,
however, it is recommended that applications close a cursor when it is no longer
needed.

DT_DATETIME

Null Field property

Scrolling

266 JAM 7.0 Database Guide

For more information on cursors, refer to Chapter 13 in the Application Develop-
ment Guide.

Scrolling

Even though ODBC does not have native support for non-sequential scrolling in a
select set, JAM scrolling is available. Before using any of the following com-
mands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with the
command

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off JAM scrolling and close the continuation file, use the command

DBMS [WITH CURSOR cursor-name] STORE

or close the JAM cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 14 in the Application
Development Guide.

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other
engines and for use in future releases of JAM for ODBC.

Error and Status Information

26716 Database Driver for ODBCChapter

Errors
JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode ODBC error code.

@dmengerrmsg ODBC error message.

@dmengwarncode Not used in JAM for ODBC.

@dmengwarnmsg Not used in JAM for ODBC.

@dmengreturn Not used in JAM for ODBC.

ODBC returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes ODBC error
codes to the global variable @dmengerrcode and writes ODBC messages to
@dmengerrmsg.

All ODBC errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ºJAM error: º @dmretmsg
else

msg emsg ºJAM error: º @dmretmsg º %Nº \
º:engine error is º @dmengerrcode º º @dmengerrmsg

return 1

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored procedures

268 JAM 7.0 Database Guide

For additional information about engine errors, refer to your ODBC documenta-
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guide and Chapter 12 in the Database Guide.

Row Information
JAM initializes the following global variables for row information:

@dmrowcount Count of the number of ODBC rows affected by
an operation.

ODBC returns a count of the rows affected by an operation. JAM writes this value
to the global variable @dmrowcount .

As explained on the manual page for @dmrowcount , the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

Using Stored procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Since database engines implement stored procedures very differently, ODBC
supports the stored procedure syntax prescribed by the database engine. Consult
your ODBC database driver documentation.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. ODBC has one transaction for each connection. Therefore, in a JAM

Using Transactions

26916 Database Driver for ODBCChapter

application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on ODBC:

� Executing DBMS COMMIT.

The following events roll back a transaction on ODBC:

� Executing DBMS ROLLBACK.

Transactions are not available for all database drivers using ODBC. Refer to your
ODBC database driver documentation for more information.

Transaction Control on a Single Connection
ODBC supports the following transaction commands:

� Set availability of autocommit processing.

DBMS [WITH CONNECTION connection] AUTOCOMMIT { ON | OFF }

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to the beginning of the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] ROLLBACK

The setting for autocommit processing also determines the availability of other
transaction commands. If the setting is AUTOCOMMIT ON, every statement is
committed immediately. The other transaction commandsÐCOMMIT, ROLLBACKÐ
are invalid. If the setting is AUTOCOMMIT OFF, the statements in a transaction must
be committed in order for the work to be saved and visible to the rest of the
application or other users. AUTOCOMMIT ON is the default setting for drivers that
support this feature.

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ºnew_title()º

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Example

Using Transactions

270 JAM 7.0 Database Guide

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ºTransaction succeeded.º
}
else
{

msg emsg ºAborting transaction.º
DBMS ROLLBACK

}
}

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application's transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ºnew_title()º

The procedure tran_handle receives the argument ªnew_titleº and writes it to
the variable subroutine . It declares a JPL variable, jpl_retcode . After
performing colon processing, :subroutine is replaced with its value,
new_title , and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle . JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title , JAM calls the applica-
tion's error handler. The error handler should display any error messages and return
the abort code, 1.

Transaction Manager Processing

27116 Database Driver for ODBCChapter

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedure new_title (therefore, the third INSERT is not attempted). JAM returns
1 to jpl_retcode in the calling procedure tran_handle . JPL evaluates the if
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the table titles .

Transaction Manager Processing

Transaction Model for ODBC

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For ODBC, the name of the standard transaction model is tmodb1.c .

ODBC-Specific Commands

272 JAM 7.0 Database Guide

ODBC-Specific Commands

JAM for ODBC provides commands for ODBC-specific features. This section
contains a reference page for each command. If you are using multiple engines or
are porting an application to or from another engine, please note that these
commands may work differently or may not be supported on some engines.

Retrieving System Information

DECLARE CURSOR FOR CAT-
ALOG_FUNCTION

Declare a cursor for retrieving system
information.

Using Transactions

AUTOCOMMIT Turn autocommit processing on or off.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

ODBC-Specific Commands

27316 Database Driver for ODBCChapter

AUTOCOMMIT
Turn autocommit transaction processing on or off

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT ON

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT OFF

Specify the connection for this command. If this clause is not included, JAM issues
the command on the default connection.

Some ODBC drivers and data sources do no support this command. This command
requires a level 1 conformance function, SQLSetConnectOption .

This command controls whether changes to a database occur immediately upon
execution of an INSERT, UPDATE, or DELETE command, or whether they occur
when a DBMS COMMIT is explicitly executed.

The default setting is AUTOCOMMIT ON. This means that a statement is committed
automatically upon successful execution. Its effects are immediately visible to
other users, and it cannot be rolled back.

If the setting is changed to AUTOCOMMIT OFF, the engine automatically starts a
transaction after an application declares a connection. When a recoverable
statement (INSERT, UPDATE, and DELETE) is executed, it is not automatically
committed. The effects of the statement are not visible until the transaction is
terminated. If the transaction is terminated by DBMS COMMIT, the updates are
committed and visible to other users. If the transaction is terminated by DBMS
ROLLBACK, the updates are not committed, and the database is restored to its state
prior to the start of the transaction. Once a transaction is terminated, the engine
automatically begins a new transaction.

proc new_title
DBMS WITH CONNECTION xxx1 AUTOCOMMIT ON
call update_title
msg emsg ºNew title data successfully entered.º
DBMS WITH CONNECTION xxx1 AUTOCOMMIT OFF

return 0

WITH CONNECTION
connection-name

Environment

Description

Example

ODBC-Specific Commands

274 JAM 7.0 Database Guide

proc update_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

COMMIT

ROLLBACK

See Also

ODBC-Specific Commands

27516 Database Driver for ODBCChapter

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the commit on the default connection.

Some ODBC drivers and data sources do not support this command.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Refer to the example in Using Transactions on page 268.

Using Transactions on page 268

ROLLBACK

WITH CONNECTION
connection-name

Environment

Description

Example

See Also

ODBC-Specific Commands

276 JAM 7.0 Database Guide

DECLARE CURSOR FOR CATALOG_FUNCTION
Declare a named cursor for an ODBC system catalog function

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR \
FOR CATALOG_FUNCTION function-name [:: parameter [:: parameter ...]]

Specify the connection for this command. If this clause is not included, JAM
associates the cursor with the default connection.

Specify the name of the ODBC function. The name is not case-sensitive.
Supported functions include:

SQLColumns SQLPrimaryKeys SQLStatistics

SQLColumnPrivileges SQLProcedures SQLTablePrivileges

SQLForeignKeys SQLProcedureColumns SQLTables

SQLGetTypeInfo SQLSpecialColumns

Specify a valid parameter name for the function. The parameter must begin with a
double colon, which is the JAM syntax for cursor parameters.

Some ODBC drivers and data sources do not support this command.

Use this command to create a named cursor to call an ODBC function and retrieve
information from the system catalog. The keyword CATALOG_FUNCTION is
required. Following the keyword are the name of the function and the function's
parameters. For more information on each function, including the function's
parameters, refer to your ODBC documentation.

DBMS DECLARE x CURSOR FOR CATALOG_FUNCTION sqltables \
::parm1 ::parm2 ::parm3 ::parm4

DBMS WITH CURSOR x EXECUTE USING '', '%', '%', ''

WITH CONNECTION
connection-name

function-name

parameter

Environment

Description

Example

ODBC-Specific Commands

27716 Database Driver for ODBCChapter

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the rollback on the default connection.

Some ODBC drivers and data sources do not support this command.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 268.

Using Transactions on page 268

COMMIT

WITH CONNECTION
connection-name

Environment

Description

Example

See Also

Command Directory for ODBC

278 JAM 7.0 Database Guide

Command Directory for ODBC

The following table lists all the commands available in JAM's database driver for
ODBC. The table lists the command, a short description of the command, and the
location of the reference page for that command. If the location is described as
Database Drivers, that information is enclosed in this document. If the location is
described as the Database Guide, refer to Chapter 11 of the Database Guide.

Table 3. Commands for ODBC

Command Name Description Documentation
Location

ALIAS Name a JAM variable as the
destination of a selected col-
umn or aggregate function

Database Guide

AUTOCOMMIT Turn on/off autocommit pro-
cessing

Database Drivers

BINARY Create a JAM variable for
fetching binary values

Database Guide

CATQUERY Redirect select results to a
file or a JAM variable

Database Guide

CLOSE_ALL_CONNECTIONSClose all connections on all
engines

Database Guide

CLOSE CONNECTION Close a named connection Database Guide

CLOSE CURSOR Close a named cursor Database Guide

COLUMN_NAMES Return the column name, not
column data, to a JAM vari-
able

Database Guide

COMMIT Commit a transaction Database Drivers

CONNECTION Set a default connection and
engine for the application

Database Guide

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for ODBC

27916 Database Driver for ODBCChapter

Command Name Documentation
Location

Description

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

DECLARE CURSOR FOR
CATALOG_FUNCTION

Declare a cursor to execute
an ODBC catalog function

 Database Drivers

ENGINE Set the default engine for the
application

Database Guide

EXECUTE Execute a named cursor Database Guide

FORMAT Format the results of a CAT-
QUERY

Database Guide

OCCUR Set the number of rows for
JAM to fetch to an array and
set the occurrence where
JAM should begin writing
result rows

Database Guide

ONENTRY Install a JPL procedure or C
function which JAM will call
before executing a DBMS
statement

Database Guide

ONERROR Install a JPL procedure or C
function which JAM will call
when a DBMS statement fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function which JAM will call
after executing a DBMS state-
ment

Database Guide

ROLLBACK Roll back a transaction Database Drivers

Command Directory for ODBC

280 JAM 7.0 Database Guide

Command Name Documentation
Location

Description

START Set the first row for JAM to
return from a select set

Database Guide

STORE Store the rows of a select set
in a temporary file so the
application can scroll through
the rows

Database Guide

UNIQUE Suppress repeating values in
a selected column

Database Guide

WITH CONNECTION Specify the connection to use
for a command

Database Guide

WITH CURSOR Specify the cursor to use for
a command

Database Guide

WITH ENGINE Specify the engine to use for
a command

Database Guide

Library Functions for ODBC

28116 Database Driver for ODBCChapter

Library Functions for ODBC

JAM for ODBC provides an additional C function in order to obtain the connection
information. This function is described in this section.

Library Functions for ODBC

282 JAM 7.0 Database Guide

dm_odb_get_dbhandle
Get the current connection handle

#include º<dmodbsup.h>º

HDBC dm_odb_get_dbhandle(char *connection);

JAM for ODBC connection name.

w If connection is valid, return associated HDBC.
w If connection is NULL or an empty string, return HDBC of the current con-

nection.
w Otherwise, return SQL_NULL_HDBC.

dm_odb_get_dbhandle returns the ODBC connection handle (HDBC) for the
named JAM connection. This handle is needed if you wish to call ODBC SDK
functions, such as SQLGetInfo .

The JAM for ODBC distribution includes a sample file which is located in
$SMBASE\ODBC\ODBCSAMP.C. It defines some sample functions that use
dm_odb_get_dbhandle . To call these sample functions from JPL or from control
strings, copy the sample file to your working directory, add the file name to the
SRCMODS macro in the makefile, install the functions in the prototyped function
list, and rebuild the executable. For more information about installing functions in
the prototyped function list, refer to Chapter 8 in the Application Development
Guide.

#include <smdefs.h>
#include <dmodbsup.h>

SWORD
sm_odbinfo (connection, flag)
char *connection;
UWORD flag;
{

HDBC dbhandle;
SWORD value;
RETCODE retcode;

connection

Returns

Description

Example

Library Functions for ODBC

28316 Database Driver for ODBCChapter

dbhandle = dm_odb_get_dbhandle(connection);

if (dbhandle != SQL_NULL_HDBC)
{

retcode = SQLGetInfo(dbhandle, flag, (PTR)&value,
 sizeof(value), NULL);

if (retcode == SQL_SUCCESS)
{

return value;
}

}
return ±1;

}

The following example is in JPL and it assumes you have installed sm_odbinfo in
the function list:

include odbcgbls

vars cursor_stat(5)
cursor_stat=sm_odbinfo(ºdm_odb_0connº, \

SQL_CURSOR_COMMIT_BEHAVIOR)
if (cursor_stat < 2)
{

Cursors are closed after commit. Application must
re±execute SELECT cursors.

}
else
{

Cursors remain open after commit. Application may
call CONTINUE.

}

285

Database Driver for
ORACLE

This chapter provides documentation specific to ORACLE. It discusses the
following:

� Engine initialization (page 286)

� Connection declaration (page 287)

� Import conversion (page 290)

� Formatting for colon-plus processing and binding (page 293)

� Cursors (page 294)

� Errors and warnings (page 295)

� Stored subprograms (page 297)

� Database transaction processing (page 300)

� Transaction manager processing (page 303)

� XA library interface (page 304)

� ORACLE-specific DBMS commands (page 305)

� Command directory for JAM for ORACLE (page 315)

1717

Initializing the Database Engine

286 JAM 7.0 Database Guide

This document is designed as a supplement to information found in the Application
Development Guide and other sections of the Database Guide.

Initializing the Database Engine

When you run the makefile for JAM for ORACLE, it creates the source file
dbiinit.c . For ORACLE, the vendor_list structure in dbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{

{ºoracleº, dm_orasup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

oracle Engine name. May be changed.

dm_orasup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name

In the makefile, you may change the engine name associated with the support
routine dm_orasup . The application then uses that name in DBMS ENGINE
statements and in WITH ENGINE clauses. For example, if you wish to use
ªtrackingº as the engine name, change the following makefile parameter:

ORA_ENGNAME=tracking

When the makefile is run again, it generates a new dbiinit.c file with the new
settings.

If the application is accessing multiple engines, it makes ORACLE the default
engine by executing:

DBMS ENGINE oracle-engine-name

Connecting to the Database Engine

28717 Database Driver for ORACLEChapter

where oracle-engine-name is the string used in vendor_list . For example,

DBMS ENGINE oracle

or

DBMS ENGINE tracking

Support Routine Name

dm_orasup is the name of the support routine for ORACLE. This name should not
be changed.

Case Flag

The case flag, DM_DEFAULT_CASE, determines how JAM's database drivers use
case when searching for JAM variables for holding SELECT results. This setting is
used when comparing ORACLE column names to either a JAM variable name or
to a column name in a DBMS ALIAS statement.

ORACLE is case insensitive. Regardless of the case in a SQL statement, ORACLE
creates all database objectsÐtables, views, columns, etc.Ðwith upper case names.
For ORACLE, the DM_DEFAULT_CASE setting is treated as
DM_FORCE_TO_LOWER_CASE. This means that JAM attempts to match ORACLE
column names to lower case JAM variables when processing SELECT results. If
your application is using this default, use lower case names when creating JAM
variables.

The case setting may be changed. If you wish to use upper case JAM variable
names, use the u option in the makefile for the DM_FORCE_TO_UPPER_CASE flag.

ORA_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chapter 11 in the Application Development Guide.

Connecting to the Database Engine

ORACLE allows your application to use one or more connections. The application
may declare any number of named connections with DBMS DECLARE CONNEC-
TION statements, up to the maximum number permitted by the server.

Connecting to the Database Engine

288 JAM 7.0 Database Guide

The following options are supported for connections to ORACLE:

Table 1. Database connection options.

Option Argument

USER user-name

PASSWORD password

DEFERRED_PARSING ON | OFF

USER and PASSWORD have different configurations for SQL*Net V1 and SQL*Net
V2.

For SQL*Net V1, a JAM application connects to the default ORACLE database
unless the program supplies an ORACLE connect string or an ORACLE connect
alias. This connect string or alias is appended to the user-name argument. For
example:

Connect string for TCP/IP
DBMS DECLARE c CONNECTION FOR USER ºscott@T::nysales::Pº \

PASSWORD ºtigerº

Connect alias
DBMS DECLARE c CONNECTION FOR USER ºscott@nyº \

PASSWORD ºtigerº

In the connect string example, the network-prefix is T for TCP/IP, the host-name is
nysales , and the system-ID is P. In connect strings, use two colons between the
parameters, instead of one, to prevent JAM from performing colon expansion on
the names.

Even though you can specify a connect string as part of your user-name or
password, better error messages are returned from ORACLE if it is part of the
user-name.

For SQL*Net 2, the user-name argument contains the logon name and the service
name or connect descriptor found in your TNSNAMES.ORA file.

Service name for SQL*Net V2
DBMS DECLARE c CONNECTION FOR USER ºscott@listenerº \

PASSWORD ºtigerº

Refer to your SQL*Net documentation for more information on connect strings
and connect descriptors.

DEFERRED_PARSING is an option available with ORACLE 7 using OCI. It controls
when the SQL statement is parsed. If set to ON, the call to parse the SQL statement

Connecting to the Database Engine

28917 Database Driver for ORACLEChapter

is delayed, bundled at the client host, and transmitted to the server together with
the next DESCRIBE or EXECUTE statement. By reducing the number of calls across
the network, it improves performance. OFF is the default setting.

The syntax for declaring a connection in a JPL statement is:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR USER user-name PASSWORD password \
[DEFERRED_PARSING ON | OFF]

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
USER º:uname@T::nyserver::salesº PASSWORD º:pwordº

where uname and pword are JAM widget names.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for ORACLE, it is
treated as an error.

Connecting to the XA Library
In ORACLE 7, distributed transaction processing (DTP) can be handled by a
transaction manager using ORACLE as one of its resource managers. ORACLE's
XA library provides an interface to this environment.

JAM for ORACLE provides a special logon syntax for programs operating as
application servers in an X/Open distributed processing environment. These logon
options indicate that JAM should use ORACLE's XA library to set connection
information. Note that these options also require the use of JAM/TPi.

In order to access the XA library, you must specify the following options in the
DBMS DECLARE CONNECTION statement:

Option Argument

XA_CONN ON | OFF

XA_DBNAME character_string

XA_CONN ON tells JAM to use the ORACLE XA library. XA_DBNAME should be
used when connecting to an open string with the DB field set.

For example, the following string does not set the DB field:

Oracle_XA+Acc=P/scott/tiger+SesTm=30

To connect using this open string:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN

Importing Database Tables

290 JAM 7.0 Database Guide

For example, the following string sets DB to resources :

Oracle_XA+DB=resources+Acc=P/scott/tiger+SesTm=30

To connect using this open string:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN ON XA_DBNAME ºresourcesº

or

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN ON XA_DBNAME ºRESOURCESº

Importing Database Tables
The Import%Database Objects option in the screen editor creates JAM repository
entries based on database tables in a ORACLE database. When the import process
is complete, each selected database table has a corresponding repository entry
screen.

In JAM for ORACLE, the following database objects can be imported as
repository entries:

� database tables

� database views

� synonyms

Once the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column's characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table, database table view, or synonym.

� Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repository, the new repository
screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

Importing Database Tables

29117 Database Driver for ORACLEChapter

The import process inserts values in the following table view properties:

� Name Ð The name of the table view, generally the same as the database table.

� Table Ð The name of the database table.

� Primary Keys Ð The columns that are defined as primary keys for the
database table.

� Columns Ð A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable Ð A setting which determines if the data in the table can be
modified. The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. First, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on table views.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

Importing Database Tables

292 JAM 7.0 Database Guide

The following table lists the values for the C Type, Length, and Precision
properties assigned to each ORACLE data type.

Table 2. Importing Database Tables

ORACLE Data Type JAM Type C Type JAM Widget Length JAM Widget
Precision

CHAR FT_CHAR Char
String

Column length

DATE DT_DATETIME Default 20

LONG FT_CHAR Char
String

36

LONG RAW DT_BINARY Char
String

36

NUMBER
(ORACLE scale = 0)

FT_LONG Long Int Column length plus 1 for
sign

NUMBER
(ORACLE scale > 0)

FT_DOUBLE Double Column length plus 2 for
+/± sign and decimal
point

Same as column
precision (scale)

RAW DT_BINARY Hex Dec Column length * 2

ROWID FT_CHAR Char
String

18

VARCHAR2 FT_CHAR Char
String

Column length

Precision in ORACLE is equivalent to length in JAM, and scale in ORACLE is equivalent to precision in JAM.

Based on the column's data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

If a column's length is defined as larger than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

In JAM for ORACLE, this is applied to LONG RAW and RAW data types.

Other Widget
Properties

UseInUpdate property

Formatting for Colon Plus Processing and Binding

29317 Database Driver for ORACLEChapter

DT_DATETIME widgets also have the Format/Display%Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL , the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id , actor_id and role . title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role , without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in the Application Development Guide.

Formatting Dates

JAM uses ORACLE's built-in TO_DATE function and the ORACLE format string,
ddmmyyyy hh24miss to convert a JAM date-time format to an ORACLE format.

Formatting Character Strings

ORACLE 6 does not permit quoted character strings longer than 255 characters.
Furthermore, in all versions of ORACLE, there is a 64K limit on the size of a SQL
statement. Therefore, you should not use colon-plus processing to supply long
character string values (e.g., LONG, VARCHAR2) in a SQL INSERT or UPDATE
statement. Instead, you should use binding to supply the character string. For
example:

DBMS DECLARE x CURSOR FOR INSERT INTO mytable \
(code, comments) VALUES (::code, ::comments)

DBMS WITH CURSOR x EXECUTE USING code±fld, comments±fld

Typically, a word-wrapped multi-text array is used for these long strings.

