JAM 7

Database Guide

August 1995

This software manual is documentation for JAN. It is as accurate as possible at this time; howeogn
this manual and JAM itself are subject to revision.

JAM and fermare registered trademarks and JAM/CABterface JAM/TH, and JAM/Report\iter are
trademarks of JXCC, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

DEC, OpenVMS, ACMS, Rdb/VMS, VMS, UIRIX, VAX, VT100, and VT220 are trademarks of the Dig
ital Equipment Corporation.

Dynarext is a trademark of Electronic Bookdhnologies.

HP is a trademark of Hewlett-Packard Company

INFORMIX and C-ISAM are registered trademarks of Informix Software, Inc.
INGRES is a registered trademark of Ingres Corporation.

IBM, DB2, OS/2, Presentation Managand RISC System/6000 are registered trademarks and CICS is a
trademark of International Business Machines Corporation.

InterBase is a trademark of Borland International, Inc.

Oracle and SQL*Net are registered trademarks and Oracle7, PL/SQL, Pro*C and Oracle*XA are trade
marks of Oracle Corporation.

PROGRESS is a registered trademark of Progress Software Corporation.

Scalable SQL is a trademark of BTRIEVEChnologies.

SQLBase is a registered trademark and BlK.is a trademark of Guptadhnologies, Inc.
SYBASE is a registered trademark and SQLServer is a trademark of Sybase, Inc.

Windows and ODBC are trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

TUXEDO, NetWare, and Novell are registered trademarks of Novell, Inc.
OSF/Motif is a trademark of the Open Software Foundation.
UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec
tive owners, and they are used for identification purposes only

Send suggestions and comments regarding this document to:
Technical Publications Manager

JYACC, Inc.

116 John Street

New York, NY 10038

(212) 2677722

W 1995 JWCC, Inc.
All rights reserved.
Printed in USA.

About this Guide

Section |: JDB

Chapter 1

Chapter 2

Table of Contents

.. XI
Organizatiorof thisGuide. Xi
CONVENEIONS. .« ..ttt e Xii

Text CONVENtiONS.t Xii
Keyboard Conventions Xii
JAM Documentation.o e Xiii

.. 1
Introductionto JDB 3
UsingJDB With JAM e 4
JDB Executables. e 6
Unsupported Featurest e 7
Terminology o 7
Introduction to Databases 9
Structureof a Relational Database 9

Tables . .. 9
ColumNs . . 10
ROWS . . 11

Chapter 3

Chapter 4

Chapter 5

PrimaryKeys. 11
Foreign Keys. 12
Naming Bblesand Columns 13
EnteringDatain Columns. i 13
Designing YurDatabase. 14
Introductionto SQL 17
BUulding SQL 18
SQL Statements. e 18
SQL CONCEPLS .« . oot 22
Executing SQL.o 24
Database Elements 27
NamingConveNntions. i e e 27
Databases. 27
Identifiers 28
Data PeS . . .o 28
JDB FileS . ..o 29
Journal Files. . ..o 29
JISQL SCIPES .« o et 29
JISQLLOgFiles. 29
JISQLOUtpUt Files 30
System Bbles. 30
Configuration. e 32
EnvironmentMriables. 32
Message File.o 32
UsSiNg JISQL ... 33
StartingJISQLo 33
ConnectingtoaDatabase L. 34
Disconnecting froma Database. 35
EXiting JISQLot 35
Executing Operating System Commands from JISQL. 35
CreatingaNewDatabase 36
Creating Databaseables. 36
Defining Columnsina Databasafdle 38
DefiningaNew Column i 38
Modifying and Deleting Columns. 38
Re-arranging Columns i 39

JAM 7.0

Database Guide

Chapter 6

Chapter 7

Chapter 8
Chapter 9

Chapter 10

Section II:

Chapter 11

Chapter 12

Table of Contents

Defining Keys for a Databaseble. 39

Primary Key and Unique Keys.t 39
Foreign Keys. 41
Maintaining an Existing Database 45
Displaying Database andifle Definitions. 46
Dropping Bbles 46
DroppingaDatabase. 47
Running SQL Interactively. 47
Entering and Editing SQL Scripts a7
Script Formatand Syntax. 49
JISQL Macro Commands.ottt e 49
Executing SQL SCriptsottt 50
SQL Reference Guide, 57
Usingthe SQL Reference Guide.o, 57
SQL Reference Summary. 57
Notation Conventions 58
Ermmror Messages ...t 111
ErrorMessage Listing.o 111
Using Transactionsc.oouiiiiiinenan.. 115
JDB ULtilities 117
KeywordsinJDB i 125
Database Reference 129
DBMS Statements and Commands 131
DBMS Command SUMMANY.o vt e i e 131
Command DeSCriptionNSo i 134
DBMS Global Variables 183
VariableOverview 183
ErrorData. 184
Status Data. 184
Variable Reference. 184
%

Chapter 13 Keywords in JAM' s Database Drivers 199

Section lll: Database Driversc.ciiiiiiian.n.. 203
Chapter 14 Database Driver for Informix —....................... 205
Initializing the Database Engine. 206
Engine Name 206
SupportRoutine Name 207
CaseFlag 207
Connecting to the Database Engine. 207
Importing Databaseables. 208
Table MeWs 209
LiNKS ..o e 209
WidgetS . . . 210
Formatting for Colon Plus Processing and Binding. 211
Formatting Dates. 211
Declaring CUISOISttt e 212
SCrollingo 213
Error and Status Information. o 214
0] 214
WarNiNgS 216
Row Information. 218
Using Stored Procedures. 218
Executing Stored Procedures. i 218
Viewing SELECT Results. 219
Using TranSactionsottt 221
Transaction Control on a Single Connection. 222
Transaction Manager Processing.ot .. 224
Transaction Model for Informix 224
Informix-Specific Commands 224
Command Directory for Informix. 234
Chapter 15 Database DriverforJDB 237
Initializing the Database Engine., 238
Engine Name 238
Support Routine Name. i 239
CaseFlag 239

Vi JAM 7.0 Database Guide

Chapter 16

Table of Contents

Connectingo the Database Engine 239

Importing Databaseables. 240
Table Mews e 240
LinKS ..o 241
WiIdgetS . . . 241

Formatting for Colon Plus Processing and Binding. 242

Declaring CUISOrS oo e e 242

SCrollingo 243

Error and Status Information. 243
EITOrS. . o 244
Row Information. 245

Using Transactions e 245
Transaction Control on a Single Connection. 246

Transaction Manager Processing.ot .. 247
Transaction Model forJDB. 247

JDB-SpecificCommands. e 248

Command Directory forJDB. 251

Database Driver for ODBC 255

Initializing the Database Engine., 257
Engine Name e 257
Support Routine Name. e 257
CaseFlag 258

Connecting to the Database Engine. 258

Importing Databaseables. i 261
Table Mews 262
LINKS . 263
WidgetS . . . 263

Formatting for Colon Plus Processing and Binding. 265

Declaring CUISOrS . . . oo v i e e e 265

SCrolling . . . e 266

Error and Status Information. o 266
e 0] 267
Row Information. 268

Using Stored Procedures.ttt e 268

Using Transactionsttt e 268
Transaction Control on a Single Connection. 269

Transaction Manager Processing. oo i, 271
Transaction Model for ODBC. 271

vii

Chapter 17

Chapter 18

viii

ODBC-SpecificCommandst 272

Command Directory forODBC. i 278
Library Functions for ODBC. 281
Database Driver for ORACLE 285
Initializing the Database Engine., 286
Engine Name e 286
Support Routine Name. i i 287
CaseFlag ... e 287
Connecting to the Database Engine. 287
Connectingtothe XA Library. 289
Importing Databaseables. 290
Table MeWs 290
LiNKS ..o 291
Widgets . . .o 291
Formatting for Colon Plus Processing and Binding. 293
Formatting Dates. e 293
Formatting Character Strings., 293
Declaring CUISOrS . . . o v i et 294
SCrolling e 294
Error and Status Information. 295
EITOrS. . 295
Row Information. 296
Using Stored Subprograms. 296
Executing Stored Procedures. 297
Executing Stored Functions. 299
Using TransSactionsot 300
Transaction Control on a Single Connection. 301
Transaction Manager Processing.ooiiin ... 303
Transaction Model for ORACLE, 303
Specifying FORUPDAE Clauses, 303
Using the XA Interface. 303
ORACLE-SpecificCommandst 305
Command Directory for ORACLE. 315
Database Driver for SYBASE CT Library 319
Initializing the Database Engine. 320
Engine Name 321
Support Routine Name. i i 321

JAM 7.0 Database Guide

Chapter 19

Table of Contents

CaseFlag.o 321

Connecting to the Database Engine. 322
Importing Databaseables. 324
Table Mews e 325
LiNKS ..o 325
WidgetS . . . 326
Formatting for Colon Plus Processing and Binding. 328
Formatting Dates. 328
Formatting Currency &ues. i 328
Using Text and Image Dataypes, 329
Declaring CUISOrS . . . o oo e e 329
Setting Cursor OptioNSo 330
SCrolling . . . e 331
Error and Status Information. 331
EITOrS. . o 331
Using Stored Procedures.t e 332
Executing Stored Procedures i 333
Controlling the Execution of a Stored Procedure 333
Using Transactions e 334
Transaction Controlona Single Cursor. 335
Transaction Manager Processing.ot .. 337
Transaction Model for SYBASE. i 337
Using \ersion Columnsttt e 337
SYBASE-Specific Commands. 338
Command Directory for SYBASE. 351
Database Driver for SYBASE DB Library 355
Initializing the Database Engine., 356
Engine Name 356
Support Routine Name. i e 357
CaseFlag 357
Connecting to the Database Engine. 357
Importing Databaseables. i 359
Table Mews 360
LINKS .. 360
WidgetS . . . 361
Formatting for Colon Plus Processing and Binding. 363
Formatting Dates.t e 363
Formatting Currency8ues. 363
iX

Chapter 20

UsingText and Image Dataypes, 364

Declaring CUISOrS . . . o oot e e e e 364
SCrolling . . . oo 365
Locking Behavior. 365
Error and Status Information. 368
EITOrS. . o 368
Row Information. 370
Using Stored Procedures.ttt 370
Executing Stored Procedures. i 371
Getting Output ParameteaMies 372
Using Remote Procedure Calls., 373
Getting a Return Code from a Stored Procedure 376
Controlling the Execution of a Stored Procedute 377
Using Transactionsot 378
Transaction Controlona Single Cursor. 379
Transaction Control on Multiple Cursots 381
Transaction Manager Processing. oo i 385
Transaction Model for SYBASE. 385
Using \ersion Columnso 386
SYBASE-Specific Commands. 386
Command Directory for SYBASE. i 418
Videobiz Database i 423
VideobizSchema. 424
... 431

JAM 7.0 Database Guide

About this Guide

The Database Guideontains reference information to help you build database
applications with JAM.

For those of you that are new to relational databases, the section on JDB explains
basic database terminologiyhe other sections of the guide will be most helpful if
you are familiar with building database applications. The Database Drivers section
assumes that you are familiar with the procedures and functionality of your
database engine.

Organization of this Guide

TheDatabase Guidés oiganized into the following sections:

Section One: JDB

Chapters 1 through 10 provide instructions for JDB\QE's database prototyping
tool. JDB is a relational database system using SQL. Instructions are given about
database components as well as how to build SQL statements in JDB.

Section Two: Database Refegnce

Chapters 1 through 13 provide reference information concerning FAdtabase
drivers. This includes information about theBMScommands and about the global
variables available for error and status information.

Xi

Conventions

SectionThree: Database Drivers

This section contains documentation about the major database drivers available
with your installation of JAM. This includes documentation about the database
driver for JDB as well as Oracle, SYBASE, Informix, and ODBC.

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

expression Monospacdfixed-spaced) text is used to indicate:
Code examples.
Words you're instructed to type exactly as indicated.
Filenames, directories, library functions, and utilities.
Error and status messages.

KEYWORDS Uppercase, fixed-space font is used to indicate:
SQL keywords.

Mnemonics or constants as they appear in JAM include files.

numeric_value Italicized helvetica is used to indicate placeholders for information you supply

[option_list] Items inside square brackets are optional.

{x |y} One of the items listed inside curly brackets needs to be selected.

X .. Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

new terms Italicized text is used:

To indicate defined terms when used for the first time in the guide.

Occasionally for emphasis.

Keyboard Conventions

XMIT JAM logical keys are indicated with uppercase characters.

Xii JAM 7.0 Database Guide

Alt+A

JAM Documentation

Physicalkeys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

About this Guide

The JAM documentation set includes the following guides and reference material:
Read Me Firsb Consists of three sections:
W Whats New in JAMD Briefly describes whas new in JAM 7.

W Installation Guideb Describes how to install JAM on your specific
platform and environment.

W License Manager InstallatioP Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

Getting Started Contains useful information for orienting you to JAM. Includes

a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guideb Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen gsliti@en wizard, menu

bar editor and styles editoTheEditors Guideis also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor

Application Development Guid2 Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repositwygk functions, and menu bars,
as well as sections on the SQL execuB®L generator and the transaction
manager.

Language Refenceb Describes JPL, JAMS proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti
cally.

Database Guid® Instructions for using JDB, JXCC's prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver

Configuration Guideb Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys

Xii

JAM Documentation

Online
Documentation

Collateral
Documentation

Additional Help

Xiv

andinput/output. Also includes information on GUI resource and initialization
files.

GlossaryandMaster Index® Provides a dictionary of terms used in the
documentation set and an index into the entire documentation set. This is in
addition to the indexes in the individual volumes.

Upgrade Guideb Online only. Information for upgrading from JAM 5.

JAM's documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynBfeltowser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
Dynatexts read-only browser from the command line or by clicking on the
Dynatext icon. For instructions on using Dynatext, request Help while you have a
browser window open.

The following information is also provided with your JAM installation:

Database Driver Notes B JAM 7 has database drivers for most popular
relational database engines, as well as JDB, $Aivbprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guideothers are included separately

Online help B TheEditors Guides provided in online form through the
Dynatext browser on GUI platforms. It can be accessed by choosing Help

from the screen editoFor instructions on using Dynatext, request Help while
you have a browser window open.

Online README file.

JYACC provides the following product support services; conta8CIY for more
information.

Technical Support
Consulting Services

Educational Services

JAM 7.0 Database Guide

Chapterl
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

SECTION ONE

JDB

Introductionto JDB. 3
Introduction to Databases. 9
Introductionto SQL. 17
Database Elements 27
UsiNgJISQL . ..ot 33
SQL Reference Guide 57
ErrorMessages. 111
Using Transactionso 115
JDB Utilities. 117

KeywordsinJDB. 125

Introduction to JDB

JDBis a simple relational database manager which can be used for building
application prototypes. Wking with JDB, you can make a model of the data with

the designated tables and columns. JPL procedures using standard SQL syntax can
be added to the JAM screens in your application. These procedures allow you to
add, modify or remove information stored in JDB. AlternativéyM's transaction
manager can also access your JDB database information.

With the addition of JDB to the NCC family of products, you can:
Create a database using JDB.
Create menus and screens for an application using JAM.
Enter data into your JDB database using Ja\l&tabase driver for JDB.
Obtain reports of information in your database with JAM/Repaté
Test the entire application, including data entry

In previous releases of JAM, you could design the screens and menus needed for
an application, but were unable to test the data entry until a database engine and
database interface became available. The addition of JDB allows you to do this,
which gives you greater control over the entire development cycle.

In addition to the database access available through the transaction manager or JPL
procedures, you can also access JDB from an interactive SQL, étBQt., which

allows you to enter any SQL command. Refer to Chapter 5 for more information

on JISQL.

Using JDB with JAM

If you already have data that you would like to enter into a JDB database, a utility
is available to transfer data into a database table from an ASCII text file. Refer to
Chapter 9 for more information on JDB utilities.

Using JDB with JAM

Thefollowing steps illustrate a sample development cycle which uses JDB to build
the database and JAM to build the application screens:

1. Create the database and database tables using JDB.

$ isql
1> logon Esystem

1> create database wvideobiz:

0 rows.

1> logon widechiz

1> create table tapes (

2> title_id integer HOT HULL,

3> copy_num integer HOT HULL,

4> gtatus char (1) HOT HULL,

5> times_rented integer HOT HULL,

6> PRIMARY KEY (title_id, copy_num},

7> FOREIGN KEY (title_id) REFERENCES titles (title_id));[]

2. Use that database information to create JAM repository entries. Inside the
screen editgryou can connect to the database and import the database tables
to a repository

Import all

Type

4 JAM 7.0 Database Guide

Using JDB with JAM

Oncethe repository is created, copy the repository objects to a JAM
application screen.

B

itles+tape0
[x] o]

4. Edit your property settings, if necessary

toTitledid [ittt

e
ZsmmeﬁﬁﬁD....ﬁﬁﬁﬁﬁﬁ

. Times_rented IX}
* titles+tapes

Chapter 1 Introduction to JDB

JDB Executables

5. Enterdatabase information using the transaction manager

Edit Options Eeys Windows Eransactionl Datzhase
i
Select for View

i
PPLICATION mo Next for’ View

iscard View

elect for Update

Next for Update
Title_id

Save Changes

e] e

Clear for New Data
Times_rented Status Copy for New Data

Save New Data

1 O .

In a few steps, you can easily prototype an application screen and test the data
entry needed for that screen.

JDB Executables

Theinstallation program for JDB installs the following executables in the
$SMBASE/jdb/bin directory:

isql command-line interactive SQL editor

jdbroll utility for running log files

mksql translate a JDB database into its rel@@@&EATETABLE andIN-
SERTstatements

tbldata import/export utility for database information

The installation program also installs the following executable in the
$SMBASE/util directory:

jisql graphical interactive SQL editor

JAM 7.0 Database Guide

Unsupported Features

UnderMicrosoft Windows, the installation program places the following icon in
the JAM program group:

JISQL graphical interactive SQL editor foriilows

To access a JDB database from your JAM screens, you need to have a JAM
executable linked to the database driver for JDB. Refer to the installation notes for
more information.

Unsupported Features

Terminology

Chapter 1 Introduction to

Thefollowing database features are not supported in this release of JDB:
concurrency controls/locking
indexes
outer joins
stored procedures
triggers

views

The following terms are used throughout this manual. Additional terms are
explained as they are encountered under each topic.

database
A physical database consisting of tables and other data.

DBMS
Database Management System

engine
A DBMS product. An engine is identified by a specific vendor and version
numberDORACLE 7 or SYBASE 4.9, for example.

JDB 7

Terminology

SQL

StructuredQuery Language, the procedure language used by relational database
management systems. SQL was originally developed by IBM in the early 1970s
and then adapted by other software vendors.

8 JAM 7.0 Database Guide

Introduction to
Databases

A database is a collection of informatioganized into dierent areas. Generally
a database covers information about a specific subject. For example, a company
might have one database for personnel and another database for customer orders.

What sets a database system apart from other computer applications is that a
structure exists which ganizes the information. This structure allows each piece

of information to be tagged. In some database systems, this structure is called the
data modebr database schem&ince there is a structure, the information stored in

a database can be easily accessed for display to a screen or for printing in a report.

Structure of a Relational Database

Tables

JDBis an Relational Database Management System (RDBMS). An RDBMS
organizes its information inttables Generallya table contains a subset of related
information about the main subject.

For example, if inventory is the main subject for your database, you might have
tables for the following categories:

Structure of a Relational Database

Table 1.

Columns

10

inventory

orders

suppliers
The sample application provided with JAM uses a database cédlebiz . This
database was designed for a video rental store, so it needs information about

customers, video titles, and video rentabbl€ 1 lists the database tables in the
videobiz database.

Videobiz Database

Table Name Description

customers Address, phone number and membership information for
each customer

titles Title, director length, rating and price category for each
video.

title_dscr Description of each video.

tapes Status of each copy of a video.

pricecats Listing of the various price categories.

actors Actors appearing in the videos.

roles Roles played by the actors in each video.

rentals \ideo title, customerand date information for each video
rental.

codes Listing of the various codes used in the database.

users Login names for users of the database.

flag Yes/No flag used in the videobiz application.

Each table is divided into columns and rows. Thkeimnsare the various
subcategories of the table, each containing a piece of the table information. The
columns in theitles table, described inable 2, have information about a video
title, such as the directdhe type of video, and the running time.

JAM 7.0 Database Guide

Table2.

Rows

Figure 1.

Primary Keys

Chapter 2

Structure of a Relational Database

Titles Table
Column Name Description Status
title_id Identification code for the video. Primary key
name Name of the video.
genre_code Code describing the video type.

dir_last_name
dir_first_name
film_minutes
rating_code
release_date

pricecat

Directos'last name.
Directos first name.
Length of the video.
Rating code.
ear the original film/video was released.

Price category used when this video is rentdebreign key

When you insert information into a database table, you can enter a value for each

column. Each entry is called@aw. In some database systems, the equivalent of a
column is called a field and the equivalent of a row is called a record.

Table Name

Column Names

Rows

titles

title_id name genre_code
2 Aliens SCFI

70 Matewan DRAM
14 Cinema Paradiso DRAM
20 FIX ADV

An illustration of the titles table, showing a portion of the columns aws.r

When you define a table in JDB, each row of data cannot exceed 1K. For more
information, refer to page 66.

Everytable in a relational database should hapggraary key A primary key is
the column, or set of columns, that uniquely identifies a row

Introduction to Databases

11

Structure of a Relational Database

Currently,JDB does not enforce unique entries for the primary key columns. Even
though you will not receive an erygou should define the primary key columns
when you create your database tables for the following reasons:

The primary key definitions are copied to the table view properties when you
import database tables to the repository

For JDB databases, the transaction manager gives an error message if you
attempt to insert a duplicate primary key or update the primary key column to
a duplicate value.

If you transfer your database schema to another database engine, the primary
key columns may need to be defined for that engine.

JDB stores the primary key information in one of its system tabéesshould
choose which column or columns are the primary keys when you create your
database tables. In thites table, the primary key is thigde_id column so
you need to enter a unique value for each row in that column.

titles o
title_id
name rating code
genre_code release_date
dir_last_name pricecat

dir_first_name
film_minutes

In some tables, a unique value is not available unless two columns are combined.
For example, theapes table contains #tle_id column, but a store can have
several copies of a video title. In our sample database, a unique entry is created for
thetapes table by combining thttle_id column and theopy_num column.

Table 3 lists the columns in thepes table.

Table 3. Tapes &ble

Column Name Description Status
title_id Title Primary key

Foreign key
copy_num Copy number for this tape. Primary key
status Code detailing whether the tape is available.

times_rented Number of times this copy has been rented.

Foreign Keys

If a column in a database table is defined as a primary key in another table, the
column is referred to asfareign key Any value entered into a foreign key column

12 JAM 7.0 Database Guide

Structure of a Relational Database

shouldmatch a value previously entered into the primary key column in the other
table. For example, thitle_id column is a foreign key in thepes table. Any
value entered into thitle_id column of theapes table should already exist

as a value in thétles table.

tapes

r - title_id

)

. _copy_num

' status

\ times_rented

titles o
title_id
name rating code
genre_code release_date
dir_last_name pricecat

dir_first_name
film_minutes

Naming Tables and Columns

In JDB, names for tables and columns are one-word descriptions consisting of
letters, numbers and underscores. Each name can be up to 31 characters in length.
The name of a table must be unique within the database. The name for a column
must be unique within the table.

When you create columns in a table, you tell the database whether the data in the
column will be character strings, dates or numbers. For numbers, you specify what
type will be enteredbinteger or float, for example. For character strings, you must
specify the maximum length. The maximum allowable length for a character string
column is 255.

You cannot use any of the JDB keywords as a name of a table or column. For a list
of the keywords, refer to Chapter 10.

Entering Data in Columns

Whenyou start to enter data into your database tables, you will not always have a
value for every column. In those cases, the value of the column is sailtihbe
However you must enter a value for your primary key columns and any column
specified allOTNULL . Those columns are not allowed to have null values.

Null values are used when the column value is unknown or unavailable. A null
value is not synonymous with an entry of zero or with a blank.

Chapter 2 Introduction to Databases 13

Designing Your Database

Designing Your Database

The following steps describe the design process for building a database:
1. Choose the main subject.

First decide the main focus of the database, for example, customer orders,
inventory or personnel. Generallg database name indicates its main purpose.
The sample application included with JAM is for a video rental store so it is
calledvideobiz

2. Build your database model.

Design your database model identifying your database tables and their
columns. First, choose your main subsets of information which will-corre
spond to the database tables. Then, decide which pieces of information will be
stored in each table. These pieces of information become the columns in each
table.

3. Eliminate duplicate data entry

Although a database table can contain all the information that logically relates
to a subset of your database, this is not always the case. The table should also
be designed to avoid duplicate data entry wherever possible. For example, in
the sample application, information about video tapes was divided into two
separate tablestles andtapes . Thetitles table contains the informa

tion about the video titlebits name, directdéength, etc. Theapes table

contains the information about each copy of the videobthe copy nyriiger
status code, and the number of times this copy has been rented. By having two
tables, you do not have to re-enter the general video information, like the
director and the length, for each copy of the videmu ¥imply enter the

title_id

If you split the information into two or more tables, choose which column will
be found in all of the tables. In our sample applicationtitlbeid column

is found in several tables. Having the same column fardift tables allows

you to join the tables together when necessary to combine the information.

You can also combine some database tables. For example, in the sample
application, instead of having separate database tables for credit card codes
and for genre codes, you can combine the codes together into one table called
codes . In this table, entries into the colummgle type , code , anddscr

describe and identify each code.

14 JAM 7.0 Database Guide

Chapter 2

Designing Your Database

4. Defineunigue entries.

For each table, you also need to choose which column or columns will
comprise the primary kewniquely identifying each rav&ince theitles
table has more than one row with an entriga@fry Vv in thename column,
the following statement wouldfatt both rows:

DELETEFROM titles WHERE name = 'Henry V';

Forthetitles table, theitle_id column is used to uniquely identify each
row.

In order to uniquely identify each copy of a video tapefdhes table uses
both thetitle_id and thecopy_num columns to make the primary kéyhe
following statement would &dct all the rows with an entry aB45 in the
title_id column:

DELETEFROM tapes WHERE title_id = 1345;

In order to change data about one copy of the tape, you would need to list both
thetitle_id and thecopy_num columns in th&vVHERElause.

DELETEFROM tapes WHERE title_id = 1345 AND copy_num = 4;
Chartthe tables and their relationships.

Since information is stored in tables and the tables do not have any inherent
relationship, it is possible to update a column in one table and not update the
column in another table even if both columns correspond to the same value. In
order to preserve the integrity of the database, it is suggested that you chart the
relationships between the tables. Then, if you update the information in one
table, the chart illustrates the necessity of updating it in other tables.

Figure 2 displays the chart that was drawn fovitieobiz ~ database. Each

of the tables are in a box. The table name and primary key columns are listed
in the top of each box. The lines between the boxes illustrate the foreign key
definitions.

Introduction to Databases 15

Designing Your Database

rentals
cust id =-=-=-=-“-=-“--“--“--~--~-c-c~-c--c------=-9
Fo--=-- title_id '
Lecm e e oo copy_num ,
: rental_date '
. due_back amount_paid '
X return_date rental_status :
' price rental_comment X
' late_fee modified_date '
' modified_ by = = = = - o o e e e e e e o - dem e e e e e e e a - -
tapes title_dscr roles
r - title_id r - title_id r - title_id
' [i ' id- -
\ copy_num ! line_no \ actor_id -
! status ' dscr_text ' role '
1 times_rented ! - ! ' customers
' ' ' .
cust_id
last_name
first_name
titles addressl
title id address2
= - city
name rating code state_prov
genre_code release_date postal_code
dir_last_name r - - - - pricecat phone_
dir_first_name ' cc_code
film_minutes ' cc_number
: cc_exp_month
' cc_exp_year
member_date
member_status
num_rentals
pricecats actors rent_amount
: ; notes
pricecat actor_id
pricecat_dscr
rental_days last_name
price first_name
late_fee
codes
code_type
code
dscr
flag users
user_id
yesno
logon_name customer_flag
password admin_flag
last_name marketing_flag
first_name frontdesk_flag

Figure 2. Diagram of the videobiz database.

16

JAM 7.0 Database Guide

Introduction to SEQL

SQL (Structured Query Language) is the database procedure language used by
relational database management systems. It was developed by IBM in the early
1970s and then adapted by other software vendors. The American National
Standards Institute (ANSI) issued a standard for SQL in 1986 and again in 1992,
Although this standard defines a basic set of features that is common to all versions
of SQL, each vendor also includes some extensions to SQL in their database
products; these extensions are implementddrdiftly.

The scope of SQL gives you complete control over your database operations.
There are commands for database definition:

CREATEDATABASED Creates a database.
CREATETABLE D Adds a table to the database.
DROPTABLE b Deletes a table from the database.
There are also commands to access and update the data:
SELECTD Retrieves information from the database.
INSERT D Adds information to the database.
UPDATED Updates information in the database.
DELETED Deletes information from the database.

This chapter contains instructions for using these SQL commands in order to
retrieve information from an existing database and to update the database
information.

17

Building SQL
Building SQL

SQL Statements

In SQL, the commands are called statements. A statement consists of one or more
keywords followed by various expressions and clauses. The keywords appearing at
the beginning of the statement describe the major function of the statement.
Besides the keywords, most statements also contain at least one table name. Since
the table is the main storage container for information in a relational database, the
tables to be accessed are included in some clause of the statement.

SELECT The SELECTstatement retrieves information stored in the database tables.
Statement SELECT* FROM titles;
In this example, theEROMlause lists the database tables which contain the needed
information. The* tells the database to bring back all of the columns from all of
the tables specified in tiEROMclause. Therefore, our sample statement selects all
the columns and all the rows from the database tabke
title_id: 56
name: 'After Hours'
genre_code: ‘CoM!
dir_last_name: 'Scorsese'
dir_first_name: 'Martin'
film_minutes: 96
rating_code: 'R’
release_date: 1985/01/01 00:00:00
pricecat: 'G'
///\/\/_,
Thecollection of rows retrieved from the database is callegbalt set
It is not necessary to select all the columns. In place of,theu can list the
desired columns by name, each name separated from the next by a comma. This is
called aselect list
SELECTtitle_id, name FROM titles;
title_id: 56
name: ‘After Hours'
title_id: 1
name: ‘Airplane!’
title_id: 2
name: ‘Aliens'
//\/-/\//
18 JAM 7.0 Database Guide

Building SQL

Generallythe select list consists of a series of column names, but it can also
include any expression. Agxpressions a constant, column name, function,
subqueryor any combination of these connected by arithmetic and bitwise
operators.

The following statement uses the arithmetic operatorcalculate the running
time of the video in hours instead of minutes:

SELECTtitle_id, name, film_minutes / 60 FROM titles;

title_id: 56
name: 'After Hours'
1.600000

title_id: 1
name: ‘Airplane!
:1.433333

title_id: 2
name: 'Aliens’
;. 2.250000

//\/_/_/_—

SQL also provides aggregate functions that compute sums, minimum values, and
other such operations over all selected rows. The following statement uses the
aggregate functio@OUNTIn order to determine the number of rows intithes

table.

SELECTCOUNT(*) FROM titles;

76

WHERE Clause If you want to select specific rows in a database table, you simply\atié&RE
clause to th&ELECTstatement:

SELECTtitle_id, name, film_minutes FROM titles
WHERE name = 'Henry V',

title_id: 51
name: 'Henry V'
film_minutes: 138

title_id: 52
name: 'Henry V'
film_minutes: 137

////—\—/\—//

Chapter 3 Introduction to SQL 19

Building SQL

Theresult set now contains information for all the videos entitiedy V.

Theadditional clause is known ase@ach condition Additional search conditions
can be added to theHERElause through the use of the logical operattiBand
OR

SELECTtitle_id, name, film_minutes FROM titles
WHERE name ="'Henry V'
AND dir_last_name = 'Olivier";

Theresult set now contains the information for the version directed by Sir
Laurence Olivier

title_id: 52
name: 'Henry V'

film_minutes: 137

In addition to thewWHEREIlause, there are other clauses and keywords in SQL
which allow you to retrieve the specific data you need. These clauses retrieve:

Rows with column values in a certain range TWEEN

Rows containing a certain pattetikE).

Rows in ascending or descending orade3(DESQ.

Rows meeting the search conditions listed in a subquUeneKISTS).
Summary values on specific columns (Aggregate Functions).

Chapter 6 of this manual contains a reference page for each of these SQL elements.

UPDATE TheUPDATEstatement allows you to make modifications to the data stored in the
Statement tables.
UPDATHitles SET pricecat = 'G' WHERE title_id = 62;

Theformat varies slightly from theELECTstatement. The first keyword defines

the purpose of the statement. This is followed by the table name&ET@ause
defines column names to be updated and the new values for those columns. The
WHERElause specifies which rows need to be updated.

The syntax of th&vHERElause is very important. If th®HERElause is not

included in the statement, every row in the table gets updated. AlSUHEERE

clause must include all the column specifications you need in order to uniquely
identify the rows to be updated. The following statement, without the copy number
would updatell the copies of this video title in thapes table:

20 JAM 7.0 Database Guide

INSERT
Statement

DELETE
Statement

Building SQL

UPDATRapes SET status ='A’
WHERE title_id = 62;

To update a single row in thepes table, you need the combination of the
title_id andcopy_num columns, the primary keys for that table.

UPDATRapes SET status = 'A’
WHERE title_id = 62 AND copy_hum = 2;

The INSERT statement adds information to the database table. The syntax for this
statement can vary depending on whether you insert a value into every column in
the table or only into selected columns.

INSERT INTO tapes VALUES (62, 2, 'A', 0);

This statement inserts a value for every column. Howedaezonstruct this form of

the statement, you must enter the column values in the column order used by the
database table. Since this information is not always available, it is suggested that
when you construct aNSERT statement that you includecalumn listdetailing

which columns have entries and the order of those entries. The following
statement, which includes a column list, would result in an identical entry to the
previousINSERT statement.

INSERT INTO tapes
(title_id, copy_num, status, times_rented)
VALUES (62, 2, 'A', 0);

Theadvantage of a column list is that you do not have to enter a column value for
each column. 8u can list only the columns where you plan to make an.entry

INSERT INTO tapes
(title_id, copy_num, status)
VALUES (62, 2, 'A");

Also, the columns can be in any order; howetlee order of the column list and
the order of the value list must match.

INSERT INTO tapes
(status, title_id, copy_num)
VALUES ('A', 62, 2);

TheDELETEstatement removes information from the database tablecRb&
clause names the table to be modified. This statement utilizegtBRElause to
specify exactly which rows need to be deleted. In fact, if you do not include a
WHERElause, th®ELETESstatement deletes every row in the table.

DELETEFROM titles WHERE title_id = 62;

Like theUPDATEstatement, thevHERElause needs to include all the column
specifications so that you only delete certain rowsddlete a single rqwise the

Chapter 3 Introduction to SQL 21

Building SQL

row's primary key to identify the romRemember that a primary key may involve
more than one column.

The following statement deletes a row from tiyees table by specifying values
in both thetitle_id andcopy_num columns.

DELETEFROM tapes WHERE title_id = 62
AND copy_num = 2;

SQL Concepts

Joins Oneadvantage of a relational database is that you can join tables together in order
to get even more information. Joins allow you to connect multiple tables by
specifying the relationship between a column in one table with a column in another

table.

tapes

r - title_id

1

' copy_num

' status

\ times_rented

titles o
title_id
name rating code
genre_code release_date
dir_last_name pricecat
dir_first_name
film_minutes

You can join the two tables in our illustration by equatingtittee id column in
thetittes table with thaitle_id column in theapes table. This is
accomplished in the&YHERElause, where the column name is qualified with the
table name.

SELECT* FROM titles, tapes
WHERE titles.title_id = tapes.title_id,;

Usingthe following join, a database query can tell you which videos are available.
SELECTtapes.title_id, tapes.copy_num, titles.name
FROM titles, tapes

WHERE titles.title_id = tapes.title_id
AND tapes.status ='A’;

22 JAM 7.0 Database Guide

Correlation
Names

Aggregate
Functions

Transactions

Building SQL

title_id: 3
copy_num: 1
name: 'All of Me'

title_id: 12
copy_num: 3
name: ‘Bull Durham'

M
title_id: 43

copy_num: 1
name: 'Year of Living Dangerously, The'

For more information on diérent types of joins and on joining multiple tables,
refer to page 81.

When using joins, instead of using the entire table name throughout the statement,
you might choose to give the table a correlation name. The following example
repeats the previous query usings the correlation name for thies table

andb as the correlation name for ttapes table.

SELECThb.title_id, b.copy_num, a.name
FROM titles a, tapes b
WHERE a.title_id = b.title_id
AND b.status ='A’";

You can also use correlation names to perform a self-join, which joins a table to
itself so that you can compare values in the same column.

Correlation names must follow the naming conventions for identifiers. They can be
31 characters long, containing letters, numbers, and underscores.

Aggregate functions calculate fdifent types of summary information on rows in a
database table including:

Sums of numeric columns.
Average, maximum and minimum values in columns.
Number of rows containing a specific column value.

For more information on aggregate functions, refer to page 59.

Transactions are units of work on a database. A transaction consists of a series of
database statements to be completed as a unit. If the unit is unable to be completed
the statements can then be rolled back in order to ensure the integrity of the
database. For example, in thideobiz database, each new entry in titles

table also needs entries in thpes table, and possibly in theetors androles

Chapter 3 Introduction to SQL 23

Executing SQL

tables.All these entries could be grouped into one transaction so that you know the
entry is complete.

Database engines implement transactiorferdifitly Refer to Chapter 8 for more
information on implementing transactions in JDB.

Executing SQL

In JAM, you can execute SQL commands using JISQL, using JPL procedures, or
using the transaction manager to access the SQL genditatagxamples in this
manual use the JISQL syntax unless otherwise indicated.

JSQL To use JISQL, you need to start the JISQL utility and connect to a database. In the
SQL scripting area, enter the text of the SQL statement followed by the termina
tion charactera semicolon;(), to end the statement. Any date values or character
strings must be enclosed in single quotation marks. For example,

SELECTtitle_id, name, dir_first_name, dir_last_name
FROM titles
WHERE name = 'Henry V',

retrievesthe following rows:

title_id: 51
name: 'Henry V'
dir_first_name: 'Kenneth'
dir_last_name: ‘Branagh’

title_id: 52

name: 'Henry V'
dir_first_name: ‘Laurence’
dir_last_name: ‘Olivier'

////\—/\/_,J

Referto Chapter 5 for more information on using the JISQL utility

JPL The same SQL command appearing in a JPL procedure naegd would look
like this:

proc queryl

dbms sql SELECT title_id, name, dir_first_name, \
dir_last_name FROM titles \
WHERE name ='Henry V'

return

Noticethat the JPL continuation character (\) is needed whenever a command is
not completed on one line. A termination character does not need to be entered
since is added automatically by JAdvlatabase interface to JDB.

24 JAM 7.0 Database Guide

Executing SQL

For more information on JPL, refer to thanguage Refence For more
information on mapping data to JAM variables, refer to Chapter 14 in the
Application Development Guide

Chapter 3 Introduction to SQL 25

Database Elements

Fora new database, you first create the database and then create all the database
tables. These database table definitions contain the column information such as the
name and data type for each columautan also enter information about the
database table itself such as the primary and foreign keys. This information is then
stored in the system tables for your database.

This chapter contains information about naming conventions and data types that
you might need to create your database. In addition, system tables, automatically
created by the DBMS for each database, are described here. Even though you
cannot modify the system tables, you can query them for information.

Naming Conventions

Databases

Eachdatabase is stored as an operating system file. Therefore, the name for the
database must follow operating system naming conventions. If the database name
contains characters that are not alphanumeric, the name specifie REREE
DATABASEstatement must be enclosed in single quotation marks.

You can create databases when you are connecgeslyttem or when you are
connected to another database. For more information @RBATEDATABASE
statementrefer to page 64.

27

Data Types

Identifiers

Data Types

Table 4.

28

Identifiers,such as table names and column names, must start with gblettirey
may contain letters, numbers, and underscores in any combination. Unlike JAM
fields, they cannot contain dollar signs or periods. The maximum length of an
identifier is 31 characters. If more than 31 characters are entered, the value is
truncated.

Each table name must be unique within the database. Each column name in a
database table must be unique within that table.

Since column names can be duplicated ifediht tables, there may be statements
where you need to uniquely identify a column name by including the table name.
For example, in our sample database)dbiename column appears in more than
one table. @ specify thdast_name column in theactors table, use the

following syntax:

actors.last_name

You cannot use any of the JDB keywords as an idenffgara list of the
keywords, refer to Chapter 10.

JDB is case insensitive. JDB stores the identifiers in lower case regardless of which
case is used to enter them. If you erdddress1 , ADDRESS;]orAddressl , JDB
stores the column asldress1 .

Thefollowing data types are available in JDB:

Data Types
Data Type Description
INT Numeric values (stored 4©NG
LONG Numeric values
FLOAT Numeric values
DOUBLE Numeric values
DATETIME Date and time valuesbdatetime values are stored in the
formatyyyy/mm/dd hh:mm:ss
CHAR Charactestrings

For more information on data types, refer to page 69.

JAM 7.0 Database Guide

JDB Files

Journal Files

JISQL Scripts

JDB Files

JDB creates journal files for recording your actions on the current database. These
journal files are created in your database direciting current journal file is

namedl database-name. When you start a JDB session, this journal file is copied
to a file namedb database-name. If the filej0 database-name already exists, its
contents are replaced. Journal files can be reinstated using thgditibity . For

more information on thglbroll utility, refer to page 121.

SQL scripts to be run under the JISQL utility can be stored as ASCII fitrscan
create a script file with any text editar you can enter the script directly into the
JISQL scripting area and later save it to a file.

It is recommended that you use tb@l extension in naming SQL script files,
since this extension is used to display files in the file selection dialog box.
However any name which is valid for the operating system can be used.

For more information on JISQL script files, refer to page 47.

JISQL Log Files

UnderJISQL, you can log pertinent data about the execution of your SQL scripts:
Type of script execution chosen.

Text of each SQL statement or JISQL macro and the line nuadiris
encountered.

Status of execution for each statement or macro, including any error messages
generated.

Start and end times of script execution.
It is recommended that you use thig extension in naming log files, since this
extension is used to display files in the file selection dialog box. Howewer

name which is valid for the operating system can be used.

For more information on creating and viewing JISQL log files, refer to page 53.

Chapter 4 Database Elements 29

System Tables

JISQL Output Files

Whenyou run a SQL script under JISQL, you have the option of saving to an
ASCII file all output generated:

Select sets from SQEELECTstatements.
CREATETABLE statements froDESCRIBEmacros.
CREATETABLE andINSERT statements frodDUMPMacros.

It is recommended that you use thet extension in naming output files, since
this extension is used to display files in the file selection dialog box. Hovaawer
name which is valid for the operating system can be used.

For more information on directing JISQL output to a file, refer to page 52.

System Tables

Whenyou create a new database, five system tables are automatically built in order
to contain information about the database itself:

systabs B Contains information about each database table.
syscols B Contains information about the columns in each database table.
syskeys B Specifies the primary and foreign keys.

syskeycols B Contains information about each primary and foreign key
column.

sysrkeycols B Contains information about the columns listed in the
REFERENCES8lause of &£ REATETABLE statement.

You can query for information stored in these tables just like any other database
table; howeveryou must not edit these tables.

Table 5. systabs Systenable

Column Name Description

tname Table name

ttype Table type

ncols Number of columns
seek Column for internal use

30 JAM 7.0 Database Guide

Table6. syscols Systenable

System Tables

Column Name Description
tname Table name
chame Column name
ctype Column typebthe numeric values in this column cerre
spond to the following data types:
101 INT (stored asONGIn the current release)
102 LONG
103 FLOAT
104 DOUBLE
105 DATETIME
106 CHAR
1125 INT, NOT NULL (stored a&ONG,NOT NULL)
1126 LONG, NOT NULL
1127 FLOAT, NOT NULL
1128 DOUBLE, NOT NULL
1129 DATETIME, NOT NULL
1130 CHAR, NOT NULL
length Columnlength

Table 7. syskeys Systerafdle

Column Name Description

tname Table name

keyno Number assigned to the key column in this tablebthe
primary key is always 1

resolved Column for internal use

hasreflist Indicator specifying whether a reference list was included
in theREFERENCESIlause of th€ REATETABLE state
ment

rtname Name of the database table specified irREEERENCES
clause of the€REATETABLE statement

keytype Indicator specifying a primary key (P), a foreign key (F),

or a unique entry (U)

Chapter 4 Database Elements

31

Configuration

Table8. syskeycols Systerable

Column Name Description

tname Table name

keyno Number assigned to the key columrsyskeys
position Order of the column in a composite kéapplicable
chame Column name

Table 9. sysrkeycols Systerafdle

Column Name Description

tname Table name

keyno Number assigned to the key columrsyskeys
position Order of the column in a composite kdyapplicable
chame Column name

Configuration

Environment Variables
Theenvironment variableSMEDITORor EDITOR determine which text editor is
available in JISQL or iisgl . When using JISQL, the specified editor can be used

to make changes to the SQL text winddMhen usindsgl , entering thedit
command displays the last statement in the specified text.editor

Message File

Theerror messages for JDB are stored in the JAM message file. If the program has
trouble locating the error messages, check the setting of the vaiabhRS

32 JAM 7.0 Database Guide

Using JISQL

JISQLis a graphical tool for creating JDB databases and for writing and executing
interactive SQL scripts.

With JISQL, you can:
Create a JDB database.
Create database tables for a new or existing JDB database.
Display table definitions for the current database.

Write and execute interactive SQL scripts for use with your JDB databases.

Starting JISQL

To start JISQL, do either of the following:
At the operating system command line, type:
$SMBASE/util/jisql (on UNIX systems)
$SMBASE\util\jisql (in Windows)

Double-click on the JISQL icon.

33

Starting JISQL

TheJDB ISQL window opens.

. UAMforwindows |HIB
File Edit Keys Options Run Database Help
NEEEERREEE

= JDB 15GL

Scripting area \

\~J\ 2] [«= Run to End I
Run to QGuery
Single Step

Script starting marker | E

Output area —

SGL script text (Hit HELP key for ISQL command help)

Thiswindow provides an area for you to enter a SQL script. Menu choices
available at this point allow you to:

Execute SQL commands, either from the scripting area or from a file.
Select options for executing the SQL script.

Connect to an existing JDB database.

Create a new JDB database.

Drop an existing JDB database.

Connecting to a Database

Beforeyou can create or view database tables or perform any other database
operations, you must first connect to the database. (If your SQL script includes a
command to connect to the database, you need not connect as described here
before executing the script.)

connectingto an To connect to an existing database:
existing database

34 JAM 7.0 Database Guide

connectingto a new
database

now you can...

Disconnecting

Exiting JISQL

Starting JISQL

1. Fromthe JDB ISQL windowchoose Databa%&Connect. A file selection
dialog box opens.

2. Specify the name of the database you want to open, and choose OK. The file
selection dialog box closes and you are returned to the JDB ISQL window

When you create a new database, you must connect to it before defining any of its
tables. In the Create Database windgau can specify that you want to automati
cally connect to the new database at the time it is created. Refer to page 36 for
instructions on creating and connecting to a new database.

Once you are connected to a database, additional menu choices become available
to you:

Create a database table.
Drop a database table.

Display a tables definition.

from a Database
To disconnect from the current database, choose Dafadtiziseonnect.

Since you can be connected to only one database at a time, if you connect to a
database while a previous connection is still current, JISQL automatically
disconnects from the first database before connecting to the next one.

JDB performs an automati@OMMITwhen you close a database connectiau Y
must issue 8ROLLBACKmacro command if you do not want to save your database
changes.

To exit JISQL, choose Fité Exit.

JDB performs an automat@OMMITwhen you leave a JISQL sessioou¥nust
issue éROLLBACKmacro command if you do not want to save your database
changes.

Executing Operating System Commands from JISQL

Chapter 5 Using JISQL

To execute an operating system command from JISQL:

35

Creating a New Database

1. Chooseption®b System Command. A dialog box opens with a field for you
to enter the command.

2. Enter the system command you want to execute, and choose OK. The
command you have specified is executed.

3. When the command has finished executing, a prompt appears instructing you
to press any key to continue. Do souYare returned to the JDB ISQL
window.

Creating a New Database

1. Fromthe JDB ISQL windowchoose Databa%eCreate Database. The Create
Database window opens.

| Create Database |

Database Name:

[Connect after creation

Cancel

-~

Browse

2. (Optional) Choose the Browse push button to view the names of existing files.
A file browse dialog box opens. When you have finished with this dialog box,
choose OK to return to the Create Database window

3. Enter the name of the database you want to create.

connectingto the new 4. (Optional) Select the Connect after creation check box if you want to
database automatically automatically connect to this database after it is created in order to create
tables and enter data.

5. Choose OK. An appropriate message is displayed on the status line.

If you selected the Connect after creation check box, the message confirms
that you are connected to the database. If you did not select this check box, the
message indicates only that the database was successfully created.

Creating Database Tables

Usethe JISQL graphical interface to add tables to a newly created database or to
an existing database.

36 JAM 7.0 Database Guide

Chapter 5 Using JISQL

To create a database table:

Creating Database Tables

1. Connect to the applicable database.

2. Choose Databa%eCreate &ble. The Createdble window opens.

oW

= Create Table
Table: Itradeshows OK
Cancel
Column Definition Entry Preview SQL
Column Name: ICOSﬂ Add Primary Key
Data Type: Ifloat Modify Unique Key
Length: |10 Delete Foreign Key
C NOT NULL
Column No. | < | | < I | 5] | > | | | I
Column Name Data Type Length—Null
Show_n ch)
show_name character 20 m
topic character 20

Enter the table name in thafle field.

Define each column, one at a time, in the Column Definition Entry area. Refer

to page 38 for a more detailed explanation of column definition.

Specify the keys for this table. Refer to page 39 for information on specifying

primary, unique, and foreign keys.

(Optional) Choose the Preview SQL push button to display the SQL command

that JISQL will generate to create the table, as it is currently defined.

When you have finished reviewing the SQL command, choose Done to
resume in the Createafile window

Choose OK to create the table you have just defined. A message is displayed

confirming that the table has been created.

To populate the table, create and run a SQL script containing the applicable

INSERT statements. For information on entering and running SQL scripts under

JISQL, refer to page 47.

37

Defining Columns in a Database Table

Defining Columns in a Database Table

The Column Definition Entry area of the Creatable window allows you to add,
modify, or delete columns in the database table you are creating. In addition, the
Create &ble window provides push buttons that enable you to re-arrange the
columns in the table.

Defining a New Column

To add a new column to the table you are creating:

1.

In the Column Definition Entry area, specify the column name and data type.
For some data types, you must also specify the length.

If null values are not to be permitted in this column, select the NOT NULL
check box. NULL values are not permitted in primary key columns.

Choose the Add push button. Once the column is added, its position in the
table is shown in the middle portion of the Column No. field. It is also added
to the column summary for the table, displayed in the lower portion of the
Create &ble window

4. Repeat the preceding steps for each column you want to define for this table.

Modifying and Deleting Columns

You can modify or delete a column at any point prior to completing the table
definition. To change or delete a colurardefinition:

38

1. Specify the applicable column by doing either of the following:

W Select its entry in the summary area of the CreabdeTwindow

W Choose the Column No. up/down indicators in the Column Definition
Entry area; continue choosing the appropriate indicator until the desired
column definition is displayed. The column number of the current column
is shown in the middle of the Column No. field. Click-<oto display the
previous column, as to display the next column. Click ¢n to display
the first column in the table, of to display the last.

The definition for the specified column is shown in the Column Definition
Entry area.

Change any of the column definition parameters as desired. Note, hpwever
that you cannot remove NOT NULL from a primary key column.

JAM 7.0 Database Guide

Defining Keys for a Database Table

3. ChooseModify to change the column definition. Choose Delete to remove the
column from the table.

Re-arranging Columns

To change the order of columns in the table, select a column in the summary area
of the Create dble window Choose the Move Up or Move Down push button to
move it one place up or down. Continue until the column is in the desired location.

Defining Keys for a Database Table

Pushbuttons in the Createalble window allow you to define primamnique, and
foreign keys into the table. Refer to padefdr an explanation of primary keys.
Refer to page 12 for an explanation of foreign keys.

1. Define all columns that will be keys into the table. If you are defining foreign
keys, the referenced table must have been created previously

2. Choose the applicable push button: Primary,Kéyique Key or Foreign Key
The corresponding key definition window opens.

3. Create, modifyor delete the applicable key definition(s). Refer to page 39 for
instructions on using the Primary and Unique Key Definition windows. Refer
to page 41 for instructions on using the Foreign Key Definition window

4. When you have finished with the key definitions in this windowoose OK.
You are returned to the Creatable window

If any column required for a key was not defined as NOT NULL when it was
created, JISQL makes the necessary change to the column definition and
displays an appropriate message. Acknowledge the message by choosing OK.

5. Continue creating, modifying, and deleting keys for the table as neenled. Y
can create a new key or modify or delete an existing key at any point prior to
completing the table definition.

Primary Key and Unique Keys

The Primary Key and Unique Key Definition windows are similar in appearance
and function. Each consists of:

A text area showing the SQL definition that will be generated for each key
defined on the screen. When you want to modify or delete an existingdiey

Chapter 5 Using JISQL 39

Defining Keys for a Database Table

Adding a
Primary Key or
Unique Key

40

selectit from this area. As you create or modify a key definition, its SQL text
area is updated to reflect any changes.

Push buttons (Add New and Delete) to specify that you want to add a new key
or delete an existing one.

A Select Columns area listing the table columns not used in the selected key

A Key Columns area listing, in ordehe table columns belonging to the
selected key

Push buttons (Add++> and <x+Remove) to add a selected column in the Select
Columns area to the key and to remove a selected column in the Key Columns
area from the key

Push buttons (Move Up and Move Down) to re-arrange the order of columns
in the selected key

From the Createdble window choose the Primary Key button to open the
Primary Key Definition windowor choose Unique Key to open the Unique Key
Definition window

When you are finished working in the Primary Key or Unique Key Definition
window, choose OK to save your changes and return to the Crataewindow;
or choose Cancel to simply return without saving your changes.

— Primary Key Definition

| A Maw H Delete |

show_id, show_name
Cancel

Select Columns:

[Agd - | Key Columns

topic
date
cost

show_id

< Remove |
'show_name

Move Up

W D

Once the applicable key definition window is open, you can add, maodifielete
keys as follows:

To add a new primary key or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), choose

Add New All the table columns are listed in the Select Columns area.

JAM 7.0 Database Guide

Modifying a
Primary Key or
Unique Key

Deleting a
Primary Key or
Unique Key

Foreign Keys

Chapter 5 Using JISQL

Defining Keys for a Database Table

If a primary key is currently defined for the table, the Add New push button is
not available, since only one primary key statement is permitted. Either delete
the existing key or modify it.

For each column you want in the keglect the column from the Select
Columns area and choose Add++>. The column name is removed from the
Select Columns area and appears in the Key Columns area.

To change the order of a column in the kaglect it in the Key Columns area
and choose the Move Up or Move Down push button to move it to the desired
location.

To modify an existing primary key or unique key:

1.

On the Primary Key or Unique Key Definition window (as applicable), select
the SQL definition corresponding to the key you want to modifie Select
Columns and Key Columns areas reflect the current definition of the key

For each column you want to add to the,legfect it from the Select Columns
area and choose Addt+>. The column name is removed from the Select
Columns area and appears in the Key Columns area.

For each column you want to remove from the keject it from the Key
Columns area and choose <txRemove. The column name is removed from the
Key Columns area and appears in the Select Columns area.

To change the order of a column in the,kaslect it in the Key Columns area
and choose the Move Up or Move Down push button to move it to the desired
location.

To delete an existing primary or unigue key:

1.

On the Primary Key or Unique Key Definition window (as applicable), select
the SQL definition corresponding to the key you want to delete. The Select
Columns and Key Columns areas reflect the current definition of the key

Choose Delete. The SQL definition for this key is deleted from the text area,
and the Select Columns and Key Columns areas are emptied.

The Foreign Key Definition window consists of:

A text area showing the SQL definition that will be generated for each key
defined on the screen. When you want to modify or delete an existingdtey
select it from this area. As you create or modify a key definition, the SQL text
area is updated to reflect any changes.

41

Defining Keys for a Database Table

Pushbuttons (Add New and Delete) to specify that you want to add a new key
or delete an existing one.

A Select Columns area listing the table columns not used in the selected key
A Select Bble/Cols area with:

W An option menu for you to choose the referenced table.

W A listing of the columns in the chosen table not used in the selected key

Push buttons (Add and Quick Match) to add a selected column in the Select
Columns area and its foreign table column reference to th@keyQuick

Match button allows you to reference all columns in the current table to
identically-named primary key columns in the chosen table without having to
explicitly choose any columns from the lists.

A Foreign Key area listing the table columns used in the selecte&&ely
column name in this area is lined up beside the corresponding column in the
Referenced Key area.

A Referenced Key area listing each column in the chosen table that is
referenced in the selected k&ach column name in this area is lined up
beside the corresponding column in the Foreign Key area.

Push buttons (Move Up and Move Down) to re-arrange the order of columns
in the selected key

Push button (Remove) to remove a selected Foreign Key/Referenced Key
column pair from the selected key

From the Createdble window choose the Foreign Key button to open the Foreign
Key Definition window

42 JAM 7.0 Database Guide

Adding a New
Foreign Key

Chapter 5 Using JISQL

Defining Keys for a Database Table

= Foreign Key Definition

| AddNew | | Detete |

—Select Columns: —Select TablelCols:
leads tradeshows 3+ Grok Maloh
prospect_num || References [topic Agied
f_name date
I_name cost
ad_num
rForeignkKey - Referenced Key Somaove
show_id | show_id | tove Up
show_name show_name
References Maove Down

Whenyou are finished working in the Foreign Key Definition wingdawoose OK
to save your changes and return to the Cregltéewindow; or choose Cancel to
simply return without saving your changes.

When the Foreign Key Definition window is open, you can add, modiifgelete
foreign keys as follows:

To add a new foreign key:

1. On the Foreign Key Definition windgwhoose Add NewAll the table
columns are listed in the Select Columns area.

2. Select the option menu in the Seleable/Cols area and choose the table to be
referenced.

43

Defining Keys for a Database Table

= Foreign Key Definition

| AddNew | | Delete |
Foreign key () references ()
E]
“Select Columns: —Select TablelCols:
leads directmail + Guiick Maich
prospect_num References ads] At
f_name lcampaign
I_name [directmail
ad_num tradeshows
_|leads ||
- Foreign Key B || Semove
rMove Un
References h Move Down

3. Onceyou have chosen the table, a list of columns in that table is displayed.
Reference the columns for the key in one of the following ways:

W For each column in the foreign kesglect the current table column from
the Select Columns area and select the foreign column to be referenced
from the Select dble/Cols area. Choose Add.

W Choose Quick Match to reference the selected columns in the current
table with identically-named primary key columns in the chosen table.

The column names are removed from the Select Columns area and the Select
Table/Cols area; they appear in the Foreign Key and Referenced Key areas,
respectively.

4. To change the order of a Foreign Key/Referenced Key column pair in the key
select either column in the pair and choose the Move Up or Move Down push
button to move the pair to the desired location.

Modifying a To modify an existing foreign key:

Foreign Key 1. On the Foreign Key Definition windgwelect the SQL definition correspend

ing to the key you want to modiffhe Select Columns, Seleahble/Cols,
Foreign Keyand Referenced Key areas reflect the current definition of the

key.

44 JAM 7.0 Database Guide

Maintaining an Existing Database

2. Foreach column you want to add to the foreign, legject the current table
column from the Select Columns area and select the foreign column to be
referenced from the Selecale/Cols area. Choose Add.

OR

Choose Quick Match to reference columns in the current table to identically-
named primary key columns in the chosen table.

3. For each column pair you want to remove from the &elect either column
in the pair and choose Remove. The column names are removed from the
Foreign Key and Referenced Key areas and appear in the Select Columns and
the Select @ble/Cols areas, respectively

4. To change the order of a column in the kaslect it in the Key Columns area
and choose the Move Up or Move Down push button to move it one place up
or down. Continue until the column is in the desired location.

Deleting a To delete an existing foreign key:

Foreign Key 1. On the Foreign Key Definition windgwelect the SQL definition correspend

ing to the key you want to delete. The Select Columns, Sele&/Tols,
Foreign Keyand Referenced Key areas reflect the current definition of the
key.

