w

ol

o000

~N N~

NENESESESESYSESERNSYSESENY SIS

JAM C Progranmer's Cuide

Contents

I nt roduction

The JAM Run-tine EnV| ronment .
Functi ons I nvoked by Control Links
1 Return Values and Target Lists
.2 Example .

Functi ons Attached to F| eI ds

1 Invocation

2 Argunents .

.3 Return Val ue

.4 Exanple .
Screen Entry and EX|t Functions .
.1 Argunents .

.2 Example .

The Function Li sts

The JAM Mai n Programs .

Sanpl e Prograns .

Overvi ew of Library Functions .

Vari ants

Initialization

For m Di spl ay

Data Entry

Keyboard Entry

Cur sor Control

Dat a Access .

Mass St orage and Retr| eval

Message Display . . e
10 Altering the Q:Jeratlon of O:her Functi ons
11 Scrolling and Shifting Functions .
12 Validation Routines S
13 M scel | aneous Coe
14 \Which Function Do | Use? .

©CoOo~NOULr,WNPE

Li brary Functions by Name .
Built-in Invoked Functions
Envi ronment and Configuration Files .

Keyboard | nput .o
1 Logical Characters or Keys
2 Key Translation .

3 Key Routing .

Screen Qut put
.1 Graphics Characters and AI t er nat e Char act er
.2 The Status Line .

User - def i nabl e Functi ons
1 Installation
2 Menp Text Edits .

Set s

O~NOOUONPRArPRARWWWNRRERRLE

10
10
11
11
12
12
13
13
14
14
15
15
15

16
236
244

245
245
245
246

247
247
247

249
250
250

10

10.
10.

11

11.
11.

12

12.
12.
12.
12.
12.

The Local Data Bl ock

Witing Portable Applications
1 Terminal Dependencies
2 ltems in smmch. h

Witing International Applications .
1 Messages .

2 Characters @t8|de the US ASCII Set.

Witing Efficient Applications .
Menmory-resi dent Screens
Mermory-resi dent Configuration F| I es
Message File Options .
Avoi di ng Unnecessary Screen QJtput
Stub Functions .

abrwNPE

251

252
252
252

253
253
253

253
253
254
255
255
255

1 Introduction

The Progranmer's Cuide explains howto wite code that works with the JAM
run-time environment. First, we offer a general explanation of howto build your
routines into the run-time system Then, the library itself is classified into
categories, and an al phabetical listing of all the functions with ful

expl anations appears. Finally, there are explanations of internal processing and
tips for witing better applications; this material is organized topically, and
is better browsed or used for reference than read strai ght through

1.1 The JAM Run-tine Environnent

A salient fact of programming with JAMis that the application program has no
mai n control |oop. Control flow is handled by JAMs main routine, which uses
control strings to decide howto respond to what you type; your own code is made
up chiefly of screen entry and exit functions, invoked functions, and attached
functions. Invoked functions are placed in JAM control strings; they are called
i mredi ately upon receipt of a user's nmenu pick or function key, and may pronpt
for paraneters with an argunent w ndow. Attached functions, on the other hand
are associated with data entry fields, and are called with a predefined set of
argurment s when the cursor enters or |leaves a field. The next several sections
descri be each type of function and provi de exanpl es.

It is, of course, possible to gain full control of screen and keyboard
processing, by using the library routines. Section 2 categorizes those routines
and describes their typical use. It is further possible to alter or abolish the
processi ng of control links by witing your own main routine.

1.2 Functions Invoked by Control Links

A function whose name appears in a JAMcontrol string, preceded by a caret %,
will be called when a user selects the function key or nenu pick associated with
that control string. This means that JAM nust be linked with the function. See
Section 1.5 for a detail ed explanation of howto link functions with JAM JAM
supplies a nunber of built-in invoked functions, which are docunmented in Section
4 of this chapter.

I nvoked functions are passed a single argunent, a pointer to a character string.
In the sinplest case the string is just the contents of the control field (the
function name plus any following text), with the | eading caret stripped off.
However, if the control field contains one or nore argunent w ndow
specifications (a percent character % followed by the nane of a wi ndow), the
function receives their contents: JAM opens each wi ndow for data entry, then
substitutes the concatenated contents of its fields for the percent
specification, before calling the function. See the Author's Guide for details
on how to create argunment w ndows.

1.2.1 Return Values and Target Lists
The integer return value froman invoked function is ignored, unless

1. it is the value of a logical key with an associated control string on
the current screen (EXIT, XM T, PF1, etc.), or
2. the control string contains a target |ist.

If there is no target list and the return value is a logical key with an
associated control string, JAMw Il execute the control string. Invoked
functions can be chained in this fashion; progranmers are responsible for
avoi di ng | oopi ng chai ns.

Atarget list in a control string provides for nore flexible and
better-docunented chai ning of invoked functions. Syntactically, a target |ist

appears between the caret and the function nanme, and nust be enclosed in
parent heses. It consists of one or nore pairs, of the form

return-value = control -string

Here return-value is an integer code returned fromthe invoked function,
expressed as a deci mal or hexadecimal integer, a quoted ASCII character, or a

| ogi cal key menonic (refer to snkeys.h for a list). Control-string is any JAM
control string, which will be executed whenever the function returns
return-value. |If the target |list contains nore than one such pair, as is likely,
separate themwi th seni col ons.

In the control string below, a return value of -1 fromthe function process
causes the function cleanup to be invoked, while a return value of 0 causes a
wi ndow named step2 to be displ ayed:

N(-1=~cl eanup; 0 = &(8, 25)step2)process stepl

Target lists may nest; that is, caret control strings in a target list may
thensel ves contain target |ists.

1.2.2 Exanple

The exanpl e bel ow shows a function invoked when a user hits TRANSM T or EXIT on
its screen; it sinply saves the contents of the screen in a flat data file. The

two control strings that call it would [ook |ike this:
XMT => Asave
EXIT => AN(O0="j m exit)save close

And here is the function itself:

#i ncl ude "sndefs. h"
#l ncl ude "sm dty. h"
#i ncl ude "nyrec. h"

/* The following is an invoked function bound to the

* TRANSM T key. It saves the contents of the screen

* in the data structure 'nyrec' and wites it to a file,
* which is opened if necessary. The argument determ nes
* whether the file should be closed; it is in the contro
* string.

* The data structure nyrec is assunmed to be defined in

* "nyrec.h", generated fromthe screen by the f2struct
*utility.

*/

int save (cl osefl ag)

char *cl osefl ag;

{
struct myrec myrec;
int count;
static FILE *savefile;

if (strcnp (closeflag, "close") == 0)
if (savefile != 0)
fclose (savefile);
return O;
}

smwtstruct ((char *)&nyrec, &count, 0);

if (savefile == 0)

savefile = fopen ("savefile", F_B WRONLY)

if (savefile == 0)
return -1;
if (fwite ((char *)&myrec, 1, count, savefile) !'= count)
return -1;
return O,

}

/* Code to install the invoked function above */
struct fnc_data invlist[] = {

{ "save", save, 0, 0, 0, 0}
s

i nt howmanyi nv = sizeof (invlist) / sizeof(struct fnc_data);

sminstall (CARET_FUNC, invlist, &owranyinv);

1.3 Functions Attached to Fields

Field entry and field exit functions are both called attached functions, because
they are associated with a specific data-entry field. You attach a function to a
field by placing its name in the field entry or validation function slot of the
screen editor's pop-up w ndows. (You may place the sanme function in both slots,
and use the fourth paraneter to determ ne the context of the call; see bel ow)

To attach a JPL procedure to a field, you can type your code directly into the
screen editor's JPL procedure window. If the JPL procedure is long or useful in
many places, you can also put it in a file, and enter jpl filename in the
attached function wi ndow. You may attach JPL code to both hooks, in which case
the attached function is executed before the enbedded procedure.

1.3.1 Invocation
A field exit function, also commonly called a validation function, is called:
1. As part of field validation, when you exit the field by filling it or
by hitting the TAB or RETURN key; BACKTAB and arrow keys do not
normal Iy cause validation. These circunmstances are subject to
nmodi fi cati on by sm ok_options, g.v.
2. As part of screen validation (sms_val), when the TRANSM T key is hit.
3. When application code calls smfval directly.

A field entry function is called from sm openkeybd whenever the cursor enters
its field.

1.3.2 Argunents

Al'l attached functions receive four argunents:

1. the field nunber
2. a pointer to the buffer containing a copy of the field' s contents
3. the data's occurrence nunber
4. an integer containing the VALIDED and MDT bits associated with the item
or field, plus nore flag bits indicating why the function was call ed;
refer to the follow ng table.
Bit nanme Meani ng
VALI DED If set, indicates that the field has passed all its
val i dati ons, and has not been nodified since.
VDT If set, indicates that the field has been nodified, either by

keyboard input or a library function such as smputfield,

since the current screen was first displayed. It is never
cleared by JAM but you nay clear it using smbitop.

K_ENTEXI T If set, indicates that the function has been called upon field
entry. This bit enables a single function to be used for both
field entry and exit.

K_KEYS This is a mask for the remaining values in this table. You
shoul d and the function's fourth paraneter with this val ue,
then test for equality to one of the five below, thus:

if ((parmd & K_KEYS) == K SVAL)

K_NORMAL A normal data key caused the cursor to enter or exit the field
i n question.

K_BACKTAB The BACKTAB key caused the cursor to enter or exit the field
i n question.

K_ARROW An arrow key caused the cursor to enter or exit the field in
guesti on.

K_SVAL The field is being validated as part of screen validation
(TRANSM T key or sms_val).

K_USER The application has invoked the function directly, as through
sm fval .

K_OTHER Anot her key, such as HOMVE, caused the cursor to enter or exit

the field in question.

A field exit function is called whether or not the field was previously
validated; it may test the VALIDED and MDT flags to avoid redundant processing.
It is called only after the field s contents pass all other validations.

1.3.3 Return Val ue

If no error occurs, the function should return 0. At this point, the screen
manager's validation routine will set the VALIDED bit, if it was not already
set. Any nonzero value returned by the function is interpreted as an error. If
the returned value is 1, the cursor is not repositioned; if it is any other
nonzero val ue, the cursor is repositioned to the field undergoing validation. In
ei ther case, the VALIDED bit is unchanged.

1.3.4 Exanple

Here is code for an attached function that does nothing nuch:

#i ncl ude "sndefs. h"

int apfuncl (field_nunber, field_data, occurrence, val _ndt)
int field_nunmber, occurrence, val _ndt;
char *fiel d_dat a;
{
int error;
extern int |ookup();
char errbuf[128];

/* 1If field is unchanged since |ast validation, skip */
if (val _ndt & VALI DED)
return (0);

/* Check field for validity (externally defined) */
error = | ookup (field_data);

if (error)
{
/* Notify user of error condition. */
smgofield (1);
sprintf (errbuf, "Can't find %; please re-enter all data.",
field data);
smquiet_err (errbuf);
return (1);
/* leave cursor in field 1 */

}

else return (0);

While an attached function is free to display wi ndows, it nust not display a
form To do so would wi pe out the formor w ndow to which the function was
attached. For the sane reason, attached functions nmust take care to close al
the wi ndows they may open before returning to sm openkeybd.

1.4 Screen Entry and Exit Functions

Screens, like fields, nmay have entry and exit functions defined in the screen
editor. The screen entry function is called after the screen has been displ ayed,
but before control returns fromsmr_w ndow, smd_form or whatever you use to
di splay the screen. There are several steps in screen initialization, perforned
in the follow ng order

1. The new screen is displayed, as a form or w ndow.

2. The screen-entry function is call ed.

3. The jamfirst control string is executed. (This is an obsol escent
feature.)

4. Screen fields are updated with values fromthe | ocal data block (LDB
nmer ge) .

5. The jam auto control string is executed.

During screen initialization, entering data into fields with smputfield or
other library routines will not cause the fields' MDT bits to be set; this
applies to the LDB nerge as well. If you want to set MDT bits, call smbitop

Screen exit functions are called after naned items have been stored in the LDB
but before the screen is removed fromthe display and its data structures
destroyed. They are called fromsmcl ose_w ndow, and also fromsmr_form and the
ot her formdisplay functions, which cause all open wi ndows to be destroyed
automatically. This inplies that the screen may not al ways be visible when your
exit function is call ed.

1.4.1 Argunents
Screen entry and exit functions receive two paraneters:

1. The nane of the screen, if available. It will not be available if the
screen i s nmenory-resident and di splayed using smd_w ndow or a variant.
2. A flag containing the following bits, defined in sndefs.h
K_ENTEXI T Set if the function was called during screen entry,
clear during exit.
K_NORIVAL Set if the function was called fromsmcl ose_w ndow,
cl ear ot herwi se.

A single function used for both entry and exit can use this bit to distinguish
its context. One advantage of coding screen entry and exit processing in the
same function is that persistent variables, such as pointers to dynamcally

al | ocated buffers, can be made static rather than gl obal

Any val ue returned froma screen entry or exit function is ignored.

1.4.2 Exanple

Here is an exanple of a screen entry function. This one | oads up an item
selection list froma disk file whose name is stored in the screen

#i ncl ude "sndefs. h"

/* Here is a screen entry function for a generic item

* selection screen. It turns the screen name into the

* nane of a text file containing a |list of items, one

* per line, and |l oads theminto the array nanmed "itens".

* This technique could be easily adapted to query a database
* instead.

*/

void gen_entry (name, context)
char *nane;
i nt context;

{
FI LE *i nf;
char Iine[256];
int k;
sprintf (line, "%.dat", name ? name : "default");
if ((inf = fopen (line, "r")) == 0)
return;
for (k = 1; fgets (line, sizeof(line), inf); ++k)
smi_putfield ("itenms", k, line);
fclose (inf);
}

/* Here is code to install the above function in the screen
* entry function list. */
static struct fnc_data sentry[] = {
{ "gen_entry", gen_entry, 0, 0, 0, 0}
1

int count;

count = sizeof(sentry) / sizeof(struct fnc_data);
sminstall (FENTRY_FUNC, sentry, &count);

1.5 The Function Lists

JAM stores function names as text strings in screen files. It needs to associate
these names with the functions' addresses in order to call them You nust
furnish this association by building Iists of data structures called function
lists. Attached, invoked, and screen entry functions nust all appear; there is
one list for each type of function. For exanple, if an application's screens
contai ned two functions named apfuncl and apfunc2 that were attached to a field,
and anot her naned invoca in a caret control string, its startup code would need
to include the follow ng:

#i ncl ude "sndefs. h"
#define C FUNCTION O

extern int apfuncl(), apfunc2();

struct fnc_data funlist[] =
{
{ "apfuncl", apfuncl, C FUNCTION, O, 0, O },
{ "apfunc2", apfunc2, C FUNCTION, O, 0, 0 },
}
/* The followi ng definition saves a |lot of grief */
i nt howmuchfun = sizeof (funlist) / sizeof(struct fnc_data);

extern int invoca();

struct fnc_data invlist[] =

{
b

i nt howmanyinv = sizeof (invlist) / sizeof(struct fnc_data);

{ "invoca", invoca, C FUNCTION, O, O, O}

sminstall (ATTCH_FUNC, funlist, &howruchfun);
sminstall (CARET_FUNC, invlist, &owranyinv);

In the structure definitions, the quoted strings are names as entered on the
screen, and the non-quoted entries are addresses of functions. Note that the two
need not always be the same; in particular, the same function can be entered in
the list under different nanes, or aliases. Possible uses for this technique

i ncl ude mapping functions yet to be witten to a stub routine, and using the
same function to performslightly different tasks (with the nane as an inplied
par aneter).

Refer to the library page on sminstall, and to preceding sections, for fuller
details about each type of function.

1.6 The JAM Main Prograns

As a starting point for your own applications, JYACC provides source code for a
main routine, in a file named jmain.c. This routine perforns vari ous necessary
initializations before calling JAMs nmain control |oop, which resides in a
library. You can nodify the main routine to change the default settings and,
nmore inportantly, to install your application code with calls to sminstall, as
in the previous section. Extensive docunmentation in the source code will show
you where and how to make your nodifications.

You will find simlar source files, fmain.c and jxmain.c, that are main routines
for the authoring prograns, xformand jxform Under Release 4.0, you nmay link
your application code into the authoring environment as well as the run-tine

system This enables you to prototype and revise your screens with even greater
conveni ence than before.

Refer to the Installation Notes for your systemfor the | ocations of these
files. For additional hints on putting your application together, take a | ook at
the sanpl e programs (next section).

1.7 Sanple Prograns

JYACC supplies a number of sanple programs and screens to denonstrate the use of
JAM routines and the procedures you nmust use to conpile and Iink application
progranms. They include both prograns that supply their own nmin routine, and
programs that use the one provided with JAM They can generally be found in a
subdirectory, naned sanples, of the directory where JAM has been installed.

Refer to the Installation Notes for your specific systemfor a list of the files
maki ng up the sanple prograns.

2 Overview of Library Functions

After screens have been created with the JAM authoring utility, an application
program can access themusing routines fromthe library. A typical sequence
fol |l ows.

Note that the JAM environnment performs something very simlar to this
sequence, and it is not generally necessary for application progranms
to do it; application code is sinply attached to fields and function
keys. Only in circunstances where very tight control over data entry
is required should it be necessary for an application programto do
all this work.

sminitcrt is called to initialize the termnal

smr _formis called to bring up a formon the screen

The application programmay call smputfield, or a variant, to

initialize fields. This can be done as often as desired, and at any

time.

4. smopenkeybd is called, and you nmay key data into unprotected fields.

5. One or nore data access routines are called to return the fields'
current contents to the application program

6. VWile the data contain errors or inconsistencies:

wh e

a. smgofield, or a variant, is called to reposition the cursor
to the field containing the error

b. smerr_reset is called to display an error nessage.

c. smopenkeybd is called to accept fresh data.

7. |f special conditions require additional input:

a. smr_window, or a variant, is called to bring up a wi ndow with
additional fields. The entire sequence may be repeated here
recursively.

b. smclose windowis called to close the current w ndow and
restore the i nmedi ately previous display.

8. smresetcrt is called to reset the termnal prior to exiting.
2.1 Variants
Many library routines deal with fields. Mdst of these have several variants that
accept different sorts of field designations, enabling the application

programmer to choose the nmpbst convenient. The variants are, by convention
di sti ngui shed by prefixes to the function nane:

Prefix Fi el d designation

sm_ Field nunber only

smo_ Fi el d nunber and occurrence numnber
smn_ Field name only

smi_ Fi el d nane and occurrence nunber

sme_ Fi el d nane and onscreen el enent numnber

In the library section of the manual, only the first variant is docunmented. The
behavi or of the others is identical, save for the handling of errant field
specifications. Also, the n_ and i _ variants will operate on fields that do not
appear in the current screen but are in the local data bl ock

A simlar convention exists for library routines that display screens, depending
on whether the screens file is on disk, in nenory, or included in a screen
library. The prefixes are as in the table below. Al these functions are
docunent ed separately.

Prefix Screen file storage
smr_ Single disk-resident file

smd Menory-resident file
sml Menber of screen library

Most JAM library routines fall into one of the follow ng categories:

Initialization

Form di spl ay

Data entry (fromthe application program

Keyboard entry

Cursor contro

Dat a access (by the application programnm

Mass storage and retrieval

Message di spl ay

Al'tering the operation of other library routines

Scrolling and shifting

Dat a val i dati on
The follow ng sections summarize the routines within each category. Mdul es
calling JAM Ilibrary routines should include sndefs.h . Mdules testing for
non- ASClI | val ues returned by sm get key, sm openkeybd or sm nenu_proc should al so
copy or include smkeys. h .
2.2 Initialization
The following routines are called for initialization. Note that, by default,

nost of these are called to set up the JAMrun-time environnent, and the
application program need not call themitself.

sminitcrt Initializes the termnal for JAM and saves the path name
for disk resident forms and w ndows.

sm keyi nit Initialize nenory-resident key translation file

sm_nsgr ead Loads nmessage files.

smvinit Initialize menory-resident video file.

sm snset up Initialize menory-resident configuration variable file
smunsetup restores the default configuration.

smformi st Add to the list of memory-resident forns.

smrnformist Destroys the nenory-resident formli st

sm.install Installs attached functions, screen entry/exit functions,
and other user routines to be called fromlibrary
functions.

smresetcrt Restores normal term nal characteristics before exiting.

sm | eave Prepares the display for a tenporary escape fromJAMto
the operating system

smreturn Prepares the display to resune processing after an
sm | eave

sm cancel Resets the terminal and exits. Normally bound to a
keyboard i nterrupt handl er

sm f ext ensi on Changes the default file extension for screen files.

sminictrl Changes the default control string bindings for function

keys.

2.3 Form Di spl ay

The followi ng routines are called to display screens.

smr_form Di splays a form Any previously displayed formis
cleared. Simlarly, smd form sml_form
sm.r_w ndow Di splays a wi ndow at a specified Iine and col um on the

screen. The previous contents of the w ndow area are
saved. Simlarly, smd_w ndow, sml| _w ndow.

smr_at_cur Di spl ays a wi ndow at the current cursor position. The
previ ous contents of the w ndow area are saved.
Simlarly, smd_at_cur, sml _at_cur

sm cl ose_w ndow Closes the current wi ndow and restores the i mediately
previ ous display.

sm wsel ect Brings a "buried" windowto the active position
sm wdesel ect puts it back.

sm.| _open Opens a formlibrary.

sm| _close Closes a formlibrary.

sm hl p_by_ name Di spl ays the hel p screen attached to the current field or
screen, gets user input, and restores the previous
di spl ay.

sm.rescreen Ref reshes the screen display.