DT_DATETIME

Null Field property

Long Character
String Values

Declaring Cursors

294 JAM 7.0 Database Guide

In JAM for ORACLE, colon plus processing expands an empty character string
('') to a quoted space (' ') if the widget's Null Field property is set to No. This is
to circumvent ORACLE's behavior. Since ORACLE converts an empty character
string to NULL, null values were being entered into the database even though they
were not specified.

Declaring Cursors

When a connection is declared to an ORACLE engine, JAM automatically declares
a default cursor for SQL SELECT statements executed with the JPL command
DBMS SQL . For all non-SELECT operations performed with DBMS SQL , JAM uses
ORACLE's EXECUTE IMMEDIATE feature rather than another default cursor. If the
application needs to select multiple rows and update the rows one at a time, the
application does not need to declare named cursors.

Declaring a named cursor may improve the performance of some SELECT
statements. In particular, if an application is executing a SELECT statement more
than once and the SELECT fetches 40 or more columns from a remote server, a
named cursor is recommended. In this case, the parse and describe is done just
once when the cursor is declared, not each time the cursor is executed.

JAM does not put any limit on the number of cursors an application may declare to
an ORACLE engine. Since each cursor requires memory and ORACLE resources,
however, it is recommended that applications close a cursor when it is no longer
needed.

For more information on cursors, refer to Chapter 13 in the Application Develop-
ment Guide.

Scrolling

Even though ORACLE does not have native support for non-sequential scrolling in
a select set, JAM scrolling is available. Before using any of the following
commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with the
command

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

Empty
Character
Strings

Error and Status Information

29517 Database Driver for ORACLEChapter

To turn off JAM scrolling and close the continuation file, use the command

DBMS [WITH CURSOR cursor-name] STORE

or close the JAM cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 14 in the Application
Development Guide.

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other
engines and for use in future releases of JAM for ORACLE.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode ORACLE error code.

@dmengerrmsg ORACLE error message.

@dmengwarncode Not used in JAM for ORACLE.

@dmengwarnmsg Not used in JAM for ORACLE.

@dmengreturn Not used in JAM for ORACLE.

ORACLE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes ORACLE
error codes to the global variable @dmengerrcode and writes ORACLE messages
to @dmengerrmsg.

All ORACLE errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

Error and Status Information

296 JAM 7.0 Database Guide

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ºJAM error: º @dmretmsg
else

msg emsg ºJAM error: º @dmretmsg º %Nº \
º:engine error is º @dmengerrcode º º @dmengerrmsg

return 1

For additional information about engine errors, refer to your ORACLE documenta-
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guide and Chapter 12 in the Database Guide.

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of ORACLE rows affected
by an operation.

@dmserial Not used in JAM for ORACLE.

ORACLE returns a count of the rows affected by an operation. JAM writes this
value to the global variable @dmrowcount .

As explained on the manual page for @dmrowcount , the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Subprograms

29717 Database Driver for ORACLEChapter

Using Stored Subprograms
A stored subprogram is a precompiled set of SQL statements that are recorded in
the database and executed by calling the subprogram name. Since the SQL parsing
and syntax checking for a stored subprogram are performed when the subprogram
is created, executing a stored subprogram is faster than executing the same group
of SQL statements individually. By passing parameters to and from the stored
subprogram, the same procedure can be used with different values. In addition to
SQL statements, stored subprograms can also contain control flow language, such
as if statements, which gives greater control over the processing of the statements.

Database engines implement stored subprograms very differently. If you are
porting your application from one database engine to another, you need to be aware
of the differences in the engine implementation.

ORACLE as part of its PL/SQL language has two types of subprograms: stored
procedures and stored functions. JAM support for each type of subprogram is
discussed in the following sections. To access to stored subprograms, you must use
ORACLE's OCI Interface with Version 7 of ORACLE. Consult the file $SMBASE/
notes/readme.ora for the file names and versions of ORACLE libraries needed.
For more information on writing stored subprograms, refer to your ORACLE
PL/SQL documentation.

Executing Stored Procedures
To execute a stored procedure, you must declare a named cursor. The DECLARE
CURSOR statement must include the keyword STORED_SUB. All parameters to the
stored procedure must have corresponding bind parameters in the DECLARE
CURSOR statement.

PL/SQL defines three modes for parameters: input, output and input/output. An
input parameter can be a constant, literal, initialized variable, or expression. Arrays
are not supported as input parameters in this release. Output and input/output
parameters must be variables.

The output parameters in a stored procedure must be either one of the scalar data
types (CHAR, INT , REAL, etc) or a table data type. Record data types are not
supported as output parameters in this release.

The syntax for the DECLARE CURSOR statement is as follows:

DBMS DECLARE cursor-name CURSOR FOR STORED_SUB \
[package-name.]procedure-name [(:: parameter [, :: [parameter]...)]

When the cursor is executed, the JAM variables named in the USING clause must
have enough occurrences to hold all the rows which are returned. You cannot use a
DBMS CONTINUE command to fetch additional rows.

Using Stored Subprograms

298 JAM 7.0 Database Guide

Use one of the following formats to execute the cursor:

DBMS [WITH CURSOR cursor] EXECUTE [USING jamvar [, jamvar ...]]

DBMS [WITH CURSOR cursor] EXECUTE [USING parameter=jamvar \
[, parameter=jamvar ...]]

ORACLE stored procedures, by definition, do not have return codes.

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

PROCEDURE update_tapes (tid IN INTEGER, copy IN INTEGER) IS
BEGIN

UPDATE tapes SET status = 'O'
WHERE title_id = tid AND copy_num = copy;

END update_tapes;

The following JPL procedure executes this stored procedure. First, a DECLARE
CURSOR statement identifies the parameters. Then, the cursor is executed with a
USING clause which gets the onscreen values of the widgets title_id and
copy_num .

proc sp1
DBMS DECLARE x CURSOR FOR STORED_SUB update_tapes \

(::parm1, ::parm2)
DBMS WITH CURSOR x EXECUTE USING parm1=title_id,\

parm2=copy_num
return

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guide for more information.

rent_history is a stored procedure containing both input and output parameters
which finds the video rentals for a customer.

Return Codes

Example

Example

Using Stored Subprograms

29917 Database Driver for ORACLEChapter

PROCEDURE rent_history (
cid IN INTEGER,
tid OUT INTEGER,
tname OUT CHAR,
rstatus OUT CHAR,
due_date OUT DATE,
ret_date OUT DATE) IS

BEGIN
SELECT rentals.title_id, titles.name,
rentals.rental_status, rentals.due_back,
rentals.return_date
INTO tid, tname, rstatus, due_date, ret_date
FROM rentals, titles

WHERE rentals.title_id = titles.title_id AND
cust_id = cid;

END rent_history;

The following JPL procedure executes the stored procedure. First, a DECLARE
CURSOR statement identifies the name of the stored procedure and its parameters.
Then, the cursor is executed with a USING clause which gets the onscreen value of
cust_id and returns the output parameters to arrays having an unlimited number
of occurrences.

proc sp3
DBMS DECLARE y CURSOR FOR STORED_SUB rent_history \

(::parm1, ::parm2, ::parm3, ::parm4, ::parm5, ::parm6)
DBMS WITH CURSOR y EXECUTE USING parm1=cust_id,\

parm2=title_id, parm3=name, parm4=rental_status, \
parm5=due_back, parm6=return_date

return

Executing Stored Functions
To execute a stored function, you must also use a DECLARE CURSOR statement
including the keyword STORED_SUB. However, since a stored function has a return
code, the syntax of the statement differs from the syntax used for stored proce-
dures.

In the current version of JAM for ORACLE, the return code must be one of the
scalar data types (CHAR, INT , REAL, etc.).

DBMS DECLARE cursor-name CURSOR FOR STORED_SUB \
:: parameter1 ::= function-name (:: parameter [, :: [parameter]...])

In this statement, parameter1 holds the return code. function-name is any existing
ORACLE stored function. Any other parameters follow the function name. All
parameters to the stored function must have corresponding bind parameters in the
DECLARE CURSOR statement.

Using Transactions

300 JAM 7.0 Database Guide

When the cursor is executed, the return code is written to jamvar1. Any additional
parameters follow the return code.

DBMS [WITH CURSOR cursor] EXECUTE USING jamvar1 [, jamvar ...]

The return code from an ORACLE stored function is not written to the JAM
variable @dmengreturn . Since the @dmengreturn is designed to hold integer
values and the return code from a stored function can be of any data type, it is
written to the first JAM variable in an EXECUTE USING statement as illustrated in
the preceding examples.

cust_rent calculates the new total rent_amount column in the customers
table.

FUNCTION cust_rent (cid IN INTEGER, total IN REAL) RETURN
REAL IS

old_rent REAL;
calc_rent REAL;

BEGIN
SELECT rent_amount INTO old_rent FROM customers

WHERE cust_id = cid;
calc_rent := total + old_rent;

RETURN calc_rent;
END cust_rent;

The following JPL procedure executes the stored function. First, a DECLARE
CURSOR statement identifies the parameters and return code. Then, the cursor is
executed with a USING clause which gets the onscreen value of cust_id and
total and returns the title_id and copy_num .

proc sp3
DBMS DECLARE z CURSOR FOR STORED_SUB ::a \

::=cust_rent (::b, ::c)
DBMS WITH CURSOR z EXECUTE USING calc_rent, cust_id, total
return

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. ORACLE has one transaction for each connection. Therefore, in a JAM
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on ORACLE:

Return Codes

Example

Using Transactions

30117 Database Driver for ORACLEChapter

� Executing DBMS COMMIT.

� Executing a data definition command such as CREATE, DROP, RENAME, or
ALTER which causes an implicit commit.

� Closing the connection.

The following events roll back a transaction on ORACLE:

� Executing DBMS ROLLBACK.

When an application closes a connection with CLOSE_ALL_CONNECTIONS or
CLOSE CONNECTION, ORACLE commits any pending transactions on those
connections. If an application terminates without explicitly closing its connections,
ORACLE rolls back any pending transactions on those connections. However,
these procedures are not recommended. Instead, it is strongly recommended that
applications use explicit COMMIT and ROLLBACK statements to terminate
transactions.

For information on transaction processing for ORACLE XA connections, refer to
page 304.

Transaction Control on a Single Connection

After an application declares a connection, a transaction automatically starts on
that connection.

ORACLE supports the following transaction commands:

� Set availability of autocommit processing.

DBMS [WITH CONNECTION connection] AUTOCOMMIT { ON | OFF }

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to a savepoint or to the beginning of the transaction on a default or
named connection.

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]

� Create a savepoint in the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] SAVE [savepoint]

The setting for autocommit processing also determines the availability of other
transaction commands. If the setting is AUTOCOMMIT ON, every statement is

Using Transactions

302 JAM 7.0 Database Guide

committed immediately. The other transaction commandsÐCOMMIT, ROLLBACKÐ
are invalid. If the setting is AUTOCOMMIT OFF, the statements in a transaction must
be committed in order for the work to be saved and visible to the rest of the
application or other users. AUTOCOMMIT OFF is the default setting.

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ºnew_title()º

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ºTransaction succeeded.º
}
else
{

msg emsg ºAborting transaction.º
DBMS ROLLBACK

}
}

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application's transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

Example

Transaction Manager Processing

30317 Database Driver for ORACLEChapter

The application executes the transaction by executing

call tran_handle ºnew_title()º

The procedure tran_handle receives the argument ªnew_titleº and writes it to
the variable subroutine . It declares a JPL variable, jpl_retcode . After
performing colon processing, :subroutine is replaced with its value,
new_title , and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle . JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title , JAM calls the applica-
tion's error handler. The error handler should display any error messages and return
the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedure new_title (therefore, the third INSERT is not attempted). JAM returns
1 to jpl_retcode in the calling procedure tran_handle . JPL evaluates the if
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the table titles .

Transaction Manager Processing

Transaction Model for ORACLE

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For ORACLE, the name of the standard transaction model is
tmora1.c .

Specifying FOR UPDATE Clauses

The dm_gen_change_select_suffix function appends text to SQL SELECT
statements generated by the transaction manager. You can use this function to
append a FOR UPDATE clause during SQL generation.

Using the XA Interface

304 JAM 7.0 Database Guide

Using the XA Interface

With the XA interface, the transaction processing monitor provided by the
transaction manager vendor starts and ends a transaction which may include
operations on several resource managers, including ORACLE.

Since ORACLE does not control the transaction processing in the XA environ-
ment, the following commands should not be used with ORACLE XA connections:

DBMS [WITH CONNECTION connection] AUTOCOMMIT { ON | OFF }

DBMS [WITH CONNECTION connection] COMMIT

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]

DBMS [WITH CONNECTION connection] SAVE [savepoint]

In addition, since SQL data definition statements, such as CREATE TABLE , cause
an implicit commit in ORACLE, these statements should not be executed on
ORACLE XA connections.

For additional information about ORACLE's XA library, refer to your ORACLE 7
Server for UNIX Administrator's Reference.

ORACLE-Specific Commands

30517 Database Driver for ORACLEChapter

ORACLE-Specific Commands

JAM for ORACLE provides commands for ORACLE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Stored Subprograms

DECLARE CURSOR FOR
STORED_SUB

Declare a cursor to execute a stored subpro-
gram.

Using Transactions

AUTOCOMMIT Turn autocommit processing on or off.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

ORACLE-Specific Commands

306 JAM 7.0 Database Guide

AUTOCOMMIT
Turn autocommit transaction processing on or off

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT ON

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT OFF

Specify the connection for this command. If this clause is not included, JAM issues
the command on the default connection.

This command is not available for ORACLE XA connections.

This command controls whether changes to a database occur immediately upon
execution of an INSERT, UPDATE, or DELETE command, or whether they occur
when a DBMS COMMIT is explicitly executed.

The default setting is AUTOCOMMIT OFF. This means that the engine automatically
starts a transaction after an application declares a connection. When a recoverable
statement (INSERT, UPDATE, and DELETE) is executed, it is not automatically
committed. The effects of the statement are not visible until the transaction is
terminated. If the transaction is terminated by DBMS COMMIT, the updates are
committed and visible to other users. If the transaction is terminated by DBMS
ROLLBACK, the updates are not committed, and the database is restored to its state
prior to the start of the transaction. Once a transaction is terminated, the engine
automatically begins a new transaction.

If the setting is changed to AUTOCOMMIT ON, a statement is committed automati-
cally upon successful execution. Its effects are immediately visible to other users,
and it cannot be rolled back.

ORACLE recommends AUTOCOMMIT OFF mode because it may improve
performance.

proc new_title
DBMS WITH CONNECTION xxx1 AUTOCOMMIT ON
call update_title
msg emsg ºNew title data successfully entered.º
DBMS WITH CONNECTION xxx1 AUTOCOMMIT OFF

return 0

WITH CONNECTION
connection-name

Environment

Description

Example

ORACLE-Specific Commands

30717 Database Driver for ORACLEChapter

proc update_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

return 0

COMMIT

ROLLBACK

SAVE

See Also

ORACLE-Specific Commands

308 JAM 7.0 Database Guide

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the commit on the default connection.

This command is not available for ORACLE XA connections.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT or SAVE. Changes made by the transaction
become visible to other users. If the transaction is terminated by ROLLBACK, the
updates are not committed, and the database is restored to its state prior to the start
of the transaction.

Once a transaction is terminated, the engine automatically begins a new transac-
tion.

Before beginning a transaction, the application should ensure that the connection is
using AUTOCOMMIT OFF mode; this is usually the default. It should COMMIT or
ROLLBACK any pending transactions before starting a new one.

If an application is using AUTOCOMMIT ON mode, this command is not needed.

Refer to the example in Using Transactions on page 300.

Using Transactions on page 300

WITH CONNECTION
connection-name

Environment

Description

Example

See Also

ORACLE-Specific Commands

30917 Database Driver for ORACLEChapter

AUTOCOMMIT

ROLLBACK

SAVE

ORACLE-Specific Commands

310 JAM 7.0 Database Guide

DECLARE CONNECTION
Creates a named connection to a database engine

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION [FOR option arg ...]

Names the engine to associate with the connection. If the clause is not used, JAM
opens the connection on the default engine.

Names the connection to be opened. For names to be used with XA connections,
refer to the Description.

Names an option for the connection. The names and number of available options
varies according to the database engine and type of connection.

The value assigned to the option.

DBMS DECLARE CONNECTION opens a session on a database engine. If this state-
ment executes successfully, it allocates a connection structure and adds it to the list
of open structures.

Applications which must connect to two or more servers should declare a named
connection to each server. If you are connecting to two or more database engines,
you must declare a connection for each engine.

The combination of necessary or supported options is engine-specific. Common
options include USER, PASSWORD, DATABASE, and SERVER. For a list of the valid
options for this engine, refer to page 287.

The connection remains open until it is closed with DBMS CLOSE CONNECTION or
DBMS CLOSE_ALL_CONNECTIONS.

The transaction monitor used with XA connections requires an open string to open
a database.

This procedure connects to the database.
#
proc logon
DBMS DECLARE c1 CONNECTION FOR USER º:userº

PASSWORD º:pwordº DATABASE º:dbaseº
return

CLOSE CONNECTION, CLOSE_ALL_CONNECTIONS, CONNECTION, WITH
CONNECTION

WITH ENGINE
engine

connection

option

arg

Description

 XA Connections

Example

See Also

ORACLE-Specific Commands

31117 Database Driver for ORACLEChapter

DECLARE CURSOR FOR STORED_SUB
Declare a named cursor for a stored subprogram

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR FOR STORED_SUB \
[package-name.]procedure-name [(:: parameter[, :: parameter]...)]

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR FOR STORED_SUB \
:: return-code :: function-name (:: parameter [, :: [parameter]...])

Specifies the stored function name.

Specifies the PL/SQL package containing the stored subprogram.

For stored procedures, specifies an input or output parameter used in the stored
procedure. For stored functions, specifies input parameter used in the stored
function.

Specifies the stored procedure name.

Specifies the name of the return code in the stored function.

Specify the connection for this command. If this clause is not included, JAM
associates the cursor with the default connection.

Use this command to create or redeclare a named cursor to execute a stored sub-
program. The keyword STORED_SUB is required and can be used for both stored
procedures and stored functions. However, the format of the command varies for
these two types of subprograms. The first format shown is for stored procedures.
The second format is for stored functions.

All parameters must begin with a double colon, which is the JAM syntax for cursor
parameters.

The application executes a cursor associated with a stored subprogram as it
executes any named cursor, with DBMS EXECUTE. However, the format of this
command differs for stored procedures and stored functions. Refer to the examples
in Using Stored Subprograms on page 297.

Refer to the example in Using Stored Subprograms on page 297.

Using Stored Subprograms on page 297

function-name

package-name

parameter

procedure-name

return-code

WITH CONNECTION
connection-name

Description

Example

See Also

ORACLE-Specific Commands

312 JAM 7.0 Database Guide

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK [savepoint]

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the rollback on the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

This command is not available for ORACLE XA connections.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 300.

Using Transactions on page 300

AUTOCOMMIT

COMMIT

SAVE

WITH CONNECTION
connection-name

savepoint

Environment

Description

Example

See Also

ORACLE-Specific Commands

31317 Database Driver for ORACLEChapter

SAVE
Set a savepoint within a transaction

DBMS [WITH CONNECTION connection-name] SAVE savepoint

Specifies the name of the savepoint.

Specify the connection for this command. If this clause is not included, JAM issues
the command on the default connection.

This command is not available for ORACLE XA connections.

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled using DBMS ROLLBACK savepoint. A
transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then be
completed or completely rolled back to the beginning.

This feature is useful for any long, complicated transaction. For example, an order
entry application may involve many screens where an end-user must enter data
regarding the order. As the user completes each screen, the application may issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application may
simply rollback the procedures on the fifth screen.

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SAVE s1
call new_dscr
call new_tapes
DBMS COMMIT
return 0

savepoint

WITH CONNECTION
connection-name

Environment

Description

Example

ORACLE-Specific Commands

314 JAM 7.0 Database Guide

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES \

(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2

return 0

proc new_tapes
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, :+status, :+times_rented)
return 0

Using Transactions on page 300

AUTOCOMMIT

COMMIT

ROLLBACK

See Also

Command Directory for ORACLE

31517 Database Driver for ORACLEChapter

Command Directory for ORACLE

The following table lists all the commands available in JAM's database driver for
ORACLE. The table lists the command, a short description of the command, and
the location of the reference page for that command. If the location is described as
Database Drivers, that information is enclosed in this document. If the location is
described as the Database Guide, refer to Chapter 11 of the Database Guide.