2. Choose Delete. The SQL definition for this key is deleted from the text area,
and the Select Columns, Seleable/Cols, Foreign Keyand Referenced Key
areas are emptied.

Maintaining an Existing Database
JISQL enables you to perform the following database maintenance functions
without having to write SQL code:
Display the definition of any or all tables in the current database.
Drop a database.
Drop specified tables from a database.

Note: To perform database maintenance operations involving the data itself, such
as populating tables, viewing data, etc., you must explicitly write and execute the
required SQL statements. Refer to page 47 for information on running SQL
interactively under JISQL.

Chapter 5 Using JISQL 45

Maintaining an Existing Database

Displaying Database and T able Definitions
1. Connecto the database whose definitions you want to display

2. Choose Databa%eDescribe. The Describealble window opens, displaying a
scrollable list of all the tables in the database.

3. Select the table whose definition you want to displdae column definitions
and key information for this table are displayed.

= Describe Table

Tables:

et~

—Column Name Data Type Length Null
cust_id long 4 no
title_id long 4 no
COpy_num long 4 no
rental_date datetime i no
due_back datetime i no

Table Keys Information

primary key (cust_id, title_id, copy_num, rental_date)
foreign key {cust_id) references customers [cust_id)
foreign key (title_id, copy_num) references tapes (title_id, copy_num)

4. Select the next table you want to displagd so forth, displaying table
definitions one at a time.

5. Choose Done when you are finished viewing table definitions for this
database. du are returned to the JDB ISQL window

Dropping Tables

1. Connecto the database from which you want to drop a table.
2. Choose Databa%eDrop Table. The Drop dble window opens.

3. Select the applicable table from the drop-down list for gid@elName field.

46 JAM 7.0 Database Guide

Running SQL Interactively

4. ChooséOK. A message is displayed confirming that the table has been
dropped.

Dropping a Database
1. Makesure that you aneot connected to the database you want to drop.
2. Choose Databa%eDrop Database. The Drop Database window opens.

3. Enter the database name, or choose the Browse push button to specify the
database from a file selection dialog box.

4. With the database to be dropped specified in the Database Name field, choose
OK. A message is displayed confirming that the database has been dropped.

Running SQL Interactively

Usingthe JISQL tool, you can run SQL commands either by entering them into the
onscreen scripting area or by specifying an ASCII file that contains the desired
SQL script. In addition, when you create a SQL script in JISQL, you can save it to
a file for future use.

Under JISQL, you can execute any SQL statement that is available in JDB. Refer
to Chapter 6 of this manual for a detailed description of the SQL commands that
can be used with a JDB database.

Your SQL script can also contain JISQL macro commands. These macros simplify
transaction processing and database maintenance. Refer to page 49 for a complete
description of the JISQL macros.

JISQL runtime options enable you to control the execution and output of your SQL
script. Refer to page 50 for a description of the available options and commands.

Entering and Editing SQL Scripts

The JDB ISQL window contains an area for entering and editing your SQL script.

Chapter 5 Using JISQL 47

Running SQL Interactively

Entering a SQL
Script

Editing a SQL
Script

Saving a SQL
Script

48

»

= T S

MR R 1 <= Run to End
Sample JDB script I
ST Run to Query
$logon marketng;

Single Step
create table ads(ad_num int NOT NULL, magazine char(20) NOT
NULL, date datetime NOT NULL, product char{20), cost float,

PRIMARY KEY (ad_num));
insertinto ads values (467, 'PC Week', "1995/04/23 9:00:00°, 'HR S Reset

i

1]

To enter a SQL script, you can either type directly into the scripting area, or you
can read your script in from an ASCII text file fiead a text file into the scripting
area, choose FiéOpen Script; a file selection dialog box opens for you to specify
the file you want to read in. By default, only filenames ending with.taé

extension are listed in the dialog box.

You can use either JISQ@Lediting capability or your default editor to edit the
contents of the scripting area.

To edit directly in the scripting area, use the editing keys on your keyboard, or
choose the desired editing function from JISKKeys menu.

To use the default editochoose Filg Editor (or press PF2). The editor specified
in the JAM environment variab@MEDITORs invoked. (Refer to the JAM
Configuration Guiddor information on specifying th@MEDITORvariable.)

To save the SQL script that appears in the scripting area, choose eithe® &ile
Script or FilésSave as:

Save Script B Saves the script back to the file from which it was read,
replacing the original contents of that file with the current script.

Save as b Brings up a file selection dialog box so that you can specify a new
filename for the script.

It is recommended that you use thegl extension in naming SQL script files,
since only files with this extension appear in the file selection dialog box when you
choose FiléoOpen Script.

JAM 7.0 Database Guide

Running SQL Interactively

Clearing the To clear the scripting area in preparation for entering and running a new script,
Scripting Area choose FiléoNew The data output area is also cleared.

Script Format and Syntax
SQL scripts to be executed under JISQL can consist of:

Any SQL statement available for JDB. Refer to Chapter 6 for a description of
each statement and its syntax.

Any JISQL macro command. Refer to page 49 for information on these
macros.

Comment lines. Any line beginning with a pound sighi¢ treated as a
comment.

Blank lines.
Only one statement is permitted per line. Each SQL statement and JISQL macro
command must be terminated with a semicojgnA line without a trailing

semicolon is concatenated with the next line until the semicolon is reached.
Therefore, one statement can span multiple lines.

JISQL Macro Commands

Themacros provided in JISQL are listed iable 10. Each macro begins with a
dollar sign §) and can be typed in either all uppercase or all lowercase, but not in
mixed case. Each macro command must be terminated with a semjdolon (

Chapter 5 Using JISQL 49

Running SQL Interactively

Table10. JISQLMacro Commands

Command Syntax Description

$COMMIT Same a®BMSCOMMIT. Commits a transaction.
Data changes pending in the transaction are
applied to the database. (JDB performs an-auto
matic COMMITwhen you leave a JISQL session or
close a database connection.)

$DESCRIBEtable-name Displays aCREATETABLE statement equivalent
to the definition of the specified table. Example:
$DESCRIBEtitles;

Output of this macro can be re-directed to a file
by choosing Optiorté Output to File.

$DUMRable-name Displays aCREATETABLE statement and an
INSERT statement for each row in the table.
Example:
$DUMRapes;

Outputof this macro can be re-directed to a file
by choosing Optiorté Output to File.

$LOGONdatabase-name Connectdo the specified database. Example:
$LOGONideobiz;
SinceJISQL allows only one database connection
at a time, this macro closes the previous connec
tion, if there is one, before initiating a new eon
nection.

$ROLLBACK Same a®BMROLLBACK Backs out a transac
tion. The database is restored to its state prior to
the start of the pending transaction.

Executing SQL Scripts

1. Enteryour SQL script into the scripting area. Refer to page 47 for instructions
on entering and editing SQL scripts.

2. Connect to the database. (Refer to page 34 for instructions on connecting to a
database.) Omit this step if your script containsstt@GONmacro to perform
the connection.

outputand execution 3. Choose the desired execution and output options from the Options menu. All
options the following options are toggles; select as many as are applicable:

50 JAM 7.0 Database Guide

executioncommands

Chapter 5 Using JISQL

Running SQL Interactively

W ContinueAfter Error D If an error occurs during batch mode execution,

JISQL continues execution after you acknowledge the error message. If
this option is not selected, execution stops at the statement that caused the
error.

Output to File B All output from execution of the SQL script is saved to

a file. Select sets from SQ@ELECTstatements are directed only to the

file and are not displayed on the screen. Output 8DESCRIBEand
$DUMPmMacros is displayed on the screen as well as being saved in the file.
If this option is not selected, the select sets are displayed in the lower
portion of the JDB ISQL windovwRefer to page 52 for more information

on capturing and displaying query results.

Record in Log B Information about execution of the SQL script is saved
in a log file. Refer to page 53 for information on creating and viewing the
log file.

4. Position the starting marker on the line of your script where you want

5.

execution to begin. The starting marker appears to the right of the scroll bar
for the scripting area.

To move the starting markealick in the space to the right of the scroll,bar
lining up the mouse cursor with the SQL statement you want to execute next.
Initially, the starting marker is beside the first line of the script.

Execute the ISQL script by choosing one of the following execution
commands. These commands are available both as push buttons on the screen
and as choices on the Run menu:

W Run to End b Start batch mode execution from the starting marker

Execution continues to the end of the script unless an error is encountered.
The setting of the Continue After Error toggle determines whether
execution is terminated at the point of the error or if it continues after the
error message has been acknowledged.

Run to Query B Start batch mode execution from the starting marker
Execution stops after the first SGELECTstatement or JISQL
$DESCRIBEOr $DUMPmMacro is encountered or at the end of the script. If
an error is encountered, the setting of the Continue After Error toggle
determines whether or not execution is terminated.

Single Step B Execute the current line of the script. (If the current line is
blank or a comment, the next SQL statement or JISQL macro command
encountered is executed.)

As execution proceeds, the script scrolls so that the current line is always.in view
A bounce bar highlights the current line.

51

Running SQL Interactively

A

Capturing and
Displaying
Query Results

52

JDB does not enforce referential integrigp an error is not returned if you insert
duplicate primary keys.dlprevent duplicate insertions of the same statement, you
may need to move the starting marker before query execution, clearing the screen,
or editing the current statement.

Once you initiate execution of the SQL script, JISQL remains in execution mode
until the end of the script is encountered or until you terminate execution by
choosing Reset. (For information on terminating SQL execution and resetting the
status of the JISQL utilityefer to page 55.)

When a SQLSELECTstatement or a JISQRDESCRIBEor $DUMPMacro is
executed, the data retrieved are either saved to an ASCII text file or displayed on
the screen.

To save the output in a file:

1. If the Output to File toggle is not currently selected, choose Optingput
to File. A file selection dialog box opens.

2. Specify the name of the file for the output, and choose OK. The file selection
dialog box closes.

It is recommended that you use thmut extension in naming output files,
since only files with this extension appear in the file selection dialog box.

3. Execute the script. All output generated will be saved to the file you have
specified.

Note: When output is saved to a file, select sets generated bpSERY
statements a&ronly diected to the file and amot displayed on the s&n. Output
from$DESCRIBEand$DUMPMacos, howevels both saved in the file and
displayed on the seen.

If you want select sets displayed on the screen:
1. Make sure that the Output to File toggleat selected.
2. Execute the script.

When a SQLSELECTstatement is executed, the data retrieved are displayed in
the lower section of the JDB ISQL windowhis area can be scrolled both
vertically and horizontally to view the select set.

JAM 7.0 Database Guide

Creating and
Viewing the Log
File

Running SQL Interactively

JAM for Windows
File Edit Keys Options Run Database

NEEEEFREEEE]
]

JDBISQL

NULL, date datetime NOT NULL, product char(20), cost float, |t [Run to End I
PRIMARY KEY (ad_num));

insertinto ads values (467, 'PC Week!, '1995/04/23 9:00:00", 'HR S Run to Query

insert into ads values (468, 'DBMS Magazine®, '1995/04/28 9:00:0C

insert into ads values (409, 'Datamation’, *1995/07/12 9:00:00°, 'HF Single Step
insert into ads values (470, 'Info World', "1995/10/10 9:00:00°, "HR

select ® from ads;

magazine date pro
467 PC Week 423195 9:00 HR Syste

468 DBMS Magazine |4/28/959:00 Accounti
469 Datamation 7112195 9:00 HR Systq

4 470 Info World 10410495 9:00 HR Systq
|_

|EJCCESS] 4 row(s).

Outputfrom JISQL$DESCRIBEor $DUMPMacros is also displayed on the
screen.

The following information about execution of your script can be saved to a log file:
Type of script execution chosen.

Text of each SQL statement or JISQL macro and the line nuabgrs
encountered.

Status of execution for each statement or macro, including any error messages
generated.

Start and end times of script execution.

beginninga log session To begin a log session, choose Optibiecord in Log. A file selection dialog box

Chapter 5 Using JISQL

opens for you to specify the name of the log file.

It is recommended that you use ttleg extension in naming log files, since only
files with this extension appear in the file selection dialog box.

If you specify the name of an existing file, data from the current log session will
overwrite the previous contents of the fileithih a log session, howevetata is
appended to the file, even if you execute more than one script.

53

Running SQL Interactively

To view the information stored in the log file for the current session, choose
Ruro View Log File.

endinga log session To end a log session, deselect the Record in Log option.
sample log file The text of log fileSSESSION.LOGfollows:

ISQL FOR JAM 7, Copyright 1995 JYACC Inc.
Record Log <SESSION.LOG>: Friday May 19 1995
<#14>:

*xxk Run To End execution from line 14 of 18 at 05:54:34 ***x*
<#14>: select * from ads;

[ERROR] Table not found
Frkkkkkkkk Execution stop in line 14 of 18 at 05:54:36 *rtrtttrrx

*++% Run To End execution from line 1 of 18 at 05:54:43 ****x
<#4>: $logon marketng;
[SUCCESS]
<#6>: create table ads(ad_num int NOT NULL, magazine char(20) NOT
NULL, date datetime NOT NULL, product char(20), cost float,
PRIMARY KEY (ad_num));
[SUCCESS] 0 row(s).
<#9>: insertinto ads values (467, 'PC Week’, '1995/04/23
9:00:00', 'HR System’, 215.00);
[SUCCESS] 1 row(s).
<#10>: insert into ads values (468, 'DBMS Magazine', '1995/04/28
9:00:00', 'Accounting’, 550.30);
[SUCCESS] 1 row(s).
<#11>: insert into ads values (469, 'Datamation’, '1995/07/12
9:00:00', 'HR System’, 312.99);
[SUCCESS] 1 row(s).
<#12>: select * from ads;
[SUCCESS] 3 row(s).
<#14>: $logon videobiz;
[SUCCESS]
<#16>: select * from titles where name like 'A%,
[SUCCESS] 13 row(s).
wikkkkkxx Execution stop in line 19 of 18 at 05:55:03 *xiiik

*rkkk New Script File **++*

*rrkk Run To Query execution from line 1 of 6 at 05:57:22 **++x
<#1>: $logon pubs;
[SUCCESS]
<#3>: $describe titles;
[SUCCESS]
Fikkkkxkk Execution stop in line 4 of 6 at 05:57:29 xkkkkkiax

*rrkk Single Step execution from line 4 of 6 at 05:57:34 *xxxx
<#4>: select * from titles;

[SUCCESS] 18 row(s).
Frkkkkkkkk Execution stop in line 5 of 6 at 05:57:40 *x¥kkkkkk

54 JAM 7.0 Database Guide

Running SQL Interactively

Stopping SQL Terminateexecution of your SQL script at any time by choosing either the Reset
Execution push button or R Reset.

The Reset command stops execution of the SQL script, clears the oufpyt buf

and resets the status of the JISQL utility so that you can edit the text of your script
or restart execution.

Chapter 5 Using JISQL 55

5=

SQL Reference Guide

This chapter contains an explanation of the SQL commands and concepts in
alphabetical ordeExecute the SQL commands described in this chapter using JPL
procedures or using JISQL. For an example, refer to page 24

Using the SQL Reference Guide

SQL Reference Summary

SQL Statements

Informationin the reference section is listed alphabetically for the following
topics:

CREATEDATABASE
CREATE TABLE
DELETE

DROP DATABASE
DROP TABLE

INSERT

57

UPDATE

SELECT

SQL Clauses BETWEEN

and Keywords GROUMY

HAVING
LIKE
ORDER BY

WHERE

SQL Concepts Aggregate Functions
Data Types
Joins
Null Values
Operators

Subqueries

Notation Conventions

This chapter includes a section for each command or topic. Each section can
include the following subsections:

Syntax
Arguments
Description
Examples
Variants
See Also

The examples included in this section use the JISQL syntax and are based on the
videobiz ~ database. For a complete description of this database, refer to Appendix
A.

58 JAM 7.0 Database Guide

Aggregate Functions

Aggregate Functions

Obtain information about rows or groups of rows

function-name ([DISTINCT] expression)

functiontname Oneof the following aggregate functionsvG COUNTMAX MIN or SUM

DISTINCT Eliminates duplicate values before the function is applied. This keyword can be
used withAVG COUNTor SUM It is not allowed witlCOUNT(*) , MAXor MIN.

expression A constant, column name, subquesyany combination of these connected by
arithmetic or bitwise operatora{\DandOR.

Description Aggregate functions calculate fdifent types of summary information on rows in a
database table. All of the aggregate functions ignore null values, with the exception
of COUNT(*).

The aggregate functions supported in JDB include:

Aggregate Description
Function

COUNT Counts the total number of rows retrieved with Sl ECTstate
ment.COUNT(*) calculates the number of rows retrieved.
COUNT¢olumn-name) calculates the number of rows containing a
value in the specified column; therefore, it ignores null values.

AVG Calculates and returns the average value of the specified numeric
column or expression.

MAX Returns the layest value of the specified column or expression.

MIN Returns the lowest value of the specified column or expression.

SUM Returns the sum of the values entered in the specified numeric col

umn or EXpI’ESSiOI’I.

Aggregate functions generally appear in a select listHA\ANG clause, or in
conjunction with aGROUMY clause. When appearing in the same statement as a

Chapter 6 SQL Reference Guide 59

Aggregate Functions

Example

60

GROUMY clause, aggregate functions are used to obtain summary information on
each group of data. Aggregate functions are not valid iwthERElause of
SELECTstatements.

The following statement finds the number of video titles entered in the database by
querying for a count of the rows in tliges table:

SELECTCOUNT(*) FROM titles;

76

Thefollowing statement uses tieSTINCT keyword to calculate the number of
video titles that have a copy of the tape available for rental.

SELECTCOUNT (distinct title_id) FROM tapes
WHERE status ="A'";

71

Thefollowing statement calculates the average number of rentals per customer and
the average rental amount:

SELECTAVG(num_rentals), AVG(rent_amount) FROM customers;

95

312.295442

The following statement queries for the least number of times a copy of a video has
been rented:

SELECTMIN(times_rented) FROM tapes;

20

JAM 7.0 Database Guide

Aggregate Functions

Thefollowing statement calculates the money collected from video rentals for a
particular day:

SELECTSUM(amount_paid) FROM rentals
WHERE rental_date LIKE '1993/10/22%";

71.50

Thefollowing statement calculates the number of times a particular title has been
rented:

SELECTSUM(times_rented) FROM tapes
WHERE title_id =12;

211

See Also GROUP BYClauseHAVING Clause

Chapter 6 SQL Reference Guide 61

BETWEEN Predicate

BETWEEN Predicate

Specify a range of data values

[NOT] BETWEEN X AND y

Description TheBETWEENredicate, located in th@HERElause, specifies a range of database
values to be used in determining a result set. The range specified is inclusive of
andy.

If the NOTkeyword is specified, only rows outside the specified range are included
in the result set.

Example

The following statement lists videos whose length is between an hour and two
hours:

SELECTtitle_id, name, film_minutes FROM titles
WHERE film_minutes BETWEEN 60 AND 120;

title_id: 56
name: 'After Hours'
film_minutes: 96

title_id: 1
name: ‘Airplane!"
film_minutes: 86

M/

The following statement deletes all the film rentals that occurred in 1989:

DELETEFROM rentals WHERE rental_date
BETWEEN '1989/01/01 00:00:00" AND '1989/12/31 23:59:59';

The following statement finds which current customers live in a series of postal
codes:

SELECTcust_id, first_name, last_name FROM customers

WHERE postal_code BETWEEN 10200 AND 10299
AND member_status <> 'I';

62 JAM 7.0 Database Guide

BETWEEN Predicate

cust_id: 1
first_name: 'Kelly'
last_ name: 'Robinson’

cust_id: 2
first_name: 'Alexander’
last_name: 'Scott'

//\//\//

Variants

The following statement performs the same quéngding the current customers in
the designated series of postal codes, withouBHT&VEENredicate:

SELECTcust_id, first_name, last_ nhame FROM customers
WHERE postal_code >= 10000 AND postal_code <= 10199
AND member_status <> 'I';

See Also WHERE lause

Chapter 6 SQL Reference Guide 63

CREATE DATABASE Statement

CREATE DATABASE Statement

Create a new database

CREATEDATABASE database-name

databasetname

Description

Creatingthe First
Database

JISQL

JPL

64

A unique identifier for the database. Since the database appears as a file on the
operating system, its identifier must follow the naming conventions for the
operating system. If the database name contains characters that are not
alphanumeric or if you are including a pathname, the name must be enclosed in
single quotation marks.

This statement creates a new database. A database must be created before you can
declare a connection to itoM can create a database when you are connected to

JDB using the identifie@system, when you are connected to another JDB-data

base, or when you are using JISQL.

You can create your first database in JDB either by using JISQL or by writing a
JPL procedure.

To create the database in JISQL, first you need to start the program. For UNIX
systems, it is usually located$$MBASE/util . To start it, type:

jisql
Or, click on the JISQL icon.
The JDB ISQL window opens.

To create the database, choose Dat&b&seate Database. The Create Database
window opens.

Enter the name of the database you want to create, select the Connect after creation
check box, and choose OK. This creates the database and automatically connects to
it so that you can then create database tables.

The equivalent JPL procedure is as follows:

dbms declare syscon connection for database @system

dbms sql create database database-name

dbms close connection syscon

dbms declare c1 connection for database database-name
dbms sql create table table-name ...

JAM 7.0 Database Guide

CREATE DATABASE Statement

Example CREATEDATABASE videobiz,

If the database name contains nonzalphanumeric characters or if you are including
a pathname, enclose the name in single quotation marks:

CREATEDATABASE 'video.db';

CREATE DATABASE ‘'fusr/homel/videobiz’;

Chapter 6 SQL Reference Guide 65

CREATE TABLE Statement

CREATE TABLE Statement

Creates a new database table

CREATETABLE table-name (
column-name data-type [(length)] [NOTNULL] [, column-name ...]
[PRIMARYKEY (column-name [, column-name ...]),]
[UNIQUE(column-name [, column-name ...]),]
[FOREIGNKEY (column-name [, column-name ...])
REFERENCESable-name (column-name [, column-name...]) [,]]

)

tablextname

column-name

datattype

NOTNULL

PRIMARY KEY

UNIQUE

FOREIGN KEY

REFERENCES

66

Identifier for the table to be created. This identifier must be unique to the database.
Identifiers in JDB must start with a letter but may contain letters, numbers, and
underscores.

Identifier for the column. Each column identifier must be unique within the table.

Data type for the column. Fohar data types, a length must also be specified. For
more information on data types, refer to page 69.

Specifies that a value must be entered for the column. The value for the column
cannot be null.

Specifies the primary key column(s) for this table. Any column specified as a
primary key must be specified BOTNULL .

Specifiesthat a column or group of columns must contain a unique. &uigy
column specified as unique must be specified@ENULL . Column(s) specified
in aPRIMARYKEY clause do not need to be declared/isRQUE

Specifies the foreign key columns for this table. Any such column must refer to a
primary or unique key in the referenced table. Matching between the foreign and
primary keys is performed in the order the columns are listed, not by their names.

Specifies the database table and the column name in that table for the foreign key
column. If more than one column is listed, the order of the columns listed in the
FOREIGNKEY clause must match the order of the columns irREEERENCES

clause.

JAM 7.0 Database Guide

Description

SpecifyPrimary and
Foreign Keys

Maximum Row Length

CREATE TABLE Statement

This statement creates a new table in the current database with the specified col
umns. For each column, you must specify the following:

column name
data type
length, if the data type thar

JDB is a case-insensitive database system. No matter which case you use to enter
your table and column names, JDB stores the names in lower case.

You need to specify the primary and foreign keys when you create the table. The
primary key is the column containing afdient value in every rowvhich ensures

that all rows are unique. In cases where one column does not perform this function,
you must specify two or more columns whose values together form a unique entry
This is called a composite keyull values are not allowed in the primary key
columns; therefore, the column definitions for those columns should contain the
keywordNOTNULL .

Foreignkeys are columns in the database table that are primary or unique keys in
another database table. Data entered into a foreign key column should exist as a
value in the other database table. The data type for the foreign key column and its
corresponding primary or unique key must be the same.

Although JDB does not enforce referential integrity based on your primary and
foreign keys, it is recommended that you enter primary and foreign key informa
tion for your database tables.

In JDB, there is a maximum row length of 1K. In other words, the sum of the
table's column sizes cannot exceed 1K. The base length of the various columns is:

Data Type Base Length

CHAR Specifed length

INT 4 bytes (stored dsONGin the current release)
LONG 4 bytes

FLOAT 12 bytes

DOUBLE 12 bytes

DATETIME 9 bytes

The length of a column is defined as its base length plus an additional 2 bytes for
flags.

Chapter 6 SQL Reference Guide 67

CREATE TABLE Statement

Thefollowing statement creates a table whose size equals 1028 ((255+2) * 4).
Since that total is greater than 1024, JDB reports the error 2Maximum record
length exceeded.?

CREATETABLE toobig (
a CHAR (255),
b CHAR (255),
¢ CHAR (255),
d CHAR (255));

Example

Thefollowing statement creates thetors table withactor_id as the primary
key:

CREATETABLE actors (
actor_id INT NOT NULL,
last_name CHAR (25) NOT NULL,
first_name CHAR (20) ,
PRIMARY KEY (actor_id));

Thefollowing statement creates thentals table:

CREATETABLE rentals (
cust_id INT NOT NULL,
title_id INT NOT NULL,
copy_num INT NOT NULL,
rental_date DATETIME NOT NULL,
due_back DATETIME NOT NULL,
return_date DATETIME ,
price FLOAT NOT NULL,
late_fee FLOAT NOT NULL,
amount_paid FLOAT NOT NULL,
rental_status CHAR (1) NOT NULL,
rental_comment CHAR (76) ,
modified_date = DATETIME NOT NULL,
modified_by CHAR (8) NOT NULL,
PRIMARY KEY (cust_id, title_id, copy_num, rental_date),
FOREIGN KEY (cust_id) REFERENCES customers (cust_id),
FOREIGN KEY (title_id, copy_num)
REFERENCES tapes (title_id, copy_num),
FOREIGN KEY (modified_by) REFERENCES users (user_id));

See Also Datatypes

68 JAM 7.0 Database Guide

Data Types

Data Types

List the data types available in JDB

Description The JDB data types are described in this section.

CHAR (n)

Character column containing ASCII characters (letters, numbers and symbols).
Specify the maximum size of the column witih can range in value from 1 to
255. The size of @HARcolumn isn no matter how many characters are entered
into the column. If the character string is longer thatte string is truncated to

the specified length. If the character string is shorterithémre string is blankx
padded to the specified length. For example, an entry of

'‘Al2'

in aCHAR(4) column would be stored as

'‘Al12

The storage size of @HARcolumn isn plus 2 bytes for flags.

JISQL To enter values intGHARcolumns using JISQL, enclose the character string in
single quotation marks.olinclude a single quotation mark as part of the entry
enter two consecutive single quotation marks.

JPL If you use colon plus processing or binding in a JPL procedure, JAM automatically
formats the character string by enclosing the character string in single quotation
marks and converting each single quotation mark to two single quotation marks.

INT

Numeric column containing whole numbers. In the current version of JDIR;Tall
values are stored a®NGvalues.

LONG

Numeric column containing whole numbers ranging from £2,147,483,647 to
+2,147,483,647. The storage size fot.@mMGcolumn is 4 bytes plus 2 bytes for
flags.

FLOAT

Numeric column containing positive or negative floating point numbers. The
hardware platform determines the precision and ran§e@ATcolumns. The
storage size is 12 bytes plus 2 bytes for flags.

Chapter 6 SQL Reference Guide 69

Data Types

DOUBLE

Numericcolumn containing double precision numbers. The hardware platform
determines the precision and rang®0lUBLEcolumns. The storage size is 12
bytes plus 2 bytes for flags.

DATETIME

Date column containing both a date and time of dag storage size is 9 bytes,
plus 2 bytes for flags. The default format fdbATETIMEcolumn is:

yyyy/mm/dd hh:mm:ss
Forexample, January 28, 1993 at 2:40 p.m. is entered as follows:
1993/01/28 14:40:00

Alternateformats foDATETIMEValues include using periods instead of colons to
separate time entries and using spaces instead of slashes to separate date entries.

JISQL To enteDATETIMEVvalues in JISQL, enclose the date entry in single quotes as in:
'1993/01/28 14:40:00'

JPL To enterDATETIMEvalues in JPL, the date should both be enclosed in single
guotes and contain double colons:

DBMSSQL UPDATE titles \
SET release_date = '1994/01/28 00::00::00' \
WHERE title_id = :+title_id

If DT_DATETIMEIis the JAM type of the widget containing the enfifxM
automatically formats the date according to the specified Date/fbrmat.

The data type of each column is stored in the system tgbt®)s . You can
query this table to find the data type for any column. Refer to page 30 for more
information on thesyscols table.

NumericColumns In JDB, you cannot enter numbers with leading zeros in numeric columns.

Example
The following statement creates tites table:

CREATETABLE titles (
title_id INT NOT NULL,
name CHAR (60) NOT NULL,
genre_code CHAR (4) ,
dir_last_ name CHAR (25) ,
dir_first_ name CHAR (20) ,
film_minutes INT ,
rating_code CHAR (4) ,
release_date DATETIME ,
pricecat CHAR (1) NOT NULL,
PRIMARY KEY (title_id),
FOREIGN KEY (pricecat) REFERENCES pricecats (pricecat));

70 JAM 7.0 Database Guide

Data Types

Thetitles table contains columns of various data types. The following statement
inserts a row into this table:

INSERT INTO titles (title_id, name, genre_code,
dir_last_name, dir_first_name, film_minutes, rating_code,
release_date, pricecat)

VALUES (72, 'Howards End', 'DRAM', 'lvory', 'James', 140,
'PG’, '1992/01/01 00:00:00', 'G");

Chapter 6 SQL Reference Guide 71

DELETE Statement

DELETE Statement

Remove information from a database table

DELETEFROM table-name [WHEREsearch-conditions]

tablextname

WHERE

Description

Example

See Also

72

A

Identifier for the database table.

The WHERElause specifies which rows will be deleted. Refer to page 105 for more
information on thevHERElause.

This statement deletes a row or rows from the specified table. Remember that in
order to keep your data consistent, you may need to delete or update rows in other
tables whose values depend on the deleted row

If no WHEREIlause is specified, all the information in the table is deleted.

If a customer drops his membership, you can delete that customer from the
database:

DELETEFROM customers WHERE cust_id = 123;

To delete a video title from the database, you would need to delete rows from
tittes | title_dscr ,tapes androles

DELETEFROM title_dscr WHERE title_id = 134;

DELETE FROM roles WHERE title_id = 134;

DELETE FROM tapes WHERE title_id = 134;

DELETE FROM titles WHERE title_id = 134;

You can delete rows using a subquery inWERElause:

DELETEFROM actors WHERE actor_id IN
(SELECT actor_id FROM roles WHERE title_id = 134);

WHERE lause

JAM 7.0 Database Guide

DROP DATABASE Statement

DROP DATABASE Statement

Remove a database

DROPDATABASE database-name

database+name Nameof the database to be removed.

Description This statement deletes the specified database. The file containing the database is
removed from the operating system. If the database name contains characters that
are not alphanumeric, you must enclose the name in single quotation marks.

You cannot drop the current database. First, you must close the connection with the
current database and connect either to another database or to the system catalog.

When you drop a database, the journal files are not deleted.

Example DROMDATABASE videobiz;

Remembeto enclose the name in single quotation marks if it contains non-alpha
numeric characters.

DROMDATABASE 'video.db';

Chapter 6 SQL Reference Guide 73

DROP TABLE Statement

DROP TABLE Statement

Remove a table from the database

DROPTABLE table-name

tabletname Nameof the table to be deleted.

This statement deletes the specified table from the database, including the data

Description
stored in the table.

Example DROPTABLE rentals;

74 JAM 7.0 Database Guide

GROUP BY Clause

GROUP BY Clause

Divide the returned data into groups according to the specified column(s)

GROURY [correlation-name.]column-name[, ...]

correlationtname Identifier which substitutes for the table name.
columntname Column used to group the data.
Description A GROUBY clause included in @ELECTstatement allows you to specify the-col

umn or columns to be used to divide the table into groups. Rows having an identi
cal value in the specified columns are grouped together

A GROUBY clause is most often combined with an aggregate function in order to
obtain summary information on each groupGROUMBY clause can also be

followed by aHAVINGclause in order to define which groups appear in the result
set.

In aSELECTstatement containing@ROUMY clause, the columns specified in the
select list or in th&lAVINGclause must either be listed in tRROUMBY clause or
be parameters of aggregate functions.

Example
This statement finds the number of videos in each rating category:

SELECTrating_code, COUNT(*) FROM titles
GROUP BY rating_code;

genre_code : 'NULL'
: 6

genre_code : 'G'
: 3

Chapter 6 SQL Reference Guide 75

GROUP BY Clause

See Also

76

A GROUBY clause can be used to find unique entries3elcECTstatement;
however theDISTINCT keyword is generally used for this purpose. The following
statement lists the types of videos found intihes table:

SELECTgenre_code FROM titles GROUP BY genre_code;

genre_code: 'ADV'
genre_code: 'CHLD
genre_code: 'CLAS'

genre_code: 'COM'
////—\/_/—/_,\/_//

This statement using bothGROUMBY clause and BHAVINGclause determines the
people who directed more than three videos:

SELECTdir_last_name FROM titles GROUP BY dir_last_name
HAVING COUNT(*) > 3;

dir_last_name: Allen

dir_last_name: Weir

If your SELECTstatement also includes#HERElause, place theROUBY
clauseafterwHERElause.

SELECTtitle_id, COUNT (*) FROM tapes WHERE status = 'A’
GROUP BY title_id;

title_id

title_id :

AggregateFunctionsHAVING Clause SELECT Statement

JAM 7.0 Database Guide

HAVING Clause

HAVING Clause

Set search conditions in order to obtain a subset of data

HAVING search-conditions

searchzconditions

Description

Example

Specifiesthe conditions for the selection of data. For a complete listing of available
conditions, refer to page 105.

A HAVINGclause included in 8ELECTstatement allows you to select a subset of
data which has a certain value.

Generally aHAVING clause appears in conjunction witGROUBY clause. When
this occurs, thelAVING clause selects its subsets afterGROUMBY clause has
been applied.

Unlike theWHERElause, &1AVINGclause may include aggregate functions.

In statements using bothHERElause and HAVINGclause, the following steps
occur:

1. TheWHERElause selects the rows meeting its search conditions.

2. TheGROURY clause divides these rows into groups according to the
specified column(s).

3. TheHAVINGclause excludes groups not meeting its search conditions.

4. Any aggregate function specified in the select list performs its calculations for
each group.

The following statement finds the customers that are frequent renters for the
month:

SELECTcust_id FROM rentals
WHERE rental_date
BETWEEN '1993/10/01 00:00:00"' AND '1993/10/31 23:59:59'
GROUP BY cust_id
HAVING COUNT (*) > 4;

Chapter 6 SQL Reference Guide 77

HAVING Clause

cust_id:

cust_id:

See Also AggregateFunctionsGROUBY Clause SELECTStatementWHERE lause

78 JAM 7.0 Database Guide

INSERT Statement

INSERT Statement

Add information to a database table

INSERTINTO table-name [(column-list)]
VALUES (literal [NULL [, ...])

INSERT INTO table-name [(column-list)] query-expression

tablextname
columnzlist
VALUES

querytexpression

Description

InsertingRows Using a
Column List

Uniqueidentifier for the database table.
Columns which will have values inserted. See the description below
Columns which will have values inserted. See the description below

Subquery used to specify data to be inserted.

This statement enters information into the specified table. There are two forms of
theINSERT statement. In the first form, you insert a single row by specifying val
ues for the specified columns. In the second form, you use a query to select rows
from other tables to be inserted into the specified table.

Within the first form of thedNSERT statement, several format variations exist. The
simplest format includes\8ALUESclause without a column list. In this format, you
must provide a value for each column in the table. The values are listed in the same
order that was used to create the columns in the database table.

INSERT INTO roles
VALUES (72, 144, 'Margaret Schlegel’);

In aVALUESclause, the column values are separated by comraasar enter
character strings, date strings, and numeric constants as column values. If you are
entering the data using JISQL, character strings and date values must be enclosed
with single quotation marks.

If you do not know the column order or if you do not want to enter a value for each
column, you can add a column list to the statement:

INSERT INTO roles (title_id, actor_id, role)
VALUES (72, 144, 'Margaret Schlegel’);

Chapter 6 SQL Reference Guide 79

INSERT Statement

InsertingRows
Containing a Null "lue

With this format, the first column valug2, is entered into the first column found
in the column listiitle_id . The second value goes into the second column
listed, etc.

If you do not specify a value for a column, its value will be settbL

You can also enter an unknown value for any column wging as the column
value:

INSERT INTO roles (title_id, actor_id, role)
VALUES (72, 144, NULL);

However,this syntax is not available if the column was specified@BNULL in
the CREATETABLE statement.

Inserting Rows Using a The second syntax statement illustrates the insertion of rows using a subquery

Subquery

See Also

80

Multiple rows can be inserted with this format; howeyeu cannot have the same
table named in thiNTO clause and thBELECTstatement of the query

INSERT INTO roles
(title_id)
SELECT title_id FROM titles WHERE title_id > 75;

Null Values

JAM 7.0 Database Guide

Joins

Joins

Specify the interconnection between two tables

FROM table-name,

table-name

WHEREtable-name. column-name join-operator table-name. column-name
[{AND | OR | NOT} table-name. column-name join-operator table-name. column-name ...]

FROM
tablextname

WHERE

columntname

jointoperator

Description

equi-joins

TheFROMlause lists the tables included in the join.
Identifier for the database table.

The WHERElause specifies the relationship between each set of tables in addition
to the search conditions to be used for the statement.

Column from one of the specified database tables.

One of the following operators; >, <, >=, <=, or<>.

A join connects two or more database tables by specifying the relationship between
each set of tablesoTspecify the relationship, you connect one column from one
table to a column in another table. The column names must be qualified with the
table name if the table location is ambiguous. A join can be paSBf&ECT
UPDATEINSERT, or DELETEStatement. A join can also be included in a subquery
There are several types of joins which will be discussed in the following para
graphs.

An equi-join is based on equality as indicated by the equal sign (=). In an equi-join,
all the columns in the tables being joined are included in the result set. For
example,

SELECT* FROM roles, actors
WHERE roles.actor_id = actors.actor_id;

This statement joins thactors androles tables using thector_id column in
each table. The result set lists the actor for each role includedririethe table.

Chapter 6 SQL Reference Guide 81

Joins

natural joins

Multiple Table Joins

82

title_id: 1
actor_id: 15

role: 'McCroskey'
actor_id: 15
last_name: 'Bridges'
first_name: "Lloyd'
.
title_id: 77

actor_id: 178

role: ‘Malcolm X'
actor_id: 178
last_name: 'Washington'
first_name: "Denzel'

A natural join is structured so that there is no duplication of data. The same query
as a natural join would appear as follows:

SELECTtitle_id, roles.actor_id, first_name, last_name, role
FROM roles, actors
WHERE roles.actor_id = actors.actor_id;

Theselect list names the columns to be included so thatthe id
only once.

is displayed

title_id: 1
actor_id: 15
first_name: "Lloyd'
last_name: 'Bridges’
role: 'McCroskey'

M
title_id: 77

actor_id: 178
first_name: “Denzel'
last_name: 'Washington'
role: ‘Malcolm X'

A multiple table join involves more than two tables using one or more columns to
make the connection. The following statement adds the name of the video to the
result set.

SELECTroles.title_id, titles.name, actors.actor_id,
actors.first_name, actors.last_name, roles.role
FROM roles, titles, actors
WHERE roles.title_id = titles.title_id
AND roles.actor_id = actors.actor_id;

JAM 7.0 Database Guide

Joins

title_id: 1
name: 'Airplane!
actor_id: 15

first_name: 'Lloyd'
last_name: 'Bridges'
role: 'McCroskey"'
.
titte_id: 77

name: ‘Malcolm X'
actor_id: 178
first_name: 'Denzel'
last_name: 'Washington'
role: ‘Malcolm X'

You could also use correlation names to formulate the query:

SELECTr.title_id, t.name, a.actor_id,
a.first_name, a.last_name, r.role
FROM roles r, titles t, actors a
WHERE r.title_id = t.title_id
AND r.actor_id = a.actor_id;

Additional search conditions can be added toHERElause to further restrict
the result set:

SELECTroles.title_id, titles.name, actors.actor_id,
actors.first_name, actors.last_name, roles.role
FROM roles, titles, actors
WHERE roles.title_id = titles.title_id
AND roles.actor_id = actors.actor_id
AND titles.title_id = 19;

title_id: 19
name: 'Field of Dreams’
actor_id: 23

first_name: 'Kevin'
last_name: 'Costner’
role: 'Ray Kinsella'
M
title_id: 19

name: 'Field of Dreams'
actor_id: 141

first_name: 'Frank'
last_name: 'Whaley'

role: 'Archie Graham'

Non-equiztjoins In addition to the equal sign, there are additional operators that can be specified.
Table 1 lists all the relational operators that can be used in joins.

Chapter 6 SQL Reference Guide 83

Joins

Self+joins

84

Tablell. Join Operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
<> Not equal to

You can also useBETWEENredicate to specify a range of values.

The following query lists the videos that have the same name but have been
directed by difierent people:

SELECTt.title_id, t.name, t.dir_last_name
FROM titles t, titles d
WHERE t.name = d.name
AND t.dir_last_name <> d.dir_last_name;

title_id: 3
name: ‘All of Me'
dir_last_name: 'Reiner’

tite_id: 60
name: ‘All of Me'
dir_last_name: 'Flood'

M/
title_id: 52

name: 'Henry V'
dir_last_name: 'Olivier'

The previous query is called a self-join which joins a table to itself so that you can
compare values in the same columa.niake a self-join, use correlation names for
the database tables in theOMclause and in the column names.

The following self-join finds the directors who have made twtedkht types of
filmsbfor example, directors who have made both comedy and adventure films.
All of this information is in theitles table. For this queryhe join condition is
made on the directtw last name. Then, the twenre_code entries in each join
are compared, and if they fdif, the directors last name, the genre code and the
name of each corresponding video are written to the result set.

JAM 7.0 Database Guide

Joins

SELECTdir.dir_last_name, dir.genre_code, dir.name
FROM titles gen, titles dir
WHERE gen.dir_last_name = dir.dir_last_name
AND gen.genre_code <> dir.genre_code

dir_last_name: ‘Marshall'
genre_code: 'COM'
name: 'Big'

dir_last_name: 'Marshall'
genre_code: 'DRAM'
name: '‘Awakenings'

///—\—/—\//—/

Thefollowing self-join finds the actors in video #50 who are entered irotae
table only for that video. It uses one version ofrties table to find all the
actor_id codes in video #50. It uses the other version of the table to find the
actor_id codes that are entered in toies table only once.

SELECTr.actor_id FROM roles r, roles |
WHERE r.title_id = 50
AND r.actor_id = j.actor_id
GROUP BY r.actor_id HAVING COUNT(j.actor_id) = 1;

actor_id: 189

actor_id: 190

actor_id: 191

See Also Subqueries

Chapter 6 SQL Reference Guide 85

LIKE Predicate

LIKE Predicate

Obtain data matching a specified pattern

column-name [NOT] LIKE literal [ESCAPElIliteral]

columntname

literal

Description

Table 12.

Example

86

Column whose value you want to specify

Wildcard characters intermixed with portions of column values.

A LIKE predicate selects rows in which a column value matches a specified pat
tern. You can enter values for character strings or date striogscah also enter a
wildcard character to substitute for a portion of the stria@pl@ 12 lists the wild
card characters that can be used in JDB.

Wildcad Characters

Wildcard Description

% (percent sign) Substitutes for any string of zero or more characters

_ (underbar) Substitutes for any single character

With the specification of aBSCAPEclause, the special meaning given to 2 ° and
804° can be disabled.

NOTLIKE selects rows that do not match the specified pattern.

The following query finds all the videos released in 1989:

SELECTtitle_id, name FROM titles
WHERE release_date LIKE '1989%;

title_id: 68

name: ‘Born on the Fourth of July'

title_id: 14

name: ‘Cinema Paradiso’

title_id: 17

name: '‘Dead Poets Society'
///\/_/-/\//

JAM 7.0 Database Guide

LIKE Predicate

Thefollowing example returns rows where tieer_text begins with an
underscore. The backslash removes the special meaning for the underscore, but no
for the percent sign:

SELECT* FROM title_dscr
WHERE dscr_text LIKE "\ %' ESCAPE '\

title_id: 40
line__no: 1

dscr_text: '_Intense_ film of selfxdestructive talk show host "

See Also WHERE lause

Chapter 6 SQL Reference Guide 87

Null Values

Null Values

Specify an unknown value

In INSERT statements,
VALUES { literal | NULL} [, { literal | NULL}]

In SELECTstatements,
WHERE column-name IS [NOT] NULL

In UPDATEstatements,

SET column-name ={ literal | NULL}
[, column-name ={ literal| NULL}]

Description When a column is set tULL, it specifies an unknown or an unspecified value. A
NULL value is not the same as a blank or a zero entered into a column.

If you are using a comparison operatme aware thatULL is not a value and
therefore cannot be compared to any other value. As an example, the following
WHEREIlause would evaluate to true for all values oftiihes_rented column
that are greater than 75, but would evaluate to false if the column iS\gdtlto

WHERHEmMes_rented > 75

Example

Theexamples illustrate the usesNifLL values in diferent types of statements.

UsingNULL in an The following statement inserts a null value intorifie column:
INSERT Statement
INSERT INTO roles (title_id, actor_id, role)
VALUES (16, 276, NULL);

An error occurs if you attempt to insert a null value into a column which was
created aSIOTNULL . The following statement returns the ersLL not

allowed since the columactor_id was specified aSOTNULL in theCREATE
TABLE statement for thenles table.

INSERT INTO roles (title_id, actor_id, role)
VALUES (27, NULL, 'Aunt Gussie");

88 JAM 7.0 Database Guide

Null Values

UsingNULL in a Thefollowing statement selects rows where ftitttng_code column contains a
SELECT Statement null value:

SELECTname FROM titles WHERE rating_code IS NULL;

name: 'All of Me'

name: 'Cinema Paradiso'
name: 'Das Boot'

name: ‘'Henry V'

name: 'My Brilliant Career'

name: 'Rashomon’

///—\/,_//\//—/

Using NULL in an Thefollowing statement updates thental_comment column to a null value for
UPDATE Statement every row in theentals table:

UPDATEentals SET rental_comment = NULL;

Thefollowing statement updates thental_comment to a null value for a
specific rental:

UPDATEentals SET rental_comment = NULL
WHERE cust_id =6
AND title_id = 69
AND copy_num =2
AND rental_date ='1993/10/29 18:00:00";

In order to obtain a unique entry for tleatals table, you must include an entry
for thecust_id , title_id , copy_num andrental_date columns.

Chapter 6 SQL Reference Guide 89

Operators

Operators

Description

Arithmetic Operators

90

Table 13.

This section describes the various operators available in JDB.

Arithmetic operators allow you to perform calculations on data in the database
without altering the data. They are available to use with any numeric column. If the
value in the column iSIULL, the result will also b&iULL

Table 13 lists the arithmetic operators that are available in JDB.

Arithmetic Operators

Operator Definition

+ Addition

t Subtraction
* Multiplication
/ Division

The arithmetic operators adhere to the following order of precedence:
1. multiplication, division
2. subtraction, addition

Among operators that have the same level of precedence, the order of execution is
from left to right. The order of precedence can also be explicitly specified using
parentheses. For more information, refer to the section on logical operators.

The following statement uses an arithmetic operator to calculate the price with
sales tax on an item:

SELECTpricecat, price * 1.0825 FROM pricecats
WHERE pricecat = 'N';

Arithmetic operators can also be used in calculations that perform comparisons.
The following statement finds rentals where the amount paid was greater than
double the rental fee:

SELECTcust _id, title_id, rental_date FROM rentals
WHERE amount_paid > price * 2;

JAM 7.0 Database Guide

ComparisonOperators

Table 14.

Operators

Comparisoroperators allow you to compare one expression with another
expression, where an expression is defined as a column name, a constant, a
function, or any combination of column names, constants and functions.

Table 14 lists the comparison operators that are available in JDB.

Comparison Operators

Operator Definition

= Equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
< Not equal to

When character or date strings are used in comparisons, they need to be enclosed
in single quotation marks. Also, in these comparisons, numbers are greater than
uppercase letters, and uppercase letters are greater than lowercase letters. For
character strings, > asks for character strings closer to the end of the alphabet, < for
character strings closer to the beginning of the alphabet. For date strings, > asks for
dates later than the one specified and < asks for dates earlier than the one specified

The following query asks for the videos whose length is greater than three hours:

SELECTtitle_id, name FROM titles WHERE film_minutes > 180

title_id: 15
name: 'Dances With Wolves'

title_id: 31
name: 'Reds'

Thefollowing query lists the customers who joined during the current year:

SELECTcust_id, first_name, last_name FROM customers
WHERE member_date >='1993/01/01 00:00:00';

Chapter 6 SQL Reference Guide 91

Operators

cust_id: 13
first_name: 'Robert’
last_name: 'Hartley'

cust_id: 14
first_name: 'Howard'
last_name: 'Borden’

//\/\//

Queryingfor a specific range of values can be accomplished using a series of
comparison operators oB&E TWEENredicate. The following statements would
return the same data:

SELECTtitle_id, name FROM titles
WHERE film_minutes BETWEEN 150 AND 180;

SELECT title_id, name FROM titles
WHERE film_minutes >=150 AND film_minutes <= 180;

title_id: 15

name: 'Amadeus’

title_id: 47

name: 'Kagemusha'

title_id: 77

name: ‘Malcolm X'
//\’/_/-/—\//

Logical Operators Logical operators join sets of search conditions together

Table 15 lists the logical operators that are available in JDB.

Table 15. Logical Operators

Operator Definition

AND Joins two conditions and returns results when both eondi
tions are true.

OR Joins two conditions and returns results when either
condition is true.

ANDoperators take precedence o@&operators unless you change the order of
execution by using parentheses. AlSQTtakes precedence oweKD

If you wanted to find the science fiction videos that either have a PG or G rating or
that are over three hours long, the following query would not return the correct

92 JAM 7.0 Database Guide

Operators

results.This query first finds the science fiction videos that have a PG or G rating.
Then, it finds any videos over three hours long.

SELECTtitle_id, name, film_minutes FROM titles
WHERE genre_code = 'SCFI'
AND rating_code IN ('G', 'PG’)
OR film_minutes > 180;

title_id: 15
name: 'Dances with Wolves'
film_minutes: 181

title_id: 31
name: 'Reds'
film_minutes: 200

title_id: 37
name: 'Starman’
film_minutes: 112

///—\—/\//

Theaddition of parentheses finds science fiction videos that either have a PG or G
rating or that are over three hours long.

SELECTtitle_id, name, film_minutes FROM titles
WHERE genre_code = 'SCFI'
AND (rating_code IN ('G', 'PG’)
OR film_minutes > 180);

title_id: 37
name: 'Starman’
film_minutes: 112

title_id: 38
name: 'Star Trek: The Motion Picture'
film_minutes: 132

title_id: 45
name: 'Star Wars'
film_minutes: 121

///—\—/\//—/

Remembethat if a column is set t8ULL, no comparison operator will retrieve it.

The value of null is unknown. The following example would find the video titles
whose length is less than an hour but would not find the ones whose length is

entered aslULL

SELECTtitle_id, name FROM titles
WHERE film_minutes < 60;

Chapter 6 SQL Reference Guide 93

ORDER BY Clause

ORDER BY Clause

Specify the order for the query results

ORDERBY { integer |

integer

correlationtname
columntname
ASC

DESC

Description

Example

94

[correlation-name.] column-name} [, ...] [ASC|DESC]

If integer is specified instead of@lumn-name, it refers to the position of a
column or expression in the select list.

Identifier which substitutes for the table name.
Specifies the column or columns to be used for sorting the result set.
Specifies that the result set is to be sorted in ascending thigis the default.

Specifies that the result set is to be sorted in descending order

An ORDERBY clause sorts the result set according to the specified column-or col
umns. The columns specified in tA&DERBY clause must also be specified in the
select list of theSELECTstatement. By default, the sort occurs in ascending order
which lists the smallest value firstol can set the sort order by specifykgCfor
ascending obESCfor descending order

If you list more than one column in tRDERBY clause, it creates a nested sort.
The sort for the first column takes precedence and occurs first. Then, within each
of these groups, the rows are sorted again according to the value of the second
column.

Instead of listing column names in th&DERY clause, you can use integers to
refer to the column position.

The following SELECTstatement without a@RDERBY clause returns the list of
video titles in the order shown in the result set:

SELECTtitle_id, name, genre_code FROM titles;

JAM 7.0 Database Guide

ORDER BY Clause

title_id: 56
name: 'After Hours'
genre_code: 'COM'

title_id: 1
name: ‘Airplane!’
genre_code: 'COM'

title_id: 5
name: 'All That Jazz'
genre_code: 'MUS'

title_id: 2
name: ‘Aliens'
genre_code: 'SCFI'

/W

With the addition of a®@RDERBY clause on the genre code, followed by the video
name, the statement returns the data in the following order:

SELECTtitle_id, name, genre_code FROM titles
ORDER BY genre_code, name;

title_id: 20
name: 'FIX'
genre_code: 'ADV'

title_id: 76
name: 'Raiders of the Lost Ark'
genre_code: ‘ADV'

title_id: 49
name: 'Romancing the Stone'
genre_code: ‘ADV'

///—\—/\//—/

If you use integers in th@RDERBY clause to refer to the column position, the
previous statement appears in the following syntax:

SELECTtitle_id, name, genre_code FROM titles
ORDER BY 3, 2;

genre_code is the third column appearing in the select list, @ande is the
second column in the select list.

Chapter 6 SQL Reference Guide 95

SELECT Statement

SELECT Statement

Obtain information from a database table

SELECT [DISTINCT]{ select-list | *} FROM

table-name [correlation-name] [, ...]

[WHEREsearch-conditions]
[GROUBY [correlation-name.] column-name[, ...]1]
[HAVING search-conditions]

[ORDERBY {

DISTINCT

selectzlist

tablextname
correlationtname

WHERE

searchzcondition

GROUP BY

HAVING

ORDER BY

Description

96

integer | [correlation-name.] column-name} [, ..]]

Exclude any duplicate rows from the result set.

A series of column names, qualified by the table name if more than one database
table is being accessed, and/or aggregate functions.

Selects every column from every table listed inRR©Mlause.
Identifier for a database table.
Identifier which substitutes for the table name in the remainder of the statement.

TheWHERElause specifies a search condition or a join. For more information on
joins, refer to page 81. For more information onWieERElause, refer to page 105.

Specifiesthe conditions for the selection of data. For more information, refer to
page 105.

TheGROUBY clause specifies the column used to divide the result set into
groups. For more information, refer to page 75.

TheHAVINGclause specifies a search condition. For more information, refer to
page 77.

The ORDERBY clause specifies the column(s) used to sort the result set. For more
information, refer to page 94.

The SELECTstatement obtains data from the specified database table or tables. In
its simplest form, th&ELECTstatement retrieves all the data from all the columns
in the named table:

SELECT* FROM titles;

JAM 7.0 Database Guide

SELECT Statement

title_id: 56

name: 'After Hours'
genre_code: 'COM'
dir_last_name: 'Scorsese'
dir_first_name: 'Martin'
film_minutes: 96

rating_code: 'R’
release_date: 1985/01/01 00:00:00
pricecat: 'G'

////—\/,_//\//

However,this syntax is not recommended for use inside an application. It is
recommended that you include a select list BERECTstatement.

Specifyinga Select List A select list determines which columns will be included in the result set. In the
following example, the select list contains ttaene, genre_code
dir_last_ name andfim_minutes columns:

SELECTname, genre_code, dir_last_name, film_minutes
FROM titles;

name: 'After Hours'
genre_code: 'COM'
dir_last_name: ‘'Scorsese'
film_minutes: 96

name: ‘Aliens'
genre_code: 'SCFI'
dir_last_name: ‘'Cameron’
film_minutes: 135

////—\/—\//

Theselect list can also include aggregate functions.

SELECTAVG (film_minutes) FROM titles;

118

Specifying a WHERE You can choose which rows will be a part of the result set by includivigeeRE
Clause clause:

SELECTname, genre_code, dir_last_name, film_minutes
FROM titles WHERE dir_last_name = 'Weir";

Chapter 6 SQL Reference Guide 97

SELECT Statement

name: '‘Dead Poets Society'

genre_code: 'DRAM'

dir_last_name: 'Weir'

film_minutes: 130

name: 'Picnic at Hanging Rock'

genre_code: 'DRAM'

dir_last_name: ‘'Weir'

film_minutes: 110
////—\/_/‘/\//

Thereare other search conditions available. Refer to page 105 for information on
theWHERElause.

Obtaining Unique
Entries

You can include only unique rows in the result set by specifying the keyword
DISTINCT. The following statement gets a list of directors:

SELECTdir_last_name FROM titles;

dir_last_name: 'Scorsese’

dir_last_name: ‘'Spielberg’

dir_last_name: 'Branagh'

dir_last_name: ‘'Kasdan'

dir_last_name: ‘Branagh’
M

By usingDISTINCT, the duplicate names are excluded from the result set:

SELECTDISTINCT dir_last_name FROM titles;

Obtaining Data fom
Multiple Tables

dir_last_name: 'Scorsese’

dir_last_name: ‘'Spielberg’

dir_last_name: ‘'Kasdan'

dir_last_name: ‘'Branagh’
////—\//_//——

You can obtain information from more than one database table by using joins:

SELECTname, first_name, last_name, role
FROM actors, titles, roles
WHERE titles.title_id = roles.title_id
AND actors.actor_id = roles.actor_id;

98 JAM 7.0 Database Guide

SELECT Statement

name: 'Amadeus’
first_name: 'F. Murray"'
last_name: 'Abraham’
role: 'Salieri'

name: ‘Moonstruck’
first_name: 'Danny’
last_name: 'Aiello’

role: ‘Johnny Cammareri'

Referto page 81 for more information on joins.

////—\/_,/_/\//

See Also BETWEENClause, JoinsGROUMBY Clause HAVINGClause, Subquerieg/HERE
Clause
Chapter 6 SQL Reference Guide 99

Subqueries

Subqueries

Nest a SELECTstatement within another statement

Description

100

In a subqueryyou can nest 8ELECTstatement within 8ELECT INSERT,

UPDATE or DELETEStatement. The main syntax restriction is that a subquery can
not contain aMRDERY clause. Refer to the sections on each keyword for any
additional syntax restrictions. The subquery is enclosed in parentheses. Many state
ments using subqueries can alternatively be constructed using joins.

There are five keywords used for subqueiegSTS, IN, ANY ALL, andSOME
These are explained below

EXISTS
WHERHE NOT] EXISTS (subquery)

TheEXISTS keyword tests for the presence of a result set from the subdiery
subquery can contain one or more columns. Since you are testing to see if any rows
are returned, you can USELECT* instead of a select list in the subquery

If the NOTkeyword is also specified, tWeHERElause is satisfied if there are no
rows in the result set.

The following query checks to see if all of the video titles have entries in the
roles table:

SELECTtitle_id FROM titles WHERE NOT EXISTS
(SELECT * FROM roles
WHERE roles.title_id = titles.title_id);

title_id: 71

IN
WHEREexpression [NOT] IN (subquery)

ThelIN subquery condition evaluates whether the expression iINHERElause

matches any row returned in the subqu&he subquery usingl can only return
one column, but it can return more than one. row

JAM 7.0 Database Guide

Subqueries

A subquery using the keywohd is equivalent to the same subquery usiayy

The following query lists which science fiction movies a customer has previously
rented:

SELECTtitle_id, name FROM titles WHERE genre_code ='SCFI'
AND title_id IN
(SELECT title_id FROM rentals
WHERE cust_id = 6);

title_id: 37
name: 'Starman’

title_id: 45
name: 'Star Wars'

ANY, ALL, SOME
WHEREexpression comparison-operator ANY (subquery)

WHEREexpression comparison-operator ALL (subquery)
WHEREexpression comparison-operator SOME (subquery)

The keywordsANY ALL, or SOMEare used with a subquery with one of the
following comparison operators: >, >=, <, <=, <>, or =,

A subquery usin@dNYor SOMRests to see if the comparison is true for at least one
of the values returned by the subquéiryhe subquery returns no value, the search
condition is false.