2.4 Data Entry

The follow ng routines enable an application programto enter data into fields
in a screen or the |ocal data block, or to change its display attributes.

smputfield Copies the data froma string into a specified field or
occurrence. |If the string is too long for the field, it
is truncated.

sm am _f or mat Copies a string into the specified amunt field or
occurrence, after applying the currency fornat.

smitofield Converts an integer to a string, and copies the string
into the specified field or occurrence.

smdtofield Converts a double floating point value to a string,

applies a field currency edit if it exists, and copies
the string into the specified field or occurrence.

smltofield Converts a long integer to a string and copies the string
into the specified field or occurrence.

sm cal c Eval uates a mat hemati cal expression, possibly involving
field values, and places the result in a field.

smldb_init Initialize the local data block fromthe data dictionary.

sm | cl ear Clear all occurrences with a given scope in the LDB

smlreset Reinitialize all occurrences in the LDB with a given
scope.

smchg_attr Changes the display attributes of a field.

sm achg Changes the display attributes of a scrolling data item

sm cl _unpr ot Cl ears onscreen and offscreen data from unprotected

fields on the current screen. Date and time fields that
take system val ues are reset.

smcl _everyfield Clears all field data, onscreen and off, regardl ess of
field protection.

sm lclear _array Clears all data froma scrolling array.

smcl ear_array Clears all data froma scrolling array and all parallel
scrolling arrays.

sm_i occur Inserts a blank occurrence into an array or scroll

sm doccur Del etes an occurrence froman array or scroll

2.5 Keyboard Entry

The followi ng routines accept and process data entered fromthe keyboard.

sm get key Returns the interpreted value of the key hit. In the case
of a displayable key, this is its standard ASCI| val ue;
in the case of a function key with special nmeaning to
JAM this is a value defined in the file snkeys.h . This
function is used by all other keyboard input functions.

sm unget key Pushes a key back on the input stream to be retrieved by
sm_get key.
sm openkeybd Accepts and interprets user keyboard entry. Displayable

data is entered into fields on the screen, subject to any
restrictions or edits that were defined for those fields
(see the JAM Aut hor's Quide). Function keys control the
position of the cursor and aid in editing data.

sm_nenu_proc Returns the initial character of the user's selection
froma menu whose entries start with distinct ASCl
characters.

sm choi ce Returns the text of the chosen entry on a nenu screen
sm._query_nsg Di spl ays a question on the status line, and returns a yes
or no answer.
sm keyhi t Tests whether a key has been hit during a specified
i nterval
sm i sabort Returns control to the application through nested

keyboard entry routines.
2.6 Cursor Control

The followi ng routines affect the positioning and visibility of the cursor

sm get curno Returns the nunber of the field within which the cursor
is currently positioned.

sm_home Pl aces the cursor in the first unprotected field.

sm | ast Positions the cursor to the start of the |ast unprotected
field of the current form

smtab Moves the cursor to the next unprotected field, or to the
unprotected field specified by a next field edit.

sm nl Moves the cursor to the next unprotected field follow ng
the current line on the screen.

sm backt ab Moves the cursor to the start of the current field, or if

it is already there, to the start of the previous
unprotected field.

sm gofield Positions the cursor to the start of the specified field
or occurrence.

smoff_gofield Positions the cursor to a given offset fromthe start of
the specified field.

sm di sp_of f Returns the displacenment of the cursor fromthe starting
colum of the current field.

smc_off Turns the cursor off.

sm c_on Turns the cursor on.

smc_vis Turns the cursor position display at the end of the

status line on or off.
2.7 Data Access

The followi ng routines give an application program access to data entered on a
screen or in the LDB.

smedit_ptr Returns the text of a special field edit.

smgetfield Returns the contents of a field or occurrence in a buffer
supplied by the user.

smfptr Returns the contents of a field in an internal buffer

sm_pkptr Returns the contents of a field in an internal buffer

with as many bl anks as possible renoved.
smstrip_am _ptr Returns the contents of a field, stripped of any
extraneous characters supplied by currency formatting.

sm_num occurs

Returns the | argest nunber of itens entered so far into a
scrollable field or array.

sm.i ntval Returns the integer value of the data found in the
specified field or occurrence.

sm_dbl val Returns the double floating point value of the data found
in the specified field or occurrence.

sm_| ngval Returns the long integer value of the data found in the
specified field or occurrence.

smis_yes Returns 1 if the first character of a yes/no field | ooks
like yes, and 0 otherw se.

sm dl ength Returns the length of the data currently in the specified
field or occurrence.

sm al | get Merge LDB data itenms onto the screen

smlstore Store screen data into the LDB.

2.8 Mass Storage and Retrieva

The followi ng functions nove data to or fromgroups of fields in the screen or
LDB.

sm save_data

smrestore_data

sm sv_dat a
smrs_data
smwrtstruct
smrdstruct
smwt_part
smrd_part
smrrecord

sm wrecord

Wites the contents of the current forms fields to a
buffer for subsequent retrieval

Restores all fields to the current formfroma buffer
created by sm save_data

Wites the contents of some of the current forms fields
to a buffer for subsequent retrieval

Restores part of the current formfroma buffer created
by sm sv_dat a.

Copies the current forms fields to a program data
structure generated fromthe screen.

Reads into the current forms fields fromsuch a data
structure.

Wites the contents of some of the current forms fields
to such a data structure.

Reads some of the current forms fields fromsuch a data
structure.

Copies froma data structure defined by a data dictionary
record to the screen or LDB

Copies fromthe screen to such a data structure.

2.9 Message Display

The followi ng routines display a nmessage on the status line of the screen
(typically the bottomline).

smd _nsg_line Di spl ays a nmessage with a user-supplied display
attribute.
Di spl ays a nmessage at a given colum on the status line.
Di spl ays a nmessage using a standard error nessage
attribute. Processing is halted until the user hits the
space bar, at which tine the status line is reset.
Simlarly, smensg.
Di spl ays the word ERROR: followed by the user-supplied
message. Processing is halted until the user hits the
space bar, at which tine the status line is reset.
Simlarly, smqui_nsg.
Di spl ays your nmessage in a pop-up w ndow, at a |ocation
you specify.
Di spl ays a user-supplied question. Processing is halted
until the user answers yes or no, at which tine the
status line is reset, and the answer is returned to the
cal l'i ng program
Gets a nessage fromthe nessage file. So does sm nsgfind.

sm nsg
smerr_reset

sm qui et _err

sm_ma ndow

sm query_msg

sm nsg_get

sm set bkst at Di spl ays a background nessage, which will be hidden if
the cursor enters a field that has status text, or if
anot her message display routine is called.

sm set st at us Turns on or off the automatic display of alternating
Ready and Wait status |ine nmessages, corresponding to an
open or cl osed keyboard.

2.10 Altering the Operation of O her Functions

These functions affect the behavior of other parts of the run=-tinme system Many
have correspondi ng setup variables, so that you can experinment with different
conditions with no need to change or reconpile your application; see the
Configuration Cuide's section on setup.

sm er_options Changes the way smerr_reset and rel ated functions handl e
error nmessage acknow edgenent.

smch_formatts Changes the display attributes of standard w ndows used
by the run-tinme system

sm ch_ensgatt Changes the display attributes used by smerr_reset and
sm qui et _err.
sm ch_qgnsgatt Changes the display attribute used by sm query_nsg.

smch_stextatt Changes the display attribute used for the status line
text associated with fields.

sm ch_unsgat t Changes the display attributes used for error w ndows.

sm np_options Sets options for sm nenu_proc.

smnp_string Changes sm menu_proc's interpretation of data keys.

sm ok_options Changes the way sm openkeybd interprets arrow keys, field
val i dation, and other itens.

sm zm options Changes details of the way zoonming is done.

sm_ di cname Changes the application's data dictionary nane.

sm dd_abl e Turns LDB write-through on or off.

sm keyfilter Turns the keystroke pl ayback/recordi ng mechani sm on or
of f.

sm dw_opti ons Turns JAM del ayed wite on or off.

2.11 Scrolling and Shifting Functions

The followi ng routines refer specifically to scrollable or shiftable fields.
Sonme are |listed above, and repeated here for convenience. The sme_ prefix is
not used for scrolling routines, since the el ement nunbers of an array designhate
t he individual on-screen fields which constitute that array, and the scrolling
routines normally process an array as a whole. Individual itens within a
scrolling field or scrolling array are referred to by item nunber, which is

i ndependent of which itenms are currently displayed on the screen

smt_scroll Det erm nes whether the specified field or array is
scrol | abl e.

smitemid Returns the item nunber of the data in the current
scrollable field.

sm sc_max Changes the maxi mum nunber of items in a scrollable field
or array.

sm cl ear _array Clears all data froma scrollable array and all parallel
scrol | abl e arrays.

smrscroll Scrolls a single scrollable field or array, or a group of
parallel scrollable fields or arrays, by a given anount.

sm ascrol | Scrolls a single scrollable field or array, or a group of
parallel scrollable fields or arrays, to a given
| ocati on.

smnum.itens Returns the | argest nunber of items entered so far into a
scrollable field or array.

smt_shift Det erm nes whether the specified field or array is

shi ft abl e.

sm oshi ft
sm sh_off

sm.ind_set

sm fval
sm.s_val

sm bitop

sm_noval bi t

smcl_all_mdts

smtst_all_ndts

2.13 M scel | aneous

sm occur _no
sm_max_occur

smn_fldno
sm base_fl dno

sm size_of _array

sm_ | ength
sm lprotect

sm_lunpr ot ect
sm_apr ot ect
sm sdate

sm stime

sm do_region

sm hl p_by_name
sm flush

smresize
sm bel
sm keyl abel

sm | abel _key
sm pl cal

smputjctrl
smrescreen

Shifts the contents of the current shiftable field or
array.

Returns the displacenent of the cursor fromthe start of
the shiftable data in the current field.

Turns shifting and scrolling field indicators on or off.

2.12 Validation Routines

Forces field validation and end of field processing.
Perforns field validation and end of field processing on
all fields of the current form

Tests, sets, and clears a nunber of bits associated with
field validation. Overlaps with some nore specialized
routines |listed bel ow

Resets the validated bit of a field, so that the field
will (again) be subject to validation when it is next
filled or tabbed from

Resets the nodified bits of al
field.

Returns the field and occurrence nunbers of the first
occurrence that has its nodified bit set.

occurrences of every

Returns the occurrence nunber of the data in the field
where the cursor is.

Returns the number of the maxi mum occurrence that
entered in the specified field or array.

Returns the nunber of a field, given its nane.
Returns the field nunber of the base el enent of an array,
obtained fromthe field nunber of any el enent of the
array.

Returns the nunmber of elements in an array.

Returns the length of a field (not its contents).
Protects a field from sone conbi nati on of tabbing into,
data entry, validation, and clearing. sm protect does al
four.

The inverse of sm lprotect.

Sets protection on an entire array.
reverses the effect.

Returns current systemdate information in a formatted
string.

Ret urns current
string.

Paints arbitrary data on one line of the display.

I nvokes a named help wi ndow on the current field.

Forces buffered updates out to the display; JAM buffers
them for greater efficiency. smmflush just flushes the
message |ine.

Changes the size of the display area available to JAM

can be

sm_aunpr ot ect

systemtinme information in a formatted

Beeps or flashes the ternmi nal
G ven a logical key nane, returns its label on a rea
keyboar d.

Initialize a softkey | abel

I nvoke a routine witten in the JYACC Procedura
Language.

Repl ace a JAM contro
Redraw the display if

string for a function key.
it gets garbled.

2.14 \Which Function Do | Use?

The JAM library provides nore than one way of doing certain things.
are some guidelines for choosing the right ones.

Fol | owi ng

Screen storage and di splay. There are three ways to store screens for display:
in individual disk files, in menory, and in a formlibrary. This involves the
smr_, smd_, and sm|l_ fanmlies of functions respectively. The first nethod is
the nost flexible, since the screen editor operates only on disk files; it is
clearly best in the early devel opment stages of an application. Formlibraries
are useful to reduce the clutter of a |large nunmber of screen files, and also to
reduce the overhead of file system access, once an application is in production
Mermory-resident forns are still faster to bring up, although they consune extra
menory.

The nost flexible way is to conbine all three, using the nmenory-resident form
list and SMFLIBS setup variable. The smr_ famly of functions can be used to
di splay disk-, library-, or nmenory-resident screens; if a screen needs
alteration, you can sinply renove it fromthe list or library and the altered
di sk copy will be used. The JAMrun-time systemuses the smr_ famly, so al
three options are open to you

Fiel d names and nunbers. It is normally best to refer to fields by nanme rather
than by nunber. The reason is that any addition, deletion, or shuffling of
fields on the screen alters their nunbering, with unpredictable consequences for
prograns that use hard-coded field nunbers

There are neverthel ess certain situations where it makes sense to use field
nunmbers. A conmon one is where a group of fields bear some relation to one
another, so that their ordering will not change; in this case, the number of the
first field can be obtained fromits nane and the rest processed in a | oop on
the field nunber. Such a loop is much nore conveni ent than processing a group of
fields by nane. Attached functions are another exanple; they are passed the
field nunber as a paraneter, and it nmakes sense to use it for direct access to
that field, or to offset it for access to related fields.

A further consideration for JAM applications is that unnamed fiel ds cannot
appear in the LDB or data dictionary.

Data retrieval. There are three sets of routines for retrieving data from a
field: smfptr, smpkptr, and smgetfield. The first two share a limtation
they store their results in a small ring of buffers which are overwitten after
a few subsequent calls to those routines using the buffers. |If you pass a
returned pointer to a subroutine, bugs may devel op; such data must be processed
Il ocally and soon. For nore durable values use smgetfield.

Menus. You can use sm menu_proc or smchoice; the latter returns you the whole
text of the selected menu item the former only the first character. If you can
desi gn your menus so that each entry is unique in the first character (perhaps
by preceding the entries with |abels), smnmenu_proc is easier to use.
smnp_string can be used to nake sm nmenu_proc cooperate with nmenus whose entries
are not unique in the first character, but then additional processing is
required after the function returns.

If your nenu is too big to fit on the screen and you want to use scrolling, or
if you need to process the whole menu entry, smchoice is preferable; it wll
search the whole scrolling buffer for a match. smnmenu_proc will only search the
entries that appear on the screen, although it will allow you to scroll through
entries with the PAGE UP and PAGE DOMN keys.

Finally, if you wish to recognize function keys as well as nenu picks, use
smnenu_proc; it will return the value of the function key struck, which

sm choice cannot, since its return value is the text of the field. The JAM
run-time system uses sm.nmenu_proc for nenus with contol fields, and sm choice
for item sel ection screens.

3 Library Functions by Name

An al phabetical list of JAMIlibrary functions follows. For each, you will find
several items:

A synopsis simlar to a C function declaration, giving the types of the
argunments and return val ue.

A detailed description of the function's argunents, prerequisites,
results, and side effects.

The function's return values, if it has any, and their meanings.

A list of variants and functions that performrelated actions, if there
are any.

One or two brief coding exanples illustrating the function's use. These
exanpl es have no gl obal framework; where reference is made to externa
functions or variables, their purpose is supposed to be apparent from
their names, and no nore need be read into them

Modul es calling JAM library routines should normally include sndefs.h . Those
testing key values returned by sm openkeybd, sm nenu_proc, or sm getkey should
i ncl ude snkeys.h . Include files necessary for specific functions are shown in
t he synopsis.

sm lclear_array - clear all data froman array
SYNOPSI S

int smlclear_array (field_numnber)
int field_number;

DESCRI PTI ON
Clears the onscreen and offscreen data of a scrollable array or field. The
buffers that held the offscreen data are not freed, but are blanked. Clears the
onscreen data of a non-scrollable array or field. This function clears an array
even if it is protected fromclearing (CPROTECT). Unlike smclear_array, it does
not clear parallel scrolling arrays.
RETURNS

-1 if the field was not found; 0 otherw se.

VARI ANTS AND RELATED FUNCTI ONS

smn_I1clear_array (field_nane);
smclear_array (field_nunber);
sm protect (field_nunber);
sm aprotect (field_nunber);

EXAMPLE

/* Clear the totals colum of a screen when the field-erase
* key is pressed. */

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

int key;
smroute_tabl e[FERA] | = RETURN

i f (key == FERA)
smn_I1clear_array ("totals");

sm lprotect - selectively protect a field
SYNOPSI S
#i ncl ude "sndefs. h"

int smlprotect (field_nunber, nask)
int field_nunber;
i nt mask;

DESCRI PTI ON

sm lprotect sets the protection bits to protect the specified field from any
conmbi nati on of data entry, tabbing into, clearing, or validation. Menonics for
mask are defined in sndefs.h , and are listed below. Miltiple sets can be done
by oring mmenoni cs together

Mhenoni ¢ Meani ng

EPROTECT protect fromdata entry

TPROTECT protect fromtabbing into (or from
entering via any other key)

CPROTECT protect fromclearing

VPROTECT protect from validation routines

As an exanpl e of combined protections, it is often useful to protect a field
fromdata entry while still allowing the cursor to enter it (tabbing into). This
is suitable for fields in which one selects an itemfroma circular scroll 1list,
or froman item sel ection screen

sm lunprotect clears protection bits. smprotect and its variants set al
protect bits. smaprotect sets protection bits for all the fields in an array.

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS
smn_Ilprotect (field_name, mask);
sme_ lprotect (field_nane, elenment, mask);
sm lunprotect (field_nunber);
sm aprotect (field_nunber);
sm protect (field_nunber);
EXAMPLE
#i ncl ude "sndefs. h"

/* Protect field nunmber 5 fromdata entry and cl eari ng,
* while still allowing the cursor to enter it. */

sm lprotect (5, EPROTECT | CPROTECT);

sm lunprotect - unprotect a field
SYNOPSI S

#i ncl ude "sndefs. h"

int smlunprotect (field_nunmber, mask)

int field_nunber;

i nt mask;

DESCRI PTI ON

sm lunprotect clears protection bits to unprotect the specified field from sone
conmbi nati on of data entry, tabbing into, clearing, or validation.

Whenoni cs for the nask are defined in sndefs.h , and are |isted below. Miltiple
sets can be done by oring the mmenonics.

Mhenoni ¢ Meani ng

EPROTECT protect fromdata entry

TPROTECT protect fromtabbing into (or from
entering via any other key)

CPROTECT protect fromclearing

VPROTECT protect fromvalidation routines

sm lprotect sets protection bits. smprotect and related functions set al
protect bits. smaprotect sets protection bits for all the fields in an array.

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS
sm n_lunprotect (field_nanme, mask);
sm e_lunprotect (field_nanme, elenent, mask);
sm lprotect (field_nunber);
sm aunprotect (field_nunber);
sm unprotect (field_nunber);
EXAMPLE
#i ncl ude "sndefs. h"

/* Make field nunber 5 available for data entry and clearing. */

sm lunprotect (5, EPROTECT | CPROTECT);

sm achg - change the display attribute attached to a scrolling item
SYNOPSI S

#i ncl ude "sndefs. h"

int smo_achg (field nunber, itemid, disp_attr)

int field_nunber;

int itemid;

int disp_attr;
DESCRI PTI ON

Changes the display attribute attached to a scrollable item If the itemis
onscreen, also changes the attribute with which the itemis currently displayed.
Here is a table of attribute mmenonics.

Col ors Hi ghlights
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VHI TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avai | abl e.

If disp_attr is zero, the scrollable display attribute is removed (set to zero).
If the itemis onscreen, it is displayed with the attribute attached to its
field.

The attribute change this function nmakes is associated with a data itemrather
than a field on a form and overrides the attribute associated with the field
where the itemis displayed (if any). Use smchg_attr to change the display
attribute of a field.

Note: this function has only two variants, smo_achg and sm.i _achg. The ot her
three variants (including smachg itself) do not exist.

RETURNS

-1 if the field isn't found or isn't scrollable, or if itemid is invalid;
0 ot herw se.

VARI ANTS AND RELATED FUNCTI ONS
smo_achg (field_number, item.id, disp_attr);

sm.i_achg (field_name, item.id, disp_attr);
smchg_attr (field_nunber, disp_attr);

EXAMPLE

/* Highlight the data item under the cursor in a scrolling array,
* so that the highlight will nove with the itemrather than
* staying on the field. */

#i ncl ude "sndefs. h"

i nt base;
int occur;

base = sm base_fldno (sm.getcurno ());
occur = smoccurno ();
sm o_achg (base, occur, RED | REVERSE);

smallget - |load screen fromthe LDB
SYNOPSI S

int smallget (respect_flag)
int respect_fl ag;

DESCRI PTI ON

Copies data fromthe |local data block to screen fields with matching names. In
its loop, this function makes use of a data structure set up during screen
display that identifies which fields have LDB entries.

If respect_flag is nonzero, this function does not wite to fields that already
contain data, or that have their MDT bits set. If the flag is zero, all fields
are initialized. When this function is called by the JAMrun-time system or by
your screen entry function, it does not set MDT bits for the fields it
initializes.

This function is simlar to the Release 3 function Idb_nmerge. and is called
automatically by the JAM screen-di splay |ogic, unless LDB processi ng has been
turned of f using smdd_able. Application code should not normally need to cal
it.

RETURNS
Al ways zero.
VARI ANTS AND RELATED FUNCTI ONS

smlstore (itemnane, value);
sm dd_able (flag);

EXAMPLE
#i ncl ude "snkeys. h"

/* 1f you open a wi ndow using smr_w ndow, you want naned
fields initialized fromthe LDB, and LDB processing is
off, you will need to call smallget explicitly. You

could use this, e.g., to make the LDB read-only during

a certain transaction. */

* F X X X

sm dd_able (0);

if (sm.r_wi ndow ("popup", 5, 24) == 0)

{
sm all get (0);
whil e (sm openkeybd () !'= EXIT)
{
}

sm cl ose_w ndow ();

smam _format - wite data to a field, applying currency editing
SYNOPSI S

int smam _format (field_nunber, buffer)
int field_number;
char *buffer;

DESCRI PTI ON

If the specified field has an anpunt edit, it is applied to the data in buffer
If the resulting string is too long for the field, an error nessage is

di spl ayed. Otherwise, smputfield is called to wite the edited string to
specified field.

If the field has no anobunt edit, smputfield is called with the unedited string.
RETURNS

-1 if the field is not found or the itemID is out of range; -2 if the
edited string will not fit in the field; O otherw se.

VARI ANTS AND RELATED FUNCTI ONS

sme _am format (field_name, elenent, buffer);
smi_am _ format (field_nanme, occurrence, buffer);
smn_am _format (field_nanme, buffer);

smo_am _format (field_nunmber, occurrence, buffer);
smstrip_am _ptr (field_nunber, text);

smdtofield (field_numnmber, real _val ue);

EXAMPLE
#i ncl ude "sndefs. h"

/* Wite a list of real numbers to the screen. The first
* and last fields in the list are tagged with speci al nanes.
* Actually, smdtofield () would be nmore convenient.
*/
int k, first, last;
char buf[256];
doubl e val ues[];
/* set up el sewhere... */

last = smn_fldno ("last");

first = smn_fldno ("first");

for (k = first; k & k <= last; ++k)

{
sprintf (buf, "9f", values[k - first]);
smam _format (k, buf);

sm aprotect - protect an array
SYNOPSI S
#i ncl ude "sndefs. h"

int smaprotect (field_nunber, nask)
int field_nunber;
i nt mask;

DESCRI PTI ON

sm aprotect sets protection bits for every field in the array containing
field_nunber. The fields are then protected from some conbi nati on of data entry,
tabbing into, clearing, or validation, according to mask. If the field is
scrolling, all offscreen itens are protected as well.

Mhenonics for mask are defined in sndefs.h , and are listed below. Miltiple sets
can be done by oring the menonics.