Table 3. Commands for ORACLE

Command Name Description Documentation
Location

ALIAS Name a JAM variable as the
destination of a selected col-
umn or aggregate function

Database Guide

AUTOCOMMIT Turn on/off autocommit pro-
cessing

Database Drivers

BINARY Create a JAM variable for
fetching binary values

Database Guide

CATQUERY Redirect select results to a
file or a JAM variable

Database Guide

CLOSE_ALL_CONNECTIONSClose all connections on all
engines

Database Guide

CLOSE CONNECTION Close a named connection Database Guide

CLOSE CURSOR Close a named cursor Database Guide

COLUMN_NAMES Return the column name, not
column data, to a JAM vari-
able

Database Guide

COMMIT Commit a transaction Database Drivers

CONNECTION Set a default connection and
engine for the application

Database Guide

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for ORACLE

316 JAM 7.0 Database Guide

Command Name Documentation
Location

Description

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

DECLARE CURSOR FOR
STORED_SUB

Declare a cursor to execute a
stored subprogram

 Database Drivers

ENGINE Set the default engine for the
application

Database Guide

EXECUTE Execute a named cursor Database Guide

FORMAT Format the results of a CAT-
QUERY

Database Guide

OCCUR Set the number of rows for
JAM to fetch to an array and
set the occurrence where
JAM should begin writing
result rows

Database Guide

ONENTRY Install a JPL procedure or C
function which JAM will call
before executing a DBMS
statement

Database Guide

ONERROR Install a JPL procedure or C
function which JAM will call
when a DBMS statement fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function which JAM will call
after executing a DBMS state-
ment

Database Guide

ROLLBACK Roll back a transaction Database Drivers

Command Directory for ORACLE

31717 Database Driver for ORACLEChapter

Command Name Documentation
Location

Description

SAVE Set a savepoint in a transac-
tion

Database Drivers

START Set the first row for JAM to
return from a select set

Database Guide

STORE Store the rows of a select set
in a temporary file so the
application can scroll through
the rows

Database Guide

UNIQUE Suppress repeating values in
a selected column

Database Guide

WITH CONNECTION Specify the connection to use
for a command

Database Guide

WITH CURSOR Specify the cursor to use for
a command

Database Guide

WITH ENGINE Specify the engine to use for
a command

Database Guide

319

Database Driver for
SYBASE -CT Library

The SYBASE Open Client product provides software for communicating with
SYBASE SQL Server and SYBASE Open Server. Open Client has two compo-
nents: programming interfaces and network services. JAM for SYBASE is written
using the programming interfaces of Open Client.

SYBASE has two programming interfaces, DB-Library and Client-Library. JAM
provides a version of its support routine for each programming interface. You
choose one of the programming interfaces when you you install the JAM/SYBASE
product on Windows or when you edit the JAM/SYBASE makefile on any
platform.

In most cases you will notice no difference between JAM applications using
DB-Library and those using Client-Library. However, some advanced features may
be available in only one interface. DB-Library is recommended for applications
using complicated stored procedures, remote procedure calls, or two±phase
commits.

DB-Library is supplied with SYBASE 4.x and 10. DB-Library was used for all
JAM/SYBASE releases prior to JAM 7. If you are upgrading a JAM 5 or JAM 6
application to JAM 7, you may continue to use DB-Library.

Client-Library is recommended for applications requiring SYBASE 10 native
cursor support. DB-Library does not have native cursor support; JAM uses

1818

Initializing the Database Engine

320 JAM 7.0 Database Guide

SYBASE dbprocesses to simulate cursor support with DB-Library. Unlike a
dbprocess, a native cursor allows an application to select data and update rows in
the select set without risking a deadlock. This problem can be avoided in
DB-Library applications but Client-Library's native cursors are recommended for
applications selecting 500 or more rows for update.

This chapter provides documentation specific to SYBASE using CT Library. It
discusses the following:

� Engine initialization (page 320)

� Connection declaration (page 322)

� Import conversion (page 324)

� Formatting for colon-plus processing and binding (page 328)

� Cursors (page 329)

� Errors and warnings (page 331)

� Database transaction processing (page 334)

� Transaction manager processing (page 337)

� SYBASE-specific DBMS commands (page 338)

� Command directory for JAM for SYBASE (page 351)

This document is designed as a supplement to information found in the Application
Development Guide and other sections of the Database Guide.

Initializing the Database Engine

When you run the makefile for JAM for SYBASE, it creates the source file
dbiinit.c . For SYBASE, the vendor_list structure in dbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{

{ºsybaseº, dm_sybsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

Initializing the Database Engine

32118 Database Driver for SYBASE -CT LibraryChapter

The settings are as follows:

sybase Engine name. May be changed.

dm_sybsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name
In the makefile, you may change the engine name associated with the support
routine dm_sybsup . The application then uses that name in DBMS ENGINE
statements and in WITH ENGINE clauses. For example, if you wish to use
ªtrackingº as the engine name, change the following makefile parameter:

SYB_ENGNAME=tracking

When the makefile is run again, it generates a new dbiinit.c file with the new
settings.

If the application is accessing multiple engines, it makes SYBASE the default
engine by executing:

DBMS ENGINE sybase-engine-name

where sybase-engine-name is the string used in vendor_list . For example,

DBMS ENGINE sybase

or

DBMS ENGINE tracking

Support Routine Name
dm_sybsup is the name of the support routine for SYBASE. This name should not
be changed.

Case Flag
The case flag, DM_DEFAULT_CASE, determines how JAM's database drivers use
case when searching for JAM variables for holding SELECT results. This setting is

Connecting to the Database Engine

322 JAM 7.0 Database Guide

used when comparing SYBASE column names to either a JAM variable name or to
a column name in a DBMS ALIAS statement.

SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when
creating database objects like tables and columns. In subsequent SQL statements,
you must use the same exact case when referring to these objects. The default
setting for case-sensitive engines is DM_PRESERVE_CASE. This means that the
SYBASE column name is matched to a JAM variable with the same name and case
when processing SELECT results.

The case setting may be changed. You can force JAM to perform case-insensitive
searches. Substitute the l option in the makefile to match SYBASE column names
to lower case JAM variables, or use the u option to match to upper case JAM
variables.

SYB_INIT=l

or

SYB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chapter 11 in the Application Development Guide.

Connecting to the Database Engine

SYBASE allows your application to use one or more connections. The application
may declare any number of named connections with DBMS DECLARE CONNEC-
TION statements, up to the maximum number permitted by the server.

Each JAM connection has its own SYBASE Client-Library context structure and
connection structure.

The following options are supported for connections to SYBASE:

Connecting to the Database Engine

32318 Database Driver for SYBASE -CT LibraryChapter

Table 1. Database connection options.

Option Argument

USER user-name

INTERFACES interfaces-file-pathname

SERVER server-name

DATABASE database-name

PASSWORD password

APPLICATION application-name

CURSORS ignored with CT-Library

TIMEOUT seconds

HOST host-name

SQLTIMEOUT seconds

APPLICATION associates a character string with the cursors that are declared in the
application. JAM uses the SYBASE function ct_con_props(CS_APPNAME) to
set this option.

HOST specifies a character string to identify the host name of the client. JAM uses
the SYBASE function ct_con_props(CS_HOSTNAME) to set this option.

INTERFACES supplies the pathname to an interfaces file. An interfaces file
contains the name and network address of every SYBASE server available on the
network. If this option is not used, SYBASE looks for a file called interfaces in
the SYBASE parent directory (e.g., /usr/sybase/interfaces). This option is
ignored for OS/2, MS-DOS, and Windows applications.

SQLTIMEOUT specifies the number of seconds that Open Client waits for a query to
return results. A timeout of 0 seconds represents an infinite timeout period. The
SYBASE default timeout value is 0. JAM uses the SYBASE function ct_con-
fig(CS_TIMEOUT) to set this option.

TIMEOUT sets the number of seconds that Open Client waits for a SYBASE
response to a request for a connection. A timeout of 0 seconds represents an
infinite timeout period. The SYBASE default timeout value is 60 seconds. JAM
uses the SYBASE function ct_config(CS_LOGIN_TIMEOUT) to set this option.

Importing Database Tables

324 JAM 7.0 Database Guide

The syntax for declaring a connection in a JPL statement is:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR [USER user-name] [PASSWORD password] \
[DATABASE database] [SERVER server] \
[APPLICATION application-name] \
[HOST host-name] [INTERFACES interface-file-pathname] \
[SQLTIMEOUT seconds] [TIMEOUT seconds]]

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
USER º:unameº PASSWORD º:pwordº DATABASE ºsalesº \
SERVER ºsybase10º APPLICATION ºsalesº HOST ºoakº \
INTERFACES º/usr/sybase/interfaces.appº \
SQLTIMEOUT º120º TIMEOUT º15º

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for SYBASE, it is
treated as an error.

Importing Database Tables

The Import%Database Objects option in the screen editor creates JAM repository
entries based on database tables in a SYBASE database. When the import process
is complete, each selected database table has a corresponding repository entry
screen.

In JAM for SYBASE, the following database objects can be imported as repository
entries:

� database tables

� database views

Once the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column's characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table or database table view.

� Links which describe the relationship between table views.

Importing Database Tables

32518 Database Driver for SYBASE -CT LibraryChapter

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repository, the new repository
screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name Ð The name of the table view, generally the same as the database table.

� Table Ð The name of the database table.

� Primary Keys Ð The columns that are defined as primary keys or unique
indexes for the database table.

� Columns Ð A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable Ð A setting which determines if the data in the table can be
modified. The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. First, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on table views.

Links
Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Importing Database Tables

326 JAM 7.0 Database Guide

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each SYBASE data type.

Table 2. Importing Database Tables

SYBASE Data
Type

Code JAM Type C Type JAM Widget Length JAM Widget
Precision

binary 45 DT_BINARY Hex Dec column length * 2

bit 50 FT_INT Int 1

char 47 FT_CHAR Char
String

column length

datetime 61 DT_DATETIME Default 17

decimal 55

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

double preci -
sion

62 FT_FLOAT Float 16 2

float 62 FT_FLOAT Float 16 2

image 34 DT_BINARY Hex Dec column length

int 56 FT_LONG Long Int 11

money 60 DT_CURRENCY Default 26

nchar 47 FT_CHAR Char
String

column length

Importing Database Tables

32718 Database Driver for SYBASE -CT LibraryChapter

SYBASE Data
Type

JAM Widget
Precision

JAM Widget LengthC TypeJAM TypeCode

nvarchar 47 FT_CHAR Char
String

column length

numeric 63

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

real 59 FT_FLOAT Float 16 2

smalldatetime 58 DT_DATETIME Default 17

smallint 52 FT_INT Int 6

smallmoney 122 DT_CURRENCY Default 14

text 35 FT_CHAR Char
String

254

timestamp 80 DT_BINARY Hex Dec column length

tinyint 48 FT_INT Int 3

varbinary 37 DT_BINARY Hex Dec column length * 2

varchar 39 FT_CHAR Char
String

column length

Based on the column's data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

If a column's length is defined as larger than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types. In SYBASE,
this applies to the data types text , image , and for any numeric column that is
defined as identity .

DT_CURRENCY widgets have the Format/Display%Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

Other Widget
Properties

UseInUpdate property

DT_CURRENCY

Formatting for Colon Plus Processing and Binding

328 JAM 7.0 Database Guide

DT_DATETIME widgets also have the Format/Display%Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL , the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id , actor_id and role . title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role , without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in the Application Development Guide.

Formatting Dates

JAM uses SYBASE's convert function and the SYBASE format string,
yyyymmdd hh:mm:ss to convert a JAM date-time format to a SYBASE format.

In order for conversion to take place, the widget must have the C Type set to
Default and the Format/Display%Data Formatting property set to Date/Time. Any
date-time Format Type is appropriate.

This is the format for literal dates. It is compatible with SYBASE national
language support.

Formatting Currency V alues

SYBASE requires a leading dollar sign for values inserted in a money column in
order to ensure precision. JAM will use a leading dollar sign when it formats
widgets with a JAM type of DT_CURRENCY. Any other amount formatting
characters are stripped. Therefore, if a currency field contained

500,000.00

DT_DATETIME

Null Field property

Declaring Cursors

32918 Database Driver for SYBASE -CT LibraryChapter

JAM would format it as

$500000.00

Using Text and Image Data T ypes

Note that when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server setting of textsize .
The SYBASE server default is 32K; however, this value can be changed on the
server via the SYBASE set command. The global variable @@textsize contains
the current maximum.

Declaring Cursors

Each cursor in JAM for SYBASE has its own Client-Library command structure
whose parent is the connection structure associated with JAM's connection.

JAM Cursor SYBASE Default
Representation

Sample JPL

default select native cursor DBMS SQL SELECT ...

default non-select command structure DBMS SQL INSERT ...
DBMS SQL UPDATE ...
DBMS SQL DELETE ...

named native cursor DBMS DECLARE cursor CURSOR

You may change the SYBASE representation of a JAM cursor if necessary. For
more information, refer to the following section.

The following SQL operations are not available in this version of JAM for
SYBASE Client-Library:

� Browse mode

� SELECT statements containing a COMPUTE clause

� UPDATE statements containing a WHERE CURRENT OF clause

� DELETE statements containing a WHERE CURRENT OF clause

Declaring Cursors

330 JAM 7.0 Database Guide

� Stored procedures using remote procedure calls (rpc)

� Output parameters and return codes from stored procedures

For more information on cursors, refer to Chapter 13 in the Application Develop-
ment Guide.

Setting Cursor Options

You can specify which type of Client-Library structure is to be used for SQL
statements with the following SET commands:

� SET RUN CT_CURSOR Ð Force a particular JAM cursor to be run on a
Client-Library cursor.

� SET RUN CT_COMMAND Ð Force a particular JAM cursor to be run on a
Client-Library command structure.

� SET RUN_DEFAULT CT_CURSOR Ð Force all JAM cursors on a connection to
be run as Client-Library cursors.

� SET RUN_DEFAULT CT_COMMAND Ð Force all JAM cursors on a connection
to be run as Client-Library command structures.

More than one Client-Library cursor may be active per connection.

However, a Client-Library cursor can only be created for a Transact-SQL
command batch that either contains a single SELECT statement or calls a stored
procedure that contains only a single SELECT statement. A command batch that
contains more than a single SELECT statement or that calls a stored procedure
containing more than a single SELECT statement must run on a Client-Library
command structure. However, the results from a command structure must be
processed in their entirety before any other cursor or command structure on a
connection can process its results.

For example, a SQL command batch containing two SELECT statements must be
run on a Client-Library command structure resulting in the following JPL
procedure:

proc select2
DBMS SET RUN CT_COMMAND
DBMS SQL SELECT xx, xx FROM pubs2..xxx SELECT xx, xx \

FROM pubs2..xxx

In this example, executing DBMS SET RUN CT_COMMAND sets the default cursor in
JAM to run on a Client-Library command structure so that the SELECT statement
can execute without error.

Scrolling

33118 Database Driver for SYBASE -CT LibraryChapter

For more information on the behavior of Client-Library cursors and command
structures, refer to your SYBASE documentation.

Scrolling
Even though SYBASE Client-Library does not have native support for non-se-
quential scrolling in a select set, JAM scrolling is available. Before using any of
the following commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with the
command

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off JAM scrolling and close the continuation file, use the command

DBMS [WITH CURSOR cursor-name] STORE

or close the JAM cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 14 in the Application
Development Guide.

Error and Status Information
JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other
engines and for use in future releases of JAM for SYBASE.

Errors
JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode SYBASE error code.

@dmengerrmsg SYBASE error message.

Using Stored Procedures

332 JAM 7.0 Database Guide

SYBASE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes SYBASE
error codes to the global variable @dmengerrcode and writes SYBASE messages
to @dmengerrmsg.

In JAM for SYBASE Client-Library, @dmengerrcode and @dmengerrmsg can be
arrays containing both client and server information. If both members of the array
contain data, the error message from the client operation is in the first occurrence
and the error message from the server operation is in the second occurrence. If only
one occurrence has data, it can be either from the client or server operation.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ºJAM error: º @dmretmsg
else

msg emsg ºJAM error: º @dmretmsg º %Nº \
ºSYBASE error is %Nº \
@dmengerrcode[1] º º @dmengerrmsg[1] º%Nº\
@dmengerrcode[2] º º @dmengerrmsg[2]

return 1

For additional information about engine errors, refer to your SYBASE documenta-
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guide and Chapter 12 in the Database Guide.

Using Stored Procedures

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differences in the engine implementation.

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Procedures

33318 Database Driver for SYBASE -CT LibraryChapter

Executing Stored Procedures
An application may execute a stored procedure with the command DBMS SQL and
the engine's command for execution, EXEC. For example:

DBMS SQL [DECLARE parameter data-type \
[DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [, parameter ...]]

An application may also use a named cursor to execute a stored procedure:

DBMS DECLARE cursor CURSOR FOR \
[DECLARE parameter data-type [DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [, parameter ...]]

The cursor can then be executed with the following statement:

DBMS [WITH CURSOR cursor] EXECUTE [USING values]

Output parameters and return codes are not supported for stored procedures in this
release of JAM for SYBASE Client-Library.

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

create proc update_tapes @parm1 int, @parm2 int
as
update tapes set status = 'O'

where title_id = @parm1 and copy_num = @parm2

The following statement executes this stored procedure, updating the status
column of the tapes table using the onscreen values of the widgets title_id and
copy_num .

DBMS SQL EXEC update_tapes :+title_id, :+copy_num

DBMS DECLARE x CURSOR FOR EXEC update_tapes \
::parm1, ::parm2

DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guide for more information.

Controlling the Execution of a Stored Procedure
JAM's database driver for SYBASE provides a command for controlling the
execution of a stored procedure that contains more than one SELECT statement.
The command is:

Example

Using Transactions

334 JAM 7.0 Database Guide

DBMS [WITH CURSOR cursor] SET behavior

where behavior is one of the following

STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCH, JAM stops each time it executes a non-scalar
SELECT statement in the stored procedure. Therefore, a SELECT from a table will
halt the execution of the procedure. However, a SELECT of a single scalar value
(i.e., using the SQL functions SUM, COUNT, AVG, MAX. or MIN) does not halt the
execution of a stored procedure.

The application may execute

DBMS [WITH CURSOR cursor] CONTINUE

or any of the CONTINUE variants to scroll through the selected records. To abort the
fetching of any remaining rows in the select set, the application may execute

DBMS [WITH CURSOR cursor] FLUSH

To execute the next statement in the procedure the application must execute

DBMS [WITH CURSOR cursor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application may execute

DBMS [WITH CURSOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedure's return status code. The return code DM_END_OF_PROC signals the end
of the stored procedure.

If behavior is EXECUTE_ALL, JAM executes all statements in the stored procedure
without halting. If the procedure selects rows, JAM returns as many rows as can be
held by the destination variables and continues executing the procedure. The
application cannot use the DBMS CONTINUE commands to scroll through the
procedure's select sets.

Note that SYBASE does not support SINGLE_STEP as an option for stored
procedure execution; however, it is available for execution of multi-statement
cursors.

Using Transactions
A transaction is a unit of work that must be totally completed or not completed at
all. SYBASE has one transaction for each cursor. Therefore, in a JAM application,

Using Transactions

33518 Database Driver for SYBASE -CT LibraryChapter

a transaction controls all statements executed with a single named cursor or the
default cursor.

The following events commit a transaction on SYBASE:

� Executing DBMS COMMIT.

� Executing a data definition command such as CREATE, DROP, RENAME, or
ALTER.

The following events roll back a transaction on SYBASE:

� Executing DBMS ROLLBACK.

Transaction Control on a Single Cursor
After an application declares a connection, an application may begin a transaction
on the default cursor or on any declared cursor.

SYBASE supports the following transaction commands:

� Begin a transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] BEGIN

� Commit the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to a savepoint or to the beginning of the transaction on a default or
named cursor.

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]

� Create a savepoint in the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] SAVE [savepoint]

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ºnew_title()º

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Example

Using Transactions

336 JAM 7.0 Database Guide

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ºTransaction succeeded.º
}
else
{

msg emsg ºAborting transaction.º
DBMS ROLLBACK

}
}

proc new_title
DBMS BEGIN

DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application's transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ºnew_title()º

The procedure tran_handle receives the argument ªnew_titleº and writes it to
the variable subroutine . It declares a JPL variable, jpl_retcode . After
performing colon processing, :subroutine is replaced with its value,
new_title , and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle . JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title , JAM calls the applica-
tion's error handler. The error handler should display any error messages and return
the abort code, 1.

Transaction Manager Processing

33718 Database Driver for SYBASE -CT LibraryChapter

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedure new_title (therefore, the third INSERT is not attempted). JAM returns
1 to jpl_retcode in the calling procedure tran_handle . JPL evaluates the if
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the table titles .

Transaction Manager Processing

Transaction Model for SYBASE

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For SYBASE, the name of the standard transaction model is
tmsyb1.c .

The standard transaction model for SYBASE calls DBMS FLUSH instead of DBMS
CANCEL as part of the processing for the FINISH command. If a query has returned
a very large select set, closing the screen may be longer with the FLUSH command.
You can change this behavior by editing the model; however, since the model is
subject to change in future releases, you should track your changes in order to
update future versions.

Using Version Columns

For a SYBASE timestamp column, you can set the In Update Where and In Delete
Where properties to Yes. This includes the value fetched to that widget in the SQL
UPDATE and DELETE statements that are generated as part of the SAVE command.

SYBASE-Specific Commands

338 JAM 7.0 Database Guide

SYBASE-Specific Commands

JAM for SYBASE provides commands for SYBASE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Cursors

SET RUN Specify whether a cursor or command struc-
ture is used to execute SQL statements.

Using Stored Procedures

CANCEL Abort execution of a stored procedure.

FLUSH Abort execution of a stored procedure.

NEXT Execute the next statement in a stored proce-
dure.

SET Set execution behavior for a procedure
(execute all, stop at fetch, etc.).

Using Transactions

BEGIN Begin a transaction.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

SYBASE-Specific Commands

33918 Database Driver for SYBASE -CT LibraryChapter

BEGIN
Start a transaction

DBMS [WITH CONNECTION connection-name] BEGIN

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM begins a transaction on the default connection.