SELECTtitle_id, name FROM titles WHERE title_id = ANY
(SELECT title_id FROM tapes WHERE status ='l');

title_id: 1
name: ‘Airplane!’

title_id: 2
name: 'Aliens’

A subquery usingLL tests to see if the comparison is true for every value returned
by the subquenyf the subquery returns no value, the search condition is true as
well.

The following query tests to see which actors are not irothke table:
SELECTactor_id, first_name, last_name FROM actors

WHERE actor_id <> ALL
(SELECT actor_id FROM roles);

Chapter 6 SQL Reference Guide 101

Subqueries

NestedSubqueries

See Also

102

actor_id: 18
first_name: 'Stanislas Carre'
last_name: 'de Malberg'
actor_id: 120

first_name: 'Penelope Ann'
last_name: 'Miller'

///—\—/\/

The keywordsANY ALL, or SOMEcan be omitted if you know that the subquery

will return exactly one value. The following example returns one value by using an
aggregate function. This query finds the customers whose rental amount was
higher than average:

SELECTcust_id, first_name, last_ nhame FROM customers
WHERE rent_amount >
(SELECT AVG(rent_amount) FROM customers);

cust_id: 1
first_name: ‘'Kelly'
last_name: 'Robinson’
cust_id: 5
first_name: 'Michael'
last_name: 'Stedman’

///_/—\/\—/_—

A subquery can also contain another subquery

The following query finds the videos depicting dramatic stories that are also in the
rentals table:

SELECTtitle_id, name FROM titles WHERE title_id IN
(SELECT title_id FROM rentals WHERE title_id IN
(SELECT title_id FROM titles WHERE genre_code = 'DRAMY));

title_id: 4
name: 'All the President's Men'

title_id: 6
name:

'Amadeus’

Joins

JAM 7.0 Database Guide

UPDATE Statement

UPDATE Statement

Update information in a database table

UPDATEtable-name SET column-name = value [, ...] [WHEREsearch-conditions]

tablextname

SET

columntname

WHERE

search+conditions

Description

Example

Unique identifier for the database table.

The SET clause lists both the columns to be updated and the new values for those
columns.

Name of the column to be modified.

TheWHERElause specifies which rows will be updated. Refer to page 105 for more
informationon thewHERElause.

Specifies the conditions for the selection of data. For more information, refer to
page 105.

The UPDATEstatement modifies the value of one or more columns in the specified
table.

If the UPDATEstatement is part of a transaction, the update can be undone by
rolling back the transaction.

If you omit thewHERElause, all rows in the table are updated.

The following statement increases each price category by 10%. Since there is no
WHERElause, this statement updates each row iprtbecats table:

UPDATHBpricecats SET price = price * 1.1;
The following statement updates the price category for a video:

UPDATREi tles SET pricecat ='G' WHERE title_id = 57;

Chapter 6 SQL Reference Guide 103

UPDATE Statement

Thefollowing query updates the member status to the frequent renter category if a
customer rents over 10 videos a month:

UPDATEcustomers SET member_status = 'F'
WHERE cust_id IN
(SELECT cust_id FROM rentals
WHERE rental_date
BETWEEN '1993/09/01 00:00:00" AND '1993/10/01 00:00:00'
GROUP BY cust_id HAVING COUNT(*) > 10 ");

See Also WHERE lause

104 JAM 7.0 Database Guide

WHERE Clause

WHERE Clause

Specify search conditions and/or specify the relationship between tables

WHEREsearch-conditions
WHEREcolumn-name join-operator column-name

search+conditions
columntname

jointoperator

Description

SearchConditions

Specifiesthe conditions for the selection of data.
Specifies a column in each of the tables to be joined.

Specifies the join operatdrefer to page 81 for more information about joins.

The WHERElause performs two functions:
Specifying the search conditions for the result set.
Specifying the connection between tables named irRi@clause.

A result set contains only the rows in the database that meet the search conditions.
If more than one search condition is included \WWHERElause, connect the
conditions with the logical operatossiDor OR

Search conditions can include the following:
BETWEEN
WHERHE NOT] expression [NOT] BETWEEN expression AND expression

The BETWEENredicate specifies a range of database values. The following
statement returns all the customers who joined during a certain year:

SELECTcust _id, first_name, last_ nhame FROM customers
WHERE member_date BETWEEN '1992/01/01 00:00:00'
AND '1993/01/01 00:00:00;

cust_id: 7
first_name: 'Felix'
last_name: ‘Unger’
cust_id: 8

first_ name: ‘'Oscar’
last_name: ‘Madison’

//\//—_//

Chapter 6 SQL Reference Guide 105

WHERE Clause

106

EXISTS
WHERHE NOT] EXISTS subquery

TheEXISTS keyword tests for the presence of a result set from the subdfutbiey
NOTkeyword is also specified, tWveHERElause is satisfied if there are no rows in
the result set. The subquery is enclosed in parentheses.

Notice that the subquery uses*aimstead of a select list since you are merely
testing whether rows meet the subconditions specified in the.query

SELECTtitle_id, name FROM titles WHERE EXISTS
(SELECT * FROM tapes WHERE title_id = tapes.title_id
AND status ='l);

title_id: 1
name: ‘Airplane!"

title_id: 4
name: 'All the President's Men'

IN

WHEREexpression [NOT] IN subquery
WHEREexpression [NOT]IN values-list

TheIN keyword evaluates whether or not the expression iWtheRElause
matches a row in the subquery or a value in the values list. The subqueriusing
can only return one column, but it can return more than one row

The following query uses a values list to find the adventure and science fiction
videos. It tests whether tlygenre_code for each video match@Vvor SCFI.

SELECTname, rating_code FROM titles
WHERE genre_code IN (ADV', 'SCFI");

name: ‘Aliens’
rating_code: 'R’

name: 'FIX'
rating_code: 'R’

name: 'Raiders of the Lost Ark
rating_code: 'PG'

M

IS NULL
WHEREcolumn-name IS [NOT] NULL

JAM 7.0 Database Guide

WHERE Clause

ThekeywordlS NULL searches for null values in the specified column.

SELECTname FROM titles WHERE rating_code IS NULL;

name:

name:

name:

'All of Me'

‘Cinema Paradiso’

'Das Boot'

LIKE
WHEREcolumn-name [NOT] LIKE literal [ESCAPEIliteral]

A LIKE predicate selects rows where a column value matches a specified pattern.
The following query finds the video titles that begin with 2M.°

SELECTtitle_id, name FROM titles WHERE name LIKE 'M%'

title_id: 77

name: ‘Malcolm X'

title_id: 64

name: 'Marriage of Maria Braun, The'

title_id: 70

name: 'Matewan'
//w/

Operators
WHEREexpression {> | < | >=|<=| = | <>{ expression | subquery}

Operatorsallow you to compare column values. The following query finds the
customers who have rented more than 2000 videos. For more information on using
operators in subqueries, refer to page 100.

SELECTcust_id, first_name, last_name FROM customers
WHERE num_rentals > 200;

cust_id: 1
first_name: ‘Kelly'
last_name: 'Robinson’

cust_id: 2
first_name: ‘'Alexander'
last_name: 'Scott'

////—\//_//

Chapter 6 SQL Reference Guide 107

WHERE Clause

Specifyingloins The WHERElause also specifies the interconnecting columns between tables in
joins. The following statement illustrates a multiple join. For additional
information on joins, refer to page 81.

SELECTname, first_name, last_name, role
FROM titles, actors, roles
WHERE titles.title_id = roles.title_id
AND roles.actor_id = actors.actor_id
AND titles.title_id = 62;

name: 'Out of Africa’
first_name: 'Klaus Maria'
last_name: 'Brandauer'
role: ‘Bror’'

name: 'Out of Africa’
first_name: 'Robert’
last_name: 'Redford’
role: ‘Denys'

///\—/\/_,J

See Also BETWEENPredicate, JoingJKE Predicate, Null Values, Operators, Subqueries

108 JAM 7.0 Database Guide

SQL Syntax Summary

SQL Syntax Summary

CREATEDATABASE database-name

CREATE TABLE table-name (
column-name data-type [(length)] [NOTNULL] [, column-name ...]
[PRIMARYKEY (column-name , column-name ...]),]
[UNIQUE(column-name [, column-name ...]),]
[FOREIGNKEY (column-name [, column-name ...])
REFERENCESable-name (column-name [, column-name...]) [,]]
)

DELETEFROM table-name [WHEREsearch-conditions]
DROMPATABASE database-name

DROP TABLE table-name

INSERT INTO table-name [(column-list)]
VALUES (literal | NULL [, ..])
INSERT INTO table-name [column-name [, ...]] query-expression

SELECT [DISTINCT]{ select-list | *} FROM table-name [correlation-name] [, ...]
[WHEREsearch-conditions]

[GROUBY [correlation-name.] column-name[, ...]]
[HAVING search-conditions]
[ORDERY { integer| [correlation-name.]column-name} [, ..]]

UPDATEtable-name SET column-name = value [, ...] [WHEREsearch-conditions]

Chapter 6 SQL Reference Guide 109

Error Messages

This chapter lists the error messages that can occur using JDB. The messages are
stored in the JAM message file.

If an error occurs using thsgl utility, the error message is displayed on the
screen. If the error prompt appears followed by numbers instead of error message
text, check the setting of the varialslglVARS

If an error occurs in an application, the message that appears on the screen depend
on the type of error handler currently installed. Thereb@&@Scommands and

global variables available in JABldatabase drivers for use in an error hanBtar

more information, refer to Chapter 16 in #gplication Development Guide

Error Message Listing

Aggregate function not allowed in current context
(DM_JDB_AGGREGATE_NOT_ALLOWED)

Cause: Aggregatiinction appears in the wrong context.*
Action: Aggregate functions can appear in the select listSHLECTSstatement or
in aHAVINGclause.

Ambiguous column reference (DM_JDB_AMBIGUOUS_COLUMN_REF)

Cause: Ima multiple join, a column name has been specified without its
corresponding table name.
Action: Add the table name to the column references.

111

Error Message Listing

Bad Input (DM_JDB_BAD_INPUT)

Cause: Datdormatted incorrectly fotbldata utility.*
Action: Edit input file. For information on data types, refer to page 69.

Corrupt JDB Database detected (DM_JDB_DB_CORRUPT)

Action: Exitthe database, restart that same database, and reissue the statement to
see if the message disappears. If notthideta to unload the database.
Check the ASCII file before reloading the database.

Current cursor is not attached to a database (DM_JDB_NODB)

Cause: Executing query or data modification statement while connected to the
system catalog or while not connected to a database.
Action: Logon to the desired database, and re-execute the command.

Duplicate column assignment (DM_JDB_DUP_COL_ASSIGNMENT)

Cause: Theolumn has been specified twice in 8T clause of atuPDATE
statement.
Action: Edit statement and eliminate duplicate setting.

Duplicate column name (DM_JDB_DUP_CNAME)

Cause: Theolumn name has already been specified for that table.
Action: Assign each column in the database table a unique name.

Duplicate table alias (DM_JDB_DUPTABLEALIAS)

Cause: Usinghe same table alias for more than one table.
Action: Assign each table alias a unique name.

Duplicate table name (DM_JDB_DUP_TNAME)

Cause: Creating database table that matches an existing table name.
Action: Assign each table in the database a unique name.

File 1/O Error (DM_JDB_FILE_IO_ERR)

Cause: 1patabase is not in the current direct@yDatabase does not exist.
3) Database name was misspelled.

Action: Depending on the desired outcome, either specify the database path or
create the database in the current directory

Internal datatype conversion failed
(DM_JDB_CONVERSION_FAILED)

Cause: Inserting character string into a datetime column INNSERT or
UPDATEStatement. Inserting;ainstead of a when specifying a datetime
value.

Action: Check to see if the values match the data types of the columns.

Invalid Database/Table Handle (DM_JDB_BAD_HANDLE)

Cause: Internatrror in opening and closing table structure.*
Action: Exit database and restart.

112 JAM 7.0 Database Guide

Error Message Listing

Invalid Table operation (DM_JDB_INVALID_TABLE_OP)

Cause: Tryingo update system tables.
Action: Only SELECTstatements can be used on the system tables.

Journal error (OM_JDB_JOURNAL_ERROR)

Cause: Databagse read+only
Action: Change the file permissions.

Key columns must be specified as not null
(DM_JDB_KEY_MUST_BE_NULL)
Cause: Primarkey column was specified in ti@REATETABLE statement

without theNOTNULL keywords.
Action: Insert theNOTNULL keywords for primary key columns.

Maximumrecord length exceeded (DM_JDB_MAX_RECLEN_EXCEEDED)

Cause: Rowdefinition is greater than 1K.
Action: Edit table definition to a maximum of 1024 bytes for each row

More than one primary key was specified (DM_JDB_MULT_PKEY)

Cause: AradditionalPRIMARYKEY clause was specified in tidREATETABLE
statement.

Action: SpecifyonePRIMARYKEY clause using commas to separate the primary
key columns.

Must close Database first (DM_JDB_DATABASE_OPEN)

Cause: Attemptingo drop a database while that database connection is still
active.

Action: Logon to another database or to the system catalog in order to drop the
database.

Must drop Database first (DM_JDB_DATABASE_EXISTS)

Cause: Attemptingo create a database when that database already exists.
Action: Depending on the desired outcome, either 1) drop the database so that it
can be recreated, or 2) use another database name.

Not implemented (DM_JDB_NOT_IMPLEMENTED)

Cause: Featureot implemented in JDB.*
Action: n/a

Read+Only handle (DM_JDB_READONLY)

Cause: Databadée is specified to be read-only
Action: This appears as a warning when you log on and as an error if you attempt
to insert or update data in the database.

NULLnot allowed (DM_JDB_NULL_NOT_ALLOWED)

Cause: Columias been defined in tIBREATETABLE statement aNOTNULL .
Action: In anINSERT statement, a value must be entered for all columns defined
asSNOTNULL.

Chapter 7 Error Messages 113

Error Message Listing

Syntax error (DM_JDB_SYNTAX_ERROR)

Cause: Charactetrings are not enclosed in single quotation marks iINGBRT
statement.
Action: Add quotation marks, and reissue statement.

Cause: Reserved keyword used as a table or column nameREATETABLE
statement.
Action: Changeable or column name.

Table not found (DM_JDB_TABLE_NOT_FOUND)

Cause: Databadable does not exist.
Action: Create table, or quesystabs for table names in the database.

Temporary database error (DM_JDB_TMPDATABASE_ERR)

Cause: Unabléo create temporary database needed for processing.
Action: Check memory available.*

The number of values specified does not equal the number of
columns (DM_JDB_INVALID_VALUES_COUNT)

Cause: ImnINSERT statement, the number of columns in the column list and the
number of column values in the values list is not the same.
Action: CheckINSERT statements.

The subquery returned too many rows

(DM_JDB_SUBQ_TOO_MANY_ROWS)

Cause: Subguemeturned multiple rows when statement needs one value.
Action: Edit query to use diérent search conditions.

Type mismatch (DM_JDB_TYPE_MISMATCH)

Cause: Insertin@ character string into a column specified as integer
Action: JDB performs the insertion converting the character string to 0. Edit the
statement to the correct value.

Unresolved column reference (DM_JDB_UNRESOLVED_COLUMN_REF)

Cause: 1Misspelled column names in SQL statements. 2) Column values not
enclosed in single quotes. 3) Column listed iO&DERBY clause is not
in the select list. 4)Incorrect table name included in correlation name or
alias.

Action: Correct syntax and reissue statement.

114 JAM 7.0 Database Guide

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. Once a transaction is defined, the database engine attempts to complete all of
the statements in that transaction. If all of the statements cannot be completed, the
database can be restored to its prior state before the transaction started.

Using the videobiz database example, a customer comes to the front desk to rent a
video. When the clerk checks out the video, a transaction is started to perform the
following actions:

Insert the rental information into thentals table.

Update information about the custonsarentals in theustomers table.

Update information about the video tape status indes table.

If any of the statements fail, the transaction must be rolled back. If all of the
statements execute without any errors, the transaction can then be committed.

Database engines implement transaction processiiegettifly In JDB, after you
declare a connection, a transaction automatically starts on that connection.
Additional transactions can then be defined usomgmit androllback
commands.

Thecommit command saves the changes to the databaseollbaek

command undoes any changes made to the database since the start of the
transaction. The execution of eitle@mmit orrollback starts a new transaction.

115

JDB performs an automatic commit when you leavés@n or JISQL session.
You must issue mllback command if you do not want to save your database
changes.

The following statements from a JISQL script illustrate the sample rental
transaction which rents a video to a customer:

insert into rentals
(cust_id, title_id, copy_num, rental_date, due_back,
return_date, price, late_fee, amount_paid, rental_status,
rental_comment, modified_date, modified_by)
values
(3, 69, 2,'1993/10/29 19:56:00', '1993/11/01 00:00:00',
NULL, 3.50, 1.00, 3.50, 'C', NULL, '1993/10/29 19:56:00',
jenny?);

update customers set num_rentals = 75, rent_amount = 201.50
where cust_id = 3;

update tapes set status = 'O' where title_id = 69
and copy_num = 2;

$COMMIT;

116 JAM 7.0 Database Guide

JDB Utilities

This chapter describes the utilities available with JDB:
isqgl B Accesses a command-line interactive SQL utility
jdbroll B Updates a database using its journal files.
mksgl D Outputs SQL statements for the specified database.

toldata B Imports/exports data to and from a database.

117

isql

isql

Access a command line interactive SQL utility

isql database-name

database-name

Description

StartingISQL

Creating a New
Database

118

Specifiesthe name of the database@system if no database is available.

isgl is a command-line interactive editor for JDB that allows you to execute any
database statement. It is provided as a command-driven alternative to the JISQL
graphical environment described in Chapter 5.

Whileisgl and JISQL are similar in many respects, they are not identical. JISQL
has a series of macro commands that are not availabtg in any JISQL script
containing these commands will not run unidgr . Although the SQL commands
inisgl end with g as a termination charactatl JISQL commands terminate

with a; . Use the interactive SQL capability described in this chapter only if you
want to bypass the JISQL environment.

To startisgl , type:
$SMBASE/jdb/bin/isql database-name

wheredatabase-name is the name of an existing database or the system identifier
@system. The screen displays the following numeric prompt where you can enter
any JDB statementi>

If this is your first JDB session, or if you want to create a new database, first start
isgl . Generallyon UNIX systems, it is located #8MBASE/jdb/bin

isql

At the prompt, logon to JDB usir@system:

logon @system

Onceyou are connected, you can create a new database by typing:
create database database-name;

database-name must conform to the file naming conventions of the operating
system.

JAM 7.0 Database Guide

ExecutingSQL
Statements

Executing ISQL
Commands

Chapter 9 JDB Utilities

isql

To connect to the new database in order to create database tables and enter data,
enter the following command:

logon database-name

You can execute any SQL statement that is available in JBglin by ending
each database statement withs the command terminat&or example,

1> SELECT title_name, name, genre_code FROM titles;

A line without a trailing semi-colon is concatenated with the next line until a
semicolon is reached. Therefore, one statement can span multiple lines.

Table 16 lists the commands availablésin . These commands allow you to edit
a queryread in a query file, or execute an operating system command.

Note: These commands do not end with a semi-colon. Alsodér for these
commands to bescognized, each must start on the first character of a command
line.

119

isql

Table16. isql Commands

Command Syntax Description

clear clear Empties the input bédr. This command must start in
the first column of a new line.

comment # Specifies that the line is a comment.

commit commit Saves the additions and edits you have made to the data
base since the last commit or rollback or since connect
ing to the database.

edit edit Starts an editing shell for entering statements. The edit
ing program is determined by the environment variable
EDITOROr SMEDITOR

exit exit Exitsisql

list list Displays the last command that was executed.

logon logon database-name Connectdo another database file @rsystem.

logon @system

output output filename Redirectsoutput to a file. If you specifgutput with-
out a filename, it redirects output to the screen.

quit quit Quitsisql

read read filename Readsand executes the SQL commands in a text fe. T
execute more than one command, each command must
end with a semi-colon (;).

rollback rollback Undoes all additions and edits made to the database
since the last commit or rollback or since connecting to
the database.

system system command-name Executes the named operating system command.

Exiting ISQL To exitisgl , type:

120

exit

An automatic commit is generated when you exitighle session using either the

quit orexit commands. ¥u must specifyollback

if you do not want to keep

your database changes.

JAM 7.0 Database Guide

jdbroll

jdbroll

Restore a transaction log

jdbroll database-name journal-name [journal-name ...]

database-name

journal-name

Description

Chapter 9 JDB Utilities

Specifiesthe name of the database.

Specifies the name of the journal file(s).

jdbroll allows you to update the database based on your log files.

When you logon to a database for the first time, JDB creates a journal file named
j1 database-name. For the sample database supplied with JAM, the name would
bejlvideobiz . The next time you log on, the information in this file will be
copied to the filg0 database-name. If this file already exists, it will be overwit

ten.

121

mksq|l

mksq|

Translate an existing JDB database into its CREATE TABLE and INSERT statements

mksqgl database-name

database-name Specifiesthe name of the database.

Description mksgl uses an existing JDB database to output a set of SQL statements from
which the database could be rebuilt. For each table, it wrt&EATETABLE
statementfollowed by a series dNSERT statements for the data in the table.

Example

The following result set illustrates a portion of the output fomathers table in
thevideobiz database.

create table actors (
actor_id long not null,
last_name character(25) not null,
first_name character(20),
primary key (actor_id)

)i

insert into actors (
actor_id,
last_name,
first_name)

values (
1,
‘Abraham’
'F. Murray'

);
M

122 JAM 7.0 Database Guide

tbldata

tbldata

Read rows in a database table to/from text files

tbldata [xd delimiter] £x export-file database-name table-name
tbldata [xd delimiter] i import-file database-name table-name

+d Specifiesthe column delimiterThe delimiter character may need to be enclosed in
guotation marks. For example, to specify a space as the delimiter:

tbldata +d°°+x export-file database-name table-name
If no delimiter is specifiedbldata uses AB as the delimiter

X Logs onto the specified database and writes each row of the specified table to the
specified text file.

i Logs onto the specified database and inserts each row of the specified text file into
the specified table.

export-file Name of the text file where the data will be written.

import-file Name of the text file containing the data to be inserted into JDB.
database-name Name of the JDB database.

table -name Name of the database table.

Description tbidata can be used two dérent ways:

tbldata +x can convert rows in a database table to a text file.

tbldata +i can insert rows into a database table from a text file.
For both options, you must specify both the database and the database table.
When usingbldata +i , the database table must already exist. Also, the column

values must be listed in the same order as the columns in the database table.

Chapter 9 JDB Utilities 123

Keywords in JDB

This chapter lists the keywords specified in the ANSI standard for SQL. These
keywords cannot be used in JDB expressions and are, thus, unavailable for use as
table, column or database names.

all alter and
any as asc
authorization avg

begin between by
char character check
clear close cobol
commit continue count
create current cursor
database datetime dec
decimal declare default
delete desc distinct

125

126

double

edit

exec

fetch
foreign

from

go
group

having

key

language

logon

max

not

of

option

output

drop

end

exists

float

fortran

goto

indicator
integer

isnull

like

long

min

null

on

or

escape

exit

for

found

grant

insert

into

list

module

numeric

open

order

JAM 7.0 Database Guide

pascal
primary

privileges

quit

read

rollback

save
select
some

sqlerror

table

union

using

view

with

Chapter 10 Keywords in JDB

pli
precision

procedure

real

schema
set

sql

sum

to

update

values

whenever

work

precision
primary

public

references

section
smallint
sqglcode

system

user

where

127

SECTION TWO

Databasdreference

Chapterll DBMS Statements and Commands. 131
Chapter 12 DBMS Global Mriables 183
Chapter 13 Keywords in JAMS Database Drivers. 199

DBMS Statements and
Commands

This chapter describes tlBMScommands supported by all database engines.

These commands are executed with the JPL commamdor the C library
functiondm_dbms DBMScommands that are specific to a database engine are
described in the Database Drivers section. This includes the transaction commands
and any special feature commands.

SinceDBMSs a JPL command, using these commands inside a JPL statement must
follow all the conventions for JPL.

DBMS Command Summary

Selecting a
Database
Engine

Thefollowing listing is a summary of tieBMScommands by categorome
commands may appear in more than one category

ENGINE
Sets the default database engine for the application.

WITH ENGINE
Sets the default engine for the duration of a command.

131

Using CLOSE CONNECTION
Connections Closes a named connection.

CLOSE_ALL_CONNECTIONS
Closes all connections on the named or default engine.

CONNECTION
Sets a default connection and engine for the application.

DECLARE CONNECTION
Declares a named connection to a database engine.

WITH CONNECTION
Sets the default connection for the duration of a command.

Using Cursors CLOSE CURSOR
Closes a cursor

CONTINUE
Fetches the next screenful of rows from a select set.

DECLARE CURSOR
Declares a named cursor

EXECUTE
Executes a named cursor

WITH CURSOR
Specifies the cursor to use for a statement.

Executing SQL SQL

Statements Specifies a SQL statement to be passed to the database engine for processing.
Changing ALIAS
SELECT Names a JAM variable as the destination of a selected column or an aggregate
Behavior function.

BINARY

Creates a JAM variable for fetching binary values.

132 JAM 7.0 Database Guide

Paging through
Multiple Rows

Handling Binary
Data

CATQUERY
RedirectsSELECTresults to a file or a JAM variable.

COLUMN NAMES
Maps a database column name to a JAM variable.

FORMAT
Formats the results of @GATQUERY

OCCUR

Sets the number of rows for JAM to fetch to an array and choose an occurrence
where JAM should begin writing result rows.

START
Sets the first row for JAM to return from a select set.

UNIQUE
Suppresses repeating values in a selected column.

CONTINUE
Fetches the next screenful of rows from a select set.

CONTINUE_BOTTOM
Fetches the last screenful of rows from a select set.

CONTINUE_DOWN
Fetches the next screenful of rows from a select set.

CONTINUE_TOP
Fetches the first screenful of rows from a select set.

CONTINUE_UP
Fetches the previous screenful of rows from a select set.

STORE FILE

Stores the rows of a select set in a temporary file so that the application may scroll
through the rows.

BINARY
Defines one or more binary variables.

Chapter 11 DBMS Statements and Commands 133

Status and Error ONENTRY

Processing

Installsa function or JPL procedure which JAM will call before executiD@®S
statement.

ONERROR

Installs a function or JPL procedure which JAM will call wheneveB®IS
statement fails.

ONEXIT

Installs a function or JPL procedure which JAM will call after executingds
statement.

Command Descriptions

134

Therest of this chapter contains a reference page for@aigiscommand, in
alphabetical ordeThe commands in this chapter may be executed with the JPL
commandBMSor the library functionim_dbms Some database engines may
support additional commands. For a list of idScommands supported on each
engine, refer to the Database Drivers section.
Each reference page contains the following information:

The command name.

Usage synopsis, where

[x] indicates an optional elemerf.the brackets should not be typed.

X... indicates the element may be repeated one or more times.

literal indicates a word to be typed verbatim; includes examples and
literal entries.

italics indicates screen names, file names, column names, and variables;
replace them with the appropriate values for your application.

A full description of the command, with an explanation of its parameters,
outputs, and actions.

One or more examples of JPL procedures demonstrating how the command is
used.

JAM 7.0 Database Guide

ALIAS

ALIAS

Sets aliases for a declared or default SELECT cursor

DBMS[WITHCURSOR cursor] ALIAS [column jamvar\
[, column jamvar ...]]

DBMS[WITHCURSOR cursor] ALIAS [jamvar [, jamvar ...]]

WITHCURSOR cursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

SELECTcursor

column Name of the column in the database table.

jamvar Name of the JAM variable to contain the data.

Description By default, database values are written to JAM variables with the same names as
the selected columns. UBBMSALIAS to map a database column or value to any
JAM variable.

If a column name is given, the column is associated with the variable name that
follows it. For example:

DBMSALIAS name title, film_minutes length

If the database colunmame is selected with the default cursits value is written
to the JAM variableitle . If the columnrfilm_minutes is selected with the
default cursarits value is written to the JAM variallngth . For all other
columns selected with the default curgbe columrs value is written to a variable
with the same (unqualified) name as the selected column.

If column contains characters not permitted in JAM identifiers, enclasenn in
quotes to ensure correct parsing. For example:

DBMSALIAS °lasttname® last_name

The case otolumn needs to match the setting of the case flag used to initialize the
database engine. For example, if the case flayisFORCE_TO_LOWER_CASE
column must be typed in lower case. The caspmabar must be the case used to
name the JAM variable. Jimvar does not exist, JAM ignores the column when it
executes th8ELECT The case setting for each database engine is described in the
Database Drivers section of the documentation.

Chapter 11 DBMS Statements and Commands 135

ALIAS

Example

136

If nocolumn amguments are given, the association is positional. For example:
DBMSALIAS title_var, , abc

If the above statement is executed, then each time values are selected with the
default cursqrJAM will write the values of the first and third columns to the JAM
variablegitle_var andabc respectivelyFor all other columns selected with the
default cursqrJAM will write to a variable with the same (unqualified) name as

the selected column. The order of column names isEwECTstatement

determines the mapping. The casgaofvar must be the case used to name the

JAM variable. Ifiamvar does not exist, JAM simply ignores the column when it
executes th6éELECT Named and positional aliases may not be assigned in a single
statement.

Only oneDBMSALIAS statement is allowed for each curstne lasDBMSALIAS
statementalled is the one currently infeét.

If aliases are declared foIGATQUER¢uUrsor with thedEADINGON option, JAM

uses the aliases rather than the column names to build the heading. The alias for a
column selected with @ATQUERuUrsor may be enclosed in quotes. This permits

a column heading to use embedded spaces. For example:

DBMSDECLARE t_cursor CURSOR FOR\
SELECT title_id, name, pricecat FROM titles
DBMS WITH CURSOR t_cursor CATQUERY TO FILE t_list
DBMS WITH CURSOR t_cursor ALIAS \
°Title ID°, Name, °Price Category®
DBMS WITH CURSOR t_cursor EXECUTE

Aliasing for a cursor is turned by executing th®BMSALIAS command with no
arguments. Closing a cursor also turnsadiasing. If a cursor is redeclared without
being closed, the cursor keeps the aliases. Aliases ddedtisEERT, UPDATE

or DELETEstatements.

TheALIAS command is necessary if the name of a selected column is not a valid
JAM variable name, if the application is selecting values frofereift tables

which use the same column name fofedtént values, or if a selection is not a
column value, but the value of an aggregate function or select expression.

Assign named aliases for a declared cursor.

DBMS DECLARE x CURSOR FOR\

SELECT title_id, copy_num, status FROM tapes
DBMS WITH CURSOR x ALIAS \

title_id code, copy_num copy, status current_status
DBMS WITH CURSOR x EXECUTE
DBMS WITH CURSOR x ALIAS

JAM 7.0 Database Guide

See Also

Set a positional alias for the 2nd and 4th columns.
Use automatic mapping for the 1st and 3rd columns.

DBMS ALIAS , var_x, , var_y
DBMS SQL SELECT title_id, name, genre_code, release_date \
FROM titles

JAM will write

Column title_id to Variable title_id,

Column name to Variable var_x,

Column genre_code to Variable genre_code, and
Column release_date to Variable var_y.

Note how the mappings change when the columns are
listed in another order.

DBMS SQL SELECT name, genre_code, release_date, title_id \

FROM titles
JAM will write
Column name to Variable name,
Column genre_code to Variable var_x,
Column release_date to Variable release_date, and
Column title_id to Variable var_y.

CATQUERYWITHCURSOR

Chapter 11 DBMS Statements and Commands

ALIAS

137

BINARY

BINARY

Defines JAM variables for fetching binary values

DBMSBINARY variable [, variable ...]

variable

Description

138

Name of the binary variable JAM will create. The variable can contain the number
of occurrences and/or a length. Refer to the Description for more information.

Many database engines support a binary data type for bytes strings and other non-
printable data. There are two ways an application can fetch binary values to JAM
variables (widgets, LDB variables, or JPL variables):

Fetch to variables created with the commBaBYIBINARY .
Fetchto text widgets which have the @ge property set to Hex Dec.

Variables created withBMSBINARY can hold binary data. For variables with the
C Type property set to Hex Dec, JAM converts the binary data to hexadecimal
strings.

The definition for a variable created witlBMBINARY may include a number of
occurrences and/or a length. If a number of occurrences is supplied, it must be
enclosed in square brackets. If a variable length is supplied, it must be enclosed in
parentheses. If both are supplied, the number of occurrences must be first. Any of
the following are permitted:

db_binvar

db_binvar [10] (255)
db_binvar [5]
db_binvar (8)

Any valid JAM variable name is a leggiINARY variable name. The default

number of occurrences is 1, and the default length is the maximum, 255. Memory
is allocated for the occurrences when they are used (that is, when a binary column
is fetched).

If an application is selecting a binary column, use this command to create a binary

variable for the column. The variable may have the same name as the column, or it
may be mapped to the column witBMSALIAS . Because a binary variable is a

JAM 7.0 Database Guide

BINARY

targetof aSELECT JAM will examine its number of occurrences when determin

ing how many rows to fetch. Therefore, the binary variable should have the same
number of occurrences as the other JAMeawariables. When searching for

target variables, JAM searches among the binary variables before searching among
the JAM variables. du are responsible for ensuring that the binary variable names
do not conflict with JAM variable names.

Binary variables can also be included in tH&ING clause of DBMEXECUTE
statementlf no occurrence is given for the variable, the first occurrence is the
default.

Once defined, a binary variable is available to the rest of the application. Note that

DBMSBINARY db_binvar[10]
DBMS BINARY timestamp[100]

is the same as

DBMSBINARY db_binvar[10] timestamp[100]

To delete all binary variables, execmBMIBINARY with no aguments:
DBM3INARY

SeverallJAM library functions are provided for accessing and manipulating binary
variables. These functions are only available in C. For more information on each
function, refer to th&anguage Refence

Example # °timestamp® is a binary column and °timeval®
#is a binary variable.

DBMS BINARY timeval
DBMS ALIAS timestamp timeval
DBMS SQL SELECT id, name, price, timestamp FROM products

DBMS DECLARE upd_cursor CURSOR FOR\
UPDATE products SET price = ::priceval \
WHERE id = ::idval and timestamp = ::timeval

DBMS WITH CURSOR upd_cursor EXECUTE \
USING priceval, idval, timeval

See Also dm_bin_create_occur , dm_bin_delete_occur , dm_bin_get_dlength
dm_bin_get_occur ,dm_bin_length , dm_bin_max_occur ,
dm_bin_set_dlength

Chapter 11 DBMS Statements and Commands 139

CATQUERY

CATQUERY

Concatenates a full result row to a JAM variable or a file

DBMS[WITHCURSOR cursor] CATQUERY TO jamvar \
[SEPARATOR text®] [HEADING [ON| OFF 1]

DBMS[WITHCURSOR cursor] CATQUERY TO FILE file \
[SEPARATOR text® | [HEADING [ON| OFF 1]

WITHCURSOR cursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

TO jamvar

TO FILE file

SEPARATOR %ext°®

HEADING ON

HEADING OFF

Description

140

SELECTcursor
Names a JAM variable as the destination.

Names a text file as the destination. If the file already exists, it is overwritten when
the SELECTIs executed.

Specifies that JAM should ugext to separate column values in a result.rote
default is two blank spaces.

Specifies that JAM should put a heading at the beginning of the select results. This
is the default for a catquery to a file. The heading is built using the column names
or any aliases assigned to the cursbie maximum length of a heading is 255
characters. Any additional characters are truncated.

Specifies that JAM should not use a heading. This is the default for a catquery to a
JAM variable.

The result columns of BELECTstatement are usually mapped to individual-vari
ables. Us€ATQUERYo map full result rows to a varialdedccurrences or to a text
file.

JAM attempts to format the column values by searching for JAM variables of the
same name and using their attributes for length, precision, and date-time or
currency edits. The application may override any default formatting with the
commanMdBMSFORMAT

The catquery for a cursor is turned bfy executing th®BMSCATQUERY

commandwith no aguments. Closing a cursor also turntbé catquerylf a

cursor is redeclared without being closed, the cursor keeps the catquery destination
as the cursos SELECTdestination.

JAM 7.0 Database Guide

Catqueryto a \ariable

Catquery to a @xt File

Example

CATQUERY

Whenthe catquery destination is a JAM variable, JAM concatenates a result row
and writes it tgamvar when theSELECTis executed. lfamvar is an LDB or

onscreen arrayJAM writes the result rows to the array occurrences. If there are
more result rows than occurrencegaimnvar, useDBMSCONTINUE to fetch the
additional rows.

If the clauseHEADINGON is used, JAM creates a heading by using the carsor
aliases and column namesjalfwar has two or more occurrences, JAM will put
the heading in the first occurrencejafivar.

When the catquery destination is a text file, JAM writes all the result rows to the
specified text file when thBELECTis executed. Any existing file with the same
name is overwritten. If a result row is longer than the page width, JAM wraps the
row to the next line.

If aliases have been specified for the curddM uses those aliases as column
headings in the text file. If there are no aliases, JAM uses the columns' names. If
the clauseHiEADINGOFF is used, JAM does not print a heading.

Since all result rows are written to the file, DBVSCONTINUE commands should
not be used with @ATQUERYO FILE cursor while the file is open.

The file remains open untiBMSCATQUERYis reset or the cursor is closed.

Select a customer's first and last name
and concatenate the values in the field °fullname®.

DBMS DECLARE name_cursor CURSOR FOR\\
SELECT last_name, first_name FROM customers \
WHERE cust_id = :+cust_id

DBMS WITH CURSOR name_cursor CATQUERY TO fullname \
SEPARATORY®, ©

DBMS WITH CURSOR name_cursor EXECUTE

Select the maximum value from the column °cost®
and write it to the JPL variable °hi_cost°®

formatting it with currency edit saved with the

LDB variable °money_var®.

vars hi_cost
DBMS DECLARE max_cursor CURSOR FOR\

SELECT MAX(price) FROM pricecats
DBMS WITH CURSOR max_cursor CATQUERY TO hi_cost
DBMS WITH CURSOR max_cursor FORMAT money_var
DBMS WITH CURSOR max_cursor EXECUTE

Chapter 11 DBMS Statements and Commands 141

CATQUERY

See Also

142

Write the results of the default SELECT cursor
to a file with heading. Turn off ALIAS and CATQUERY
when finished.

proc file_list

DBMS CATQUERY TO FILE titlelist

DBMS ALIAS title_id °Title ID°, name °Title®\
film_minutes °Length®, pricecat °Price Category®

DBMS SQL SELECT title_id, name, film_minutes, pricecat
FROM titles

DBMS CATQUERY

DBMS ALIAS

return

ALIAS , FORMAT

JAM 7.0 Database Guide

CLOSE_ALL_CONNECTIONS

CLOSE_ALL_CONNECTIONS

Closes all connections on an database engine

DBMS[WITHENGINE engine] CLOSE_ALL_CONNECTIONS

WITHENGINE Namesthe engine for which connections are to be closed. If the clause is not used,
engine JAM closes all the connections on the default engine.
Description WhenDBMSCLOSE_ALL_CONNECTIONS$s executed, JAM closes every cormnec

tion which the application declared either on the named database engine or on the
default engine. For each connection, it closes all cursors belonging to the-connec
tion, disconnects from the database engine, and frees all structures associated with
the connection.

If the application accesses multiple engines, you should includgIThENGINE
clauseand issue the statement for each engine used in the application.

Example # This procedure closes the error handler and
then closes all connections.

proc logoff
DBMS ONERROR

DBMS CLOSE_ALL_CONNECTIONS
return

Variants DBMS CLOSE CONNECTION connection]

See Also DECLARECONNECTION dm_is_connection

Application Development Guid€hapter 12.

Chapter 11 DBMS Statements and Commands 143

CLOSE CONNECTION

CLOSE CONNECTION

Closes a declared connection

DBMSCLOSE CONNECTION[connection]

connection Names the connection to be closed. If the connection name is not included, it
closes the connection on the default connection.

Description ExecutingDBMSCLOSE CONNECTIONcloses all open cursors associated with the
named or default connection, log$ thfe connection from its database engine, and
frees the connection data structure.

Example # This procedure closes the error handler and
then closes the specified connection.

proc logoff
DBMS ONERROR

DBMS CLOSE CONNECTION c1
return

See Also DECLARE CONNECTIONVITHCONNECTION CLOSE_ALL_CONNECTIONS
dm_is_connection

Application Development Guid€hapter 12.

144 JAM 7.0 Database Guide

CLOSE CURSOR

CLOSE CURSOR

Closes a named or default cursor

DBMSCLOSE CURSOR] cursor]
DBMSNITH CONNECTION connection CLOSE CURSOR

cursor

WITHCONNECTION
connection

Description

Example

See Also

Nameof the cursor to be closed.ddrsor is not listed, JAM closes the default
SELECTcursor

Names the connection having the default cursor to be closed.

DBMSCLOSE CURSORcloses an open curs@losing a cursor frees all structures
associated with the cursor

Closing a cursor is convenient way of turnin§af attributes assigned to the
cursor with thebBMScommandsaLIAS , CATQUERYCOLUMN_NAMEBORMAT
OCCURSTART STOREFILE , TYPE andUNIQUE

If cursor is not given, JAM closes the defaBELECTcursor A connection may
also be specified when closing a default curdaM will automatically declare
another defaulsELECTcursor when needed. A connection name should not be
given when closing a hamed cursor

Closing a connection also closes all cursors associated with the connection.

Assign a catquery and aliases to the default SELECT
cursor. Close the cursor when finished.

DBMS CATQUERY TO FILE titlelist

DBMS ALIAS title_id °Title ID°, name °Title®\
film_minutes °Length®, pricecat °Price Category®

DBMS SQL SELECT title_id, name, film_minutes, pricecat
FROM titles

DBMS CLOSE CURSOR

DECLARE CURSOREXECUTEWITHCURSOR CLOSE_ALL_CONNECTIONELOSE
CONNECTIONdm_is_cursor

Chapter 11 DBMS Statements and Commands 145

COLUMN_NAMES

COLUMN_NAMES

Map column names into JAM variables using a SQL SELECT statement

DBMS[WITHCURSOR cursor] COLUMN_NAMES jamvar [, jamvar ...]]

jamvar Name of the JAM variable to contain the column name.

WITHCURSOR cursor Names a declaresELECTcursor If the clause is not used, JAM uses the default
SELECTcursor

Description DBMSCOLUMN_NAMESetches the column names, not the column data, into JAM
variables when a SQ&ELECTstatement is executed.

The correspondence between the JAM variable and the column is positional. The
first JAM variable named in thHeBMSCOLUMN_NAMESommand will contain the

name of the first column listed in the SQELECTstatement. If the number of

JAM variables is greater than the number of columns, the remaining JAM variables
will be ignored. If the number of columns is greater than the number of JAM
variables, the remaining columns are ignored.

If the SQLSELECTstatement includes data which is not a column, like an
aggregate function, then the value written to the JAM variable is whatever is
returned from the database engine.

A JAM variable can be a JAM widget or JPL variable. If the JAM variable is an
array or multi-occurrence widget, the column name will appear in the first
occurrence unless a particular occurrence is specified.

Only oneDBMSCOLUMN_NAMEStatement is allowed for each curstne last
DBMSCOLUMN_NAMEStatement called is the one currently ifeef.

Column name aliasing for a cursor is turneichgfexecuting th®BMSCOL-
UMN_NAMESommand with no guments. Closing a cursor also turns it tfa
cursor is redeclared without being closed, the cursor keeps the aliases.

146 JAM 7.0 Database Guide

COLUMN_NAMES

Example # Assign column name aliases for a declared cursor.
The column names are written to id_title, copy _title
and status_title.
The data is written is title_id, copy_num and status.

DBMS DECLARE x CURSOR FOR\\
SELECT title_id, copy_num, status FROM tapes
DBMS WITH CURSOR x COLUMN_NAMES\
id_title, copy_title, status_title
DBMS WITH CURSOR x EXECUTE
DBMS WITH CURSOR x COLUMN_NAMES

Assign column name aliases for the default cursor
DBMS COLUMN_NAMES id_title, copy_title, status_title
DBMS SQL SELECT title_id, copy_num, status \

FROM tapes
DBMS COLUMN_NAMES

Chapter 11 DBMS Statements and Commands 147

CONNECTION

CONNECTION

Sets or changes the default connection

DBMSCONNECTION connection

connection Namesthe connection to set as the default.

Description If an application has declared two or more connections, the application may set a
default connection witbBMSCONNECTION The default connection is used for all
subsequents statements that do not Wg&rel CONNECTIONor WITHCURSOR
clause.

Example # conl is set to be the default connection.
The INSERT statement has a WITH CONNECTION clause
using connection con2.
The SELECT statement uses the default connection.

DBMS ENGINE sybase

DBMS DECLARE conl CONNECTION FOR USER °:uname®\
PASSWORD °:pword® SERVER °s1° DATABASE °master°

DBMS DECLARE con2 CONNECTION FOR USER °:uname®\
PASSWORD °:pword® SERVER ©°s2° DATABASE °videobiz®

DBMS CONNECTION conl

DBMS WITH CONNECTION con2 DECLARE c1 CURSOR FOR\\
INSERT INTO tapes (title_id, copy_num, status) \
VALUES (::title_id, ::copy_num, ::status)

DBMS WITH CURSOR c1 EXECUTE USING title_id, copy_num, status

DBMS SELECT title_id, name FROM titles

See Also CLOSE CONNECTIONDECLARECONNECTIONWITHCONNECTION
dm_is_connection

148 JAM 7.0 Database Guide

CONTINUE

CONTINUE

Fetches the next set of rows associated with a default or named SELECT cursor

DBMS[WITHCURSOR cursor] CONTINUE

WITH CURSORcursor Namesa declareELECTcursor If the clause is not used, JAM uses the default
SELECTcursor

Description If a SELECTstatement retrieves more rows than will fit in its destination variables,
JAM will return only as many rows as will fit. It continues fetching more rows
from the select set when the application executes this command. If there are pend
ing rows, executing this command clears the destination variables, and fetches the
next screenful of rows from the select set. If there are no pending rows, executing
this command does nothing.

Note that if the cursés aliases have changed between the execution 8EIHECT
and the execution @BMSCONTINUE, DBMSCONTINUE uses the new settings.

This command should not be used withATQUERYO FILE cursor CATQUERY
TOFILE always writes out the entire select set toCth&QUERYile.

Example # This procedure fetches the specified rows
and calls the JPL procedure check_count.

proc get_selection
DBMS DECLARE movie_list CURSOR FOR\

SELECT * FROM titles WHERE genre_code = ::genre_code
DBMS WITH CURSOR movie_list EXECUTE USING genre_code
call check_count
return

This procedure sets the message line according
to the number of rows available.

proc check_count
if @dmretcode '= DM_NO_MORE_ROWS
msg setbkstat °Press %KPF1 to see more films ©\
°or press %KPF2 to specify another type.°
else
msg setbkstat °That's all folks!®
return

Chapter 11 DBMS Statements and Commands 149

CONTINUE

This procedure is called by pressing PF1.
It retrieves the next set of rows.

proc get_more

DBMS WITH CURSOR movie_list CONTINUE
call check_count

return

See Also CONTINUE_DOWRONTINUE_BOTTOMONTINUE_TOPCONTINUE_UPSTORE

150 JAM 7.0 Database Guide

CONTINUE_BOTTOM

CONTINUE_BOTTOM

Fetches the last page of rows associated with the default or named SELECT cursor

DBMS[WITHCURSOR cursor] CONTINUE_BOTTOM

WITHCURSOR cursor Namesa declaredsELECTcursor If the clause is not used, JAM uses the default
SELECTcursor

Description DBMSCONTINUE_BOTTOMetches the last screenful of rows from the cussor
select set. If the number of rows in the select set is less than the number of occur
rences in the JAM variables, JAM will ignore the request.

Some database engines automatically support this command. Other engines require
a temporary storage file created by the comnzBMSSTORE FILE . If JAM

returns thedM_BAD_CMerror when the application executes this command, the
engine needs a scrolling file. For information about a specific engine, refer to the
Database Drivers section of the documentation.

This command should not be used withATQUERYO FILE cursor

Example # Engines not requiring STORE FILE.
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_last
DBMS WITH CURSOR t_cursor CONTINUE_BOTTOM
return

Engines requiring STORE FILE.

proc select_all

DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE

DBMS WITH CURSOR t_cursor EXECUTE

return

proc get_last
DBMS WITH CURSOR t_cursor CONTINUE_BOTTOM
return

See Also CONTINUE CONTINUE_DOWRONTINUE_TOPCONTINUE_UPSTORE

Chapter 11 DBMS Statements and Commands 151

CONTINUE _DOWN

CONTINUE _DOWN

Fetches the next set of rows associated with the default or named SELECT cursor

DBMS[WITHCURSOR cursor] CONTINUE_DOWN

WITHCURSOR cursor Namesa declareELECTcursor If the clause is not used, JAM uses the default

SELECTcursor
Description DBMSCONTINUE_DOWI identical taDBMSCONTINUE.
Example # This procedure selects the rows from the table.

proc select_all

DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE

return

This procedure fetches the next set of rows.
proc get_more

DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

See Also CONTINUE CONTINUE_BOTTOMONTINUE_TOPCONTINUE_UPSTORE

152 JAM 7.0 Database Guide

CONTINUE_TOP

CONTINUE_TOP

Fetches the first page of rows associated with the default or named SELECT cursor

DBMS|[WITHCURSOR cursor] CONTINUE_TOP

WITHCURSOR cursor Namesa declareSELECTcursor If the clause is not used, JAM uses the default

Description

Example

See Also

SELECTcursor

DBMSCONTINUE_TOPfetches the first screenful of rows from the cursselect
set. If the number of rows in the select set is less than the number of occurrences in
the JAM variables, JAM will ignore the request.

Some database engines automatically support this command. Other engines require
a temporary storage file created by the comnizBIdSSTORE FILE . If the

engine needs such a file and the application tries to exeBMECONTINUE_TOP

without executingDBMSSTORE, JAM returns the errddM_BAD_CMD-or

information about a specific engine, refer to the Database Drivers section of the
documentation.

Engines not requiring STORE FILE

proc select_all

DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE

return

proc go_to_start
DBMS WITH CURSOR t_cursor CONTINUE_TOP
return

Engines requiring STORE FILE

proc select_all

DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE

DBMS WITH CURSOR t_cursor EXECUTE

return

proc go_to_start

DBMS WITH CURSOR t_cursor CONTINUE_TOP
return

CONTINUE CONTINUE_BOTTOMONTINUE_DOWKRONTINUE_UPSTORE

Chapter 11 DBMS Statements and Commands 153

CONTINUE_UP

CONTINUE_UP

Fetches the previous page of rows associated with the default or named SELECT
cursor

DBMS[WITH CURSOR cursor] CONTINUE_UP

WITH CURSORcursor Namesa declareELECTcursor If the clause is not used, JAM uses the default
SELECTcursor

Description DBMSCONTINUE_UPscrolls backwards through a select set. If number of rows in
the select set is less than the number of occurrences in the JAM variables, JAM
will ignore the request.

Some database engines automatically support this command. Other engines require
a temporary storage file created by the comnizBIdSSTORE FILE . If the

engine needs such a file and the application tries to exeBMECONTINUE_UP
beforeexecutingpBMSSTORE, JAM returns the errdbM_BAD_CMD-or

information about a specific engine, refer to the Database Drivers section of the
documentation.

This command should not be used withATQUERYO FILE cursor

Example # Engines not requiring STORE FILE
proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_back

DBMS WITH CURSOR t_cursor CONTINUE_UP
return

154 JAM 7.0 Database Guide

CONTINUE_UP

Engines requiring STORE FILE

proc select_all

DBMS DECLARE t_cursor FOR SELECT * FROM title
DBMS WITH CURSOR t_cursor STORE FILE

DBMS WITH CURSOR t_cursor EXECUTE

return

proc go_back
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

See Also CONTINUE CONTINUE_BOTTOMONTINUE_DOWKONTINUE_TOPSTORE

Chapter 11 DBMS Statements and Commands 155

DECLARE CONNECTION

DECLARE CONNECTION

Creates a named connection to a database engine

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
[FOR option arg ...]

WITHENGINE Names the engine to associate with the connection. If the clause is not used, JAM

engine opens the connection on the default engine.

connection Names the connection to be opened.

option Names an option for the connection. The names and number of available options is
engine-specific.

arg The value assigned to the option.

Description DBMECLARE CONNECTIONpens a session on a database engine. If this state

ment executes successfuiyallocates a connection structure and adds it to the list
of open structures.

Applications which must connect to two or more servers should declare a named
connection to each servdfryou are connecting to two or more database engines,
you must declare a connection for each engine.

The combination of necessary or supported options is engine-specific. Common
options include&JSER PASSWORMATABASEandSERVERFor a list of the valid
options, refer to the Database Drivers section of the documentation.

The connection remains open until it is closed BBEMSCLOSE CONNECTIONor
DBMSCLOSE_ALL_CONNECTIONS

Example # This procedure connects to the database.
#
proc logon
DBMS DECLARE c1 CONNECTION FOR USER °:.user®
PASSWORD °:pword® DATABASE °:dbase®
return

See Also CLOSE CONNECTIONCLOSE_ALL_CONNECTIONEONNECTIONWITH

CONNECTIONdm_is_connection

Database Drivers section.

156 JAM 7.0 Database Guide

DECLARE CURSOR

DECLARE CURSOR

Declares a named cursor for a DBMS SQL statement

DBMS[WITHCONNECTION connection] DECLARE cursor CURSOR \
FOR SQL-statement

WITH CONNECTION Namesthe connection to associate with the curdhe clause is not used, JAM

connection opens the cursor on the default connection.

cursor Names the cursor to be created.

SQL-statement The SQL statement to be performed when the cursor is executed.
Description UseDBMSDECLARE CURSORO create or redeclare a named cursor

If the application has not already declacadsor, JAM allocates a new cursor
structure and adds its name to the list of declared cursors.

If a structure already exists foursor and the connection is the same, JAM
reinitializes the structure. Re-initialization clears any informatioBEILECT

columns and binding parameters. It does not clear any attributes assigned to the
cursor with the statements:

DBMS&ALIAS

DBMS CATQUERY
DBMS COLUMN_NAMES
DBMS FORMAT

DBMS OCCUR

DBMS START

DBMS STORE FILE
DBMS TYPE

DBMS UNIQUE

Chapter 11 DBMS Statements and Commands 157

DECLARE CURSOR

Example

See Also

158

JAM will use these settings if the cursor is redeclared wthla&CTstatement. It

will ignore the attributes if the cursor is redeclared withNSERT, UPDATE or
DELETEstatement. @ redeclare the cursor with a new (empty) structure, close the
cursor withDBMSCLOSE CURSORbefore executing the new declaration.

If a cursor is redeclared on another connection, JAM automatically closes the
cursor and declares a new structure.

The cursor remains open until it is explicitly closed with the comranis
CLOSECURSOR Closing a connection also closes all cursors on the connection.

There are few restrictions on valid cursor names. Howsgweershould avoid using
anyDBM$JDB, or JAM keyword as a cursor name. Please note that JAM is case
sensitive regarding cursor names; for example, it interprets arsw distinct

from cursorC1.

For information on the format of parameters in the SQL statement, refer to
Chapters 13 and 15 in tigplication Development Guide

When the following statement is executed, it fetches
a list of actors in the specified video.

proc s_entry
DBMS WITH CONNECTION c1 DECLARE act_cursor CURSOR FOR\\
SELECT actors.first_name, actors.last_name, roles.role \
FROM actors, roles \
WHERE actors.actor_id = roles.actor_id \
AND roles.title_id = ::film_code

proc execl
DBMS WITH CURSOR t_cursor EXECUTE USING film_code
return

CLOSE CURSOREXECUTEWITHCURSOR dm_is_cursor

JAM 7.0 Database Guide

ENGINE

ENGINE

Sets or changes the default database engine

DBMSENGINE engine

engine Namesthe default database engine when two or more engines are initialized.
engine is the mnemonic assigned to the database engine in thbiifiiec or
in JAM7.INI .

Description If an application has initialized two or more database engines, the application may

useDBMENGINE to set a default engine. If an application has only one initialized
engine, JAM automatically assigns that engine as the default.

For more information on initializing database engines, refer to Chabpterthie
Application Development Guide

Example # This procedure declares two connections,
sets oracle to be the default engine, and
then declares and executes a cursor on the
default engine.

proc entry

DBMS WITH ENGINE oracle DECLARE c1 CONNECTION FOR\\
USER ©°:user® PASSWORD °:pword®

DBMS WITH ENGINE sybase DECLARE c2 CONNECTION FOR\
USER °:user® PASSWORD °:pword® SERVER °maple® \
DATABASE °sales®

DBMS ENGINE oracle

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles

DBMS WITH CURSOR t_cursor EXECUTE

return

See Also WITH ENGINE, dm_is_engine

Chapter 11 DBMS Statements and Commands 159

EXECUTE

EXECUTE

Executes the DBMS SQL statement declared for a named cursor

DBMSNITH CURSOR cursor EXECUTE [USING args]

WITH CURSORcursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

SELECTcursor
args The JAM variables containing parameter values.
Description UseDBMEXECUTEto execute the statement associated with a declared.cursor

This statement does not support thidFH CONNECTIONclause. JAM uses the
database engine that was specified either by name or by default when the cursor
was declared. The only way to change the clssargine or connection is to
redeclare the cursor

If an application is executing a similar statement many times, it is often more
efficient to declare a cursor for the statement. Usually the database engine saves
the parsed statement, executing it when the application executes theltigsut
necessary to redeclare the cursor to supply new dataNfBIERBr VALUES

clause. Instead, the application may declare the cursor and use a substitution
parameter for each value that the application will supply when it executes the
cursor Substitution parameters begin with a double colon (::). For example:

DBMSDECLARE c1 CURSOR FOR\\
SELECT * FROM titles WHERE name LIKE ::name_parm

name_parm is simply a place holder for the value that will be supplied when the
cursor is executed. For example:

DBMSWVNITH CURSOR c1 EXECUTE USING °St%°

This command would fetch rows wheteme began with the characters 2St.° The
application could execute the cursor repeatestigh time with a new value. It may
use the value of a field to supply a value. For example:

DBMSWVITH CURSOR cl1 EXECUTE USING aname

160 JAM 7.0 Database Guide

Example

See Also

EXECUTE

Sinceaname is not quoted, JAM assumes it is a JAM variable. If gu@ent in
theUSING clause is a widget or LDB variable with a date-time, curremay field,
or type edit, JAM formats the varialderalue before passing it to the database
engine.

This topic is covered in detail in Chapter 15 of Application Development
Guide

DBMSDECLARE x CURSOR FOR\\
SELECT * FROM tapes WHERE title_id=::p1 AND copy_num=::p2

bind by position:
DBMS WITH CURSOR x EXECUTE USING code, copy_id
or bind by name:

DBMS WITH CURSOR x EXECUTE\
USING p1 = code, p2 = copy_id

DECLARE CURSOFRCLOSECURSOR CONTINUEWITHCURSOR

ApplicationDevelopment Guide&Chapter 15.

Chapter 11 DBMS Statements and Commands 161

FORMAT

FORMAT

Formats CATQUERY values

DBMS[WITHCURSOR cursor] FORMAT [[column] format\
[, [column] format ...]]

WITHCURSOR cursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

SELECTcursor

column Names a selected column. The caseotfimn should match the setting of the case
flag for the database engine. If columns are not named, the formats are applied by
position.

format Describes how JAM should format the valfeemat is either a JAM variable or a

quoted precision edit.

Description UseDBMSFORMATto formatCATQUERYalues before writing them to a variable
or a text file. The options are explained below

If format is a JAM variable, JAM formats the column value as if it were writing to
the field. In particularthe following characteristics will f&fct the formatting:

variables maximum shifting length
variables JAM type

For more information about formatting select results, refer to page 234 in the
Application Development Guide

format may also be a precision edit. A precision edit is a quoted string beginning
with a percent sign. It supplies the length of the value, and optipaallcimal
precision for numeric values.

A precision is given in the form
%%%widthe
%%width.precision®

To turn of formatting on the default or named cursexecute the command with
no aguments.