Mhenoni ¢ Meani ng

EPROTECT protect fromdata entry

TPROTECT protect fromtabbing into (or from
entering via any other key)

CPROTECT protect fromclearing

VPROTECT protect fromvalidation routines

sm aunprotect clears protection for an array. smprotect and variants set al
protect bits for a single field. smlprotect sets protection bits for a single
field; such changes will supersede the array protection for onscreen el ements,
but the array protection will remain in effect for offscreen itens.

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS
sm n_aprotect (field_name, mask);
sm aunprotect (fiel d_nunber, mask);
sm lprotect(field _nunber, nask);
sm protect(field_nunber, mask);
EXAMPLE
#i ncl ude "sndefs. h"

/* Postpone cal cul ati ons by protecting the totals colum from
* validation; this will prevent execution of its math edit. */

smn_aprotect ("subtotals", VPROTECT);

smascroll - scroll to a given occurrence
SYNOPSI S

int smascroll (field_nunmber, occurrence)
int field_number;
i nt occurrence;

DESCRI PTI ON

This function scrolls the designated field so that the indicated occurrence
appears there. The field need not be the first element of a scrolling array; you
could use this function, for instance, to place the nineteenth itemin the third
onscreen elenent of a five-elenent scrolling array.

The validity of certain conbinations of paraneters depends on the exact nature
of the field. For instance, if field nunber 7 is the third element of a
scrolling array, the cal

sm ascroll (7, 1);

will fail on a regular scrolling array but succeed if scrolling is circular.
Parallel arrays or fields will, of course, scroll along with the target array or
field.
RETURNS

-1 if field or occurrence specification is invalid, O otherw se.

VARI ANTS AND RELATED FUNCTI ONS
int smn_ascroll (field_name, occurrence);
int smrscroll (field_nunber, count);
int smt_scroll (field _nunber);

EXAVPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Scroll the "records"” array (and those parallel to it)
* to the line indicated in another field on the screen. */

#define GOTO_LI NE PF4

if (sm.openkeybd () == GOTO_LI NE)
{

}

smn_ascroll ("records”, smn_intval ("line");

sm aunprotect - unprotect an array
SYNOPSI S
#i ncl ude "sndefs. h"

int smaunprotect (field_nunmber, mask)
int field_nunber;
i nt mask;

DESCRI PTI ON

sm aunprotect clears protection bits for every field in the array containing
field_nunber, and for scrolling itens if the array is scrolling. The fields are
then unprotected from some conbi nati on of data entry, tabbing into, clearing, or
val i dati on, according to mask

Mhenonics for mask are defined in sndefs.h , and are listed below. Miltiple sets
can be done by oring the menonics.

Mhenoni ¢ Meani ng

EPROTECT protect fromdata entry

TPROTECT protect fromtabbing into (or from
entering via any other key)

CPROTECT protect fromclearing

VPROTECT protect fromvalidation routines

sm aprotect sets protection bits. smprotect and related functions set al
protect bits for a single field. smlprotect sets protection bits for a single
field; such changes will supersede the array protection for onscreen el ements,
but the array protection will remain in effect for offscreen itens.

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS
sm n_aunprotect (field_name, mask);
sm aprotect (field_nunber);
sm lunprotect(field nunber);
sm unprotect(field_nunber);
EXAMPLE
#i ncl ude "sndefs. h"

/* open all fields in array nunmber 14 to data entry and clearing */

sm aunprotect (14, EPROTECT | CPROTECT);

sm backtab - backtab to the previous start of an unprotected field
SYNOPSI S

void sm backtab ();
DESCRI PTI ON

If the cursor is in an unprotected field, but not in the first enterable
position, it is nmoved to the first enterable position of that field. Oherw se,
it is moved to the first enterable position of the previous unprotected field.
If the cursor is in the first position of the first unprotected field on the
form or before the first unprotected field on the form it waps backward into
the I ast unprotected field. If there are no unprotected fields, the cursor
doesn't nove.

If the destination field is shiftable, it is reset according to its
justification. Note that the first enterable position depends on the
justification of the field and, in digits-only fields, on the presence of
punctuati on.

The previous field here neans the field with the next | ower nunber; field
nunbers increase fromleft to right within a display line, and fromtop to
bottom This function disregards next field edits.

EXAMPLE
#i ncl ude "snkeys. h"

/* Back the cursor up if the user strikes a key indicating
* s/ he has made a particul ar m stake. */
int key;

do {
key = sm openkeybd ();
if (key == PF5)
{
smaquiet_err ("OK start over");
sm backtab ();

}
} while (key !'= EXIT & key !'= XM T);

sm base _fldno - get the field nunber of the first element of an array
SYNOPSI S

int smbase_fldno (field_numnber)
int field_number;

DESCRI PTI ON

If the field specified by field_nunmber is an array elenent, this function
returns the field number of the first element (base) of the array.

If the field is not an array elenent, it returns field_nunber.
RETURNS

The field nunber of the base elenent of the array containing the specified
field, or O if the field nunber is out of range.

VARI ANTS AND RELATED FUNCTI ONS

EXAMPLE

#i ncl ude "sndefs. h"

/* Highlight the data itemunder the cursor in a scrolling array,
* so that the highlight will nove with the itemrather than

* staying on the field. */

i nt base;
int occur;

base = sm base_fldno (sm.getcurno ());
occur = sm.occur_no ();

sm o_achg (base, occur, RED | REVERSE);
sm gofield (base);

sm bel - beep!
SYNOPSI S
void smbel ()
DESCRI PTI ON
Causes the termnal to beep, ordinarily by transmitting the ASCII BEL code to
it. If there is a BELL entry in the video file, smbel will transnt that

i nstead, usually causing the ternminal to flash instead of beeping.

Even if there is no BELL entry, use this function instead of sending a BEL,
because certain displays use BEL as a graphics character

Including a ¥B at the beginning of a message di splayed on the status line will
cause this function to be call ed.

EXAMPLE
#i ncl ude "snkeys. h"

/* Beep at unwanted function keys. */

int key;
switch (key = sm openkeybd ())
{
case PF1:
save_sonet hing ();
break;
case PF2:
di scard_somet hing ();
br eak;
defaul t:
sm bel ();
br eak;

smbitop - mani pulate validation and data editing bits
SYNOPSI S

#i ncl ude "snbitops. h"

int smbitop(field_nunmber, action, bit)

int field_nunber;

int action;

int bit;
DESCRI PTI ON

You can use this function to inspect and nodify validation and data editing bits
of screen fields, without reference to internal data structures. The first
paraneter identifies the field to be operated upon.

Action can include a test and at nobst one manipulation, fromthe follow ng table
of menoni cs:

Mhenoni ¢ Meani ng

BIT _CLR Turn bit off BIT_SET
Turn bit on BIT_TOGL
Flip state of bit BIT_TST
Report state of bit

The third paraneter is a bit identifier, drawn fromthe follow ng table:

Character edits

N _ALL N DA T N_YES NO
N_ALPHA N _NUMERI C
N_ALPHNUM N_FCMASK

Field edits

N_RTJUST N_REQD N _VALI DED

N_MDT N_CLRI NP
N_MENU N_UPPER

N_LOAER N_RETENTRY

N_FI LLED N_NOTAB

N_WRAP N_EPROTECT
N_TPROTECT N_CPROTECT
N_VPROTECT N_ALLPROTECT
N_ADDLEDS

The character edits are not, strictly speaking, bits; you cannot toggle them
but the other functions work as you woul d expect. N_ALLPROTECT is a speci al
val ue neaning all four protect bits at once.

N_VALI DED and N_MDT are the only bit operations that can apply offscreen. All
other bit operations are attached to fixed onscreen positions.

This function has two variants, sma_bitop and smt_bitop, which performthe
requested bit operation on all elenents of an array. Their synopses appear
below. If you include BIT_TST, these variants return 1 only if bit is set for
every element of the array. The variants smi_bitop and smo_bitop are
restricted to N_VALIDED and N_MDT.

RETURNS

-1 if the field or occurrence cannot be found; -2 if the action or bit
identifiers are invalid; 1 if there was no error, the action included
a test operation, and bit was set; -3 if smi_bitop or smo_bitop
were called with bit set to something other than N_VALIDED or N_MDT
0 otherw se.

VARI ANTS AND RELATED FUNCTI ONS
sme_bitop (array_nane, elenent, action, bit);
sm.i_bitop (array_nane, occurrence, action, bhit);
smn_bitop (field_nane, action, bit);
smo_bitop (field_nunber, occurrence, action, bit);

sma_bitop (array_nane, action, bit);
smt_bitop (array_nunber, action, bit);

EXAMPLE
#i ncl ude "snbitops. h"

/* Check whether a field is valid. If not, place the
* cursor there. */

if (! smn_bitop ("operation”, BIT_TST, N_VALIDED))
{

}

/* Make the array "quantities" required. */

smn_gofield ("operation");

sma_bitop (smn_fldno ("quantities"), BIT_SET, N _REQD);

smc_off - turn the cursor off
SYNOPSI S

void smc_off ();
DESCRI PTI ON

This function notifies JAMthat the nornmal cursor setting is off. The normal
setting is in effect except when a block cursor is in use, as during menu
processing (cursor off); while screen manager functions are witing to the

di splay (cursor off); and within certain error nmessage display functions (cursor
on).

If the display cannot turn its cursor on and off (CON and COF entries are not
defined in the video file), this function will have no effect.

VARI ANTS AND RELATED FUNCTI ONS
smc_on ();
EXAMPLE

smerr_reset("Verify that the cursor is turned ON");
smc_off();

smenmsg("Verify that the cursor is turned OFF");
smc_on();

smenmsg("Verify that the cursor is turned ON');

smc_on - turn the cursor on
SYNCPSI S

void smc_on ();
DESCRI PTI ON

This function notifies JAMthat the normal cursor setting is on. The nornal
setting is in effect except when a block cursor is in use, as during menu
processing (cursor off); while screen manager functions are witing to the

di splay (cursor off); and within certain error nmessage display functions (cursor
on).

If the display cannot turn its cursor on and off (CON and COF entries are not
defined in the video file), this function will have no effect.

VARI ANTS AND RELATED FUNCTI ONS
smc_off ();
EXAMPLE

smerr_reset("Verify that the cursor is turned ON");
smc_off();

smenmsg("Verify that the cursor is turned OFF");
smc_on();

smenmsg("Verify that the cursor is turned ON');

smc_vis - turn cursor position display on or off
SYNOPSI S

void smc_vis (disp)
int disp;

DESCRI PTI ON

If disp is non-zero, subsequent messages di splayed on the status l|ine, including
background status nmessages, will include the cursor's screen position. If the
message woul d overlap the cursor position display, it is truncated. If disp is
zero, subsequent messages displayed on the status line will not include the
cursor's position.

If the CURPCS entry in the video file is not defined, this function will have no
effect; the cursor position will not appear. JAM uses an asynchronous function
and a status line function to performthe cursor position display; if the
application has previously installed either of those, this function will cl obber

it.
VARI ANTS AND RELATED FUNCTI ONS
sm.u_async ();
smu_statfnc ();
sm.install (which_hook, what_func, howmany);
EXAMPLE
#i ncl ude "snkeys. h"
/* Toggle the cursor position display on or off when the
* PF10 key is struck. The first time the key is struck
* it will go on. */

static int cpos_on = 0;

swi tch (sm openkeybd ())
{
ééée PF10:
smc _vis (cpos_on "= 1);

smcalc - performa calculation
SYNOPSI S

int smcalc (field_nunmber, item.id, expression)
int field_number;

int item.id;

char *expression;

DESCRI PTI ON

The field_nunber and item.id paraneters identify the field and itemw th which
the calculation is associated. (If the field is not scrollable, itemid should
be set to zero.) Expression is a calculation, witten as specified in the JAM
Aut hor's Guide. Briefly, a calculation contains an optional precision specifier,
%m n; a destination field identifier; an equal sign; and a nmath expression. The
expressi on uses conventional arithmetic operators and parentheses in infix
notation, with a few special unary operators. It and the destination field
identifier may specify fields by name, absolute nunber, or relative nunber.

If the calculation begins with %the rounding information is extracted.

O herwi se, rounding information is taken fromthe float or double data type
edit, if any, attached to the destination field; or fromthe anount edit, if
any, attached to the destination field. If none of the above are available, the
default rounding to 2 decinmal places is perforned.

If the destination field is a date field, the value of the expression is
formatted as a date. smcalc provides a way of placing arbitrary dates in
fields, through the @ate expression. You should call smcalc with an argunent
in the follow ng form

destination-field = @late (your-date)

where destination-field identifies a field by name or nunber as defined in the
Aut hor's CGuide, and your-date is formatted as MM DD/ YYYY; assuning that the
destination field is a date field, it will be witten out in the proper format.
This is presently the only way of getting an arbitrary date, properly formatted,
into a date field.

If a math error such as divide by zero or wong date format occurs, a nmessage is
presented to the operator, and the function returns -1

RETURNS

-1 is returned if a math error occurred. 0 is returned otherw se.
EXAMPLE
/* Place a fanmpus date in a field. */

smcalc ("dayl = @late(07/04/1776)");

sm cancel - reset the display and exit
SYNOPSI S

void sm cancel ();
DESCRI PTI ON
This routine is installed by sminitcrt to be executed if a keyboard interrupt
occurs. It calls smresetcrt to restore the display to the operating systenm s
default state, and exits to the operating system
If your operating system supports it, you can also install this function to
handl e conditions that normally cause a programto abort. |If a program aborts

wi t hout calling smresetcrt, you may find your terminal in an odd state;
sm cancel can prevent that.

EXAMPLE

/* the follow ng program segnment could be found in some
* error routines */

if (error)

{ _ _
smquiet_err("fatal error -- can't continue!\n");
sm cancel ();

}

/* The follow ng code can be used on a UNI X systemto
* install sm.cancel () as a signal handler. */

#i ncl ude <signal . h>
extern void smcancel ();

signal (SIGTERM sm cancel);

sm ch_ensgatt - change the standard error nessage attributes
SYNOPSI S
#i ncl ude "sndefs. h"

void smch_ensgatt (noisy_ att, quiet_att)
int noisy att, quiet_att;

DESCRI PTI ON

Changes the display attributes used by smerr_reset and smquiet_err. Noisy_att
is used for the message by smerr_reset and for the nessage prefix (normally
"ERROR: ") displayed by smaquiet_err. Quiet_att is used for the nessage body

di spl ayed by sm quiet_err

If either argument is zero, the corresponding display attribute is unchanged. If
an argunent is nonzero but no color is specified, and the display does not
support background color, the color is nade WH TE.

The followi ng display attribute menonics may be used in the argunments to this
function:

Col ors Hi ghli ghts
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VH TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avai l abl e.

If smch_enmsgatt is never called, smerr_reset uses WHI TE with BLINK, and
HILIGHT if it is available. The default attribute for the nessage body displayed
by smquiet_err is just WH TE.

If you define the SMCHEMSGATT variable in your setup file, this function wl
automatically be called with the parameters you provide there.

VARI ANTS AND RELATED FUNCTI ONS
smerr_reset (message);
sm qui et _err (nmessage);
sm er_options (key, discard);
EXAMPLE
#i ncl ude "sndefs. h"

sm ch_emnmsgat t (NORMAL_ATTR, NORMAL_ATTR)
smerr_reset("Verify this nessage is displayed in white.");

sm ch_ensgatt (REVERSE, NORMAL_ATTR)
smerr_reset("Verify this nessage is in reverse video.");

smch_formatts - change the standard JAM library wi ndow attri butes
SYNOPSI S
#i ncl ude "sndefs. h"

void smch _formatts (bord_style, bord_attr,
protect_attr, entry_attr)
int bord_style;
int bord_attr;
int protect_attr;
int entry_attr;

DESCRI PTI ON

Changes the display characteristics of windows that are part of the library.
Currently, there are four such wi ndows: the systemcalls (SPF2) w ndow, the
go-to-screen (SPF3) wi ndow, the error w ndow, used to display a nessage too |ong
to fit on the status line; and the hit space w ndow, which pops up if you hit
the wong key to acknow edge an error message.

This function is intended to be called once, at the beginning of an application
to set the display characteristics of the library wi ndows to harnonize with the
application's own fornmns.

If bord _style is less than 0, the wi ndows are nade borderless. Otherwise, it is
made the border style number (O through 9), and border_attribute, if nonzero, is
made t he border attribute.

If protect_attr is nonzero, it is used for protected fields that contain

messages. |If entry_attr is nonzero, it is used for the unprotected data entry
fields.

If you define the SMCHFORMATTS variable in your setup file, this function wll
automatically be called with the parameters you provide there.

EXAMPLE

#i ncl ude "sndefs. h"

/* Gve the library windows a col orless graphics border
(conventionally style 1), with yell ow nmessage fields and

* green data entry field. */

smch formatts (1, NORVAL_ATTR, YELLOW GREEN);

sm ch_qgnsgatt - change the standard query nessage attribute
SYNOPSI S
#i ncl ude "sndefs. h"

void smch_qgnsgatt (disp_attr)
int disp_attr;

DESCRI PTI ON

Changes the display attribute used by smquery_nsg. |If no color is specified,
is set to WHI TE

The argunent disp_attr is the |ogical sum of one or nore of the follow ng:

Col ors Hi ghlights
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VHI TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avai l abl e.

If smch_qgnsgatt is never called, smaquery_nsg uses WH TE and REVERSE, with
HILIGHT if it is available.

If you define the SMCHQMSGATT variable in your setup file, this function will
automatically be called with the paranmeters you provide there.

VARI ANTS AND RELATED FUNCTI ONS
sm query_nsg (question);

EXAMPLE

#i ncl ude "sndefs. h"

sm ch_gnsgat t (NORVAL_ATTR)
sm query_msg("Verify that this nmessage is displayed in white.");

sm ch_qgnsgatt (GREEN) ;
smquery _nsg("Verify that this message is displayed in green.");

it

smch_stextatt - change the status text display attribute
SYNOPSI S
#i ncl ude "sndefs. h"

void smch_stextatt (disp_attr)
int disp_attr;

DESCRI PTI ON

Changes the display attribute used for displaying status text associated with a
field. If no color is specified, it is set to WH TE.

The argunent disp_attr is the |ogical sum of one or nore of the follow ng:

Col ors Hi ghlights
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VHI TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avai l abl e.

If smch_stextatt is never called, the display attribute used for the status
text associated with a field is nornmal intensity WH TE.

If you define the SMCHSTEXTATT variable in your setup file, this function wll
automatically be called with the paranmeters you provide there.

EXAMPLE
#i ncl ude "sndefs. h"
/* Change the default status text attribute to bright green. */

smch_stextatt (GREEN | HI LI GHT);

smchg_attr - change the display attribute of a field
SYNOPSI S
#i ncl ude "sndefs. h"

void smchg_attr (field_nunber, disp_attr)
int field_nunber, disp_attr;

DESCRI PTI ON

Changes the display attribute of a field. If the field is scrolling, each data
itemmy also have a display attribute, which will override the field display
attribute when the itemarrives onscreen; use smachg to change scrolling
attributes.

Disp_attr is the logical sumof one or nore of the following. If no color is
specified, and BLACK is not a valid color, smchg_attr will automatically
i ncl ude the col or WHI TE.

Col ors Hi ghlights
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VWH TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avail abl e.

VARI ANTS AND RELATED FUNCTI ONS

smn_chg_attr (field_nane, disp_attr);

sme_chg_attr (field_nane, elenment, disp_attr);
smo_chg attr (field_nunber, occurrence, disp_attr);
sm.i_achg (field_nanme, item.id, disp_attr);
smo_achg (field_nunber, itemid, disp_attr);

EXAMPLE
#i ncl ude "sndefs. h"

smchg attr (1, NORVMAL_ATTR)
smerr_reset ("Verify that the text in field 1 is white.");

smchg_attr (1, BLANK);
smerr_reset ("Verify that the text in field 1 is invisible.");

sm choice - get item selection
SYNOPSI S
#i ncl ude "sndefs. h"

char *sm choice (type)
int type;

DESCRI PTI ON

This is a nenu-handling function, simlar in some respects to smnmenu_proc. |t
enabl es you to tab, backtab, arrow and scroll through a screen, in order to

sel ect the contents of one of the fields or scrolling items. The entry at which
the cursor is positioned is shown in reverse video; fields that are blank in
their first position, and those without a MENU field edit, will be skipped.

Hitting a key that matches the first character of a screen entry causes the
cursor to be positioned there; if nore than one entry begins with that

character, the cursor is positioned to the first entry following its current

| ocation. Entries are searched by field nunber. Arrays and scrolls, however, are
searched in their entirety following their first field, and scrolling occurs
automatically. If type is UPPER (or LOWNER), an al phabetic key is translated to
upper (or lower) case before a match is attenmpted; if it is UPPER | LOAER, both
are tried; and if type has any other value, the entry is not translated.

smchoice returns to the calling programonly when you hit the TRANSMT or EXIT
key. It ignores menu return codes attached to fields; the returned value is the
result of a call to smfptr.

The functions smnp_options and smnp_string, which control the behavior of
sm nmenu_proc, do not affect sm choice.

Menu control strings are not executed within this function, but at a higher
| evel of the JAMrun-time system If you call this function, do not expect your
selection's control string to be executed.

RETURNS

The contents of the selected field if TRANSMT was hit, or O if EXIT was
hit.

VARI ANTS AND RELATED FUNCTI ONS

sm nenu_proc (type);
smfptr (field_numnber);

EXAMPLE

#i ncl ude "sndefs. h"
#defi ne WHI VWHI TE | HI LI GHT
#defi ne NOT_UL ~(UPPER| LOVER)

#define INS1 "Move cursor to 2nd field and press TRANSM T"
#define INS5 "Press 'c' and TRANSM T"

/* Move the cursor to the second field
* and press the TRANSM T key. Verify that a pointer
* to the text of the second field is returned. */

smd_msg_line(INS1, WH);
if (strcrmp("bcdefgh", smchoice(NOT_UL)))
smerr_reset ("Bad choice");

/* Press the first letter of the first item of
* the third field ("c" or "C') and verify that the
* cursor is located correctly. */

smd_nsg_|ine(I NS5 WH);
if (strcnp("CDE", smchoi ce(UPPER)))
smerr_reset ("Bad choice");

smcl _all_nmdts - clear all MT bits
SYNOPSI S
void smcl_all _nmdts ();
DESCRI PTI ON
Clears the MDT (nodified data tag) of every data item both onscreen and off.
JAM sets the MDT bit of an occurrence to indicate that it has been nodified,
ei ther by keyboard entry or by a call to a function like smputfield, since the
screen was first displayed.
VARI ANTS AND RELATED FUNCTI ONS
smndt_clear (field _nunber);
sm nod_test (field_nunber);
smtst_all_nmdts (field_number, occurrence);
EXAMPLE
#i ncl ude "sndefs. h"
/* Clear MDT for all fields on the form then wite
* data to the last field, and check that its MT is
* the first one set. */
i nt occurrence;
smcl _all _mts();
smputfield (smnunflds, "Hello");

if (smtst_all_mdts (&occurrence) != smnunfl ds)
smerr_reset ("Sonething is rotten in the state of Denmark.")

smcl _everyfield - clear all fields, protected or not
SYNOPSI S

void smcl_everyfield ();
DESCRI PTI ON

Erases all fields on the current screen, including protected fields and
of fscreen data. Date and tinme fields that take systemvalues are re-initialized.