A transaction is a logical unit of work on a database contained within DBMS BEGIN
and DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction.
Once a transaction is begun, changes to the database are not committed until a
DBMS COMMIT is executed. Changes are undone by executing DBMS ROLLBACK.

Refer to the example in Using Transactions on page 334.

Using Transactions on page 334

COMMIT

ROLLBACK

SAVE

WITH CONNECTION
connection-name

Description

Example

See Also

SYBASE-Specific Commands

340 JAM 7.0 Database Guide

CANCEL
Cancel the execution of a stored procedure or discard select rows

DBMS [WITH CURSOR cursor-name] CANCEL

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

If the named cursor is a native cursor, this command closes the cursor. If the named
cursor is a command structure, this command cancels any outstanding work on the
named cursor. In particular, this command may be used to cancel a pending stored
procedure or discard unwanted select rows. When the statement is executed, the
following operations are performed:

� Any rows to be fetched are discarded.

� Any remaining unexecuted statements are ignored.

JAM calls the SYBASE routine ct_cancel() with the CS_CANCEL_ALL flag to
perform this operation.

If the WITH CURSOR clause is not used, JAM executes the command on the default
cursor.

Using Stored Procedures on page 332

FLUSH

WITH CURSOR cur-
sor-name

Description

See Also

SYBASE-Specific Commands

34118 Database Driver for SYBASE -CT LibraryChapter

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the commit on the default connection.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Refer to the example in Using Transactions on page 334.

Using Transactions on page 334

BEGIN

ROLLBACK

SAVE

WITH CONNECTION
connection-name

Description

Example

See Also

SYBASE-Specific Commands

342 JAM 7.0 Database Guide

FLUSH
Flush any selected rows not fetched to JAM variables

DBMS [WITH CURSOR cursor-name] FLUSH

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursor. The named cursor may be a native cursor or a command structure.

This command is often useful in applications that execute a stored procedure. If the
stored procedure executes a SELECT, the procedure will not return the
DM_END_OF_PROC signal if the select set is pending. The application may execute
DBMS CONTINUE until the DM_NO_MORE_ROWS signal is returned, or it may
execute DBMS FLUSH which discards the pending rows.

This command is also useful with queries that fetch very large select sets. The
application may execute DBMS FLUSH after executing the SELECT, or after a
defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, once the rows have been flushed, the
application may not use DBMS CONTINUE to view the unread rows.

JAM calls the SYBASE routine ct_cancel() with the CS_CANCEL_ALL to
perform this operation.

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
if @dmretcode != DM_NO_MORE_ROWS

DBMS FLUSH
return 0

WITH CURSOR cur-
sor-name

Description

Example

SYBASE-Specific Commands

34318 Database Driver for SYBASE -CT LibraryChapter

DECLARE CURSOR

CANCEL

CONTINUE

NEXT

See Also

SYBASE-Specific Commands

344 JAM 7.0 Database Guide

NEXT
Execute the next statement in a stored procedure

DBMS [WITH CURSOR cursor-name] NEXT

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Unless DBMS SET equals EXECUTE_ALL, an application must execute DBMS NEXT
after a stored procedure returns one or more SELECT rows to JAM. DBMS NEXT
executes the next statement in the stored procedure. If the application executes
DBMS NEXT and there are no more statements to execute, JAM returns the
DM_END_OF_PROC code.

If a cursor is associated with two or more SQL statements and DBMS SET equals
STOP_AT_FETCH, the application must execute DBMS NEXT after each SELECT that
returns rows to JAM. If DBMS SET equals SINGLE_STEP, the application must
execute DBMS NEXT after each statement, including non-SELECT statements. If the
application executes DBMS NEXT after all of the cursor's statements have been
executed, JAM returns the DM_END_OF_PROC code.

Refer to the example in Using Stored Procedures on page 332.

Using Stored Procedures on page 332

DECLARE CURSOR

CANCEL

CONTINUE

FLUSH

SET [EXECUTE_ALL | SINGLE_STEP | STOP_AT_FETCH]

WITH CURSOR cur-
sor-name

Description

Example

See Also

SYBASE-Specific Commands

34518 Database Driver for SYBASE -CT LibraryChapter

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK [savepoint]

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the rollback on the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 334.

Using Transactions on page 334

BEGIN

COMMIT

SAVE

WITH CONNECTION
connection-name

savepoint

Description

Example

See Also

SYBASE-Specific Commands

346 JAM 7.0 Database Guide

SET
Set handling for a cursor that executes a stored procedure or multiple statements

DBMS [WITH CURSOR cursor-name] SET EXECUTE_ALL

DBMS [WITH CURSOR cursor-name] SET SINGLE_STEP

DBMS [WITH CURSOR cursor-name] SET STOP_AT_FETCH

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor which con-
tains multiple SQL statements. Its options are:

EXECUTE_ALL
Specifies that the DBMS return control to JAM only when all statements have been
executed or when an error occurs. If a SQL SELECT is executed, only the first
pageful of rows is returned to JAM variables. This option may be set for a
multi-statement or a stored procedure cursor.

SINGLE_STEP
Specifies that the DBMS return control to JAM after executing each statement
belonging to the multi-statement cursor. After each SELECT, the user may press a
function key to execute a DBMS CONTINUE and scroll the select set. To resume
executing the cursor's statements, the application must execute DBMS NEXT. This
option may be set for a multi-statement cursor. If this option is used with a stored
procedure cursor, JAM uses the default setting STOP_AT_FETCH.

STOP_AT_FETCH
Specifies that the DBMS return control to JAM after executing a SQL SELECT that
fetches rows. (Note that control is not returned for a SELECT that assigns a value to
a local SYBASE parameter.) The application may use DBMS CONTINUE to scroll
through the select set. To resume executing the cursor's statements or procedure,
the application must execute DBMS NEXT. This option may be set for a multi-state-
ment or a stored procedure cursor.

WITH CURSOR cur-
sor-name

Description

SYBASE-Specific Commands

34718 Database Driver for SYBASE -CT LibraryChapter

The default behavior for both stored procedure and multi-statement cursors is
STOP_AT_FETCH. Executing DBMS SET with no arguments restores the default
behavior.

DBMS DECLARE x CURSOR FOR \
SELECT cust_id, first_name, last_name, member_status \

FROM customers WHERE cust_id = ::cust_id \
INSERT INTO rentals (cust_id, title_id, copy_num, \

rental_date, price) \
VALUES (::cust_id, ::title_id, ::copy_num, \
::rental_date, ::price)

msg d_msg º%KPF1 START %KPF2 SCROLL SELECT\
 %KPF3 EXECUTE NEXT STEPº

proc f1
This function is called by the PF1 key.
DBMS WITH CURSOR x SET_BUFFER 10
DBMS WITH CURSOR x SET SINGLE_STEP
DBMS WITH CURSOR x EXECUTE USING cust_id, cust_id, \

title_id, copy_num, rental_date, price
DBMS WITH CURSOR x SET
return

proc f2
This function is called by the PF2 key.
DBMS WITH CURSOR x CONTINUE
if @dmretcode == DM_NO_MORE_ROWS

msg emsg ºAll rows displayed.º
return

proc f3
This function is called by the PF3 key.
DBMS WITH CURSOR x NEXT
if @dmretcode == DM_END_OF_PROC

msg emsg ºDone!º
return

Using Stored Procedures on page 332

CANCEL

CONTINUE

DECLARE CURSOR

DECLARE CURSOR FOR EXEC

Example

See Also

SYBASE-Specific Commands

348 JAM 7.0 Database Guide

FLUSH

NEXT

SYBASE-Specific Commands

34918 Database Driver for SYBASE -CT LibraryChapter

SET
Force a SQL statement to be run on a Client±Library cursor or command structure

DBMS [WITH CURSOR cursor-name] SET RUN CT_COMMAND

DBMS SET RUN_DEFAULT CT_COMMAND

DBMS [WITH CURSOR cursor-name] SET RUN CT_CURSOR

DBMS SET RUN_DEFAULT CT_CURSOR

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

The SET command can specify whether SQL statements will run on a Client-Li-
brary cursor or command structure. By default, JAM cursors run on Client-Library
cursors. The options for the SET command are:

RUN CT _COMMAND
Specifies that any subsequent DBMS statements be run on a Client-Library
command structure instead of a Client-Library cursor.

RUN_DEFAULT CT_COMMAND
Specifies that for any JAM cursors on subsequent DBMS DECLARE CURSOR
statements, the JAM cursor will be created on a Client-Library command structure
instead of a Client-Library cursor.

RUN CT_CURSOR
Specifies that any subsequent DBMS statements be run on a Client-Library cursor
instead of a Client-Library command structure.

RUN_DEFAULT CT_CURSOR
Specifies that for any JAM cursors on subsequent DBMS DECLARE CURSOR
statements, the JAM cursor will be created as a Client-Library cursor on top of a
command structure.

WITH CURSOR cur-
sor-name

Description

SYBASE-Specific Commands

350 JAM 7.0 Database Guide

By default, JAM uses RUN_DEFAULT CT_CURSOR for the default select cursor and
any named cursors and RUN CT_CURSOR for the default non-select cursor.

Connecting to a Database Engine on page 322See Also

Command Directory for SYBASE

35118 Database Driver for SYBASE -CT LibraryChapter

Command Directory for SYBASE

The following table lists all the commands available in JAM's database driver for
SYBASE. The table lists the command, a short description of the command, and
the location of the reference page for that command. If the location is described as
Database Drivers, that information is enclosed in this document. If the location is
described as the Database Guide, refer to Chapter 11 of the Database Guide.

Table 3. Commands for SYBASE

Command Name Description Documentation
Location

ALIAS Name a JAM variable as the
destination of a selected col-
umn or aggregate function

Database Guide

BEGIN Begin a transaction Database Drivers

BINARY Create a JAM variable for
fetching binary values

Database Guide

CANCEL Abort execution of a stored
procedure

Database Drivers

CATQUERY Redirect select results to a
file or a JAM variable

Database Guide

CLOSE_ALL_CONNECTIONSClose all connections on all
engines

Database Guide

CLOSE CONNECTION Close a named connection Database Guide

CLOSE CURSOR Close a named cursor Database Guide

COLUMN_NAMES Return the column name, not
column data, to a JAM vari-
able

Database Guide

COMMIT Commit a transaction Database Drivers

CONNECTION Set a default connection and
engine for the application

Database Guide

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for SYBASE

352 JAM 7.0 Database Guide

Command Name Documentation
Location

Description

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

ENGINE Set the default engine for the
application

Database Guide

EXECUTE Execute a named cursor Database Guide

FLUSH Flush any selected rows Database Drivers

FORMAT Format the results of a CAT-
QUERY

Database Guide

NEXT Execute the next statement in
a stored procedure

Database Drivers

OCCUR Set the number of rows for
JAM to fetch to an array and
set the occurrence where
JAM should begin writing
result rows

Database Guide

ONENTRY Install a JPL procedure or C
function which JAM will call
before executing a DBMS
statement

Database Guide

ONERROR Install a JPL procedure or C
function which JAM will call
when a DBMS statement fails

Database Guide &
Database Drivers

Command Directory for SYBASE

35318 Database Driver for SYBASE -CT LibraryChapter

Command Name Documentation
Location

Description

ONEXIT Install a JPL procedure or C
function which JAM will call
after executing a DBMS state-
ment

Database Guide

ROLLBACK Roll back a transaction Database Drivers

SET parameter Set execution behavior for a
stored procedure

Database Drivers

SET RUN Set statement execution on a
cursor or command structure

Database Drivers

START Set the first row for JAM to
return from a select set

Database Guide

STORE Store the rows of a select set
in a temporary file so the
application can scroll through
the rows

Database Guide

UNIQUE Suppress repeating values in
a selected column

Database Guide

WITH CONNECTION Specify the connection to use
for a command

Database Guide

WITH CURSOR Specify the cursor to use for
a command

Database Guide

WITH ENGINE Specify the engine to use for
a command

Database Guide

355

Database Driver for
SYBASE-DB Library

This chapter provides documentation specific to SYBASE using DB Library. It
discusses the following:

� Engine initialization (page 356)

� Connection declaration (page 357)

� Import conversion (page 359)

� Formatting for colon-plus processing and binding (page 363)

� Cursors (page 364)

� Locking behavior (page 365)

� Errors and warnings (page 368)

� Stored procedures (page 370)

� Database transaction processing (page 378)

� Transaction manager processing (page 385)

� SYBASE-specific DBMS commands (page 386)

� Command directory for JAM for SYBASE (page 418)

1919

Initializing the Database Engine

356 JAM 7.0 Database Guide

This document is designed as a supplement to information found in the Application
Development Guide and other sections of the Database Guide.

Initializing the Database Engine

When you run the makefile for JAM for SYBASE, it creates the source file
dbiinit.c . For SYBASE, the vendor_list structure in dbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{

{ºsybaseº, dm_sybsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

sybase Engine name. May be changed.

dm_sybsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name

In the makefile, you may change the engine name associated with the support
routine dm_sybsup . The application then uses that name in DBMS ENGINE
statements and in WITH ENGINE clauses. For example, if you wish to use
ªtrackingº as the engine name, change the following makefile parameter:

SYB_ENGNAME=tracking

When the makefile is run again, it generates a new dbiinit.c file with the new
settings.

If the application is accessing multiple engines, it makes SYBASE the default
engine by executing:

DBMS ENGINE sybase-engine-name

Connecting to the Database Engine

35719 Database Driver for SYBASE-DB LibraryChapter

where sybase-engine-name is the string used in vendor_list . For example,

DBMS ENGINE sybase

or

DBMS ENGINE tracking

Support Routine Name
dm_sybsup is the name of the support routine for SYBASE. This name should not
be changed.

Case Flag
The case flag, DM_DEFAULT_CASE, determines how JAM's database drivers use
case when searching for JAM variables for holding SELECT results. This setting is
used when comparing SYBASE column names to either a JAM variable name or to
a column name in a DBMS ALIAS statement.

SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when
creating database objects like tables and columns. In subsequent SQL statements,
you must use the same exact case when referring to these objects. The default
setting for case-sensitive engines is DM_PRESERVE_CASE. This means that the
SYBASE column name is matched to a JAM variable with the same name and case
when processing SELECT results.

The case setting may be changed. You can force JAM to perform case-insensitive
searches. Substitute the l option in the makefile to match SYBASE column names
to lower case JAM variables, or use the u option to match to upper case JAM
variables.

SYB_INIT=l

or

SYB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chapter 11 in the Application Development Guide.

Connecting to the Database Engine
SYBASE allows your application to use one or more connections. The application
may declare any number of named connections with DBMS DECLARE CONNEC-
TION statements, up to the maximum number permitted by the server.

Connecting to the Database Engine

358 JAM 7.0 Database Guide

The following options are supported for connections to SYBASE:

Table 1. Database connection options.

Option Argument

USER user-name

INTERFACES interfaces-file-pathname

SERVER server-name

DATABASE database-name

PASSWORD password

APPLICATION application-name

CURSORS 1 | 2

TIMEOUT seconds

HOST host-name

SQLTIMEOUT seconds

APPLICATION associates a character string with the cursors that are declared in the
application. JAM uses the SYBASE function DBSETLAPP to set this option.

CURSORS specifies the number of default cursors JAM creates when the application
declares a connection. The default is 1. This means that JAM uses one cursor for
any operation executed with DBMS SQL , whether it is a SELECT or non-SELECT
operation. The application must set CURSORS to 2 to use browse mode. You may
also wish to use two default cursors if your application switches between SELECT
and non-SELECT operations. Refer to the section on cursors for additional
information.

HOST specifies a character string to identify the host name of the client. JAM uses
the SYBASE function DBSETLHOST to set this option.

INTERFACES supplies the pathname to an interfaces file. An interfaces file
contains the name and network address of every SYBASE server available on the
network. If this option is not used, SYBASE looks for a file called interfaces in
the SYBASE parent directory (e.g., /usr/sybase/interfaces). This option is
ignored for OS/2, MS-DOS, and Windows applications.

SQLTIMEOUT specifies the number of seconds that Open Client waits for a query to
return results. A timeout of 0 seconds represents an infinite timeout period. JAM
uses the SYBASE function dbsettime to set this option. The SYBASE default
timeout value is 0.

Importing Database Tables

35919 Database Driver for SYBASE-DB LibraryChapter

TIMEOUT sets the number of seconds that Open Client waits for a SYBASE
response to a request for a connection. A timeout of 0 seconds represents an
infinite timeout period. JAM uses the SYBASE function dbsetlogintime to set
this option. The SYBASE default timeout value is 60 seconds.

The syntax for declaring a connection in a JPL statement is:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR [USER user-name] [PASSWORD password] \
[DATABASE database] [SERVER server] \
[APPLICATION application-name] [CURSORS number-of-cursors] \
[HOST host-name] [INTERFACES interface-file-pathname] \
[SQLTIMEOUT seconds] [TIMEOUT seconds]]

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
USER º:unameº PASSWORD º:pwordº DATABASE ºsalesº \
SERVER ºsybase10º APPLICATION ºsalesº HOST ºoakº \
INTERFACES º/usr/sybase/interfaces.appº \
CURSORS º2º SQLTIMEOUT º120º TIMEOUT º15º

where uname and pword are JAM widget names.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for SYBASE, it is
treated as an error.

Importing Database Tables

The Import%Database Objects option in the screen editor creates JAM repository
entries based on database tables in a SYBASE database. When the import process
is complete, each selected database table has a corresponding repository entry
screen.

In JAM for SYBASE, the following database objects can be imported as repository
entries:

� database tables

� database views

Once the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column's characteristics to
assign the appropriate widget properties.

Importing Database Tables

360 JAM 7.0 Database Guide

� A label for each column based on the column name.

� A table view named for the database table or database table view.

� Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repository, the new repository
screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name Ð The name of the table view, generally the same as the database table.

� Table Ð The name of the database table.

� Primary Keys Ð The columns that are defined as primary keys or unique
indexes for the database table.

� Columns Ð A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable Ð A setting which determines if the data in the table can be
modified. The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. First, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on table views.

Links
Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Importing Database Tables

36119 Database Driver for SYBASE-DB LibraryChapter

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Refer to Chapter 21 in the Application Development Guide and Chapter 21 in the
Editors Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each SYBASE data type.

Table 2. Importing Database Tables

SYBASE Data
Type

Code JAM Type C Type JAM Widget Length JAM Widget
Precision

binary 45 DT_BINARY Hex Dec column length * 2

bit 50 FT_INT Int 1

char 47 FT_CHAR Char
String

column length

datetime 61 DT_DATETIME Default 17

decimal 55

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

double preci -
sion

62 FT_FLOAT Float 16 2

float 62 FT_FLOAT Float 16 2

image 34 DT_BINARY Hex Dec column length

int 56 FT_LONG Long Int 11

money 60 DT_CURRENCY Default 26

Importing Database Tables

362 JAM 7.0 Database Guide

SYBASE Data
Type

JAM Widget
Precision

JAM Widget LengthC TypeJAM TypeCode

nchar 47 FT_CHAR Char
String

column length

nvarchar 47 FT_CHAR Char
String

column length

numeric 63

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

real 59 FT_FLOAT Float 16 2

smalldatetime 58 DT_DATETIME Default 17

smallint 52 FT_INT Int 6

smallmoney 122 DT_CURRENCY Default 14

text 35 FT_CHAR Char
String

254

timestamp 80 DT_BINARY Hex Dec column length

tinyint 48 FT_INT Int 3

varbinary 37 DT_BINARY Hex Dec column length * 2

varchar 39 FT_CHAR Char
String

column length

Based on the column's data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

If a column's length is defined as larger than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types. In SYBASE,
this applies to the data types text , image , and for any numeric column that is
defined as identity .

Other Widget
Properties

UseInUpdate property

Formatting for Colon Plus Processing and Binding

36319 Database Driver for SYBASE-DB LibraryChapter

DT_CURRENCY widgets have the Format/Display%Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETIME widgets also have the Format/Display%Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL , the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id , actor_id and role . title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role , without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in the Application Development Guide.

Formatting Dates

JAM uses SYBASE's convert function and the SYBASE format string,
yyyymmdd hh:mm:ss to convert a JAM date-time format to a SYBASE format.

In order for conversion to take place, the widget must have the C Type set to
Default and the Format/Display%Data Formatting property set to Date/Time. Any
date-time Format Type is appropriate.

This is the format for literal dates. It is compatible with SYBASE national
language support.

Formatting Currency V alues

SYBASE requires a leading dollar sign for values inserted in a money column in
order to ensure precision. JAM will use a leading dollar sign when it formats
widgets with a JAM type of DT_CURRENCY. Any other amount formatting
characters are stripped. Therefore, if a currency field contained

DT_CURRENCY

DT_DATETIME

Null Field property

Declaring Cursors

364 JAM 7.0 Database Guide

500,000.00

JAM would format it as

$500000.00

Using Text and Image Data T ypes
Note that when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server setting of textsize .
The SYBASE server default is 32K; however, this value can be changed on the
server via the SYBASE set command. The global variable @@textsize contains
the current maximum.

Declaring Cursors
Each JAM cursor uses a SYBASE dbprocess . By default, JAM for SYBASE
uses one cursor (dbprocess) for operations performed by DBMS SQL . Therefore,
if an application executes the sequence:

DBMS SQL SELECT ...
DBMS SQL UPDATE ...

the following command to display additional rows in the select set:

DBMS CONTINUE

will fail because SYBASE discards the select set when the cursor is re-used.