162 JAM 7.0 Database Guide

FORMAT

Example # use column Ctitle_id® and °copy_num® exactly as returned
format column °due_back® with the LDB variable °today®,
format column °price® to width 5 with 2 decimal places
format column °rental_comment® to width 25 and truncate,

proc tapes_due

DBMS CATQUERY TO FILE rentlist

DBMS FORMAT due_back today, price °%5.2°, \
rental_comment °%25°

DBMS SQL SELECT title_id, copy_num, due_back, price, \
rental_comment FROM rentals

return

Chapter 11 DBMS Statements and Commands 163

OCCUR

OCCUR

Changes the behavior of a SELECT cursor that writes to JAM arrays

DBMS[WITHCURSOR cursor] OCCUR occ-int [MAX int]
DBMS[WITHCURSOR cursor] OCCUR CURRENT[MAX int]

WITH CURSORcursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

SELECTcursor
occ-int Specifies the occurrence number where JAM should begin pl&EirigCTresults.
CURRENT Specifies that JAM should use the occurrence number of the 2current® field. JAM

begins writing at this occurrence number in thgeaarrays. Note that the current
field is the one containing the JAM screen cursor and is not necessardgta tar
variable.

MAX int Specifies the maximum number of rows to fetch fSEAECTor CONTINUE If int
is less than 1, no rows are fetched.

Description By default, if the destination of SELECTis one or more arrays, JAM fetches as
many rows as will fit in the arrays and begins writing at the first occurrence in the
arrays DBMSOCCURchanges this default behavior fo8BLECTcursor

The setting is turned bby executing th®BMS3OCCURcommand with no
arguments. Closing a cursor also turnistbé setting. If a cursor is redeclared
without being closed, the cursor continues to use the settiSEfGCTstatements
andCONTINUEcommands.

DBMSOCCURIs ignored with &ATQUERtursor

Example # When executed, this procedure starts writing
the result set at the current occurrence.

proc select_type

DBMS DECLARE genre_cursor CURSOR FOR\
SELECT * FROM titles WHERE genre_code = :+code

DBMS WITH CURSOR title_cursor OCCUR CURRENT

DBMS WITH CURSOR title_cursor EXECUTE

return

See Also WITH CURSOR

164 JAM 7.0 Database Guide

ONENTRY

ONENTRY

Installs an entry function

DBMSONENTRY CALL function
DBMS ONENTRY JPL jpl-entry-point

function Nameof a prototyped function.
jpl-entry-point Name of a JPL procedure.
Description Use this command to install a function or JPL procedure which JAM will call

before it executes BBMSstatement.

Currently this function is for informational purposes arffpr instance, you may

wish to log statements to a text file before executing them.nYay use this

function with an exit handler to track the start and complete time for a query or any
other database operation.

The function is passed threggaments:

1. A copy of the first 255 characters of the statement; if the statement was
executed from JPL, this is the first 255 characters after the command word
DBMSSQL or DBMS

2. The name of the database engine for the statement.
3. Context flag; for the entry handler its value is 0.

The functions return code is not used.

Chapter 11 DBMS Statements and Commands 165

ONENTRY

Example

See Also

166

The following sample function logs the current statement in a
text file.

[* This function is installed as a prototyped function.*/
/* It writes the current time, name of the current */

[* engine, and the command which JAM will execute */
/* to a file called dbi.log. */

/* doms ONENTRY CALL dbientry */

#include °smdefs.h°

int
dbientry (stmt, engine, flag)
char *stmt;
char *engine;
int flag;
{
FILE *fp;
time_t timeval;
fp = fopen (°dbi.log®, °a®);
timeval = time(NULL)
fprintf (fp, °%s\n%s\n%s\n\n°,
ctime(&timeval), engine, stmt);
fclose (fp);
return O;
}

This sample function displays a message before performing any database
operations.

dbms ONENTRY JPL entrymsg
proc entrymsg
msg setbkstat °Processing. Please be patient...°

flush
return O

ONEXIT

ApplicationDevelopment GuideChapter 16.

JAM 7.0 Database Guide

ONERROR

ONERROR

Sets the behavior of the error handler

DBMSONERROR CALL function
DBMS ONERROR CONTINUE
DBMS ONERROR JPLjpl-entry-point
DBMS ONERROR STOP

ONERRORALL Thesecommands install a user function as the error hanéll@M or the

ONERROR JPL database engine find an efrdAM updates the global error and status variables
(the @dnvariables) and calls the installed function.

function Name of a prototyped C function.

jpl-entry-point Name of a JPL procedure.

ONERROR CONTINUEThis command prevents the default error handler from aborting a JPL procedure
where a JAM error occurs. Message display is not changed.

ONERROR STOP This command restores the default error handler

Description Use this command to set or change the behavior of the JAM database error handler
for the application. The default error handler displays the following:

Statement which caused the error

Source of the message. If the database engine generated the message, only the
engine name is listed. If JAMI'database driver generated the message,
database interface is listed along with the engine name.

Error code number from JAM'database driver or from the database engine.
Error message from JAM'database driver or from the database engine.

If an error occurs while executing a JPL procedure, the default handler aborts the
procedure, returning =1 to the calling procedure.

An application may override the default error handler with the commBamMS
ONERRORNd an ggument. Please note that the error handler is global to the
application. Each execution of this command overrides the previous error handler

Chapter 11 DBMS Statements and Commands 167

ONERROR

Example

168

Thefunction displays any error messages and its return code controls whether or

not JPL execution is aborted.

The function is passed threggaments:

1. The first 255 characters of the statement; if the statement was executed from

JPL, this is the first 255 characters after the command RBKESQL or
DBMS

2. The name of the database engine for the attempted statement.
3. Context flag; for the error handler its value is 2.

The functions return code is returned to the application. Note thatdfNEXIT
function and aT®ONERRORuNction are both installed, the return code from the
ONERRORuNction takes precedence.

If the error occurred while executing a JPL statement witBMScommand:
0 returns control to the JPL procedure where the error occurred

1 aborts the JPL procedure where the error occurred and returns 1 to the
procedures caller (either JAM or another JPL procedure)

If the error occurred while executing a statement withdthedbmslibrary
function, the function returns the error hantieeturn code.

To use a C function as an error handy@u must first install the function as a
prototyped function. Refer to Chapter 8 in fgplication Development Guider
more information on prototyped function.

#This example shows an error handler installed in JPL.

proc entry
DBMS ONERROR JPL dbi_err
return

proc dbi_err (stmt, engine)
if @dmengerrcode == 0
msg emsg stmt °%N° °JAM error: © @dmretmsg
else
msg emsg stmt °%N° °JAM error: © @dmretmsg °%N°\
°:engine error: ° @dmengerrcode ° ° @dmengerrmsg
return

The next example first checks to see if the JAM err@Ns ALREADY_QNn this

case, it simply displays a message and returns 0. For all other errors, it checks for

an engine error code. If there is an engine gitroalls another subroutine to check

JAM 7.0 Database Guide

See Also

ONERROR

for engine-specific errors. For any other errors, it displays the standard JAM

message.

proc entry
DBMS ONERROR JPL dbi_error_handler
return

proc dbi_error_handler (stmt, engine, flag)
if (@dmretcode == DM_ALREADY_ON)
{

msg emsg °You are already logged on.°

return O
}
if (@dmengerrcode != 0)
{
msg emsg @dmretmsg
call engine_errors (engine)
}
else
{
msg emsg °Application Error: °\
@dmretmsg \
°See the DBA for assistance.®
}
return 1

proc engine_errors (engine_name)
if engine_name == °xyzdh°

Examine DBMS error codes here.

ONEXIT
ApplicationDevelopment GuideChapter 16.

Database GuideChapter 12.

Chapter 11 DBMS Statements and Commands

169

ONEXIT

ONEXIT

Installs an exit handler

DBMSONEXIT CALL function
DBMS ONEXIT JPL jpl-entry-point

function Nameof a prototyped C function.
jpl-entry-point Name of a JPL procedure.
Description Use this command to install a function which JAM will call after executibg™s

command from JPL or C.0t may use this function to process error and status
codes after every command.

Installing anONEXIT function will override the default error handlBtease note
that the exit handler is global to the application. Each execution of this command
overrides the previous exit handler

The function is passed thregaments:

1. The first 255 characters of the statement. If the statement was executed from
JPL, this is the first 255 characters after the command RRKMESQL or
DBMS

2. The name of the database engine for the attempted statement.
3. Context flag; for the exit handler its value is 1.

The functions return code is returned to the application. Note thatGiNEXIT
function and a@NERRORuNction are both installed, the return code from the
ONERRORunction takes precedence.

If an error occurred while executing a JPL statement witBMScommand and
there is N@NEXIT function, then

0 returns control to the JPL procedure where the error occurred.

1 aborts the JPL procedure where the error occurred and returns 1 to the
procedures caller (either JAM or another JPL procedure).

170 JAM 7.0 Database Guide

Example

See Also

ONEXIT

If the error occurred while executing a statement withithelbms library
function and there is abNEXIT function, the function returns the exit han@ler
return code.

To use a C function as an exit handiexu must first install the function as a
prototyped function. For more information, refer to Chapter 16 idgpication
Development Guide

#This JPL example processes warnings from the
database engine.

proc entry
DBMS ONEXIT JPL dbi_warn
return

proc dbi_warn (stmt, engine, flag)
if @dmengerrcode ==
msg emsg stmt °%N° °Error: © @dmretmsg
else
msg emsg stmt °%N° °Error: © @dmretmsg °%N°\
%:engine error: ° @dmengwarncode ° ° @dmengwarnmsg
return

ONENTRYONERROR
Application Development Guig€hapter 16.

Database GuideChapter 12.

Chapter 11 DBMS Statements and Commands 171

SQL

SQL

Specifies a SQL statement to be sent to the database engine for processing

DBMS[WITHCONNECTION connection] SQL SQL-statement

WITH CONNECTION Namesthe connection to associate with the statement. If the clause is not used,
connection JAM issues the statement on the default connection.

SQL-statement The SQL statement to be sent to the database engine. The syntax of the statement
can be the format needed by your database engine.

Description DBMSSQL sends the specified statement to the database engine for execution after
colon expansion is performed. If a connection is not specified, JAM uses the
default cursor on the default connection.

SQL-statement can be in the format needed by your database engine. This allows
you to access all the features of your database engine.

Example DBMSSQL SELECT title_id, name, dir_first_name, \
dir_last_name FROM titles

DBMS SQL INSERT INTO actors \

(actor_id, last_name, first_name) VALUES \
(:+actor_id, :+last_name, :+first_name)

172 JAM 7.0 Database Guide

START

START

Specifies a starting row in a SELECT set

DBMS[WITHCURSOR cursor] START [int]

WITH CURSORcursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

int

Description

Example

See Also

SELECTcursor

Specifies a number indicating the row at which to begin the fetch.

By default, when a select set contains more than oneliw fetches them
sequentially beginning with the first row in the select set. REMSSTART to

begin fetching at rownt. JAM will read and discariht + 1 rows from the select set
before returning the requested rows to the application. If the application is counting
the rows fetched, the discarded rows do not up@alt@rowcount. If int is greater

than the number of rows in the select set, no rows are displayed.

The setting is turned Dby executingdBMSSTART with no aguments. Closing a
cursor also turns bthe setting. If a cursor is redeclared without being closed, the
cursor continues to use the setting$at ECTstatements.

proc discard_100
DBMS START 100
DBMS SQL SELECT * FROM actors
if @dmrowcount ==0
msg emsg °There are less than 100 rows.°
DBMS START
return

WITH CURSOR

Chapter 11 DBMS Statements and Commands 173

STORE

STORE

Sets up a continuation file for a named or default cursor

DBMS[WITHCURSOR cursor] STORE [FILE [filename]]

WITHCURSOR cursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

filename

Description

174

SELECTcursor

Specifies the name of a temporary binary file.

When this command is used witlsBLECTcursor JAM maintains a copy of the

result rows in a temporary binary file. The use of a file permits an application to
scroll forward and backward in a select set, even if the database has no native sup
port for backward scrolling.

A continuation file remains open for the life of the cursomuntil the feature is
turned of with the command,

DBMS[WITHCURSOR cursor] STORE

Executingthe command without the keywoFtLE closes and deletes the file and
turns of the feature for the named or default cur§tlosing the cursor also closes
and deletes the file. If a cursor is not closed but simply redeclared for another
SELECTstatement, the file is cleared. Therefore, a continuation file holds the
results of onSELECTstatement only

The use of a continuation file does not force the database engine to return the entire
select set when tHeELECTIs executed. In its usual mann@AM examines the

number of occurrences in the destination variable to determine the number of rows
to fetch. Each time it fetches rows from the database engine by executing the
SELECTor aDBMSCONTINUE, JAM updates the screen and appends the new data

to the continuation file. If the application wishes to see rows already fetched, JAM
uses the continuation file to get the rows and update the screen. If JAM reaches the
end of the continuation file and the application executes andoBMBCONTINUE,

JAM will attempt to get more rows from the database engine. When the engine
returns the no-more-rows code, JAM s@tsmretcode to the value of
DM_NO_MORE_RQV&anilarly, if the application attempts to scroll back past the

first row in the continuation file, JAM se@dmretcode to DM_NO_MORE_RQWS

Write errors are not reported.

JAM 7.0 Database Guide

STORE

This command provides several advantages:

A means for displaying very lge select sets without keeping all rows in
memory at once.

Better response time for very ggr select sets; since fetches are incremental, it
is not necessary to get the entire select set at once.

A means for forcing an database engine to release a shared lockgm a lar
select set.

For information on engine-specific scrolling issues, refer to the Database Drivers
section of the documentation.

Example # This example shows the use of STORE FILE with
JPL procedures to fetch more rows.

proc title_select

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE

DBMS WITH CURSOR t_cursor EXECUTE

return

proc get_next
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

proc get_previous
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

This example illustrates how to use STORE FILE and
how to map keys in order to fetch more rows.

proc select_titles

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE

DBMS WITH CURSOR t_cursor EXECUTE

return

This procedure is called on screen entry.
proc entry (name, flag)
if (flag & K_ENTRY)

call sm_keyoption (SPGD, KEY_XLATE, APP1)
call sm_keyoption (SPGU, KEY_XLATE, APP2)
}

return

Chapter 11 DBMS Statements and Commands 175

STORE

See Also

176

#This procedure is called on screen exit.
proc exit (hame, flag)

if (flag & K_EXIT)

{

call sm_keyoption (SPGU, KEY_XLATE, SPGU)
call sm_keyoption (SPGD, KEY_XLATE, SPGD)
}

return

proc scroll_up

Control strings contains:

APP1 = ~scroll_up

DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down

Control strings contains:

APP2 = ~scroll_down

DBMS WITH CURSOR t_cursor CONTINUE
return

CONTINUE_BOTTQOMONTINUE_TOPCONTINUE_UP

JAM 7.0 Database Guide

UNIQUE

UNIQUE

Suppresses repeating values in selected columns

DBMS[WITHCURSOR cursor] UNIQUE column [, column ...]

WITH CURSORcursor Names a declaresELECTcursor If the clause is not used, JAM uses the default

SELECTcursor
column Specifies a column name in tBELECTstatement.
Description UNIQUESsuppresses repeating values in each named column of a select set when the

values are in adjacent rowspically, this feature is set for a column named in an
ORDERBY clause.

If the destination variable has a null edit, an occurrence containing a suppressed
value is blank, not null.

The setting is turned bbby executing th®BMSUNIQUE command with no
arguments. Closing a cursor also turnftbé setting. If a cursor is redeclared
without being closed, the cursor continues to use to the settisgf&CT
statements andONTINUEcommands.

Example # Since several titles may be rented to the same customer,
suppress repeating customer numbers when listing
outstanding rentals.

proc rent_list

DBMS DECLARE rent_cursor CURSOR FOR\\
SELECT cust_id, title_id, copy_num, due_back FROM rentals
WHERE due_back < today \
ORDER BY cust_id

DBMS WITH CURSOR rent_cursor UNIQUE cust_id

DBMS WITH CURSOR rent_cursor EXECUTE

DBMS WITH CURSOR rent_cursor UNIQUE

return

See Also WITH CURSOR

Chapter 11 DBMS Statements and Commands 177

WITH CONNECTION

WITH CONNECTION

Uses a named connection for the duration of a statement

DBMSNITH CONNECTION connection DBMS-statement...

WITHCONNECTION This clause specifies a connection for the execution of the command, overriding
connection the default connectioronnection must be declared and open. Colon expansion on
the connection name is allowed.

DBMS-statement Text of theDBMScommand.

Description The most frequent use of this clause is PECLARECURSORstatement.
DBMSNITH CONNECTION connection DECLARE cursor CURSOR...

Oncea cursor is declared it remains associated with the connection on which it was
declared. After declaring the curstreWITHCONNECTIONclause should not be

used in statements that manipulate the cuksowevey thewITHCONNECTION
clausemay be used on statements that manipulate the default cursor on any
declared connection. Therefore, the following commands

DBMSNITH CONNECTION connection ALIAS ...

DBMS WITH CONNECTIONconnection CATQUERY ...
DBMS WITH CONNECTIONconnection CLOSE CURSOR
DBMS WITH CONNECTIONconnection COLUMN_NAMES
DBMS WITH CONNECTIONconnection CONTINUE

DBMS WITH CONNECTIONconnection CONTINUE_BOTTOM
DBMS WITH CONNECTIONconnection CONTINUE_TOP
DBMS WITH CONNECTIONconnection CONTINUE_UP
DBMS WITH CONNECTIONconnection FORMAT ...
DBMS WITH CONNECTIONconnection OCCUR ...

DBMS WITH CONNECTIONconnection SQL ...

DBMS WITH CONNECTIONconnection START ...

DBMS WITH CONNECTIONconnection STORE ...

DBMS WITH CONNECTIONconnection UNIQUE ...

performthe request on the defagELECTcursor on the named connection.

Some engine-specifitBMScommands may also support th€TH CONNECTION
clause For more information, refer to the Database Drivers section of the
documentation.

178 JAM 7.0 Database Guide

WITH CONNECTION
Example # This example performs a commit before closing the
connection.
proc cleanup (connection)
DBMS WITH CONNECTION :connection COMMIT

DBMS CLOSE CONNECTION :connection
return O

See Also CONNECTIONCLOSE_ALL_CONNECTIONELOSECONNECTION DECLARE
CONNECTIONWITHCURSORWITHENGINE, dm_is_connection

Database Drivers section.

Chapter 11 DBMS Statements and Commands 179

WITH CURSOR

WITH CURSOR

Uses a named cursor for the duration of a statement

DBMSNITH CURSOR cursor DBMS#+statement

WITHCURSOR cursor Namesa declare®ELECTcursor If the clause is not used, JAM uses the default

DBMS-statement

Description

180

SELECTcursor Colon expansion of the cursor name is allowed.

Text of theDBMScommand.

This clause specifies the name of a declared cursor on which JAM will execute the
DBMSommand. Once a cursor has been declared, the application may manipulate
or execute the cursor by using thérH CURSORclause in the following com

mands:

DBMSNITH CURSOR cursor ALIAS ...

DBMS WITH CURSORcursor CATQUERY ...
DBMS WITH CURSORcursor COLUMN_NAMES
DBMS WITH CURSORcursor CONTINUE

DBMS WITH CURSORcursor CONTINUE_BOTTOM
DBMS WITH CURSORcursor CONTINUE_TOP
DBMS WITH CURSORcursor CONTINUE_UP
DBMS WITH CURSORcursor EXECUTE ...
DBMS WITH CURSORcursor FORMAT ...

DBMS WITH CURSORcursor OCCUR ...

DBMS WITH CURSORcursor START ...

DBMS WITH CURSORcursor STORE ...

DBMS WITH CURSORcursor UNIQUE ...

If theWITHCURSORCclause is not used with these commands, JAM uses the
defaultSELECTcursor The application may also manipulate the default cursor by
using thewITHCONNECTIONclause.

Some engine-specifBBMSommands may also support iherH CURSORclause.
For more information, refer to the Database Drivers section of the documentation.

JAM 7.0 Database Guide

WITH CURSOR

Example # This example uses colon expansion on the cursor name
to remove the command attributes for named cursors.

proc cursor_refresh (cursor_name)
DBMS WITH CURSOR :cursor_name ALIAS

DBMS WITH CURSOR :cursor_name CATQUERY
return O

See Also DECLARE CURSOFCLOSECURSOR WITHCONNECTION dm_is_cursor

Database Drivers section.

Chapter 11 DBMS Statements and Commands 181

WITH ENGINE

WITH ENGINE

Uses a named database engine for the duration of a statement

DBMSNITH ENGINE engine command...

WITHENGINE Namesthe engine to associate with the command. If the clause is not specified,
JAM uses the default engine.

engine The mnemonic associated with the engine when you make your JAM executables.
The engine must be initialized when the command is executed. Colon expansion of
the engine name is allowed.

command Text of theDBMScommand.

Description This clause specifies which database engine JAM should use when executing a
command. If only one database engine is initialized, that engine is automatically
the default. An application using two or more engines may set the default engine
with theDBMENGINE command.

The following commands accept an optionaHENGINE clause:

DBMSNITH ENGINE engine DECLARE connection CONNECTION ...
DBMS WITH ENGINE engine CLOSE_ALL_CONNECTIONS

Oncea connection is declared, it remains associated with the database engine on
which it was declared. After declaring the connection\WheH ENGINE clause is

no longer necessary or valid in any statement exceptEfstS_CLOSE_ALL_CON-
NECTIONSwhich allows you to close the connections for the default or named
engine.

See Also ENGINE WITHCONNECTION WITHCURSOR dm_is_engine

Application Development Guid€hapter 12.

182 JAM 7.0 Database Guide

DBMS Global
Variables

This chapter summarizes and categorizes the global variables available is JAM'
database drivers.

Variable Overview

Theglobal variables available through JAdMlatabase drivers are automatically
defined at initialization. All the global variable names used in the database drivers
begin with the characte@dmSince the charactéis not permitted in useate-

fined JAM variables, these variables will never conflict with any screen, LDB or
JPL variables defined by your application.

These variables and their values are available to JPL commands and to JAM
library functions likesm_getfield andsm_fptr .

The variables are automatically maintained by JAM. Before executh®)/&
command, JAM clears the contentsatifits global variables. After executing the
command and before returning control to the application, JAM updates the
variables to indicate the current status.

183

Error Data

Status Data

Variable Description

@dmretcode Error code from JAMS database drive€odes are
the same for all engines.

@dmretmsg Error message from JAN'database driveMes
sages are the same for all engines.

@dmengerrcode Engine error code. Codes are unigue to the engine.

@dmengerrmsg Engine error message. Messages are unique to the
engine. Some engines do not supply messages.

Variable Description

@dmretcode Statuscode available for 2no more rows® or 2end of
procedure.®

@dmretmsg Status message available for 2no more rows® or 2end
of procedure.®

@dmengreturn Engine return code from a stored procedure. Not
used by all engines.

@dmrowcount Count of the number of rows fetched to JAM by the
lastSELECTor CONTINUE Used by all engines.

@dmserial A serial value returned after inserting a row into a
table with a serial column. Not used by all engines.

@dmengwarncode A code or byte signalling a non-fatal error or unusual
condition. Not used by all engines.

@dmengwarnmsg A message corresponding to an engine warning code.

Not used by all engines.

Variable Reference

184

Therest of this chapter contains a reference page for each global variable, listed in

alphabetical ordeSince some variables store engine-specific values, additional
information is provided in the Database Drivers section of the documentation.

JAM 7.0 Database Guide

Eachreference page has the following sections:
A description of the variable.
A list of related variables and commands.
An example.

For more information on using the global variables as part of your error proces
sing, refer to Chapter 16 in tiigplication Development Guide

Chapter 12 DBMS Global Variables 185

@dmengerrcode

@dmengerrcode

Contains an engine-specific error code

Description

Example

186

@dmengerrcode is set to 0 before executin8MScommand. If the database

engine detects an erralAM writes the enging'error code to this variable. In

cases where the database engine generates multiple error codes for one statement,
@dmengerrcode is an arrayand each error code is written to datiént occur

rence.

Note that a O value in this variable does not guarantee that the last statement
executed without erroBome errors are detected by JAMatabase driver before a
request is made to the engine. For example, if an application atteBfitE@T
before declaring a connection, JAM detects the eldee the global variable
@dmretcode to check for errors in JAM'database drivers.

Because the value @dmengerrcode is engine-specific, it is strongly recem
mended that you install an error handler to test for these errors. In a multi-engine
application, the error handler may call another function to do this.

If the default error handler is in use, JAM displays the statement which failed and
an error message from either JA\latabase driver or from the database engine. If
the application has installed its own error handler installed function controls
what messages are displayed.

Refer to the Database Drivers section for more information about the codes for a
particular engine.

proc dbi_errhandle (stmt, engine, flag)
if @dmengerrcode ==

msg emsg @dmretmsg
else if engine == °xyzdb®

call xyzerror (@dmengerrcode)
else if engine == °oracle®

call oraerror (@dmengerrcode)
else

msg emsg °Unknown engine.°
return 1

JAM 7.0 Database Guide

@dmengerrcode

proc Xxyzerror (error)
Check for specific xyzdb error codes.
if error == 90931

msg emsg °Invalid user name.®
else if error == ...

else
msg emsg @dmengerrmsg
return

See Also ONERROR@dmengerrmsg, @dmretcode , @dmretmsg

Chapter 12 DBMS Global Variables 187

@dmengerrmsg

@dmengerrmsg

Contains an engine-specific error message

Description

Example

See Also

188

@dmengerrmsg is set to 0 before executind@MScommand. If the database-en

gine returns an error message after attempting to execute the command, JAM
writes the message to this variable. In cases where the database engine generates
multiple error messages for one comma@dmengerrmsg is an arrayand each

error message is written to afdifent occurrence.

If @dmengerrcode is 0, this variable contains no message. This variable will also
be blank if the engine does not supply error messages.

Refer to the Database Drivers section for more information about the availability
of this variable.

proc dbi_errhandle (stmt, engine, flag)
if @dmengerrcode ==
msg emsg @dmretmsg
else
msg emsg @dmretmsg °%N° @dmengerrmsg
return 1

ONERROR@dmengerrcode , @dmretcode , @dmretmsg

JAM 7.0 Database Guide

@dmengreturn

@dmengreturn

Contains a return code from a stored procedure

Description

Example

See Also

If your engine supports stored procedures and stored procedure return codes, use
@dmengreturn to get a procedurg'return or status code.

By default, JAM will pause the execution of a stored procedure if the procedure
executes SELECTstatement and the number of rows in the select set is greater
than the number of occurrences in the JAM destination variables. The application
must execut®BMSCONTINUE or DBMSNEXT to resume execution. If the value of
@dmengreturn is null after calling a stored procedure, the procedure may be
pending. If the engine has completed the execution of the proc@inreetcode

will contain theDM_END_OF PRGCebde and@dmengreturn will contain the
procedures return code.

Note that the value of this variable will be cleared once andtB&Scommand is
executed. If the application needs this value for a longer period of time, it should
copy it to a standard JAM variable or some other static location.

Since database engines implement stored procedufe®dtfy more information
and examples are found in the Database Drivers section of the documentation.

This is an example of a SYBASE stored procedure:
create proc checkid @id int as
if (SELECT COUNT (*) FROM titles WHERE title_id = @id) = 1

returnl
else
return 2

DBMS SQL EXEC checkid :+title_id
if @dmengreturn == 1
call addrow
else if @dmengreturn ==
msg emsg °Sorry, ° title_id ° is not a valid code.®
return

proc addrow

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, 'O’, 0)

return

NEXT SET, @dmretcode , @dmretmsg

Database Drivers section.

Chapter 12 DBMS Global Variables 189

@dmengwarncode

@dmengwarncode

Contains an engine-specific warning code

Description

See Also

190

Mostengines supply a mechanism for signalling an unusual, but non-fatal condi
tion.

Some engines use an eight-element aifdlgere is a warning, it sets the first

element to indicate a warning and then sets one or more additional elements to
describe the warning. Other engines use codes and messages similar to those used
for errors. Those of a high severity are handled as errors and those of a low
severity are handled as warnings. Please consult the Database Drivers section for
information about your engine and for an example.

By default, JAM ignores warnings. If an application needs to alert users to warning
codes, it must use a JPL or C function to check for them. There is no default
warning handlerThe most dicient way to process warning codes is with an
installed exit handler usingBMSONEXIT

ONEXIT, @dmengwarnmsg

Database Drivers section.

JAM 7.0 Database Guide

@dmengwarnmsg

@dmengwarnmsg

Contains an engine-specific warning message

Description Most engines supply a mechanism for signalling an unusual, but non-fatal condi
tion. Some engines uses a warning array or byte. These engines do not supply
warning messages and therefore do not@dmengwarmsg Others use a code and
message for low-severity errors. Please consult the Database Drivers section for
information about your engine and for an example.

By default, JAM ignores warnings. If an application needs to alert users to warning
codes or messages, it must use a JPL or C function to check for them. There is no
default warning handleThe most dicient way to process warning values is with

an installed exit handler

See Also ONEXIT, @dmengwarncode

Chapter 12 DBMS Global Variables 191

@dmretcode

@dmretcode

Contains an engine-independent error or status code

Description

@dmretcode is set to 0 before JAM executes a reBMScommand. If the com
mand fails because of an error detected either by the engine or by datdbase
driver, JAM writes an error code @dmretcode describing the failure.

Usually a non-zero value ®@dmretcode indicates that an error occurred. The
default or an installed error handler is called for an elirthie default handler is in

use, JAM displays the statement which failed and an error message from either
JAM's database driver or from the database engine. If the application has installed
its own error handlethe installed function controls what messages are displayed.

There are two nonzzero codes ddmretcode which are not errors:
DM_NO_MORE_ROWRIDM_END_OF_PRO&hen an engine indicates that it has
returned all rows for a select set, JAM writesivé NO_MORE_ROWSle to
@dmretcode . Since this is not considered an erd#M does not call the default
or installed error handleYou may test fobM_MORE_ROWfier executing a
SELECTor in an exit handler

JAM usesDM_END_OF_PRO®Iith engines that support stored procedures. When
an engine indicates that it has completed executing the stored procedure, JAM
writes theDM_END_OF_PRGebde to@dmretcode . This is not an erro/An
application may test for this code in an exit procedure or after calling a stored
procedure. Refer to the Database Drivers section for information on stored
procedures.

The values fo@dmretcode listed in Table 17 are taken frodmerror.h

Table 17. @dmetcode eror codes and messages.

192

Constant Code Message
DM_NODATABASE 53249 No database selected.
DM_NOTLOGGEDON 53250 Not logged in.
DM_ALREADY_ON 53251 Already logged in.
DM_ARGS_NEEDED 53252 Arguments required.
DM_LOGON_DENIED 53253 Logon denied.

JAM 7.0 Database Guide

@dmretcode

Constant Code Message
DM_BAD_ARGS 53254 Badamguments.
DM_BAD_CMD 53255 Bad command.
DM_NO_MORE_ROWS 53256 No more rows indicator
DM_ABORTED 53257 Processing aborted due to DB er
ror.
DM_NO_CURSOR 53258 Cursor does not exist.
DM_MANY_CURSORS 53259 Too many cursors.
DM_KEYWORD 53260 Bad or missing keyword.
DM_INVALID_DATE 53261 Invalid date.
DM_COMMIT 53262 Commit failed.
DM_ROLLBACK 53263 Rollback failed.
DM_PARSE_ERROR 53264 SQL parse error
DM_BIND_COUNT 53265 Incorrect number of bind vari
ables.
DM_BIND_VAR 53266 Bad or missing bind variable.
DM_DESC_COL 53267 Describe select column error
DM_FETCH 53268 Error during fetch.
DM_NO_NAME 53269 No name specified.
DM_END_OF_PROC 53270 End of procedure.
DM_NOCONNECTION 53271 No connection active.
DM_NOTSUPPORTED 53272 Command not supported for the
specified engine.
DM_TRAN_PEND 53273 Transaction pending.
DM_NO_TRANSACTION 53274 Transaction does not exist.
DM_ALREADY_INIT 53275 Engine already installed.

Chapter 12 DBMS Global Variables

193

@dmretcode

Example

See Also

194

proc entry
DBMS ONERROR JPL dbi_errhandle
DBMS ONEXIT JPL dbi_exithandle

return

proc dbi_errhandle (stmt, engine, flag)

Check for logon errors.

if @dmretcode == DM_ALREADY_ON
return O

else if @dmretcode == DM_LOGON_DENIED
msg emsg @dmretmsg °%N° @dmengerrmsg

.r.é.turn 1
proc dbi_exithandle (stmt, engine, flag)
if @dmretcode == DM_NO_MORE_ROWS

msg emsg °All rows returned.®
return O

ONERRORONEXIT, @dmengerrcode , @dmengerrmsg, @dmretmsg

JAM 7.0 Database Guide

@dmretmsg

@dmretmsg

Contains an engine-independent error or status message

Description

Example

See Also

@dmretmsg is cleared before JAM executes a rieBMScommand. If the com
mand fails because of an error detected either by the engine or by datdbase
driver, JAM writes an error message@mretmsg describing the failure. These
messages are defineddmerror.h and are engine-independent. Referdbl& 17
(page 192) for a listing of the codes and messages.

Note that if@dmretcode is 0, @dmretmsg is always empty

proc dbi_errhandle (stmt, engine, flag)
msg emsg °Statement © stmt © failed.© °%N°\
@dmretmsg °%N° @dmengerrmsg
return 1

ONERROPRONEXIT, @dmengerrcode , @dmengerrmsg, @dmretcode

Chapter 12 DBMS Global Variables 195

@dmrowcount

@dmrowcount

Contains a count of the number of rows either fetched to JAM or affected by the
previous statement

Description Theuse of this variable is dependent on the database engine. On all engines,
@dmrowcount is set to the number of rows fetched to JAM variablesSBEIECT
statement o€CONTINUEcommand. On some engines, it can also reflect the number
of rows afected by anNSERT, UPDATE or DELETEStatement.

@dmrowcount is set to 0 before each n®@BMScommand is executedo¥ must
copy its value to another location if you wish to use the value in subsequent
commands.

If the command fetches rows, JAM updat@$mrowcount writing the number of

rows fetched to JAM variables. Most SQL syntaxes provide an aggregate function
COUNTo count the number of values in a column or the number of rows in a select
set. The value afodmrowcount is notthe number of rows in a select set; ratiter

is the number of rows returned to JAM variables. Therefore if a select set has 14
rows in total, and its tget JAM variables are arrays, each with ten occurrences,
@dmrowcount will equal 10 after th&€ELECTis executed, and 4 after thems
CONTINUEIs executed. IDBMSCONTINUE were executed a second time,
@dmrowcount would equal 0.

The integer written t@dmrowcount is either less than or equal to the maximum
number of rows that can be written to theyjeed JAM destinations; the maximum
number of rows is the number of occurrences in a destination variable. If the value
in @dmrowcount is less than the maximum number of occurrences, then the entire
select set was written to thedat variables and no further processing is needed. If
@dmrowcount equals the maximum number of occurrences, theBEhECTmay

have fetched more rows than will fit in the variables display the rest of the

select set, the application must exe@B83CONTINUE until @dmrowcount is

less than the maximum number of occurrences (or equals 0) o@uintiletcode
receives th®OM_NO_MORE_ROW(le.

For information on whether the variable can be used to obtain the number of rows
affected by anNSERT, UPDATE or DELETEstatement, refer to the Database
Drivers section for the specified engine.

If you are using the transaction managatl sm_tm_pinquire(TM_OCC_COUNT)
to find the number of rows fetched in the current server.\&mce a transaction
command may consist of more than @BMScommand@dmrowcount may have
already been overwritten.

196 JAM 7.0 Database Guide

@dmrowcount

Example proc get_selection
DBMS SQL SELECT * FROM titles WHERE genre_code=:+type
call check_count
return

proc check_count
If rows are returned but not the NO_MORE_ROWS code,
let the user know there are rows pending.
if (@dmrowcount > 0) &&\
(@dmretcode '= DM_NO_MORE_ROWS)
msg setbkstat °Press %KPF1 to see more.°
else
msg setbkstat °All rows returned.®
return

proc get_more
This function is called by pressing PF1.
It retrieves the next set of rows.

DBMS CONTINUE

call check_count

return

See Also ONEXIT, @dmretcode

Database Drivers sectioApplication Development Guid€hapter 14.

Chapter 12 DBMS Global Variables 197

@dmserial

@dmserial

Contains a serial column value after performing INSERT

Description

Example

See Also

198

Someengines supply the data tygpmial to assist applications that need te as

sign a unique numeric value to each row in a table. When an application inserts a
row in a table with a serial column, the engine generates a serial nimsbéeis

the row with the numbeand returns the number to the application. Refer to the
Database Drivers section for information about support for this on your engine.

Before executing a nedBMcommand, JAM writes a O @dmserial . If the
statement is alNSERT and the engine returns a serial value, JAM writes the value
to @dmserial . Since this variable is cleared before executing abD@MS

command, you must copy its value to another location if you wish to use the value
in subsequent commands.

proc new_order
vars i(3), order_id(5)

DBMS BEGIN
First INSERT row into invoices table.
Column order_id in table invoices is a SERIAL.
DBMS SQL INSERT INTO invoices \
(order_id, order_date, cust_num) VALUES\
(O, :+today, :+cust_num)

Copy the serial value to a JPL variable for use with
subsequent INSERTS.
order_id = @dmserial

Use order number to insert new rows to the orders
table. Column order_id in table orders is an INT.
for i=1 while i<=max step 1
DBMS SQL INSERT INTO orders \
(order_id, part_id, quant, u_cost) VALUES \
(:order_id, :+part_id[i], :+quant]i], :+u_cost[i])
DBMS COMMIT

msg emsg °Order completed. Invoice number is ° order_id
return

Databas®rivers for your database engine.

JAM 7.0 Database Guide

Keywords in JAMS
Database Drivers

This chapter lists the keywords for JA8/atabase driversvéid using these
keywords as identifiers, particularly for cursors, connections, engines, and
transactions. It is also recommended that you avoid using these keywords when
naming JAM variables which will be used ibBMSstatement. Since keywords are
not case-sensitive, the following two statements are equivalent:

dbms close_all_connections

DBMS CLOSE_ALL_CONNECTIONS

Table18. Keywods in the database drivers.

alias

begin

call
catquery

close_all_connections

application

binary

cancel
checkpt_interval

commit

autocommit

browse

catalog_function
close

completion

199

200

conn_string
connection
continue_down
create_proc
ct_command

cursor

database
dbms

drop_proc

end
error_continue

execute_all

flush

format

heading

interfaces

jpl

locklevel

logoff

max

next

connect
continue
continue_top
create_trigger
ct_cursor

cursors

datasource
declare

drop_trigger

engine

exec

file

host

locktimeout

null

connected

continue_bottom
continue_up
count

current

db

disconnect

error

execute

for

logon

JAM 7.0 Database Guide

occur
onentry

options

parsing_mode

print

redirect
rfjournal

run

save
select_aliases
server
single_step
start

store

tee

tranid

type

unique

user

warn

Chapter 13 Keywords in JAM's Database Drivers

off
onerror

out

password

proc

return
rollback

run_default

schema
separator
set
sql
stop

supreps

timeout

transaction

update

using

width

on

onexit

output

prepare_commit

proc_control

retvar

rpc

select
serial
set_buffer
sqltimeout

stop_at_fetch

to

transport

use

Chapterl4

Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19

SECTION THREE

Databasdrivers

Database Driver for Informix. 205
Database DriverforJDB 237
Database DriverforODBC 255
Database DriverforOracle. 285
Database Driver for SYBASE-CT Library. 319
Database Driver for SYBASE-DB Library. 355

Database Driver for
Informix

This chapter provides documentation specific to Informix. It discusses the
following:

Engine initialization (page 206)

Connection declaration (page 207)

Import conversion (page 208)

Formatting for colon-plus processing and binding (pade 21
Cursors (page 212)

Errors and warnings (page 214)

Stored procedures (page 218)

Database transaction processing (page 221)

Transaction manager processing (page 224)
Informix-specificDBMScommands (page 224)

Command directory for JAM for Informix (page 234)

205

Initializing the Database Engine

This document is designed as a supplement to information found Aptiiation
Development Guidand other sections of tizatabase Guide

Initializing the Database Engine

Whenyou run the makefile for JAM for Informix, it creates the source file
dbiinit.c . For Informix, thevendor _list structure irdbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{finformix°, dm_infsup, DM_DEFAULT_CASE ,(char *) 0},

{(char *) 0, (int (*)()) O, (int) O, (char *) 0}

The settings are as follows:

informix Engine name. May be changed.
dm_infsup Support routine name. Do not change.
DM_DEFAULT_CASE Case setting for matchirgELECTcolumns

with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name

In the makefile, you may change the engine name associated with the support
routinedm_infsup . The application then uses that namBBMENGINE
statementand iNWITHENGINE clauses. For example, if you wish to use
atracking® as the engine name, change the following makefile parameter:

INF_ENGNAME-=tracking

When the makefile is run again, it generates a diginit.c file with the new
settings.

If the application is accessing multiple engines, it makes Informix the default
engine by executing:

DBMSENGINE informix-engine-name

206 JAM 7.0 Database Guide

Connecting to the Database Engine

whereinformix-engine-name is the string used ivendor_list . For example,
DBM&ENGINE informix
or

DBMS ENGINE tracking

Support Routine Name

Case Flag

dm_infsup is the name of the support routine for Informix. This name should not
be changed.

Thecase flagbM_DEFAULT_CASHletermines how JAM'database drivers use

case when searching for JAM variables for hol#&g ECTresults. This setting is
used when comparing Informix column names to either a JAM variable name or to
a column name in BBMSALIAS statement.

Informix is case insensitive. Regardless of the case in a SQL statement, Informix
creates all database objectsbtables, views, columns, etc.Bwith lower case names.
For Informix, theDM_DEFAULT_CASEetting is treated as
DM_FORCE_TO_LOWER_CASiINhce Informix uses only lower case, the
DM_FORCE_TO_LOWER_C/sgiting is the same &81_PRESERVE_CASEor

either of these flags, JAM attempts to match Informix column names to lower case
JAM variables when processisgLECTresults. If your application is using this
default, use lower case names when creating JAM variables.

If you wish to use upper case variable names, substitutedpgon in the
makefile which sets theM_FORCE_TO_UPPER_CA#f#&g.

INF_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chaptelr ih theApplication Development Guide

Connecting to the Database Engine

Informix allows your application to use one connection at a time. Simultaneous
multiple connections are not supported in this release.

Chapter 14 Database Driver for Informix 207

Importing Database Tables

Table 1.

The following options are supported for connections to Informix:

Database connection options.

Option Argument

DATABASE database-name

The syntax for declaring a connection in a JPL statement is:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
FOR DATABASE database-name

Forexample:

DBMSDECLARE dbi_session CONNECTION FOR\
DATABASE °videobiz®

Additional keywords are available for other database engines. If those keywords
are included in youbBMECLARE CONNECTION-ommand for Informix, it is
treated as an error

Importing Database Tables

208

The Imports Database Objects option in the screen editor creates JAM repository
entries based on database tables in a Informix database. When the import process is
complete, each selected database table has a corresponding repository entry screen.

In JAM for Informix, the following database objects can be imported as repository
entries:

database tables
database views
synonyms
Once the import process is complete, the repository entry screen contains:

A widget for each column in the table, using the colahiaracteristics to
assign the appropriate widget properties.

A label for each column based on the column name.
A table view named for the database table, database tableovisynonym.

Links which describe the relationship between table views.

JAM 7.0 Database Guide

Table Views

Links

Importing Database Tables

Eachimport session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table
When a database table is first imported to a JAM repositugynew repository

screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view

The import process inserts values in the following table view properties:
Name B The name of the table viegenerally the same as the database table.
Table B The name of the database table.

Primary Keys B The columns that are defined as primary keys for the
database table.

Columns B A list of the columns in the database table is displayed when you
click on the More button. Howevghis list is for reference onljt cannot be
edited.

Updatable D A setting which determines if the data in the table can be
modified. The default setting for Updatable issY

For each repository entry based on a database thewprimary key widgets must

be available if you want to update data in that vieist, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, thit
information is automatically imported.

Refer to Chapter 21 in thpplication Development Guided Chapter 21 in the
Editors Guidefor more information on table views.

Links are created from the foreign key definitions entered in the database. If you
are working with a version of Informix that does not support foreign keys, you

must create the links needed by the transaction manager manually if the application
screen contains more than one table view

Chapter 14 Database Driver for Informix 209

Importing Database Tables

Referto Chapter 21 in thApplication Development Guidad Chapter 21 in the
Editors Guidefor more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is @ATABASE

indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the @p€, Length, and Precision
properties assigned to each Informix data type.

Table 2. Importing Databasedbles

Informix Data JAM Type C Type JAM Widget Length JAM .V\./idget

Type Precision

char FT_CHAR Char String Columnlength

date DT_DATETIME Default 20

datetime DT_DATETIME Default 20

decimal FT_DOUBLE Double Column length plus 2 for +/= Column scale
sign and decimal point

float FT_DOUBLE Double 16 2

integer FT_LONG Long Int 11

interval FT_CHAR Char Variesaccording to column
qualifiers

money DT_CURRENCY Default 16

serial FT_LONG Long Int 11

smallfloat FT_FLOAT Float 16 2

smallint FT_INT Int 6

varchar FT_CHAR Char Columnlength

Precisionin Informix is equivalent to length in JAM, and scale in Informix is equivalent to precision in JAM.

Other Widget Basedon the columrs data type or on the JAM type assigned during the import
Properties process, other widget properties may be automatically set when importing database
tables.

210 JAM 7.0 Database Guide

DT_CURRENCY

DT_DATETIME

Null Field property

Formatting for Colon Plus Processing and Binding

DT_CURRENCWidgets have the Format/DispéyData Formatting property set to
Numeric and Formatype set to 2 Dec Places.

DT_DATETIMEwidgets also have the Format/Disp¥apata Formatting property
set to Date/ime and Formatylpe set tdEFAULT Note that dates in this Format
Type appear as:

MM/DD/YYHH:MM

If a column is defined to M¢OTNULL , the Null Field property is set to No. For
example, theoles table in thevideobiz database contains three columns:
title_id ,actor_id androle . title_id andactor_id are defined asOT
NULL so the Null Field property is set to Nole , without aNOTNULL setting, is
implicitly considered to allow null values so the Null Field property is seeto Y

For more information about usage of JAM type and C type, refer to Chapter 15 of

the Application Development Guide

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in thépplication Development Guide

Formatting Dates

Informix supports three types of date data types:
DATE
DATETIME
INTERVAL

JAM equate®DATEaAndDATETIMEwith the JAM typeDT_DATETIME Therefore,
if the JAM taget for aDATEor DATETIMEcolumn is a widget or LDB variable

with a date-time format, JAM formats the database value using the JAM edit. JAM

fetches théNTERVAL data type as a character string.

The format for an InformiATETIMEcolumn is flexible using any precision in
the range of a year to a fraction of a second. Since DANDATETIMEformats

range from year to second, you may need to edit your JAM format to match your

Informix specification.

Chapter 14 Database Driver for Informix 211

Declaring Cursors

You can inserDT_DATETIMEformats into eitheDATEor DATETIMEcolumns. If
you are using colon-plus processing, DATETIMEformats are converted into
Informix literal DATETIMESegments. If you are using bindiryy, DATETIME
formats are converted to Informiltime_t structs.

To insert annNTERVAL into an Informix database, use one of the following
methods:

Use the standard colon processor and quote the character strings:

DBMSSQL INSERT INTO table
VALUES (:datetime’, "interval’)

Usecolon-plus processing withFf_CHARtype. With this method:
W Set the C ¥pe property to Char String.
W Set a Date/ime format to match the Informix syntax.

W Set the Data Formatting property to Digits Only and use embedded
punctuation or an edit mask for delimiters.

Declaring Cursors

212

Whena connection is declared to an Informix engine, JAM automatically declares
a default cursor for SQEELECTstatements executed with the JPL command
DBMSSQL. For all nonSELECToperations performed withBMSSQL, JAM uses
Informix's EXECUTEMMEDIATE feature rather than another default curddhe
application needs to select multiple rows and update the rows one at a time, the
application does not need to declare named cursors.

If you use Informix 5SELECTcursors can be eithelOLDcursors or nomOLD
cursors. If the cursor islOLDcursor it maintains its positioning information
while other cursors perforthiSERT, UPDATE andDELETEStatements. This allows
you to fetch additional data wihBMSCONTINUE after committing or rolling back
another transaction. If a cursor is a HDEDcursor it is closed at the end of a
transaction. Informix closes all natBLDcursors when it commits or rolls back a
transaction.

By default, JAM for Informix declares all cursorsi@LDcursors. ® cause all
subsequently declared cursors to be Ha-Dcursors, issue the following
command:

DBMSSET HOLD_DEFAULT OFF

JAM 7.0 Database Guide

Scrolling

This can be reversed and cause cause all subsequently declared curseidUD be
cursors by issuing the following:

DBMSSET HOLD_DEFAULT ON

Both of these commandsfatt only cursors declared after the command is
executed. Currently active cursors are nfaciéd.

In addition, one can set tlOLDbehavior for an individual cursor with the
command:

DBMS[WITHCURSOR cursor-name | SET HOLD OFF

If the command is issued for the default cyrathisubsequerSELECTstatements
are with nonHOLDcursors. If the command is issued on a named cuhsor all
subsequent executions and declaratior&EbECTstatements on the cursor are on
a nonHOLDcursor To restore the default behavi@gsue the following command:

DBMS[WITHCURSOR cursor-name] SET HOLD ON

For Informix 5, JAM does not put any limit on the number of cursors an

application may declare to an Informix engine. For previous versions, JAM defines
10 cursors for an application accessing Informix. It reserves one for itself (i.e., the
adefault® cursor); the other nine are available for the applicatiosé. If the

application attempts to declare a tenth cyrdaM returns th&©M_MANY_CURSORS
error. In this case, the application must close a cursor IEIMESCLOSE CURSOR
beforeit can declare a new one. If nine cursors are not enough for your application,
the makefile can be modified to allow for additional cursors.

For more information on cursors, refer to Chapter 13 il\phpdication Develop
ment Guide

Scrolling

Informix has native support for non-sequential scrolling in a select set. This
capability is available on any cursés an alternative, you can switch to JAM
scrolling. Both systems allow you to use the following commands:

DBMS[WITHCURSOR cursor-name] CONTINUE_BOTTOM
DBMS[WITHCURSOR cursor-name] CONTINUE_TOP
DBMS[WITHCURSOR cursor-name] CONTINUE_UP

For native scrolling, use the command

Chapter 14 Database Driver for Informix 213

Error and Status Information

DBMS[WITHCURSOR cursor-name] SET_BUFFER 1

To turn of native scrolling, use the command

DBMS[WITHCURSOR cursor-name] SET_BUFFER 0

Then,set JAM scrolling using the command:

DBMS[WITHCURSOR cursor-name] STORE FILE [filename]

To turn of JAM scrolling and close the continuation file, use the command
DBMS[WITHCURSOR cursor-name] STORE

or close the JAM cursor withBMSCLOSE CURSOR

With Informix-based scrolling, Informix maintains a temporary table to hold the
select set. \th JAM-based scrolling, JAM maintains a temporary binary file to
hold the select set. A cursor using Informix-based scrolling cannot use the SQL
SyntaxSELECTFOR UPDATE. Use JAM-based scrolling if you ne8&LECTFOR
UPDATE

For more information on scrolling, refer to Chapter 14 inAlpglication
Development Guide

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; howgtr@se variables are reserved for use in other
engines and for use in future releases of JAM for Informix.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.
@dmretmsg Standard database driver status message.
@dmengerrcode Informix error code.

@dmengerrmsg Informix error message.

@dmengreturn Not used in JAM for Informix.

214 JAM 7.0 Database Guide

Using the
Default Error
Handler

Using an
Installed Error
Handler

Error and Status Information

In JAM for Informix, @dmengerrcode and@dmengerrmsg are arrays which
contain both Informix and ISAM information.

@dmengerrcode [1] Informix error message.
@dmengerrcode [2] ISAM error code.
@dmengerrmsg [1] Informix error message.
@dmengerrmsg [2] ISAM error message.

If the error handler queries for the valuegaafmengerrcode and@dmengerrmsg
without any occurrence numbers, both sets of codes and messages are returned.

Informix returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes Informix
error codes to the global varial@@&mengerrcode and writes Informix messages

to @dmengerrmsg.

All Informix errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an @imerfirst line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database drivebatabase interface appears in thBeported by list along

with the database engine. The error number and message contain the values of
@dmretcode and@dmretmsg. If the error comes from the database engine, only
the name of the engine appears inRkported by list. The error number and
message contain the valuesadmengerrcode and@dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMSONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode[1] == 0
msg emsg °JAM error: ° @dmretmsg
else
msg emsg °JAM error: ° @dmretmsg © %N° \
°INFORMIX error: © @dmengerrcode[1] ° ° @dmengerrmsg[1] \
°ISAM error: ° @dmengerrcode[2] ° ° @dmengerrmsg[2]
return 1

Chapter 14 Database Driver for Informix 215

Error and Status Information

Warnings

216

For additional information about engine errors, refer to your Informix documenta
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guided Chapter 12 in tHeatabase Guide

JAM initializes the following global variables for warning information:

@dmengwarncode Informix warning code.

@dmengwarnmsg Not used in JAM for Informix.

Informix uses a warning byte callSQLAWARR® signal conditions it considers
unusual but not fatal@dmengwarncode derives its value from this byte.
@dmengwarncode is an 8-occurrence arrdy Informix sets a bit rSQLAWARN
JAM puts a @W° in the corresponding occurrencegafmengwarncode.

In Informix, the meaning of these settings depends on the statement that was just
executed. Also, Informix may change the valusQLAWARKetween releases.
The settings foBQLAWARRYfter connecting to a database are:

Array Index Meaning (Informix 5.x)

1 Set to W if any of 2 through 8 are set to N\this is blank, the
other fields do not need to be checked.

2 Set to W if the database has a transaction log which makes transac
tions available.

Set to W if the database is an ANSI database.

Set to W if the database server is an Informix On-Line engine.
Set to W if the database server stores FI®#s DECIMALS.

Not used.

Not used.

o N o 0o b~ W

Not used.

JAM 7.0 Database Guide

Error and Status Information

The settings folSQLAWARTfor all other operations are:

Array Index Meaning

1 Set to W if any of 2 through 8 are set to N\this is blank, the
other fields do not need to be checked.

Not applicable in JAM for Informix.
Set to W if an aggregate function encounters a NULL value.

Not applicable in JAM for Informix.

g A W N

Set to W when a cursor is declared folumDATEOr DELETEState
ment and the statement does not contaftHERElause.

6 Set to W if the Informix environment varialldANSIWARNS set
and the executed statement does not conform to ANSI SQL syntax.

7 Not used.
8 Not used.

Before using@dmengwarncode, you should verify these settings for your release
of Informix by consulting your Informix documentation.

You may wish to use an exit hook function to process warnings. An exit hook
function is installed wittbBMSONEXIT. A sample exit hook function is shown
below.

proc check_status (stmt, engine, flag)

if @dmretcode ==
if @dmengwarncode [1] == °W°

if @dmengwarncode [3] == °W°
msg emsg °A NULL value was found.°
if @dmengwarncode [5] == °W°
msg emsg °The operation did not use a WHERE clause.®
if @dmengwarncode [6] == °W°
msg emsg °This does not conform to ANSI standards.
}
}

return

Chapter 14 Database Driver for Informix 217

Using Stored procedures

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of Informix rowsfa€ted by
an operation.

@dmserial Informix-generated value for a serial column.

Informix returns a count of the rowdadted by an operation. JAM writes this
value to the global variabl@dmrowcount.

As explained on the manual page @dmrowcount, the value of@dmrowcount

after a SQLSELECTis the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQLUNSERT, UPDATE or DELETEIs the total number of

rows afected by the operation. Note that this variable is reset when am@hs
statement is executed, includib§MSCOMMIT.

Thevalue of@dmserial is updated when an application inserts a row into a table
with a serial column. Since this variable is cleared when eDBSstatement is
executed, you must copy its value to another location if you wish to use it in
subsequent statements.

Using Stored procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individuallBy passing parameters to and from the stored
procedure, the same procedure can be used withedif values. In addition to

SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures véeyedifly If you are porting
your application from one database engine to anogerneed to be aware of the
differences in the engine implementation.

Executing Stored Procedures

An application may execute a stored procedure with the comb2mesQL and
the engines command for executioBXECUTEPROCEDUREFor example:

DBMSSQL EXECUTE PROCEDUREprocedure-name

218 JAM 7.0 Database Guide

Using Stored procedures

Example Forexampleupdate_tapes is a stored procedure that changes the video tape
status tadwhenever a video is rented.

create procedure update_tapes (parml int, parm2 int)
update tapes set status = 'O’
where title_id = parm1 and copy_num = parm2

end procedure

Thefollowing statement executes this stored procedure, updatinsgthe
column of thetapes table using the onscreen values of the widtisid and
copy_num.

DBMSSQL EXECUTE PROCEDURE update_tapes \
(:+title_id, :+copy_num)

A DECLARECURSORSstatement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executedw@tN@
clause which gets the onscreen values of the widigetsd andcopy_num.

DBMSDECLARE x CURSOR FOR EXECUTE PROCEDURE update_tapes \
(::parml, ::;parm2)
DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remembeto use double colons (::) iINCECLARECURSORStatement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guider more information.

Viewing SELECT Results

In order to return data from a stored procedure in Informix, you must include a
RETURNMstatement and RETURNINGlause when you create the stored procedure.
You can return multiple rows by includinlRETURNVITH RESUME statement. In
addition, your application must define positional aliases for the result columns
using aDBMSALIAS statement. The order of the variables in this statement must
match the order of the variables in RETURNINGlause of the stored procedure.

This stored procedurayail_video , selects the video titles that are available for
rental and returns values fitte_id , name, andgenre_code to the applica
tion.

Chapter 14 Database Driver for Informix 219

Using Stored procedures

220

CREATEPROCEDURE avail_video ()
RETURNING integer, char(60), char(4);
DEFINE p_title_id integer;
DEFINE p_name char(60);
DEFINE p_genre_code char(4);
DEFINE vcount int;
LET vcount = 1;
FOREACH
SELECT titles.title_id, name, genre_code
INTO p_title_id, p_name, p_genre_code
FROM titles, tapes WHERE titles.title_id = tapes.title_id
AND tapes.status = 'A’;
RETURN p_title_id, p_name, p_genre_code WITH RESUME;
LET vcount = vcount +1,;
END FOREACH,;
END PROCEDURE

1

//—/_/—\///\//

The JAM application screen contains three widgets natitiedd , name, and
genre_code . When the application executes the following statements, the screen
displays the available videos.

proc get_video

DBMS ALIAS title_id, name, genre_code

DBMS SQL EXECUTE PROCEDURE avail_video ()
return

The next exampleynpaid_orders , uses thatores database and returns data
about unpaid orders to the application.

JAM 7.0 Database Guide

Using Transactions

CREATEPROCEDURE unpaid_orders ()
RETURNING integer, date, integer, char(10), date;

DEFINE p_order_num integer;

DEFINE p_order_date date;

DEFINE p_customer_num integer;

DEFINE p_po_num char(10);

DEFINE p_ship_date date;

DEFINE Icount int;

LET Icount = 1,

FOREACH

SELECT order_num, order_date, customer_num, po_num, ship_date

INTO p_order_num, p_order_date, p_customer_num, p_po_num,
p_ship_date

FROM informix.orders

WHERE paid_date is NULL

ORDER BY ship_date

RETURN p_order_num, p_order_date, p_customer_num, p_po_num,
p_ship_date WITH RESUME;

LET Icount = Icount +1;

END FOREACH,;

END PROCEDURE

-

Theapplication contains JAM variables nameder_num , order_date
customer_num , po_num, andship_date . The procedure is executed using the
following statements. The order of the variables inDBMSALIAS statement and
in theRETURNINGlause of the procedure are the same.

proc unpaid

DBMS ALIAS order_num, order_date, customer_num, po_num, \
ship_date

DBMS SQL EXECUTE PROCEDURE unpaid_orders ()

return

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. Informix has one transaction for each connection. Therefore, in a JAM
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on Informix:
ExecutingDBMSCOMMIT.

The following events roll back a transaction on Informix:
ExecutingDBMSROLLBACK

Closingthe transactios' connection before the transaction is committed.