VARI ANTS AND RELATED FUNCTI ONS
smcl _unprot ();
EXAMPLE
/* The follow ng code effectively binds smcl_everyfield
* to the CLEAR ALL key, instead of smcl_unprot (the

* normal binding). */

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

int key;

/* Make the CLEAR ALL key returnable and NOT executable. */
smroute_tabl e[CLR] = RETURN

while ((key = smopenkeybd ()) !'= EXIT)

if (key == CLR

{
smecl _everyfield ();
conti nue;

smcl _unprot - clear all unprotected fields
SYNOPSI S
void smcl _unprot ();
DESCRI PTI ON
Erases onscreen and offscreen data fromall fields that are not protected from
clearing (CPROTECT). Date and time fields that take system val ues are
re-initialized.
This function is normally bound to the CLEAR ALL key.
VARI ANTS AND RELATED FUNCTI ONS

smcl _everyfield ();
sm lprotect (field_nunber);

EXAVMPLE

/* The follow ng code clears all unprotected fields and puts
* the cursor into the first one. */

smcl _unprot ();
sm honme ();

smclear_array - erase all data froman array
SYNOPSI S

int smclear_array (field_nunber)
int field_number;

DESCRI PTI ON
Cl ears onscreen and offscreen data of the specified array or field. If there are
scrollable arrays or fields parallel to the one specified, they are also

cl ear ed.

The array indicated by the argunent will be cleared regardl ess of protection
the protection of parallel scrolling arrays will, however, be respected.

The buffers that held the offscreen data are freed and are no | onger accessible.
RETURNS

-1 if the field is not found; -2 if menory allocation fails; 0 otherw se.
VARI ANTS AND RELATED FUNCTI ONS

smn_clear_array (field_nane);

sm lclear _array (field_nunber);

sm aprotect (field_nunber);

EXAVMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Make the ERASE key clear the entire array of "nanes",

* first ensuring that it will be returned to us. */
i nt key;

smroute_tabl e[FERA] | = RETURN;

while ((key = smopenkeybd ()) != EXIT)

if (key == FERA)
smn_clear_array ("nanmes");

sm cl ose_w ndow - cl ose current w ndow
SYNOPSI S

int smclose_w ndow ();
DESCRI PTI ON

The currently open window is erased, and the screen is restored to the state
before the wi ndow was opened. All data fromthe w ndow being closed is |ost

unl ess LDB processing is active, in which case nanmed fields are copied to the
LDB using smlstore. Since wi ndows are stacked, the effect of closing a w ndow
is toreturn to the previous wi ndow. The cursor reappears at the position it had
before the w ndow was opened.

JAM provides the control string mechani smfor opening, closing, and keeping
track of wi ndows. If your code calls this function instead of executing a w ndow
control string, certain features of the JAMrun-time systemw |l not work as
expected, particularly the EXIT key.

RETURNS
-l is returned if there is no window open, i.e. if the currently displayed
screen is a form(or if there is no screen up). 0 is returned
ot herw se.

VARI ANTS AND RELATED FUNCTI ONS

smr_w ndow (screen_nane, |ine, colum);
sm d_w ndow (address, line, colum);
sm!|_w ndow (library_descriptor, screen_name, line, colum);

smwsel ect (w ndow_num ;

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* In a validation routine, if the field contains a
* special value, open up a window to pronpt for a
* second value and save it in another field. */

int validate (field, data, occur, bits)
char *dat a;

{
char buf[256];

if (bits & VALI DED)
return O;

if (strcnp(data, "other") == 0)

smr_at_cur ("getsecval");

if (sm.openkeybd () !'= EXIT)
smgetfield (buf, 1);

el se buf[0] = O;

sm cl ose_wi ndow ();

smn_putfield ("secval”, buf);

}

return O;

smd_at_cur - display a nenory-resident w ndow at the current cursor
position

SYNOPSI S

int smd_at_cur (nr_screen)
char *nr _screen;

DESCRI PTI ON

Di spl ays a nmenory-resident wi ndow at the current cursor position, offset by one
line to avoid hiding that line's current display. M _screen is the address of
the screen in nenory.

VWhat ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nmobst window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the top nost,
or current, wi ndow. (See smwselect for a way to shuffle w ndows.)

If the window will not fit on the display at the location you request, JAM w ||
adjust its starting position. If the wi ndow woul d hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow i s sinply noved up; but if your starting position is in the bottom half
of the screen, the |lower left hand corner of the windowis placed there. Simlar
adj ustments are made in the horizontal direction.

If, after adjustnment, the wi ndow contains display data that won't fit on the
display, it is brought up anyway, wi thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

You can use JYACC bin2c to convert screens fromdisk files, which you can nodify
using jxform to programdata structures you can conpile into your application
A nmenory-resident screen is never altered at run-tinme, and nmay therefore be nmade
shareabl e on systenms that provide for sharing read-only data. smr_at_cur can

al so display menory-resident screens, if they are properly installed using
smformist. Menory-resident screens are particularly useful in applications
that have a linited nunber of screens, or in environments that have a sl ow disk
(e.g. Ms-DOS).

JAM provi des the control string nechani smfor opening, closing, and keeping
track of windows. If your code calls this function instead of executing a w ndow
control string, certain features of the JAMrun-tinme systemw |l not work as
expected, particularly the EXIT key.

RETURNS

Ois returned if no error occurred during display of the form -3 is
returned if no nenory was available; -7 is returned if the screen
contained fields that would not fit within the physical display. The
screen is always restored to its previous condition

VARI ANTS AND RELATED FUNCTI ONS
smd_form (nr_screen);

sm d_w ndow (nr_screen, line, colum);
smr_at_cur (nane);

EXAMPLE

/* Display a warning nessage in a nenory-resident w ndow,
* and wait for acknow edgenment before continuing.
* The warning should include the instruction
* "Press any key to continue." */

extern char warning[];

if (over _threshold ()) /* Externally defined condition */
{

smd_at _cur (warning);

sm get key ();

sm cl ose_w ndow ();

smd form- display a nenory-resident form
SYNOPSI S

int smd_form (nr_screen)
char *nr _screen;

DESCRI PTI ON

This function displays a nenory-resident screen as a base form M _screen is the
address of the screen.

Bringing up a screen as a form causes the previously displayed form and w ndows
to be discarded, and their nenory freed. The new screen is displayed with its
upper left-hand corner at the extreme upper left of the display (position (O,
0)). Any error in this function | eaves the display and JAMinternals in an
undefined state.

If the formcontains display data that are too big for the physical display,
they are truncated wi thout warning. However, if there are fields that won't fit
within the physical display, this function returns an error w thout displaying
the form

You can use JYACC bin2c to convert screens fromdisk files, which you can nodify
using jxform to programdata structures you can conpile into your application
A nmenory-resident screen is never altered at run-tinme, and may therefore be made
shareabl e on systens that provide for sharing read-only data. smr_at_cur can

al so display nmenory-resident screens, if they are properly installed using
smformist. Menory-resident screens are particularly useful in applications
that have a linited nunber of screens, or in environments that have a sl ow disk
(e.g. Ms-DOS).

This function should be called by JAM applications only under unusua
circunstances, as it does not update the control stack. You should execute a
control string to display the formi nstead.

RETURNS

Ois returned if no error occurred during display of the screen. -5 is
returned if, after the screen was cleared, the systemran out of
menmory. -7 is returned if the screen contained fields that would not
fit within the display.

VARI ANTS AND RELATED FUNCTI ONS

sm d_w ndow (nr_screen, line, colum)
smd_at_cur (nr_screen)

smr_form (screen_nane)

sml _form (library_descriptor, screen_nane)

EXAMPLE

/* Display a nenory-resident formto provide a
* bl ank background for what follows. */

extern char blank[];

if (smd_form (blank) < 0)

{
smerr_reset ("Error in formdisplay - goodbye!");
sm cancel ();

smd _nsg line - display a nessage on the status line
SYNOPSI S
#i ncl ude "sndefs. h"

void smd_nmsg |ine (nessage, attrib)
char *message;
int attrib;

DESCRI PTI ON

The nessage in nessage is displayed on the status line, with an initial display
attribute of attrib. This message overrides background status text and field
status text; it will itself be overwitten by smerr_reset and rel ated
functions, or by the ready/wait nessage enabl ed by sm set stat us.

Several percent escapes provide control over the content and presentation of
status nessages. They are interpreted by smd_nsg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character followi ng the percent sign nmust be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%N for instance; see below) nust appear at the

begi nning of the nmessage, i.e. before anything except perhaps another percent
escape.

If a string of the form %Annnn appears anywhere in the nmessage, the
hexadeci mal number nnnn is interpreted as a display attribute to be
applied to the remai nder of the nmessage. The table bel ow gives the
numeric values of the logical display attributes you will need to
construct enbedded attributes. If you want a digit to appear

i mredi ately after the attribute change, pad the attribute to 4 digits
with | eading zeroes; if the follow ng character is not a | egal hex
digit, | eading zeroes are unnecessary.

If a string of the form %KEYNAVE appears anywhere in the nessage,
KEYNAME is interpreted as a |ogical key mmenonic, and the whol e
expression is replaced with the key label string defined for that key
in the key translation file. If there is no label, the % is stripped
out and the mmenonic remains. Key menonics are defined in snkeys.h ;
it is of course the nane, not the number, that you want here. The
menoni ¢ nmust be in upper-case.

I f 9N appears anywhere in the message, the latter will be presented in
a pop-up w ndow rather than on the status line, and all occurrences of
ON will be replaced by new i nes.

If the message begins with a Y8, JAMwi |l beep the termnal (using
sm bel) before issuing the nmessage.

If the message begins with %N it will be presented in a pop-up w ndow
i nstead of on the status line. The wi ndow will appear near the bottom
center of the screen, unless it would obscure the current field by so
doing; in that case, it will appear near the top. |If the nmessage
begins with %vJ or %D, and is passed to one of the error message

di splay functions, JAMw || ignore the default error nessage

acknowl edgenment flag and process (for 9%WJ) or discard (for %WD) the
next character typed.

Note that, if a message containing percent escapes - that is, %A B, % %N or
%N - is displayed before sminitcrt or after %Vis called, the percent escapes
will showup init.
Attribute Hex val ue

BLACK BLUE
GREEN
CYAN
RED
MAGENTA

YELLOW
VH TE

~N~NOoO OOk~ WNELO

B_BLACK 0 B _BLUE
100 B_GREEN
200 B_CYAN
300 B_RED
400 B_MAGENTA
500 B_YELLOW
600 B_WHI TE
700

BLANK 8 REVERSE
10 UNDERLN
20 BLI NK
40 HI LI GHT
80 DIM
1000

If the cursor position display has been turned on (see smc_vis), the end of the
status line will contain the cursor's current row and colum. If the nmessage
text would overlap that area of the status line, it will be displayed in a
wi ndow i nst ead.
VARI ANTS AND RELATED FUNCTI ONS

smerr_reset (message);

sm nsg (message, start_colum);

sm mm ndow (text, line, colum);
EXAMPLE

/* The follow ng pronpt uses |abels for the EXIT and
* return keys, and underlines crucial words. */

smd nsg line ("Press WKEXIT to %A0027abort %A7, or %KNL to %A0027conti nue%A7.");
/* To clear the nessage |line, use: */

smd _nmsg _line ("", 0);

smd_w ndow - display a nenory-resident wi ndow at a stated position

SYNOPSI S

int smd w ndow (nr_screen, |ine, colunmm)
char *nr _screen;
int line, colum;

DESCRI PTI ON

The nmenory-resident screen whose address is in nr_screen is brought up with its
upper left-hand corner at (line, colum). The line and columm are counted from
zero: if lineis 1, the screen is displayed starting at the second line of the
screen. Note that the wi ndow coordi nates you place in JAMcontrol strings are
counted from 1 as usual

What ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nbst window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the top nost,

or current, wi ndow. (See smwselect for a way to shuffle w ndows.)

If the window will not fit on the display at the |location you request, JAM wil|
adjust its starting position. If the wi ndow would hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow is sinply noved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the windowis placed there. Simlar
adj ustments are nmade in the horizontal direction.

If, after adjustment, the wi ndow contains display data that won't fit on the
display, it is brought up anyway, w thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

You can use JYACC bin2c to convert screens fromdisk files, which you can nodify
using jxform to programdata structures you can conpile into your application
A nmenory-resident screen is never altered at run-tinme, and may therefore be made
shareabl e on systens that provide for sharing read-only data. smr_at_cur can

al so display nenory-resident screens, if they are properly installed using
smformist. Menory-resident screens are particularly useful in applications
that have a linited nunber of screens, or in environments that have a sl ow disk
(e.g. Ms-DOS).

JAM provides the control string mechani smfor opening, closing, and keeping
track of wi ndows. If your code calls this function instead of executing a w ndow
control string, certain features of the JAMrun-time systemw |l not work as
expected, particularly the EXIT key.

RETURNS

O is returned if no error occurred during display of the screen. -5 is
returned if, after the screen was cleared, the systemran out of
menory. -7 is returned if the screen contained fields that would not
fit within the display.

VARI ANTS AND RELATED FUNCTI ONS

smd_at_cur (nr_screen);

smd_form (nr_screen);

smr_w ndow (screen_nane, |line, colum);

sm| _wi ndow (library_descriptor, screen_name, |line, colum);

EXAMPLE

/* Display a warni ng nessage in a nmenory-resident
* wi ndow centered on the screen, and
* wait for acknowl edgenent before continuing. */

extern char warning[];

if (over_threshold ()) /* Externally defined condition */
{

sm d_w ndow (warning, 8, 18);

smerr_reset ("Press any key to continue");

sm cl ose_w ndow ();

sm dblval - get the value of a field as a real nunber
SYNOPSI S
#i ncl ude "sndefs. h"

doubl e sm dblval (field_nunber)
int field_nunber;

DESCRI PTI ON

This function returns the contents of field_nunmber as a real nunber. It calls
smstrip_am _ptr to renove superfluous amount editing characters before
converting the data.

RETURNS

The real value of the field is returned. If the field is not found, the
function returns O.

VARI ANTS AND RELATED FUNCTI ONS
sm e_dblval (field_name, elenment);
sm.i _dblval (field_name, occurence);
sm n_dblval (field_nane);
sm o_dblval (field_nunber, occurrence);
smdtofield (field_nunber, value, formt);
smstrip_am _ptr (field_nunber);

EXAMPLE

#i ncl ude "sndefs. h"

/* Retrieve the value of a starting paranmeter. */

doubl e parant;

paraml = sm n_dbl val ("paraml");

smdd_able - turn LDB write-through on or off
SYNOPSI S

void sm dd_able (flag)
int flag;

DESCRI PTI ON

During normal JAM processing, named fields in the screen and | ocal data bl ock
are kept in sync. When a screen is brought up, values are copied in fromthe
LDB; when control passes fromthe screen, values are copied back to the LDB.

When application code reads or wites a value to or froma name that is not in
the screen, JAM accesses the LDB instead.

smdd_able turns that feature off or on, according to the value of flag. It is
on by default; when it is off, the LDB is never accessed. Refer to Section 9 for
a full explanation.

EXAMPLE

/* Turn LDB write-through off. */

sm dd_able (0);

sm di cname - set data dictionary name
SYNOPSI S

int smdicname (dictionary_namne)
char *dictionary_nane;

DESCRI PTI ON

This function nanes the application's data dictionary, which is data.dic by
default. It must be called before JAMinitialization, in particular before
smldb_init is called to initialize the local data block fromthe data

di ctionary. The argunent dictionary_nane is a character string giving the
filename; JAMwi Il search for it in all the directories in the SMPATH vari abl e
You can achi eve the same effect by defining the SMDI CNAME variable in your setup
file equal to the data dictionary name. See the section on setup files in the
Configuration Guide.

RETURNS

-1 if it fails to allocate nmenory to store the nane, 0 otherw se

EXAMPLE

/* Set the nane of the application's data dictionary to
* [usr/app/ comon.dic .*/

sm di cname ("/usr/app/conmon. dic");

smdisp_off - get displacenent of cursor fromstart of field
SYNOPSI S

int smdisp_off ();
DESCRI PTI ON
Returns the difference between the first colum of the current field and the
current cursor location. This routine ignores offscreen data; use smsh_off to
obtain the total cursor offset of a shiftable field.

RETURNS

The difference between cursor position and start of field, or -1 if the
cursor is not in a field.

VARI ANTS AND RELATED FUNCTI ONS

smsh_off ();
sm getcurno ();

EXAMPLE

/* Retrieve the contents of the current field, up to
* the cursor position, discarding the rest. This

* exanpl e assunes the field is non-shifting and

* left-justified. */

char buf[256];
i nt index;

smagetfield (buf, smgetcurno ());
if ((index = smdisp_off ()) >= 0)
buf[index] = '"\0'

smdlength - get the length of a field' s contents
SYNOPSI S

int smdlength (field_nunber)
int field_number;

DESCRI PTI ON

Returns the length of data stored in field_nunber. The | ength does not include
| eading blanks in right justified fields, or trailing blanks in left-justified
fields (which are also ignored by smgetfield). It does include data that have
been shifted offscreen

RETURNS

Length of field contents, or -1 if the field is not found.
VARI ANTS AND RELATED FUNCTI ONS

sme_dlength (field_nane, elenent);

sm.i _dlength (field_nane, occurrence);

smn_dl ength (field_nane);

smo_dlength (field_nunber, occurrence);

smlength (field_nunber);
EXAMPLE

/* Save the contents of the "rank" field in a buffer
* of the proper size. */

char *save_rank;
if ((save_rank = malloc (smn_dlength ("rank") + 1)) == 0)

punt ("Malloc error");
smn_getfield (save_rank, "rank");

smdo_region - rewite part or all of a screen |line
SYNOPSI S
#i ncl ude "sndefs. h"

void smdo_region (line, colum, length, attribute,
t ext)

int line, colum, length, attribute;

char *text;

DESCRI PTI ON

The screen region defined by line, colum, and length is rewitten. Line and
colum are counted fromzero, with (0, 0) the upper left-hand corner of the
screen. If text is zero, the actual text that is witten is taken fromthe
screen buffer; if text is shorter than length, it is padded out with blanks. In
any case, the display attribute of the whole area is changed to attribute. A
table of attribute mmenonics foll ows.

Col ors Hi ghlights
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VWH TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avail abl e.

The fifth argunent, if passed as zero, nust be cast, as in
smdo_region (line, col, length, attrib, (char *)0);
EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snvi deo. h"

/* Place a centered text string in a part of the screen where
* there is (hopefully) no field. The line nunber is
* made zero-relative. */

void centerstring (text, line)
char *text;
{
int offset, length = strlen (text);
of fset = (*smyvideo[V_COLMS] - length) / 2;
if (offset < 0)
return;

smdo_region (line - 1, offset, length, REVERSE | WH TE, text);

sm doccur - del ete occurrences
SYNOPSI S

int smo_doccur (field_number, occurrence, count);
int field_nunber;

i nt occurrence;

i nt count;

DESCRI PTI ON

Del etes count data items beginning with the specified occurrence, moving al
foll owi ng occurrences up. If there are not enough occurrences, fewer than the
requested nunmber will be deleted. The nenory associated with the del eted data
items is released. If count is negative, occurrences are inserted instead,
subject to limtations explained at sm.ioccur

If occurrence is zero, the occurrence used is that of field_nunber. I|f
occurrence is nonzero, however, it is taken relative to the first field of the
array in which field_nunber occurs.

This function is normally bound to the DELETE LINE key. It has only the o_ and
i _ variants; the others, including smdoccur itself, do not exist.

RETURNS
-1 if the field or occurence number was out of range; -3 if insufficient
menory was avail able; otherw se, the number of occurrences actually
deleted (zero or nore).

VARI ANTS AND RELATED FUNCTI ONS

sm.i _doccur(field_nanme, occurrence, count);
sm.i _ioccur(field nane, occurrence, count);
smo_ioccur(field nunber, occurrence, count);

smdtofield - wite a real number to a field
SYNOPSI S

int smdtofield (field_nunber, value, format)
int field_number;

doubl e val ue;

char *fornmat;

DESCRI PTI ON

The real nunber value is converted to human-readable form according to fornat,
and noved into field_nunmber via a call to smam _format. If the format string is
null, the nunmber of deciml places will be taken froma data type edit, if one
exists; failing that, froma currency edit, if one exists; or failing that, wll
default to 2.

The format string is in the style of the Clibrary function printf, q.v. It
shoul d have the form %n nf, where mis the total output width, n is the nunber
of decimal places, and both are optional.

RETURNS

-l is returned if the field is not found. -2 is returned if the output
woul d be too wide for the destination field. 0 is returned otherw se.

VARI ANTS AND RELATED FUNCTI ONS
sme_dtofield (field_nanme, elenent, value, format);
smi_dtofield (field_name, occurrence, value, format);
smn_dtofield (field_name, value, format);
smo_dtofield (field_number, occurrence, value, format);
sm dbl val (field_nunber)
smant _format (field_nunber, text);

EXAMPLE

/* Place the value of pi on the screen, using the formatting
* attached to the field. */

smn_dtofield ("pi", 3.141596, (char *)O0);
/* Do it again, using only three decinal places.

smn_dtofield ("pi", 3.141596, "9%b.3f");

sm dw options - turn delayed wite on or off
SYNOPSI S
#i ncl ude "sndefs. h"

void smdw options (flag)
int flag;

DESCRI PTI ON

This function turns the delayed-wite feature of the JAMIlibrary on or off. It
is on by default. The value of flag should be either DWON or DW OFF.

When del ayed wite is on, output fromlibrary functions is not sent inmediately
to the display, but is used to update a screen image in nenory. Wen it becones
necessary to update the display (usually when the keyboard is opened), output is
sent to the display a line at a time, and a check is nmade for keyboard input
between each line. If you press a key before the screen has been fully updated,
JAM processes the key before doing any nore output. This scheme nmake JAM nore
responsi ve, especially at |ow baud rates.

You may find it advantageous to turn delayed wite off while debuggi ng an
application, so that you can see the output produced by each function call. In
this case you should also investigate the BUFSIZ video file entry, which
controls the output buffer size; see the video manual in the Configuration

Gui de. When del ayed write is off, the display will still not be flushed unti
the keyboard is opened; however, JAMw Il not check for input while witing to
t he displ ay.