JAM for SYBASE supports a connection option of CURSORS 2 for simulating two
default cursors. When this option is used, JAM for SYBASE opens two default
cursors on each connection. It uses one cursor for all SELECT statements. It uses
the second cursor for all non-SELECT statements; this includes INSERT, UPDATE,
DELETE, and all stored procedure calls. Transaction commands (BEGIN, COMMIT,
ROLLBACK) are also issued for the non-SELECT cursor.

If you use the CURSORS 2 connection option, you will need to declare a named
cursor to execute a stored procedure (or SQL batch command) that returns select
rows. The second default cursor never returns select rows.

JAM does not put any limit on the number of cursors an application may declare to
an SYBASE engine. Since each cursor requires memory and SYBASE resources,
however, it is recommended that applications close a cursor when it is no longer
needed.

For more information on cursors, refer to Chapter 13 in the Application Develop-
ment Guide.

Scrolling

36519 Database Driver for SYBASE-DB LibraryChapter

Scrolling

SYBASE has native support for non-sequential scrolling in a select set. This
capability is available on any cursor. As an alternative, you can switch to JAM
scrolling. Both systems allow you to use the following commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

For native scrolling, use the command

DBMS [WITH CURSOR cursor-name] SET_BUFFER number-of-rows

This command sets the DB-Library option DBBUFFER. When this command is
used, SYBASE buffers the specified number of select rows in the program's
memory.

For JAM scrolling, use the command:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off JAM scrolling and close the continuation file, use the command

DBMS [WITH CURSOR cursor-name] STORE

or close the JAM cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 14 in the Application
Development Guide.

Locking Behavior

JAM developers using SYBASE should consider locking issues when building
applications that select large amounts of data.

When an application executes a SQL SELECT that returns many rows, SYBASE
may use a ªshared lockº on each data page to preserve read-consistency. That is, to
preserve the state of the selected data, SYBASE may prevent other applications or
users from changing the data until the application has received all the rows. This
behavior is usually seen for select sets that contain several hundred rows.

As a part of developing and testing an application, you should monitor SYBASE's
behavior by running the SYBASE command sp_lock from another terminal when

Locking Behavior

366 JAM 7.0 Database Guide

the application executes a SELECT. If a SELECT executed by a JAM application is
holding a lock, the cursor's spid will be listed.

Since a shared lock prevents other users from updating data, it is important to
release shared locks as soon as possible. To release a shared locked, you must
either:

� Get all the rows in the select set.

� Flush pending rows in the select set.

An application has two ways of getting the entire select set:

� Create JAM arrays which are large enough to hold the entire select set.

� Use DBMS STORE FILE and DBMS CONTINUE_BOTTOM to buffer all the rows
in a temporary file on disk.

For example, an application may set up a continuation file before executing a
SELECT. Before returning control to the user, the application may execute DBMS
CONTINUE_BOTTOM which forces JAM get all the rows from the select set and
buffer them in a temporary file. This also forces SYBASE to release any shared
lock it is holding for the SELECT.

In the following example, the application puts a message on the status line and
flushes the display. Next it sets up a continuation file and executes the SELECT. It
calls DBMS CONTINUE_BOTTOM to force JAM to get all the rows. Finally, it calls
DBMS CONTINUE_TOP to ensure that the select set's first page (rather than its last
page) of rows is displayed when control is returned to the user.

proc big_select
msg setbkstat ºProcessing. Please be patient...º
flush
DBMS STORE FILE
DBMS SQL SELECT
DBMS CONTINUE_BOTTOM
DBMS CONTINUE_TOP
msg d_msg º º

return

An application may also limit the number of rows a user may view at a time by
using the DBMS FLUSH command. When this command is executed, SYBASE
discards any pending rows and releases all associated locks. For example,

proc big_select
DBMS SQL SELECT
if @dmretcode != DM_NO_MORE_ROWS

DBMS FLUSH
return

Locking Behavior

36719 Database Driver for SYBASE-DB LibraryChapter

To monitor lock information within the application, the application may query
SYBASE for the spid (server process id) number of a cursor and the number of
locks held by the cursor. Note that each cursor has its own spid and it keeps the
same spid number until the application closes the cursor. To get a cursor's spid
number, an application must use the cursor to select the global SYBASE variable
@@spid.

Get the SYBASE spid for a JAM cursor
before SELECTing rows.
proc get_spid (cursor)
vars spid

if cursor == ºº
DBMS SQL SELECT spid = @@spid

else
{

DBMS DECLARE :cursor CURSOR FOR \
SELECT spid = @@spid

DBMS EXECUTE :cursor
}
return spid

Get the number of locks held by a SYBASE spid.
proc lockstatus (spid4select)

vars lcount
DBMS DECLARE lock_cursor CURSOR FOR \

SELECT COUNT(*) FROM master.dbo.syslocks \
WHERE spid = :spid4select

DBMS WITH CURSOR lock_cursor ALIAS lcount
DBMS WITH CURSOR lock_cursor EXECUTE
DBMS CLOSE CURSOR lock_cursor
return lcount

An application may get a cursor's spid before executing a SELECT for rows. After
fetching rows the application may query SYBASE for the number of locks. Note
that the order of these statements is important: if an application attempts to get a
cursor's spid after fetching rows, the SELECT for the cursor's spid will release any
locks and any pending rows. For this reason, be sure to get the cursor's spid before
fetching rows. Refer to the example below.

Error and Status Information

368 JAM 7.0 Database Guide

proc select
vars cursor_spid, locks_before, locks_after

cursor_spid = get_spid (ºc1º)
locks_before = lockstatus (cursor_spid)

DBMS DECLARE c1 CURSOR FOR SELECT ...
DBMS WITH CURSOR c1 EXECUTE

locks_after = lockstatus (cursor_spid)
if locks_after > locks_before

msg emsg ºThe SELECT has locked data.º

return 0

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other
engines and for use in future releases of JAM for SYBASE.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode SYBASE error code.

@dmengerrmsg SYBASE error message.

@dmengreturn Return code from an executed stored procedure.

SYBASE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes SYBASE
error codes to the global variable @dmengerrcode and writes SYBASE messages
to @dmengerrmsg.

All SYBASE errors with a severity greater than 10 are JAM errors. Otherwise,
they are considered warnings.

Error and Status Information

36919 Database Driver for SYBASE-DB LibraryChapter

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ºJAM error: º @dmretmsg
else

msg emsg ºJAM error: º @dmretmsg º %Nº \
º:engine error is º @dmengerrcode º º @dmengerrmsg

return 1

For additional information about engine errors, refer to your SYBASE documenta-
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guide and Chapter 12 in the Database Guide.

JAM initializes the following global variables for warning information:

@dmengwarncode SYBASE warning code.

@dmengwarnmsg SYBASE warning message.

JAM writes the code to @dmengwarncode and the message to @dmengwarnmsg.

A warning usually describes some non-fatal change in the SYBASE environment.
For example, SYBASE issues a warning when the application changes a
connection's default database.

You may wish to use an exit hook function to process warnings. An exit hook
function is installed with DBMS ONEXIT . A sample exit hook function is shown
below.

proc check_status (stmt, engine, flag)

if @dmengwarncode
msg emsg º:engine Warning is º @dmengwarnmsg

return

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Procedures

370 JAM 7.0 Database Guide

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of SYBASE rows affected
by an operation.

@dmserial Not used in JAM for SYBASE.

SYBASE returns a count of the rows affected by an operation. JAM writes this
value to the global variable @dmrowcount .

As explained on the manual page for @dmrowcount , the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

The value of @dmrowcount may be unexpected after executing a stored procedure.
This is documented SYBASE behavior. If you need this information, SYBASE
recommends that you test for it within the stored procedure and return it as an
output parameter or return code. @@rowcount is a SYBASE global variable. For
example:

create proc update_ship_fee @class int, @change float
as
declare @u_count int
update cost set ship_fee = ship_fee * @change

where class = @class
select @u_count = @@rowcount
return @u_count

Refer to your SYBASE Command Reference Manual for more information.

Using Stored Procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of

Using Stored Procedures

37119 Database Driver for SYBASE-DB LibraryChapter

SQL statements individually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differences in the engine implementation.

Executing Stored Procedures

An application may execute a stored procedure with the command DBMS SQL and
the engine's command for execution, EXEC. For example:

DBMS SQL [DECLARE parameter data-type \
[DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [OUT][, parameter [OUT]...]]

An application may also use a named cursor to execute a stored procedure:

DBMS DECLARE cursor CURSOR FOR \
[DECLARE parameter data-type [DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [OUT][, parameter [OUT]...]]

The cursor can then be executed with the following statement:

DBMS [WITH CURSOR cursor] EXECUTE [USING values]

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

create proc update_tapes @parm1 int, @parm2 int
as
update tapes set status = 'O'

where title_id = @parm1 and copy_num = @parm2

The following statement executes this stored procedure, updating the status
column of the tapes table using the onscreen values of the widgets title_id and
copy_num .

DBMS SQL EXEC update_tapes :+title_id, :+copy_num

A DECLARE CURSOR statement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executed with a USING
clause which gets the onscreen values of the widgets title_id and copy_num .

Example

Using Stored Procedures

372 JAM 7.0 Database Guide

DBMS DECLARE x CURSOR FOR EXEC update_tapes \
::parm1, ::parm2

DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guide for more information.

Getting Output Parameter V alues

If the DBMS supports output parameters, the keyword OUT traps the value of an
output parameter in a JAM variable. For example, the stored procedure
rent_summary calculates the total number of rentals for the day and the total
price paid for those rentals.

create proc rent_summary
@num_rented int output, @tot_price output, @day datetime

as
create table rentsum (price money)
insert into rentsum select rentals.price from rentals
 where rental_date = @day
select @num_rented = count(*) from rentsum
select @tot_price = sum (price) from rentsum
drop table rentsum

The application should declare a cursor for the procedure:

DBMS DECLARE cur1 CURSOR FOR \
declare @t1 int declare @t2 money \
EXEC rent_summary @num_rented=@t1 OUT, \
@tot_price=@t2 OUT, @day =::today

DBMS WITH CURSOR cur1 EXECUTE USING today = day

Note that t1 and t2 are temporary SYBASE variables, not JAM variables.
SYBASE requires that output values be passed as variables, not as constants. If
num_rented and tot_price are JAM variables, the procedure returns the
number of videos rented on a specific day and the total price paid for those videos.
The application may use DBMS ALIAS to map the values of output parameters to
JAM variables. Here's the same procedure which maps the value of of
num_rented to the JAM variable vid_count and the value of tot_price to the
JAM variable total_paid .

Using Stored Procedures

37319 Database Driver for SYBASE-DB LibraryChapter

DBMS DECLARE cur1 CURSOR FOR \
declare @t1 int declare @t2 money \
EXEC rent_summary @num_rented=@t1 OUT, \
@tot_price=@t2 OUT, @day =::today

DBMS WITH CURSOR cur1 ALIAS num_rented vid_count, \
tot_price total_paid

DBMS WITH CURSOR cur1 EXECUTE USING today = day

Using Remote Procedure Calls

In addition to the EXEC command, SYBASE supports a remote procedure call
(ªrpcº) for executing a stored procedure. You should consider using rpc rather than
EXEC when either the following occur:

� One or more of the stored procedure's parameters has a data type that is not
char . An rpc is more efficient in these cases because it is capable of passing
parameters in their native data types rather than only as ASCII characters. This
reduces the amount of data conversion for the application and the server.

� The stored procedure returns output parameters. An rpc provides a faster and
simpler mechanism for accommodating output parameters.

To make a remote procedure call, an application performs the following steps:

� Must declare an rpc cursor.

� Must declare the data type of each parameter that has a non-char data type.

� May specify aliases for output parameters or selected columns.

� Must execute the cursor, supplying in the USING clause a JAM variable for
each parameter.

The sections below describe these steps in detail. Examples follow.

JAM uses binding to support rpc's. Therefore, to execute a stored procedure with
an rpc, the application must declare an rpc cursor. The syntax is the following:

DBMS [WITH CONNECTION connection] \
DECLARE cursor CURSOR FOR RPC procedure \
[:: parameter [OUT] [, :: parameter [OUT]..]]

The keyword RPC is required. Following the keyword is the name of the procedure
and the names of the procedure's parameters. All parameters must begin with a
double colon, the JAM syntax for cursor parameters. The name of the bind
parameter must be the same parameter name used in the procedure. If a parameter
is an output parameter, the keyword OUT should follow the parameter name if the
application is to receive its value.

Declaring the
rpc Cursor

Using Stored Procedures

374 JAM 7.0 Database Guide

To pass parameters in their native data types, the application must specify a data
type for each non-character parameter. The syntax for DBMS TYPE is the following:

DBMS [WITH CURSOR cursor] TYPE [parameter] engine-data-type \
[, [parameter] engine-data-type ...]

parameter is a parameter in the DECLARE CURSOR statement. engine-data-type is
the data type of a parameter in the procedure. If parameter names are not given, the
types are assigned by position.

JAM uses the information in the DBMS TYPE statement to make the required calls
to add parameters to an rpc. Please note that DBMS TYPE has no effect on the data
formatting which is performed for binding.

By default, when an rpc cursor with an output parameter is executed, a search is
performed for a JAM variable with the same name as the output parameter. To
write the output value to a JAM variable with another name, use the DBMS ALIAS
command.

DBMS [WITH CURSOR cursor] ALIAS [output_parameter] jamvar \
[, [output_parameter] jamvar ...]

If the procedure selects rows, aliases may be given for the tables' columns. If the
procedure returns output parameters and column values, aliases should be given by
name rather than by position.

The application executes the stored procedure by executing the rpc cursor. The
USING clause must provide a JAM variable for each parameter. The syntax is the
following:

DBMS [WITH CURSOR cursor] EXECUTE \
USING [parameter =] variable [, [parameter =] variable ...]

JAM passes the name of the parameter given in the DBMS DECLARE CURSOR
statement, the data type of the parameter given in the DBMS TYPE statement, and
the parameter's value which is the value of variable.

Parameters and JAM variables may be bound either by name or by position. The
two forms should not be mixed, however, in one statement.

cust_rent calculates the new total rent_amount column in the customers
table.

CREATE PROC cust_rent
@cid int, @crent money, @rprice money,
@newrent money output

AS
SELECT @crent = (select rent_amount from customers

where cust_id = @cid)
SELECT @newrent = @crent + @rprice

Datatyping the
rpc Parameters

Redirecting the
Value of Output
Parameter

Executing the
rpc Cursor

Example

Using Stored Procedures

37519 Database Driver for SYBASE-DB LibraryChapter

An rpc is more efficient than an exec cursor because the procedure has an input
parameter with a non-character data type, and because it returns an output
parameter.

The following statement declares an rpc cursor for the stored procedure. The
names of the bind parameters match the parameters in the stored procedure. Note
that the keyword OUT follows the output parameter.

DBMS DECLARE cur2 CURSOR FOR RPC cust_rent ::cid, ::crent, \
::rprice, ::newrent OUT

Before executing the cursor, the application must specify the SYBASE data types
for any non-character data types.

DBMS WITH CURSOR cur2 TYPE \
cid int, crent money, rprice money, newrent money

When executing the cursor, the application must provide a JAM variable for each
parameter. JAM passes the name, data type, and value of the parameters to the
procedure. Note that the procedure does not use the input value of the parameter
newrent . JAM's binding mechanism, however, requires a variable in the USING
clause for each parameter.

DBMS WITH CURSOR cur2 EXECUTE cust_rent \
USING cust_id, rent_amount, price, newrent

The procedure passes its output, the new total, to the JAM variable newrent .

If instead, you wish to put the output value in the widget rent1 , execute the
following:

DBMS WITH CURSOR cur2 ALIAS newrent rent1
DBMS WITH CURSOR cur2 EXECUTE cust_rent USING cid=cust_id, \

crent=rent_amount, rprice=price, newrent=rent1

Note that the variable names in the USING clause do not affect the destination of
output values when the cursor is executed. Only a DBMS ALIAS statement can
remap the output variables to other JAM variables.

Of course, this procedure may also be executed with the standard EXEC cursor. It
would require the following declaration,

DBMS DECLARE cur3 CURSOR FOR \
declare @x money \
EXEC cust_rent @cid = ::cust_id, @crent = ::rent_amount, \
@rprice = ::price, @newrent = @x output

DBMS WITH CURSOR cur3 EXECUTE cust_rent \
USING cid=cust_id, crent=rent_amount, rprice=price, \
newrent=newrent

Using Stored Procedures

376 JAM 7.0 Database Guide

Getting a Return Code from a Stored Procedure
JAM provides the global variable @dmengreturn to trap the return status code of
a stored procedure. This variable is empty unless a stored procedure explicitly sets
it. Note that the variable will not be set until the procedure has completed
execution. Therefore, an application should evaluate the value of @dmengreturn
when @dmretcode = DM_END_OF_PROC.

Executing a new DBMS statement clears the value of @dmengreturn .

If multiply is the following stored procedure,

create proc multiply @m1 int, @m2 int,
@guess int output, @result int output

as
select @result = @m1 * @m2
if @result = @guess

return 1
else

return 2

the application should set up variables for the output parameters.

Either an rpc cursor or an exec cursor may be declared and executed for the
procedure which calculates the values in the JAM variables m1 and m2 and then
writes the values of the output parameters guess and result to the JAM
variables attempt and answer .

RPC cursor
DBMS DECLARE x CURSOR FOR \

RPC multiply ::m1, ::m2, ::guess OUT, ::result OUT
DBMS WITH CURSOR x TYPE m1 int, m2 int, \

guess int, result int
DBMS WITH CURSOR x ALIAS guess attempt, result answer
DBMS WITH CURSOR x EXECUTE USING m1, m2, attempt, answer

EXEC cursor
DBMS DECLARE y CURSOR FOR \

declare @syb_tmp1 int \
declare @syb_tmp2 int \
select @syb_tmp1 = ::user_guess\
EXEC multiply @m1=::p1, @m2=::p2, \

@guess= @syb_tmp1 OUT, @result= @syb_tmp2 OUT
DBMS WITH CURSOR y ALIAS guess attempt, result answer
DBMS WITH CURSOR y EXECUTE \

USING user_guess = attempt, p1 = m1, p2 = m2

After executing the cursor, the application may test the value of @dmengreturn
and display a message based on the return status code.

Using Stored Procedures

37719 Database Driver for SYBASE-DB LibraryChapter

proc check_ret
if @dmretcode == DM_END_OF_PROC
{

if @dmengreturn == 1
msg emsg ºGood job!º

else if @dmengreturn == 2
msg emsg ºBetter luck next time.º

}
else
{

DBMS NEXT
call check_ret

}
return

Controlling the Execution of a Stored Procedure

JAM's database driver for SYBASE provides a command for controlling the
execution of a stored procedure that contains more than one SELECT statement.
The command is:

DBMS [WITH CURSOR cursor] SET behavior

where behavior is one of the following

STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCH, JAM stops each time it executes a non-scalar
SELECT statement in the stored procedure. Therefore, a SELECT from a table will
halt the execution of the procedure. However, a SELECT of a single scalar value
(i.e., using the SQL functions SUM, COUNT, AVG, MAX. or MIN) does not halt the
execution of a stored procedure.

The application may execute

DBMS [WITH CURSOR cursor] CONTINUE

or any of the CONTINUE variants to scroll through the selected records. To abort the
fetching of any remaining rows in the select set, the application may execute

DBMS [WITH CURSOR cursor] FLUSH

To execute the next statement in the procedure the application must execute

DBMS [WITH CURSOR cursor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

Using Transactions

378 JAM 7.0 Database Guide

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application may execute

DBMS [WITH CURSOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedure's return status code. The return code DM_END_OF_PROC signals the end
of the stored procedure.

If behavior is EXECUTE_ALL, JAM executes all statements in the stored procedure
without halting. If the procedure selects rows, JAM returns as many rows as can be
held by the destination variables and continues executing the procedure. The
application cannot use the DBMS CONTINUE commands to scroll through the
procedure's select sets.

Note that SYBASE does not support SINGLE_STEP as an option for stored
procedure execution; however, it is available for execution of multi-statement
cursors.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. SYBASE has one transaction for each cursor. Therefore, in a JAM application,
a transaction controls all statements executed with a single named cursor or the
default cursor.

Applications that need transaction control on multiple cursors should use
two-phase commit service.

The following events commit a transaction on SYBASE:

� Executing DBMS COMMIT.

� Executing a data definition command such as CREATE, DROP, RENAME, or
ALTER.

The following events roll back a transaction on SYBASE:

� Executing DBMS ROLLBACK.

� Closing the transaction's cursor or connection before the transaction is
committed.

Note that SYBASE will not rollback remote procedure calls (rpcs) or data
definition commands that create or drop database objects. Refer to the SYBASE
documentation for more information on these restrictions.

Using Transactions

37919 Database Driver for SYBASE-DB LibraryChapter

Transaction Control on a Single Cursor

After an application declares a connection, an application may begin a transaction
on the default cursor or on any declared cursor.

SYBASE supports the following transaction commands:

� Begin a transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] BEGIN
DBMS [WITH CONNECTION cursor] BEGIN

� Commit the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] COMMIT
DBMS [WITH CONNECTION cursor] COMMIT

� Rollback to a savepoint or to the beginning of the transaction on a default or
named cursor.