Chapter 14 Database Driver for Informix 221

Using Transactions

Informix keeps a record of the database modifications performed in each
transaction in a transaction log. It uses this log to undo the database changes when
aROLLBACKcommand is executed. Howeykrformix databases do not

automatically have a transaction log. If transaction processing is not available, see
your database administrator to activate this feature.

As noted earlier in the document, the behavior of named curstnsdietween

JAM and Informix when transactions are terminated. A named cursor has actually
two representations. One is a JAM structure and the other is an Informix cursor in
the database. The two representations have the same lifetime (declaring the JAM
cursor creates the Informix cursalosing the JAM cursor closes the Informix
cursor)exceptwhen a transaction is terminated. When Informix commits or rolls
back a transaction, it closes all Informix cursors. Therefore, if an application has a
select set pending when it begins a transaction, it cannot fetch the remaining rows
after executing a rollback or commit because Informix has closed its cursors and
the positioning information is no longer available.tegin the fetch again, the
application must simply re-execute the cursor UBIBYISEEXECUTE it is not

necessary to re-declare the JAM cursor

If your application needs to keep the positioning information, you can use the
continuation file in JAM. Before issuing the select statement, set up the centinua
tion file. Then, fetch all the rows to the continuation file before continuing with the
application. For example:

proc getrows

Set up a continuation file. Use WITH CURSOR if needed.
DBMS STORE FILE

#Execute the select.

DBMS SQL SELECT ...

#Fetch all the rows to the continuation file.

DBMS CONTINUE_BOTTOM

#Reposition to the top of the select.

DBMS CONTINUE_TOP

return

Transaction Control on a Single Connection

222

After an application declares a connection, an application may begin a transaction
on the default connection or on any declared connection.

Informix supports the following transaction commands:
Begin a transaction on a default or named connection.
DBMS[WITHCONNECTION connection] BEGIN
Committhe transaction on a default or named connection.

DBMS[WITHCONNECTION connection] COMMIT

JAM 7.0 Database Guide

Example

Using Transactions

Rollbackto the beginning of the transaction on a default or named connection.

DBMS[WITHCONNECTION connection] ROLLBACK

Thefollowing example contains a transaction on the default connection with an
error handler

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle °new_title()°

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is O, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the

subroutine. If it is -1, JAM aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode ==

{
}

else

{

msg emsg °Transaction succeeded.®

msg emsg °Aborting transaction.®
DBMS ROLLBACK

}

proc new_title
DBMS BEGIN
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES\
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

Theproceduraran_handle is a generic handler for the applicat®iransac
tions. The procedungew_title contains the transaction statements. This method
reduces the amount of error checking code.

Chapter 14 Database Driver for Informix 223

Transaction Manager Processing

Theapplication executes the transaction by executing
call tran_handle °new_title()°

Theprocedureran_handle receives the gument 2new_title® and writes it to
the variablesubroutine . It declares a JPL variable|_retcode . After
performing colon processingubroutine is replaced with its value,
new_titte , and JPL calls the procedure. The procedare tite begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variablet-
code in the calling procedungan_handle . JPL then evaluates tife statement,
displays a success message, and exits.

If however an error occurs while executimgv_titte , JAM calls the applica
tion's error handlerThe error handler should display any error messages and return
the abort code, 1.

For example, assume the filISERT in new_title executes successfully but the
secondNSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedurenew_title (therefore, the thirdNSERT is not attempted). JAM returns

1 tojpl_retcode in the calling procedungan_handle . JPL evaluates the
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the tablétles

Transaction Manager Processing

Transaction Model for Informix

Eachdatabase driver contains a standard transaction model for use with the
transaction managefhe transaction model is a C program which contains the
main processing for each of the transaction manager commandsaly edit this
program; howevetbe aware that the transaction model is subject to change with
each release. For Informix, the name of the standard transaction model is
tminfl.c

Informix-Specific Commands

JAM for Informix provides commands for Informix-specific features. This section
contains a reference page for each command. If you are using multiple engines or

224 JAM 7.0 Database Guide

Informix-Specific Commands

areporting an application to or from another engine, please note that these
commands may work ddrently or may not be supported on some engines.

Using Cursors

SETHOLD Controlbehavior of Informix cursors for
SELECTstatements.
SETHOLD_DEFAULT Setconnection behavior for Informix cursors

when executingELECTstatements.

Using Scrolling

BUFFER_DEFAULT Setbuffer size for scrolling for entire
application.
SET_BUFFER Control availability of Informix-based scrol

ling for DBMSCONTINUE_BOTTONMDBMS
CONTINUE_TOFPDBMSCONTINUE_UR

Using Transactions

BEGIN Begina transaction.
COMMIT Commit a transaction.
ROLLBACK Rollback a transaction.

Chapter 14 Database Driver for Informix 225

Informix-Specific Commands

BEGIN

Start a transaction

DBMS[WITHCONNECTION connection-name] BEGIN

WITHCONNECTION Specifythe connection for this command. Since Informix does not support

connection-name

Description

Example

See Also

226

multiple connections, th&/ITHCONNECTIONclause is hecessary only in
applications using more than one engine.

A transaction is a logical unit of work on a database. In Informix, transaction
behavior difers for ANSI and non-ANSI databases.

For non-ANSI Informix databases, a transaction is contained VBINSBEGIN
andDBMSCOMMIT statementDBMIBEGIN defines the start of a transaction.
Once a transaction is begun, changes to the database are not committed until a
DBMSCOMMIT is executed. Changes are undone by execDEMSROLLBACK
Beforebeginning a new transaction, the application sha@MITor ROLLBACK

any pending work. Otherwise, you may receive an error

For ANSI Informix databases, all statements up DBRISCOMMIT are contained

within a transactiorDBMBEGIN has no déct. Changes can be undone by
executingDBMSROLLBACK

Referto the example in Usingrdnsactions on page 221.

Using Transactions on page 221
COMMIT

ROLLBACK

JAM 7.0 Database Guide

Informix-Specific Commands

BUFFER_DEFAULT

Specifies setting for engine-based non-sequential scrolling

DBMS[WITHCONNECTION connection-name] BUFFER_DEFAULT value

Description

See Also

Disablelnformix-based scrolling on all cursors on the specified connection.

Enable Informix-based scrolling on all cursors on the specified connection.

Informix supports sequential and scroll cursors. By default, JAM creates Informix
sequential cursors.

An Informix sequential cursor can fetch only the next row in sequence from the

select set. The sequential cursor can read through the active set once; to reread the

rows, the application must re-execute the cursor

An Informix scroll cursor allows an application to fetch rows in any sequence. The
scroll cursor can re-fetch rows without re-executing the cursor

A JAM application can use either JAM-based or Informix-based scrolling to
executeDBMSCONTINUE, DBMSCONTINUE_TOR DBMSCONTINUE_UPR andDBMS
CONTINUE_BOTTQOM

To enable JAM-based scrolling an application exedDBMSSTORE FILE for a
specified cursorTo enable Informix-based scrolling an application exedDB¥S
SET_BUFFERor a specified cursor @BMBUFFER_DEFAULTTfor all cursors on
an Informix connection.

To support Informixtbased scrolling, Informix Eerks the select rows in a
temporary table. u may want to change the cursaisolation level to prevent
other users from modifying the rows when using Informixtbased scrolling. See
your Informix documentation for more information.

SET_BUFFER

Chapter 14 Database Driver for Informix 227

Informix-Specific Commands

COMMIT

Commit a transaction

DBMS[WITHCONNECTION connection-name | COMMIT

WITHCONNECTION Specifythe connection for this command. This clause is necessary only in

connection-name

Description

Example

See Also

228

applications using more than one engine since Informix does not support multiple
connections.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the [&dMMITChanges made by the transaction become
visible to other users. If the transaction is terminateB®YL BACKthe updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Once a transaction is terminated, the engine automatically begins a new-transac
tion.

Before beginning a new transaction, the application shoQMMITor ROLLBACK
any pending transactions. Otherwise, you will receive an.error

Refer to the example in Usingansactions on page 221.

Using Transactions on page 221
BEGIN

ROLLBACK

JAM 7.0 Database Guide

ROLLBACK

Informix-Specific Commands

Roll back a transaction

DBMS[WITHCONNECTION connection-name] ROLLBACK

WITHCONNECTION This clause is necessary only in applications using more than one engine since

connection-name

Description

Example

See Also

Informix does not support multiple connections.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
receive an error when it starts the next transaction.

JAM's database driver for Informix issueBBMSROLLBACK before closing a
connection.

Refer to the example in Usingansactions on page 221.

Using Transactions on page 221
BEGIN

COMMIT

Chapter 14 Database Driver for Informix 229

Informix-Specific Commands

SET_BUFFER

Use engine-based scrolling

DBMS[WITHCURSOR cursor-name] SET_BUFFER 1

DBMS[WITHCURSOR cursor-name | SET_BUFFER 0

WITH CURSORcur-
sor-name

Description

230

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling comman
CONTINUE_BOTTQMPBMSCONTINUE_TOR andDBMSCONTINUE_UP In one

method, an application uses JAM-based scrolling by setting up a continuation file
with DBMSSTORE FILE . In the other method, an application uses Informix-based
scrolling by setting a flag for a cursor witlBMSSET_BUFFER

By default, JAM declares Informix cursors without sequential scrolling. Use this
command to allow 8ELECTcursor to use Informix-based scrolling.

The agument for this command sets the availability of the scrollioguih on
Informix-based scrolling, use the command:

DBMS[WITHCURSOR cursor-name] SET_BUFFER 1
To turn of Informix-based scrolling, use the command:
DBMS[WITHCURSOR cursor-name] SET_BUFFER 0

If theWITHCURSORCclause is used, JAM sets the flag for the named cufdbe
WITHCURSORclause is not used, JAM sets the flag for the de&EUECTcursor

Note that:

When Informix-based scrolling is used, Informix prohibits the cursor from
using some features, suchS®&. ECTFOR UPDATE.

Only a few engines support native scrolling. Therefore, this command may not

be supported with other engines. JAM-based scrolling is supported on all
engines WittDBMSSTORE FILE .

JAM 7.0 Database Guide

Informix-Specific Commands

EachDBMSCONTINUE_BOTTONMDBMSCONTINUE_TOR andDBMS
CONTINUE_URequires a trip to the servékith JAM-based scrolling, the

rows are fetched once. When the application attempts to view rows already
fetched, JAM reads them from the continuation file rather than requesting
them from the server

Example DBMSDECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor SET_BUFFER 1

proc scroll_up

DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down

DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

See Also
CONTINUE_BOTTOM
CONTINUE_TOP
CONTINUE_UP

STORE

Chapter 14 Database Driver for Informix 231

Informix-Specific Commands

SET HOLD

Set the HOLD behavior for a cursor

DBMS[WITH CURSOR cursor-name] SET HOLD { OFF | ON }

WITH CURSORCcur-
sor-name

Description

Example

232

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Non-hold cursors in Informix are closed at the end of a transaction, even if the cur
sor only execute8ELECTstatements. Hold cursors remain open and keep their
position even if other cursors execute and cOnuPDATE INSERT andDELETE
statements.

In the current release, JAM for Informix declares all cursors to be hold cursors.

If DBMSSET HOLD OFF s issued for the defaudELECTcursor all subsequent

SQL SELECTstatements are on non-hold cursors. Therefore, once a transaction is
committed or rolled back, positioning information for a select set is no longer
available, and th8ELECTstatement needs to be re-executed.€Eet the default
behaviorissueDBMSSET HOLD ON.

If DBMSSET HOLD OFF is issued for a named cursittis a non-hold cursor
throughout all subsequent executions and redeclarations of the dorseset the
default behavigrissueDBMSNITH CURSOR cursor-name SET HOLD ON.

proc select _titles

DBMS DECLARE t_cursor CURSOR FOR'\
SELECT title_id, name, genre_code FROM titles

DBMS WITH CURSOR t_cursor SET HOLD OFF

DBMS WITH CURSOR t_cursor EXECUTE

JAM 7.0 Database Guide

Informix-Specific Commands

SET HOLD_DEFAULT

Set the connection's default behavior for HOLD cursors

DBMSSET HOLD_DEFAULT { OFF | ON }

Description

Example

Non-holdcursors in Informix are closed at the end of a transaction, even if the cur
sor only execute8ELECTstatements. Hold cursors remain open and keep their
position even if other cursors execute and cONURDATE INSERT andDELETE
statements.

In the current release, JAM for Informix declares all connections to GERECT
cursors as hold cursors.

If DBMSSET HOLD_DEFAULT OFF is issued for a connection, all subsequent SQL
SELECTstatements are on non-hold cursors. Therefore, once a transaction is
committed or rolled back, positioning information for a select set is no longer
available, and th8ELECTstatement needs to be re-executedebet the default
behavior issueDBMSSET HOLD _DEFAULT ON.

proc connect_nonhold
DBMS DECLARE non_conn CONNECTION FOR \
DATABASE °videobiz®
DBMS WITH CONNECTION non_conn SET HOLD_DEFAULT OFF
DBMS CONNECTION non_conn
DBMS SQL SELECT title_id, name, genre_code FROM titles

Chapter 14 Database Driver for Informix 233

Command Directory for Informix

Command Directory for Informix

Thefollowing table lists all the commands available in JAMatabase driver for
Informix. The table lists the command, a short description of the command, and the
location of the reference page for that command. If the location is described as
Database Driversthat information is enclosed in this document. If the location is
described as thatabase Guiderefer to Chapterllof theDatabase Guide

Table 3. Commands for Informix

Command Name Description Documentation
Location
ALIAS Name a JAM variable as the Database Guide

destination of a selected €ol
umn or aggregate function

BEGIN Begin a transaction Database Drivers

BINARY Create a JAM variable for Database Guide
fetching binary values

BUFFER_DEFAULT Set engine-based scrolling Database Drivers

CATQUERY Redirect select results to a Database Guide

file or a JAM variable

CLOSE_ALL_CONNECTIONSClose all connections on all Database Guide

engines
CLOSECONNECTION Closea named connection Database Guide
CLOSECURSOR Closea named cursor Database Guide
COLUMN_NAMES Return the column name, notDatabase Guide
column data, to a JAM vari
able
COMMIT Commit a transaction Database Drivers
CONNECTION Set a default connection and Database Guide
engine for the application
CONTINUE Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers
CONTINUE_BOTTOM Fetch the last screenful of Database Guidé&
rows from a select set Database Drivers

234 JAM 7.0 Database Guide

Command Directory for Informix

Command Name

Documentation
Location

Description

CONTINUE_DOWN

CONTINUE_TOP

CONTINUE_UP

DECLARECONNECTION

DECLARECURSOR

ENGINE

EXECUTE
FORMAT

OCCUR

ONENTRY

ONERROR

ONEXIT

ROLLBACK
SET_BUFFER

Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers

Database Guidé&
Database Drivers

Fetch the first screenful of
rows from a select set

Fetch the previous screenful Database Guid&
of rows from a select set Database Drivers

Declarea named connection Database Guidé&
to an engine Database Drivers

Database Guid&
Database Drivers

Declarea named cursor

Set the default engine for theDatabase Guide
application

Execute a named cursor Database Guide

Format the results of @AT- Database Guide

QUERY

Set the number of rows for Database Guide
JAM to fetch to an array and

set the occurrence where

JAM should begin writing

result rows

Install a JPL procedure or C Database Guide
function which JAM will call

before executing BBMS

statement

Install a JPL procedure or C Database Guidé&
function which JAM will call Database Drivers
when abBMSstatement fails

Install a JPL procedure or C Database Guide
function which JAM will call
after executing ®BMSstate

ment
Roll back a transaction Database Drivers

Set engine-based scrolling Database Drivers
for a cursor

Chapter 14 Database Driver for Informix

235

Command Directory for Informix

236

Command Name

Description Documentation
Location

SETHOLD

SETHOLD_DEFAULT

START

STORE

UNIQUE

WITHCONNECTION

WITHCURSOR

WITHENGINE

Setbehavior folSELECTcur- Database Drivers
sors

SetSELECTcursor behavior Database Drivers
for the connection

Set the first row for JAM to Database Guide
return from a select set

Store the rows of a select setDatabase Guide
in a temporary file so the

application can scroll through

the rows

Suppress repeating values inDatabase Guide
a selected column

Specifythe connection to useDatabase Guide
for a command

Specifythe cursor to use for Database Guide
a command

Specifythe engine to use for Database Guide
a command

JAM 7.0 Database Guide

Database Driver for
JDB

This chapter provides documentation specific to JDB. It discusses the following:
Engine initialization (page 238)
Connection declaration (page 239)
Import conversion (page 240)
Formatting for colon-plus processing and binding (page 242)
Cursors (page 242)
Errors and warnings (page 243)
Database transaction processing (page 245)
Transaction manager processing (page 247)
JDB-specifictbBMSommands (page 248)
Command directory for JAM for JDB (page 251)

This document is designed as a supplement to information foundApfteation
Development Guidand other sections of ti#atabase Guide

237

Initializing the Database Engine

Initializing the Database Engine

Engine Name

238

Whenyou run the makefile for JAM for JDB, it creates the sourcelfiliit.c
For JDB, thevendor_list structure irdbiinit.c appears as follows:

static vendor_t vendor_list[] =
{°jdb®, dm_jdbsup, DM_DEFAULT_CASE ,(char *) 0},

{(char *) 0, (int (*)()) O, (int) O, (char *) 0}

’

The settings are as follows:

jdb Engine name. May be changed.
dm_jdbsup Support routine name. Do not change.
DM_DEFAULT_CASE Case setting for matchirgELECTcolumns

with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

In the makefile, you may change the engine name associated with the support
routinedm_jdbsup . The application then uses that namBBMENGINE
statementand inWITHENGINE clauses. For example, if you wish to use
atracking® as the engine name, change the following makefile parameter:

JDB_ENGNAME-=tracking

When the makefile is run again, it generates a diginit.c file with the new
settings.

If the application is accessing multiple engines, it makes JDB the default engine by
executing:

DBMENGINE jdb-engine-name

wherejdb-engine-name is the string used ivendor_list . For example,
DBMSENGINE jdb

or

DBMS ENGINE tracking

JAM 7.0 Database Guide

Connecting to the Database Engine

Support Routine Name

Case Flag

dm_jdbsup is the name of the support routine for JDB. This name should not be
changed.

Thecase flagpbM_DEFAULT_CASHletermines how JAM'database drivers use
case when searching for JAM variables for hol#&g ECTresults. This setting is
used when comparing JDB column names to either a JAM variable name or to a
column name in ®BMSALIAS statement.

JDB is case insensitive. Regardless of the case in a SQL statement, JDB creates all
database objectsbtables, views, columns, etc.Bwith lower case names. For JDB,
theDM_DEFAULT_CASEetting is treated &M_FORCE_TO_LOWER_CASihce

JDB uses only lower case, th&_FORCE_TO_LOWER_CAssftting is the same as
DM_PRESERVE_CASEor either of these flags, JAM attempts to match JDB

column names to lower case JAM variables when proceSs&bgCTresults. If

your application is using this default, use lower case names when creating JAM
variables.

If you wish to use upper case variable names, substitutedpton in the
makefile which sets theM_FORCE_TO_UPPER_CA#R#&g.

JDB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chaptelr ih theApplication Development Guide

Connecting to the Database Engine

Table 1.

JDB allows your application to use one or more connections. The application may
declare any number of named connections BENMIECLARE CONNECTION
statementshowevey you should not have multiple connections to the same
database.

The following options are supported for connections to JDB:

Database connection options.

Option Argument

DATABASE database-pathname

Chapter 15 Database Driver for JDB 239

Importing Database Tables

database-pathname is a pathname to an existing database.
The syntax for declaring a connection in a JPL statement is:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
FOR DATABASE database-name

Forexample:

DBMSDECLARE dbi_session CONNECTION FOR \
DATABASE °videobiz®

Additional keywords are available for other database engines. If those keywords
are included in youbBM®ECLARE CONNECTIONommand for JDB, it is treated
as an error

Importing Database Tables

TheImports Database Objects option in the screen editor creates JAM repository
entries based on database tables in a JDB database. When the import process is
complete, each selected database table has a corresponding repository entry screen.

Once the import process is complete, the repository entry screen contains:

A widget for each column in the table, using the colahiaracteristics to
assign the appropriate widget properties.

A label for each column based on the column name.
A table view named for the database table.
Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. As a

general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repositugynew repository

screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view

240 JAM 7.0 Database Guide

Importing Database Tables

Theimport process inserts values in the following table view properties:
Name D The name of the table viegenerally the same as the database table.
Table B The name of the database table.

Primary Keys B The columns that are defined as primary keys for the
database table.

Columns P A list of the columns in the database table is displayed when you
click on the More button. Howevghis list is for reference onljt cannot be
edited.

Updatable B A setting which determines if the data in the table can be
modified. The default setting for Updatable issY

Refer to Chapter 21 in thipplication Development Guidgend Chapter 21 in the
Editors Guidefor more information on table views.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table .view

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Refer to Chapter 21 in thpplication Development Guidend Chapter 21 in the
Editors Guidefor more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is @ATABASE

indicating that the widget was imported from the database engine. The Justification

property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the ¢p€, Length, and Precision
properties assigned to each JDB data type.

Chapter 15 Database Driver for JDB 241

Formatting for Colon Plus Processing and Binding

Table2. Importing Databasedbles

JDB Data Type JAM Type C Type JAM Widget Length JAM Widget
Precision

char FT_CHAR Char String Columnlength

datetime DT_DATETIME Default 20

double FT_FLOAT Double 16 2

float FT_FLOAT Float 16 2

int FT_LONG Long Int 11

long FT_LONG Long Int 11

Other Widget Basedon the columrs data type or on the JAM type assigned during the import

Properties process, other widget properties may be automatically set when importing database
tables.
DT_DATETIME DT_DATETIMEwidgets also have the Format/Disgfaipata Formatting property

set to Date/ime and Formatylpe set tdEFAULT Note that dates in this Format
Type appear as:

MM/DD/YYHH:MM

Null Field property If a column is defined to B¢OTNULL , the Null Field property is set to No. For
example, theoles table in thevideobiz database contains three columns:
title_id ,actor_id androle . title_id andactor_id are defined asOT
NULL so the Null Field property is set to Nole , without aNOTNULL setting, is
implicitly considered to allow null values so the Null Field property is seeto Y

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in thépplication Development Guide

Declaring Cursors

JAM uses two cursors for operations performe®BySSQL . One cursor is used
for SQL SELECTstatements and the other for eBLECTstatements. These two

242 JAM 7.0 Database Guide

Scrolling

Scrolling

cursorsmay be suffcient for small applications. Lger applications often require
more; an application may declare named cursors EBMEDECLARE CURSOR
Forexample, master and detail applications often need to declare at least one
named cursor: one cursor selects the master rows and additional cursors select
detail rows. In short, if an application is processilSEAECTSet in increments

(i.e., by using>BMSCONTINUE) while it is executing otheSELECTstatements,

two or more cursors are necessary

JAM does not put any limit on the number of cursors an application may declare to
an JDB engine. Since each cursor requires memory and JDB resources, hibwever
is recommended that applications close a cursor when it is no longer needed.

For more information on cursors, refer to Chapter 13 i\ph@lication Develop
ment Guide

Even though JDB does not have native support for non-sequential scrolling in a
select set, JAM scrolling is available. Before using any of the following com
mands:

DBMS[WITHCURSOR cursor-name] CONTINUE_BOTTOM
DBMS[WITHCURSOR cursor-name] CONTINUE_TOP
DBMS[WITHCURSOR cursor-name] CONTINUE_UP

theapplication must set up a continuation file for the curBbis is done with the
command

DBMS[WITHCURSOR cursor-name] STORE FILE [filename]

To turn of JAM scrolling and close the continuation file, use the command
DBMS[WITHCURSOR cursor-name] STORE

or close the JAM cursor witbBMSCLOSE CURSOR

For more information on scrolling, refer to Chapter 14 inApeglication
Development Guide

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not

Chapter 15 Database Driver for JDB 243

Error and Status Information

Errors

Using the
Default Error
Handler

Using an
Installed Error
Handler

244

beused in the current release; howeteese variables are reserved for use in other
engines and for use in future releases of JAM for JDB.

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.
@dmretmsg Standard database driver status message.
@dmengerrcode JDB error code.

@dmengerrmsg JDB error message.

@dmengwarncode Not used in JAM for JDB.
@dmengwarnmsg Not used in JAM for JDB.

@dmengreturn Not used in JAM for JDB.

JDB returns error codes and messages when it aborts a command. It usually aborts
a command because the application used an invalid option or because the user did

not have the authority required for an operation. JAM writes JDB error codes to the

global variable@dmengerrcode and writes JDB messages@aimengerrmsg.

All JDB errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an @imerfirst line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database drivebatabase interface appears in thBeported by list along

with the database engine. The error number and message contain the values of
@dmretcode and@dmretmsg. If the error comes from the database engine, only
the name of the engine appears inRkported by list. The error number and
message contain the valuesadmengerrcode and@dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

JAM 7.0 Database Guide

Using Transactions

DBMSONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0
msg emsg °JAM error: ° @dmretmsg
else
msg emsg °JAM error: ° @dmretmsg © %N° \
%:engine error is © @dmengerrcode ° °© @dmengerrmsg
return 1

For additional information about engine errors, refer to your JDB documentation.
For more information about error processing in JAM, refer to Chapter 16 in the
Application Development Guidand Chapter 12 in tHeatabase Guide

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of JDB rowdedted by an
operation.
@dmserial Not used in JAM for JDB.

As explained on the manual page @dmrowcount, the value of@dmrowcount

after a SQLSELECTis the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQUNSERT, UPDATE or DELETEIs the total number of

rows afected by the operation. Note that this variable is reset when an@&hes
statement is executed, includib§MSCOMMIT.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. JDB has one transaction for each connection. Therefore, in a JAM application,
a transaction controls all statements executed with a single named connection or
the default connection.

The following events commit a transaction on JDB:
ExecutingDBMSCOMMIT.

Closingthe connection.

Chapter 15 Database Driver for JDB 245

Using Transactions

Thefollowing events roll back a transaction on JDB:

ExecutingDBMSROLLBACK

Transaction Control on a Single Connection

After an application declares a connection, a transaction automatically starts on
that connection.

JDB supports the following transaction commands:
Commit the transaction on a default or named connection.
DBMS[WITHCONNECTION connection] COMMIT
Rollbackto the beginning of the transaction on a default or named connection.

DBMS[WITHCONNECTION connection] ROLLBACK

Example Thefollowing example contains a transaction on the default connection with an
error handler

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle °new_title()°

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is O, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the

subroutine. Ifitis -1, JAM aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode ==

{
msg emsg °Transaction succeeded.®
}
else
{
msg emsg °Aborting transaction.®
DBMS ROLLBACK
}

246 JAM 7.0 Database Guide

Transaction Manager Processing

proc new_title
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

Theproceduraran_handle is a generic handler for the applicat®iransac
tions. The proceduneew_title ~ contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing
call tran_handle °new_title()°

Theprocedureran_handle receives the gument 2new _title® and writes it to
the variablesubroutine . It declares a JPL variabjel_retcode . After
performing colon processingubroutine is replaced with its value,
new_titte , and JPL calls the procedure. The procedare tite begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the varijableet-
code in the calling procedungan_handle . JPL then evaluates tife statement,
displays a success message, and exits.

If however an error occurs while executimgv_titte , JAM calls the applica
tion's error handlerThe error handler should display any error messages and return
the abort code, 1.

For example, assume the filISERT in new_title ~ executes successfully but the
secondNSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedurenew_title (therefore, the thirdNSERT is not attempted). JAM returns

1 tojpl_retcode in the calling procedungan_handle . JPL evaluates thée
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the tablétles

Transaction Manager Processing

Transaction Model for JIDB

Eachdatabase driver contains a standard transaction model for use with the
transaction managefhe transaction model is a C program which contains the

Chapter 15 Database Driver for JDB 247

JDB-Specific Commands

mainprocessing for each of the transaction manager commaoud€ay edit this
program; howevetbe aware that the transaction model is subject to change with
each release. For JDB, the name of the standard transaction mogdisc

Even though JDB does not enforce referential integhty transaction manager
checks for duplicate primary key values each time data is inserted or updated. This
is performed through processing found in the standard transaction model for JDB.
If it finds any duplicate value in the primary key columns, the transaction manager
gives an error

JDB-Specific Commands

JAM for JDB provides commands for JDB-specific features. This section contains
a reference page for each command. If you are using multiple engines or are
porting an application to or from another engine, please note that these commands
may work diferently or may not be supported on some engines.

Using Transactions

248

COMMIT Commita transaction.

ROLLBACK Rollback a transaction.

JAM 7.0 Database Guide

COMMIT

JDB-Specific Commands

Commit a transaction

DBMS[WITHCONNECTION connection-name] COMMIT

WITHCONNECTION Specifythe connection for this command. If the command does not contdinta

connection-name

Description

Example

See Also

CONNECTIONlause, JAM issues the commit on the default connection.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the l@&dMMITChanges made by the transaction become
visible to other users. If the transaction is terminateB@YLBACKthe updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Once a transaction is terminated, the engine automatically begins a new-transac
tion.

When an application closes its connections WitlDSE_ALL_CONNECTION&
CLOSECONNECTION JDB commits any pending transactions on those cennec
tions. Howeverthis procedure is not recommended. Instead, it is strongly
recommended that applications use exp@@MMITandROLLBACKstatements to
terminate transactions.

Refer to the example in Usingdnsactions on page 245.

Using Transactions on page 245

ROLLBACK

Chapter 15 Database Driver for JDB 249

JDB-Specific Commands

ROLLBACK

Roll back a transaction

DBMS[WITHCONNECTION connection-name] ROLLBACK

WITHCONNECTION Specifythe connection for this command. If the command does not contéin-a
connection-name CONNECTIONIause, JAM issues the rollback on the default connection.

Description

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Example

Refer to the example in Usingansactions on page 245.

See Also Using Transactions on page 245

COMMIT

250 JAM 7.0 Database Guide

Command Directory for JDB

Command Directory for JDB

Thefollowing table lists all the commands available in JAMatabase driver for

JDB. The table lists the command, a short description of the command, and the
location of the reference page for that command. If the location is described as
Database Driversthat information is enclosed in this document. If the location is

described as thBatabase Guiderefer to Chapterllof theDatabase Guide

Table 3. Commands for JDB

Command Name

Description

Documentation
Location

ALIAS

BINARY

CATQUERY

CLOSE_ALL_CONNECTIONSClose all connections on all

CLOSECONNECTION
CLOSECURSOR
COLUMN_NAMES

COMMIT

CONNECTION

CONTINUE

CONTINUE_BOTTOM

CONTINUE_DOWN

Name a JAM variable as the Database Guide

destination of a selected eol

umn or aggregate function

Create a JAM variable for
fetching binary values

Redirect select results to a
file or a JAM variable

engines
Closea named connection

Closea named cursor

Database Guide

Database Guide

Database Guide

Database Guide

Database Guide

Return the column name, notDatabase Guide

column data, to a JAM vari
able

Commit a transaction

Database Drivers

Set a default connection and Database Guide

engine for the application

Fetch the next screenful of
rows from a select set

Fetch the last screenful of
rows from a select set

Fetch the next screenful of
rows from a select set

Database Guidé&
Database Drivers

Database Guidé&
Database Drivers

Database Guidé&
Database Drivers

Chapter 15 Database Driver for JDB

251

Command Directory for JDB

Command Name

Documentation
Location

Description

CONTINUE_TOP

CONTINUE_UP

DECLARECONNECTION

DECLARECURSOR

ENGINE

EXECUTE
FORMAT

OCCUR

ONENTRY

ONERROR

ONEXIT

ROLLBACK
START

STORE

Database Guid&
Database Drivers

Fetch the first screenful of
rows from a select set

Fetch the previous screenful Database Guid&
of rows from a select set Database Drivers

Declarea named connection Database Guidé&
to an engine Database Drivers

Database Guid&
Database Drivers

Declarea named cursor

Set the default engine for theDatabase Guide
application

Execute a named cursor Database Guide

Format the results of @AT- Database Guide

QUERY

Set the number of rows for Database Guide
JAM to fetch to an array and

set the occurrence where

JAM should begin writing

result rows

Install a JPL procedure or C Database Guide
function which JAM will call

before executing BBMS

statement

Install a JPL procedure or C Database Guid&
function which JAM will call Database Drivers
when abBMSstatement fails

Install a JPL procedure or C Database Guide
function which JAM will call

after executing ®BMSstate

ment

Roll back a transaction Database Drivers

Set the first row for JAM to Database Guide
return from a select set

Store the rows of a select setDatabase Guide
in a temporary file so the

application can scroll through

the rows

252

JAM 7.0 Database Guide

Command Directory for JDB

Command Name

Description Documentation
Location

UNIQUE

WITHCONNECTION

WITHCURSOR

WITHENGINE

Suppress repeating values inDatabase Guide
a selected column

Specifythe connection to useDatabase Guide
for a command

Specifythe cursor to use for Database Guide
a command

Specifythe engine to use for Database Guide
a command

Chapter 15 Database Driver for JDB

253

Database Driver for
ODBC

ODBC (Open Database Connectivity) defines a library of function calls and SQL
syntax based on the X/Open and SQL Access Group specification. It provides
application builders with a standard programming interface, standard set of error
codes, standard way to connect to a DBMS, and a standard repository of data
types.

The ODBC architecture has four components:

Application B Calls ODBC functions to submit SQL statements and fetch
results. This includes JAM, JAR'ODBC driveyand the applications screens,
JPL scripts, and menus.

Driver Manager B Loads ODBC drivers for an application. This software is
usually supplied by Microsoft orisigenics. On Whdows, Microsoft supplies
a dynamically linked librargoDBC.DLL This software is not supplied with
JAM.

ODBC Driverb Processes ODBC function calls, submits SQL statements to a
data source, and fetches results to an application. The ODBC driver is supplied
by any of a number of thirdtparty vendors. In some cases, the database vendor
may supply an ODBC drive©ther companies, such as Intersslyply a

package of drivers for several DBMS products. This software is not supplied
with JAM.

255

Datasource B Comprises the data and its operating system, DBMS, and any
network software. For example, a data source may be a local xBase file, a
SYBASE RDMBS running on Unix workstation accessed by TCBARN

Oracle RDBMS running on iWdows NT accessed byikddows sockets. This
software is not supplied with JAM.

The ODBC API defines a set of core functions that correspond to the functions in
the X/Open and SQL Access Group CLI (Call Level Interface) specification. In
addition, ODBC defines two sets of extended functions, Level 1 and Level 2.
Unless otherwise documented, JAM functions use ODBC core functions. If JAM
requires a Level 1 or 2 function for some feature, the applicat®bBBC driver

must support the function to use the feature.

This chapter provides documentation specific to ODBC. It discusses the following:
Engine initialization (page 257)
Connection declaration (page 258)
Import conversion (page 261)
Formatting for colon-plus processing and binding (page 265)
Cursors (page 265)
Errors and warnings (page 266)
Stored procedures (page 268)
Database transaction processing (page 268)
Transaction manager processing (page 271)
ODBC-specificDBMommands (page 272)
Command directory for JAM for ODBC (page 278)
ODBC-specific C functions (page 281)

This document is designed as a supplement to information foundApieation
Development Guidand other sections of tizatabase Guide

256 JAM 7.0 Database Guide

Initializing the Database Engine

Initializing the Database Engine

Whenyou run the makefile for JAM for ODBC, it creates the source file
dbiinit.c . For ODBC, thevendor_list structure irdbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{°odbc®, dm_odbsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) O, (int) O, (char *) 0}

)

The settings are as follows:

odbc Engine name. May be changed.
dm_odbsup Support routine name. Do not change.
DM_DEFAULT_CASE Case setting for matchirgELECTcolumns

with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name

In the makefile, you may change the engine name associated with the support
routinedm_odbsup . The application then uses that namBBMENGINE
statementand inWITHENGINE clauses. For example, if you wish to use
atracking® as the engine name, change the following makefile parameter:

ODB_ENGNAME-=tracking

When the makefile is run again, it generates a diginit.c file with the new
settings.

Using ODBC, your application may access multiple database engines. Howwever
such cases, JAM views the application as accessing one databasecgihgine,

The information to access each of the subsequent database engines is set in the
DBM®ECLARE CONNECTIONstatement using tHeATASOURCEKeyword. For

more information, refer to page 258.

Support Routine Name

dm_odbsup is the name of the support routine for ODBC. This name should not be
changed.

Chapter 16 Database Driver for ODBC 257

Connecting to the Database Engine

Case Flag

Thecase flagpM_DEFAULT_CASHletermines how JAM'database drivers use

case when searching for JAM variables for hol#&gECTresults. This setting is

used when comparing ODBC column names to either a JAM variable name or to a
column name in ®BMSALIAS statement.

When the case flag is setitv_DEFAULT_CASEIAM for ODBC tests for the

value of SQL_IDENTIFIER_CASE using the ODBGQLGetInfo function. For

case sensitive engines, JAM then sets the case fiaig tBRESERVE_CASEhis
matches the engine column name to a JAM variable of the same name and case
when processin§ELECTresults. For case insensitive engines, it sets the case flag
to DM_FORCE_TO_LOWER_CAZhis means that JAM attempts to match the
engine column names to lower case JAM variables when proc&&igegT

results. If your application is using this default, use lower case names when
creating JAM variables.

The case setting may be changed. If you wish to use upper case JAM variable
names, use the option in the makefile for theM_FORCE_TO_UPPER_CAf&g.

ODB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chaptel ih theApplication Development Guide

Connecting to the Database Engine

258

ODBC allows your application to use one or more connections. The application
may declare any humber of named connections DBIMDECLARE CONNEE

TION statements, up to the maximum number permitted by the ODBC driver and
data source.

To access multiple database engines using ODBC, there needs to be a data source
name for each database engine. Refer to your ODBC database driver doeumenta
tion for additional information.

The following options are supported for connections to ODBC:

JAM 7.0 Database Guide

Connecting to the Database Engine

Tablel. Database connection options.

Option Argument Conformance Level

USER user-name core

PASSWORD password core

DATABASE database-name 1 usingSQLDriverConnect
DATASOURCE data-source-name core

CONN_STRING connection-parameters 1 usingSQLDriverConnect
COMPLETION connection+mode 1 usingSQLDriverConnect

The USER PASSWORBNJDATASOURCHAptions are supported by albBC
database drivers. THEBONN_STRINGNndCOMPLETIONoptions are available if the
ODBC driver has Level 1 conformance. ThwTABASEOption is only available
with certain ODBC drivers. If you are unsure of the drise@onformance level,
use only the core conformancgaments.

DATASOURCEpecifies the data source entered in the ODBC Administrator to use
for connecting to the database. This data source entry typically contains the name
of the data source, the virtual node, and the full path of the database files. A data
source is created with the ODBC utilpBCADM

The application must supply tBRATASOURCHSIng this flag or by prompting the
user with sCOMPLETIONlialog.

Some drivers support or require additional logauarents. The program may

supply them with the gumentCONN_STRINGAlternately the application may

prompt the user for the data using the dialogs of the ODBC driver manager and the
ODBC database driveFhe connection flagOMPLETIONIetermines whether or

not dialogs are used.

CONN_STRINGllows you to enter any number of drixdefined keywords and
values. The format for the connection string is:

° keyword=value; keyword=value®

If, for example, the driver supports the attribMigto determine whether the driver
modifies SQL statements to conform to ODBC specifications and the attribute
LANGto specify national language, tBONN_STRINGrgument is:

CONN_STRINGMS=1;,LANG=FRENCH®

Consultyour ODBC driver documentation about the supported connection
attributes for your database. Note that JAM does not attempt to validate the
CONN_STRINGvalue.

Chapter 16 Database Driver for ODBC 259

Connecting to the Database Engine

260

COMPLETIONspecifies the mode used by the Driver Manager and the ODBC
database driver to establish a connection to a data source. The mode can be set to
any of the following:

COMPLETE NOPROMPT
COMPLETE_REQUIRED PROMPT

For PROMP;Tthe ODBC Driver Manager always initiates a dialog box containing
the installed data source names and prompts for information.

For COMPLETEthe ODBC Driver Manager initiates a dialog box only if there is
not enough information in the connection string to connect to the data source.

COMPLETE_REQUIREB similar toCOMPLETEThe ODBC Driver Manager

initiates a dialog box only if there is not enough information in the connection
string to connect to the data source. In addition, it grays and disables any prompts
on the dialog that are not required.

For NOPROMRThe ODBC Driver Manager attempts to connect to the data source
and does not display a dialog b6V OPROMPIE the default.

JAM for ODBC also supports thegamentDATABASE This agument corresponds
to the connection attributeB Driver vendors such as Q+E Software oftenhBe
to supply the database name. If your driver supporteBtadtribute, the
application may set it using tll®NN_STRINGeyword:

DECLAREc1 CONNECTION FOR DATASOURCE °SYB49° \
CONN_STRING °DB=pubs2°

or with theDATABASEkeyword:

DECLARE:1 CONNECTION FOR DATASOURCE °SYB49° \
DATABASE °pubs2°

If the Driver Manager finds the data source specification iOO®C.INI file, it

loads the DLL associated with the database drif/ére Driver Manager cannot

find the data source specification and if there is no default specification, it returns
an error

The syntax for declaring a connection in a JPL statement is:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION FOR\
USER user-name PASSWORDpassword \
{ [DATASOURCHlata-source-name] |
[CONN_STRINGconnection-parameters] |
[COMPLETIONconnection-mode] }

JAM 7.0 Database Guide

Importing Database Tables

Forexample:

DBMSDECLARE dbi_session CONNECTION FOR\
USER °:uname® PASSWORD °:pword® DATASOURCE °enginel®

DBMS DECLARE dbi_session CONNECTION FOR\
USER °:uname® PASSWORD °:pword® DATASOURCE °QEingres®\
CONN_STRING °OPTS=+1;DB=payroll°

DBMS DECLARE dbi_session CONNECTION FOR\
COMPLETION °prompt®

whereuname andpword are JAM widget names.

If you get the error message 2Login Denied® when you issue the connection
statement, check the data source name. This message is issued when the data
source name is invalid.

Additional keywords are available for other database engines. If those keywords
are included in youbBM®ECLARE CONNECTIONommand for ODBC, it is
treated as an error

Importing Database Tables

The Imports Database Objects option in the screen editor creates JAM repository
entries based on database tables in a ODBC database. When the import process is
complete, each selected database table has a corresponding repository entry screet

The JAM importer requires the ODBC catalog functions:
SQLTables B Level 1
SQLColumns P Level 1

If these functions are not supported, the importer will fail.

In JAM for ODBC, the following database objects can be imported as repository
entries:

database tables
database views
synonyms

Once the import process is complete, the repository entry screen contains:

Chapter 16 Database Driver for ODBC 261

Importing Database Tables

Table Views

262

A widget for each column in the table, using the colsnsharacteristics to
assign the appropriate widget properties.

A label for each column based on the column name.
A table view named for the database table, database tableovisynonym.
Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. As a

general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repositugynew repository

screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view

The import process inserts values in the following table view properties:
Name D The name of the table viegenerally the same as the database table.
Table B The name of the database table.

Primary Keys B The columns that are defined as primary keys or unique
indexes for the database table. The importer 6gllsPrimaryKeys or
SQLStatistics to find a primary keyif the ODBC driver does not support
either function, the importer cannot set this property

Columns B A list of the columns in the database table is displayed when you
click on the More button. Howevghis list is for reference onljt cannot be
edited.

Updatable D A setting which determines if the data in the table can be
modified. The default setting for Updatable issY

For each repository entry based on a database thewprimary key widgets must

be available if you want to update data in that viemst, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view

or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in thégpplication Development Guided Chapter 21 in the
Editors Guidefor more information on table views.

JAM 7.0 Database Guide

Links

Widgets

Importing Database Tables

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table .view

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

If the database engine does not support foreign key definitions or if the ODBC
driver does not suppoBQLForeignKeys , the links needed by the transaction
manager will have to be created manually if the application screen contains more
than one table view

Refer to Chapter 21 in thpplication Development Guidnd Chapter 21 in the
Editors Guidefor more information on links.

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is @ATABASE

indicating that the widget was imported from the database engine. The Justification

property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the @€, Length, and Precision
properties assigned to each ODBC data type.

Table 2. Importing Databasedbles
ODBC Data Type Code JAM Type C Type JAM Widget JAM Widget
Length Precision

SQL_BIGINT +5 FT_LONG Long Int columnlength + 1
SQL_BINARY +2 DT_BINARY HexDec columnlength * 2
SQL_BIT +7 FT_INT Int column length + 1
SQL_CHAR 1 FT_CHAR CharString columnlength
SQL_DATE 9 DT_DATETIME Default 20
SQL_DECIMAL 3

(ODBC scale = 0) FT_INT Int column length

Chapter 16 Database Driver for ODBC

263

Importing Database Tables

ODBC Data Type Code JAM Type C Type JAM Widget JAM Widget
Length Precision
(ODBC scale > 0) FT_DOUBLE Double column length + 2 Same as cel
umn scale
SQL_DOUBLE 8 FT_DOUBLE Double 22 2
SQL_FLOAT 6 FT_DOUBLE Double 22 2
SQL_INTEGER 4 FT_LONG LongInt columnlength + 1
SQL_LONGVARSBI- 4 DT_BINARY HexDec columnlength * 2
NARY
SQL_LONGVARCHAR =1 FT_CHAR Char String columnlength
SQL_NUMERIC 2
(ODBC scale = 0) FT_INT Int column length
(ODBC scale > 0) FT_DOUBLE Double column length + 2 Same as cel
umn scale
SQL_REAL 7 FT_FLOAT Float 13
SQL_SMALLINT 5 FT_INT Int column length + 1
SQL_TIME 10 DT_DATETIME Default 20
SQL_TINYINT 6 FT_INT Int column length + 1
SQL_TIMESTAMP 11 DT_DATETIME Default 20
SQL_VARBINARY +3 DT_BINARY HexDec columnlength * 2
SQL_VARCHAR 12 FT_CHAR Char String columnlength

Other Widget
Properties

Based on the columsm'data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database
tables.

UselnUpdateproperty If a columns length is defined as g&r than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as pasa¥&command in

the transaction manager

The Use In Update property is also set to No for certain data types, such as the
timestamp columnin .

264 JAM 7.0 Database Guide

DT_DATETIME

Null Field property

Formatting for Colon Plus Processing and Binding

DT_DATETIMEwidgets also have the Format/Disgfaipata Formatting property
set to Date/ime and Formatyipe set tdEFAULT Note that dates in this Format
Type appear as:

MM/DD/YYHH:MM

If a column is defined to ¢OTNULL , the Null Field property is set to No. For
example, theoles table in thevideobiz database contains three columns:
title_id ,actor_id androle . title_id andactor_id are defined aSOT
NULL so the Null Field property is set to Nole , without aNOTNULL setting, is
implicitly considered to allow null values so the Null Field property is seet Y

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in thépplication Development Guide

Declaring Cursors

Whena connection is declared to an ODBC engine, JAM automatically declares a
default cursor for SQISELECTstatements executed with the JPL comnaBBIS

SQL For all nonsSELECToperations performed withBMSSQL , JAM uses

ODBC's SQLExecDirect function rather than another default cur3dnis feature

is also known aEXECUTHMMEDIATE . If the application needs to select multiple
rows and update the rows one at a time, the application does not need to declare
named cursors.

If the driver is unable to perform the operation usqy ExecDirect , JAM
returns the errobM_CANNOT_EXEC_IMMHR this case, the application should
declare and execute a hamed cursor for the operation.

Applications should also use a named cursor to execute a catalog function or a
stored procedure.

JAM does not put any limit on the number of cursors an application may declare to
an ODBC engine. Since each cursor requires memory and ODBC resources,
however it is recommended that applications close a cursor when it is no longer
needed.

Chapter 16 Database Driver for ODBC 265

Scrolling

Scrolling

Formore information on cursors, refer to Chapter 13 inAghglication Develop
ment Guide

Even though ODBC does not have native support for non-sequential scrolling in a
select set, JAM scrolling is available. Before using any of the following com
mands:

DBMS[WITHCURSOR cursor-name] CONTINUE_BOTTOM
DBMS[WITHCURSOR cursor-name] CONTINUE_TOP
DBMS[WITHCURSOR cursor-name] CONTINUE_UP

theapplication must set up a continuation file for the curBbis is done with the
command

DBMS[WITHCURSOR cursor-name] STORE FILE [filename]

To turn of JAM scrolling and close the continuation file, use the command
DBMS[WITHCURSOR cursor-name] STORE

or close the JAM cursor withBMSCLOSE CURSOR

For more information on scrolling, refer to Chapter 14 inAlpglication
Development Guide

Error and Status Information

266

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; howgtlezse variables are reserved for use in other
engines and for use in future releases of JAM for ODBC.

JAM 7.0 Database Guide

Errors

Using the
Default Error
Handler

Using an
Installed Error
Handler

Error and Status Information

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.
@dmretmsg Standard database driver status message.
@dmengerrcode ODBC error code.

@dmengerrmsg ODBC error message.

@dmengwarncode Not used in JAM for ODBC.
@dmengwarnmsg Not used in JAM for ODBC.

@dmengreturn Not used in JAM for ODBC.

ODBC returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes ODBC error
codes to the global variab@dmengerrcode and writes ODBC messages to
@dmengerrmsg.

All ODBC errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an @imerfirst line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database drivebatabase interface appears in thBeported by list along

with the database engine. The error number and message contain the values of
@dmretcode and@dmretmsg. If the error comes from the database engine, only
the name of the engine appears inRkported by list. The error number and
message contain the valuesadmengerrcode and@dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMSONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode ==
msg emsg °JAM error: © @dmretmsg
else
msg emsg °JAM error: © @dmretmsg © %N° \
%:engine error is ° @dmengerrcode ° °© @dmengerrmsg
return 1

Chapter 16 Database Driver for ODBC 267

Using Stored procedures

For additional information about engine errors, refer to your ODBC documenta
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guided Chapter 12 in tHeatabase Guide

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of ODBC rowdedted by
an operation.

ODBC returns a count of the rowdexdted by an operation. JAM writes this value
to the global variabl@dmrowcount.

As explained on the manual page @dmrowcount, the value of@dmrowcount

after a SQLSELECTis the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQLUNSERT, UPDATE or DELETEIs the total number of

rows afected by the operation. Note that this variable is reset when am@s
statement is executed, includib§MSCOMMIT.

Using Stored procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individuallBy passing parameters to and from the stored
procedure, the same procedure can be used widnetif values. In addition to

SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Since database engines implement stored procedures \fergmtify ODBC
supports the stored procedure syntax prescribed by the database engine. Consult
your ODBC database driver documentation.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. ODBC has one transaction for each connection. Therefore, in a JAM

268 JAM 7.0 Database Guide

Using Transactions

application,a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on ODBC:
ExecutingDBMSCOMMIT.

Thefollowing events roll back a transaction on ODBC:
ExecutingDBMSROLLBACK

Transactiongre not available for all database drivers using ODBC. Refer to your
ODBC database driver documentation for more information.

Transaction Control on a Single Connection

ODBC supports the following transaction commands:
Set availability of autocommit processing.
DBMS[WITHCONNECTION connection] AUTOCOMMIT { ON | OFF }
Committhe transaction on a default or named connection.
DBMS[WITHCONNECTION connection] COMMIT
Rollbackto the beginning of the transaction on a default or named connection.
DBMS[WITHCONNECTION connection] ROLLBACK

The setting for autocommit processing also determines the availability of other
transaction commands. If the settind\isSTOCOMMIDN, every statement is
committed immediatelyThe other transaction commandSBMMITROLLBACP

are invalid. If the setting BUTOCOMMIDFF, the statements in a transaction must
be committed in order for the work to be saved and visible to the rest of the
application or other useraUTOCOMMIDN is the default setting for drivers that
support this feature.

Example The following example contains a transaction on the default connection with an
error handler

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle °new_title()°

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl_retcode
jpl_retcode = :subroutine

Chapter 16 Database Driver for ODBC 269

Using Transactions

Check the value of jpl_retcode. If it is 0, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the

subroutine. If itis -1, JAM aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode ==

{
msg emsg °Transaction succeeded.®
}
else
{
msg emsg °Aborting transaction.®
DBMS ROLLBACK
}

}

proc new_title
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

Theprocedurgran_handle is a generic handler for the applicat®iransac
tions. The procedungew_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing
call tran_handle °new_title()°

Theprocedureran_handle receives the gument 2new _title® and writes it to
the variablesubroutine . It declares a JPL variable|_retcode . After
performing colon processingubroutine is replaced with its value,
new_titte , and JPL calls the procedure. The procedare tite begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variablet-
code in the calling procedungan_handle . JPL then evaluates tife statement,
displays a success message, and exits.

If however an error occurs while executimgv_titte , JAM calls the applica
tion's error handlerThe error handler should display any error messages and return
the abort code, 1.

270 JAM 7.0 Database Guide

Transaction Manager Processing

Forexample, assume the filSISERT in new_title ~ executes successfully but the
secondNSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedurenew_title (therefore, the thirdNSERT is not attempted). JAM returns

1 tojpl_retcode in the calling procedungan_handle . JPL evaluates the
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the tablétles

Transaction Manager Processing

Transaction Model for ODBC

Eachdatabase driver contains a standard transaction model for use with the
transaction managerhe transaction model is a C program which contains the
main processing for each of the transaction manager commandsalY edit this
program; howevetbe aware that the transaction model is subject to change with
each release. For ODBC, the name of the standard transaction modebis.c .

Chapter 16 Database Driver for ODBC 271

ODBC-Specific Commands

ODBC-Specific Commands

JAM for ODBC provides commands for ODBC-specific features. This section
contains a reference page for each command. If you are using multiple engines or
are porting an application to or from another engine, please note that these
commands may work dédrently or may not be supported on some engines.

Retrieving System Information

DECLARECURSOR FOR CATF Declarea cursor for retrieving system
ALOG_FUNCTION information.

Using Transactions

AUTOCOMMIT Turn autocommit processing on off of
COMMIT Commit a transaction.
ROLLBACK Rollback a transaction.

272 JAM 7.0 Database Guide

ODBC-Specific Commands

AUTOCOMMIT

Turn autocommit transaction processing on or off

DBMS[WITHCONNECTION connection-name] AUTOCOMMIT ON

DBMS[WITHCONNECTION connection-name] AUTOCOMMIT OFF

WITH CONNECTION Specifythe connection for this command. If this clause is not included, JAM issues

connection-name

Environment

Description

Example

the command on the default connection.

Some ODBC drivers and data sources do no support this command. This command
requires a level 1 conformance functi®@LSetConnectOption

This command controls whether changes to a database occur immediately upon
execution of atNSERT, UPDATE or DELETEcommand, or whether they occur
when aDBMSCOMMIT is explicitly executed.

The default setting isUTOCOMMIDN. This means that a statement is committed
automatically upon successful execution. Ife@k are immediately visible to
other users, and it cannot be rolled back.

If the setting is changed ®JTOCOMMIDFF, the engine automatically starts a
transaction after an application declares a connection. When a recoverable
statementINSERT, UPDATE andDELETH is executed, it is not automatically
committed. The éécts of the statement are not visible until the transaction is
terminated. If the transaction is terminatedd®M3COMMIT, the updates are
committed and visible to other users. If the transaction is terminatedMg
ROLLBACKthe updates are not committed, and the database is restored to its state
prior to the start of the transaction. Once a transaction is terminated, the engine
automatically begins a new transaction.

proc new_title
DBMS WITH CONNECTION xxx1 AUTOCOMMIT ON
call update_title
msg emsg °New title data successfully entered.®
DBMS WITH CONNECTION xxx1 AUTOCOMMIT OFF
return O

Chapter 16 Database Driver for ODBC 273

ODBC-Specific Commands

proc update_title
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

See Also
COMMIT

ROLLBACK

274 JAM 7.0 Database Guide

ODBC-Specific Commands

COMMIT

Commit a transaction

DBMS[WITHCONNECTION connection-name] COMMIT

WITHCONNECTION Specifythe connection for this command. If the command does not contéin-a
connection-name CONNECTIONIause, JAM issues the commit on the default connection.

Environment

Some ODBC drivers and data sources do not support this command.

Description

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the l@&dMMITChanges made by the transaction become
visible to other users. If the transaction is terminateB@YLBACKthe updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Example

Refer to the example in Usingdnsactions on page 268.

See Also Using Transactions on page 268

ROLLBACK

Chapter 16 Database Driver for ODBC 275

ODBC-Specific Commands

DECLARE CURSOR FOR CATALOG_FUNCTION

Declare a named cursor for an ODBC system catalog function

DBMS[WITHCONNECTION connection-name] DECLARE cursor-name CURSOR \
FOR CATALOG_FUNCTIONunction-name [:: parameter [: parameter ...]]

WITH CONNECTION Specify the connection for this command. If this clause is not included, JAM

connection-name

function-name

parameter

Environment

Description

Example

276

associates the cursor with the default connection.

Specify the name of the ODBC function. The name is not case-sensitive.
Supported functions include:

SQLColumns SQLPrimaryKeys SQLStatistics
SQLColumnPrivileges SQLProcedures SQLTablePrivileges
SQLForeignKeys SQLProcedureColumns SQLTables
SQLGetTypelnfo SQLSpecialColumns

Specify a valid parameter name for the function. The parameter must begin with a
double colon, which is the JAM syntax for cursor parameters.

Some ODBC drivers and data sources do not support this command.

Use this command to create a named cursor to call an ODBC function and retrieve
information from the system catalog. The keywOAIrALOG_FUNCTIOI¢

required. Following the keyword are the name of the function and the fusction'
parameters. For more information on each function, including the fursction'
parameters, refer to your ODBC documentation.

DBMECLARE x CURSOR FOR CATALOG_FUNCTION sqltables \
parml ::parm2 ::parm3 ::parm4

DBMS WITH CURSOR x EXECUTE USING ", '%', '%', "

JAM 7.0 Database Guide

ROLLBACK

ODBC-Specific Commands

Roll back a transaction

DBMS[WITHCONNECTION connection-name] ROLLBACK

WITHCONNECTION Specifythe connection for this command. If the command does not contdina

connection-name

Environment

Description

Example

See Also

CONNECTIONIause, JAM issues the rollback on the default connection.

Some ODBC drivers and data sources do not support this command.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Usingdnhsactions on page 268.

Using Transactions on page 268

COMMIT

Chapter 16 Database Driver for ODBC 277

Command Directory for ODBC

Command Directory for ODBC

Thefollowing table lists all the commands available in JAMatabase driver for
ODBC. The table lists the command, a short description of the command, and the
location of the reference page for that command. If the location is described as
Database Driversthat information is enclosed in this document. If the location is
described as thBatabase Guiderefer to Chapterllof theDatabase Guide

Table 3. Commands for ODBC

Command Name Description Documentation
Location
ALIAS Name a JAM variable as the Database Guide

destination of a selected eol
umn or aggregate function

AUTOCOMMIT Turn on/of autocommit pre Database Drivers
cessing
BINARY Create a JAM variable for Database Guide

fetching binary values

CATQUERY Redirect select results to a Database Guide
file or a JAM variable

CLOSE_ALL_CONNECTIONSClose all connections on all Database Guide

engines
CLOSECONNECTION Closea named connection Database Guide
CLOSECURSOR Closea named cursor Database Guide
COLUMN_NAMES Return the column name, notDatabase Guide
column data, to a JAM vari
able
COMMIT Commit a transaction Database Drivers
CONNECTION Set a default connection and Database Guide
engine for the application
CONTINUE Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers
CONTINUE_BOTTOM Fetch the last screenful of Database Guidé&
rows from a select set Database Drivers

278 JAM 7.0 Database Guide

Command Directory for ODBC

Command Name

Documentation
Location

Description

CONTINUE_DOWN
CONTINUE_TOP
CONTINUE_UP
DECLARECONNECTION
DECLARECURSOR
DECLARECURSOR FOR
CATALOG_FUNCTION

ENGINE

EXECUTE
FORMAT

OCCUR

ONENTRY

ONERROR

ONEXIT

ROLLBACK

Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers

Database Guidé&
Database Drivers

Fetch the first screenful of
rows from a select set

Fetch the previous screenful Database Guid&
of rows from a select set Database Drivers

Declarea named connection Database Guidé&
to an engine Database Drivers

Database Guid&
Database Drivers

Declarea named cursor

Declarea cursor to execute Database Drivers

an ODBC catalog function

Set the default engine for theDatabase Guide
application

Execute a named cursor Database Guide

Format the results of @AT- Database Guide

QUERY

Set the number of rows for Database Guide
JAM to fetch to an array and

set the occurrence where

JAM should begin writing

result rows

Install a JPL procedure or C Database Guide
function which JAM will call

before executing BBMS

statement

Install a JPL procedure or C Database Guidé&
function which JAM will call Database Drivers
when abBMSstatement fails

Install a JPL procedure or C Database Guide
function which JAM will call

after executing ®BMSstate

ment

Roll back a transaction Database Drivers

Chapter 16 Database Driver for ODBC

279

Command Directory for ODBC

280

Command Name

Description Documentation
Location

START

STORE

UNIQUE

WITHCONNECTION

WITHCURSOR

WITHENGINE

Set the first row for JAM to Database Guide
return from a select set

Store the rows of a select setDatabase Guide
in a temporary file so the

application can scroll through

the rows

Suppress repeating values inDatabase Guide
a selected column

Specifythe connection to useDatabase Guide
for a command

Specifythe cursor to use for Database Guide
a command

Specifythe engine to use for Database Guide
a command

JAM 7.0 Database Guide

Library Functions for ODBC

Library Functions for ODBC

JAM for ODBC provides an additional C function in order to obtain the connection
information. This function is described in this section.