If you define the SVMDWOPTI ONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameter you

specify there.
VARI ANTS AND RELATED FUNCTI ONS
sm get key ();
sm unget key (key);
smflush ();
EXAMPLE
#i ncl ude "sndefs. h"
/* Turn delayed wite off for debugging. */
#i f def DEBUG

sm dw_options (DW OFF);
#endi f

newpage NAME

sm e_lprotect sel ectively protect an array el enment sm e_lunprotect
sel ectively unprotect an array elenment sme_ant _fornat
format data and wite to an array elenent sme_bitop
mani pul ate field edit bits sme_chg attr
change display attribute of an array el ement
sm e_dbl val
get decimal value of array elenent sme_dl ength
get length of data stored in an array el ement
sme_dtofield
wite decimal value to array elenent sme_fldno
* see next page * sme_fptr
get copy of array elenent's data sme_fva
force validation of an array elenment sme_getfield
copy data fromarray element into buffer sme_gofield
position cursor to an array element sme_intva
get integer value of data in an array el ement
sme_is_yes
test array element for yes sme_itofield
wite integer to an array el enment sme_Il ngva
get long integer value of data in an array el enent
sme_ ltofield
write long integer to an array elenment sme_ndt_cl ear
reset the MDT bit of an array element sme_nod_test
test the MDT bit of an array element sm.e_noval bit
reset the validated bit of an array el ement
sme_off_gofield
nmove cursor to specified offset within an array el ement
sm e_protect
protect an array element fromdata entry sme_putfield
write data string to an array el ement sm e_unpr ot ect
allow data entry into an array el enent

DESCRI PTI ON

Each of the above functions accesses one el enment of an array by field nane and
el ement nunber. For the description of sme fldno, see next page. For a
description of any other particular function, |ook under the related function
without e_ in its nane. For exanple, sme_ant format is described under

sm amt _format.

Despite the fact that they take a field nane as argunent, these functions do not
search the LDB for names not found in the screen

sme_fldno - get the field number of an array el enent
SYNOPSI S

int sme fldno (field_name, element)
char *field_nane;
int el enment;

DESCRI PTI ON

Returns the field nunmber of an array el enent specified by field_name and
el ement .

If elenent is zero, returns the field nunber of the nanmed field, or of the base
el ement of the naned array.

RETURNS
Oif the name is not found, if the el ement nunber exceeds 1 and the naned
field is not an array, or if the elenment nunber exceeds the size of
the array. Otherwi se, returns an integer between 1 and the maximm
nunmber of fields on the current form
VARI ANTS AND RELATED FUNCTI ONS
smn_fldno (field _nane);

EXAVPLE

/* Retrieve the field numbers of the first three el ements of the
* "horses" array. */

int winnum placenum shownum
wi nnum = sme_fldno ("horses", 1);

pl acenum = sme_fldno ("horses", 2);
shownum = sme_fldno ("horses", 3);

smedit_ptr - get special edit string
SYNOPSI S

#i ncl ude "sndefs. h"
char *smedit_ptr (field_nunmber, command)
int field_nunber, command;

DESCRI PTI ON

This function searches the special edits area of a field or array for an edit of
type command. The conmmand shoul d be one of the follow ng val ues, which are
defined in sndefs.h

Conmmand Contents of edit string

NANVED Fi el d nane RANGEL
Low bound on range; up to 9 pernmitted RANGEH
Hi gh bound on range; up to 9 permtted NEXTFLD
Next field (contains both prinmary and
alternate fields) DOLLARS
Amount field formatting parameters TEXT
Status line pronpt CPROG
Name of field exit function HELPSCR
Nanme of help screen CALC
Mat h expression executed at field exit DATEFLD
Format string for systemsupplied date TI MEFLD
Format string for systemsupplied time CKDIG T
Fl ag and paranmeters for check digit FTYPE
Data type for inclusion in structure USRDATE
Format string for user-supplied date USRTI ME
Format string for user-supplied tine | TEMSCR
Name of item sel ection screen HARDHLP
Name of autonmatic help screen HARD TM
Name of automatic item selection screen MEMOL
Nine arbitrary user-supplied text strings ...
MEMO9
FE_CPROG
Nane of field entry function EDT_BITS
For internal use: bit string show ng what
other edits are present. Always first. RETCODE
Return value for menu or return entry field JPLTEXT
Attached JPL code, or JPL file nane SUBMENU
Nanme of pull-down nmenu screen CMASK
Regul ar expression for field validati on CCMASK
Regul ar expression for character validation TABLOOK
Nane of screen for table-lookup validation

The string returned by this function has the command code in its second byte,
and the total length of the string (including the two overhead bytes and any
termnators) in its first; the body of the edit follows. If the field has no
edit of type command, this function returns a null string. If a field has
multiple edits of one type, such as RANGEH or RANGEL, the first one is returned;
the rest followit.

This function is especially useful for retrieving user-defined information
contained in MEMO edits.

RETURNS

A pointer to the first (length) byte of the special edit for this field is

returned. Zero is returned if the field or edit is not found.
VARI ANTS AND RELATED FUNCTI ONS
smn_edit_ptr (field_name, command);
EXAMPLE
#i ncl ude "sndefs. h"
/* Useful little function to retrieve the name of a field. */

char *field_nanme (fieldnum
int fieldnum

{
char *nane;
if (fieldnum< 1 || fieldnum > sm nunfl ds)
return O;
if ((name = smedit_ptr (fieldnum NAMED)) == 0)
return O,

return nane + 2;

smensg - display an error nessage and reset the nessage |ine, w thout
turning on the cursor

SYNOPSI S

void sm ensg (nessage)
char *nmessage;

DESCRI PTI ON

This function displays nessage on the status line, if it fits, or in a windowif
it is too long; it remains visible until the operator presses a key. The
function's exact behavior in dismssing the nmessage is subject to the error
message options; see sm.er_options.

smensg is identical to smerr_reset, except that it does not attenpt to turn
the cursor on before displaying the message. It is simlar to smqui_nsg, which
inserts a constant string (normally "ERROR: ") before the nessage. That string
may be altered by changing the SM ERROR entry in the nessage file.

Several percent escapes provide control over the content and presentation of
status nessages. They are interpreted by smd_nsg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character follow ng the percent sign nust be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (9 for instance; see below) mnmust appear at the

begi nni ng of the nessage, i.e. before anything except perhaps another percent
escape.

If a string of the form %Annnn appears anywhere in the nmessage, the
hexadeci mal nunmber nnnn is interpreted as a display attribute to be
applied to the remni nder of the nessage. The tabl e bel ow gives the
nurmeric val ues of the |ogical display attributes you will need to
construct enbedded attributes. If you want a digit to appear

i medi ately after the attribute change, pad the attribute to 4 digits
with leading zeroes; if the follow ng character is not a | egal hex
digit, | eading zeroes are unnecessary.

If a string of the form %KEYNAME appears anywhere in the nessage,
KEYNAME is interpreted as a | ogical key mmenonic, and the whole
expression is replaced with the key | abel string defined for that key
in the key translation file. If there is no label, the % is stripped
out and the menonic renmains. Key menoni cs are defined in snkeys. h
it is of course the name, not the nunber, that you want here. The
menoni ¢ nust be in upper-case.

I f 9N appears anywhere in the nmessage, the latter will be presented in
a pop-up w ndow rather than on the status line, and all occurrences of
%N will be replaced by new ines.

If the message begins with a ¥B, JAMw || beep the term nal (using
sm bel) before issuing the nessage.

If the message begins with %N it will be presented in a pop-up w ndow
i nstead of on the status line. The wi ndow will appear near the bottom
center of the screen, unless it would obscure the current field by so
doing; in that case, it will appear near the top. |If the nmessage
begins with %vJ or %D, and is passed to one of the error nessage

di splay functions, JAMw Il ignore the default error nessage

acknow edgenment flag and process (for 9%W) or discard (for %D) the
next character typed.

Note that, if a message containing percent escapes - that is, %A B, % %N or
%N - is displayed before sminitcrt or after %Vis called, the percent escapes
will showup init.
Attribute Hex val ue

BLACK BLUE
GREEN
CYAN
RED
MAGENTA

YELLOW
VH TE

~N~NOoO OOk~ WNELO

B_BLACK 0 B _BLUE
100 B_GREEN
200 B_CYAN
300 B_RED
400 B_MAGENTA
500 B_YELLOW
600 B_WHI TE
700

BLANK 8 REVERSE
10 UNDERLN
20 BLI NK
40 HI LI GHT
80 DIM
1000

If the cursor position display has been turned on (see smc_vis), the end of the
status line will contain the cursor's current row and colum. If the nmessage
text would overlap that area of the status line, it will be displayed in a

wi ndow i nst ead.

VARI ANTS AND RELATED FUNCTI ONS
sm er_options (key, discard);
smerr_reset (message);
sm qui et _err (message);
sm qui _nsg (nmessage);
EXAMPLE

smensg ("%DYou goofed. Press %A0017any%A7 key to conti nue”

sm er_options - set error nessage options
SYNOPSI S
#i ncl ude "sndefs. h"

void smer_options (acknow edge_key, fl ags)
i nt acknow edge_key;
int flags;

DESCRI PTI ON

This function affects the behavior of the error nessage display functions:
smerr_reset, smensg, smquiet_err, and smqui _nmsg. By default, an error
message remai ns on the display until you acknow edge it by pressing the space
bar; this function changes both the key and the requirenents for error

acknow edgenent .

Fl ags specifies whether the acknow edgenent key is to be discarded, and (if so)
whet her the hit-space windowis to be displayed. The followi ng two pairs of
flags are recogni zed:

ER_DI SCARD Default. Al error nessages nust be acknow edged by the
acknow edge_key, which is then discarded. Any other key
struck before the acknow edgenent key will al so be
di scar ded.

ER_USE_KEY Error nessages may be acknow edged by any key, which is

then treated as ordinary keyboard input; for instance,
an invalid i nput nmessage woul d be acknow edged by the
first character of the corrected input. However, the
keyboard typeahead buffer is flushed, so that anything
you typed before the message was displayed is stil

di scar ded.

ER_YES_W ND Default. If ER DISCARD is in effect and another key is
hit when the acknow edgenment key is expected, a reninder
wi ndow pops up. (The text in the w ndow is obtained
fromthe nmessage file entries SM SP1 and SM SP2.) Both
the rem nder wi ndow and the nessage di sappear when the
acknow edgenent key is struck.

ER_NO_W ND If ER DISCARD is in effect and another key is hit when
t he acknow edgenent key is expected, the term nal beeps.

If neither of one pair is specified, the correspondi ng option remai ns unchanged.
These options will be overridden by a %D or %W string at the beginning of a
nessage.

If you define the SMEROPTIONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.

VARI ANTS AND RELATED FUNCTI ONS

sm ensg (nMessage);
smerr_reset (message);
sm qui et _err (nmessage);
sm qui _nsg (message);

EXAMPLE
#i ncl ude "sndefs. h"
/* Reset error message options to their defaults. */

smer_options (" ", ER_DI SCARD| ER_YES W ND);

smerr_reset - display an error nessage and reset the status |line
SYNOPSI S

void smerr_reset (message)
char *nmessage;

DESCRI PTI ON

The nessage is displayed on the status line until you acknow edge it by pressing
a key. If message is too long to fit on the status line, it is displayed in a

wi ndow i nstead. The exact behavi or of error nessage acknow edgenent is governed
by smer_options. The initial nessage attribute is set by smch_ensgatt, and
defaults to blinking.

This function turns the cursor on before displaying the nessage, and forces off
the global flag smdo _not _display. It is simlar to smensg, which does not turn
on the cursor, and to smaquiet_err, which inserts a constant string (nornmally
"ERROR ") before the nessage.

Several percent escapes provide control over the content and presentation of
status nessages. They are interpreted by smd_nsg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character follow ng the percent sign nust be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (9 for instance; see below) mnmust appear at the

begi nni ng of the nessage, i.e. before anything except perhaps another percent
escape.

If a string of the form %Annnn appears anywhere in the nmessage, the
hexadeci mal nunmber nnnn is interpreted as a display attribute to be
applied to the remni nder of the nessage. The tabl e bel ow gives the
nurmeric val ues of the |ogical display attributes you will need to
construct enbedded attributes. If you want a digit to appear

i medi ately after the attribute change, pad the attribute to 4 digits
with leading zeroes; if the follow ng character is not a | egal hex
digit, | eading zeroes are unnecessary.

If a string of the form %KEYNAME appears anywhere in the nessage,
KEYNAME is interpreted as a | ogical key mmenonic, and the whole
expression is replaced with the key | abel string defined for that key
in the key translation file. If there is no label, the % is stripped
out and the menonic renmains. Key menoni cs are defined in snkeys. h
it is of course the name, not the nunber, that you want here. The
menoni ¢ nust be in upper-case.

I f 9N appears anywhere in the nmessage, the latter will be presented in
a pop-up w ndow rather than on the status line, and all occurrences of
%N will be replaced by new ines.

If the message begins with a ¥B, JAMw || beep the term nal (using
sm bel) before issuing the nessage.

If the message begins with %N it will be presented in a pop-up w ndow
i nstead of on the status line. The wi ndow will appear near the bottom
center of the screen, unless it would obscure the current field by so
doing; in that case, it will appear near the top. |If the nmessage
begins with %vJ or %D, and is passed to one of the error nessage

di splay functions, JAMw Il ignore the default error nessage

acknow edgenment flag and process (for 9%W) or discard (for %D) the
next character typed.

Note that, if a message containing percent escapes - that is, %A B, % %N or
%N - is displayed before sminitcrt or after %Vis called, the percent escapes
will showup init.
Attribute Hex val ue

BLACK BLUE
GREEN
CYAN
RED
MAGENTA

YELLOW
VH TE

~N~NOoO OOk~ WNELO

B_BLACK 0 B _BLUE
100 B_GREEN
200 B_CYAN
300 B_RED
400 B_MAGENTA
500 B_YELLOW
600 B_WHI TE
700

BLANK 8 REVERSE
10 UNDERLN
20 BLI NK
40 HI LI GHT
80 DIM
1000

If the cursor position display has been turned on (see smc_vis), the end of the
status line will contain the cursor's current row and colum. If the nmessage

text would overlap that area of the status line, it will be displayed in a
wi ndow i nst ead.

VARI ANTS AND RELATED FUNCTI ONS
sm er_options (key, discard);
sm enmsg (nessage);
sm qui et _err (message);
sm qui _nsg (nmessage);
EXAMPLE
#i ncl ude "sndefs. h"

/* Let sonmebody know that his name isn't in the database. */

int validate (field, name, occur, bits)
char *nane;

{

char buf[128];

if (getrec (nanme) == 0)
sprintf (buf, "% is not in the database.", name);
smerr_reset (buf);
return -1;

}

return O,

sm fcase - set case sensitivity when searching for screens
SYNOPSI S
#i ncl ude "sndefs. h"

int smfcase (case)
int case;

DESCRI PTI ON

Control s whether the matching of screen names in the formstack, formlibraries,
and nmenmory resident formlist is case-sensitive. Case nust be either CASE_SENS
or CASE_I NSENS; those values are defined in snmdefs.h . Refer to smr_w ndow and
Section 12.1 for descriptions of the searches affected by this function.

RETURNS

-1 if case was invalid ; O otherw se
EXAMPLE
#i ncl ude "sndefs. h"

/* Use case-insensitive search on case-insensitive
* operating systenms. */

#if (defined MSDOS || defined VMS)
sm f case (CASE_I NSENS)
#endi f

sm fextension - set default screen file extension
SYNOPSI S

int smfextension (extension)
char *extension;

DESCRI PTI ON

This function nakes extension the default file extension for screen files. Wen
searching for a screen, JAMw Il append it to any name that does not already
contain an extension. Refer to smr_w ndow and Section 12.1 for a description of
the searches affected by this function, and to the introduction to the
Configuration CGuide for details on how JAM handles file extensions generally.

Ext ensi on shoul d not contain any separator, such as a period. That and the

pl acenent of the extension are controlled by the SMUSEEXT setup vari abl e; by
default, extensions are placed at the end of the filenanme and are separated from
it by a period.

The sane effect may be achi eved by defining the SMFEXTENSI ON vari able in your
setup file. Refer to the section on setup files in the Configuration CGuide.

RETURNS
-1 if insufficient nmenory is available to store the extension; 0 otherw se.
EXAMPLE
/* Change the default extension to "fornf. */
sm fextension ("fornt);
/* Declare that screen files should have no default extension. */

sm fextension ("");

smflush - flush delayed wites to the display
SYNOPSI S

void smflush ();
DESCRI PTI ON

This function perforns delayed wites and flushes all buffered output to the
display. It is called autonatically whenever the keyboard is opened and there
are no keystrokes available, i.e. typed ahead.

Calling this routine indiscrimnately can significantly sl ow execution. As it is
cal | ed whenever the keyboard is opened, the display is always guaranteed to be
in sync before data entry occurs; however, if you want tined output or other
non-interactive display, use of this routine will be necessary.

sm flush does two sorts of flushing: first it does output that has been del ayed,
then it calls a system dependent routine that enpties display output buffers.

VARI ANTS AND RELATED FUNCTI ONS
smrescreen ();
EXAMPLE

/* Update a systemtinme field once per second, until a key
* is pressed. */

while (!'smkeyhit (10))
{
smn_putfield ("time_now', "");
smflush ();

}

/* ...process the key */

smformist - update list of menmory-resident forns
SYNOPSI S
#i ncl ude "sndefs. h"

int smformist (ptr_to_formlist)
struct formlist *ptr_to formlist;

DESCRI PTI ON

This function adds to a list of nmenory-resident fornms. Each nmenber of the |ist
is a structure giving the nane of the form as a character string, and its
address in nmenory.

The library functions smr_form smr_w ndow, and smr_at_cur, which are al
called with a screen nane as paranmeter, search for it in the nenory-resident
formlist before attenpting to read the screen from di sk

This function is called once fromsm.initcrt to pick up the global |ist
smnmenforns; this is for conpatibility with Release 3. It can be called any
nunber of times froman application programto add fornms to the list.

Since no count is given with the list, care must be taken to end the new |i st
with a null entry.

RETURNS

-1 if insufficient menory is available for the new list; O otherwi se.
EXAMPLE
#i ncl ude "sndefs. h"

/* The follow ng code adds two screens to the
* menory-resident formlist. */

struct formlist new list[] =
{
"new forml", new forml,
"new_form", new_forng,
v 0

b

smformist (new.list);

smfptr - get the contents of a field
SYNOPSI S
#i ncl ude "sndefs. h"

char *sm fptr (field_numrber)
int field_nunber;

DESCRI PTI ON

Returns the contents of the field specified by field_nunber. Leading blanks in
right-justified fields, and trailing blanks in left-justified fields, are
stripped.

This function shares with several others a pool of buffers where it stores
returned data. The value returned by any of them should therefore be processed
qui ckly or copied. smgetfield is not subject to this restriction

RETURNS
The field contents, or O if the field cannot be found.
VARI ANTS AND RELATED FUNCTI ONS

sme fptr (field_name, elenent);

smi _fptr (field_name, occurrence);
smn_fptr (field_name);

smo_fptr (field_number, occurrence);
smgetfield (buffer, field_nunber);
smputfield (field_number, text);

EXAMPLE
#i ncl ude "sndefs. h"

/* Little function to tell sonebody somnething s/he
* already knows. */

void report (fieldname)
char *fi el dnane;
{
char buf[256], *stuf;
if ((stuf = smn_fptr (fieldnane)) == 0)
return;

sprintf (buf, "You have typed % in the % field."
stuf, fieldname);
sm ensg (buf);

smfval - force field validation
SYNOPSI S

int smfval (field_numnber)
int field_number;

DESCRI PTI ON

This function perforns all validations on the indicated field or occurrence, and
returns the result. If the field is protected against validation, the checks are
not performed and the function returns 0; see sm lprotect. Validations are done
in the order listed below. Some will be skipped if the field is enpty, or if its
VALIDED bit is already set (inplying that it has already passed validation).

Val i dati on Skip if valid Skip if enmpty

required

must fill

regul ar expression
range
check-di gi t

date or tine
tabl e | ookup
currency formt
mat h expresssion
exit function
jpl function

SO oK KKK
5 305 KKKKKKKKK S

*

The currency format edit contains a skip-if-enmpty flag; see the Author's Cuide.

If you need to force a skip-if-enpty validation, make the field required. A
digits-only field nmust contain at | east one digit in order to be considered
nonenpty; for other character edits, any nonblank character nakes the field
nonenpty.

Mat h expressions and field exit functions are never skipped, since they can
alter fields other than the one being validated. If you are planning to use this
function, be careful to nmake no assunptions about the cursor position when
witing field exit functions. Often it is assuned that the cursor is in the
field being validated, so that smtab and sinmilar functions will work properly.

Field validation is perfornmed automatically within smopenkeybd when the cursor
exits a field. Application programs need call this function only to force
val i dati on of other fields.

RETURNS

-2 if the field or occurrence specification is invalid; -1 if the field
fails any validation; 0 otherw se.

VARI ANTS AND RELATED FUNCTI ONS

sme_fval (array_nanme, elenent);

sm.i _fval (field_name, occurrence);
smn_fval (field_nane);

smo_fval (field_number, occurrence);
sms_val ();

EXAMPLE
#i ncl ude "sndefs. h"

/* Make sure that the previous field has been validated
* before checking the current one. */

val idate (fieldnum data, occurrence, bits)
char *data;

{

if (smfval (fieldnum- 1))

/* Place cursor in the previous field and indicate error */
smgofield (fieldnum- 1);
return 1;

smgetcurno - get current field nunber
SYNOPSI S
int smgetcurno ();

DESCRI PTI ON

Returns the nunber of the field in which the cursor is currently positioned.

field nunber ranges from1l to the total number of fields in the screen
RETURNS

Nurmber of the current field, or O if the cursor is not within a field.
VARI ANTS AND RELATED FUNCTI ONS

sm occur_no ();
EXAMPLE

/* 1magi ne that the screen contains an 8 by 8 array

*

* of fields, like a checkerboard. The foll ow ng code
* gets the nunmber of the current field and returns

* the corresponding row and col umm. */

voi d get _location (row, columm)
int *row, *colum;

{

int fieldnum

if ((fieldnum = smgetcurno ()) == 0)
*row = *colum = -1;

el se

{
*row = (fieldnum- 1) / 8 + 1;
*colum = (fieldnum- 1) %8 + 1;

}

The

smgetfield - copy the contents of a field
SYNOPSI S

int smgetfield (buffer, field_nunber)
char *buffer;
int field_nunber;

DESCRI PTI ON

Copies the data found in field_nunmber to buffer. Leading blanks in
right-justified fields, and trailing blanks in left-justified fields, are not
copi ed.