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]
DBMS [WITH CONNECTION cursor] ROLLBACK [savepoint]

� Create a savepoint in the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] SAVE [savepoint]
DBMS [WITH CONNECTION cursor] SAVE [savepoint]

A transaction on a default cursor controls all inserts, updates, and deletes executed
with the JPL command DBMS SQL . The application may set the default connection
before beginning the transaction or it may use the WITH CONNECTION clause in
each statement.

If a named cursor is declared for multiple statements, it may be useful to execute
the cursor in a transaction. This way, the application may ensure that SYBASE
executes either all of the cursor's statements or none of the cursor's statements. A
simple transaction on a named cursor may appear as

DBMS DECLARE cursor CURSOR FOR statement [statement...]
DBMS WITH CURSOR cursor BEGIN
DBMS WITH CURSOR cursor EXECUTE [USING parm [parm ...]]
...
DBMS WITH CURSOR cursor COMMIT

If necessary, the cursor may be executed more than once in the transaction. The
application should not, however, redeclare a cursor within a transaction.

The following example contains a transaction on the default connection with an
error handler.

Example

Using Transactions

380 JAM 7.0 Database Guide

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ºnew_title()º

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, JAM aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ºTransaction succeeded.º
}
else
{

msg emsg ºAborting transaction.º
DBMS ROLLBACK

}
}

proc new_title
DBMS BEGIN

DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application's transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ºnew_title()º

The procedure tran_handle receives the argument ªnew_titleº and writes it to
the variable subroutine . It declares a JPL variable, jpl_retcode . After

Using Transactions

38119 Database Driver for SYBASE-DB LibraryChapter

performing colon processing, :subroutine is replaced with its value,
new_title , and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle . JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title , JAM calls the applica-
tion's error handler. The error handler should display any error messages and return
the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedure new_title (therefore, the third INSERT is not attempted). JAM returns
1 to jpl_retcode in the calling procedure tran_handle . JPL evaluates the if
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the table titles .

Transaction Control on Multiple Cursors

SYBASE provides two-phase commit service for distributed transactions. In a
two-phase commit, one main transaction controls two or more subtransactions on
one or more servers. A subtransaction is a transaction on single cursor, like those
described in the section above.

With two-phase commit service using Microsoft SQL Server, the commit server
and the target server must be different.

The main transaction must be declared with the command

DBMS [WITH CONNECTION connection] \
DECLARE transaction-name TRANSACTION FOR \
APPLICATION application SITES sites

� connection: if no connection is given, the default connection is used; the
connection data structure stores a user login name, a server name, and an
interface file name. Since SYBASE requires that a particular server be
responsible for coordinating a two-phase commit, the connection declaration
must include a server name.

� transaction: the name of the transaction; SYBASE does not permit periods (.)
or colons (;) in a transaction name. Since ªtransactionº and ªtranº are
keywords for both JAM and SYBASE, do not use these words for this
argument.

Using Transactions

382 JAM 7.0 Database Guide

� application: the name of the application; it may be any character string that is
not a keyword.

� sites: the number of cursors (i.e., subtransactions) participating in the
two-phase commit. This value is used by the SYBASE commit and recovery
systems and must be set appropriately.

Once the two-phase commit transaction is declared, its name is used to begin and
to commit or to rollback the transaction. The syntax is

DBMS BEGIN transaction-name

DBMS COMMIT transaction-name

DBMS ROLLBACK transaction-name

As with cursors and connections, JAM uses a data structure to manage a two-phase
commit transaction. This structure should be closed when the transaction is
completed. When the structure is closed, JAM calls the support routine to close the
connection with the SYBASE commit service. The command is the following:

DBMS CLOSE TRANSACTION transaction-name

Operations on a single cursor are subtransactions. To control a subtransaction in a
two-phase commit transaction, the following commands may be used:

DBMS [WITH CURSOR cursor] BEGIN

DBMS [WITH CURSOR cursor] SAVE savepoint

DBMS [WITH CURSOR cursor] PREPARE_COMMIT

DBMS [WITH CURSOR cursor] COMMIT

DBMS [WITH CURSOR cursor] ROLLBACK [savepoint]

The command DBMS PREPARE_COMMIT is an additional command required by the
two-phase commit service. Executing it signals that the subtransaction has been
performed and that the server is ready is to commit the update. Once the
application has ªpreparedº all the subtransactions, it issues a COMMIT to the main
transaction and each subtransaction.

The sequence of events in a SYBASE two-phase commit transaction is the
following:

� Declare any necessary connections and cursors.

� Declare the main transaction.

DBMS DECLARE tname TRANSACTION FOR SITES sites \
APPLICATION application

Using Transactions

38319 Database Driver for SYBASE-DB LibraryChapter

� Begin the main transaction.

DBMS BEGIN tname

� For each subtransaction cursor, begin the subtransaction and execute the
desired operations. When all subtransactions are complete, execute a
PREPARE_COMMIT for each. In the pseudo code below there are three
subtransactions (using cursor1 , the default cursor, and cursor2):

DBMS WITH CURSOR cursor1 BEGIN
DBMS WITH CURSOR cursor1 EXECUTE USING parm

DBMS BEGIN
DBMS SQL statement
DBMS SAVE savepoint
DBMS SQL statement
if error

DBMS ROLLBACK savepoint
DBMS SQL statement

DBMS WITH CURSOR cursor2 BEGIN
DBMS WITH CURSOR cursor2 EXECUTE USING parm

DBMS WITH CURSOR cursor1 PREPARE_COMMIT
DBMS PREPARE_COMMIT
DBMS WITH CURSOR cursor2 PREPARE_COMMIT

� Commit the main transaction.

DBMS COMMIT tname

� Commit each subtransaction indicating a named or default cursor.

DBMS WITH CURSOR cursor1 COMMIT
DBMS COMMIT
DBMS WITH CURSOR cursor2 COMMIT

� Close the transaction.

DBMS CLOSE TRANSACTION tname

It is strongly recommended that the application use an error handler while the
transaction is executing. If an error occurs while executing a command in the
subtransaction (i.e., executing a SQL statement or a named cursor), the application
should not continue executing the transaction.

An example with an error handler follows.

Using Transactions

384 JAM 7.0 Database Guide

##
Declare connections and specify servers.
DBMS DECLARE c1 CONNECTION \

FOR USER :uid PASSWORD :pwd SERVER maple \
INTERFACES '/usr/sybase/interfaces.ny'

DBMS DECLARE c2 CONNECTION \
FOR USER :uid PASSWORD :pwd SERVER juniper

Declare cursors.
Use :: to insert a value when the cursor is executed,
not when the cursor is declared.
DBMS WITH CONNECTION c1 DECLARE x CURSOR FOR INSERT \

emp (ss, last, first, street, city, st, zip, grade) \
VALUES (::ss, ::last, ::first, ::street, ::city, \
::st, ::zip, ::grade)

DBMS WITH CONNECTION c2 DECLARE y CURSOR FOR INSERT \
acc (ss, sal, exmp) VALUES (::ss, ::sal, ::exmp)

##
proc 2phase
vars retval
retval = sm_s_val ()
if retval
{

msg reset ºInvalid entry.º
return

}
DBMS WITH CONNECTION c1 DECLARE new_emp TRANSACTION \

FOR APPLICATION personnel SITES 2
DBMS ONERROR JPL tran_error
call do_tran
if !(retval)

msg emsg ºTransaction succeeded.º
else
{

DBMS ROLLBACK newemp
if retval >= 100

DBMS WITH CURSOR x ROLLBACK
if retval >= 200

DBMS WITH CURSOR y ROLLBACK
}
DBMS ONERROR CALL generic_errors
DBMS CLOSE TRANSACTION new_emp
return

proc do_tran
Begin new_emp and set the flag tran_level (LDB variable)
DBMS BEGIN new_emp

DBMS WITH CURSOR x BEGIN

Transaction Manager Processing

38519 Database Driver for SYBASE-DB LibraryChapter

tran_level = º1º
DBMS WITH CURSOR x EXECUTE USING \

ss, last, first, street, city, st, zip, grade

DBMS WITH CURSOR y BEGIN
tran_level = º2º
DBMS WITH CURSOR y EXECUTE USING \

ss, startsal, exemptions

DBMS WITH CURSOR x PREPARE_COMMIT
DBMS WITH CURSOR y PREPARE_COMMIT

Execute commits.
DBMS COMMIT new_emp

DBMS WITH CURSOR x COMMIT
DBMS WITH CURSOR y COMMIT

msg emsg ºInsert completed.º
tran_level = ºº
return

##
proc tran_error
vars fail_area [2](20), tran_err(3)
fail_area[1] = ºaddressº
fail_area[2] = ºaccounting dataº

if tran_level != ºº
{

Display an error message describing the failure.
msg emsg º%WTransaction failed. Unable to insert \

:fail_area[tran_level] because of º @dmengerrmsg
math tranerr = tran_level * 100
tran_level = ºº
return :tranerr

}
msg emsg @dmengerrmsg
return 1

Transaction Manager Processing

Transaction Model for SYBASE

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this

SYBASE-Specific Commands

386 JAM 7.0 Database Guide

program; however, be aware that the transaction model is subject to change with
each release. For SYBASE, the name of the standard transaction model is
tmsyb1.c .

The standard transaction model for SYBASE calls DBMS FLUSH instead of DBMS
CANCEL as part of the processing for the FINISH command. If a query has returned
a very large select set, closing the screen may be longer with the FLUSH command.
You can change this behavior by editing the model; however, since the model is
subject to change in future releases, you should track your changes in order to
update future versions.

Using Version Columns

For a SYBASE timestamp column, you can set the In Update Where and In Delete
Where properties to Yes. This includes the value fetched to that widget in the SQL
UPDATE and DELETE statements that are generated as part of the SAVE command.

SYBASE-Specific Commands

JAM for SYBASE provides commands for SYBASE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Browse Mode

BROWSE Execute a SELECT for browsing.

UPDATE Update a table while browsing.

Using Scrolling

BUFFER_DEFAULT Set buffer size for scrolling for entire
application.

SET_BUFFER Control availability of SYBASE-based scrol-
ling for DBMS CONTINUE_BOTTOM, DBMS
CONTINUE_TOP, DBMS CONTINUE_UP.

SYBASE-Specific Commands

38719 Database Driver for SYBASE-DB LibraryChapter

Using Stored Procedures

CANCEL Abort execution of a stored procedure.

DECLARE CURSOR FOR RPC Declare a cursor to execute a stored proce-
dure using a remote procedure call.

FLUSH Abort execution of a stored procedure.

NEXT Execute the next statement in a stored proce-
dure.

SET Set execution behavior for a procedure
(execute all, stop at fetch, etc.).

TYPE Set data types for parameters of a stored pro-
cedure executed with an rpc cursor.

Using Transactions

BEGIN Begin a transaction.

CLOSE_ALL_TRANSACTIONS Close all transactions declared for two-phase
commit.

CLOSE_TRANSACTION Close a two±phase transaction.

COMMIT Commit a transaction.

DECLARE TRANSACTION Declare a transaction for two-phase commit.

PREPARE_COMMIT Indicate that a subtransaction is ready to
commit.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

SYBASE-Specific Commands

388 JAM 7.0 Database Guide

BEGIN
Start a transaction

DBMS [WITH CONNECTION connection-name] BEGIN
DBMS [WITH CURSOR cursor-name] BEGIN

DBMS BEGIN two-phase-transaction-name

Specify the named cursor for the transaction. If no WITH CURSOR or WITH
CONNECTION clause is used, JAM begins a transaction on the default cursor of the
default connection.

If a WITH CONNECTION clause is used, JAM begins a transaction on the default
cursor of the named connection. If no WITH CURSOR or WITH CONNECTION clause
is used, JAM begins a transaction on the default cursor of the default connection.

Specify an existing two phase transaction.

This command sets the starting point of a transaction. It is available in two
contexts. It can start a transaction on a single cursor or it can start a distributed
transaction which may involve multiple cursors on one or more servers.

A transaction is a logical unit of work on a database contained within DBMS BEGIN
and DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction.
Once a transaction is begun, changes to the database are not committed until a
DBMS COMMIT is executed. Changes are undone by executing DBMS ROLLBACK.

To begin a distributed transaction (two-phase transaction), first declare a named
transaction with DBMS DECLARE TRANSACTION. Since this statement supports a
WITH CONNECTION clause, JAM associates the transaction name with a particular
connection; the connection's server is the coordinating server for the distributed
transaction. When the application executes DBMS BEGIN transaction-name where
transaction-name is the name of the declared transaction, JAM starts the
transaction on the coordinating server.

Be sure to terminate the transaction with a DBMS ROLLBACK or DBMS COMMIT
before logging off. Note that JAM will not close a connection with a pending
two-phase commit transaction.

WITH CURSOR cur-
sor-name

WITH CONNECTION
connection-name

two-phase-transac-
tion-name

Description

SYBASE-Specific Commands

38919 Database Driver for SYBASE-DB LibraryChapter

Refer to the example in Using Transactions on page 378.

Using Transactions on page 378

CLOSE TRANSACTION

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Example

See Also

SYBASE-Specific Commands

390 JAM 7.0 Database Guide

BROWSE
Retrieve SELECT results one row at a time

DBMS BROWSE SELECTstmt

This command allows an application to execute a SELECT in ªbrowseº mode. This
means that SYBASE will return the SELECT rows one at a time to the JAM
application; SYBASE will not set any shared locks for the SELECT. The applica-
tion may use the companion command DBMS UPDATE to update the current row.
SYBASE will verify that the row has not been changed before it issues the
UPDATE.

To update in browse mode, the table being updated must have a timestamp column
and a unique index. A row's timestamp indicates the last time the row was updated.
If the timestamp has not changed since DBMS BROWSE was executed, the
application may update the row. If the timestamp has changed, then some other
user or application has updated the row after DBMS BROWSE was executed. The
update is aborted and an error is returned.

Browse mode requires a connection with two default cursors. The application must
open the browse mode connection by setting the CURSORS option to 2. JAM uses
one default cursor to select the rows and the other default cursor to update the
rows.

It is the programmer's responsibility to determine whether a table is browsable. If
the table is not browsable, JAM returns the DM_BAD_ARGS error. If a table is
browsable, JAM returns the first row in the select set when DBMS BROWSE is
executed. Note that only one row is returned at a time.

To view the next row, the application must execute DBMS CONTINUE.

Browse mode requires a connection declared with 2 cursors.

DBMS DECLARE browse_con CONNECTION FOR \

USER ':user' PASSWORD ':pass' SERVER ':server' CURSORS 2

Description

Example

SYBASE-Specific Commands

39119 Database Driver for SYBASE-DB LibraryChapter

proc start_browse_mode
DBMS CONNECTION browse_con
DBMS BROWSE SELECT title_id, name, pricecat FROM titles
return

proc update_browse_row
Allow the user to update the price category. DBi builds
the WHERE clause to identify this row.

DBMS UPDATE titles SET pricecat = :+pricecat
return

proc next_browse_row
Fetch the next row.

DBMS CONTINUE
return

CONTINUE

FLUSH

UPDATE

See Also

SYBASE-Specific Commands

392 JAM 7.0 Database Guide

BUFFER_DEFAULT
Specifies setting for engine-based non-sequential scrolling

DBMS [WITH CONNECTION connection-name] BUFFER_DEFAULT value

Specifies the size of the buffer for SYBASE-based scrolling, if it is non-zero.

A JAM application can use either JAM-based or SYBASE-based scrolling to
execute DBMS CONTINUE, DBMS CONTINUE_TOP, DBMS CONTINUE_UP, and DBMS
CONTINUE_BOTTOM.

The size of the buffer is determined by the value specified with these commands.

SET_BUFFER

value

Description

See Also

SYBASE-Specific Commands

39319 Database Driver for SYBASE-DB LibraryChapter

CANCEL
Cancel the execution of a stored procedure or discard select rows

DBMS [WITH CURSOR cursor-name] CANCEL

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command cancels any outstanding work on the named cursor. In particular,
this command may be used to cancel a pending stored procedure or discard
unwanted select rows. When the statement is executed, the following operations
are performed:

� Any rows to be fetched are flushed.

� Any remaining unexecuted statements are ignored.

� The procedure's return status code is returned.

JAM calls the SYBASE routine dbcancel() to perform this operation.

If the WITH CURSOR clause is not used, JAM executes the command on the default
cursor.

Using Stored Procedures on page 370

FLUSH

WITH CURSOR cur-
sor-name

Description

See Also

SYBASE-Specific Commands

394 JAM 7.0 Database Guide

CLOSE_ALL_TRANSACTIONS
Close all transactions declared for two-phase commit

DBMS CLOSE_ALL_TRANSACTIONS

This command attempts to close all transactions declared for two-phase commit
with DBMS DECLARE TRANSACTION. If the transaction has not been terminated by
a COMMIT or ROLLBACK, JAM will return the error DM_TRAN_PENDING.

JAM will not close a connection unless all two-phase commit transactions have
been closed. Furthermore, JAM will not close a two-phase commit transaction
unless the application explicitly terminated the transaction with a DBMS COMMIT
transaction-name or DBMS ROLLBACK transaction-name.

This helps prevent the application from terminating with a pending two-phase
transaction. For if this happens, SYBASE marks the transaction's process as
ªinfected.º You will need the system administrator to delete the infected process.

Since this command verifies that all two-phase commit transactions were
terminated, you may wish to call this command before logging off.

proc cleanup
DBMS ONERROR JPL cleanup_failure
DBMS CLOSE_ALL_TRANSACTIONS
DBMS CLOSE_ALL_CONNECTIONS
return

APP1 = ^two_phase_cleanup
proc cleanup_failure (stmt, engine, flag)

if @dmretcode == DM_TRAN_PENDING
{

call jm_keys APP1
}
return 0

proc two_phase_cleanup
DBMS WITH CURSOR c1 ROLLBACK
DBMS WITH CURSOR c2 ROLLBACK
DBMS ROLLBACK tr1
DBMS CLOSE TRANSACTION tr1
return

Using Transactions on page 378

Description

Example

See Also

SYBASE-Specific Commands

39519 Database Driver for SYBASE-DB LibraryChapter

BEGIN

CLOSE TRANSACTION

COMMIT

DECLARE TRANSACTION

ROLLBACK

SYBASE-Specific Commands

396 JAM 7.0 Database Guide

CLOSE TRANSACTION
Close a declared transaction structure

DBMS CLOSE TRANSACTION two-phase-transaction-name

This command closes the main transaction which was previously defined using
DBMS DECLARE TRANSACTION. A main transaction controls the execution of a
two-phase commit process. This command signals the completion of the main
transaction and closes the SYBASE structures associated with the transaction.

An error code is returned if a transaction was pending. An application cannot close
a connection with an open transaction.

Using Transactions on page 378

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Description

See Also

SYBASE-Specific Commands

39719 Database Driver for SYBASE-DB LibraryChapter

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

DBMS [WITH CURSOR cursor-name] COMMIT

DBMS COMMIT two_phase_transaction_name

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the commit on the default connection.

Specify a named cursor for the command.

Specify an existing two phase transaction.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

This command is available in two contexts. It can commit a transaction on a single
cursor or it can commit a two-phase commit transaction. If a WITH CURSOR clause
is used in a DBMS COMMIT statement, JAM commits the transaction on the named
cursor. If a WITH CONNECTION clause is used, JAM commits the transaction on the
default cursor of the named connection. If no WITH clause or no distributed
transaction name is used, JAM commits the transaction on the default cursor of the
default connection.

If a distributed transaction name is used, JAM issues the commit to the coordinat-
ing server. If this is successful, the application should issue a DBMS COMMIT for
each subtransactions. A WITH CURSOR or WITH CONNECTION clause is required
for a subtransaction on a named cursor or a subtransaction on the default cursor of
a non-default connection. A WITH CONNECTION clause is required for a
subtransaction on a named connection.

WITH CONNECTION
connection-name

WITH CURSOR cur-
sor-name
two-phase-transac-
tion-name

Description

SYBASE-Specific Commands

398 JAM 7.0 Database Guide

Refer to the example in Using Transactions on page 378.

Using Transactions on page 378

BEGIN

CLOSE TRANSACTION

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Example

See Also

SYBASE-Specific Commands

39919 Database Driver for SYBASE-DB LibraryChapter

DECLARE CURSOR FOR RPC
Declare a named cursor for a remote procedure

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR FOR RPC \
procedure [:: parameter [OUT] [data-type] [, :: parameter [OUT] [data-type] ...]]

Specify the connection for this command. If this clause is not included, JAM
associates the cursor with the default connection.

Use this command to create or redeclare a named cursor to execute a remote proce-
dure call (rpc). Since JAM uses its binding mechanism to support rpc's, the default
cursor cannot execute an rpc.

The keyword RPC is required. Following the keyword is the name of the procedure
and the names of the procedure's parameters. All parameters must begin with a
double colon, which is the JAM syntax for cursor parameters. If a parameter is an
output parameter, the keyword OUT should follow the parameter name if the
application is to receive its value. A parameter's data type may be given in the
DBMS DECLARE CURSOR statement, or in a DBMS TYPE statement. Parameter
names in the DECLARE CURSOR statement must exactly match the parameter
names defined by the stored procedure.

The application executes an rpc cursor as it executes any named cursor, with DBMS
EXECUTE.

Refer to the example in Using Stored Procedures on page 370.

Using Stored Procedures on page 370

@dmengreturn

CLOSE CURSOR

EXECUTE

TYPE

WITH CONNECTION
connection-name

Description

Example

See Also

SYBASE-Specific Commands

400 JAM 7.0 Database Guide

DECLARE TRANSACTION
Declare a named transaction for two phase commit

DBMS [WITH CONNECTION connection-name] DECLARE transaction-name TRANSACTION FOR \
SITES sites APPLICATION application

Specify the connection for this command. If this clause is not included, JAM issues
the command on the default connection.