Chapter 16 Database Driver for ODBC 281

Library Functions for ODBC

dm_odb_get dbhandle

Get the current connection handle

#include °<dmodbsup.h>°

HDBC dm_odb_get_dbhandle(char *connection);

connection

Returns

Description

Example

282

JAM for ODBC connection name.

W If connection is valid, return associated HDBC.

W If connection is NULL or an empty string, return HDBC of the current-con
nection.
W Otherwise, retursQL_NULL_HDBC

dm_odb_get_dbhandle returns the ODBC connection handle (HDBC) for the
named JAM connection. This handle is needed if you wish to call ODBC SDK
functions, such aSQLGetInfo .

The JAM for ODBC distribution includes a sample file which is located in
$SMBASE\ODBC\ODBCSAMP. @ defines some sample functions that use
dm_odb_get_dbhandle . To call these sample functions from JPL or from control
strings, copy the sample file to your working direct@gd the file name to the
SRCMOD#acro in the makefile, install the functions in the prototyped function

list, and rebuild the executable. For more information about installing functions in
the prototyped function list, refer to Chapter 8 in Application Development

Guide

#include <smdefs.h>
#include <dmodbsup.h>

SWORD

sm_odbinfo (connection, flag)
char *connection;

UWORD flag;

HDBC dbhandle;

SWORD value;
RETCODE retcode;

JAM 7.0 Database Guide

Library Functions for ODBC

dbhandle =dm_odb_get_dbhandle(connection);

if (dbhandle '= SQL_NULL_HDBC)

{
retcode = SQLGetInfo(dbhandle, flag, (PTR)&value,
sizeof(value), NULL);
if (retcode == SQL_SUCCESS)
{
return value;
}
}
return £1;

}

Thefollowing example is in JPL and it assumes you have instsidteddbinfo in
the function list:

include odbcgbls

vars cursor_stat(5)
cursor_stat=sm_odbinfo(°dm_odb_0conn®, \

SQL_CURSOR_COMMIT_BEHAVIOR)
if (cursor_stat < 2)

{
Cursors are closed after commit. Application must
rexexecute SELECT cursors.

}

else

{ . o
Cursors remain open after commit. Application may
call CONTINUE.

}

Chapter 16 Database Driver for ODBC 283

Database Driver=for
ORACLE

This chapter provides documentation specific to ORACLE. It discusses the
following:

Engine initialization (page 286)

Connection declaration (page 287)

Import conversion (page 290)

Formatting for colon-plus processing and binding (page 293)
Cursors (page 294)

Errors and warnings (page 295)

Stored subprograms (page 297)

Database transaction processing (page 300)
Transaction manager processing (page 303)

XA library interface (page 304)
ORACLE-specificbDBMSsommands (page 305)
Command directory for JAM for ORACLE (page 315)

285

Initializing the Database Engine

This document is designed as a supplement to information found Aptiiation
Development Guidand other sections of tizatabase Guide

Initializing the Database Engine

Engine Name

286

Whenyou run the makefile for JAM for ORACLE, it creates the source file
dbiinit.c . For ORACLE, therendor_list structure irdbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{¢oracle®, dm_orasup, DM_DEFAULT_CASE ,(char *) 0},

{(char *) 0, (int (*)()) O, (int) O, (char *) 0}

The settings are as follows:

oracle Engine name. May be changed.
dm_orasup Support routine name. Do not change.
DM_DEFAULT_CASE Case setting for matchirgELECTcolumns

with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

In the makefile, you may change the engine name associated with the support
routinedm_orasup . The application then uses that namBeBMENGINE
statementand iNWITHENGINE clauses. For example, if you wish to use
atracking® as the engine name, change the following makefile parameter:

ORA_ENGNAME-=tracking

When the makefile is run again, it generates a diginit.c file with the new
settings.

If the application is accessing multiple engines, it makes ORACLE the default
engine by executing:

DBMSENGINE oracle-engine-name

JAM 7.0 Database Guide

Connecting to the Database Engine

whereoracle-engine-name is the string used ivendor_list . For example,
DBMSENGINE oracle
or

DBMS ENGINE tracking

Support Routine Name

Case Flag

dm_orasup is the name of the support routine for ORACLE. This name should not
be changed.

Thecase flagbM_DEFAULT_CASHletermines how JAM'database drivers use
case when searching for JAM variables for hol#&g ECTresults. This setting is
used when comparing ORACLE column names to either a JAM variable name or
to a column name iINnBBMSALIAS statement.

ORACLE is case insensitive. Regardless of the case in a SQL statement, ORACLE
creates all database objectsbtables, views, columns, etc.Bwith upper case names.
For ORACLE, theDM_DEFAULT_CASEetting is treated as
DM_FORCE_TO_LOWER_CAZHis means that JAM attempts to match ORACLE
column names to lower case JAM variables when proceSsingCTresults. If

your application is using this default, use lower case names when creating JAM
variables.

The case setting may be changed. If you wish to use upper case JAM variable
names, use the option in the makefile for theM_FORCE_TO_UPPER_CAf&g.

ORA_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chaptelr ih theApplication Development Guide

Connecting to the Database Engine

ORACLE allows your application to use one or more connections. The application
may declare any number of named connections DBMDECLARE CONNEE
TION statements, up to the maximum number permitted by the server

Chapter 17 Database Driver for ORACLE 287

Connecting to the Database Engine

288

Table 1.

Thefollowing options are supported for connections to ORACLE:

Database connection options.

Option Argument
USER user-name
PASSWORD password
DEFERRED_PARSING ON| OFF

USERandPASSWORDave diferent configurations for SQL*Net V1 and SQL*Net
V2.

For SQL*Net V1, a JAM application connects to the default ORACLE database
unless the program supplies an ORACLE connect string or an ORACLE connect
alias. This connect string or alias is appended tadteename argument. For
example:

Connect string for TCP/IP
DBMS DECLARE ¢ CONNECTION FOR USER °scott@T::nysales::P°\
PASSWORD °tiger°

Connect alias
DBMS DECLARE ¢ CONNECTION FOR USER °scott@ny® \
PASSWORD °tiger®

In the connect string example, thework-prefix is T for TCP/IR thehost-name is
nysales , and thesystem-ID is P. In connect strings, use two colons between the
parameters, instead of one, to prevent JAM from performing colon expansion on
the names.

Even though you can specify a connect string as part ofugetname or
password, better error messages are returned from ORACLE if it is part of the
user-name.

For SQL*Net 2, thaiser-name argument contains the logon name and the service
name or connect descriptor found in yoMSNAMES.ORA#ile.

Service name for SQL*Net V2
DBMS DECLARE ¢ CONNECTION FOR USER °scott@listener® \
PASSWORD °tiger®

Referto your SQL*Net documentation for more information on connect strings
and connect descriptors.

DEFERRED_PARSING an option available with ORACLE 7 using OCI. It controls
when the SQL statement is parsed. If s&Npothe call to parse the SQL statement

JAM 7.0 Database Guide

Connecting to the Database Engine

is delayed, bundled at the client host, and transmitted to the server together with
the nextDESCRIBEor EXECUTEstatement. By reducing the number of calls across
the network, it improves performan@-Fis the default setting.

The syntax for declaring a connection in a JPL statement is:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
FOR USER user-name PASSWORDpassword \
[DEFERRED_PARSINGN | OFF]

For example:

DBMECLARE dbi_session CONNECTION FOR\
USER °:uname@T::nyserver::sales® PASSWORD °:pword®

whereuname andpword are JAM widget names.

Additional keywords are available for other database engines. If those keywords
are included in youbBMECLARE CONNECTIONommand for ORACLE, it is
treated as an error

Connecting to the XA Library

In ORACLE 7, distributed transaction processing (DTP) can be handled by a
transaction manager using ORACLE as one of its resource managers. ORACLE'
XA library provides an interface to this environment.

JAM for ORACLE provides a special logon syntax for programs operating as
application servers in an X/Open distributed processing environment. These logon
options indicate that JAM should use ORACS&KA library to set connection
information. Note that these options also require the use of JAM/TP

In order to access the XA libraryou must specify the following options in the
DBM>ECLARE CONNECTIONstatement:

Option Argument
XA_CONN ON| OFF
XA _DBNAME character_string

XA_CONN ONells JAM to use the ORACLE XA librarXA_DBNAMBhould be
used when connecting to an open string with the DB field set.

For example, the following string does not set the DB field:
Oracle_XA+Acc=P/scott/tiger+SesTm=30
To connect using this open string:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN

Chapter 17 Database Driver for ORACLE 289

Importing Database Tables

For example, the following string sets DBrt&sources
Oracle_XA+DB=resources+Acc=P/scott/tiger+SesTm=30
To connect using this open string:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
FOR XA _CONN ON XA_DBNAME °resources®

or

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN ON XA_DBNAME °RESOURCES®

Importing Database Tables

Table Views

290

The Imports Database Objects option in the screen editor creates JAM repository
entries based on database tables in a ORACLE database. When the import process
is complete, each selected database table has a corresponding repository entry
screen.

In JAM for ORACLE, the following database objects can be imported as
repository entries:

database tables
database views
synonyms
Once the import process is complete, the repository entry screen contains:

A widget for each column in the table, using the colunaharacteristics to
assign the appropriate widget properties.

A label for each column based on the column name.
A table view named for the database table, database tableovisynonym.
Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. As a

general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repositugynew repository

screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view

JAM 7.0 Database Guide

Importing Database Tables

Theimport process inserts values in the following table view properties:
Name B The name of the table viegenerally the same as the database table.
Table B The name of the database table.

Primary Keys B The columns that are defined as primary keys for the
database table.

Columns P A list of the columns in the database table is displayed when you
click on the More button. Howevghis list is for reference onlyt cannot be
edited.

Updatable B A setting which determines if the data in the table can be
modified. The default setting for Updatable issY

For each repository entry based on a database thievprimary key widgets must

be available if you want to update data in that vieist, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, thit
information is automatically imported.

Refer to Chapter 21 in thgpplication Development Guidend Chapter 21 in the
Editors Guidefor more information on table views.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table. .view

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Refer to Chapter 21 in thigpplication Development Guidgend Chapter 21 in the
Editors Guidefor more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is @ATABASE

indicating that the widget was imported from the database engine. The Justification

property is set to Left. Other widget properties are assigned based on the data type.

Chapter 17 Database Driver for ORACLE 291

Importing Database Tables

Thefollowing table lists the values for the @pie, Length, and Precision
properties assigned to each ORACLE data type.

Table 2. Importing Databasedbles
ORACLE Data Type JAM Type C Type JAM Widget Length JAM Widget
Precision
CHAR FT_CHAR Char Column length
String
DATE DT_DATETIME Default 20
LONG FT_CHAR Char 36
String
LONGRAW DT_BINARY Char 36
String
NUMBER FT_LONG LonglInt Columnlength plus 1 for
(ORACLE scale = 0) sign
NUMBER FT_DOUBLE Double Column length plus 2 for Same as column
(ORACLE scale > 0) +/+ sign and decimal precision (scale)
point
RAW DT_BINARY HePec Columnlength * 2
ROWID FT_CHAR Char 18
String
VARCHAR2 FT_CHAR Char Column length
String

Precisionin ORACLE is equivalent to length in JAM, and scale in ORACLE is equivalent to precision in JAM.

Other Widget
Properties

UselnUpdateproperty

292

Basedon the columrs data type or on the JAM type assigned during the import
process, other widget properties may be automatically set when importing database

tables.

If a columns length is defined as tp&r than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as paga¥&acommand in

the transaction manager

In JAM for ORACLE, this is applied tbONGRAWandRAWata types.

JAM 7.0 Database Guide

DT_DATETIME

Null Field property

Formatting for Colon Plus Processing and Binding

DT_DATETIMEwidgets also have the Format/Disgfaipata Formatting property
set to Date/ime and Formatyipe set tdEFAULT Note that dates in this Format
Type appear as:

MM/DD/YYHH:MM

If a column is defined to ¢OTNULL , the Null Field property is set to No. For
example, theoles table in thevideobiz database contains three columns:
title_id ,actor_id androle . title_id andactor_id are defined aSOT
NULL so the Null Field property is set to Nole , without aNOTNULL setting, is
implicitly considered to allow null values so the Null Field property is seeto Y

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in thépplication Development Guide

Formatting Dates

JAM uses ORACLE built-inTO_DATEfunction and the ORACLE format string,
ddmmyyyy hh24miss to convert a JAM date-time format to an ORACLE format.

Formatting Character Strings

Long Character
String Values

ORACLE 6 does not permit quoted character strings longer than 255 characters.
Furthermore, in all versions of ORACLE, there is a 64K limit on the size of a SQL
statement. Therefore, you should not use colon-plus processing to supply long
character string values (e.gQNG VARCHARRINn a SQLINSERT or UPDATE
statement. Instead, you should use binding to supply the character string. For
example:

DBMSDECLARE x CURSOR FOR INSERT INTO mytable \
(code, comments) VALUES (::code, ::comments)

DBMS WITH CURSOR x EXECUTE USING code+fld, commentsfid

Typically, a word-wrapped multi-text array is used for these long strings.

Chapter 17 Database Driver for ORACLE 293

Declaring Cursors

Empty
Character
Strings

In JAM for ORACLE, colon plus processing expands an empty character string

(") to a quoted space () if the widgets Null Field property is set to No. This is
to circumvent ORACLES behaviarSince ORACLE converts an empty character
string toNULL, null values were being entered into the database even though they
were not specified.

Declaring Cursors

Scrolling

294

Whena connection is declared to an ORACLE engine, JAM automatically declares
a default cursor for SQEELECTstatements executed with the JPL command
DBMSSQL. For all nonsELECToperations performed withBMSSQL, JAM uses
ORACLE'sEXECUTHMMEDIATE feature rather than another default curfahe
application needs to select multiple rows and update the rows one at a time, the
application does not need to declare named cursors.

Declaring a named cursor may improve the performance of SEXECT

statements. In particulaf an application is executingSELECTstatement more

than once and theELECTfetches 40 or more columns from a remote seever
named cursor is recommended. In this case, the parse and describe is done just
once when the cursor is declared, not each time the cursor is executed.

JAM does not put any limit on the number of cursors an application may declare to
an ORACLE engine. Since each cursor requires memory and ORACLE resources,
however it is recommended that applications close a cursor when it is no longer
needed.

For more information on cursors, refer to Chapter 13 irAfs@ication Develop
ment Guide

Even though ORACLE does not have native support for non-sequential scrolling in
a select set, JAM scrolling is available. Before using any of the following
commands:

DBMS[WITHCURSOR cursor-name] CONTINUE_BOTTOM
DBMS[WITHCURSOR cursor-name] CONTINUE_TOP
DBMS[WITHCURSOR cursor-name] CONTINUE_UP

theapplication must set up a continuation file for the curEbis is done with the
command

DBMS[WITHCURSOR cursor-name] STORE FILE [filename]

JAM 7.0 Database Guide

Error and Status Information

To turn of JAM scrolling and close the continuation file, use the command
DBMS[WITHCURSOR cursor-name] STORE
or close the JAM cursor withBMSCLOSE CURSOR

For more information on scrolling, refer to Chapter 14 inApglication
Development Guide

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; howetlase variables are reserved for use in other
engines and for use in future releases of JAM for ORACLE.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.
@dmretmsg Standard database driver status message.
@dmengerrcode ORACLE error code.

@dmengerrmsg ORACLE error message.
@dmengwarncode Not used in JAM for ORACLE.
@dmengwarnmsg Not used in JAM for ORACLE.
@dmengreturn Not used in JAM for ORACLE.

ORACLE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes ORACLE
error codes to the global variat@@mengerrcode and writes ORACLE messages

to @dmengerrmsg.

All ORACLE errors are JAM errors. Therefore, JAM always calls the default error
handler or the installed error handler when an error occurs.

Chapter 17 Database Driver for ORACLE 295

Error and Status Information

Using the
Default Error
Handler

Using an
Installed Error
Handler

Thedefault error handler displays a dialog box if there is an.érhar first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database drivebatabase interface appears in thBeported by list along

with the database engine. The error number and message contain the values of
@dmretcode and@dmretmsg. If the error comes from the database engine, only
the name of the engine appears inRbported by list. The error number and
message contain the valuesamengerrcode and@dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMSONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode ==
msg emsg °JAM error: © @dmretmsg
else
msg emsg °JAM error: © @dmretmsg © %N° \
%:engine error is ° @dmengerrcode ° ° @dmengerrmsg
return 1

For additional information about engine errors, refer to your ORACLE documenta
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guided Chapter 12 in tHeatabase Guide

Row Information

296

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of ORACLE rowdedted
by an operation.
@dmeserial Not used in JAM for ORACLE.

ORACLE returns a count of the rowdesdted by an operation. JAM writes this
value to the global variabl@dmrowcount.

As explained on the manual page @dmrowcount, the value of@dmrowcount

after a SQLSELECTis the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQLUNSERT, UPDATE or DELETEIs the total number of

rows afected by the operation. Note that this variable is reset when am@&s
statement is executed, includin§MSCOMMIT.

JAM 7.0 Database Guide

Using Stored Subprograms

Using Stored Subprograms

A stored subprogram is a precompiled set of SQL statements that are recorded in
the database and executed by calling the subprogram name. Since the SQL parsing
and syntax checking for a stored subprogram are performed when the subprogram
is created, executing a stored subprogram is faster than executing the same group
of SQL statements individuallf8y passing parameters to and from the stored
subprogram, the same procedure can be used wighediif values. In addition to

SQL statements, stored subprograms can also contain control flow language, such
asif statements, which gives greater control over the processing of the statements.

Database engines implement stored subprograms véeyedifly, If you are
porting your application from one database engine to angthemeed to be aware
of the diferences in the engine implementation.

ORACLE as part of its PL/SQL language has two types of subprograms: stored
procedures and stored functions. JAM support for each type of subprogram is
discussed in the following sections access to stored subprograms, you must use
ORACLE's OCI Interface with ®rsion 7 of ORACLE. Consult the fig&sSMBASE/
notes/readme.ora for the file names and versions of ORACLE libraries needed.
For more information on writing stored subprograms, refer to your ORACLE
PL/SQL documentation.

Executing Stored Procedures

To execute a stored procedure, you must declare a named dinsDECLARE
CURSORtatement must include the keyw@TORED_SURAIl parameters to the
stored procedure must have corresponding bind parametersiBChaRE
CURSORtatement.

PL/SQL defines three modes for parameters: input, output and input/output. An
input parameter can be a constant, literal, initialized variable, or expression. Arrays
are not supported as input parameters in this release. Output and input/output
parameters must be variables.

The output parameters in a stored procedure must be either one of the scalar data
types CHARINT, REAL etc) or a table data type. Record data types are not
supported as output parameters in this release.

The syntax for th®@ECLARECURSORStatement is as follows:

DBMSDECLARE cursor-name CURSOR FOR STORED_SUB\
[package-name. Jprocedure-name [(:: parameter[, :: [parameter]...)]

When the cursor is executed, the JAM variables named 102G clause must
have enough occurrences to hold all the rows which are returoedavinot use a
DBMSCONTINUE command to fetch additional rows.

Chapter 17 Database Driver for ORACLE 297

Using Stored Subprograms

Useone of the following formats to execute the cursor:
DBMS[WITHCURSOR cursor] EXECUTE [USING jamvar [, jamvar ...]]

DBMS[WITHCURSOR cursor] EXECUTE [USING parameter=jamvar \
[, parameter=jamvar ...]]

Return Codes ORACLE stored procedures, by definition, do not have return codes.

Example For exampleypdate_tapes is a stored procedure that changes the video tape
status tawhenever a video is rented.

PROCEDUREHpdate_tapes (tid IN INTEGER, copy IN INTEGER) IS
BEGIN
UPDATE tapes SET status = 'O’

WHERE title_id = tid AND copy_num = copy;
END update_tapes;

Thefollowing JPL procedure executes this stored procedure. FDECBARE
CURSORtatement identifies the parameters. Then, the cursor is executed with a
USING clause which gets the onscreen values of the widgetsd and
copy_num.

proc spl

DBMS DECLARE x CURSOR FOR STORED_SUB update_tapes \
(::parmil, ::parm?2)

DBMS WITH CURSOR x EXECUTE USING parm1=title_id,\
parm2=copy_num

return

Remembeto use double colons (::) iINCECLARECURSORStatement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guider more information.

Example rent_history is a stored procedure containing both input and output parameters
which finds the video rentals for a customer

298 JAM 7.0 Database Guide

Using Stored Subprograms

PROCEDUREent_history (
cid IN INTEGER,
tid OUT INTEGER,
tname OUT CHAR,
rstatus OUT CHAR,
due_date OUT DATE,
ret_date OUT DATE) IS
BEGIN
SELECT rentals.title_id, titles.name,
rentals.rental_status, rentals.due_back,
rentals.return_date
INTO tid, thame, rstatus, due_date, ret_date
FROM rentals, titles
WHERE rentals.title_id = titles.title_id AND
cust_id = cid;
END rent_history;

M/

Thefollowing JPL procedure executes the stored procedure. FDECBARE
CURSORtatement identifies the name of the stored procedure and its parameters.
Then, the cursor is executed witliaING clause which gets the onscreen value of
cust_id and returns the output parameters to arrays having an unlimited number
of occurrences.

proc sp3

DBMS DECLARE y CURSOR FOR STORED_SUB rent_history \
(::parmi, ::parm2, ::;parm3, ::;parm4, ::parm>5, ::parm6)

DBMS WITH CURSOR y EXECUTE USING parml1=cust_id,\
parm2=title_id, parm3=name, parm4=rental_status, \
parm5=due_back, parm6=return_date

return

Executing Stored Functions

To execute a stored function, you must also USEGLARECURSORStatement
including the keywordsTORED_SUBHowever since a stored function has a return
code, the syntax of the statemenfeati from the syntax used for stored proce
dures.

In the current version of JAM for ORACLE, the return code must be one of the
scalar data type€HARINT, REAL etc.).

DBMSDECLARE cursor-name CURSOR FOR STORED_SUB \
;. parameterl ::= function-name (:: parameter [, :: [parameter]...])

In this statemenparameterl holds the return codé&inction-name is any existing
ORACLE stored function. Any other parameters follow the function name. All
parameters to the stored function must have corresponding bind parameters in the
DECLARECURSORSstatement.

Chapter 17 Database Driver for ORACLE 299

Using Transactions

Return Codes

Example

Whenthe cursor is executed, the return code is writtg¢antearl. Any additional
parameters follow the return code.

DBMS[WITHCURSOR cursor] EXECUTE USING jamvarl [, jamvar ...]

The return code from an ORACLE stored function is not written to the JAM
variable@dmengreturn . Since the@dmengreturn is designed to hold integer
values and the return code from a stored function can be of any data type, it is
written to the first JAM variable in aBXECUTEUSING statement as illustrated in
the preceding examples.

cust_rent calculates the new totadnt_amount column in thecustomers
table.

FUNCTIONCcust_rent (cid IN INTEGER, total IN REAL) RETURN
REAL IS
old_rent REAL;
calc_rent REAL;
BEGIN
SELECT rent_amount INTO old_rent FROM customers
WHERE cust_id = cid;
calc_rent := total + old_rent;
RETURN calc_rent;
END cust_rent;

///—\—/—\///

Thefollowing JPL procedure executes the stored function. FIBEGLARE
CURSORtatement identifies the parameters and return code. Then, the cursor is
executed with &SING clause which gets the onscreen valueust_id and

total and returns thetle_id andcopy_num.

proc sp3

DBMS DECLARE z CURSOR FOR STORED_SUB ::a\
:=cust_rent (::b, ::c)

DBMS WITH CURSOR z EXECUTE USING calc_rent, cust _id, total

return

Using Transactions

300

A transaction is a unit of work that must be totally completed or not completed at
all. ORACLE has one transaction for each connection. Therefore, in a JAM
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on ORACLE:

JAM 7.0 Database Guide

Using Transactions

ExecutingDBMSCOMMIT.

Executinga data definition command suchGREATE DROPRENAMEOr
ALTERwhich causes an implicit commit.

Closing the connection.
The following events roll back a transaction on ORACLE:
ExecutingDBMROLLBACK

Whenan application closes a connection WittDSE_ALL_CONNECTION&
CLOSECONNECTION ORACLE commits any pending transactions on those
connections. If an application terminates without explicitly closing its connections,
ORACLE rolls back any pending transactions on those connections. However
these procedures are not recommended. Instead, it is strongly recommended that
applications use explictOMMITandROLLBACKstatements to terminate

transactions.

For information on transaction processing for ORACLE XA connections, refer to
page 304.

Transaction Control on a Single Connection

After an application declares a connection, a transaction automatically starts on
that connection.

ORACLE supports the following transaction commands:
Set availability of autocommit processing.
DBMS[WITHCONNECTION connection] AUTOCOMMIT { ON | OFF }
Committhe transaction on a default or named connection.
DBMS[WITHCONNECTION connection] COMMIT

Rollbackto a savepoint or to the beginning of the transaction on a default or
named connection.

DBMS[WITHCONNECTION connection] ROLLBACK [savepoint]
Create a savepoint in the transaction on a default or named connection.
DBMS[WITHCONNECTION connection] SAVE [savepoint]

The setting for autocommit processing also determines the availability of other
transaction commands. If the setting\isTOCOMMIDN, every statement is

Chapter 17 Database Driver for ORACLE 301

Using Transactions

Example

302

committedimmediately The other transaction commandSDMMITROLLBACIP

are invalid. If the setting IKUTOCOMMIDFF, the statements in a transaction must
be committed in order for the work to be saved and visible to the rest of the
application or other useraUTOCOMMIDFF is the default setting.

The following example contains a transaction on the default connection with an
error handler

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle °new_title()°

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is O, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the

subroutine. Ifitis -1, JAM aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode ==

{
msg emsg °Transaction succeeded.®
}
else
{
msg emsg °Aborting transaction.®
DBMS ROLLBACK
}

}

proc new_title
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES\
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

Theprocedurgran_handle is a generic handler for the applicat®iransac
tions. The procedungew_title contains the transaction statements. This method
reduces the amount of error checking code.

JAM 7.0 Database Guide

Transaction Manager Processing

Theapplication executes the transaction by executing
call tran_handle °new_title()°

Theproceduraran_handle receives the gument 2new_title® and writes it to
the variablesubroutine . It declares a JPL variable|_retcode . After
performing colon processingsubroutine is replaced with its value,
new_titte , and JPL calls the procedure. The procedare tite begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variablet-
code in the calling procedungan_handle . JPL then evaluates tife statement,
displays a success message, and exits.

If however an error occurs while executimgv_titte , JAM calls the applica
tion's error handlerThe error handler should display any error messages and return
the abort code, 1.

For example, assume the filISERT in new_title executes successfully but the
secondNSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedurenew_title (therefore, the thirtNSERT is not attempted). JAM returns

1 tojpl_retcode in the calling procedungan_handle . JPL evaluates the
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the tablétles

Transaction Manager Processing

Transaction Model for ORACLE

Eachdatabase driver contains a standard transaction model for use with the
transaction managefhe transaction model is a C program which contains the
main processing for each of the transaction manager commandsaly edit this
program; howevetbe aware that the transaction model is subject to change with
each release. For ORACLE, the name of the standard transaction model is
tmoral.c

Specifying FOR UPDATE Clauses

Thedm_gen_change_select_suffix function appends text to SGHELECT
statements generated by the transaction manégeican use this function to
append &ORUPDATE clause during SQL generation.

Chapter 17 Database Driver for ORACLE 303

Using the XA Interface

Using the XA Interface

With the XA interface, the transaction processing monitor provided by the
transaction manager vendor starts and ends a transaction which may include
operations on several resource managers, including ORACLE.

Since ORACLE does not control the transaction processing in the XA environ
ment, the following commands should not be used with ORACLE XA connections:

DBMS[WITHCONNECTION connection] AUTOCOMMIT { ON | OFF }
DBMS[WITHCONNECTION connection] COMMIT

DBMS[WITHCONNECTION connection] ROLLBACK [savepoint]
DBMS[WITHCONNECTION connection] SAVE [savepoint]

In addition, since SQL data definition statements, SUGREATETABLE, cause
an implicit commit in ORACLE, these statements should not be executed on
ORACLE XA connections.

For additional information about ORACLEXA library, refer to your ORACLE 7
Server for UNIX Administratds Reference.

304 JAM 7.0 Database Guide

ORACLE-Specific Commands

ORACLE-Specific Commands

JAM for ORACLE provides commands for ORACLE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may workféifently or may not be supported on some engines.

Using Stored Subprograms

DECLARECURSOR FOR Declarea cursor to execute a stored subpro
STORED_SUB gram.

Using Transactions

AUTOCOMMIT Turn autocommit processing on off of
COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

Chapter 17 Database Driver for ORACLE 305

ORACLE-Specific Commands

AUTOCOMMIT

Turn autocommit transaction processing on or off

DBMS[WITHCONNECTION connection-name] AUTOCOMMIT ON

DBMS[WITHCONNECTION connection-name | AUTOCOMMIT OFF

WITH CONNECTION Specifythe connection for this command. If this clause is not included, JAM issues

connection-name

Environment

Description

Example

306

the command on the default connection.

This command is not available for ORACLE XA connections.

This command controls whether changes to a database occur immediately upon
execution of atNSERT, UPDATE or DELETEcommand, or whether they occur
when aDBMSCOMMIT is explicitly executed.

The default setting isUTOCOMMIDFF. This means that the engine automatically
starts a transaction after an application declares a connection. When a recoverable
statementINSERT, UPDATE andDELETH is executed, it is not automatically
committed. The éécts of the statement are not visible until the transaction is
terminated. If the transaction is terminateddBMSCOMMIT, the updates are
committed and visible to other users. If the transaction is terminategMg
ROLLBACKthe updates are not committed, and the database is restored to its state
prior to the start of the transaction. Once a transaction is terminated, the engine
automatically begins a new transaction.

If the setting is changed K TOCOMMIDN, a statement is committed autornati
cally upon successful execution. Itéeets are immediately visible to other users,
and it cannot be rolled back.

ORACLE recommendaUTOCOMMIDFF mode because it may improve
performance.

proc new_title
DBMS WITH CONNECTION xxx1 AUTOCOMMIT ON
call update_title
msg emsg °New title data successfully entered.®
DBMS WITH CONNECTION xxx1 AUTOCOMMIT OFF
return O

JAM 7.0 Database Guide

ORACLE-Specific Commands

proc update_title
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
return O

See Also
COMMIT
ROLLBACK

SAVE

Chapter 17 Database Driver for ORACLE 307

ORACLE-Specific Commands

COMMIT

Commit a transaction

DBMS[WITHCONNECTION connection-name] COMMIT

WITHCONNECTION Specifythe connection for this command. If the command does not contdin-a

connection-name

Environment

Description

Example

See Also

308

CONNECTIONKIause, JAM issues the commit on the default connection.

This command is not available for ORACLE XA connections.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the l@&dMMITor SAVE Changes made by the transaction
become visible to other users. If the transaction is terminatedbyBACKthe

updates are not committed, and the database is restored to its state prior to the start
of the transaction.

Once a transaction is terminated, the engine automatically begins a new-transac
tion.

Before beginning a transaction, the application should ensure that the connection is
usingAUTOCOMMIDFF mode; this is usually the default. It shodldmMmITor
ROLLBACKany pending transactions before starting a new one.

If an application is usingUTOCOMMIDN mode, this command is not needed.

Refer to the example in Usingdnsactions on page 300.

Using Transactions on page 300

JAM 7.0 Database Guide

ORACLE-Specific Commands

AUTOCOMMIT
ROLLBACK

SAVE

Chapter 17 Database Driver for ORACLE 309

ORACLE-Specific Commands

DECLARE CONNECTION

Creates a named connection to a database engine

DBMS[WITHENGINE engine] DECLARE connection CONNECTION [FOR option arg ... 1]

WITHENGINE
engine

connection
option

arg

Description

XA Connections

Example

See Also

310

Names the engine to associate with the connection. If the clause is not used, JAM
opens the connection on the default engine.

Names the connection to be opened. For names to be used with XA connections,
refer to the Description.

Names an option for the connection. The names and number of available options
varies according to the database engine and type of connection.

The value assigned to the option.

DBM®ECLARE CONNECTIONopens a session on a database engine. If this state
ment executes successfuiyallocates a connection structure and adds it to the list
of open structures.

Applications which must connect to two or more servers should declare a named
connection to each servdfryou are connecting to two or more database engines,
you must declare a connection for each engine.

The combination of necessary or supported options is engine-specific. Common
options includeJSER PASSWORMDATABASEandSERVERFor a list of the valid
options for this engine, refer to page 287.

The connection remains open until it is closed BBEMSCLOSE CONNECTIONor
DBMS3CLOSE_ALL_CONNECTIONS

Thetransaction monitor used with XA connections requires an open string to open
a database.

This procedure connects to the database.

#

proc logon

DBMS DECLARE c¢1 CONNECTION FOR USER ©°:user°®
PASSWORD °:pword® DATABASE °:dbase®

return

CLOSE CONNECTIONCLOSE_ALL_CONNECTIONEONNECTIONWITH
CONNECTION

JAM 7.0 Database Guide

ORACLE-Specific Commands

DECLARE CURSOR FOR STORED_SUB

Declare a named cursor for a stored subprogram

DBMS[WITHCONNECTION connection-name] DECLARE cursor-name CURSOR FOR STORED_SUB\\

[package-name. Jprocedure-name [(:: parameter[, :: parameter]...)]
DBMS[WITHCONNECTION connection-name] DECLARE cursor-name CURSOR FOR STORED_SUB\
o return-code :: function-name (:;: parameter [, 1 [parameter]...])
function-name Specifies the stored function name.
package-name Specifies the PL/SQL package containing the stored subprogram.
parameter For stored procedures, specifies an input or output parameter used in the stored
procedure. For stored functions, specifies input parameter used in the stored
function.
procedure-name Specifies the stored procedure name.
return-code Specifies the name of the return code in the stored function.
WITHCONNECTION Specify the connection for this command. If this clause is not included, JAM
connection-name associates the cursor with the default connection.
Description Use this command to create or redeclare a named cursor to execute a stored sub

program. The keywor8 TORED_SUMBs required and can be used for both stored
procedures and stored functions. Howetlee format of the command varies for
these two types of subprograms. The first format shown is for stored procedures.
The second format is for stored functions.

All parameters must begin with a double colon, which is the JAM syntax for cursor
parameters.

The application executes a cursor associated with a stored subprogram as it
executes any hamed curseith DBMEXECUTE However the format of this
command dffers for stored procedures and stored functions. Refer to the examples
in Using Stored Subprograms on page 297.

Example
Refer to the example in Using Stored Subprograms on page 297.

See Also Using Stored Subprograms on page 297

Chapter 17 Database Driver for ORACLE 311

ORACLE-Specific Commands

ROLLBACK

Roll back a transaction

DBMS[WITHCONNECTION connection-name] ROLLBACK [savepoint]

WITHCONNECTION
connection-name

savepoint

Environment

Description

Example

See Also

312

Specify the connection for this command. If the command does not contdiiia
CONNECTIONIause, JAM issues the rollback on the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

This command is not available for ORACLE XA connections.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Usingdnsactions on page 300.

Using Transactions on page 300
AUTOCOMMIT
COMMIT

SAVE

JAM 7.0 Database Guide

ORACLE-Specific Commands

SAVE

Set a savepoint within a transaction

DBMS[WITHCONNECTION connection-name] SAVE savepoint

savepoint Specifiesthe name of the savepoint.

WITH CONNECTION Specify the connection for this command. If this clause is not included, JAM issues
connection-name the command on the default connection.

Environment

This command is not available for ORACLE XA connections.

Description

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled ushSROLLBACKsavepoint. A

transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then be
completed or completely rolled back to the beginning.

This feature is useful for any long, complicated transaction. For example, an order
entry application may involve many screens where an end-user must enter data
regarding the ordeAs the user completes each screen, the application may issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application may
simply rollback the procedures on the fifth screen.

Example proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SAVE sl

call new_dscr

call new_tapes

DBMS COMMIT

return O

Chapter 17 Database Driver for ORACLE 313

ORACLE-Specific Commands

See Also

314

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2
return O

proc new_tapes
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, :+status, :+times_rented)
return 0

Using Transactions on page 300
AUTOCOMMIT
COMMIT

ROLLBACK

JAM 7.0 Database Guide

Command Directory for ORACLE

Command Directory for ORACLE

Thefollowing table lists all the commands available in JAMatabase driver for
ORACLE. The table lists the command, a short description of the command, and
the location of the reference page for that command. If the location is described as
Database Driversthat information is enclosed in this document. If the location is
described as thBatabase Guiderefer to Chapterllof theDatabase Guide

Table 3. Commands for ORACLE

Command Name

Description Documentation
Location

ALIAS

AUTOCOMMIT

BINARY

CATQUERY

Name a JAM variable as the Database Guide
destination of a selected eol
umn or aggregate function

Turn on/of autocommit pre Database Drivers
cessing

Create a JAM variable for Database Guide
fetching binary values

Redirect select results to a Database Guide
file or a JAM variable

CLOSE_ALL_CONNECTIONSClose all connections on all Database Guide

CLOSECONNECTION
CLOSECURSOR
COLUMN_NAMES

engines
Closea named connection Database Guide
Closea named cursor Database Guide

Return the column name, notDatabase Guide
column data, to a JAM vari

able
COMMIT Commit a transaction Database Drivers
CONNECTION Set a default connection and Database Guide
engine for the application
CONTINUE Fetch the next screenful of Database Guid&
rows from a select set Database Drivers
CONTINUE_BOTTOM Fetch the last screenful of Database Guidé&
rows from a select set Database Drivers
Chapter 17 Database Driver for ORACLE 315

Command Directory for ORACLE

Command Name

Documentation
Location

Description

CONTINUE_DOWN
CONTINUE_TOP
CONTINUE_UP
DECLARECONNECTION
DECLARECURSOR
DECLARECURSOR FOR
STORED_SUB

ENGINE

EXECUTE
FORMAT

OCCUR

ONENTRY

ONERROR

ONEXIT

ROLLBACK

Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers

Database Guidé&
Database Drivers

Fetch the first screenful of
rows from a select set

Fetch the previous screenful Database Guid&
of rows from a select set Database Drivers

Declarea named connection Database Guidé&
to an engine Database Drivers

Database Guidé&
Database Drivers

Declarea named cursor

Declarea cursor to execute a Database Drivers
stored subprogram

Set the default engine for theDatabase Guide
application

Execute a named cursor Database Guide

Format the results of @GAT- Database Guide

QUERY

Set the number of rows for Database Guide
JAM to fetch to an array and

set the occurrence where

JAM should begin writing

result rows

Install a JPL procedure or C Database Guide
function which JAM will call

before executing BBMS

statement

Install a JPL procedure or C Database Guid&
function which JAM will call Database Drivers
when abBMSstatement fails

Install a JPL procedure or C Database Guide
function which JAM will call

after executing ®BMSstate

ment

Roll back a transaction Database Drivers

316

JAM 7.0 Database Guide

Command Directory for ORACLE

Command Name

Description Documentation
Location

SAVE

START

STORE

UNIQUE

WITHCONNECTION

WITHCURSOR

WITHENGINE

Set a savepoint in a transac Database Drivers
tion

Set the first row for JAM to Database Guide
return from a select set

Store the rows of a select setDatabase Guide
in a temporary file so the

application can scroll through

the rows

Suppress repeating values inDatabase Guide
a selected column

Specifythe connection to useDatabase Guide
for a command

Specifythe cursor to use for Database Guide
a command

Specifythe engine to use for Database Guide
a command

Chapter 17 Database Driver for ORACLE

317

Database Driver for
SYBASE -CT Library

The SYBASE Open Client product provides software for communicating with
SYBASE SQL Server and SYBASE Open Ser@pen Client has two compo

nents: programming interfaces and network services. JAM for SYBASE is written
using the programming interfaces of Open Client.

SYBASE has two programming interfaces, DB-Library and Client-Librakv
provides a version of its support routine for each programming interfage. Y
choose one of the programming interfaces when you you install the JAM/SYBASE
product on Vihdows or when you edit the JAM/SYBASE makefile on any

platform.

In most cases you will notice no f@ifence between JAM applications using
DB-Library and those using Client-Librafiowever some advanced features may
be available in only one interface. DB-Library is recommended for applications
using complicated stored procedures, remote procedure calls, or twotphase
commits.

DB-Library is supplied with SYBASE 4.x and 10. DB-Library was used for all
JAM/SYBASE releases prior to JAM 7. If you are upgrading a JAM 5 or JAM 6
application to JAM 7, you may continue to use DB-Library

Client-Library is recommended for applications requiring SYBASE 10 native
cursor support. DB-Library does not have native cursor support; JAM uses

319

Initializing the Database Engine

SYBASE dbprocesses to simulate cursor support with DB-Libtanjike a

dbprocess, a native cursor allows an application to select data and update rows in
the select set without risking a deadlock. This problem can be avoided in
DB-Library applications but Client-Librarg'native cursors are recommended for
applications selecting 500 or more rows for update.

This chapter provides documentation specific to SYBASE using CT Lilitary
discusses the following:

Engine initialization (page 320)

Connection declaration (page 322)

Import conversion (page 324)

Formatting for colon-plus processing and binding (page 328)
Cursors (page 329)

Errors and warnings (page 331)

Database transaction processing (page 334)

Transaction manager processing (page 337)
SYBASE-specifibBMScommands (page 338)

Command directory for JAM for SYBASE (page 351)

This document is designed as a supplement to information foundAptieation
Development Guidand other sections of tizatabase Guide

Initializing the Database Engine

Whenyou run the makefile for JAM for SYBASE, it creates the source file
dbiinit.c . For SYBASE, theendor_list structure indbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{°sybase®, dm_sybsup, DM_DEFAULT_CASE ,(char *) 0},

{(char *) 0, (int (*)()) O, (int) O, (char *) 0}

320 JAM 7.0 Database Guide

Initializing the Database Engine

The settings are as follows:

sybase Engine name. May be changed.
dm_sybsup Support routine name. Do not change.
DM_DEFAULT_CASE Case setting for matchirgELECTcolumns

with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

Engine Name

In the makefile, you may change the engine name associated with the support
routinedm_sybsup . The application then uses that namBBMENGINE
statementand inWITHENGINE clauses. For example, if you wish to use
atracking® as the engine name, change the following makefile parameter:

SYB_ENGNAME=tracking

When the makefile is run again, it generates a diginit.c file with the new
settings.

If the application is accessing multiple engines, it makes SYBASE the default
engine by executing:

DBMENGINE sybase-engine-name

wheresybase-engine-name is the string used ivendor_list . For example,
DBMSENGINE sybase

or

DBMS ENGINE tracking

Support Routine Name

dm_sybsup is the name of the support routine for SYBASE. This name should not
be changed.

Case Flag

Thecase flagPbM_DEFAULT_CASHletermines how JAM'database drivers use
case when searching for JAM variables for hol#&g ECTresults. This setting is

Chapter 18 Database Driver for SYBASE -CT Library 321

Connecting to the Database Engine

usedwhen comparing SYBASE column names to either a JAM variable name or to
a column name in BBMSALIAS statement.

SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when
creating database objects like tables and columns. In subsequent SQL statements,
you must use the same exact case when referring to these objects. The default
setting for case-sensitive engine®i8_PRESERVE_CASEhis means that the

SYBASE column name is matched to a JAM variable with the same name and case
when processingELECTresults.

The case setting may be changeolu ¥an force JAM to perform case-insensitive
searches. Substitute theption in the makefile to match SYBASE column names
to lower case JAM variables, or use theption to match to upper case JAM
variables.

SYB_INIT=I
or
SYB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chaptel ih theApplication Development Guide

Connecting to the Database Engine

SYBASE allows your application to use one or more connections. The application
may declare any humber of named connections DBMSDECLARE CONNEE
TION statements, up to the maximum number permitted by the server

Each JAM connection has its own SYBASE Client-Library context structure and
connection structure.

The following options are supported for connections to SYBASE:

322 JAM 7.0 Database Guide

Database connection options.

Connecting to the Database Engine

Option Argument

USER user-name
INTERFACES interfaces-file-pathname
SERVER server-name
DATABASE database-name
PASSWORD password
APPLICATION application-name
CURSORS ignored with CTLibrary
TIMEOUT seconds

HOST host-name
SQLTIMEOUT seconds

APPLICATION associates a character string with the cursors that are declared in the
application. JAM uses the SYBASE functicincon_props(CS_APPNAME) to
set this option.

HOSTspecifies a character string to identify the host name of the client. JAM uses
the SYBASE functioret_con_props(CS_HOSTNAME) to set this option.

INTERFACESsupplies the pathname to an interfaces file. An interfaces file
contains the name and network address of every SYBASE server available on the
network. If this option is not used, SYBASE looks for a file caitieetfaces in

the SYBASE parent directory (e.g¢usr/sybase/interfaces). This option is
ignored for OS/2, MS-DOS, andiMdows applications.

SQLTIMEOUTspecifies the number of seconds that Open Client waits for a query to
return results. A timeout of 0 seconds represents an infinite timeout period. The
SYBASE default timeout value is 0. JAM uses the SYBASE funetioton-
fig(CS_TIMEOUT) to set this option.

TIMEOUTSsets the number of seconds that Open Client waits for a SYBASE
response to a request for a connection. A timeout of 0 seconds represents an
infinite timeout period. The SYBASE default timeout value is 60 seconds. JAM
uses the SYBASE functian_config(CS_LOGIN_TIMEOUT) to set this option.

Chapter 18 Database Driver for SYBASE -CT Library 323

Importing Database Tables

The syntax for declaring a connection in a JPL statement is:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
[FOR [USER user-name] [PASSWORIpassword]\
[DATABASEdatabase] [SERVERserver]\
[APPLICATION application-name]\
[HOST host-name] [INTERFACES interface-file-pathname]\
[SQLTIMEOUTseconds] [TIMEOUT seconds]]

For example:
DBMSDECLARE dbi_session CONNECTION FOR\\
USER °:uname® PASSWORD °:pword® DATABASE °sales® \
SERVER °sybase10° APPLICATION ©°sales® HOST ©°o0ak® \
INTERFACES °/usr/sybase/interfaces.app® \
SQLTIMEOQUT °120° TIMEOUT °15°
Additional keywords are available for other database engines. If those keywords

are included in youbBM®ECLARE CONNECTIONommand for SYBASE, it is
treated as an error

Importing Database Tables

The Imports Database Objects option in the screen editor creates JAM repository
entries based on database tables in a SYBASE database. When the import process
is complete, each selected database table has a corresponding repository entry
screen.

In JAM for SYBASE, the following database objects can be imported as repository
entries:

database tables
database views
Once the import process is complete, the repository entry screen contains:

A widget for each column in the table, using the coluaharacteristics to
assign the appropriate widget properties.

A label for each column based on the column name.
A table view named for the database table or database table view

Links which describe the relationship between table views.

324 JAM 7.0 Database Guide

Table Views

Links

Importing Database Tables

Eachimport session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table
When a database table is first imported to a JAM repositugynew repository

screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view

The import process inserts values in the following table view properties:
Name D The name of the table viegenerally the same as the database table.
Table B The name of the database table.

Primary Keys B The columns that are defined as primary keys or unique
indexes for the database table.

Columns P A list of the columns in the database table is displayed when you
click on the More button. Howevghis list is for reference onljt cannot be
edited.

Updatable B A setting which determines if the data in the table can be
modified. The default setting for Updatable issY

For each repository entry based on a database thewprimary key widgets must

be available if you want to update data in that vieist, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view
or one of its parent table views. For repository entries based on database tables, thi:
information is automatically imported.

Refer to Chapter 21 in thigpplication Development Guided Chapter 21 in the
Editors Guidefor more information on table views.

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table .view

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Chapter 18 Database Driver for SYBASE -CT Library 325

Importing Database Tables

Referto Chapter 21 in thApplication Development Guidad Chapter 21 in the
Editors Guidefor more information on links.

Widgets
A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is @ATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.
The following table lists the values for the ¢p€, Length, and Precision
properties assigned to each SYBASE data type.
Table 2. Importing Databasedbles
SYBASE Data Code JAM Type C Type JAM Widget Length JAM Widget
Type Precision
binary 45 DT_BINARY Hex Dec columnlength * 2
bit 50 FT_INT Int 1
char 47 FT_CHAR Char column length
String
datetime 61 DT_DATETIME Default 17
decimal 55
scale >0 FT_FLOAT Float column precision + column
column scale + 1 scale
else FT_LONG LongInt columnprecision
double preci - 62 FT_FLOAT Float 16 2
sion
float 62 FT_FLOAT Float 16 2
image 34 DT_BINARY Hex Dec columnlength
int 56 FT_LONG Longint 11
money 60 DT_CURRENCY Default 26
nchar 47 FT_CHAR Char columnlength
String
326 JAM 7.0 Database Guide

Importing Database Tables

SYBASE Data Code JAM Type C Type JAM Widget Length JAM Widget
Type Precision
nvarchar a7 FT_CHAR Char column length
String
numeric 63
scale >0 FT_FLOAT Float column precision + column
column scale + 1 scale
else FT_LONG LonglInt columnprecision
real 59 FT_FLOAT Float 16 2
smalldatetime 58 DT_DATETIME Default 17
smallint 52 FT_INT Int 6
smallmoney 122 DT_CURRENCY Default 14
text 35 FT_CHAR Char 254
String
timestamp 80 DT_BINARY HexDec columnlength
tinyint 48 FT_INT Int 3
varbinary 37 DT_BINARY HexDec columnlength * 2
varchar 39 FT_CHAR Char column length
String
Other Widget Based on the colums'data type or on the JAM type assigned during the import
Properties process, other widget properties may be automatically set when importing database

UselnUpdateproperty

DT_CURRENCY

Chapter 18 Database Driver for SYBASE -CT Library

tables.

If a columns length is defined as ar than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as paga¥acommand in

the transaction manager

The Use In Update property is also set to No for certain data types. In SYBASE,
this applies to the data typest , image , and for anyhumeric column that is
defined asdentity

DT_CURRENCWidgets have the Format/DispbéData Formatting property set to
Numeric and Formatype set to 2 Dec Places.

327

Formatting for Colon Plus Processing and Binding

DT_DATETIME

Null Field property

DT_DATETIMEwidgets also have the Format/Disgfaipata Formatting property
set to Date/ime and Formatylpe set tdEFAULT Note that dates in this Format
Type appear as:

MM/DD/YYHH:MM

If a column is defined to B¢OTNULL , the Null Field property is set to No. For
example, theoles table in thevideobiz database contains three columns:
title_id ,actor_id androle . title_id andactor_id are defined asOT
NULL so the Null Field property is set to Nole , without aNOTNULL setting, is
implicitly considered to allow null values so the Null Field property is seeto Y

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in thépplication Development Guide

Formatting Dates

JAM uses SYBASE convert function and the SYBASE format string,
yyyymmdd hh:mm:ss to convert a JAM date-time format to a SYBASE format.

In order for conversion to take place, the widget must have th@€sEt to
Default and the Format/DispléyData Formatting property set to Dat@i€. Any
date-time Formatyipe is appropriate.

This is the format for literal dates. It is compatible with SYBASE national
language support.

Formatting Currency V alues

328

SYBASE equires a leading dollar sign for values insertedni@ey column in
order to ensure precision. JAM will use a leading dollar sign when it formats
widgets with a JAM type ddT_CURRENCMYnNy other amount formatting
characters are stripped. Therefore, if a currency field contained

500,000.00

JAM 7.0 Database Guide

Declaring Cursors

JAM would format it as

$500000.00

Using Text and Image Data T ypes

Notethat when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server settimngsiat

The SYBASE server default is 32K; howewis value can be changed on the
server via the SYBASEet command. The global variab@@textsize contains

the current maximum.

Declaring Cursors

Eachcursor in JAM for SYBASE has its own Client-Library command structure
whose parent is the connection structure associated withslJédvhection.

JAM Cursor SYBASE Default Sample JPL
Representation

default select native cursor DBMSSQL SELECT ...

defaultnon-select command structure DBMSSQL INSERT ...
DBMS SQL UPDATE ...
DBMS SQL DELETE ...

named nativecursor DBMSECLAREcursor CURSOR

You may change the SYBASE representation of a JAM cursor if necessary
more information, refer to the following section.

The following SQL operations are not available in this version of JAM for
SYBASE Client-Library:

Browse mode
SELECTstatements containingGDMPUTElause
UPDATEstatements containingbdkHEREEURRENT OFclause

DELETEstatements containingbdHEREEURRENT OFclause

Chapter 18 Database Driver for SYBASE -CT Library 329

Declaring Cursors

Storedprocedures using remote procedure calls (rpc)
Output parameters and return codes from stored procedures

For more information on cursors, refer to Chapter 13 irAfs@ication Develop
ment Guide

Setting Cursor Options

330

You can specify which type of Client-Library structure is to be used for SQL
statements with the followinGET commands:

SETRUN CT_CURSORD Force a particular JAM cursor to be run on a
Client-Library cursar

SETRUN CT_COMMAND Force a particular JAM cursor to be run on a
Client-Library command structure.

SETRUN_DEFAULT CT_CURSOM® Force all JAM cursors on a connection to
be run as Client-Library cursors.

SETRUN_DEFAULT CT_COMMAND Force all JAM cursors on a connection
to be run as Client-Library command structures.

More than one Client-Library cursor may be active per connection.

However a Client-Library cursor can only be created foranact-SQL
command batch that either contains a silsgleECTstatement or calls a stored
procedure that contains only a sin§ELECTstatement. A command batch that
contains more than a singd&€LECTstatement or that calls a stored procedure
containing more than a singbELECTstatement must run on a Client-Library
command structure. Howevéhe results from a command structure must be
processed in their entirety before any other cursor or command structure on a
connection can process its results.

For example, a SQL command batch containing3&bECTstatements must be
run on a Client-Library command structure resulting in the following JPL
procedure:

proc select2

DBMS SET RUN CT_COMMAND

DBMS SQL SELECT xx, xx FROM pubs2..xxx SELECT xx, xx \
FROM pubs2..xxx

In this example, executingBMSSET RUN CT_COMMANDets the default cursor in
JAM to run on a Client-Library command structure so thaSt#ieECTstatement
can execute without error

JAM 7.0 Database Guide

Scrolling

For more information on the behavior of Client-Library cursors and command
structures, refer to your SYBASE documentation.

Scrolling

Even though SYBASE Client-Library does not have native support for non-se
guential scrolling in a select set, JAM scrolling is available. Before using any of
the following commands:

DBMS[WITHCURSOR cursor-name] CONTINUE_BOTTOM
DBMS[WITHCURSOR cursor-name] CONTINUE_TOP
DBMS[WITHCURSOR cursor-name] CONTINUE_UP

theapplication must set up a continuation file for the curBbis is done with the
command

DBMS[WITHCURSOR cursor-name] STORE FILE [filename]

To turn of JAM scrolling and close the continuation file, use the command
DBMS[WITHCURSOR cursor-name | STORE

or close the JAM cursor withBMSCLOSE CURSOR

For more information on scrolling, refer to Chapter 14 inApglication
Development Guide

Error and Status Information

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; howgtrese variables are reserved for use in other
engines and for use in future releases of JAM for SYBASE.

Errors

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.
@dmretmsg Standard database driver status message.
@dmengerrcode SYBASE error code.

@dmengerrmsg SYBASE error message.

Chapter 18 Database Driver for SYBASE -CT Library 331

Using Stored Procedures

Using the
Default Error
Handler

Using an
Installed Error
Handler

SYBASET eturns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes SYBASE
error codes to the global variat@@mengerrcode and writes SYBASE messages

to @dmengerrmsg.

In JAM for SYBASE Client-Library@dmengerrcode and@dmengerrmsg can be

arrays containing both client and server information. If both members of the array
contain data, the error message from the client operation is in the first occurrence
and the error message from the server operation is in the second occurrence. If only
one occurrence has data, it can be either from the client or server operation.

The default error handler displays a dialog box if there is an @imerfirst line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driveDatabase interface appears in theeported by list along

with the database engine. The error number and message contain the values of
@dmretcode and@dmretmsg. If the error comes from the database engine, only
the name of the engine appears inRbported by list. The error number and
message contain the valuesadmengerrcode and@dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMSONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)

if @dmengerrcode == 0
msg emsg °JAM error: © @dmretmsg

else
msg emsg °JAM error: ° @dmretmsg © %N° \
°SYBASE error is %N° \
@dmengerrcode[1] ° ° @dmengerrmsg[1] °%N°\
@dmengerrcode[2] ° ° @dmengerrmsg[2]

return 1

For additional information about engine errors, refer to your SYBASE documenta
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guidesd Chapter 12 in tHeatabase Guide

Using Stored Procedures

332

Databasengines implement stored procedures verfgdiftly If you are porting
your application from one database engine to anoyberneed to be aware of the
differences in the engine implementation.

JAM 7.0 Database Guide

Using Stored Procedures

Executing Stored Procedures

An application may execute a stored procedure with the combBmeasQL and
the engines command for executioBXEC For example:

DBMSSQL [DECLAREparameter data-type\
[DECLAREparameter data-type ...]]\
EXEC procedure-name [parameter [, parameter ...]]

An application may also use a named cursor to execute a stored procedure:

DBMSDECLARE cursor CURSOR FOR\
[DECLAREparameter data-type [DECLAREparameter data-type ...]]\
EXEC procedure-name [parameter [, parameter ...]]

The cursor can then be executed with the following statement:
DBMS[WITHCURSOR cursor] EXECUTE [USING values]

Output parameters and return codes are not supported for stored procedures in this
release of JAM for SYBASE Client-Library

Example For exampleypdate_tapes is a stored procedure that changes the video tape
status taDwhenever a video is rented.

create proc update_tapes @parml int, @parmz2 int
as

update tapes set status = 'O’
where title_id = @parm1 and copy_num = @parm2

The following statement executes this stored procedure, updatintathe
column of thetapes table using the onscreen values of the widtiisid and
copy_num.

DBMSSQL EXEC update_tapes :+title_id, :+copy_num

DBMS DECLARE x CURSOR FOR EXEC update_tapes \
rparmil, ::parm2
DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remembeto use double colons (::) iINCECLARECURSORStatement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guider more information.

Controlling the Execution of a Stored Procedure

JAM's database driver for SYBASE provides a command for controlling the
execution of a stored procedure that contains more thagEyECTSstatement.
The command is:

Chapter 18 Database Driver for SYBASE -CT Library 333

Using Transactions

DBMS[WITHCURSOR cursor] SET behavior
wherebehavior is one of the following
STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCHJAM stops each time it executes a hon-scalar
SELECTstatement in the stored procedure. Therefo8gL&CTfrom a table will
halt the execution of the procedure. HoweaSELECTof a single scalar value
(i.e., using the SQL functior@UM COUNTAVG MAX or MIN) does not halt the
execution of a stored procedure.

The application may execute
DBMS[WITHCURSOR cursor] CONTINUE

or any of theCONTINUEvariants to scroll through the selected recordsafiort the
fetching of any remaining rows in the select set, the application may execute

DBMS[WITHCURSOR cursor] FLUSH

To execute the next statement in the procedure the application must execute
DBMS[WITHCURSOR cursor | NEXT

DBMS NEXTautomatically flushes any pendiBgLECTrows.