Responsi bility for providing a buffer |large enough for the field s contents
rests with the calling program This should be at |east one greater than the
maxi mum | ength of the field, taking shifting into account.

Note that the order of argunents to this function is different fromthat to the
related function smputfield.

RETURNS

The total length of the field s contents, or -1 if the field cannot be
found.

VARI ANTS AND RELATED FUNCTI ONS

sme_getfield (buffer, field_name, elenment);
smi_getfield (buffer, field_name, occurrence);
smn_getfield (buffer, field_name);

smo_getfield (buffer, field_number, occurrence);
smfptr (field_nunber);

smputfield (field _nunmber, text);

EXAMPLE
#i ncl ude "sndefs. h"

/* Save the contents of the "rank" field in a buffer
* of the proper size. */

int size;
char *save_rank;

size = smn_length ("rank");
if ((save_rank = malloc (size + 1)) == 0)
punt ("Malloc error");

if (smn_getfield (save_rank, "rank") > size)
punt ("Bug in smlength or smgetfield!'");

sm getkey - get translated value of the key hit
SYNOPSI S

#i ncl ude "snkeys. h"

int smgetkey ();
DESCRI PTI ON

Cets and interprets keyboard input according to an al gorithm descri bed

el sewhere, and returns the interpreted value to the calling program Nornma
characters are returned unchanged; function keys are interpreted according to a
key translation file for the particular conputer or term nal you are using.

Function keys include TRANSM T, EXIT, HELP, LOCAL PRI NT, arrows, data

nodi fication keys like I NSERT and DELETE CHAR, user function keys PF1 through
PF24, shifted function keys SPF1 through SPF24, and others. Defined val ues for
all are in snkeys.h . A few function keys, such as LOCAL PRI NT and RESCREEN, are
processed locally in smgetkey and not returned to the caller

There is another function called smungetkey, which pushes |ogical key val ues
back on the input streamfor retrieval by smgetkey. Since all JAM i nput

routi nes call smgetkey, you can use it to generate any input sequence
automatically. When you use it, calls to smgetkey will not cause the display to
be flushed, as they do when keys are read fromthe keyboard.

There is a key-change hook in sm getkey. Before returning a translated key to
its caller, it passes the key to a user-installed function which nmay alter the
key value, delete it fromthe input stream or whatever. See sm u_keychange and
sminstall.

There is another pair of hooks, for recording and pl ayi ng back sequences of
keys. These are a recording function, which is passed the key just typed, and a
pl ayback function, which is called to obtain a key. See smu_record and

sm u_play.

Finally, there is a mechanismfor detecting an externally established abort
condition, essentially a flag, which causes JAMinput functions to return to
their callers imediately. The present function checks for that condition on
each iteration, and returns the ABORT key if it is true. See sm.i sabort.

Application progranmers should be aware that JAM control strings are not
executed within this function, but at a higher level within the JAMrun-tinme
system |f you call this function, do not expect function key control strings to
wor k.

RETURNS

The standard ASCI1 val ue of a displayable key; a value greater than 255 (FF
hex) for a key sequence in the key translation file.

VARI ANTS AND RELATED FUNCTI ONS

sm unget key (key);

sm u_keychange (key);
sm keyfilter (flag);
smu_play ();
smu_record (key);
sm.isabort (flag);

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Alternate version of smquery_nsg, which makes up
* its mnd right away. */

int query (text)
char *text;

{
int key;

smd_nsg_line (text, REVERSE);
for (37)
{
switch (key = sm.getkey ())
{
case XM T:
case 'y':
case 'Y':
smd nsg line ("", WH TE");
return 1;
defaul t:
smensg ("%WUJ | take that for a 'no' ");
smd_nmsg line ("", WH TE");
return O,

PSEUDOCCDE

The multiplicity of hooks in smgetkey makes it a little difficult to see how
they interact, which take precedence, and so forth. In an effort to clarify the
process, we present an outline of smgetkey. The process of key translation is
deliberately omtted, for the sake of clarity; that algorithmis presented
separately, toward the end of this chapter

-- Step 1

If an abort condition exists,
return the ABORT key.

If there is a key pushed back by ungetkey,
return that.

If playback is active and a key is avail able,
take it directly to Step 2; otherwi se read and translate input fromthe
keyboar d.
-- Step 2
Pass the key to the keychange function. If that function says to discard the
key, go back to Step 1; otherwise if an abort condition exists,
return the ABORT key.
If recording is active,
pass the key to the recording function.

-- Step 3

If the routing table says the key is to be processed |ocally,
do so.

If the routing table says to return the key,
return it; otherw se, go back to Step 1.

smgofield - nmove the cursor into a field
SYNOPSI S

int smgofield (field_nunber)
int field_number;

DESCRI PTI ON

Positions the cursor to the first enterable position of field_nunber. |If the
field is shiftable, it is reset.

In aright-justified field, the cursor is placed in the rightnost position; in a
left-justified field, in the leftnost. In either case, if the field is
digits-only, the cursor goes to the nearest position not occupied by a
punctuation character. Use smoff_gofield to place the cursor el sewhere than in
the first position.

When called to position the cursor in a scrollable field or array, smo_gofield
and sm.i _gofield return an error if the occurrence nunber passed exceeds by nore
than 1 the nunmber of itens in the specified field or array.
RETURNS

-1 if the field is not found; O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sme_gofield (field_nane, elenment)

smi_gofield (field_name, occurrence)

smn_gofield (field_nane)

smo_gofield (field_nunber, occurrence)

sm getcurno ();
smoff_gofield (field _nunber, offset);

EXAMPLE
#i ncl ude "sndefs. h"

/* If the conmbination of this field and the previous one
* is invalid, go back to the previous for data entry. */

int validate (field, data, occur, bits)
char *dat a;

if (bits & VALI DED)
return O;

if (!lookup (data, smfptr (field - 1)))

{
sm noval bit (field - 1);
smgofield (field - 1);
smquiet_err ("Lookup failed - please re-enter both itens.");
return 1,
}
return O;

sm hl p_by nanme - present help w ndow
SYNOPSI S

int smhlp_by name (hel p_screen)
char *hel p_screen;

DESCRI PTI ON

The naned screen is displayed and processed as a nornal help screen, including
i nput processing for the current field (if any). Four types of help screens are
automatically recogni zed and processed:

1. A help screen with one unprotected field, which has no attached
function. This function will change the help field s Iength to that of
the underlying field, if necessary by making the help field shiftable;
and it will copy the underlying field' s contents and nost of its edits
into the help field. The operator may then change the help field's
contents, and, by hitting TRANSM T, have the new contents copi ed back
to the underlying field.

2. A help screen with two or nore unprotected fields, all of which are
menu fields. The screen will be treated as a nenu, except that menu
entries will be used only to bring up | ower |evel help screens.

3. A help screen with entry-protected fields only. The screen is
di spl ayed until the operator hits either EXIT or TRANSMT. Hitting the
HELP key while the cursor is in a field will bring up any help screen
associated with that field.

4. A help screen with display data only. The screen is displayed unti
the operator hits any returnable key (excluding such keys as LOCAL
PRI NT, RESCREEN, or HELP), at which point the w ndow is closed.

Refer to the Author's Guide for further instructions on howto create each kind
of hel p screen.

RETURNS

-1 if screen is not found or other error; 1 if data copied fromhelp screen
to underlying field; O otherw se.

EXAMPLE
#i ncl ude "sndefs. h"

/* 1f user tabs out of enmpty field, find the field's
* hel p screen and execute it. Inplenented as a validation
* function. */

nonenmpty (field, data, occur, bits)
char *data

{

char *hel pscreen;
if (*data == 0)
if ((hel pscreen = smedit_ptr (field, HELP)) != 0 |
(hel pscreen = smedit_ptr (field, HARDHELP)) != 0)
sm_hl p_by _name (hel pscreen + 2);

}

return O;

sm hone - home the cursor
SYNOPSI S
int smhone ();
DESCRI PTI ON
This routine noves the cursor to the first enterable position of the first
tab-unprotected field on the screen; or, if the formhas no tab-unprotected

fields, to the first line and colum of the topnpost w ndow.

The cursor will be put into a tab-protected field if it occupies the first |line
and colum of the w ndow and there are no tab-unprotected fields.

RETURNS

The nunber of field in which the cursor is left, or O if the formhas no
unprotected fields and the honme position is not in a protected field.

VARI ANTS AND RELATED FUNCTI ONS

smgofield (field_nunber);
smlast ();

EXAMPLE
#i ncl ude "sndefs. h"

/* Suppose that at some point the data entry process
has gotten foul ed up beyond all repair. The foll ow ng
* code fragnment could be used to start it over. */

[* ... %

smcl _unprot ();

sm hone ();

smerr_reset ("%vJI'mconfused! Let's start over.");
I* .0 *

sm.i _achg change the display attribute of a scrolling item
sm.i _am _formt
format data and write to occurrence sm.i _bitop
mani pul ate edit bits of an occurrence sm.i _dblva
get deci mal value of occurrence sm.i _dlength
get length of data in occurrence sm.i_doccur
del ete an occurrence sm.i _dtofield
wite decimal value to occurrence smi fptr
get copy of occurrence's data smi _fva
force validation of occurrence smi _getfield
copy data from occurrence into buffer smi _gofield
position cursor to occurrence smi _intva
get integer value of occurrence sm.i _ioccur
insert a blank occurrence into a scroll or array
smi_itofield
wite integer to occurrence smi _| ngva
get long integer value of occurrence smi _Itofield
wite long integer to occurrence sm.i _ndt_cl ear
reset MDT bit of an occurrence sm.i _nod_test
test MDT bit of an occurrence sm.i _noval bit
reset validated bit of an occurrence sm.i_off_gofield
pl ace cursor in the mddle of an occurrence
smi_putfield
wite data string to occurrence

DESCRI PTI ON

Each of the above functions refers to data by field nane and occurrence numnber.
As used in the above functions, occurrence neans

1. item if the field or array is scrollable;
2. element, if the specified field is part of a non-scrollable array; or
3. the specified field, if neither scrollable nor an array.

If occurrence is zero, the reference is always to the current contents of the
nanmed field, or of the base field of the naned array.

For the description of a particular function, |ook under the related function
without i_ in its name. For exanple, smi_am format is described under
sm ant _format.

If the naned field is not on the screen, these functions will attenpt to
retrieve or change its value in the local data bl ock

sm.i nbusiness - tell whether the screen nmanager is up and runni ng or
not

SYNOPSI S
int sm.inbusiness ();
DESCRI PTI ON

This function inspects internal screen manager flags and data structures to
deternm ne whether screen manager |/Ois in progress, and returns a nonzero val ue
if it is. The library functions sminitcrt and smreturn turn on that state;
smresetcrt and smleave turn it off.

Applications may find this function useful in deciding howto display error
messages, or how to handle error conditions generally.

RETURNS
1 if the screen manager is running, 0 otherwi se.
VARI ANTS AND RELATED FUNCTI ONS

sminitcert ();
smresetcrt ();
smleave ();
smreturn ();

EXAMPLE
#define ERRMSGL "I nsufficient menory avail abl e”
char *buf;

if ((buf = malloc (4096)) == 0)
{
if (sm.inbusiness ())
sm qui et _err (ERRMSGL);
else fprintf (stderr, "%\n", ERRMSGL);

sm.ind_set - control onscreen shifting and scrolling indicators
SYNOPSI S

int smind_set (flag)
int flag;

DESCRI PTI ON
This function controls the presence and style of shifting and scrolling
i ndi cators, which JAM uses to indicate the presence of offscreen data in a field

or array. Flag is restricted to the follow ng values, which are defined in
snmdefs.h . The where codes are to be ored with the whet her codes:

Whet her to display indicators

| ND_NONE no i ndicators

I ND_SHI FT shifting indicators only
| ND_SCROLL scrolling indicators only
| ND_BOTH shift and scrol

Where to display scrolling indicators

| ND_FULL full width of field

| ND_FLDLEFT | eft corner of field

| ND_ FLDCENTER center of field

| ND_FLDRI GHT right side of field

| ND_FLDENTRY left or right, according to

the field s justification

If flag is IND_NONE, the existing indicators are erased fromthe display and the
i ndi cator table is discarded; otherw se, an indicator table is allocated if
needed, and the new indicators are displayed. The default setting is |IND BOTH
and | ND_FULL.

This function should be called before reading the screen for which indicators
are desired; normally, it is called once at the beginning of the program

Cl osing a wi ndow does not perform a recal cul ati on, but restores the underlying
screen's indicators; to avoid confusion, this function should be called when no
wi ndows are di spl ayed.

If you define the SM NDSET variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.

RETURNS

-1 if sufficient nenmory for a new table was not avail able; O otherw se.
EXAMPLE
#i ncl ude "sndefs. h"

/* Set indicator display back to defaults */
sm.ind_set (IND BOTH | |IND_FULL);

sm.ininames - record nanmes of initial data files for | ocal data bl ock
SYNOPSI S

int smininames (nane_list)
char *name_lIi st;

DESCRI PTI ON

Sets up a list of initialization files for local data block itens. The file
nanmes in the single string name_|ist should be separated by commas, sem col ons
or blanks; there may be up to ten of them The files thenselves contain pairs of
names and val ues, which are used to initialize |local data block itenms by
smldb_init, g.v. That function is called automatically during JAM
initialization, so sm.ininames should be called before then. Wite space in the
initialization files is ignored, but we suggest a format |ike the follow ng:

"enperor" "Julius Caesar" "lieutenant"
"Mar k Antony" "assassin[1]"
"Brutus" "assassin[2]"
"Cassi us"

You may achi eve the sane effect by defining the SM NI NAMES variable in your
setup file to the list of nanes. See the section on setup files in the
Configuration Guide for details.

Itenms of all scopes nmay be freely mixed within all files. W recomend, however,
that itens be grouped in files by scope if you are planning to use smlreset,
g.v. That function clears all items of a given scope before reinitializing them
froma single file.
RETURNS

-5 if insufficient menory is available to store the nanmes; 0 otherw se.

VARI ANTS AND RELATED FUNCTI ONS

smlreset (scope, filenane);
smldb_init ();

EXAMPLE
/* Set up five initialization files. */

sm_i ni names ("scope0.ini, scopel.ini, scope2.ini,\
scope3.ini, scoped.ini");

sminitcrt - initialize the display and JAM data structures
SYNOPSI S

void sminitcrt (path)

char *path;
DESCRI PTI ON

This function nust be called at the beginning of screen handling, that is,
before any screens are displayed or the keyboard opened for input to a JAM
screen. Functions that set options, such as smok_options, and those that
install functions or configuration files, such as sminstall or smvinit, are
the only kind that may be called before sminitcrt.

Path is a directory to be searched for screen files by smr_w ndow and vari ants.
First the file is sought in the current directory; if it is not there, it is
sought in the path supplied to this function. If it is not there either, the
paths specified in the environnent variable SMPATH (if any) are tried. The path
argument nust be supplied. If all forns are in the current directory, or if (as
JYACC suggests) all the relevant paths are specified in SMPATH, an enpty string
may be passed. After setting up the search path, sminitcrt performs severa
initializations:

1. It calls a user-defined initialization routine (see smu_uinit).

2. It determines the termnal type, if possible by exam ning the
environnent (TERM or SMIERM, otherw se by asking you.

3. It executes the setup files defined by the environment variabl es SWAGS

and SMSETUP, and reads in the binary configuration files (nessage, key,
and video) specific to the terninal

4. It allocates nmenmory for a nunmber of data structures shared anong JAM
library functions.

5. If supported by the operating system keyboard interrupts are trapped
to a routine that clears the screen and exits.

6. It initializes the operating system screen and keyboard channels, and

clears the display.

This function is called automatically during JAM start-up, and should not be
call ed by application prograns.

VARI ANTS AND RELATED FUNCTI ONS

smsnsetup ();

smuinit (termtype);

sm nsgread (prefix, range, address, nane);
smyvinit (video_file);

smkeyinit (key file);

EXAMPLE

/* To initialize the screen manager w thout supplying a path
* for screens: */

sminitcrt ("");

sminstall - attach application functions to JAMIibrary hooks

SYNOPSI S
#i ncl ude "sndefs. h"

struct fnc_data *sm. nstal
what _funcs, howrany)

i nt whi ch_hook;

struct fnc_data what_funcs[];

i nt *howmany;

(whi ch_hook,

DESCRI PTI ON
This function places an application routine on one of the screen manager library
hooks; this enables JAMto pass control to your code in the proper context. Each

hook is docunented separately in this chapter; refer to the table bel ow

Wi ch_hook rust be drawn fromthe following list. It identifies the hook your

routine is to be attached to.

Vhi ch Pur pose Refer to
U NI T_FUNC initialization sm.u_uinit
URESET_FUNC exit-tinme cleanup sm u_ureset
VPROC_FUNC vi deo processing Sm u_vproc

CKDI Gl T_FUNC
KEYCHG_FUNC

I NSCRSR_FUNC

check digit conputation
sm u_ckdigit

transl ated key peek/ poke
sm u_keychg
insert/overwrite toggle
sm u_inscrsr

PLAY_FUNC pl ay back saved keys sm.u_play
RECORD_FUNC record keys for playback
smu_record
AVAI L_FUNC check for recorded keys
sm u_avai
ASYNC_FUNC asynchronous function smu_async
STAT_FUNC status line function smu_statfnc
ATTCH_FUNC field attached function I|ist
Section 1.3
FORM_FUNC screen entry/exit listSection 1.4
CARET_FUNC i nvoked function list Section 1.2

The | ast three hooks nentioned are not for

single functions, but for lists of

functions. When you install these, nanes are required in the fnc_data
structures; what_funcs should be an array of structures; and howrany should hol d
t he nunber of functions in the list. Your functions are added to any already in

the |ist.

The second paraneter
application routine.
such structures.

what _funcs, is the address of a structure describing an
If which_hook is alist, it is the address of an array of

Here is a definition of the structure:

struct fnc_data {
char *fnc_nane;
int (*fnc_addr)();
char | anguage;
char intrn_use;
char appl _use;
char reserved

Fnc_nane is a character string nanm ng your routine. It is required only
i f which_hook is ATTCH FUNC, CARET_FUNC, or FORM FUNC, and should match
the function name used in your screens.

Fnc_addr is always required. It is the address of your routine.
Language is a |l anguage identifier, drawn fromsndefs.h . Cis always O.

Intrn_use serves as an installation paraneter. Currently it is used
with ASYNC FUNC and the lists; see bel ow

Appl _use is reserved for your own use.
reserved is reserved for future use by JYACC

The third paraneter, howmany, is required only if which_hook is a list. It is
the address of an integer variable giving the nunber of entries in your |ist.
The count is passed by reference so that sminstall can return a count for the
new list with its return value. If the value pointed to by howrany is zero, al
functions in the list are renoved, except those having a non-zero value in the
intrn_use field of the structure. Built-in functions supplied with JAM are
protected fromrenoval in this fashion

When you are installing an asynchronous function using ASYNC FUNC, the intrn_use
field of the structure should be set to the tineout, in tenths of a second.
Wi |l e the keyboard is idle, the asynchronous function will be called at that

i nterval

RETURNS
The address of the old function data structure(s), or zero if no function

was previously installed. For lists of functions, also places the
nunber of entries in the new list in howrany.

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/************* Exanple 1 *************/

/* Here is a function to change the RETURN key to TAB, and
* chain to the old keychange function, which is stored in
* prev_fix.

*/
static struct fnc_data *prev_fix;

int keyfix (key)

{
int kK = key == NL ? TAB : Kkey;
if (prev_fix)
return (*(prev_fix->fnc_addr)) (Kk);
el se return k;
}

/* Install the new function, storing the old one in prev_fix.
* You nust take the address of the fnc_data structure.
*/
static struct fnc_data fix = {
0, keyfix, 0, 0, 0, O
b

prev_fix = sminstall (KEYCHG FUNC, &fix, (int *)0);

/************* EXa.erIe 2 *************/

/[* Install two attached functions, defined el sewhere.
*/

extern int atchl(), atch2();

static struct fnc_data atch[] = {
0

{ "atch1", atchi, 0, 0, 0, 0},
{ "atch2", atch2, 0, 0, 0, 0},
b
i nt count;

count = sizeof(atch) / sizeof(struct fnc_data);
sminstall (ATTCH FUNC, atch, &count);

smintval - get the integer value of a field
SYNOPSI S

int smintval (field_numnber)
int field_number;

DESCRI PTI ON

Returns the integer value of the data contained in the field specified by
field _nunber. Any punctuation characters in the field (except, of course, a
| eadi ng plus or minus sign) are ignored.

RETURNS

The integer value of the specified field, or zero if the field is not
f ound.

VARI ANTS AND RELATED FUNCTI ONS
sme_intval (field_name, elenment);
sm.i_intval (field_name, occurrence);
smn_intval (field_nane);
smo_intval (field_number, occurrence);
smitofield (field _nunmber, val ue);
EXAMPLE
/* Retrieve the integer value of the "sequence" field. */

i nt sequence;

sequence = sm n_intval ("sequence");

sm.ioccur - insert blank occurrences
SYNOPSI S

int smo_ioccur (field_number, occurrence, count)
int field_nunber;

i nt occurrence;

int count;

DESCRI PTI ON

Inserts count blank data itenms before the specified occurrence, noving that
occurrence and all follow ng occurrences down. If inserting that many woul d nove
some occurrence past the end of its array or scrolling array, fewer will be
inserted. This function never increases the maxi mum nunber of itens a scroll can
contain; smsc_max does that. If count is negative, occurrences will be deleted
i nstead, subject to limtations described in the page for sm doccur

If occurrence is zero, the occurrence used is that of field_nunber. |f
occurrence is nonzero, however, it is taken relative to the first field of the
array in which field_nunber occurs.
This function is normally bound to the I NSERT LINE key. It has only two
variants, sm.i _ioccur and smo_ioccur; the other three, including sm.ioccur
itself, do not exist.
RETURNS
-1 if the field or occurrence nunber is out of range; -3 if insufficient
menory is avail able; otherw se, the number of occurrences actually
inserted (zero or nore).
VARI ANTS AND RELATED FUNCTI ONS
sm.i _ioccur(field _nane, occurrence, count);
sm.i _doccur(field_nane, occurrence, count);
sm o_doccur (field_nunber, occurrence, count);
EXAMPLE
#i ncl ude "snkeys. h"

/* As a shortcut, nmake the PF5 key insert five bl ank
* lines in the "ampunts" array. */

int field, key;

while ((key = smopenkeybd ()) '= EXIT)
if (key == PF5)
{
/* Make sure we're in the right place */
field = smbase_fldno (smgetcurno ());
if (field == smn_fldno ("amunts"))
smo_ioccur (field, 0, 5);

smis_yes - bool ean value of a yes/no field
SYNOPSI S

int smis_yes (field_numnber)
int field_number;

DESCRI PTI ON

The first character of the specified field _nunber is conpared with the first
letter of the SMYES entry in the nessage file, ignoring case, and the resulting
| ogi cal value is returned.