This command declares a two-phase commit transaction structure.

The WITH CONNECTION clause identifies the server which will coordinate the
distributed transaction. If the clause is not used, the server of the default connec-
tion is used. Be sure to name the server when declaring the connection.

sites is the number of subtransactions involved in the distributed transaction. Each
cursor where a BEGIN is issued is a subtransaction. This number is critical to
recovery if the transaction fails.

transaction-name is the name of the two-phase commit transaction. Do not use the
keywords ªtranº or ªtransactionº for this argument. The application must use this
name to begin, to commit or rollback, and to close the transaction.

sites is the number of subtransactions involved in the distributed transaction. Each
cursor where a BEGIN is issued is a subtransaction. This number is critical to
recovery if the transaction fails.

application is an optional argument which identifies the name of the transaction.

After declaring the transaction, begin the transaction using DBMS BEGIN . When
the transaction is complete, close the transaction using either DBMS CLOSE
TRANSACTION or DBMS CLOSE_ALL_TRANSACTIONS. An application must close
all declared transactions before closing their connections.

Refer to the example in Using Transactions on page 378.

CLOSE TRANSACTION

WITH CONNECTION
connection-name

Description

Example

See Also

SYBASE-Specific Commands

40119 Database Driver for SYBASE-DB LibraryChapter

FLUSH
Flush any selected rows not fetched to JAM variables

DBMS [WITH CURSOR cursor-name] FLUSH

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursor.

This command is often useful in applications that execute a stored procedure. If the
stored procedure executes a SELECT, the procedure will not return the
DM_END_OF_PROC signal if the select set is pending. The application may execute
DBMS CONTINUE until the DM_NO_MORE_ROWS signal is returned, or it may
execute DBMS FLUSH which cancels the pending rows.

This command is also useful with queries that fetch very large select sets. The
application may execute DBMS FLUSH after executing the SELECT, or after a
defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, once the rows have been flushed, the
application may not use DBMS CONTINUE to view the unread rows.

JAM calls the SYBASE routine dbcanquery() to perform this operation.

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
if @dmretcode != DM_NO_MORE_ROWS

DBMS FLUSH
return 0

WITH CURSOR cur-
sor-name

Description

Example

SYBASE-Specific Commands

402 JAM 7.0 Database Guide

DECLARE CURSOR

CANCEL

CONTINUE

NEXT

See Also

SYBASE-Specific Commands

40319 Database Driver for SYBASE-DB LibraryChapter

NEXT
Execute the next statement in a stored procedure

DBMS [WITH CURSOR cursor-name] NEXT

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Unless DBMS SET equals EXECUTE_ALL, an application must execute DBMS NEXT
after a stored procedure returns one or more SELECT rows to JAM. DBMS NEXT
executes the next statement in the stored procedure. If the application executes
DBMS NEXT and there are no more statements to execute, JAM returns the
DM_END_OF_PROC code.

If a cursor is associated with two or more SQL statements and DBMS SET equals
STOP_AT_FETCH, the application must execute DBMS NEXT after each SELECT that
returns rows to JAM. If DBMS SET equals SINGLE_STEP, the application must
execute DBMS NEXT after each statement, including non-SELECT statements. If the
application executes DBMS NEXT after all of the cursor's statements have been
executed, JAM returns the DM_END_OF_PROC code.

Refer to the example in Using Stored Procedures on page 370.

Using Stored Procedures on page 370

DECLARE CURSOR

CANCEL

CONTINUE

FLUSH

SET [EXECUTE_ALL | SINGLE_STEP | STOP_AT_FETCH]

WITH CURSOR cur-
sor-name

Description

Example

See Also

SYBASE-Specific Commands

404 JAM 7.0 Database Guide

PREPARE_COMMIT
Prepare a two phase commit

DBMS [WITH CURSOR cursor-name] PREPARE_COMMIT

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Use of this command is required during the two-phase commit service. It is
executed for each subtransaction when the subtransaction has been performed.
Execution of this command signals the application that the server is ready to
commit the update. Once the application has ªpreparedº all the subtransactions, it
needs to issue a DBMS COMMIT to the main transaction and to each subtransaction.

If the WITH CURSOR clause is not used, JAM issues the command on the default
cursor.

Refer to the example in Using Transactions on page 378.

Using Transactions on page 378

BEGIN

CLOSE TRANSACTION

COMMIT

DECLARE TRANSACTION

ROLLBACK

SAVE

WITH CURSOR cur-
sor-name

Description

Example

See Also

SYBASE-Specific Commands

40519 Database Driver for SYBASE-DB LibraryChapter

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK savepoint

DBMS [WITH CURSOR cursor-name] ROLLBACK savepoint

DBMS ROLLBACK two_phase_transaction_name

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, JAM issues the rollback on the default connection.

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Specify an existing two phase transaction.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

This command is available in two contexts. It can rollback a transaction on a single
cursor, or it can rollback a two-phase rollback transaction. If a WITH CURSOR
clause is used in a DBMS ROLLBACK statement, JAM rolls back the transaction on
the named cursor. If a WITH CONNECTION clause is used, JAM rolls back the
transaction on the default cursor of the named connection. If no WITH clause or no
distributed transaction name is used, JAM rolls back the transaction on the default
cursor of the default connection.

If a distributed transaction name is used, JAM issues the rollback to the coordinat-
ing server. The application should also issue a DBMS ROLLBACK for each
subtransaction. A WITH CURSOR or WITH CONNECTION clause is required for a
subtransaction on a named cursor or a subtransaction on the default cursor of a
non-default connection.

WITH CONNECTION
connection-name

WITH CURSOR cur-
sor-name

savepoint

two-phase-transac-
tion-name

Description

SYBASE-Specific Commands

406 JAM 7.0 Database Guide

Refer to the example in Using Transactions on page 378.

Using Transactions on page 378

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

SAVE

Example

See Also

SYBASE-Specific Commands

40719 Database Driver for SYBASE-DB LibraryChapter

SAVE
Set a savepoint within a transaction

DBMS [WITH CONNECTION connection-name] SAVE savepoint
DBMS [WITH CURSOR cursor-name] SAVE savepoint

Specifies the name of the savepoint.

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled using DBMS ROLLBACK savepoint. A
transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then be
completed or completely rolled back to the beginning.

This feature is useful for any long, complicated transaction. For example, an order
entry application may involve many screens where an end-user must enter data
regarding the order. As the user completes each screen, the application may issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application may
simply rollback the procedures on the fifth screen.

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SAVE s1
call new_dscr
call new_tapes
DBMS COMMIT
return 0

savepoint

WITH CURSOR cur-
sor-name

Description

Example

SYBASE-Specific Commands

408 JAM 7.0 Database Guide

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES \

(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2

return 0

proc new_tapes
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, :+status, :+times_rented)
return 0

Using Transactions on page 378

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

See Also

SYBASE-Specific Commands

40919 Database Driver for SYBASE-DB LibraryChapter

SET
Set handling for a cursor that executes a stored procedure or multiple statements

DBMS [WITH CURSOR cursor-name] SET EXECUTE_ALL

DBMS [WITH CURSOR cursor-name] SET SINGLE_STEP

DBMS [WITH CURSOR cursor-name] SET STOP_AT_FETCH

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor which con-
tains multiple SQL statements. Its options are:

EXECUTE_ALL
Specifies that the DBMS return control to JAM only when all statements have been
executed or when an error occurs. If a SQL SELECT is executed, only the first
pageful of rows is returned to JAM variables. This option may be set for a
multi-statement or a stored procedure cursor.

SINGLE_STEP
Specifies that the DBMS return control to JAM after executing each statement
belonging to the multi-statement cursor. After each SELECT, the user may press a
function key to execute a DBMS CONTINUE and scroll the select set. To resume
executing the cursor's statements, the application must execute DBMS NEXT. This
option may be set for a multi-statement cursor. If this option is used with a stored
procedure cursor, JAM uses the default setting STOP_AT_FETCH.

STOP_AT_FETCH
Specifies that the DBMS return control to JAM after executing a SQL SELECT that
fetches rows. (Note that control is not returned for a SELECT that assigns a value to
a local SYBASE parameter.) The application may use DBMS CONTINUE to scroll
through the select set. To resume executing the cursor's statements or procedure,
the application must execute DBMS NEXT. This option may be set for a multi-state-
ment or a stored procedure cursor.

WITH CURSOR cur-
sor-name

Description

SYBASE-Specific Commands

410 JAM 7.0 Database Guide

The default behavior for both stored procedure and multi-statement cursors is
STOP_AT_FETCH. Executing DBMS SET with no arguments restores the default
behavior.

DBMS DECLARE x CURSOR FOR \
SELECT cust_id, first_name, last_name, member_status \

FROM customers WHERE cust_id = ::cust_id \
INSERT INTO rentals (cust_id, title_id, copy_num, \

rental_date, price) \
VALUES (::cust_id, ::title_id, ::copy_num, \
::rental_date, ::price)

msg d_msg º%KPF1 START %KPF2 SCROLL SELECT\
 %KPF3 EXECUTE NEXT STEPº

proc f1
This function is called by the PF1 key.
DBMS WITH CURSOR x SET_BUFFER 10
DBMS WITH CURSOR x SET SINGLE_STEP
DBMS WITH CURSOR x EXECUTE USING cust_id, cust_id, \

title_id, copy_num, rental_date, price
DBMS WITH CURSOR x SET
return

proc f2
This function is called by the PF2 key.
DBMS WITH CURSOR x CONTINUE
if @dmretcode == DM_NO_MORE_ROWS

msg emsg ºAll rows displayed.º
return

proc f3
This function is called by the PF3 key.
DBMS WITH CURSOR x NEXT
if @dmretcode == DM_END_OF_PROC

msg emsg ºDone!º
return

Using Stored Procedures on page 370

CANCEL

CONTINUE

DECLARE CURSOR

DECLARE CURSOR FOR EXEC

Example

See Also

SYBASE-Specific Commands

41119 Database Driver for SYBASE-DB LibraryChapter

DECLARE CURSOR FOR RPC

FLUSH

NEXT

SYBASE-Specific Commands

412 JAM 7.0 Database Guide

SET_BUFFER
Use engine-based scrolling

DBMS [WITH CURSOR cursor-name] SET_BUFFER [number-of-rows]

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling commands DBMS
CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS CONTINUE_UP. In one
method, an application uses JAM-based scrolling by setting up a continuation file
with DBMS STORE FILE . In the other method, an application uses SYBASE-based
scrolling by setting a flag for a cursor with DBMS SET_BUFFER.

SYBASE supports non-sequential scrolling if the application has set up a buffer for
result rows. This command sets the SELECT cursor to use SYBASE-based
scrolling. If an application does not need DBMS CONTINUE_UP or is using a
continuation file (DBMS STORE FILE), this command is not needed.

If the WITH CURSOR clause is used, JAM sets the flag for the named cursor. If the
WITH CURSOR clause is not used, JAM sets the flag for the default SELECT cursor.

number-of-rows is the number of rows SYBASE will buffer. To be useful,
number-of-rows should be greater than the number of occurrences in the JAM
destination fields.

When this command is used with a SELECT cursor, SYBASE saves the specified
number of result rows in memory. When the application executes DBMS CON-
TINUE_BOTTOM, DBMS CONTINUE_TOP, or DBMS CONTINUE_UP commands, the
result rows in memory are returned.

The buffer is maintained for the life of the cursor, or until the buffer is released
with the command,

DBMS [WITH CURSOR cursor-name] SET_BUFFER

Executing the command without supplying the number-of-rows argument turns off
the feature for the named or default cursor and frees the buffer. Note that
re-declaring the cursor does not free the buffer. Closing the cursor does release the
buffer.

WITH CURSOR cur-
sor-name

Description

SYBASE-Specific Commands

41319 Database Driver for SYBASE-DB LibraryChapter

Because the use of this command is expensive (approximately 2K of memory per
row), it should be used only if the application needs non-sequential scrolling but
cannot use scrolling arrays or a continuation file. The application should turn off
DBMS SET_BUFFER when finished with the select set.

Note that:

� Only a few engines support native scrolling. Therefore, this command may not
be supported with other engines. JAM-based scrolling is supported on all
engines with DBMS STORE FILE .

� Each DBMS CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS
CONTINUE_UP requires a trip to the server. With JAM-based scrolling, the
rows are fetched once. When the application attempts to view rows already
fetched, JAM reads them from the continuation file rather than requesting
them from the server.

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor SET_BUFFER 500

proc scroll_up
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

CONTINUE_BOTTOM

CONTINUE_TOP

CONTINUE_UP

STORE

Example

See Also

SYBASE-Specific Commands

414 JAM 7.0 Database Guide

TRANSACTION
Set a default transaction for use in two-phase commits

DBMS TRANSACTION two-phase-transaction-name

If an application has declared more than one two-phase commit transaction, it may
use this command to set the default two-phase commit transaction for a subtransac-
tion.

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Description

See Also

SYBASE-Specific Commands

41519 Database Driver for SYBASE-DB LibraryChapter

TYPE
Declare parameter data types for an rpc cursor

DBMS WITH CURSOR cursor-name TYPE parameter data-type [, parameter data-type ...]

Specify a named cursor for the command.

If an application has declared a cursor for a remote procedure call (ªrpcº) but has
not declared the data types of the procedure's parameters, it should use the DBMS
TYPE command.

parameter is the name of a parameter in the stored procedure and in the DBMS
DECLARE CURSOR statement. data-type is the data type of the parameter in the
stored procedure. JAM uses the information supplied with this command to
execute the remote procedure call. Please note that these data types have no effect
on any data formatting performed by colon-plus processing or binding.

Executing this command with no arguments deletes all type information for the
named cursor.

##
#procedure newprice:
#create proc newprice @pricecat char(1), @percent float,
@price money output, @proposed_price money output
as
select @price = (select price from pricecats
where pricecat = @pricecat)
select @proposed_price = @price + (@price * @percent)
##

DBMS DECLARE nc CURSOR FOR \
RPC newprice ::pricecat, ::percent, ::price OUT, \
 ::proposed_price OUT

DBMS WITH CURSOR nc TYPE \
percent float, price money, proposed_price money

DBMS WITH CURSOR nc EXECUTE \
USING pricecat, percent, price, proposed_price

Using Stored Procedures on page 370

DECLARE CURSOR FOR RPC

WITH CURSOR cur-
sor-name

Description

Example

See Also

SYBASE-Specific Commands

416 JAM 7.0 Database Guide

UPDATE
Update a table while browsing

DBMS UPDATE table-name SET column = value [, column = value ...]

Browse mode permits an application to browse through a select set, updating a row
at a time. Browse mode is useful for an application that wants to ensure that a row
has not been changed in the interval between the fetch and the update of the row.

When DBMS BROWSE is executed, it fetches the rows in the select set one at a time.
The application should provide other JPL procedures to execute DBMS CONTINUE
and DBMS UPDATE commands.

Please note that the DBMS UPDATE statement has no WHERE clause. JAM calls a
SYBASE routine to build a WHERE clause using the unique index of the current row
and the value of its timestamp column when the row was fetched. If the timestamp
value has not been changed, the row is updated. However, if the timestamp value
has changed, then another user has modified the row since the application executed
DBMS BROWSE. In this case, SYBASE will not perform the update.

Refer to the manual page for BROWSE.

BROWSE

CANCEL

CONTINUE

FLUSH

Description

Example

See Also

SYBASE-Specific Commands

41719 Database Driver for SYBASE-DB LibraryChapter

USE
Open an existing database

DBMS [WITH CONNECTION connection-name] USE database-name

Specify the connection for this command. If this clause is not included, JAM issues
the command on the default connection.

Specify an existing database.

This command changes a connection's default database. database-name must ref-
erence an existing database, and the user must have the appropriate permissions to
access the database or else JAM returns an error.

DBMS DECLARE c1 CONNECTION FOR \
USER ':uname' PASSWORD ':pword' SERVER ':server' \
DATABASE 'videobiz'

DBMS SQL SELECT * FROM titles
DBMS WITH CONNECTION c1 USE projects
DBMS SQL SELECT * FROM newjobs

Connecting to a Database Engine on page 357

WITH CONNECTION
connection-name

database-name

Description

Example

See Also

Command Directory for SYBASE

418 JAM 7.0 Database Guide

Command Directory for SYBASE

The following table lists all the commands available in JAM's database driver for
SYBASE. The table lists the command, a short description of the command, and
the location of the reference page for that command. If the location is described as
Database Drivers, that information is enclosed in this document. If the location is
described as the Database Guide, refer to Chapter 11 of the Database Guide.

Table 3. Commands for SYBASE

Command Name Description Documentation
Location

ALIAS Name a JAM variable as the
destination of a selected col-
umn or aggregate function

Database Guide

BEGIN Begin a transaction Database Drivers

BINARY Create a JAM variable for
fetching binary values

Database Guide

BROWSE Execute a SQL SELECT for
browsing

Database Drivers

BUFFER_DEFAULT Set the size of the buffer for
engine-based scrolling

Database Drivers

CANCEL Abort execution of a stored
procedure

Database Drivers

CATQUERY Redirect select results to a
file or a JAM variable

Database Guide

CLOSE_ALL_CONNECTIONSClose all connections on all
engines

Database Guide

CLOSE_ALL_TRANSAC-
TIONS

Close all transactions Database Drivers

CLOSE CONNECTION Close a named connection Database Guide

CLOSE CURSOR Close a named cursor Database Guide

CLOSE TRANSACTION Close a named transaction Database Drivers

Command Directory for SYBASE

41919 Database Driver for SYBASE-DB LibraryChapter

Command Name Documentation
Location

Description

COLUMN_NAMES Return the column name, not
column data, to a JAM vari-
able

Database Guide

COMMIT Commit a transaction Database Drivers

CONNECTION Set a default connection and
engine for the application

Database Guide

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

DECLARE CURSOR FOR
RPC

Declare a cursor to execute a
stored procedure using a
remote procedure call

 Database Drivers

DECLARE TRANSACTION Declare a transaction for two
phase commit

Database Drivers

ENGINE Set the default engine for the
application

Database Guide

EXECUTE Execute a named cursor Database Guide

FLUSH Flush any selected rows Database Drivers

FORMAT Format the results of a CAT-
QUERY

Database Guide

NEXT Execute the next statement in
a stored procedure

Database Drivers

Command Directory for SYBASE

420 JAM 7.0 Database Guide

Command Name Documentation
Location

Description

OCCUR Set the number of rows for
JAM to fetch to an array and
set the occurrence where
JAM should begin writing
result rows

Database Guide

ONENTRY Install a JPL procedure or C
function which JAM will call
before executing a DBMS
statement

Database Guide

ONERROR Install a JPL procedure or C
function which JAM will call
when a DBMS statement fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function which JAM will call
after executing a DBMS state-
ment

Database Guide

PREPARE_COMMIT Indicate that a transaction is
ready to commit

Database Drivers

ROLLBACK Roll back a transaction Database Drivers

SAVE Set a savepoint in a transac-
tion

Database Drivers

SET parameter Set execution behavior for a
stored procedure

Database Drivers

SET_BUFFER Set engine-based scrolling
for a cursor

Database Drivers

START Set the first row for JAM to
return from a select set

Database Guide

STORE Store the rows of a select set
in a temporary file so the
application can scroll through
the rows

Database Guide

TRANSACTION Set the default transaction Database Drivers

TYPE Set data types for parameters
of a stored procedure
executed with an rpc cursor

Database Drivers

Command Directory for SYBASE

42119 Database Driver for SYBASE-DB LibraryChapter

Command Name Documentation
Location

Description

UNIQUE Suppress repeating values in
a selected column

Database Guide

UPDATE Update a table while brows-
ing

Database Drivers

USE Open an existing database Database Drivers

WITH CONNECTION Specify the connection to use
for a command

Database Guide

WITH CURSOR Specify the cursor to use for
a command

Database Guide

WITH ENGINE Specify the engine to use for
a command

Database Guide

423

Videobiz Database
This section describes the database tables in the videobiz database. The following
information is listed for each table:

� Column names.

� Data type of each column.

� Length of character columns.

� Status of column detailing whether it is a primary or foreign key and whether
it can accept null values.

� Description of the data to be entered into the column.

� Sample entry.

AA

Videobiz Schema

424 JAM 7.0 Database Guide

Videobiz Schema

The following tables outline the database tables in the videobiz database.

Table 4. Actors table.

Column Name Data Type Length Status Description Sample

actor_id integer primary key
not null

Unique number code for each actor. 87

last_name char 25 not null Actor's last name or only name. Ullmann

first_name char 20 Actor's first name. Liv

Table 5. Codes table.

Column Name Data Type Length Status Description Sample

code_type char 32 primary key
not null

Type of code. Corresponds to column
name.

genre_code

code char 4 primary key
not null

Code value. ADV

dscr char 40 Description of code value. Adventure

Videobiz Schema

Appendix 425A Videobiz Database

Table 6. Customers table.

Column Name Data Type Length Status Description Sample

cust_id integer primary key
not null

Unique number code for each cus-
tomer.

2

last_name char 25 not null Customer's last name. Scott

first_name char 20 not null Customer's first name. Alexander

address1 char 40 Customer's address. 5601 Wilson

address2 char 40 Additional address information.

city char 25 City customer lives in. Geneva

state_prov char 10 State/Province. NY

postal_code char 10 Postal code. 10234

phone char 15 Customer's telephone number. 515±221±4111

cc_code char 4 Code for type of credit card. List in
codes table.