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application may execute

DBMS[WITHCURSOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedures return status code. The return cotleé END_OF_PRGsignals the end
of the stored procedure.

If behavior is EXECUTE_ALL JAM executes all statements in the stored procedure
without halting. If the procedure selects rows, JAM returns as many rows as can be
held by the destination variables and continues executing the procedure. The
application cannot use tIBBMSCONTINUE commands to scroll through the
procedures select sets.

Note that SYBASE does not supp8INGLE_STEPas an option for stored
procedure execution; howeydris available for execution of multi-statement
cursors.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. SYBASE has one transaction for each curgberefore, in a JAM application,

334 JAM 7.0 Database Guide

Using Transactions

atransaction controls all statements executed with a single named cursor or the
default cursar

The following events commit a transaction on SYBASE:
ExecutingDBMSCOMMIT.

Executinga data definition command suchGREATE DROPRENAMEOr
ALTER

The following events roll back a transaction on SYBASE:

ExecutingDBMSROLLBACK

Transaction Control on a Single Cursor

Example

After an application declares a connection, an application may begin a transaction
on the default cursor or on any declared cursor

SYBASE supports the following transaction commands:
Begin a transaction on a default or named cursor
DBMS[WITHCONNECTION connection] BEGIN
Committhe transaction on a default or named cursor
DBMS[WITHCONNECTION connection] COMMIT

Rollbackto a savepoint or to the beginning of the transaction on a default or
named cursor

DBMS[WITHCONNECTION connection] ROLLBACK [savepoint]
Create a savepoint in the transaction on a default or named. cursor

DBMS[WITHCONNECTION connection] SAVE [savepoint]

The following example contains a transaction on the default connection with an
error handler

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle °new_title()°

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl_retcode
jpl_retcode = :subroutine

Chapter 18 Database Driver for SYBASE -CT Library 335

Using Transactions

Check the value of jpl_retcode. If it is 0, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the

subroutine. If itis -1, JAM aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode ==

{
}

else

{

msg emsg °Transaction succeeded.®

msg emsg °Aborting transaction.®
DBMS ROLLBACK

}

proc new_title
DBMS BEGIN
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

Theprocedurgran_handle is a generic handler for the applicat®iransac
tions. The proceduneew_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing
call tran_handle °new_title()°

Theprocedureran_handle receives the gument 2new _title® and writes it to
the variablesubroutine . It declares a JPL variable|_retcode . After
performing colon processingubroutine is replaced with its value,
new_titte , and JPL calls the procedure. The procedare tite begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the varijableet-
code in the calling procedungan_handle . JPL then evaluates tife statement,
displays a success message, and exits.

If however an error occurs while executimgv_titte , JAM calls the applica
tion's error handlerThe error handler should display any error messages and return
the abort code, 1.

336 JAM 7.0 Database Guide

Transaction Manager Processing

Forexample, assume the filSISERT in new_title ~ executes successfully but the
secondNSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedurenew_title (therefore, the thirdNSERT is not attempted). JAM returns

1 tojpl_retcode in the calling procedungan_handle . JPL evaluates the
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the tablétles

Transaction Manager Processing

Transaction Model for SYBASE

Eachdatabase driver contains a standard transaction model for use with the
transaction managerhe transaction model is a C program which contains the
main processing for each of the transaction manager commandsalY edit this
program; howevetbe aware that the transaction model is subject to change with
each release. For SYBASE, the name of the standard transaction model is
tmsybl.c .

The standard transaction model for SYBASE daB#S-LUSH instead oDBMS
CANCELas part of the processing for thi&lISH command. If a query has returned
a very lage select set, closing the screen may be longer witkLtheHcommand.
You can change this behavior by editing the model; howsirere the model is
subject to change in future releases, you should track your changes in order to
update future versions.

Using Version Columns

Fora SYBASE timestamp column, you can set the In Update Where and In Delete
Where properties toeé. This includes the value fetched to that widget in the SQL
UPDATEandDELETEstatements that are generated as part 8AvWEcommand.

Chapter 18 Database Driver for SYBASE -CT Library 337

SYBASE-Specific Commands

SYBASE-Specific Commands

JAM for SYBASE provides commands for SYBASE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may workféifently or may not be supported on some engines.

Using Cursors

SETRUN Specifywhether a cursor or command struc
ture is used to execute SQL statements.

Using Stored Procedures

CANCEL Abort execution of a stored procedure.

FLUSH Abort execution of a stored procedure.

NEXT Execute the next statement in a stored proce
dure.

SET Set execution behavior for a procedure

(execute all, stop at fetch, etc.).

Using Transactions

BEGIN Begina transaction.

COMMIT Commit a transaction.
ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

338 JAM 7.0 Database Guide

SYBASE-Specific Commands

BEGIN

Start a transaction

DBMS[WITHCONNECTION connection-name] BEGIN

WITHCONNECTION Specifythe connection for this command. If the command does not contéin-a
connection-name CONNECTIONMIause, JAM begins a transaction on the default connection.

Description

A transaction is a logical unit of work on a database contained VGisMSBEGIN
andDBMSCOMMIT statementDBMBEGIN defines the start of a transaction.
Once a transaction is begun, changes to the database are not committed until a
DBMSCOMMIT is executed. Changes are undone by execDEMSROLLBACK

Example

Referto the example in Usingrdnsactions on page 334.
See Also Using Transactions on page 334

COMMIT

ROLLBACK

SAVE

Chapter 18 Database Driver for SYBASE -CT Library 339

SYBASE-Specific Commands

CANCEL

Cancel the execution of a stored procedure or discard select rows

DBMS[WITHCURSOR cursor-name] CANCEL

WITHCURSOR cur-
sor-name

Description

See Also

340

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

If the named cursor is a native curgbis command closes the curdbéthe named
cursor is a command structure, this command cancels any outstanding work on the
named cursoin particular this command may be used to cancel a pending stored
procedure or discard unwanted select rows. When the statement is executed, the
following operations are performed:

Any rows to be fetched are discarded.
Any remaining unexecuted statements are ignored.

JAM calls the SYBASE routinet_cancel() with theCS_CANCEL_ALlflag to
perform this operation.

If the WITHCURSORCclause is not used, JAM executes the command on the default
cursor.

Using Stored Procedures on page 332

FLUSH

JAM 7.0 Database Guide

SYBASE-Specific Commands

COMMIT

Commit a transaction

DBMS[WITHCONNECTION connection-name] COMMIT

WITHCONNECTION Specifythe connection for this command. If the command does not contain-a
connection-name CONNECTIONIause, JAM issues the commit on the default connection.

Description

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the [@&dMMITChanges made by the transaction become
visible to other users. If the transaction is terminateB@YLBACKthe updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

Example

Refer to the example in Usingdnsactions on page 334.
See Also Using Transactions on page 334

BEGIN

ROLLBACK

SAVE

Chapter 18 Database Driver for SYBASE -CT Library 341

SYBASE-Specific Commands

FLUSH

Flush any selected rows not fetched to JAM variables

DBMS[WITHCURSOR cursor-name] FLUSH

WITH CURSORCcur-
sor-name

Description

Example

342

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursofThe named cursor may be a native cursor or a command structure.

This command is often useful in applications that execute a stored procedure. If the
stored procedure executeSBLECT the procedure will not return the
DM_END_OF_PRGgIgnal if the select set is pending. The application may execute
DBMSCONTINUE until theDM_NO_MORE_ROWiIgnal is returned, or it may
executeDBMFLUSH which discards the pending rows.

This command is also useful with queries that fetch vegelaelect sets. The
application may execuBMS-LUSH after executing th8ELECT or after a

defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, once the rows have been flushed, the
application may not usBBMSCONTINUE to view the unread rows.

JAM calls the SYBASE routinet_cancel() with theCS_CANCEL_ALLto
perform this operation.

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
if @dmretcode '= DM_NO_MORE_ROWS
DBMS FLUSH
return O

JAM 7.0 Database Guide

SYBASE-Specific Commands

See Also
DECLARECURSOR
CANCEL
CONTINUE

NEXT

Chapter 18 Database Driver for SYBASE -CT Library 343

SYBASE-Specific Commands

NEXT

Execute the next statement in a stored procedure

DBMS[WITHCURSOR cursor-name] NEXT

WITHCURSORcur- Specifya named cursor for the command. If this clause is not included, JAM issues
sor-name the command on the default cursor of the default connection.

Description UnlessDBMSSET equalsEXECUTE_ALL an application must execUd@MSNEXT
aftera stored procedure returns one or n&EeECTrows to JAM.DBMSNEXT
executesghe next statement in the stored procedure. If the application executes
DBMSNEXT and there are no more statements to execute, JAM returns the
DM_END_OF_PRQDde.

If a cursor is associated with two or more SQL statement®BNESET equals
STOP_AT_FETCHthe application must execUWMINEXT after eactSELECTthat
returns rows to JAM. IDBMSSET equalsSINGLE_STER the application must
executeDBMSINEXT after each statement, including neBEECTstatements. If the
application executdBBMSNEXT after all of the cursés statements have been
executed, JAM returns tieM_END_OF_PRCsde.

Example

Refer to the example in Using Stored Procedures on page 332.

See Also Using Stored Procedures on page 332
DECLARECURSOR
CANCEL
CONTINUE
FLUSH

SET [EXECUTE_ALL| SINGLE_STEP | STOP_AT FETCH]

344 JAM 7.0 Database Guide

ROLLBACK

SYBASE-Specific Commands

Roll back a transaction

DBMS[WITHCONNECTION connection-name] ROLLBACK [savepoint]

WITHCONNECTION Specify the connection for this command. If the command does not contéiiia

connection-name

savepoint

Description

Example

See Also

CONNECTIONIause, JAM issues the rollback on the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it may
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Usingdhsactions on page 334.

Using Transactions on page 334
BEGIN
COMMIT

SAVE

Chapter 18 Database Driver for SYBASE -CT Library 345

SYBASE-Specific Commands

SET

Set handling for a cursor that executes a stored procedure or multiple statements

DBMS[WITHCURSOR cursor-name | SET EXECUTE_ALL

DBMS[WITHCURSOR cursor-name] SET SINGLE_STEP

DBMS[WITHCURSOR cursor-name] SET STOP_AT_FETCH

WITHCURSOR cur-
sor-name

Description

346

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor which con
tains multiple SQL statements. Its options are:

EXECUTE_ALL

Specifies that the DBMS return control to JAM only when all statements have been
executed or when an error occurs. If a SSHLECTIs executed, only the first

pageful of rows is returned to JAM variables. This option may be set for a
multi-statement or a stored procedure cursor

SINGLE_STEP

Specifies that the DBMS return control to JAM after executing each statement
belonging to the multi-statement cursafter eachSELECT the user may press a
function key to execute BBMSCONTINUE and scroll the select seb Tesume
executing the cursts statements, the application must exeDBESNEXT. This
option may be set for a multi-statement curtfahis option is used with a stored
procedure curspdAM uses the default settiiSFOP_AT_FETCH

STOP_AT_FETCH

Specifies that the DBMS return control to JAM after executing a SR)ECTthat
fetches rows. (Note that control is not returned fBERECTthat assigns a value to
a local SYBASE parametgiThe application may uggBMSCONTINUE to scroll
through the select setoTesume executing the cursostatements or procedure,
the application must execurBMSNEXT. This option may be set for a multi-state
ment or a stored procedure cursor

JAM 7.0 Database Guide

SYBASE-Specific Commands

The default behavior for both stored procedure and multi-statement cursors is
STOP_AT_FETCHEXxecutingDBMSSET with no aguments restores the default
behavior.

Example DBMECLARE x CURSOR FOR\
SELECT cust_id, first_name, last_name, member_status \
FROM customers WHERE cust_id = ::cust_id \
INSERT INTO rentals (cust_id, title_id, copy_num, \
rental_date, price) \
VALUES (::cust_id, ::title_id, ::copy_num, \
:‘rental_date, ::price)

msg d_msg °%KPF1 START %KPF2 SCROLL SELECT\
%KPF3 EXECUTE NEXT STEP°

proc f1

This function is called by the PF1 key.

DBMS WITH CURSOR x SET_BUFFER 10

DBMS WITH CURSOR x SET SINGLE_STEP

DBMS WITH CURSOR x EXECUTE USING cust_id, cust_id, \
title_id, copy_num, rental_date, price

DBMS WITH CURSOR x SET

return

proc 2

This function is called by the PF2 key.

DBMS WITH CURSOR x CONTINUE

if @dmretcode == DM_NO_MORE_ROWS
msg emsg °All rows displayed.®

return

proc f3

This function is called by the PF3 key.
DBMS WITH CURSOR x NEXT

if @dmretcode == DM_END_OF_PROC

msg emsg °Done!°®
return

See Also Using Stored Procedures on page 332
CANCEL
CONTINUE
DECLARECURSOR

DECLARE CURSOR FOR EXEC

Chapter 18 Database Driver for SYBASE -CT Library 347

SYBASE-Specific Commands

FLUSH

NEXT

348 JAM 7.0 Database Guide

SET

SYBASE-Specific Commands

Force a SQL statement to be run on a ClienttLibrary cursor or command structure

DBMS[WITHCURSOR cursor-name] SET RUN CT_COMMAND

DBMS SET RUN_DEFAULT CT_COMMAND

DBMS[WITHCURSOR cursor-name] SET RUN CT_CURSOR

DBMS SET RUN_DEFAULT CT_CURSOR

WITHCURSOR cur-
sor-name

Description

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

The SET command can specify whether SQL statements will run on a Client-Li
brary cursor or command structure. By default, JAM cursors run on Client-Library
cursors. The options for tt®ET command are:

RUN CT _COMMAND

Specifies that any subsequé&@MSstatements be run on a Client-Library
command structure instead of a Client-Library cursor

RUN_DEFAULT CT_COMMAND

Specifies that for any JAM cursors on subseqD&8MDECLARE CURSOR
statementshe JAM cursor will be created on a Client-Library command structure
instead of a Client-Library cursor

RUN CT_CURSOR

Specifies that any subsequé&@MSstatements be run on a Client-Library cursor
instead of a Client-Library command structure.

RUN_DEFAULT CT_CURSOR

Specifies that for any JAM cursors on subseqD&8MDECLARE CURSOR
statementshe JAM cursor will be created as a Client-Library cursor on top of a
command structure.

Chapter 18 Database Driver for SYBASE -CT Library 349

SYBASE-Specific Commands

By default, JAM useRUN_DEFAULTT_CURSORor the default select cursor and
any named cursors aRiUNCT_CURSORor the default non-select cursor

See Also Connecting to a Database Engine on page 322

350 JAM 7.0 Database Guide

Command Directory for SYBASE

Command Directory for SYBASE

Thefollowing table lists all the commands available in JAMatabase driver for
SYBASE. The table lists the command, a short description of the command, and
the location of the reference page for that command. If the location is described as
Database Driversthat information is enclosed in this document. If the location is
described as theatabase Guiderefer to Chapterllof theDatabase Guide

Table 3. Commands for SYBASE

Command Name

Documentation
Location

Description

ALIAS

BEGIN

BINARY

CANCEL

CATQUERY

Name a JAM variable as the Database Guide
destination of a selected eol
umn or aggregate function

Begin a transaction Database Drivers

Create a JAM variable for Database Guide

fetching binary values

Abort execution of a stored Database Drivers

procedure

Redirect select results to a Database Guide

file or a JAM variable

CLOSE_ALL_CONNECTIONSClose all connections on all Database Guide

CLOSECONNECTION
CLOSECURSOR
COLUMN_NAMES

COMMIT
CONNECTION

CONTINUE

engines

Closea named connection Database Guide

Closea named cursor Database Guide

Return the column name, notDatabase Guide
column data, to a JAM vatri

able
Commit a transaction Database Drivers

Set a default connection and Database Guide
engine for the application

Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers

Chapter 18 Database Driver for SYBASE -CT Library

351

Command Directory for SYBASE

Command Name

Documentation
Location

Description

CONTINUE_BOTTOM

CONTINUE_DOWN

CONTINUE_TOP

CONTINUE_UP

DECLARECONNECTION

DECLARECURSOR

ENGINE

EXECUTE
FLUSH
FORMAT

NEXT

OCCUR

ONENTRY

ONERROR

Database Guid&
Database Drivers

Fetch the last screenful of
rows from a select set

Fetch the next screenful of Database Guidé&
rows from a select set Database Drivers

Database Guidé&
Database Drivers

Fetch the first screenful of
rows from a select set

Fetch the previous screenful Database Guidé&
of rows from a select set Database Drivers

Declarea named connection Database Guidé&
to an engine Database Drivers

Database Guidé&
Database Drivers

Declarea named cursor

Set the default engine for theDatabase Guide
application

Execute a named cursor Database Guide

Flush any selected rows Database Drivers

Format the results of @AT- Database Guide

QUERY

Execute the next statement iDatabase Drivers
a stored procedure

Set the number of rows for Database Guide
JAM to fetch to an array and

set the occurrence where

JAM should begin writing

result rows

Install a JPL procedure or C Database Guide
function which JAM will call

before executing BBMS

statement

Install a JPL procedure or C Database Guid&
function which JAM will call Database Drivers
when abBMSstatement fails

352

JAM 7.0 Database Guide

Command Directory for SYBASE

Command Name

Documentation
Location

Description

ONEXIT

ROLLBACK

SET parameter

SETRUN

START

STORE

UNIQUE

WITHCONNECTION

WITHCURSOR

WITHENGINE

Install a JPL procedure or C Database Guide
function which JAM will call

after executing ®BMSstate

ment

Roll back a transaction Database Drivers

Setexecution behavior for a Database Drivers
stored procedure

Setstatement execution on aDatabase Drivers
cursor or command structure

Set the first row for JAM to Database Guide
return from a select set

Store the rows of a select setDatabase Guide
in a temporary file so the

application can scroll through

the rows

Suppress repeating values inDatabase Guide
a selected column

Specifythe connection to useDatabase Guide
for a command

Specifythe cursor to use for Database Guide
a command

Specifythe engine to use for Database Guide
a command

Chapter 18 Database Driver for SYBASE -CT Library

353

Database Driver=for
SYBASE-DB Library

This chapter provides documentation specific to SYBASE using DB Libkary
discusses the following:

Engine initialization (page 356)

Connection declaration (page 357)

Import conversion (page 359)

Formatting for colon-plus processing and binding (page 363)
Cursors (page 364)

Locking behavior (page 365)

Errors and warnings (page 368)

Stored procedures (page 370)

Database transaction processing (page 378)
Transaction manager processing (page 385)
SYBASE-specifibBMScommands (page 386)
Command directory for JAM for SYBASE (page 418)

355

Initializing the Database Engine

This document is designed as a supplement to information found Aptiiation
Development Guidand other sections of tizatabase Guide

Initializing the Database Engine

Engine Name

356

Whenyou run the makefile for JAM for SYBASE, it creates the source file
dbiinit.c . For SYBASE, thevendor_list structure indbiinit.c appears as
follows:

static vendor_t vendor_list[] =
{°sybase®, dm_sybsup, DM_DEFAULT_CASE ,(char *) 0},

{(char *) 0, (int (*)()) O, (int) O, (char *) 0}

The settings are as follows:

sybase Engine name. May be changed.
dm_sybsup Support routine name. Do not change.
DM_DEFAULT_CASE Case setting for matchirgELECTcolumns

with JAM variable names. May be changed.

The settings may be changed by editing the makefile.

In the makefile, you may change the engine name associated with the support
routinedm_sybsup . The application then uses that namBBMENGINE
statementand iNWITHENGINE clauses. For example, if you wish to use
atracking® as the engine name, change the following makefile parameter:

SYB_ENGNAME-=tracking

When the makefile is run again, it generates a diginit.c file with the new
settings.

If the application is accessing multiple engines, it makes SYBASE the default
engine by executing:

DBMSENGINE sybase-engine-name

JAM 7.0 Database Guide

Connecting to the Database Engine

wheresybase-engine-name is the string used ivendor_list . For example,
DBMSENGINE sybase
or

DBMS ENGINE tracking

Support Routine Name

Case Flag

dm_sybsup is the name of the support routine for SYBASE. This name should not
be changed.

The case flagpM_DEFAULT_CASHletermines how JAM'database drivers use

case when searching for JAM variables for hol@EgECTresults. This setting is

used when comparing SYBASE column names to either a JAM variable nhame or to
a column name in BBMSALIAS statement.

SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when
creating database objects like tables and columns. In subsequent SQL statements,
you must use the same exact case when referring to these objects. The default
setting for case-sensitive engine®i8_PRESERVE_CASEhis means that the

SYBASE column name is matched to a JAM variable with the same name and case
when processingELECTresults.

The case setting may be changealu ¥an force JAM to perform case-insensitive
searches. Substitute theption in the makefile to match SYBASE column names
to lower case JAM variables, or use theption to match to upper case JAM
variables.

SYB_INIT=I
or
SYB_INIT=u

After editing the makefile, remake your JAM executables. For more information
on engine initialization, refer to Chaptel ih theApplication Development Guide

Connecting to the Database Engine

SYBASE allows your application to use one or more connections. The application
may declare any number of named connections DBMDECLARE CONNEE
TION statements, up to the maximum number permitted by the server

Chapter 19 Database Driver for SYBASE-DB Library 357

Connecting to the Database Engine

Thefollowing options are supported for connections to SYBASE:

Table 1. Database connection options.

Option Argument

USER user-name
INTERFACES interfaces-file-pathname
SERVER server-name
DATABASE database-name
PASSWORD password
APPLICATION application-name
CURSORS 112

TIMEOUT seconds

HOST host-name
SQLTIMEOUT seconds

APPLICATION associates a character string with the cursors that are declared in the
application. JAM uses the SYBASE functibBSETLAPPRoO set this option.

CURSORSpecifies the number of default cursors JAM creates when the application
declares a connection. The default is 1. This means that JAM uses one cursor for
any operation executed wilBMSSQL , whether it is 88ELECTor nOnSELECT
operation. The application must S&1IRSOR$0 2 to use browse modeolyY may

also wish to use two default cursors if your application switches beS&a&CT

and nonSELECToperations. Refer to the section on cursors for additional
information.

HOSTspecifies a character string to identify the host name of the client. JAM uses
the SYBASE functiodBSETLHOSTO set this option.

INTERFACESsupplies the pathname to an interfaces file. An interfaces file
contains the name and network address of every SYBASE server available on the
network. If this option is not used, SYBASE looks for a file cailheelfaces in

the SYBASE parent directory (e.¢usr/sybase/interfaces). This option is
ignored for OS/2, MS-DOS, andiddows applications.

SQLTIMEOUTspecifies the number of seconds that Open Client waits for a query to
return results. A timeout of 0 seconds represents an infinite timeout period. JAM
uses the SYBASE functiadbsettime to set this option. The SYBASE default
timeout value is 0.

358 JAM 7.0 Database Guide

Importing Database Tables

TIMEOUTSsets the number of seconds that Open Client waits for a SYBASE
response to a request for a connection. A timeout of 0 seconds represents an
infinite timeout period. JAM uses the SYBASE functitiizetlogintime to set
this option. The SYBASE default timeout value is 60 seconds.

The syntax for declaring a connection in a JPL statement is:

DBMS[WITHENGINE engine] DECLARE connection CONNECTION \
[FOR [USER user-name] [PASSWORIpassword]\
[DATABASEdatabase] [SERVERserver]\
[APPLICATION application-name] [CURSORSumber-of-cursors]\
[HOST host-name] [INTERFACES interface-file-pathname]\
[SQLTIMEOUTseconds] [TIMEOUT seconds]]

For example:
DBMSDECLARE dbi_session CONNECTION FOR\
USER °:uname® PASSWORD °:pword® DATABASE °sales® \
SERVER °sybase10° APPLICATION °sales® HOST ©oak® \
INTERFACES °/usr/sybase/interfaces.app® \
CURSORS °2° SQLTIMEOUT °120° TIMEOUT ©°15°
whereuname andpword are JAM widget names.

Additional keywords are available for other database engines. If those keywords
are included in youbBM®ECLARE CONNECTIONommand for SYBASE, it is
treated as an error

Importing Database Tables

The Imports Database Objects option in the screen editor creates JAM repository
entries based on database tables in a SYBASE database. When the import process
is complete, each selected database table has a corresponding repository entry
screen.

In JAM for SYBASE, the following database objects can be imported as repository
entries:

database tables
database views
Once the import process is complete, the repository entry screen contains:

A widget for each column in the table, using the coluaharacteristics to
assign the appropriate widget properties.

Chapter 19 Database Driver for SYBASE-DB Library 359

Importing Database Tables

Table Views

Links

360

A label for each column based on the column name.
A table view named for the database table or database table view
Links which describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. As a

general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a JAM repositogynew repository

screen has one table view which is named after the database table. All the widgets
corresponding to the database columns are members of that table view

The import process inserts values in the following table view properties:
Name D The name of the table viegenerally the same as the database table.
Table b The name of the database table.

Primary Keys B The columns that are defined as primary keys or unique
indexes for the database table.

Columns B A list of the columns in the database table is displayed when you
click on the More button. Howevghis list is for reference onljt cannot be
edited.

Updatable D A setting which determines if the data in the table can be
modified. The default setting for Updatable issY

For each repository entry based on a database thevprimary key widgets must

be available if you want to update data in that viemst, check that the JAM table
view's Primary Keys property is set to the correct value. Then, the widgets
corresponding to the primary keys must be members of either the JAM table view

or one of its parent table views. For repository entries based on database tables, this
information is automatically imported.

Refer to Chapter 21 in thégpplication Development Guided Chapter 21 in the
Editors Guidefor more information on table views.

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table.view

JAM 7.0 Database Guide

Importing Database Tables

Checkthe link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed. Also, the Link
Type, by default, is defined as Sequential.

Refer to Chapter 21 in thégpplication Development Guided Chapter 21 in the
Editors Guidefor more information on links.

Widgets
A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is @ATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.
The following table lists the values for the ¢p€, Length, and Precision
properties assigned to each SYBASE data type.
Table 2. Importing Databasedbles
SYBASE Data Code JAM Type C Type JAM Widget Length JAM Widget
Type Precision
binary 45 DT_BINARY Hex Dec columnlength * 2
bit 50 FT_INT Int 1
char 47 FT_CHAR Char column length
String
datetime 61 DT_DATETIME Default 17
decimal 55
scale >0 FT_FLOAT Float column precision + column
column scale + 1 scale
else FT_LONG LongInt columnprecision
double preci - 62 FT_FLOAT Float 16 2
sion
float 62 FT_FLOAT Float 16 2
image 34 DT_BINARY Hex Dec columnlength
int 56 FT_LONG Longint 11
money 60 DT_CURRENCY Default 26
Chapter 19 Database Driver for SYBASE-DB Library 361

Importing Database Tables

SYBASE Data Code JAM Type C Type JAM Widget Length JAM Widget
Type Precision
nchar a7 FT_CHAR Char column length
String
nvarchar a7 FT_CHAR Char column length
String
numeric 63
scale >0 FT_FLOAT Float column precision + column
column scale + 1 scale
else FT_LONG Longlnt columnprecision
real 59 FT_FLOAT Float 16 2
smalldatetime 58 DT_DATETIME Default 17
smallint 52 FT_INT Int 6
smallmoney 122 DT_CURRENCY Default 14
text 35 FT_CHAR Char 254
String
timestamp 80 DT_BINARY HexDec columnlength
tinyint 48 FT_INT Int 3
varbinary 37 DT_BINARY HexDec columnlength * 2
varchar 39 FT_CHAR Char column length
String
Other Widget Based on the colums'data type or on the JAM type assigned during the import
Properties process, other widget properties may be automatically set when importing database

UselnUpdateproperty

362

tables.

If a columns length is defined as p&r than 255 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Since widgets in JAM have a maximum length of 255, the data
originally in the database column could be truncated as paga¥acommand in

the transaction manager

The Use In Update property is also set to No for certain data types. In SYBASE,
this applies to the data typest , image , and for anyhumeric column that is
defined asdentity

JAM 7.0 Database Guide

Formatting for Colon Plus Processing and Binding

DT_CURRENCY DT_CURRENCWidgets have the Format/DispféyData Formatting property set to
Numeric and Formatype set to 2 Dec Places.

DT_DATETIME DT_DATETIMEwidgets also have the Format/Disgfapata Formatting property
set to Date/ime and Formatylpe set tdEFAULT Note that dates in this Format
Type appear as:

MM/DD/YYHH:MM

Null Field property If a column is defined to M¢OTNULL , the Null Field property is set to No. For
example, theoles table in thevideobiz database contains three columns:
title_id ,actor_id androle . title_id andactor_id are defined aSOT
NULL so the Null Field property is set to Nole , without aNOTNULL setting, is
implicitly considered to allow null values so the Null Field property is seeto Y

For more information about usage of JAM type and C type, refer to Chapter 15 of
the Application Development Guide

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 15 in thépplication Development Guide

Formatting Dates

JAM uses SYBASE convert function and the SYBASE format string,
yyyymmdd hh:mm:ss to convert a JAM date-time format to a SYBASE format.

In order for conversion to take place, the widget must have th@€sEt to
Default and the Format/DispléyData Formatting property set to Datef€. Any
date-time Formatyipe is appropriate.

This is the format for literal dates. It is compatible with SYBASE national
language support.

Formatting Currency V alues

SYBASE equires a leading dollar sign for values insertedni@ey column in
order to ensure precision. JAM will use a leading dollar sign when it formats
widgets with a JAM type ddT_CURRENCMYANy other amount formatting
characters are stripped. Therefore, if a currency field contained

Chapter 19 Database Driver for SYBASE-DB Library 363

Declaring Cursors

500,000.00
JAM would format it as

$500000.00

Using Text and Image Data T ypes

Notethat when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server settimgsiat

The SYBASE server default is 32K; howeyvinis value can be changed on the
server via the SYBASEet command. The global variab@@textsize contains

the current maximum.

Declaring Cursors

364

EachJAM cursor uses a SYBASEbprocess . By default, JAM for SYBASE
uses one cursodifprocess) for operations performed [BBMSSQL. Therefore,
if an application executes the sequence:

DBMSSQL SELECT ...
DBMS SQL UPDATE ...

thefollowing command to display additional rows in the select set:
DBMSCONTINUE
will fail because SYBASE discards the select set when the cursor is re-used.

JAM for SYBASE supports a connection optiondefRSORS for simulating two
default cursors. When this option is used, JAM for SYBASE opens two default
cursors on each connection. It uses one cursor fBEAECTstatements. It uses
the second cursor for all nGBELECTstatements; this includ&#$SERT, UPDATE
DELETE and all stored procedure callsamsaction commandBEGIN, COMMIT
ROLLBACKare also issued for the n@ELECTcursor

If you use theCURSORS connection option, you will need to declare a named
cursor to execute a stored procedure (or SQL batch command) that returns select
rows. The second default cursor never returns select rows.

JAM does not put any limit on the number of cursors an application may declare to
an SYBASE engine. Since each cursor requires memory and SYBASE resources,
however it is recommended that applications close a cursor when it is no longer
needed.

For more information on cursors, refer to Chapter 13 i\ph@lication Develop
ment Guide

JAM 7.0 Database Guide

Scrolling

Scrolling

SYBASE has native support for non-sequential scrolling in a select set. This
capability is available on any cursés an alternative, you can switch to JAM
scrolling. Both systems allow you to use the following commands:

DBMS[WITHCURSOR cursor-name] CONTINUE_BOTTOM

DBMS[WITHCURSOR cursor-name] CONTINUE_TOP

DBMS[WITHCURSOR cursor-name] CONTINUE_UP

For native scrolling, use the command

DBMS[WITHCURSOR cursor-name] SET_BUFFER number-of-rows

This command sets the DB-Library optioBBUFFERWhen this command is
used, SYBASE biiérs the specified number of select rows in the program’
memory.

For JAM scrolling, use the command:

DBMS[WITHCURSOR cursor-name] STORE FILE [filename]

To turn of JAM scrolling and close the continuation file, use the command
DBMS[WITHCURSOR cursor-name] STORE

or close the JAM cursor witbBMSCLOSE CURSOR

For more information on scrolling, refer to Chapter 14 inAbpglication
Development Guide

Locking Behavior

JAM developers using SYBASE should consider locking issues when building
applications that select & amounts of data.

When an application executes a SGELECTthat returns many rows, SYBASE

may use a 2shared lock® on each data page to preserve read-consigtancy, to
preserve the state of the selected data, SYBASE may prevent other applications or
users from changing the data until the application has received all the rows. This
behavior is usually seen for select sets that contain several hundred rows.

As a part of developing and testing an application, you should monitor SYBASE'
behavior by running the SYBASE commasd lock from another terminal when

Chapter 19 Database Driver for SYBASE-DB Library 365

Locking Behavior

366

theapplication executesSELECT If a SELECTexecuted by a JAM application is
holding a lock, the curstaspidwill be listed.

Since a shared lock prevents other users from updating data, it is important to
release shared locks as soon as possiblesl€ase a shared locked, you must
either:

Get all the rows in the select set.
Flush pending rows in the select set.
An application has two ways of getting the entire select set:
Create JAM arrays which are dgr enough to hold the entire select set.

UseDBMSSTORE FILE andDBMSCONTINUE_BOTTOMo bufer all the rows
in a temporary file on disk.

For example, an application may set up a continuation file before executing a
SELECT Before returning control to the us#re application may execunBmMS
CONTINUE_BOTTOMHhich forces JAM get all the rows from the select set and
buffer them in a temporary file. This also forces SYBASE to release any shared
lock it is holding for theSELECT

In the following example, the application puts a message on the status line and
flushes the displayjNext it sets up a continuation file and executeSHeECT It
callsDBMSCONTINUE_BOTTOMo force JAM to get all the rows. Finalliy calls
DBMSCONTINUE_TOPto ensure that the select sditst page (rather than its last
page) of rows is displayed when control is returned to the user

proc big_select
msg setbkstat °Processing. Please be patient...°
flush
DBMS STORE FILE
DBMS SQL SELECT
DBMS CONTINUE_BOTTOM
DBMS CONTINUE_TOP
msg d_msg°°
return

An application may also limit the number of rows a user may view at a time by
using theDBMSLUSH command. When this command is executed, SYBASE
discards any pending rows and releases all associated locks. For example,

proc big_select
DBMS SQL SELECT
if @dmretcode '= DM_NO_MORE_ROWS
DBMS FLUSH
return

JAM 7.0 Database Guide

Locking Behavior

To monitor lock information within the application, the application may query
SYBASE for thespid (server process id) number of a cursor and the number of
locks held by the cursoNote that each cursor has its ospit and it keeps the
samespid number until the application closes the cur3orget a cursos spid
number an application must use the cursor to select the global SYBASE variable
@@spid

Get the SYBASE spid for a JAM cursor
before SELECTing rows.
proc get_spid (cursor)
vars spid
if cursor ==
DBMS SQL SELECT spid = @@spid
else

DBMS DECLARE :cursor CURSOR FOR\
SELECT spid = @@spid
DBMS EXECUTE :cursor
}

return spid

Get the number of locks held by a SYBASE spid.
proc lockstatus (spid4select)
vars lcount
DBMS DECLARE lock_cursor CURSOR FOR\
SELECT COUNT(*) FROM master.dbo.syslocks \
WHERE spid = :spid4select
DBMS WITH CURSOR lock_cursor ALIAS Icount
DBMS WITH CURSOR lock_cursor EXECUTE
DBMS CLOSE CURSOR lock_cursor
return Icount

An application may get a curserspid before executingSELECTfor rows. After
fetching rows the application may query SYBASE for the number of locks. Note
that the order of these statements is important: if an application attempts to get a
cursors spidafter fetching rows, th&ELECTfor the cursdss spid will release any
locks and any pending rows. For this reason, be sure to get thé £gmdbefore
fetching rows. Refer to the example below

Chapter 19 Database Driver for SYBASE-DB Library 367

Error and Status Information

proc select
vars cursor_spid, locks_before, locks_after

cursor_spid = get_spid (°c1°)
locks_before = lockstatus (cursor_spid)

DBMS DECLARE c1 CURSOR FOR SELECT ...
DBMS WITH CURSOR c1 EXECUTE

locks_after = lockstatus (cursor_spid)
if locks_after > locks_before
msg emsg °The SELECT has locked data.®

return O

Error and Status Information

Errors

368

JAM uses the global variables described in the following sections to supply error
and status information in an application. Note that some global variables may not
be used in the current release; howgtrezse variables are reserved for use in other
engines and for use in future releases of JAM for SYBASE.

JAM initializes the following global variables for error code information:

@dmretcode Standard database driver status code.
@dmretmsg Standard database driver status message.
@dmengerrcode SYBASE error code.

@dmengerrmsg SYBASE error message.

@dmengreturn Return code from an executed stored procedure.

SYBASE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. JAM writes SYBASE
error codes to the global varialgidmengerrcode and writes SYBASE messages

to @dmengerrmsg.

All SYBASE errors with a severity greater than 10 are JAM errors. Otherwise,
they are considered warnings.

JAM 7.0 Database Guide

Using the
Default Error
Handler

Using an
Installed Error
Handler

Error and Status Information

Thedefault error handler displays a dialog box if there is an.érhar first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database drivebatabase interface appears in thBeported by list along

with the database engine. The error number and message contain the values of
@dmretcode and@dmretmsg. If the error comes from the database engine, only
the name of the engine appears inRbported by list. The error number and
message contain the valuesamengerrcode and@dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMSONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode ==
msg emsg °JAM error: ° @dmretmsg
else
msg emsg °JAM error: ° @dmretmsg © %N° \
%:engine error is © @dmengerrcode ° °© @dmengerrmsg
return 1

For additional information about engine errors, refer to your SYBASE documenta
tion. For more information about error processing in JAM, refer to Chapter 16 in
the Application Development Guidesd Chapter 12 in tHeatabase Guide

JAM initializes the following global variables for warning information:

@dmengwarncode SYBASE warning code.

@dmengwarnmsg SYBASE warning message.

JAM writes the code t@dmengwarncode and the message @dmengwarnmsg

A warning usually describes some non-fatal change in the SYBASE environment.
For example, SYBASE issues a warning when the application changes a
connectiors default database.

You may wish to use an exit hook function to process warnings. An exit hook
function is installed wittbBMSONEXIT. A sample exit hook function is shown
below.

proc check_status (stmt, engine, flag)
if @dmengwarncode

msg emsg °:engine Warning is © @dmengwarnmsg
return

Chapter 19 Database Driver for SYBASE-DB Library 369

Using Stored Procedures

Row Information

JAM initializes the following global variables for row information:

@dmrowcount Count of the number of SYBASE rowdexdted
by an operation.
@dmserial Not used in JAM for SYBASE.

SYBASE returns a count of the rowseadted by an operation. JAM writes this
value to the global variabl@dmrowcount.

As explained on the manual page @dmrowcount, the value of@dmrowcount

after a SQLSELECTis the number of rows fetched to JAM variables. This number
is less than or equal to the total number of rows in the select set. The value of
@dmrowcount after a SQUNSERT, UPDATE or DELETEIis the total number of

rows afected by the operation. Note that this variable is reset when am@es
statement is executed, includibngMSCOMMIT.

Thevalue of@dmrowcount may be unexpected after executing a stored procedure.
This is documented SYBASE behavitfryou need this information, SYBASE
recommends that you test for it within the stored procedure and return it as an
output parameter or return co@@@rowcountis a SYBASE global variable. For
example:

create proc update_ship_fee @class int, @change float
as
declare @u_count int
update cost set ship_fee = ship_fee * @change
where class = @class
select @u_count = @ @rowcount
return @u_count

M/

Referto your SYBASE Command Reference Manual for more information.

Using Stored Procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of

370 JAM 7.0 Database Guide

Using Stored Procedures

SQL statements individuall\By passing parameters to and from the stored
procedure, the same procedure can be used withetdif values. In addition to

SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures véeyetifly If you are porting
your application from one database engine to anoyberneed to be aware of the
differences in the engine implementation.

Executing Stored Procedures

Example

An application may execute a stored procedure with the comb@mdsQL and
the engines command for executioBRXEC For example:

DBMSSQL [DECLAREparameter data-type\
[DECLAREparameter data-type ...]]\
EXEC procedure-name [parameter [OUT][, parameter [OUT]...]]
An application may also use a named cursor to execute a stored procedure:
DBMSDECLARE cursor CURSOR FOR\
[DECLAREparameter data-type [DECLAREparameter data-type ...]]\
EXEC procedure-name [parameter [OUT][, parameter [OUT]...]]
The cursor can then be executed with the following statement:

DBMS[WITHCURSOR cursor] EXECUTE [USING values]

For exampleupdate_tapes is a stored procedure that changes the video tape
status tawhenever a video is rented.

create proc update_tapes @parm1l int, @parm2 int
as

update tapes set status = 'O
where title_id = @parm1 and copy_num = @parm2

Thefollowing statement executes this stored procedure, updatistpthe
column of thetapes table using the onscreen values of the widtisid and
copy_num.

DBMSSQL EXEC update_tapes :+title_id, :+copy_num

A DECLARECURSORSstatement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executedugitN@
clause which gets the onscreen values of the widigetsd andcopy_num.

Chapter 19 Database Driver for SYBASE-DB Library 371

Using Stored Procedures

DBMSDECLARE x CURSOR FOR EXEC update_tapes \
sparml, ::;parm2
DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remembeto use double colons (::) iInCECLARECURSORStatement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter 15 in the
Application Development Guider more information.

Getting Output Parameter V alues

372

If the DBMS supports output parameters, the keywaasdtraps the value of an
output parameter in a JAM variable. For example, the stored procedure
rent_ summary calculates the total number of rentals for the day and the total
price paid for those rentals.

create proc rent_summary
@num_rented int output, @tot_price output, @day datetime

as
create table rentsum (price money)
insert into rentsum select rentals.price from rentals

where rental_date = @day
select @num_rented = count(*) from rentsum
select @tot_price = sum (price) from rentsum
drop table rentsum

////\—/\—//_/_/

The application should declare a cursor for the procedure:

DBMECLARE curl CURSOR FOR\\
declare @t1 int declare @t2 money \
EXEC rent_summary @num_rented=@t1 OUT, \
@tot_price=@t2 OUT, @day =::today

DBMS WITH CURSOR curl EXECUTE USING today = day

Notethattl andt2 are temporary SYBASE variables, not JAM variables.

SYBASE requires that output values be passed as variables, not as constants. If
num_rented andtot price are JAM variables, the procedure returns the

number of videos rented on a specific day and the total price paid for those videos.
The application may udeBMSALIAS to map the values of output parameters to
JAM variables. Hera'the same procedure which maps the value of of

num_rented to the JAM variableid_count and the value abt_price to the

JAM variabletotal_paid

JAM 7.0 Database Guide

Using Stored Procedures

DBMSECLARE curl CURSOR FOR\
declare @t1 int declare @t2 money \
EXEC rent_summary @num_rented=@t1 OUT, \
@tot_price=@t2 OUT, @day =::today

DBMS WITH CURSOR curl ALIAS num_rented vid_count, \
tot_price total_paid

DBMS WITH CURSOR curl EXECUTE USING today = day

Using Remote Procedure Calls

Declaring the
rpc Cursor

In addition to th&eEXECcommand, SYBASE supports a remote procedure call
(®rpc®) for executing a stored procedurauyshould consider using rpc rather than
EXECwhen either the following occur:

One or more of the stored procedsrparameters has a data type that is not

char . An rpc is more dicient in these cases because it is capable of passing
parameters in their native data types rather than only as ASCII characters. This
reduces the amount of data conversion for the application and the server

The stored procedure returns output parameters. An rpc provides a faster and
simpler mechanism for accommodating output parameters.

To make a remote procedure call, an application performs the following steps:
Must declare an rpc cursor
Must declare the data type of each parameter that has a non-char data type.
May specify aliases for output parameters or selected columns.

Must execute the curssupplying in theJSING clause a JAM variable for
each parameter

The sections below describe these steps in detail. Examples.follow

JAM uses binding to support rgcTherefore, to execute a stored procedure with
an rpc, the application must declare an rpc cufidoe syntax is the following:

DBMS[WITHCONNECTION connection] \
DECLAREcursor CURSOR FOR RPC procedure \
[:: parameter [OUT] [, :: parameter [OUT]..]]

The keywordRPCis required. Following the keyword is the name of the procedure
and the names of the procedarparameters. All parameters must begin with a

double colon, the JAM syntax for cursor parameters. The name of the bind
parameter must be the same parameter name used in the procedure. If a parameter
is an output parametahe keywordUTshould follow the parameter name if the
application is to receive its value.

Chapter 19 Database Driver for SYBASE-DB Library 373

Using Stored Procedures

Datatyping the
rpc Parameters

Redirecting the
Value of Output
Parameter

Executing the
rpc Cursor

Example

374

To pass parameters in their native data types, the application must specify a data
type for each non-character parametdie syntax fobDBMSTYPE is the following:

DBMS[WITHCURSOR cursor] TYPE [parameter] engine-data-type \
[, [parameter] engine-data-type ...]

parameter is a parameter in tHeECLARECURSORstatementengine-data-type is
the data type of a parameter in the procedure. If parameter names are not given, the
types are assigned by position.

JAM uses the information in tiBBMSTYPE statement to make the required calls
to add parameters to an rpc. Please noteDBSISTYPE has no d&ct on the data
formatting which is performed for binding.

By default, when an rpc cursor with an output parameter is executed, a search is
performed for a JAM variable with the same name as the output parafoeter

write the output value to a JAM variable with another name, useBREALIAS
command.

DBMS[WITHCURSOR cursor] ALIAS [output_parameter] jamvar\
[, [output_parameter] jamvar ...]

If the procedure selects rows, aliases may be given for the tables' columns. If the
procedure returns output parameters and column values, aliases should be given by
name rather than by position.

The application executes the stored procedure by executing the rpc Thesor
USING clause must provide a JAM variable for each parameher syntax is the
following:

DBMS[WITHCURSOR cursor] EXECUTE\
USING [parameter =]Jvariable [, [parameter=]variable ...]

JAM passes the name of the parameter given iDBMIECLARE CURSOR
statementthe data type of the parameter given inB&STYPE statement, and
the parametes value which is the value eériable.

Parameters and JAM variables may be bound either by name or by position. The
two forms should not be mixed, howeyirone statement.

cust_rent calculates the new totadnt_amount column in thecustomers
table.

CREATEPROC cust_rent
@cid int, @crent money, @rprice money,
@newrent money output

AS

SELECT @crent = (select rent_amount from customers
where cust_id = @cid)

SELECT @newrent = @crent + @rprice

//\—/\/_/_,

JAM 7.0 Database Guide

Using Stored Procedures

An rpc is more dicient than an exec cursor because the procedure has an input
parameter with a non-character data type, and because it returns an output
parameter.

The following statement declares an rpc cursor for the stored procedure. The
names of the bind parameters match the parameters in the stored procedure. Note
that the keywor@uUTfollows the output parameter

DBMSDECLARE cur2 CURSOR FOR RPC cust_rent ::cid, ::crent, \
rprice, ::newrent OUT

Beforeexecuting the curspthe application must specify the SYBASE data types
for any non-character data types.

DBMSWNITH CURSOR cur2 TYPE \
cid int, crent money, rprice money, newrent money

Whenexecuting the curspthe application must provide a JAM variable for each
parameterJAM passes the name, data type, and value of the parameters to the
procedure. Note that the procedure does not use the input value of the parameter
newrent . JAM's binding mechanism, howeyeequires a variable in théSING

clause for each parameter

DBMSWNITH CURSOR cur2 EXECUTE cust_rent \
USING cust_id, rent_amount, price, newrent

The procedure passes its output, the new total, to the JAM vaniabtent .

If instead, you wish to put the output value in the widgetl , execute the
following:

DBMSWNITH CURSOR cur2 ALIAS newrent rentl
DBMS WITH CURSOR cur2 EXECUTE cust_rent USING cid=cust_id, \
crent=rent_amount, rprice=price, newrent=rentl

Notethat the variable names in tSING clause do not &ct the destination of
output values when the cursor is executed. OMBMSALIAS statement can
remap the output variables to other JAM variables.

Of course, this procedure may also be executed with the staadaedursor It
would require the following declaration,

DBMECLARE cur3 CURSOR FOR\\
declare @x money \
EXEC cust_rent @cid = ::cust_id, @crent = ::rent_amount, \
@rprice = ::price, @newrent = @Xx output

DBMS WITH CURSOR cur3 EXECUTE cust_rent\

USING cid=cust_id, crent=rent_amount, rprice=price, \
newrent=newrent

Chapter 19 Database Driver for SYBASE-DB Library 375

Using Stored Procedures

Getting a Return Code from a Stored Procedure

376

JAM provides the global variabt@dmengreturn to trap the return status code of

a stored procedure. This variable is empty unless a stored procedure explicitly sets
it. Note that the variable will not be set until the procedure has completed
execution. Therefore, an application should evaluate the val@eaéngreturn
when@dmretcode = DM_END_OF PROC

Executinga newDBMSstatement clears the value@fimengreturn .

If multiply is the following stored procedure,

create proc multiply @m1 int, @m?2 int,
@guess int output, @result int output
as
select @result = @m1* @m2
if @result = @guess
return 1
else
return 2

/W

theapplication should set up variables for the output parameters.

Either an rpc cursor or an exec cursor may be declared and executed for the
procedure which calculates the values in the JAM variablesdm2 and then
writes the values of the output parametgrsss andresult to the JAM
variablesattempt andanswer .

RPC cursor
DBMS DECLARE x CURSOR FOR\
RPC multiply ::m1, ::m2, ::guess OUT, ::result OUT
DBMS WITH CURSOR x TYPE m1l int, m2 int, \
guess int, result int
DBMS WITH CURSOR x ALIAS guess attempt, result answer
DBMS WITH CURSOR x EXECUTE USING m1, m2, attempt, answer

EXEC cursor
DBMS DECLARE y CURSOR FOR\

declare @syb_tmp1 int\

declare @syb_tmp2 int\

select @syb_tmpl = ::user_guess\

EXEC multiply @m1=:pl, @m2=::p2,\

@guess= @syb_tmpl OUT, @result= @syb_tmp2 OUT

DBMS WITH CURSOR y ALIAS guess attempt, result answer
DBMS WITH CURSOR y EXECUTE\

USING user_guess = attempt, p1 = m1, p2 = m2

After executing the curspthe application may test the value@fimengreturn
and display a message based on the return status code.

JAM 7.0 Database Guide

Using Stored Procedures

proc check_ret
if @dmretcode == DM_END_OF_PROC

if @dmengreturn ==
msg emsg °Good job!°

else if @dmengreturn == 2
msg emsg °Better luck next time.°
}

else

DBMS NEXT
call check_ret

}

return

Controlling the Execution of a Stored Procedure

JAM's database driver for SYBASE provides a command for controlling the
execution of a stored procedure that contains more tha@EuECTstatement.
The command is:

DBMS[WITHCURSOR cursor] SET behavior
wherebehavior is one of the following
STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCHJAM stops each time it executes a hon-scalar
SELECTstatement in the stored procedure. Therefo8gL&ECTfrom a table will
halt the execution of the procedure. HoweaSELECTof a single scalar value
(i.e., using the SQL functiorUM COUNTAVG MAX or MIN) does not halt the
execution of a stored procedure.

The application may execute
DBMS[WITHCURSOR cursor] CONTINUE

or any of theCONTINUEvariants to scroll through the selected recordsalfort the
fetching of any remaining rows in the select set, the application may execute

DBMS[WITHCURSOR cursor] FLUSH
To execute the next statement in the procedure the application must execute
DBMS[WITHCURSOR cursor | NEXT

DBMS NEXTautomatically flushes any pendiBg§LECTrows.

Chapter 19 Database Driver for SYBASE-DB Library 377

Using Transactions

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application may execute

DBMS[WITHCURSOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedures return status code. The return cotleé END_OF_PRGsIgnals the end
of the stored procedure.

If behavior is EXECUTE_ALL JAM executes all statements in the stored procedure
without halting. If the procedure selects rows, JAM returns as many rows as can be
held by the destination variables and continues executing the procedure. The
application cannot use tIBMSCONTINUE commands to scroll through the
procedures select sets.

Note that SYBASE does not supp8INGLE_STEPas an option for stored
procedure execution; howeydris available for execution of multi-statement
cursors.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. SYBASE has one transaction for each cursberefore, in a JAM application,

a transaction controls all statements executed with a single named cursor or the
default cursar

Applications that need transaction control on multiple cursors should use
two-phase commit service.

The following events commit a transaction on SYBASE:
ExecutingDBMSCOMMIT.

Executinga data definition command suchGREATE DROPRENAMEOr
ALTER

The following events roll back a transaction on SYBASE:
ExecutingDBMSROLLBACK

Closingthe transactios’ cursor or connection before the transaction is
committed.

Note that SYBASE will not rollback remote procedure calls (rpcs) or data
definition commands that create or drop database objects. Refer to the SYBASE
documentation for more information on these restrictions.

378 JAM 7.0 Database Guide

Using Transactions

Transaction Control on a Single Cursor

Example

After an application declares a connection, an application may begin a transaction
on the default cursor or on any declared cursor

SYBASE supports the following transaction commands:
Begin a transaction on a default or named cursor

DBMS[WITHCONNECTION connection] BEGIN
DBMS[WITHCONNECTION cursor] BEGIN

Committhe transaction on a default or named cursor

DBMS[WITHCONNECTION connection] COMMIT
DBMS[WITHCONNECTION cursor] COMMIT

Rollbackto a savepoint or to the beginning of the transaction on a default or
named cursor

DBMS[WITHCONNECTION connection] ROLLBACK [savepoint]
DBMS[WITHCONNECTION cursor] ROLLBACK [savepoint]

Create a savepoint in the transaction on a default or named. cursor

DBMS[WITHCONNECTION connection] SAVE [savepoint]
DBMS[WITHCONNECTION cursor] SAVE [savepoint]

A transaction on a default cursor controls all inserts, updates, and deletes executed
with the JPL commanbdBMSSQL . The application may set the default connection
before beginning the transaction or it may useAtieH CONNECTIONclause in

each statement.

If a named cursor is declared for multiple statements, it may be useful to execute
the cursor in a transaction. This wéye application may ensure that SYBASE
executes either all of the cursostatements or none of the cutsatatements. A
simple transaction on a named cursor may appear as

DBMSDECLARE cursor CURSOR FOR statement [statement...]
DBMSWITH CURSOR cursor BEGIN

DBMS WITH CURSORcursor EXECUTE [USING parm [parm ...]]
DBMSWNITH CURSOR cursor COMMIT

If necessarythe cursor may be executed more than once in the transaction. The
application should not, howeveedeclare a cursor within a transaction.

The following example contains a transaction on the default connection with an
error handler

Chapter 19 Database Driver for SYBASE-DB Library 379

Using Transactions

380

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle °new_title()°

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is O, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the

subroutine. If itis -1, JAM aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode ==

msg emsg °Transaction succeeded.?

}

else

{

msg emsg °Aborting transaction.®
DBMS ROLLBACK

}

proc new_title
DBMS BEGIN
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return O

Theproceduraran_handle is a generic handler for the applicat®iransac
tions. The procedungew_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing
call tran_handle °new_title()°

Theprocedureran_handle receives the gument 2new_title® and writes it to
the variablesubroutine . It declares a JPL variable|_retcode . After

JAM 7.0 Database Guide

Using Transactions

performingcolon processingsubroutine is replaced with its value,
new_titte , and JPL calls the procedure. The procedare tite begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the varijableet-
code in the calling procedungan_handle . JPL then evaluates tife statement,
displays a success message, and exits.

If however an error occurs while executimgv_titte , JAM calls the applica
tion's error handlerThe error handler should display any error messages and return
the abort code, 1.

For example, assume the filISERT in new_title ~ executes successfully but the
secondNSERT fails. In this case, JAM calls the error handler to display an error
message. When the error handler returns the abort code 1, JAM aborts the
procedurenew_title (therefore, the thirdNSERT is not attempted). JAM returns

1 tojpl_retcode in the calling procedungan_handle . JPL evaluates the
statement, displays a message, and executes a rollback. The rollback undoes the
insert to the tablétles

Transaction Control on Multiple Cursors

SYBASE provides two-phase commit service for distributed transactions. In a
two-phase commit, one main transaction controls two or more subtransactions on
one or more servers. A subtransaction is a transaction on single tikestirose
described in the section above.

With two-phase commit service using Microsoft SQL Serther commit server
and the taget server must be ééfrent.

The main transaction must be declared with the command

DBMS[WITHCONNECTION connection]\
DECLAREtransaction-name TRANSACTION FOR\
APPLICATION application SITES sites

connection: if no connection is given, the default connection is used; the
connection data structure stores a user login name, a server name, and an
interface file name. Since SYBASE requires that a particular server be
responsible for coordinating a two-phase commit, the connection declaration
must include a server name.

transaction: the name of the transaction; SYBASE does not permit peridds (
or colons {) in a transaction name. Since 2transaction® and 2tran® are
keywords for both JAM and SYBASE, do not use these words for this
argument.

Chapter 19 Database Driver for SYBASE-DB Library 381

Using Transactions

application: the name of the application; it may be any character string that is
not a keyword.

sites: the number of cursors (i.e., subtransactions) participating in the
two-phase commit. This value is used by the SYBASE commit and recovery
systems and must be set appropriately

Once the two-phase commit transaction is declared, its name is used to begin and
to commit or to rollback the transaction. The syntax is

DBMSBEGIN transaction-name
DBMS COMMITtransaction-name
DBMS ROLLBACKtransaction-name

As with cursors and connections, JAM uses a data structure to manage a two-phase
commit transaction. This structure should be closed when the transaction is
completed. When the structure is closed, JAM calls the support routine to close the
connection with the SYBASE commit service. The command is the following:

DBMSCLOSE TRANSACTION transaction-name

Operationon a single cursor are subtransactiomscdntrol a subtransaction in a
two-phase commit transaction, the following commands may be used:

DBMS[WITHCURSOR cursor] BEGIN

DBMS[WITHCURSOR cursor] SAVE savepoint
DBMS[WITHCURSOR cursor]| PREPARE_COMMIT
DBMS[WITHCURSOR cursor] COMMIT

DBMS[WITHCURSOR cursor] ROLLBACK [savepoint]

The comman®BM$PREPARE_COMMITs an additional command required by the
two-phase commit service. Executing it signals that the subtransaction has been
performed and that the server is ready is to commit the update. Once the
application has 2prepared® all the subtransactions, it issG&@iTto the main
transaction and each subtransaction.

The sequence of events in a SYBASE two-phase commit transaction is the
following:

Declare any necessary connections and cursors.
Declare the main transaction.

DBMSECLARE tname TRANSACTION FOR SITES sites \
APPLICATION application

382 JAM 7.0 Database Guide

Using Transactions

Beginthe main transaction.
DBMSBEGIN tname

For each subtransaction cursbegin the subtransaction and execute the
desired operations. When all subtransactions are complete, execute a
PREPARE_COMMIDr each. In the pseudo code below there are three
subtransactions (usirgrsorl , the default curspandcursor2):

DBMSNITH CURSOR cursorl BEGIN
DBMS WITH CURSOR cursorl EXECUTE USING parm

DBMS BEGIN

DBMS SQL statement

DBMS SAVE savepoint

DBMS SQL statement

if error
DBMS ROLLBACK savepoint
DBMS SQL statement

DBMS WITH CURSOR cursor2 BEGIN
DBMS WITH CURSOR cursor2 EXECUTE USING parm

DBMS WITH CURSOR cursorl PREPARE_COMMIT

DBMS PREPARE_COMMIT

DBMS WITH CURSOR cursor2 PREPARE_COMMIT

Committhe main transaction.

DBMSCOMMIT tname

Commiteach subtransaction indicating a named or default cursor
DBMSNITH CURSOR cursorl COMMIT

DBMS COMMIT

DBMS WITH CURSOR cursor2 COMMIT

Closethe transaction.

DBMSCLOSE TRANSACTION tname

It is strongly recommended that the application use an error handler while the
transaction is executing. If an error occurs while executing a command in the
subtransaction (i.e., executing a SQL statement or a named cursor), the application
should not continue executing the transaction.

An example with an error handler follows.

Chapter 19 Database Driver for SYBASE-DB Library 383

Using Transactions

B
Declare connections and specify servers.
DBMS DECLARE c¢1 CONNECTION\
FOR USER :uid PASSWORD :pwd SERVER maple \
INTERFACES '/usr/sybase/interfaces.ny’
DBMS DECLARE c2 CONNECTION \
FOR USER :uid PASSWORD :pwd SERVER juniper

Declare cursors.