This function is ordinarily used with one-letter fields restricted to yes or no
by the appropriate character edit. Unlike the field data retrieval functions
(smfptr, etc.), it does not ignore |eading blanks.

RETURNS

1if the field is found, and its contents match as descri bed above; 0
ot herw se.

VARI ANTS AND RELATED FUNCTI ONS

smn_is_yes (field _nane);

sme_is_yes (field_nanme, elenent);
smi_is_yes (field_nanme, occurrence);
smo_is_yes (field_nunber, occurrence);

EXAMPLE

/* Keep processing until the user enters "n" in
* aflag field. This is an alternative for the
*& usual checking against the EXIT key. */

while (smn_is_yes ("continue"))

{
}

sm openkeybd ();

sm.isabort - test and set the abort control flag
SYNOPSI S
#i ncl ude "sndefs. h"

int smisabort (flag)
int flag;

DESCRI PTI ON

This function sets the abort flag to the value of flag, and returns the old
val ue. Flag nmust be one of the follow ng:

Fl ag Meani ng
ABT_ON set abort flag ABT_OFF
clear abort flag ABT_DI SABLE

turn abort reporting off ABT_NOCHANGE
do not alter the flag

Abort reporting is intended to provide a quick way out of processing in the JAM
library, which may involve nested calls to smopenkeybd and ot her input
functions. The triggering event is the detection of an abort condition by
sm get key, either an ABORT keystroke or a call to this function with ABT_ON.
This function enables application code to verify the existence of an abort
condition by testing the flag, as well as to establish one. You may need to
verify it because certain functions, such as smchoice, cannot return the ABORT
key directly. Abort processing is described in detail later in this chapter
RETURNS

The previous value of the abort flag.
EXAMPLE
#i ncl ude "sndefs. h"
/* Establish an abort condition */

sm.i sabort (ABT_ON);

/* Verify that an abort condition exists, wthout
* altering it. */

if (sm.isabort (ABT_NOCHANGE) == ABT_ON)

smitofield - wite an integer value to a field
SYNOPSI S

int smitofield (field_number, val ue)
int field_nunber, value;

DESCRI PTI ON
The integer passed to this routine is converted to characters and placed in the
specified field. A number longer than the field will be truncated (on the |eft
or right, according to the field' s justification) w thout warning.
RETURNS

-1 if the field is not found; O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sme_itofield (field_name, elenment, value);

smi_itofield (field_nanme, occurrence, value);

smn_itofield (field_name, value);

smo_itofield (field_nunber, occurence, value);

sm.intval (field_nunber);

EXAMPLE

/* Find the length of the data in field nunber 12, and
* tell sonmebody about it. */

smn_itofield ("count"”, smdlength (12));

smjclose - close current wi ndow under JAM contro
SYNOPSI S

int smjclose ();
} DESCRI PTI ON

The currently open window is erased, and the screen is restored to the state
before the wi ndow was opened. Since wi ndows are stacked, the effect of closing a
window is to return to the previous wi ndow. The cursor reappears at the position
it had before the wi ndow was opened.

Note that this function closes a wi ndow regardl ess of whether it was opened via
a control string, or smjwndow If the |ast w ndow was opened through a call to
smr_wi ndow the results are unpredictable.

RETURNS
-1l is returned if there is no window open, i.e. if the currently displayed
screen is a form (or if there is no screen up). 0 is returned
ot herw se.

VARI ANTS AND RELATED FUNCTI ONS
sm jwi ndow (screen_arg);
EXAMPLE

/* This is an exanple of a caret function attached to the XMT */
/* key. It validates |ogin and password information. If the */

/* login and password are incorrect, the program proceeds to */

/* close three of the four "security" wi ndows used for getting*/
/* a user's login and password information, and the user may */

/* again attenpt to enter the information. If the password */

/* passes, the welcone screen is displayed, and the user may */

/* proceed.

int conplete_login(jptr);

char *jptr;
{
char pass[10];
smn_getfield("pass", "password");
i f(!check_password(pass)) /*call routine to validate password*/
{
sm jclose(); /*cl ose current password wi ndow*/
smjclose(); /*close 3rd underlying |ogin wi ndow/
sm jclose(); /*cl ose 2nd underlying | ogin wi ndow/
sm ensg(" Pl ease reenter login and password");
} /*in bottom w ndow*/
el se
{

smd _nsg line("Welconme to Security Systenms, Inc.");
smjform "Wel cone");
/*open wel cone screen*/

return (0);

smjform- display a screen as a formunder JAM contro
SYNOPSI S

int smjform (screen_namne)
char *screen_nane;

DESCRI PTI ON

This function displays the naned screen as a base form The form s opening and
closing (wwth the EXIT key) are under JAM control. The function is simlar to
smr_form

Bringing up a screen as a form causes the previously displayed formand w ndows
to be discarded, and their nenory freed. The new formis displayed with its
upper left-hand corner at the extreme upper left of the screen.

If the formcontains display data that are too big for the physical display,
they are truncated wi thout warning. However, if there are fields that won't fit
within the physical display, this function returns an error w thout displaying
the form

The naned formis sought on disk in the current directory; then under the path

supplied to sminitcrt; then in all the paths in the setup variable SMPATH. |f

any path exceeds 80 characters, it is skipped. If the entire search fails, this
function displays an error nessage and returns.

In the case of a return of -1, -2 or -7 the previously displayed formis stil

di spl ayed and may be used. Ot her negative return code indicate that the display
i s undefined; the caller should display another form before using screen manager
functions. The return code -2 typically means that the named screen does not

exi st; however, it may occur because the maxi num al |l owabl e nunmber of files is

al ready open.

RETURNS

Oif no error occurred; -1 if the screen file's format is incorrect; -2 if
the form cannot be found; -4 if, after the screen has been cl eared,
the form cannot be successfully displayed because of a read error; -5
if, after the screen was cl eared, the systemran out of menory; -7 if
the screen was larger than the physical display, and there were fields
that woul d have fallen outside the display.

VARI ANTS AND RELATED FUNCTI ONS

smr_form (screen_nane);
sm jwi ndow (narme, |ine, colum);

EXAMPLE

/* This exenplifies a caret function attached to the XM T key. */

/*
/*
/*
/*
/*
/*
/*

Here we have conpl eted entering data on the second of several */
security screens. If the user entered "bypass" into the login, */
he bypasses the other security screens, and the "wel cone" */
screen is displayed. If the user login is incorrect, the */
current window is closed, and the user is back at the */

initial screen (below). O herwi se, the next security w ndow */

is displayed. */

int getlogin(jptr)
char *jptr;

{

char password[10];
smn_getfield(password, "password");
/* check if "bypass" has been entered into login */
if (strcnp(password, "bypass"))
smjform "wel cone");
/* check if loginis valid */
else if (check_password(password))

{
sm jclose();
/*cl ose current (2nd) login w ndow */
sm ensg(" Pl ease reenter |ogin");
}
el se

sm jw ndow("l ogi n3");
return (0);

sm jwi ndow - display a wi ndow at a given position under
JAM cont r ol

SYNOPSI S

int smjw ndow (screen_arg)
char *screen_arg;

DESCRI PTI ON

Di spl ays screen_arg with its upper |eft-hand corner at the current cursor
position, if no line and colum are specified. The function's argument can

i nclude a specification of the display position (for instance, ("wi ndl 10 20").
The |line and colum are counted fromone. The display takes place under JAM
control. JAM can al so close the wi ndow through a call to smjclose.

What ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nbst window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the topnost,

or current, wi ndow. (See smwselect for a way to shuffle w ndows.)

If the window will not fit on the display at the |location you request, JAM wil|
adjust its starting position. If the wi ndow would hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow is sinply noved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the windowis placed there. Simlar
adj ustments are nmade in the horizontal direction.

If, after adjustment, the wi ndow contains display data that won't fit on the
display, it is brought up anyway, w thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

RETURNS

O if no error occurred during display of the screen; -1 if the screen
file's format is incorrect; -2 if the formcannot be found; -3 if the
systemran out of nenory but the previous screen was restored; -7 if
the screen was |arger than the physical display, and there were fields
that woul d have fallen outside the display.

VARI ANTS AND RELATED FUNCTI ONS
smr_w ndow (nane);

sm jform (name);
smjclose ();

EXAMPLE

/* This is an exanple of a caret function attached to the XM T key. */

/*
/*
/*
/*
/*
/*
/*

Here we have conpleted entering data on the second of several */
security screens. If the user entered "bypass" into the login, */
he bypasses the other security screens, and the "wel cone" */
screen is displayed. If the user login is incorrect, the */
current window is closed, and the user is back at the */

initial screen (below). O herwi se, the next security w ndow */

is displayed. */

int getlogin(jptr)
char *jptr;

{

char password[10];
smn_getfield(password, "password");
/* check if "bypass" has been entered into login */
if (strcnp(password, "bypass"))
smjform "wel cone");
/* check if loginis valid */
else if (check_password(password))

{
sm jclose();
/*cl ose current (2nd) |ogin w ndow */
sm ensg(" Pl ease reenter |ogin");
}
el se

sm jw ndow("l ogi n3");
return (0);

sm keyfilter - control keystroke record/playback filtering
SYNOPSI S

int smkeyfilter (flag)
int flag;

DESCRI PTI ON
This function turns the keystroke record/ pl ayback nechani sm of sm getkey on
(flag = 1) or off (flag = 0). If none of the recordi ng hooks have functions on
them turning themon has no effect.
It returns a flag indicating whether recording was previously on or off.
RETURNS

The previous value of the filter flag.
VARI ANTS AND RELATED FUNCTI ONS

sm get key ();

smu_avail (interval);

smu_play ();

smu_record (key);
EXAMPLE
/* Disable key recording and pl ayback. */

sm keyfilter (0);

sm keyhit - test whether a key has been typed ahead
SYNOPSI S

int smkeyhit (interval)
int interval;

DESCRI PTI ON

This routine checks whether a key has already been hit; if so, it returns 1

i mediately. If not, it waits for the indicated interval and checks again. The
key (if any is struck) is not read in, and is available to the usual keyboard
i nput routines.

Interval is in tenths of seconds; the exact length of the wait depends on the
granul arity of the system clock, and is hardware- and operating-system
dependent. JAM uses this function to decide when to call the user-supplied
asynchronous function.

If the operating system does not support reads with tinmeout, this function
ignores the interval and only returns 1 if a key has been typed ahead.

RETURNS
1if a key is available, 0 if not.
VARI ANTS AND RELATED FUNCTI ONS

sm get key ();
sm u_async ();
smu_avail (interval);

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* The follow ng code adds one asterisk per second to a
* danger bar, until somebody presses EXIT. */

StatIC Char *danger bar =Tk I S I R L

int k;

smd _nsg line ("You have 25 seconds to find the EXIT key.", WH TE)
smdo_region (5, 10, 25, WHITE, ""); [/* Clear the danger bar area */
smflush ();

for (k = 1; k <= 25; ++k)

{
if (smkeyhit (10))
{
if (smgetkey () == EXIT)
br eak;
}
smdo_region (5, 10, k, WHI TE, danger_bar);
smflush ();
}
if (k <= 25)

smd_msg_line ("%BCongratul ati ons! you win!");
else smerr_reset ("Sorry, you lose.");

smkeyinit - initialize key translation table
SYNOPSI S

int smkeyinit (key_file)
char key file[];

DESCRI PTI ON
This routine is called by sminitcrt as part of the initialization process, but

it can also be called by an application program (either before or after
sminitcrt) to install a menory-resident key translation file.

To install a menory-resident key translation file, key_file nust contain the
address of a key translation table created using the JYACC key2bi n and bi n2c
utilities, gq.v. If it is zero, a disk file whose nane is obtained fromthe SMKEY
variable will be used instead.
If no menory-resident file is supplied and an error occurs while reading the
disk file, this function prints out an error nmessage and exits to the operating
system
RETURNS
Oif the key file is successfully installed; -1 if a disk file is requested
and the termnal type is unknown; programexit if an error occurs
while reading a disk file.
EXAMPLE
/* Install a menory-resident key file */

extern char keyfile[];

sm keyinit (keyfile);

sm keyl abel - get the printable name of a |ogical key

SYNOPSI S
#i ncl ude "snkeys. h"

char *sm keyl abel (key)
int key;

DESCRI PTI ON

Returns the |abel defined for key in the key translation file; the |abel is
usual Iy what is printed on the key on the physical keyboard. If there is no such
| abel , returns the name of the logical key fromthe following table. Here is a
list of key mmenoni cs:

EXIT XM T HELP BKSP TAB

NL BACK HOVE DELE I NS

LP FERA CLR SP&U SPGD
LARR RARR DARR UARR REFR
EMCH I NSL DELL Z00OM FHLP

CAPS ABORT

If the key code is invalid (not one defined in snkeys.h), this function returns
the enpty string.
RETURNS

A string nam ng the key, or the enmpty string if it has no nane.
VARI ANTS AND RELATED FUNCTI ONS

sm keynane (key);
EXAMPLE
#i ncl ude "snkeys. h"

/* Put the name of the TRANSMT key into a field
* for help purposes. */

char buf[80];
sprintf (buf, "Press % to commit the transaction."

sm keyl abel (XM T));
smn_putfield ("hel p", buf);

sml _at_cur - display a |library-resident wi ndow at the current cursor
position

SYNOPSI S

int sml _at_cur (lib_desc, screen_nane)
int |ib_desc;
char *screen_nane;

DESCRI PTI ON

Di splays a library-resident wi ndow at the current cursor position, offset by one
line to avoid hiding that line's contents.

VWhat ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nmobst window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the top nost,
or current, wi ndow. (See smwselect for a way to shuffle w ndows.)

If the window will not fit on the display at the location you request, JAM w ||
adjust its starting position. If the wi ndow woul d hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow i s sinply noved up; but if your starting position is in the bottom half
of the screen, the |lower left hand corner of the windowis placed there. Simlar
adj ustments are made in the horizontal direction.

If, after adjustnment, the wi ndow contains display data that won't fit on the
display, it is brought up anyway, wi thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

A screen library is a single file containing many screens. You can assenble one
fromindividual screen files using the screen librarian, JYACC formib.

Li braries provide a convenient way of distributing a |arge nunber of screens
with an application, and can inprove efficiency by cutting down on fil esystem
path searches.

The library descriptor is an integer returned by sml| _open, which you nust cal
before trying to read any screens froma library. Note that smr_w ndow and
rel ated functions also search any open screen libraries.

JAM provi des the control string nechani smfor opening, closing, and keeping
track of windows. If your code calls this function instead of executing a w ndow
control string, certain features of the JAMrun-time systemw |l not work as
expected, particularly the EXIT key.

RETURNS

Ois returned if no error occurred during display of the window -2 is
returned if lib_desc is invalid, or if that |ibrary does not contain
screen_name. -3 is returned if a malloc failed to find avail abl e
menory before the screen area was cleared, or if a malloc or read
error occurred after the area was cleared but the screen was
subsequently restored. -6 is returned if the screen library is
corrupted.

VARI ANTS AND RELATED FUNCTI ONS

sml| _open (library_nane);

sml| _form (library_descriptor, screen_nane);

sm|_w ndow (library_descriptor, screen_nane, line, colum);
sml| _close (library_descriptor);

EXAMPLE
/* Bring up a window froma library. */
int 1d;

if ((1d =sml _open ("nmyforms")) < 0)
sm cancel ();

éﬁil_at_cur (1d, "popup");

sml _close - close a screen library
SYNOPSI S

int sml _close (lib_desc)
int |ib_desc;

DESCRI PTI ON

Cl oses the screen library indicated by |ib_desc and frees all associated menory.
The library descriptor is a nunber returned by a previous call to sml| _open.

RETURNS
-1 is returned if the library file could not be closed; -2 is returned if
the library was not open; O is returned if the library was cl osed
successful ly.
VARI ANTS AND RELATED FUNCTI ONS
sm.| _open (library_name);
sml _at_cur (library_descriptor, screen_nane);
sml| _form (library_descriptor, screen_nane);
sm!|_w ndow (library_descriptor, screen_name, line, colum);
EXAMPLE
/* Bring up a window froma library. */

int 1d;

if ((1d =sml _open ("nmyforms")) < 0)
sm cancel ();

éﬁil_at_cur (1d, "popup");

sm | _close (Id):

sml _form- display a |ibrary-resident screen as a base form
SYNOPSI S

int sml _form (lib_desc, screen_nane)
int |ib_desc;
char *screen_nane;

DESCRI PTI ON
This function displays a library-resident screen as a base form

Bringing up a screen as a form causes the previously displayed form and w ndows
to be discarded, and their nenory freed. The new screen is displayed with its
upper left-hand corner at the extreme upper left of the display (position (O,
0)). Any error in this function | eaves the display and JAMinternals in an
undefined state.

If the formcontains display data that are too big for the physical display,
they are truncated wi thout warning. However, if there are fields that won't fit
within the physical display, this function returns an error w thout displaying
the form

A screen library is a single file containing many screens. You can assenble one
fromindividual screen files using the screen librarian, JYACC formib.

Li braries provide a convenient way of distributing a |arge number of screens
with an application, and can i nprove efficiency by cutting down on filesystem
path searches.

The library descriptor is an integer returned by sml| _open, which you nust cal
before trying to read any screens froma library. Note that smr_w ndow and
related functions also search any open screen libraries.

This function should be called by JAM applications only under unusua
circunstances, as it does not update the control stack. You should execute a
control string to display the formi nstead.

RETURNS

Ois returned if no error occurred during display of the screen. -2 is
returned if lib_desc is invalid, or does not contain screen_nanme. -4
is returned if, after the screen has been cleared, the form cannot be
di spl ayed successfully because of a read error. -5 is returned if,
after the screen has been cleared, not enough nenory is available. -6
is returned if the library is corrupt.

VARI ANTS AND RELATED FUNCTI ONS
sm/|_w ndow (library_descriptor, screen_name, line, colum);
sml _at_cur (library_descriptor, screen_nane);
sml _open (library_nane);
sml _close (library_descriptor);
EXAMPLE
/* Put up a base formfroma previously opened library. */

extern int fornmibl

if (sml _form (formibl, "background"))
sm cancel ();

sm| _open - open a screen library
SYNOPSI S

int sml_open (lib_name)
char *lib_nane;

DESCRI PTI ON

Opens a screen library created by JYACC formlib, preparatory to displaying
screens therein. It allocates space to store information about the library,

| eaves the library file open, and returns a descriptor identifying the library.
That descriptor may subsequently be used by sml|_w ndow and rel ated functions,
to display screens stored in the library; or the library can be referenced
inmplicitly by smr_w ndow and related functions, which search all open screen
l'ibraries.

The library file is sought in all the directories identified by SMPATH and the
paranmeter to sminitcrt. Defining the SMFLIBS variable in your setup file to a

list of library names will cause this function to be called on the libraries;
all will then be searched automatically by smr_w ndow and vari ants.
Several libraries my be kept open at once. This may cause probl enms on systens

with severe limts on menory or sinmultaneously open files.
RETURNS
-1 if the library cannot be opened or read; -2 if too many libraries are
al ready open; -3 if the naned file is not a library; -4 if
insufficient nenory is avail able; O herw se, a non-negative integer
that identifies the library file.
VARI ANTS AND RELATED FUNCTI ONS

sml| _form (library_descriptor, screen_nane);
sml| _at_cur (library_descriptor, screen_nane);

sm|_w ndow (library_descriptor, screen_nane, line, colum);
sml _close (library_descriptor);
smr_w ndow (screen_nane, line, colum);

EXAMPLE

/* Prompt for the nane of a screen library until a

valid one is found. Assune the nenory-resident
* screen contains one field for entering the library nane,
* with suitable instructions. */

int |d;
extern char |ibquery[];

if (smd_ form (libqguery) < 0)
sm cancel ();
smd nsg line ("Please enter the nane of your screen library.");

do {
sm openkeybd ();
} while ((Id = sml_open (smfptr (1))) < 0);

sml|_w ndow - display a library-resident window at a given |ocation
SYNOPSI S

int sml_w ndow (lib_desc, screen_nane, start_line, start_col um)
int lib_desc, start_line, start_col umm;
char *screen_nane;

DESCRI PTI ON

The screen screen_nane is read fromthe library indicated by lib_desc, and

di splayed with its upper left-hand corner at (line, colum). The line and col um
are counted fromzero: if line is 1, the screen is displayed starting at the
second line of the screen.

What ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nbst window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the top nost,

or current, wi ndow. (See smwselect for a way to shuffle w ndows.)

If the window will not fit on the display at the location you request, JAM wi ||
adjust its starting position. If the wi ndow woul d hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow i s sinply noved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Simlar
adj ustments are made in the horizontal direction.

If, after adjustnment, the wi ndow contains display data that won't fit on the
display, it is brought up anyway, w thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

A screen library is a single file containing many screens. You can assenble one
fromindividual screen files using the screen librarian, JYACC formib.

Li braries provide a convenient way of distributing a |arge nunmber of screens
with an application, and can i nprove efficiency by cutting down on filesystem
path searches.

The library descriptor is an integer returned by sml| _open, which you nust cal
before trying to read any screens froma library. Note that smr_w ndow and
related functions also search any open screen libraries.

JAM provides the control string mechani smfor opening, closing, and keeping
track of wi ndows. If your code calls this function instead of executing a w ndow
control string, certain features of the JAMrun-time systemw |l not work as
expected, particularly the EXIT key.

RETURNS

Ois returned if no error occurred during display of the form -1 is
returned if the wi ndow could not be displayed successfully because the
format was incorrect. -2 is returned if lib_desc is invalid, or does
not contain screen_nanme. -3 is returned if the systemran out of
menory but the screen was restored successfully.

VARI ANTS AND RELATED FUNCTI ONS

sm| _open (library_nane);

sml| _form (library_descriptor, screen_nane);
sml _at_cur (library_descriptor, screen_nane);
sml _close (library_descriptor);

smr_w ndow (screen_nane, |ine, colum);

EXAMPLE
/* Bring up a window froma library. */
int 1d;

if ((1d =sml _open ("nmyforms")) < 0)
sm cancel ();

éﬁil_mﬂndow (ld, "popup", 5, 22);

sm | _close (Id):;

sm | abel _key - put a function key block | abel onto the screen

SYNOPSI S

int smlabel _key (label _nunber, |inel_ text,
i ne2_text)

i nt | abel _nunber;

char *linel_text, *line2_text;

DESCRI PTI ON

Certain termnals provide special areas on the screen to hold descriptions of
function key actions. This routine places a |abel into one of those bl ocks.
Label _nunber tells which block to use; the two strings will be placed on line 1
and line 2 of the block. (For a blank line, pass the enpty string.)