VISA

cc_number char 16 Number on credit card. 4000...

cc_exp_month integer Month of credit card expiration.
1=January, 12=December.

2

cc_exp_year integer Year of credit card expiration (4
digits).

1994

member_date datetime Date when customer became a
member.

1991/05/30
00:00:00

member_status char 1 not null Current status of membership. Val-
ues include: (A)ctive, (I)nactive,
(F)requent renter.

A

num_rentals integer not null Total number of rentals customer
has made.

105

rent_amount float not null Total amount of money paid by
customer.

175.00

notes char 254 Comments about customer. Likes ADV
videos.

Videobiz Schema

426 JAM 7.0 Database Guide

Table 7. Flag table.

Column Name Data Type Length Status Description Sample

yesno char 1 Flag used in the sample application.Y

Table 8. Pricecats table.

Column Name Data Type Length Status Description Sample

pricecat char 1 primary key
not null

Unique letter code for each category. N

pricecat_dscr char 40 Category description. New
Release

rental_days integer not null Number of rentals days available in
this category.

2

price float not null Amount to be paid for rentals in this
category.

2.50

late_fee float not null Amount of late fee for rentals in this
category.

2.00

Videobiz Schema

Appendix 427A Videobiz Database

Table 9. Rentals table.

Column Name Data Type Length Status Description Sample

cust_id integer primary key
foreign key
not null

Code identifying the customer for
this rental.

3

title_id integer primary key
foreign key*
not null

Code identifying the video title for
this rental.

69

copy_num integer primary key
foreign key
not null

Copy of this video being rented. 2

rental_date datetime primary key
not null

Date/time the video was rented. 1993/10/29
19:56:00

due_back datetime not null Date the video is due back to avoid
late fee.

1993/11/01
00:00:00

return_date datetime Actual date/time the video was
returned; NULL until then.

NULL

price float not null Rental fee for video at time rental
was made.

3.50

late_fee float not null Late fee per day for video at time
rental was made.

1.00

amount_paid float not null Total amount paid on this rental as of
current date.

3.50

rental_status char 1 not null Status of rental. Values include
(C)urrently out, Back and (P)aid,
(B)alance is due.

C

rental_com-
ment

char 76 Comments about rental, if any. NULL

modified_date datetime not null Date this record was last modified. 1993/10/29
19:56:00

modified_by integer foreign key
not null

Last user who modified record. 2

*title_id is a foreign key from the tapes table, in combination with copy_num.

Videobiz Schema

428 JAM 7.0 Database Guide

Table 10. Roles table.

Column Name Data Type Length Status Description Sample

title_id integer primary key
foreign key
not null

Unique number code for each video
title.

33

actor_id integer primary key
foreign key
not null

Unique number code for each actor. 87

role char 40 Role the actor plays in the video. Marianne

Table 11. Tapes table.

Column Name Data Type Length Status Description Sample

title_id integer primary key
foreign key
not null

Unique number code for each video
title.

33

copy_num integer primary key
not null

Number identifying the copy of this
video.

1

status char 1 not null Code specifying the current status of
this copy. Values include (A)vailable,
(R)eserved, (O)ut, (I)nactive.

O

times_rented integer not null Number of times this copy has been
rented.

53

Videobiz Schema

Appendix 429A Videobiz Database

Table 12. Titles table.

Column Name Data Type Length Status Description Sample

title_id integer primary key
not null

Unique number code for each video
title.

33

name char 60 not null Video title. Scenes from
a Marriage

genre_code char 4 Code specifying the video category.
Values include: ADLT, ADV, CHLD,
CLAS, COM, HORR, MUS, MYST,
SCFI, TV, VID. See codes table.

CLAS

dir_last_name char 25 Director's last name. Bergman

dir_first_name char 20 Director's first name. Ingmar

film_minutes integer Length of the video. 168

rating_code char 4 Rating code given the film by the
Motion Picture Association of Amer-
ica. Values include: G, PG, PG13, R,
NC17. See codes table.

PG

release_date datetime Year the film was released to movie
theatres.

1974/01/01
00:00:00

pricecat char 1 foreign key
not null

Code taken from the pricecats
table specifying the price category.

G

Table 13. Title_dscr table.

Column Name Data Type Length Status Description Sample

title_id integer primary key
foreign key
not null

Unique number code for each video
title.

33

line_no integer primary key
not null

Line number of the video description.1

dscr_text char 76 Description of the video. Relationship
of a couple...

Videobiz Schema

430 JAM 7.0 Database Guide

Table 14. Users table.

Column Name Data Type Length Status Description Sample

user_id integer primary key
not null

Unique number code for each system
user/employee.

3

logon_name char 8 User's logon name. jack

password char 8 User's password. go

last_name char 25 User's last name. Ryan

first_name char 20 User's first name. Jack

customer_flag char 1 Y allows access to customer subsys-
tem.

Y

admin_flag char 1 Y allows access to administrative
subsystem.

N

marketing_flag char 1 Y allows access to marketing subsys-
tem.

Y

frontdesk_flag char 1 Y allows access to front desk subsys-
tem.

Y

1

Index
Symbols

; (semicolon), command terminator in JISQL, 49

(pound sign)
comments in ISQL , 120
comments in JISQL, 49

% (percent sign), as pattern matching operator, 86

_ (underscore), as pattern matching operator, 86

A
Addition operation, in JDB, 90

Aggregate functions, in JDB, 59±61
with GROUP BY clause, 75

ALIAS, dbms command, aliasing column names,
135±137

Aliasing, column names to widgets, 135±137

ALL keyword, in JDB, 101

ANY keyword, in JDB, 101

Arithmetic operators, in JDB, 90

ASC keyword, in ORDER BY clause, 94

AUTOCOMMIT, dbms command, committing trans-
actions, 273, 306

AVG function, in JDB, 59

B
Backward scrolling, viewing database rows, 153±156,

174±176, 213±214, 243, 266, 294±295, 331, 365

BEGIN, dbms command, starting database transaction,
226, 339, 388

BETWEEN predicate, in JDB, 62±63, 105

BINARY, dbms command, fetching binary column
values, 138±139

BROWSE, dbms command, returning one row at a
time, 390

BUFFER_DEFAULT, dbms command, setting type of
scrolling, 227, 392

C
C Type property, from database column type, 210±211,

241±242, 263±264, 291±292, 326±327, 361±362

CANCEL, dbms command, stopping a stored proce-
dure, 340, 393

2 JAM 7.0 Database Guide

CATQUERY, dbms command, writing results to wid-
get or file, 140±142

char (data type), in JDB, 69

Character strings, writing to database, in Oracle, 293

CLOSE CONNECTION, dbms command, closing
database connections, 144

CLOSE CURSOR, dbms command, closing database
cursor, 145

CLOSE TRANSACTION, dbms command, closing a
declared transaction, 396

CLOSE_ALL_CONNECTIONS, dbms command,
closing database connections, 143

CLOSE_ALL_TRANSACTIONS, dbms command,
closing all declared transactions, 394

Colon preprocessing, writing to a database, 211±212,
242, 265, 293, 328±329, 363±364

Column. See Database columns

COLUMN_NAMES, dbms command, mapping col-
umn names only, 146±147

COMMIT, dbms command, committing transactions,
228, 249, 275, 308, 341, 397

commit
transaction in ISQL, 120
transaction in JDB, 115
transaction in JISQL, 50

Comparison operators, in JDB, 91

Configuration, JDB, 32

CONNECTION, dbms command, setting database
connection, 148

Continuation file, specifying, 174±176

CONTINUE, dbms command, fetching next set of
rows, 149±150

CONTINUE_BOTTOM, dbms command, fetching last
set of rows, 151

CONTINUE_DOWN, dbms command, fetching next
set of rows, 152

CONTINUE_TOP, dbms command, fetching first set
of rows, 153

CONTINUE_UP, dbms command, fetching previous
set of rows, 154±155

Correlation names
for database tables, 23
for self-joins, 84

COUNT function, in JDB, 59

CREATE DATABASE statement, in JDB, 64±65

CREATE TABLE statement, in JDB, 66±68

Currency format, writing to database, in SYBASE,
328, 363

Cursor. See Cursor (database)

Cursor (database)
closing, 145
declaring, 157±158, 212±213, 242±243, 265±266,

294, 329±331, 364
executing statement, 160
specifying cursor for dbms command, 180±181

D
Data

deleting from database, in JDB, 72
entering into database, in JDB, 79±80
formatting for database updates, 211±212, 242, 265,

293, 328±329, 363±364
matching specified pattern, 86
modifying, 103±104
retrieving from multiple tables, 81±85
scrolling through result set, 151±157
selecting, 96±99
specifying groups in database, 75±76
specifying order from database, 94±95

Data type, in JDB, 69±71

Database columns
aliasing to widgets, 135±137
defined, 10±11
defining in JDB, 66±68
fetching binary values, 138±139
getting serial column value, 198
JDB, defining in JISQL, 38±39
mapping column names into JAM variables,

146±147
mapping result set to widget/file, 140±142
naming conventions, JDB, 28
selecting, 96±99
suppress repeating values, 177

Index 3

Database connections
closing, 143, 144
declaring, 156, 310
Informix, 208
JDB, 240
ODBC, 260
Oracle, 289

for XA library, 289
setting current, 178±179
setting default, 148
SYBASE, 324, 359

Database drivers
commands, 131±182
Informix, 205±236
initializing, 206, 238, 257, 286, 320, 356
JDB, 237±253
keywords, 199±203
listing of error messages, 192±194
ODBC, 255±283
Oracle, 285±317
Sybase-CT Library, 319±353
Sybase-DB Library, 355±421

Database engines
initializing, 206±207, 238±239, 257±258, 286±287,

320±322, 356±357
setting current, 182
setting default, 159
using more than one, 182

Database tables. See Tables

Databases
See also Database connections; Database drivers;

Database engines
designing, 14±16
JDB

connecting using ISQL, 118
connecting using JISQL, 34±35, 50
creating databases, 64±65, 118
creating databases in JISQL, 36
deleting, 73
describing using JISQL, 46
disconnecting using JISQL, 35
dropping using JISQL, 47

naming conventions, JDB, 27
re-creating JDB database, 122
relational, 9

Date/time formats, writing to database
in Informix, 211
in Oracle, 293
in SYBASE, 328, 363

datetime (data type), in JDB, 70

DBMS commands, 131±182
for Informix, 234±236
for JDB, 251±253
for ODBC, 278±280
for Oracle, 315±317
for SYBASE, 351±353, 418±420
summary, 131±134

DECLARE CONNECTION, dbms command, making
database connection, 156, 310

DECLARE CURSOR, dbms command
creating database cursor, 157±158
for ODBC catalog functions, 276
for Oracle stored subprograms, 311
for RPCs, 399

DECLARE TRANSACTION, dbms command, declar-
ing a transaction, 400

DELETE statement
constructing, 21±23
in JDB, 72

DESC keyword, in ORDER BY clause, 94

describe, table in JISQL, 50

Division operation, in JDB, 90

dm_, @dm global variables, 183±198

double (data type), in JDB, 70

DROP DATABASE statement, in JDB, 73

DROP TABLE statement, in JDB, 74

dump, table in JISQL, 50

E
ENGINE, dbms command, setting database engine,

159

Engine±specific Notes. See Database drivers

Equi±joins, 81

Error messages
See also Error messages (database)
database drivers, 192±194
JDB, 111±114

4 JAM 7.0 Database Guide

Error messages (database)
calling function after dbms command, 170±171
calling function before dbms command, 165±166
engine±specific codes, 186±187
engine±specific messages, 188, 214±218, 243±245,

266±268, 295±296, 331±332, 368±370
generic database driver messages, 192±194

listing, 192±194
installing error handler, 167±169
warning codes, 190±191

EXECUTE, dbms command, executing statement, 160

Executing SQL statements, 172

EXISTS keyword, in JDB, 100, 106

Expressions, in JDB, 91

F
Field, database. See Database columns

File
export JDB database to text files, 123
import to JDB database from text files, 123

float (data type), in JDB, 69

FLUSH, dbms command, throwing away unread rows,
342, 401

Foreign keys
defined, 12
defining using JISQL, 41±45

FORMAT, dbms command, formatting result set,
162±163

Function, aggregate. See Aggregate functions

G
Global variables, database drivers, 183±198

GROUP BY clause, in JDB, 75±76

H
HAVING clause, in JDB, 77±78

I
Import, of database objects to a repository, 208±211,

240±242, 261±265, 290±293, 324±328, 359±363

IN keyword, in JDB, 100, 106

Informix, 205±236
connection options, 208
DBMS command listing, 234
executing stored procedures, 218
setting cursor behavior, 232±234

INSERT statement
constructing, 21
in JDB, 79±80
NULL values and, 88

int (data type), in JDB, 69

Interactive SQL. See ISQL; JISQL

ISQL, 118±120
clearing the input buffer, 120
command terminator, 119
committing transactions, 120
connecting to a database, 120
editing an ISQL statement, 120
executing a command file, 120
exiting, 120
starting, 118

J
JAM type, from database column type, 210±211,

241±242, 263±264, 291±292, 326±327, 361±362

JDB
connecting to database using JISQL, 34±35
connection options, 240
creating databases, 27, 64±65, 118
creating databases in JISQL, 36
creating tables using JISQL, 36±37
database driver for, 237±253
DBMS command listing, 251
defining columns using JISQL, 38±39
defining table keys using JISQL, 39±45
describing, 3±8
disconnecting from database using JISQL, 35
error messages, 111±114
executing transactions, 115±116
ISQL, 118±120
JISQL, 33±55

Index 5

JDB (continued)
keywords, 125±128
naming conventions, 27±28
SQL commands, 57±109
SQL syntax summary, 109
system tables, 30±32
unsupported features, 7
utilities, 117±120

jdbroll, restoring transaction log, 121

JISQL, 33±55
command terminator, 49
committing transactions, 50
connecting to a database, 34±35, 50
creating databases, 36
creating tables, 36±37
defining columns, 38±39
disconnecting from a database, 35
displaying database description, 46
dropping databases, 47
dropping tables, 46±47
editing SQL scripts, 47±49
executing operating system commands, 35±36
executing SQL scripts, 50±55
exiting, 35
log file, 51, 53±54
macro commands, 49±50
output options, 50±51
query results, 52±53
rolling back transactions, 50
running interactive SQL, 47±55
script format, 49±52
starting, 33
terminating execution, 55

Join
database tables, 22±23, 81±85
using correlation names, 23

K
Key columns

foreign key, defined, 12
primary key, defined, 11±12

Keys, defining using JISQL, 39±45

Keywords
database drivers, 199±203
in JDB, 125±128

L
LIKE predicate, in JDB, 86±87, 107

Links, creating, from database import, 209, 241, 263,
291, 325, 360

Log file, JISQL, 53±54

Logical operators, in JDB, 92

logon, connecting to JDB database, 50, 120

long (data type), in JDB, 69

M
Macro commands, JISQL, 49±50

MAX function, in JDB, 59

Message file, JDB, 32

MIN function, in JDB, 59

mksql, re±creating statements for database, 122

Multiple table joins, 82

Multiplication operation, in JDB, 90

N
Natural joins, 82

NEXT, dbms command, executing next statement,
344, 403

NOT keyword
in joins, 81
NOT BETWEEN, in JDB, 62, 105
NOT EXISTS, in JDB, 100, 106
NOT IN, in JDB, 100, 106
NOT LIKE, in JDB, 86, 107
NOT NULL, in JDB, 88, 106

NULL, specifying in JDB, 88±89

6 JAM 7.0 Database Guide

Null value
and arithmetic operations in JDB, 90
and COUNT aggregate function, 59
defined, 13
specifying in JDB, 88±89, 93

O
OCCUR, dbms command, setting occurrence for

SELECT, 164

ODBC, 255±283
connection options, 260
DBMS command listing, 278
description of, 255

ONENTRY, dbms command, calling function before
dbms command, 165±166

ONERROR, dbms command, installing error handler,
167±169

ONEXIT, dbms command, calling function after dbms
command, 170±171

Operating system, executing command, from JISQL,
35±36

Operators, in JDB, 90

Oracle, 285±317
connection options, 289

for XA library, 289
DBMS command listing, 315
executing stored subprograms, 297±300

ORDER BY clause, in JDB, 94±95

P
PREPARE_COMMIT, dbms command, preparing two

phase commit, 404

Primary keys
defined, 11±12, 15
defining using JISQL, 39±41

Q
Queries, database, 96±99

quit, exiting ISQL, 120

R
Range, search conditions in JDB, 62±63

read, executing file in ISQL, 120

Records, database. See Rows

Relational databases, 9

Restrictions, JDB, 7

Return codes, stored procedures, 189, 376

ROLLBACK, dbms command, rolling back transac-
tions, 229, 250, 277, 312, 345, 405

rollback
transaction in ISQL, 120
transaction in JDB, 115
transaction in JISQL, 50

Rows
defined, 11
fetching, 149±150, 151±157
number fetched, 196±197
value of @dmrowcount in DBMS START, 173

S
SAVE, dbms command, setting a savepoint, 313, 407

Scrolling
in the database drivers, 213±214, 243, 266,

294±295, 331, 365
specifying backward scrolling, 153±156
specifying continuation file, 174±176
specifying engine scrolling, 227, 230, 392, 412

Search conditions, in SQL statements, 105

SELECT statement
constructing, 18±19
fetching binary columns, 138±139
formatting result set, 162±163
in INSERT statement, 80
in JDB, 96±99
NULL values and, 88
number of rows fetched, 196±197

no more rows status, 196±197
scrolling through result set, 149±156, 174±176
setting starting row, 173
suppressing repeating values, 177
writing results

to a file, 140±142
to a specific occurrence, 164

Index 7

Self-joins, 84

Serial column, @dmserial, 198

SET, dbms command
set cursor handling in SYBASE, 346, 409
setting Client Library cursor, 349

SET HOLD, dbms command, setting cursor behavior
in Informix, 232

SET HOLD_DEFAULT, dbms command, setting cur-
sor behavior in Informix, 233

SET_BUFFER, dbms command, specifying engine
scrolling, 230, 412

SMEDITOR, editing SQL statements , 32

SOME keyword, in JDB, 101

SQL, 17±25
commands, in JDB, 57±109
dbms command, executing SQL statements, 172
executing in JISQL, 24
executing in JPL, 24
executing SQL statements, 172

on named cursor, 160±161
re-creating JDB database, 122
syntax summary for JDB, 109

START, dbms command, setting starting row, 173

STORE, dbms command, setting continuation file, 174

Stored procedures
executing

in Informix, 218±221
in ODBC, 268
in Oracle, 297±300, 311
in SYBASE, 333±334, 371±378

executing an rpc, in SYBASE, 373±378
return codes, 189, 376

Subqueries, database, 100±102

Subtraction operation, in JDB, 90

SUM function, in JDB, 59

SYBASE, 319±424, 355±460
connection options, 324, 359
DBMS command listing, 351, 418
executing statements, 346, 409
executing stored procedures, 333, 371

Syntax summary, JDB, 109

System. See Operating system

system, executing operating system command in
ISQL, 120

System tables, JDB, 30

T
Table views, creating, from database import, 209, 240,

262, 290, 325, 360

Tables
correlation names, 23
defined, 9±10
describing in JISQL, 46, 50
dropping using JISQL, 46±47
dumping in JISQL, 50
export from JDB to text files, 123
import to JDB from text files, 123
JDB

creating, 66±68
creating in JISQL, 36±37
deleting, 74

joining multiple, 22±23, 81±85
keys, defining using JISQL, 39±45
naming conventions, JDB, 28
retrieving data, 96
system tables, JDB, 30

tbldata, import/export JDB database, 123

Text files, import/export to JDB database, 123

TRANSACTION, dbms command, setting a default
transaction, 414

Transaction
committing in JISQL, 50
processing database transactions, 221±224,

245±247, 268±271, 300±303, 334±337,
378±385

committing the transaction, 228, 249, 275, 308,
341, 397

in JDB, 115±116
rolling back a transaction, 229, 250, 277, 312,

345, 405
setting a savepoint, 313, 407
starting transaction, 226, 339, 388

restoring journals/logs, 121
rolling back in JISQL, 50

Transaction model
for JDB, 248
for Oracle, 303
for SYBASE, 337, 386

8 JAM 7.0 Database Guide

TYPE, dbms command, specifying parameter types,
415

U
UNIQUE, dbms command, suppressing repeating val-

ues, 177

Unique keys, defining using JISQL, 39±41

Unsupported features, JDB, 7

UPDATE, dbms command, updating in browse mode,
416

UPDATE statement
constructing, 20±21
in JDB, 103±104
NULL values and, 88

USE, dbms command, specifying a database, 417

Utilities, JDB, 117±123

V
videobiz

description of database, 423±430
diagram, 15

W
Warning messages, database, 190±191

WHERE clause
constructing, 19±20
in JDB, 105±108

Widgets
aliasing to column names, 135±137
creating, from database import, 210±211, 241±242,

263±265, 291±293, 326±328, 361±363

Wildcard characters, in JDB, 86

WITH CONNECTION, dbms command, setting data-
base connection, 178±179

WITH CURSOR, dbms command, setting database
cursor, 180±181

WITH ENGINE, dbms command, setting database
engine, 182

X
XA library

connecting to, 289
using in JAM, 303±304