Use :: to insert a value when the cursor is executed,

not when the cursor is declared.

DBMS WITH CONNECTION c1 DECLARE x CURSOR FOR INSERT \
emp (ss, last, first, street, city, st, zip, grade) \
VALUES (::ss, ::last, :first, ::street, ::city, \
st 1:zip, :grade)

DBMS WITH CONNECTION c2 DECLARE y CURSOR FOR INSERT \
acc (ss, sal, exmp) VALUES (::ss, ::sal, ::exmp)

BB R
proc 2phase
vars retval
retval = sm_s_val ()
if retval
{
msg reset °Invalid entry.®
return

}
DBMS WITH CONNECTION c1 DECLARE new_emp TRANSACTION \
FOR APPLICATION personnel SITES 2
DBMS ONERROR JPL tran_error
call do_tran
if I(retval)
msg emsg °Transaction succeeded.®
else
{
DBMS ROLLBACK newemp
if retval >= 100
DBMS WITH CURSOR x ROLLBACK
if retval >= 200
DBMS WITH CURSOR y ROLLBACK

DBMS ONERROR CALL generic_errors

DBMS CLOSE TRANSACTION new_emp

return

proc do_tran

Begin new_emp and set the flag tran_level (LDB variable)
DBMS BEGIN new_emp

DBMS WITH CURSOR x BEGIN

384 JAM 7.0 Database Guide

Transaction Manager Processing

tran_level =010
DBMS WITH CURSOR x EXECUTE USING \
ss, last, first, street, city, st, zip, grade

DBMS WITH CURSOR y BEGIN

tran_level = 02°

DBMS WITH CURSOR y EXECUTE USING \
ss, startsal, exemptions

DBMS WITH CURSOR x PREPARE_COMMIT
DBMS WITH CURSOR y PREPARE_COMMIT

Execute commits.

DBMS COMMIT new_emp
DBMS WITH CURSOR x COMMIT
DBMS WITH CURSOR y COMMIT

msg emsg °Insert completed.®
tran_level =
return

BHBHE R R R B R R R R R
proc tran_error

vars fail_area [2](20), tran_err(3)

fail_area[1] = °address®

fail_area[2] = °accounting data®

if tran_level 1= ©°

{
Display an error message describing the failure.
msg emsg °%WTransaction failed. Unable to insert \
‘fail_area[tran_level] because of ®° @dmengerrmsg
math tranerr = tran_level * 100
tran_level = ©°
return :tranerr
}
msg emsg @dmengerrmsg
return 1

Transaction Manager Processing

Transaction Model for SYBASE

Eachdatabase driver contains a standard transaction model for use with the
transaction managefhe transaction model is a C program which contains the
main processing for each of the transaction manager commandsalY edit this

Chapter 19 Database Driver for SYBASE-DB Library 385

SYBASE-Specific Commands

program;howevey be aware that the transaction model is subject to change with
each release. For SYBASE, the name of the standard transaction model is
tmsybl.c .

The standard transaction model for SYBASE daB#1S-LUSH instead oDBMS
CANCELas part of the processing for thié&lISH command. If a query has returned
a very lage select set, closing the screen may be longer witkhLih8Hcommand.
You can change this behavior by editing the model; hows\ere the model is
subject to change in future releases, you should track your changes in order to
update future versions.

Using Version Columns

Fora SYBASE timestamp column, you can set the In Update Where and In Delete
Where properties toes. This includes the value fetched to that widget in the SQL
UPDATEandDELETEstatements that are generated as part AvWEcommand.

SYBASE-Specific Commands

JAM for SYBASE provides commands for SYBASE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may workféifently or may not be supported on some engines.

Using Browse Mode

BROWSE
UPDATE

Executea SELECTfor browsing.

Update a table while browsing.

Using Scrolling

BUFFER_DEFAULT

SET_BUFFER

Setbuffer size for scrolling for entire
application.

Control availability of SYBASE-based scrol
ling for DBMSCONTINUE_BOTTONDBMS
CONTINUE_TOFPDBMSCONTINUE_UR

386

JAM 7.0 Database Guide

Using Stored Procedures

SYBASE-Specific Commands

CANCEL
DECLARECURSOR FOR RPC

FLUSH
NEXT

SET

TYPE

Abort execution of a stored procedure.

Declarea cursor to execute a stored proce
dure using a remote procedure call.

Abort execution of a stored procedure.

Execute the next statement in a stored proce
dure.

Set execution behavior for a procedure
(execute all, stop at fetch, etc.).

Set data types for parameters of a stored pro
cedure executed with an rpc cutsor

Using Transactions

BEGIN
CLOSE_ALL_TRANSACTIONS

CLOSE_TRANSACTION
COMMIT
DECLARETRANSACTION
PREPARE_COMMIT

ROLLBACK
SAVE

Begina transaction.

Close all transactions declared for two-phase
commit.

Close a twoxphase transaction.
Commit a transaction.
Declarea transaction for two-phase commit.

Indicate that a subtransaction is ready to
commit.

Rollback a transaction.

Set a savepoint in a transaction.

Chapter 19 Database Driver for SYBASE-DB Library

387

SYBASE-Specific Commands

BEGIN

Start a transaction

DBMS[WITHCONNECTION connection-name] BEGIN
DBMS[WITHCURSOR cursor-name] BEGIN

DBMS BEGIN two-phase-transaction-name

WITHCURSOR cur-
sor-name

WITH CONNECTION
connection-name

two-phase-transac-
tion-name

Description

388

Specifythe named cursor for the transaction. IfwiidH CURSORor WITH
CONNECTIONlause is used, JAM begins a transaction on the default cursor of the
default connection.

If a WITHCONNECTIONclause is used, JAM begins a transaction on the default
cursor of the named connection. If WéTH CURSORor WITHCONNECTIONclause
is used, JAM begins a transaction on the default cursor of the default connection.

Specify an existing two phase transaction.

This command sets the starting point of a transaction. It is available in two
contexts. It can start a transaction on a single cursor or it can start a distributed
transaction which may involve multiple cursors on one or more servers.

A transaction is a logical unit of work on a database contained VGisMEEGIN
andDBMSCOMMIT statement<DBMBEGIN defines the start of a transaction.
Once a transaction is begun, changes to the database are not committed until a
DBMSCOMMIT is executed. Changes are undone by execDEMSROLLBACK

To begin a distributed transaction (two-phase transaction), first declare a named
transaction wittDBMSECLARE TRANSACTION Since this statement supports a
WITHCONNECTIONclause, JAM associates the transaction name with a particular
connection; the connectianserver is the coordinating server for the distributed
transaction. When the application execlBMIBEGIN transaction-name where
transaction-name is the name of the declared transaction, JAM starts the
transaction on the coordinating server

Be sure to terminate the transaction withBMSROLLBACK or DBMSCOMMIT
beforelogging of. Note that JAM will not close a connection with a pending
two-phase commit transaction.

JAM 7.0 Database Guide

SYBASE-Specific Commands

Example

Referto the example in Usingrdnsactions on page 378.
See Also Using Transactions on page 378

CLOSETRANSACTION

COMMIT

DECLARE TRANSACTION
PREPARE_COMMIT
ROLLBACK

SAVE

Chapter 19 Database Driver for SYBASE-DB Library 389

SYBASE-Specific Commands

BROWSE

Retrieve SELECT results one row at a time

DBMS$BROWSESELECTstmt

Description

Example

390

This command allows an application to execuBEaECTIin 2browse® mode. This
means that SYBASE will return tIl8ELECTrows one at a time to the JAM
application; SYBASE will not set any shared locks for$EeECT The applica
tion may use the companion comma&MSJUPDATE to update the current row
SYBASE will verify that the row has not been changed before it issues the
UPDATE

To update in browse mode, the table being updated must have a timestamp column
and a unique index. A rowtimestamp indicates the last time the row was updated.

If the timestamp has not changed siDBMBROWSE~vas executed, the

application may update the roifithe timestamp has changed, then some other

user or application has updated the row af@MBROWSE~as executed. The

update is aborted and an error is returned.

Browse mode requires a connection with two default cursors. The application must
open the browse mode connection by settingCthRSOR®ption to 2. JAM uses

one default cursor to select the rows and the other default cursor to update the
rows.

It is the programmes responsibility to determine whether a table is browsable. If
the table is not browsable, JAM returns i BAD_ARGStror If a table is
browsable, JAM returns the first row in the select set VT BRIMBROWSHS
executed. Note that only one row is returned at a time.

To view the next rowthe application must execUdBMSCONTINUE.

Browse mode requires a connection declared with 2 cursors.
#
DBMS DECLARE browse_con CONNECTION FOR\
USER ":user' PASSWORD ":pass' SERVER "server' CURSORS 2

JAM 7.0 Database Guide

SYBASE-Specific Commands

proc start_browse_mode
DBMS CONNECTION browse_con
DBMS BROWSE SELECT title_id, name, pricecat FROM titles
return

proc update_browse_row
Allow the user to update the price category. DBi builds
the WHERE clause to identify this row.
DBMS UPDATE titles SET pricecat = :+pricecat
return
proc next_browse_row
Fetch the next row.

DBMS CONTINUE
return

See Also
CONTINUE
FLUSH

UPDATE

Chapter 19 Database Driver for SYBASE-DB Library 391

SYBASE-Specific Commands

BUFFER_DEFAULT

Specifies setting for engine-based non-sequential scrolling

DBMS[WITHCONNECTION connection-name] BUFFER_DEFAULT value

value Specifiesthe size of the bidr for SYBASE-based scrolling, if it is non-zero.

Description

A JAM application can use either JAM-based or SYBASE-based scrolling to
executeDBMSCONTINUE, DBMSCONTINUE_TOR DBMSCONTINUE_UP andDBMS
CONTINUE_BOTTQM

The size of the biér is determined by the value specified with these commands.

See Also SET_BUFFER

392 JAM 7.0 Database Guide

CANCEL

SYBASE-Specific Commands

Cancel the execution of a stored procedure or discard select rows

DBMS[WITHCURSOR cursor-name] CANCEL

WITHCURSOR cur-
sor-name

Description

See Also

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command cancels any outstanding work on the named .darparticulay
this command may be used to cancel a pending stored procedure or discard
unwanted select rows. When the statement is executed, the following operations
are performed:

Any rows to be fetched are flushed.

Any remaining unexecuted statements are ignored.

The procedurs' return status code is returned.

JAM calls the SYBASE routindgbcancel() to perform this operation.

If the WITHCURSORCclause is not used, JAM executes the command on the default
cursor.

Using Stored Procedures on page 370

FLUSH

Chapter 19 Database Driver for SYBASE-DB Library 393

SYBASE-Specific Commands

CLOSE_ALL_TRANSACTIONS

Close all transactions declared for two-phase commit

DBMSCLOSE_ALL_TRANSACTIONS

Description This command attempts to close all transactions declared for two-phase commit
with DBMSECLARE TRANSACTION If the transaction has not been terminated by
a COMMITor ROLLBACKJAM wiill return the errobM_TRAN_PENDING

JAM will not close a connection unless all two-phase commit transactions have
been closed. Furthermore, JAM will not close a two-phase commit transaction
unless the application explicitly terminated the transaction WitAMSCOMMIT
transaction-name or DBMSROLLBACK transaction-name.

This helps prevent the application from terminating with a pending two-phase
transaction. For if this happens, SYBASE marks the transaxtiootess as
ainfected.® You will need the system administrator to delete the infected process.

Since this command verifies that all two-phase commit transactions were
terminated, you may wish to call this command before loggihg of

Example proc cleanup
DBMS ONERROR JPL cleanup_failure

DBMS CLOSE_ALL_TRANSACTIONS
DBMS CLOSE_ALL_CONNECTIONS
return

APP1 = "two_phase_cleanup
proc cleanup_failure (stmt, engine, flag)
if @dmretcode == DM_TRAN_PENDING

call jm_keys APP1
}

return O

proc two_phase_cleanup
DBMS WITH CURSOR c1 ROLLBACK
DBMS WITH CURSOR c¢2 ROLLBACK
DBMS ROLLBACK tr1
DBMS CLOSE TRANSACTION trl
return

See Also Using Transactions on page 378

394 JAM 7.0 Database Guide

SYBASE-Specific Commands

BEGIN
CLOSETRANSACTION
COMMIT

DECLARE TRANSACTION

ROLLBACK

Chapter 19 Database Driver for SYBASE-DB Library 395

SYBASE-Specific Commands

CLOSE TRANSACTION

Close a declared transaction structure

DBMSCLOSE TRANSACTION two-phase-transaction-name

Description

This command closes the main transaction which was previously defined using
DBM®ECLARE TRANSACTION A main transaction controls the execution of a

two-phase commit process. This command signals the completion of the main
transaction and closes the SYBASE structures associated with the transaction.

An error code is returned if a transaction was pending. An application cannot close
a connection with an open transaction.

See Also Using Transactions on page 378
BEGIN
COMMIT
DECLARETRANSACTION
PREPARE_COMMIT
ROLLBACK

SAVE

396 JAM 7.0 Database Guide

COMMIT

SYBASE-Specific Commands

Commit a transaction

DBMS[WITHCONNECTION connection-name] COMMIT

DBMS[WITHCURSOR cursor-name] COMMIT

DBMS COMMITtwo_phase_transaction_name

WITHCONNECTION Specifythe connection for this command. If the command does not contdin-a

connection-name

WITH CURSORCcur-
sor-name
two-phase-transac-
tion-name

Description

CONNECTIONMIause, JAM issues the commit on the default connection.
Specify a named cursor for the command.

Specify an existing two phase transaction.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the l@&dMMITChanges made by the transaction become
visible to other users. If the transaction is terminateB@YLBACKthe updates are
not committed, and the database is restored to its state prior to the start of the
transaction.

This command is available in two contexts. It can commit a transaction on a single
cursor or it can commit a two-phase commit transactionwflaéd CURSORclause

is used in DBMSCOMMIT statement, JAM commits the transaction on the named
cursor If awITHCONNECTIONclause is used, JAM commits the transaction on the
default cursor of the named connection. IfWiidH clause or no distributed

transaction name is used, JAM commits the transaction on the default cursor of the
default connection.

If a distributed transaction name is used, JAM issues the commit to the coordinat
ing serverlf this is successful, the application should issD8BSCOMMIT for

each subtransactions.WTH CURSORor WITHCONNECTIONclause is required

for a subtransaction on a named cursor or a subtransaction on the default cursor of
a non-default connection. WITHCONNECTIONclause is required for a
subtransaction on a named connection.

Chapter 19 Database Driver for SYBASE-DB Library 397

SYBASE-Specific Commands

Example

See Also

398

Referto the example in Usingrdnsactions on page 378.

Using Transactions on page 378
BEGIN

CLOSETRANSACTION

DECLARE TRANSACTION
PREPARE_COMMIT

ROLLBACK

SAVE

JAM 7.0 Database Guide

SYBASE-Specific Commands

DECLARE CURSOR FOR RPC

Declare a named cursor for a remote procedure

DBMS[WITHCONNECTION connection-name] DECLARE cursor-name CURSOR FOR RPC\
procedure [: parameter [OUT] [data-type] [, :: parameter [OUT] [data-type]...]]

WITH CONNECTION Specify the connection for this command. If this clause is not included, JAM

connection-name

Description

Example

See Also

associates the cursor with the default connection.

Use this command to create or redeclare a named cursor to execute a remete proce
dure call (rpc). Since JAM uses its binding mechanism to suppost the'default
cursor cannot execute an rpc.

The keywordRPCis required. Following the keyword is the name of the procedure
and the names of the procedsrparameters. All parameters must begin with a
double colon, which is the JAM syntax for cursor parameters. If a parameter is an
output parametethe keywordouUTshould follow the parameter name if the
application is to receive its value. A paramatefata type may be given in the
DBM®DECLARE CURSORstatement, or in BBMSTYPE statement. Parameter

names in th® ECLARECURSORstatement must exactly match the parameter
names defined by the stored procedure.

The application executes an rpc cursor as it executes any namedwitrsdbBMS
EXECUTE

Refer to the example in Using Stored Procedures on page 370.

Using Stored Procedures on page 370
@dmengreturn

CLOSECURSOR

EXECUTE

TYPE

Chapter 19 Database Driver for SYBASE-DB Library 399

SYBASE-Specific Commands

DECLARE TRANSACTION

Declare a named transaction for two phase commit

DBMS[WITHCONNECTION connection-name] DECLARE transaction-name TRANSACTION FOR\
SITES sites APPLICATION application

WITH CONNECTION Specifythe connection for this command. If this clause is not included, JAM issues

connection-name

Description

Example

See Also

400

the command on the default connection.

This command declares a two-phase commit transaction structure.

TheWITHCONNECTIONclause identifies the server which will coordinate the
distributed transaction. If the clause is not used, the server of the default-connec
tion is used. Be sure to name the server when declaring the connection.

sites is the number of subtransactions involved in the distributed transaction. Each
cursor where 8EGIN s issued is a subtransaction. This number is critical to
recovery if the transaction fails.

transaction-name is the name of the two-phase commit transaction. Do not use the
keywords atran® or 2transaction® for thisgrment. The application must use this
name to begin, to commit or rollback, and to close the transaction.

sites is the number of subtransactions involved in the distributed transaction. Each
cursor where 8EGIN s issued is a subtransaction. This number is critical to
recovery if the transaction fails.

application is an optional @yument which identifies the name of the transaction.

After declaring the transaction, begin the transaction UBBMBEGIN . When
the transaction is complete, close the transaction using BEMSCLOSE
TRANSACTIONOr DBMSCLOSE_ALL_TRANSACTIONSAN application must close
all declared transactions before closing their connections.

Refer to the example in Usingdnsactions on page 378.

CLOSETRANSACTION

JAM 7.0 Database Guide

FLUSH

SYBASE-Specific Commands

Flush any selected rows not fetched to JAM variables

DBMS[WITHCURSOR cursor-name] FLUSH

WITH CURSORcur-
sor-name

Description

Example

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursor

This command is often useful in applications that execute a stored procedure. If the
stored procedure executeSBLECT the procedure will not return the
DM_END_OF_PRG&Ignal if the select set is pending. The application may execute
DBMSCONTINUE until theDM_NO_MORE_ROW®iIgnal is returned, or it may
executeDBMFLUSH which cancels the pending rows.

This command is also useful with queries that fetch vegelaelect sets. The
application may execuBMS-LUSH after executing th8ELECT or after a

defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, once the rows have been flushed, the
application may not useBMSCONTINUE to view the unread rows.

JAM calls the SYBASE routingbcanquery() to perform this operation.

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
if @dmretcode '= DM_NO_MORE_ROWS
DBMS FLUSH
return O

Chapter 19 Database Driver for SYBASE-DB Library 401

SYBASE-Specific Commands

See Also

402

DECLARECURSOR

CANCEL

CONTINUE

NEXT

JAM 7.0 Database Guide

SYBASE-Specific Commands

NEXT

Execute the next statement in a stored procedure

DBMS[WITHCURSOR cursor-name] NEXT

WITHCURSORcur- Specifya named cursor for the command. If this clause is not included, JAM issues
sor-name the command on the default cursor of the default connection.

Description UnlessDBMSSET equalsEXECUTE_ALL an application must execUd@MSNEXT
aftera stored procedure returns one or n&EeECTrows to JAM.DBMSNEXT
executeghe next statement in the stored procedure. If the application executes
DBMSNEXT and there are no more statements to execute, JAM returns the
DM_END_OF_PRQDde.

If a cursor is associated with two or more SQL statement®BNESET equals
STOP_AT_FETCHthe application must execUWMINEXT after eactSELECTthat
returns rows to JAM. IDBMSSET equalsSINGLE_STER the application must
executeDBMSINEXT after each statement, including neBEECTstatements. If the
application executeBBMSNEXT after all of the cursés statements have been
executed, JAM returns tieM_END_OF_PRCsde.

Example

Refer to the example in Using Stored Procedures on page 370.

See Also Using Stored Procedures on page 370
DECLARECURSOR
CANCEL
CONTINUE
FLUSH

SET [EXECUTE_ALL| SINGLE_STEP | STOP_AT FETCH]

Chapter 19 Database Driver for SYBASE-DB Library 403

SYBASE-Specific Commands

PREPARE_COMMIT

Prepare a two phase commit

DBMS[WITH CURSOR cursor-name] PREPARE_COMMIT

WITH CURSORcur- Specifya named cursor for the command. If this clause is not included, JAM issues
sor-name the command on the default cursor of the default connection.

Description

Use of this command is required during the two-phase commit service. It is
executed for each subtransaction when the subtransaction has been performed.
Execution of this command signals the application that the server is ready to
commit the update. Once the application has 2prepared® all the subtransactions, it
needs to issueEBBMSCOMMIT to the main transaction and to each subtransaction.

If the WITHCURSORCclause is not used, JAM issues the command on the default
cursor.

Example

Refer to the example in Usingdnsactions on page 378.
See Also Using Transactions on page 378

BEGIN

CLOSETRANSACTION

COMMIT

DECLARE TRANSACTION

ROLLBACK

SAVE

404 JAM 7.0 Database Guide

ROLLBACK

SYBASE-Specific Commands

Roll back a transaction

DBMS[WITHCONNECTION connection-name] ROLLBACK savepoint

DBMS[WITHCURSOR cursor-name] ROLLBACK savepoint

DBMS ROLLBACKtwo_phase_transaction_name

WITHCONNECTION Specifythe connection for this command. If the command does not contéirta

connection-name

WITH CURSORcur-
sor-name

savepoint

two-phase-transac-
tion-name

Description

CONNECTIONIause, JAM issues the rollback on the default connection.

Specify a named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Specify an existing two phase transaction.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

This command is available in two contexts. It can rollback a transaction on a single
cursor or it can rollback a two-phase rollback transaction VifieH CURSOR

clauseis used in ®DBMROLLBACK statement, JAM rolls back the transaction on

the named cursolf aWITHCONNECTIONclause is used, JAM rolls back the
transaction on the default cursor of the named connection WiTieclause or no
distributed transaction name is used, JAM rolls back the transaction on the default
cursor of the default connection.

If a distributed transaction name is used, JAM issues the rollback to the coordinat
ing serverThe application should also issuBBMSROLLBACKfor each
subtransaction. AVITHCURSORor WITHCONNECTIONclause is required for a
subtransaction on a named cursor or a subtransaction on the default cursor of a
non-default connection.

Chapter 19 Database Driver for SYBASE-DB Library 405

SYBASE-Specific Commands

Example

Referto the example in Usingrdnsactions on page 378.
See Also Using Transactions on page 378

BEGIN

COMMIT

DECLARETRANSACTION
PREPARE_COMMIT

SAVE

406 JAM 7.0 Database Guide

SYBASE-Specific Commands

SAVE

Set a savepoint within a transaction

DBMS[WITHCONNECTION connection-name] SAVE savepoint
DBMS[WITHCURSOR cursor-name] SAVE savepoint

savepoint Specifiesthe name of the savepoint.

WITH CURSORcur- Specify a named cursor for the command. If this clause is not included, JAM issues
sor-name the command on the default cursor of the default connection.

Description

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled ushBjMROLLBACKsavepoint. A

transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then be
completed or completely rolled back to the beginning.

This feature is useful for any long, complicated transaction. For example, an order
entry application may involve many screens where an end-user must enter data
regarding the ordeAs the user completes each screen, the application may issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application may
simply rollback the procedures on the fifth screen.

Example proc new_title
DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SAVE sl
call new_dscr
call new_tapes
DBMS COMMIT
return O

Chapter 19 Database Driver for SYBASE-DB Library 407

SYBASE-Specific Commands

See Also

408

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES\
(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2
return O
proc new_tapes
DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)
return O

Using Transactions on page 378
BEGIN

COMMIT
DECLARETRANSACTION
PREPARE_COMMIT

ROLLBACK

JAM 7.0 Database Guide

SET

SYBASE-Specific Commands

Set handling for a cursor that executes a stored procedure or multiple statements

DBMS[WITHCURSOR cursor-name | SET EXECUTE_ALL

DBMS[WITHCURSOR cursor-name] SET SINGLE_STEP

DBMS[WITHCURSOR cursor-name] SET STOP_AT_FETCH

WITHCURSOR cur-
sor-name

Description

Specifya named cursor for the command. If this clause is not included, JAM issues
the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor which con
tains multiple SQL statements. Its options are:

EXECUTE_ALL

Specifies that the DBMS return control to JAM only when all statements have been
executed or when an error occurs. If a SSELECTIs executed, only the first

pageful of rows is returned to JAM variables. This option may be set for a
multi-statement or a stored procedure cursor

SINGLE_STEP

Specifies that the DBMS return control to JAM after executing each statement
belonging to the multi-statement cursafter eachSELECT the user may press a
function key to execute BBMSCONTINUE and scroll the select seb Tesume
executing the cursts statements, the application must exeDBESNEXT. This
option may be set for a multi-statement curtfahis option is used with a stored
procedure curspdAM uses the default settiSFOP_AT_FETCH

STOP_AT_FETCH

Specifies that the DBMS return control to JAM after executing a SR)IECTthat
fetches rows. (Note that control is not returned fBERECTthat assigns a value to
a local SYBASE parametgiThe application may uggBMSCONTINUE to scroll
through the select setoTesume executing the cursostatements or procedure,
the application must execuBMSNEXT. This option may be set for a multi-state
ment or a stored procedure cursor

Chapter 19 Database Driver for SYBASE-DB Library 409

SYBASE-Specific Commands

The default behavior for both stored procedure and multi-statement cursors is
STOP_AT_FETCHEXxecutingDBMSSET with no aguments restores the default
behavior.

Example DBMECLARE x CURSOR FOR\
SELECT cust_id, first_name, last_name, member_status \
FROM customers WHERE cust_id = ::cust_id \
INSERT INTO rentals (cust_id, title_id, copy_num, \
rental_date, price) \
VALUES (::cust_id, ::title_id, ::copy_num, \
::rental_date, ::price)

msg d_msg °%KPF1 START %KPF2 SCROLL SELECT\
%KPF3 EXECUTE NEXT STEP°

proc f1

This function is called by the PF1 key.

DBMS WITH CURSOR x SET_BUFFER 10

DBMS WITH CURSOR x SET SINGLE_STEP

DBMS WITH CURSOR x EXECUTE USING cust_id, cust_id, \
title_id, copy_num, rental_date, price

DBMS WITH CURSOR x SET

return

proc 2

This function is called by the PF2 key.

DBMS WITH CURSOR x CONTINUE

if @dmretcode == DM_NO_MORE_ROWS
msg emsg °All rows displayed.®

return

proc 3

This function is called by the PF3 key.
DBMS WITH CURSOR x NEXT

if @dmretcode == DM_END_OF_PROC

msg emsg °Done!°®
return

See Also Using Stored Procedures on page 370
CANCEL
CONTINUE
DECLARECURSOR

DECLARE CURSOR FOR EXEC

410 JAM 7.0 Database Guide

SYBASE-Specific Commands

DECLARECURSOR FOR RPC
FLUSH

NEXT

Chapter 19 Database Driver for SYBASE-DB Library 411

SYBASE-Specific Commands

SET_BUFFER

Use engine-based scrolling

DBMS[WITHCURSOR cursor-name] SET_BUFFER [number-of-rows]

WITHCURSORcur- Specify a named cursor for the command. If this clause is not included, JAM issues
sor-name the command on the default cursor of the default connection.

Description There are two methods of using the non-sequential scrolling comman
CONTINUE_BOTTOMBMSCONTINUE_TOR andDBMSCONTINUE_UR In one
method, an application uses JAM-based scrolling by setting up a continuation file
with DBMSSTORE FILE . In the other method, an application uses SYBASE-based
scrolling by setting a flag for a cursor witlBMSSET_BUFFER

SYBASE supports non-sequential scrolling if the application has set ugex bauf
result rows. This command sets 8#LECTcursor to use SYBASE-based
scrolling. If an application does not né@BMSCONTINUE_UPor is using a
continuation file PBMSSTORE FILE), this command isot needed.

If the WITHCURSORCclause is used, JAM sets the flag for the named cufdbe
WITHCURSORclause is not used, JAM sets the flag for the de&EIUECTcursor

number-of-rows is the number of rows SYBASE will tef. To be useful,
number-of-rows should be greater than the number of occurrences in the JAM
destination fields.

When this command is used witlSsBLECTcursor SYBASE saves the specified
number of result rows in memoyhen the application executeBMSCON-
TINUE_BOTTONMDBMSCONTINUE_TOR or DBMSCONTINUE_UPcommands, the
result rows in memory are returned.

The bufer is maintained for the life of the cursor until the bufer is released
with the command,

DBMS[WITHCURSOR cursor-name] SET_BUFFER

Executingthe command without supplying thember-of-rows argument turns df
the feature for the named or default cursor and frees tfer.bubte that
re-declaring the cursor does not free thddyu€losing the cursor does release the
buffer.

412 JAM 7.0 Database Guide

Example

See Also

SYBASE-Specific Commands

Becauséhe use of this command is expensive (approximately 2K of memory per
row), it should be used only if the application needs non-sequential scrolling but
cannot use scrolling arrays or a continuation file. The application should turn of
DBMSSET_BUFFERwhen finished with the select set.

Note that:

Only a few engines support native scrolling. Therefore, this command may not
be supported with other engines. JAM-based scrolling is supported on all
engines wittDBMSSTORE FILE .

EachDBMSCONTINUE_BOTTONMDBMSCONTINUE_TOR andDBMS
CONTINUE_URequires a trip to the servékith JAM-based scrolling, the

rows are fetched once. When the application attempts to view rows already
fetched, JAM reads them from the continuation file rather than requesting
them from the server

DBMSDECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor SET_BUFFER 500

proc scroll_up

DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down

DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

CONTINUE_BOTTOM
CONTINUE_TOP
CONTINUE_UP

STORE

Chapter 19 Database Driver for SYBASE-DB Library 413

SYBASE-Specific Commands

TRANSACTION

Set a default transaction for use in two-phase commits

DBMSTRANSACTION two-phase-transaction-name

Description If an application has declared more than one two-phase commit transaction, it may
use this command to set the default two-phase commit transaction for a subtransac
tion.

See Also
BEGIN
COMMIT
DECLARETRANSACTION
PREPARE_COMMIT
ROLLBACK

SAVE

414 JAM 7.0 Database Guide

SYBASE-Specific Commands

TYPE

Declare parameter data types for an rpc cursor

DBMSNITH CURSOR cursor-name TYPE parameter data-type [, parameter data-type ...]

WITH CURSORcur- Specify a named cursor for the command.
sor-name

Description If an application has declared a cursor for a remote procedure call (,rpc®) but has
not declared the data types of the procedysarameters, it should use thgms
TYPEcommand.

parameter is the name of a parameter in the stored procedure andDBKh&
DECLARECURSORstatementdata-type is the data type of the parameter in the
stored procedure. JAM uses the information supplied with this command to
execute the remote procedure call. Please note that these data types hizet no ef
on any data formatting performed by colon-plus processing or binding.

Executing this command with nogarments deletes all type information for the
named cursor

Example B R T R R R
#procedure newprice:
#create proc newprice @pricecat char(1), @percent float,
@price money output, @proposed_price money output
#as
select @price = (select price from pricecats
where pricecat = @pricecat)
select @proposed_price = @price + (@price * @percent)
B

DBMS DECLARE nc CURSOR FOR\
RPC newprice ::pricecat, ::percent, ::price OUT, \
::proposed_price OUT

DBMS WITH CURSOR nc TYPE\
percent float, price money, proposed_price money

DBMS WITH CURSOR nc EXECUTE \
USING pricecat, percent, price, proposed_price

See Also Using Stored Procedures on page 370
DECLARECURSOR FOR RPC

Chapter 19 Database Driver for SYBASE-DB Library 415

SYBASE-Specific Commands

UPDATE

Update a table while browsing

DBM3UPDATE table-name SET column = value [, column= \value...]

Description

Example

See Also

416

Browse mode permits an application to browse through a select set, updating a row
at a time. Browse mode is useful for an application that wants to ensure that a row
has not been changed in the interval between the fetch and the update of the row

WhenDBMSROWSHS executed, it fetches the rows in the select set one at a time.
The application should provide other JPL procedures to exBBMECONTINUE
andDBMSJUPDATE commands.

Please note that tTEBMSUPDATE statement has nwHERElause. JAM calls a

SYBASE routine to build &HERElause using the unique index of the current row
and the value of its timestamp column when the row was fetched. If the timestamp
value has not been changed, the row is updated. Howetrer timestamp value

has changed, then another user has modified the row since the application executed
DBMSBROWSEIn this case, SYBASE will not perform the update.

Refer to the manual page BROWSE

BROWSE
CANCEL
CONTINUE

FLUSH

JAM 7.0 Database Guide

USE

SYBASE-Specific Commands

Open an existing database

DBMS[WITHCONNECTION connection-name] USE database-name

WITHCONNECTION Specifythe connection for this command. If this clause is not included, JAM issues

connection-name

database-name

Description

Example

See Also

the command on the default connection.

Specify an existing database.

This command changes a connectatéfault databaseatabase-name must ref
erence an existing database, and the user must have the appropriate permissions tc
access the database or else JAM returns an error

DBMSDECLARE c1 CONNECTION FOR\
USER ".uname' PASSWORD ":pword' SERVER ":server'\
DATABASE 'videobiz'

DBMS SQL SELECT * FROM titles

DBMS WITH CONNECTION c1 USE projects

DBMS SQL SELECT * FROM newjobs

Connectingo a Database Engine on page 357

Chapter 19 Database Driver for SYBASE-DB Library 417

Command Directory for SYBASE

Command Directory for SYBASE

Table 3.

418

Commands for SYBASE

Thefollowing table lists all the commands available in JAMatabase driver for
SYBASE. The table lists the command, a short description of the command, and
the location of the reference page for that command. If the location is described as
Database Driversthat information is enclosed in this document. If the location is
described as thBatabase Guiderefer to Chapterllof theDatabase Guide

Command Name

Description Documentation
Location

ALIAS

BEGIN
BINARY

BROWSE

BUFFER_DEFAULT

CANCEL

CATQUERY

Name a JAM variable as the Database Guide
destination of a selected eol
umn or aggregate function

Begin a transaction Database Drivers

Create a JAM variable for Database Guide
fetching binary values

Execute a SQISELECTfor Database Drivers
browsing

Set the size of the bief for Database Drivers
engine-based scrolling

Abort execution of a stored Database Drivers
procedure

Redirect select results to a Database Guide
file or a JAM variable

CLOSE_ALL_CONNECTIONSClose all connections on all Database Guide

CLOSE_ALL_TRANSAC-

TIONS

CLOSECONNECTION

CLOSECURSOR

CLOSETRANSACTION

engines

Close all transactions Database Drivers

Closea named connection Database Guide
Closea named cursor Database Guide

Closea named transaction Database Drivers

JAM 7.0 Database Guide

Command Directory for SYBASE

Command Name

Documentation
Location

Description

COLUMN_NAMES

COMMIT

CONNECTION

CONTINUE

CONTINUE_BOTTOM

CONTINUE_DOWN

CONTINUE_TOP

CONTINUE_UP

DECLARECONNECTION

DECLARECURSOR

DECLARECURSOR FOR
RPC

DECLARETRANSACTION

ENGINE

EXECUTE
FLUSH
FORMAT

NEXT

Return the column name, notDatabase Guide
column data, to a JAM vari
able

Commit a transaction Database Drivers

Set a default connection and Database Guide
engine for the application

Database Guid&
Database Drivers

Database Guid&
Database Drivers

Database Guidé&
Database Drivers

Database Guidé&
Database Drivers

Fetch the next screenful of
rows from a select set

Fetch the last screenful of
rows from a select set

Fetch the next screenful of
rows from a select set

Fetch the first screenful of
rows from a select set

Fetch the previous screenful Database Guid&
of rows from a select set Database Drivers

Declarea named connection Database Guidé&
to an engine Database Drivers

Database Guid&
Database Drivers

Declarea named cursor

Declarea cursor to execute a Database Drivers
stored procedure using a
remote procedure call

Declarea transaction for two Database Drivers
phase commit

Set the default engine for theDatabase Guide
application

Execute a named cursor Database Guide

Flush any selected rows Database Drivers

Format the results of @AT- Database Guide

QUERY

Execute the next statement iDatabase Drivers
a stored procedure

Chapter 19 Database Driver for SYBASE-DB Library

419

Command Directory for SYBASE

420

Command Name

Description Documentation
Location

OCCUR

ONENTRY

ONERROR

ONEXIT

PREPARE_COMMIT

ROLLBACK
SAVE

SET parameter

SET_BUFFER

START

STORE

TRANSACTION
TYPE

Set the number of rows for Database Guide
JAM to fetch to an array and

set the occurrence where

JAM should begin writing

result rows

Install a JPL procedure or C Database Guide
function which JAM will call

before executing BBMS

statement

Install a JPL procedure or C Database Guid&
function which JAM will call Database Drivers
when abBMSstatement fails

Install a JPL procedure or C Database Guide
function which JAM will call

after executing @BMSstate

ment

Indicate that a transaction is Database Drivers
ready to commit

Roll back a transaction Database Drivers
Set a savepoint in a transac Database Drivers
tion

Setexecution behavior for a Database Drivers
stored procedure

Set engine-based scrolling Database Drivers
for a cursor

Set the first row for JAM to Database Guide
return from a select set

Store the rows of a select setDatabase Guide
in a temporary file so the

application can scroll through

the rows

Set the default transaction Database Drivers

Set data types for parameteratabase Drivers
of a stored procedure
executed with an rpc cursor

JAM 7.0 Database Guide

Command Directory for SYBASE

Command Name

Description Documentation
Location

UNIQUE

UPDATE

USE
WITHCONNECTION

WITHCURSOR

WITHENGINE

Suppress repeating values inDatabase Guide
a selected column

Update a table while brows Database Drivers
ing
Open an existing database Database Drivers

Specifythe connection to useDatabase Guide
for a command

Specifythe cursor to use for Database Guide
a command

Specifythe engine to use for Database Guide
a command

Chapter 19 Database Driver for SYBASE-DB Library

421

Videobiz Database

This section describes the database tables in the videobiz database. The following
information is listed for each table:

Column names.
Data type of each column.
Length of character columns.

Status of column detailing whether it is a primary or foreign key and whether
it can accept null values.

Description of the data to be entered into the column.

Sample entry

423

Videobiz Schema

Videobiz Schema

Thefollowing tables outline the database tables in the videobiz database.

Table 4. Actors table.

Column Name Data Type Length Status Description Sample
actor_id integer primary key Unique number code for each actor 87

not null
last_name char 25 notnull Actor's last name or only name. Ullmann
first_ name char 20 Actor's first name. Liv

Table 5. Codes table.

Column Name Data Type Length Status Description Sample
code_type char 32 primary key Type of code. Corresponds to columgenre_code
not null name.
code char 4 primary key Code value. ADV
not null
dscr char 40 Description of code value. Adventure

424 JAM 7.0 Database Guide

Videobiz Schema

Table6. Customers table.
Column Name Data Type Length Status Description Sample
cust_id integer primary key Unique number code for each eus2
not null tomer.
last_name char 25 notnull Customers last name. Scott
first_name char 20 not null Customers first name. Alexander
addressl char 40 Custonedddress. 5601 Wison
address?2 char 40 Additional address information.
city char 25 City customer lives in. Geneva
state_prov char 10 State/Province. NY
postal_code char 10 Postal code. 10234
phone char 15 Customertelephone number 515+221+4111
cc_code char 4 Code for type of credit card. List inVISA
codes table.
cC_number char 16 Number on credit card. 4000...
cc_exp_month integer Month of credit card expiration. 2
1=Januaryl2=December
cC_exp_year integer ear of credit card expiration (4 1994
digits).
member_date datetime Date when customer became a 1991/05/30
member. 00:00:00
member_status char 1 not null Current status of membershiplv A
ues include: (A)ctive, (I)nactive,
(Frequent renter
num_rentals integer not null Total number of rentals customer 105
has made.
rent_amount float not null Total amount of money paid by 175.00
customer.
notes char 254 Comments about customer Likes ADV
videos.

Appendix A Videobiz Database

425

Videobiz Schema

Table7. Flag table.

Column Name Data Type Length Status

Description Sample

yesno char 1

Flag used in the sample application.Y

Table 8. Pricecats table.

Column Name Data Type Length Status

Description Sample

pricecat char 1 primary key Unique letter code for each categoryN
not null
pricecat_dscr char 40 Category description. New
Release
rental_days integer not null Number of rentals days available in 2
this category
price float not null Amount to be paid for rentals in this 2.50
category.
late fee float not null Amount of late fee for rentals in this 2.00
category.
426 JAM 7.0 Database Guide

Table9. Rentals table.

Videobiz Schema

Column Name Data Type Length Status Description Sample
cust_id integer primary key Code identifying the customer for 3
foreign key this rental.
not null
title_id integer primary key Code identifying the video title for 69
foreign key* this rental.
not null
copy_num integer primary key Copy of this video being rented. 2
foreign key
not null
rental_date datetime primary key Date/time the video was rented. 1993/10/29
not null 19:56:00
due_back datetime not null Date the video is due back to avoid 1993/11/01
late fee. 00:00:00
return_date datetime Actual date/time the video was NULL
returned; NULL until then.
price float not null Rental fee for video at time rental 3.50
was made.
late_fee float not null Late fee per day for video at time 1.00
rental was made.
amount_paid float not null Total amount paid on this rental as &.50
current date.
rental_status char 1 not null Status of rental. Mues include C
(C)urrently out, Back and (P)aid,
(B)alance is due.
rental_com- char 76 Comments about rental, if any NULL
ment
modified_date datetime not null Date this record was last modified. 1993/10/29
19:56:00
modified_by integer foreign key Last user who modified record. 2
not null
*title_id is a foreign key from the tapes table, in combination with copy_num.
Appendix A Videobiz Database 427

Videobiz Schema

Table10. Roles table.

Column Name Data Type Length Status Description Sample
title_id integer primary key Unique number code for each video 33
foreign key title.
not null
actor_id integer primary key Unique number code for each actor 87
foreign key
not null
role char 40 Role the actor plays in the video. Marianne

Table 1L. Tapes table.

Column Name Data Type Length Status Description Sample
title_id integer primary key Unigue number code for each video 33
foreign key title.
not null
copy_num integer primary key Number identifying the copy of this 1
not null video.
status char 1 not null Code specifying the current status o0

this copy Values include (A)vailable,
(R)eserved, (O)ut, (I)nactive.

times_rented integer not null Number of times this copy has been53
rented.

428 JAM 7.0 Database Guide

Videobiz Schema

Table12. Titles table.

Column Name Data Type Length Status Description Sample
title_id integer primary key Unique number code for each video 33
not null title.
name char 60 not null Video title. Scenes from
a Marriage
genre_code char 4 Code specifying the video category CLAS

Values include: ADL, ADV, CHLD,
CLAS, COM, HORR, MUS, MYST
SCFI, TV VID. Seecodes table.

dir_last name char 25 Directsrlast name. Bergman
dir_first_name char 20 Directar first name. Ingmar
film_minutes integer Length of the video. 168
rating_code char 4 Rating code given the film by the PG

Motion Picture Association of Amer
ica. Values include: G, PG, PG13, R,
NC17. Seeodes table.

release_date datetime edr the film was released to movie 1974/01/01
theatres. 00:00:00
pricecat char 1 foreign key Code taken from thgricecats G
not null table specifying the price category

Table 13. Title_dscr table.

Column Name Data Type Length Status Description Sample
title_id integer primary key Unique number code for each video 33
foreign key title.
not null
line_no integer primary key Line number of the video descriptionl
not null
dscr_text char 76 Description of the video. Relationship
of a couple...

Appendix A Videobiz Database 429

Videobiz Schema

Tablel4. Users table.

Column Name Data Type Length Status Description Sample
user_id integer primary key Unique number code for each syster8
not null user/employee.
logon_name char 8 Usarlogon name. jack
password char 8 Userpassword. go
last_name char 25 Userlast name. Ryan
first_name char 20 Userfirst name. Jack
customer_flag char 1 Y allows access to customer subsysY
tem.
admin_flag char 1 Y allows access to administrative N
subsystem.
marketing_flag char 1 Y allows access to marketing subsysy
tem.
frontdesk_flag char 1 Y allows access to front desk subsysy
tem.

430 JAM 7.0 Database Guide

Symbols

; (semicolon), command terminator in JISQL, 49

(pound sign)
comments in ISQL , 120
comments in JISQL, 49

% (percent sign), as pattern matching opey&er

_ (underscore), as pattern matching oper&®r

A

Addition operation, in JDB, 90

Aggregate functions, in JDB, 59461
with GROUP BY clause, 75

ALIAS, dbms command, aliasing column names,
135+£137

Aliasing, column names to widgets, 135+137
ALL keyword, in JDB, 101

ANY keyword, in JDB, 101

Arithmetic operators, in JDB, 90

ASC keyword, in ORDER BY clause, 94

Index

AUTOCOMMIT, dbms command, committing trans
actions, 273, 306

AVG function, in JDB, 59

B

Backward scrolling, viewing database rows, 153+156,
174+176, 2134214, 243, 266, 294+295, 331, 365

BEGIN, dbms command, starting database transaction,
226, 339, 388

BETWEEN predicate, in JDB, 62+63, 105

BINARY, dbms command, fetching binary column
values, 138+139

BROWSE, dbms command, returning one row at a
time, 390

BUFFER_DEFAULT dbms command, setting type of
scrolling, 227, 392

C

C Type propertyfrom database column type, 210121
241+242, 2631264, 291+292, 326+327, 361+362

CANCEL, dbms command, stopping a stored proce
dure, 340, 393

CATQUERY, dbms command, writing results to wid
get or file, 140+142

char (data type), in JDB, 69
Character strings, writing to database, in Oracle, 293

CLOSE CONNECTION, dbms command, closing
database connections, 144

CLOSE CURSOR, dbms command, closing database
cursor 145

CLOSE TRANSACTION, dbms command, closing a
declared transaction, 396

CLOSE_ALL_CONNECTIONS, dbms command,
closing database connections, 143

CLOSE_ALL_TRANSACTIONS, dbms command,
closing all declared transactions, 394

Colon preprocessing, writing to a databasd+212,
242, 265, 293, 328+329, 363+364

Column.SeeDatabase columns

COLUMN_NAMES, dbms command, mapping ol
umn names onjy146+147

COMMIT, dbms command, committing transactions,
228, 249, 275, 308, 341, 397

commit
transaction in ISQL, 120
transaction in JDB,15
transaction in JISQL, 50

Comparison operators, in JDB, 91
Configuration, JDB, 32

CONNECTION, dbms command, setting database
connection, 148

Continuation file, specifying, 174+176

CONTINUE, dbms command, fetching next set of
rows, 149+150

CONTINUE_BOTTOM, dbms command, fetching last
set of rows, 151

CONTINUE_DOWN, dbms command, fetching next
set of rows, 152

CONTINUE_TOR dbms command, fetching first set
of rows, 153

CONTINUE_UR dbms command, fetching previous
set of rows, 154+155

Correlation names
for database tables, 23
for self-joins, 84

COUNT function, in JDB, 59
CREATE DATABASE statement, in JDB, 64165
CREATE TABLE statement, in JDB, 6668

Currency format, writing to database, in SYBASE,
328, 363

Cursor SeeCursor (database)

Cursor (database)
closing, 145
declaring, 157+158, 212+213, 242+243, 2651266,
294, 329+331, 364
executing statement, 160
specifying cursor for doms command, 180+181

D

Data
deleting from database, in JDB, 72
entering into database, in JDB, 79+80
formatting for database updates12212, 242, 265,

293, 328+329, 363+364

matching specified pattern, 86
modifying, 103+104
retrieving from multiple tables, 81+85
scrolling through result set, 151+157
selecting, 96+99
specifying groups in database, 75+76
specifying order from database, 94+95

Data type, in JDB, 69+71

Database columns
aliasing to widgets, 135+137
defined, 10+1
defining in JDB, 66+68
fetching binary values, 138+139
getting serial column value, 198
JDB, defining in JISQL, 38+39
mapping column names into JAM variables,
146+147
mapping result set to widget/file, 140+142
naming conventions, JDB, 28
selecting, 96+99
suppress repeating values, 177

JAM 7.0 Database Guide

Databaseconnections
closing, 143, 144
declaring, 156, 310
Informix, 208
JDB, 240
ODBC, 260
Oracle, 289

for XA library, 289
setting current, 178+179
setting default, 148
SYBASE, 324, 359

Database drivers
commands, 131+182
Informix, 205+236
initializing, 206, 238, 257, 286, 320, 356
JDB, 237+253
keywords, 199+203
listing of error messages, 192+194
ODBC, 255+283
Oracle, 285+317
Sybase-CT Library319+353
Sybase-DB Library355+421

Database engines

initializing, 206+207, 238+239, 257+258, 286+287,

3204322, 356+357
setting current, 182
setting default, 159
using more than one, 182

Database tableSeeTables

Databases
See alsdatabase connections; Database drivers;
Database engines

designing, 14+16

JDB
connecting using 1ISQL,1B
connecting using JISQL, 34+35, 50
creating databases, 64+6%81
creating databases in JISQL, 36
deleting, 73
describing using JISQL, 46
disconnecting using JISQL, 35
dropping using JISQL, 47

naming conventions, JDB, 27

re-creating JDB database, 122

relational, 9

Date/time formats, writing to database
in Informix, 211
in Oracle, 293
in SYBASE, 328, 363

Index

datetime (data type), in JDB, 70

DBMS commands, 131+182
for Informix, 234+236
for JDB, 251+253
for ODBC, 278+280
for Oracle, 315+317
for SYBASE, 351+353, 418+420
summary 131+134

DECLARE CONNECTION, dbms command, making
database connection, 156, 310

DECLARE CURSOR, dbms command
creating database cursd57+158
for ODBC catalog functions, 276
for Oracle stored subprograms,131
for RPCs, 399

DECLARE TRANSACTION, dbms command, declar
ing a transaction, 400

DELETE statement
constructing, 21+23
in JDB, 72

DESC keyword, in ORDER BY clause, 94
describe, table in JISQL, 50

Division operation, in JDB, 90

dm_, @dm global variables, 183+198
double (data type), in JDB, 70

DROP DATABASE statement, in JDB, 73
DROP TABLE statement, in JDB, 74
dump, table in JISQL, 50

ENGINE, dbms command, setting database engine,
159

Enginexspecific NoteSeeDatabase drivers

Equitjoins, 81

Error messages
See als@&rror messages (database)
database drivers, 192+194
JDB, 111+114

Error messages (database)
calling function after doms command, 170+171
calling function before doms command, 165+166
enginexspecific codes, 186+187
enginetspecific messages, 188, 214+218, 2431245,
266+268, 295+296, 331+332, 368+370
generic database driver messages, 192+194
listing, 192+194
installing error handlerl67+169
warning codes, 190+191

EXECUTE, dbms command, executing statement, 160
Executing SQL statements, 172

EXISTS keyword, in JDB, 100, 106

Expressions, in JDB, 91

F

Field, databaseseeDatabase columns

File
export JDB database to text files, 123
import to JDB database from text files, 123

float (data type), in JDB, 69

FLUSH, dbms command, throwing away unread rows,
342, 401

Foreign keys
defined, 12
defining using JISQL, 41+45

FORMAT, dbms command, formatting result set,
162+163

Function, aggregat&eeAggregate functions

G

Global variables, database drivers, 183+198

GROUP BY clause, in JDB, 75+76

H

HAVING clause, in JDB, 77+78

Import, of database objects to a reposit@@s+21,
240+242, 2611265, 290+293, 324+328, 359+363

IN keyword, in JDB, 100, 106

Informix, 205+236
connection options, 208
DBMS command listing, 234
executing stored procedures, 218
setting cursor behavip232+234

INSERT statement
constructing, 21
in JDB, 79+80
NULL values and, 88

int (data type), in JDB, 69
Interactive SQLSeelSQL; JISQL

ISQL, 118+120
clearing the input bdiér, 120
command terminatpd19
committing transactions, 120
connecting to a database, 120
editing an ISQL statement, 120
executing a command file, 120
exiting, 120
starting, 18

J

JAM type, from database column type, 210,21
2414242, 2631264, 291+292, 326+327, 361+362

JDB
connecting to database using JISQL, 34+35
connection options, 240
creating databases, 27, 64+653 1
creating databases in JISQL, 36
creating tables using JISQL, 36+37
database driver fp237+253
DBMS command listing, 251
defining columns using JISQL, 38+39
defining table keys using JISQL, 39+45
describing, 38
disconnecting from database using JISQL, 35
error messages11+114
executing transactions13+116
ISQL, 118+120
JISQL, 33155

JAM 7.0 Database Guide

JDB (continued) Keywords
keywords, 125+128 database drivers, 199+203
naming conventions, 27+28 in JDB, 125+128
SQL commands, 57+109
SQL syntax summayy09

system tables, 30+32 |_

unsupported features, 7

utilities, 117+120 LIKE predicate, in JDB, 8687, 107
jdbroll, restoring transaction log, 121 Links, creating, from database import, 209, 241, 263,
JISQL, 3355 291, 325, 360

command terminatpd9 Log file, JISQL, 5354

committing transactions, 50
connecting to a database, 34+35, 50
creating databases, 36 logon, connecting to JDB database, 50, 120
creating tables, 3637 long (data type), in JDB, 69

defining columns, 38+39

disconnecting from a database, 35

displaying database description, 46 M

dropping databases, 47

dropping tables, 46+47

Logical operators, in JDB, 92

editing SQL scripts, 4749 Macro commands, JISQL, 49+50
executing operating system commands, 35+36 MAX function, in JDB, 59
ex_e_cutlng SQL scripts, 5055 Message file, JDB, 32

exiting, 35

log file, 51, 53+54 MIN function, in JDB, 59
macro commands, 49+50
output options, 50+51
query reSUltS, 52+53 Multlple table joins, 82

rolling back transactions, 50 Multiplication operation, in JDB, 90
running interactive SQL, 47+55

script format, 49+52

starting, 33 N

terminating execution, 55

mksq|l, retcreating statements for database, 122

Join Natural joins, 82
da_tabase tabl_es, 2223, 81485 NEXT, dbms command, executing next statement,
using correlation names, 23 344. 403
NOT keyword
in joins, 81
K NOT BETWEEN, in JDB, 62, 105
NOT EXISTS, in JDB, 100, 106
Key columns NOT IN, in JDB, 100, 106
foreign key defined, 12 NOT LIKE, in JDB, 86, 107
primary key defined, 1+12 NOT NULL, in JDB, 88, 106
Keys, defining using JISQL, 39+45 NULL, specifying in JDB, 88+89

Index 5

Null value
and arithmetic operations in JDB, 90
and COUNT aggregate function, 59
defined, 13
specifying in JDB, 88+89, 93

O

OCCUR, dbms command, setting occurrence for
SELECT 164

ODBC, 255+283
connection options, 260
DBMS command listing, 278
description of, 255

ONENTRY, dbms command, calling function before
dbms command, 165+166

ONERROR, dbms command, installing error handler
167+169

ONEXIT, dbms command, calling function after dbms
command, 170+171

Operating system, executing command, from JISQL,
35+36

Operators, in JDB, 90

Oracle, 285+317
connection options, 289
for XA library, 289
DBMS command listing, 315
executing stored subprograms, 297+300

ORDER BY clause, in JDB, 94+95

P

PREPARE_COMMIT dbms command, preparing two
phase commit, 404

Primary keys
defined, 1+12, 15
defining using JISQL, 39+41

Q

Queries, database, 96+99
quit, exiting ISQL, 120

R

Range, search conditions in JDB, 62+63
read, executing file in ISQL, 120

Records, databasBeeRows

Relational databases, 9

Restrictions, JDB, 7

Return codes, stored procedures, 189, 376

ROLLBACK, dbms command, rolling back transac
tions, 229, 250, 277, 312, 345, 405

rollback
transaction in ISQL, 120
transaction in JDB, 15
transaction in JISQL, 50

Rows
defined, 1
fetching, 149+150, 151+157
number fetched, 196+197
value of @dmrowcount in DBMS &RT, 173

S

SAVE, dbms command, setting a savepoint, 313, 407

Scrolling
in the database drivers, 213+214, 243, 266,
2944295, 331, 365
specifying backward scrolling, 153+156
specifying continuation file, 174+176
specifying engine scrolling, 227, 230, 392, 412

Search conditions, in SQL statements, 105

SELECT statement
constructing, 18+19
fetching binary columns, 138+139
formatting result set, 162+163
in INSERT statement, 80
in JDB, 96+99
NULL values and, 88
number of rows fetched, 196+197
no more rows status, 196+197
scrolling through result set, 149+156, 174+176
setting starting ronl73
suppressing repeating values, 177
writing results
to a file, 140+£142
to a specific occurrence, 164

JAM 7.0 Database Guide

Self-joins, 84
Serial column, @dmserial, 198

SET, dbms command
set cursor handling in SYBASE, 346, 409
setting Client Library curspB49

SET HOLD, dbms command, setting cursor behavior
in Informix, 232

SET HOLD_DERULT, dbms command, setting eur
sor behavior in Informix, 233

SET_BUFFER, dbms command, specifying engine
scrolling, 230, 412

SMEDITOR, editing SQL statements , 32
SOME keyword, in JDB, 101

SQL, 17+25
commands, in JDB, 57£109
dbms command, executing SQL statements, 172
executing in JISQL, 24
executing in JPL, 24
executing SQL statements, 172
on named curspd60+161
re-creating JDB database, 122
syntax summary for JDB, 109

START, dbms command, setting starting rdw3
STORE, dbms command, setting continuation file, 174

Stored procedures

executing

in Informix, 218+221

in ODBC, 268

in Oracle, 297+300, 31

in SYBASE, 333+334, 371+378
executing an rpc, in SYBASE, 3731378
return codes, 189, 376

Subqueries, database, 100+102
Subtraction operation, in JDB, 90
SUM function, in JDB, 59

SYBASE, 319+424, 355+460
connection options, 324, 359
DBMS command listing, 351, 418
executing statements, 346, 409
executing stored procedures, 333, 371

Syntax summaryJDB, 109

Index

System.SeeOperating system

system, executing operating system command in
ISQL, 120

System tables, JDB, 30

T

Table views, creating, from database import, 209, 240,
262, 290, 325, 360

Tables
correlation names, 23
defined, 9+10
describing in JISQL, 46, 50
dropping using JISQL, 46147
dumping in JISQL, 50
export from JDB to text files, 123
import to JDB from text files, 123
JDB
creating, 6668
creating in JISQL, 36+37
deleting, 74
joining multiple, 22+23, 81+85
keys, defining using JISQL, 39+45
naming conventions, JDB, 28
retrieving data, 96
system tables, JDB, 30

tbldata, import/export JDB database, 123
Text files, import/export to JDB database, 123

TRANSACTION, dbms command, setting a default
transaction, 414

Transaction
committing in JISQL, 50
processing database transactions, 221+224,
2454247, 268+271, 300+303, 334+337,
3784385
committing the transaction, 228, 249, 275, 308,
341, 397
in JDB, 115+116
rolling back a transaction, 229, 250, 277, 312,
345, 405
setting a savepoint, 313, 407
starting transaction, 226, 339, 388
restoring journals/logs, 121
rolling back in JISQL, 50

Transaction model
for JDB, 248
for Oracle, 303
for SYBASE, 337, 386

TYPE, dbms command, specifying parameter types,
415

U

UNIQUE, dbms command, suppressing repeating val
ues, 177

Unique keys, defining using JISQL, 39+41
Unsupported features, JDB, 7

UPDATE, dbms command, updating in browse mode,
416

UPDATE statement
constructing, 20+21
in JDB, 103+104
NULL values and, 88

USE, dbms command, specifying a database, 417
Utilities, JDB, 1.7+123

Vv

videobiz
description of database, 423+430
diagram, 15

W

Warning messages, database, 190+191

WHERE clause
constructing, 19+20
in JDB, 105+£108
Widgets
aliasing to column names, 135+137

creating, from database import, 21032241+242,
263+265, 291+293, 326+328, 361+363

Wildcard characters, in JDB, 86

WITH CONNECTION, dbms command, setting data
base connection, 178+179

WITH CURSOR, dbms command, setting database
cursor 180+181

WITH ENGINE, dbms command, setting database
engine, 182

X

XA library
connecting to, 289
using in JAM, 303+304

JAM 7.0 Database Guide