This function assunes that there are two |ines available per block. The KPAR and
KSET entries must be present in the video file in order for this routine to
work. Refer to the video nmanual in the Configuration Guide for instructions.
RETURNS

-1 if the | abel nunber is out of range, 0O otherw se.
EXAMPLE

/* Put any old label into the first two function key bl ocks. */

sm | abel _key(1, "blk1, Inil", "bl k1, In2");
sm | abel _key(2, "blk2, Inil", "blk2, In2");

smlast - position the cursor in the last field
SYNOPSI S

void smlast ();
DESCRI PTI ON

Pl aces the cursor at the first enterable position of the |last unprotected field
of the current form The first enterable position is the leftnost in a
left-justified field, and the rightnost in a right-justified field; furthernore,
if the field is digits-only, punctuation characters will be skipped.

Unli ke smhome, this function will not reposition the cursor if the screen has
no unprotected fields.

VARI ANTS AND RELATED FUNCTI ONS

sm hone ();
smgofield (field_nunber);

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Assune the last field nust be entered for confirnmation.
* This code puts the cursor there, after the TRANSM T key
* is pressed. */

whil e (sm openkeybd () = XMT)
sm unprotect (sm_nunflds);
smlast ();
sm openkeybd ();
if (smis_yes (smnunflds))
commit (); /* Finish whatever it is */

smlclear - erase LDB entries of one scope
SYNOPSI S

int smlclear (scope)
i nt scope;

DESCRI PTI ON
This function erases the values stored in the |ocal data block for all nanes
havi ng a scope of scope; |egal values are between 1 and 9. Constant vari abl es
havi ng scope 1 can be erased.
Refer to the Author's Guide for a discussion of the scope of LDB entries.
VARI ANTS AND RELATED FUNCTI ONS

smlreset (file_nane, scope);

EXAVMPLE

/* Clear out LDB entries of scope 6, which has been
* assigned to custoner information. */

#def i ne CUSTOVER_SCOPE 6

sml cl ear (CUSTOVER SCOPE);

smldb_init - initialize (or reinitialize) the l|local data bl ock
SYNOPSI S

void smldb_init ();
DESCRI PTI ON

This function creates an enpty index of named data itens by reading the data
dictionary, then loads values into themfrominitialization files. There is no
LDB prior to the execution of this function

Sel ected parts of the LDB, nanely those assigned a certain scope, can be
reinitialized using smlclear or smlreset.

This function is called automatically during JAMinitalization. Oher functions
that affect its behavior, such as smdicname and sm.i ni names, should be called
first.

VARI ANTS AND RELATED FUNCTI ONS

smlreset (filename, scope);
sm.ininames (file_list);
sm di cname (dictionary_nane);

EXAMPLE

/* After a catastrophic application failure, reboot the index. */
if (bad_data ())

{
smlidb_init ();

sm | eave - prepare to |eave a JAM application tenporarily
SYNOPSI S

void sm |l eave ();
DESCRI PTI ON

It may at tinmes be necessary to |leave a JAM application tenporarily: to escape
to the command interpreter, to execute sone graphics functions, and so on. In

such a case, the ternminal and its operating system channel need to be restored
to their normal states.

This function should be called before leaving. It clears the physical screen
(but not the internal screen inmage); resets the operating system channel; and
resets the termnal (using the RESET sequence found in the video file).

VARI ANTS AND RELATED FUNCTI ONS
smreturn ();
EXAMPLE
#i ncl ude "sndefs. h"
/* Escape to the UNI X shell for a directory listing */

smleave ();

system ("Is -1");

smreturn ();

smc_off ();

smd_msg_line ("Ht any key to continue", BLINK | WH TE)
sm get key ();

smd nsg line ("", WH TE);

smrescreen ();

smlength - get the maxinumlength of a field
SYNOPSI S

int smlength (field_numnber)
int field_number;

DESCRI PTI ON

Returns the maxi mum |l ength of the field specified by field _nunber. If the field
is shiftable, its maximum shifting length is returned. This length is as defined
in jxform and has no relation to the current contents of the field; use
smdlength to get the length of the contents.

RETURNS
Length of the field, or O if the field is not found.
VARI ANTS AND RELATED FUNCTI ONS

smn_length (field_name);
sm dl ength (field-nunber);

EXAMPLE

/* Compute the number of blanks left in a
* right-justified field (nunber 6), and fill them
* with asterisks. */

i nt bl anks, k;
char buf[256];

bl anks = smlength (6) - smdlength (6);
for (k = 0; k < blanks; ++k)

buf[k] = "*";
smgetfield (buf + blanks, 6);
smputfield (6, buf);

smlngval - get the long integer value of a field
SYNOPSI S
#i ncl ude "sndefs. h"

Il ong sm I ngval (field_number)
int field_nunber;

DESCRI PTI ON

Returns the contents of field_nunber, converted to a long integer. Al non-digit
characters are ignored, except of course for a leading plus or mnus sign

RETURNS
The long value of the field; 0 if the field is not found.
VARI ANTS AND RELATED FUNCTI ONS
sme_Ingval (field_name, elenment);
sm.i _Ingval (field_name, occurrence);
sm n_I ngval (field_nane);
smo_| ngval (field_nunmber, occurrence);
sm.intval (field_nunber);
smltofield (field_nunber, value);
EXAMPLE
#i ncl ude "sndefs. h"

/* Retrieve the nunber of fish in one particular sea
* (a big nunber) fromthe screen. */

#defi ne MEDI TERRANEAN 4
I ong fish;

fish = sme_Ingval ("seas", MeEDI TERRANEAN)

smlreset - reinitialize LDB entries of one scope

SYNOPSI S

int smlreset (file_name, scope)
char *file_nane;
i nt scope;

DESCRI PTI ON

This function sets |local data block entries to values read fromfile_nane. Scope
must be between 1 and 9; references in the file to LDB entries not belonging to
scope are ignored. All variables belonging to scope are cleared before
reinitializing; therefore, this function erases variables that are not in the
file.

The file may be in the current directory, or in any of the directories listed in
the SMPATH environnent variable. It contains pairs of nanes with val ues, each
enclosed in quotes. Wile all whitespace outside the quotes is ignored, we
recommend for readability that the file have one nane-value pair per line. If an
entry has multiple occurrences, it may be subscripted in the file. Here are a
few sanple pairs:

"husband” "Ronal d Reagan”

"wife[l]" "Jane Wman"

"wife[2]" "Nancy Davis"
If you plan to use this function, we recommend that you group your variables in
separate files by scope. You can use sm.ininanes to list a nunber of files for
initialization.
RETURNS

-1 if error (file not found or scope out of range), O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

smlclear (scope);

EXAMPLE

/* Reinitialize LDB entries of scope 6, which has been
* assigned to customer information. */

#defi ne CUSTOVER_SCOPE 6
#define CUSTOMER INIT "custoners.ini"

smlreset (CUSTOVER INIT, CUSTOMER SCOPE);

smlstore - copy everything fromscreen to LDB
SYNOPSI S

int smlstore ();
DESCRI PTI ON
Copies data fromthe screen to local data block entries with matching nanes. In
its loop, this function makes use of a data structure set up during screen
di splay that identifies which fields have LDB entries.
This function is simlar to the Release 3 function |db_store. It is called
automatically by the JAM screen display |ogic, when bringing up a new screen
and need not be called by application code except under special circumnmstances.
RETURNS

-3 if sufficient menory is not avail able, 0 otherw se.

VARI ANTS AND RELATED FUNCTI ONS

sm al l get (respect_flag);

smltofield - place a long integer in a field
SYNOPSI S
int smltofield (field_number, val ue)
int field_nunber;
| ong val ue;
DESCRI PTI ON
The long integer passed to this routine is converted to human-readable form and
pl aced in field_nunmber. If the nunmber is longer than the field, it is truncated
wi t hout warning, on the right or |left depending on the field' s justification.
RETURNS
-1 if the field is not found. O otherw se.
VARI ANTS AND RELATED FUNCTI ONS
sme_ ltofield (field_name, elenment, value);
smi _ltofield (field_name, occurrence, value);
smn_ltofield (field_nanme, value);
smo_ltofield (field_nunber, occurrence, value);
sm I ngval (field_nunber);
smitofield (field_nunber, value);
EXAMPLE
#i ncl ude "sndefs. h"
/* Set the nunmber of fish in the sea to a smallish nunmber. */

#defi ne MEDI TERRANEAN 4

sme_ ltofield ("seas", MEDI TERRANEAN, 14L);

smmflush - flush the nessage line
SYNOPSI S

void smmflush ();
DESCRI PTI ON

Forces updates to the nessage line to be witten to the display. This is useful
if you want to display the status of an operation with smd_nsg_line, wthout
flushing the entire display as smflush does.

VARI ANTS AND RELATED FUNCTI ONS
smflush ();

EXAMPLE

#i ncl ude "sndefs. h"

/* Process a big pile of records, providing status as we go. */
char buf[80];
int Kk;

k = 0;

do {
sprintf (buf, "Processing record %", k + 1);
smd _nsg _line (buf, REVERSE | WHI TE)
smmflush ();

} while (process (records[k++]) >= 0);

sm nmax_occur - get the maxi mum nunmber of occurrences that can be
entered into an array or field

SYNOPSI S

int smmax_occur (field_nunber)
int field_nunber;

DESCRI PTI ON

If the field or array designated by field nunber is scrollable, returns the
maxi mum nurber of items the scroll can hold. Note that this is the maxi mum as
defined by jxformor a call to smsc_nmax, not the greatest number actually
entered so far.

If the field is an element of a non-scrollable array, the function returns the
nunber of elenents in the array. If it is a non-scrollable single field, the
function returns 1.

RETURNS
Oif the field designation is invalid; 1 for a non-scrollable single field;
The nunber of elenments in a non-scrollable array; The maxi mum nunber
of items in a scrollable array or field.
VARI ANTS AND RELATED FUNCTI ONS
sm n_nmax_occur (field_nane);
EXAMPLE
#i ncl ude "sndefs. h"
/* Find the nunber of occurrences in an array of
whol e nunbers, say numbers of children, and
* allocate some nenory to hold them */

int *children, howrany;

if ((howmany = sm n_max_occur ("children")) > 0)
children = (int *)call oc(howrany, sizeof(int));

sm nenu_proc - get a nmenu sel ection
SYNOPSI S
#i ncl ude "sndefs. h"

int smnmenu_proc (type)
int type;

DESCRI PTI ON

Al'l ows you to tab, backtab, arrow, and scroll through a nenu screen, and sel ect
an itemfromit. The entry under the cursor is displayed in reverse video. The
routine returns to the calling programwhen you hit EXIT or a function key (PF,
SPF, or APP), or nmake a selection. A selection is made when you hit the TRANSM T
key, or a sequence of characters that uniquely match a nenu entry (see

np_string).

Hitting a key that matches the first character of a nenu entry on the screen
causes the cursor to be positioned to that entry. If type is UPPER (or LOVER)
any al phabetic keyboard entry is translated to upper (or | ower) case before a
match is attenpted. If type contains both UPPER and LOWER, both translations are
tried; the search is totally insensitive to case. Any other value yields a
case-sensitive search. The search al ways starts at the begi nning of the nenu,
and ignores off-screen data; to see off-screen nenu itenms you nust use the

scrol ling keys.

Each menu sel ection nmust be defined as initial data in a tab-unprotected nenu
field. Furthernore, unless you change the default setting by calling np_string,
each sel ection must begin with a unique character.(The JAM run-tine system does
so during its standard initialization sequence. You can define arbitrary return
codes for each field using jxform the default is to use the first character of
the menu entry itself. See the JAM Author's Guide for a detailed discussion of
menu creation and return val ues.

Two auxiliary functions, np_options and np_string, can alter the behavior of the
cursor; refer to their definitions.

Menu control strings are not executed within this function, but at a higher
l evel of the JAMrun-time system If you call this function, do not expect your
selection's control string to be executed.

RETURNS

If the cursor is not within a field, returns 0. The transl ated val ue (see
snkeys.h) of EXIT, or of any other function key except TRANSMT. If a
selection is made with TRANSM T or a nmenu character, the menu return
code defined in jxform or the first character of the selected entry
if there is no return code.

EXAMPLE

See smnp_string for an exanple.

sm np_options - define cursor notion for sm menu_proc
SYNOPSI S
#i ncl ude "sndefs. h"

int smnp_options (wap, vertical _arrow,
hori zontal _arrow)
int wap, vertical _arrow, horizontal _arrow,

DESCRI PTI ON

This function takes three paranmeters. Wap determ nes whether the arrow keys
wrap, that is, whether the cursor procedes fromthe rightnost field around to
the leftmost on right arrow (and so forth). The TAB and BACKTAB keys al ways
wrap. Vertical _arrow and horizontal _arrow i nfl uence which field the arrow keys
Il and you in when wapping is not inmnent. If you want to | eave any of the
settings unchanged, pass the special val ue OK_NOCHANGE

The menonics |isted below are defined in sndefs.h ; they are the same as those
used by ok_options.

wr ap:

OK_NOWRAP No wrapping. The terminal beeps if an attenpt is nmade to
arrow past the edge of the current form (or w ndow).
OK_NOWRAP i s overridden by OK TAB and equi val ent
settings.

OK_WRAP Default. The arrow keys wap. Vertical arrows wrap

straight frombottomto top and vice versa; right arrow
wraps to the beginning of the next (or first) line, left
arrow to the end of the previous (or last) I|ine.

vertical arrow (up- and down-arrow keys):

OK_NXTLI NE The cursor will be positioned to the closest field whose
line is closest to the current |ine.

OK_FREE Default. Same as OK_NXTLI NE

OK_RESTRI CT The arrow keys are not operative; the ternmnal will beep
if they are pressed.

OK_SWATH The cursor will be positioned to the closest field that
overl aps the "swath" containing the current field.

OK_COLM Sanme as OK_SWATH

OK_NXTFLD The cursor will be positioned to the field closest to

the current |ine and colum. The cal cul ati on uses the
di agonal di stance, assuming that the termnal has a 5 to
2 aspect ratio.

OK_TAB The arrow keys behave |ike TAB and BACKTAB

hori zontal arrow (left- and right-arrow keys):

OK_TAB The arrow keys behave |ike TAB and BACKTAB.

OK_FREE Default. Same as OK_TAB.

OK_RESTRI CT The arrow keys are not operative.

OK_COLM The cursor will be positioned to the closest field on
the current 1ine.

OK_SWATH Sanme as OK_COLM

OK_NXTLI NE The cursor will be positioned to the closest of those
fields whose columm is closest to the current col um.

OK_NXTFLD The cursor will be positioned to the field closest to

the current line and colum. The cal cul ati on uses the
di agonal distance, assumng that the termnal has a 5 to
2 aspect ratio.

If you define the SMMPOPTIONS variable in your setup file, it will cause this
function to be called automatically during start-up with the parameters you
specify there.
RETURNS
-1 if any paranmeter is invalid (nothing is changed); 0O otherw se.
VARI ANTS AND RELATED FUNCTI ONS
sm nenu_proc (type);
EXAMPLE
#i ncl ude "sndefs. h"

/* Restore the menu_proc options to their default values. */

if (smnp_options (OK WRAP, OK_FREE, OK_FREE))
sm cancel ();
}

smnp_string - set string option for sm.nmenu_proc
SYNOPSI S
#i ncl ude "sndefs. h"

int smnp_string (option)
int option;

DESCRI PTI ON

Sets the string option for smnenu_proc to one of the foll ow ng val ues. The
menoni cs are defined in sndefs. h

If option is OK NOSTRING (the default), each data key struck is compared agai nst
the initial character of each nenu item beginning with the first. As soon as a
match is found that entry is selected, regardl ess of whether there are other
itenms that begin with the sane character; therefore, the second and subsequent
duplicate entries can never be selected by a data key.

If option is OK STRING data keys are collected until the saved sequence is |ong
enough to match one nenu item unanmbi guously. As keys are collected, the cursor
moves to the itemclosest to the top that matches everything typed so far

If you define the SMMWSTRI NG variable in your setup file, it will cause this
function to be called automatically during start-up with the paranmeter you
specify there.

Suppose a nmenu contains the following itens, and the string option is on:

EITITTIIITTIITTTTT »
o o
° AAA Auto o
° Ace Body Work °
° Acne Auto Parts °
o o
SERRRRRRRRRRRRRRREZ

Typing a positions the bounce bar to the first item typing ¢ noves to the
second; typing mmoves to the third and selects it. Typing aa selects the first
item
RETURNS

-1 if the option is invalid, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sm nmenu_proc (type);

EXAMPLE

See above.

smnsg - display a nessage at a given colum on the status line
SYNOPSI S

void smnsg (colum, |ength, text)
int colum, |ength;
char *text;

DESCRI PTI ON

The nessage is nmerged with the current contents of the status line, and
di spl ayed begi nning at colum. Length gives the number of characters in text.

On terminals with onscreen attributes, the columm position may need to be
adjusted to allow for attributes enmbedded in the status line. Refer to

smd _nsg_line for an explanation of how to enbed attributes and function key
names in a status |line nessage.

This function is called, for exanple, by the function that updates the cursor
position display (see smc_vis).

VARI ANTS AND RELATED FUNCTI ONS
smd_nmsg_line (nmsg);

EXAMPLE

#i ncl ude "sndefs. h"

/* This code displays a nmessage, then chops out
* part of it. */

char *text0O =" "
char *textl = "Message is displayed on the status |line at col 1."

smneg(l, strlen(textl), textl);
smnsg(1l2, strlen(text0), text0);

smnsg_get - find a nessage given its nunber
SYNOPSI S

#i ncl ude "sndefs. h"
#i ncl ude "snmerror. h"

void *sm nsg_get (nunber)
i nt numnber;

DESCRI PTI ON

The nessages used by JAMIibrary routines are stored in binary nmessage files,
which are created fromtext files by the JYACC msg2bin utility. Use sm nsgread
to | oad nmessage files for use by this function

This function takes the nunber of the nessage desired and returns the nessage,
or a less informative string if the nmessage nunber cannot be nmatched.

Messages are divided into classes based on their nunmbers, with up to 4096
messages per class. The nmessage class is the message nunber divided by 4096, and
the nessage offset within the class is the nmessage nunmber nodul o 4096.

Predefi ned JAM nessage nunbers and cl asses are defined in snerror.h .

RETURNS

The desired nessage, if found; the nessage class and nunber, as a string,
ot herw se.

VARI ANTS AND RELATED FUNCTI ONS

sm nmegfind (nunber);
sm nmsgread ();

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snerror. h"

/* Assume that an anxi ous programer has just typed
* in the question, "WII ny boss |ike ny new progran®”
* This code fragnment answers the question. */

smn_putfield ("answer", rand() & 1 ?
sm nsg_get (SM _YES)
sm nsg_get (SM_NO));

smnegfind - find a nessage given its nunber
SYNOPSI S

#i ncl ude "sndefs. h"
#i ncl ude "snmerror. h"

char *sm nsgfind (nunber)
i nt numnber;

DESCRI PTI ON
This function takes the number of a screen manager message, and returns the
message string. It is identical to smnsg_get, except that it returns zero if
t he message nunber is not found.
Screen manager nessage nunbers are defined in snerror.h
RETURNS

The nessage, or 0 if the nessage nunber is out of range.

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snmerror. h"

/* print out nmessage #4 */

sprintf (buf, "The message reads: %\n", sm nmsgfind (SM BADKEY));
sm quiet_err (buf);

sm nsgread - read nessage file into nmenory
SYNOPSI S
#i ncl ude "smerror. h"

int smnsgread (code, class, node, arg)
char *code

int class;

i nt node;

char *arg

DESCRI PTI ON

Reads a single set of nmessages froma binary nessage file into nenory, after
whi ch they can be accessed using smnmsg_get and sm nsgfi nd. Code selects a
single nessage class froma file that may contain several classes:

Code Cl ass Contents

SM SM_MSGS Screen manager nessages

FM FM_MSGS For maker (xform nessages

IM JM_MSGS JAM run-ti ne nmessages

JX JX_MSGS JAM For maker (jxform nmessages
(bl ank) Undesi gnhat ed user messages

Class identifies a class of nessages. Classes 0-7 are reserved for user
messages, and several classes are reserved to JAM see snmerror.h . As nmessages
with the prefix code are read fromthe file, they are assigned nunbers
sequentially begi nning at 4096 tinmes class.

Mode is a menonic or mMmenonics drawn fromthe following list. The first five
i ndicate where to get the nessage file; at |east one of these nust be supplied.
The other four nodify the basic action.

Mhenoni ¢ Action

MSG_DELETE Del ete the message class and
recover its nenory.

MSG_DEFAULT Use the default file defined by the
SMMSGS set up vari abl e.

MSG_FI LENAME Use a file naned in arg.

MSG_ENVI RON Use the file naned in an environnent
vari abl e named by arg.

MSG_MEMORY Use a nmenory-resident file whose address
is given by arg.

MSG_NOREPLACE Modi fier: do not overwrite previously
i nstall ed nessages.

MSG_DSK Modi fier: leave file open, do not read into
menory

MSG_ INIT Modi fier: do not use screen manager
error reporting.

MSG_QUI ET Modi fier: do not report errors.

You can or MSG_NOREPLACE with any npode except MSG DELETE, to prevent overwiting
messages read previously. Error nmessages will be displayed on the status |ine,

if the screen has been initialized by sminitcrt; otherwise, they will go to the
standard error output. You can or MSGINIT with the node to force error nessages

to standard error. Combining the node with MSG QUI ET suppresses error reporting
al t oget her.

If you or MSG DSK with the npde, the nmessages are not read into nmenory. |nstead
the file is left open, and smnsg_get and smnsgfind fetch them from di sk when
requested. If your nmessage file is large, this can save substantial nenory; but
you shoul d remenber to account for operating systemfile buffers in your

cal cul ati ons.

Arg contains the environnment variable name for MSG ENVIRON;, the file nane for
MSG_FI LENAVE; or the address of the nmenory-resident file for MSG_MEMORY. It may
be passed as zero for other nodes.

RETURNS

O if the operation conpleted successfully; 1 if the nmessage class was
already in menory and the node included MSG_NOREPLACE; 2 if the node
was MSG DELETE and the nessage file was not in nenmory; -1 if the node
was MSG_ENVI RON or MSG _DEFAULT and the environment variable was
undefined; -2 if the node was MSG_ENVI RON, MSG_FI LENAME, or
MSG_DEFAULT and the nessage file could not be read from di sk; other
negative values if the nmessage file was bad or insufficient menmory was
avai | abl e.

VARI ANTS AND RELATED FUNCTI ONS

sm nmsg_get (nunber);
sm nsgfind (nunber);

EXAVPLE

#i ncl ude "sndefs. h"
#i ncl ude "snmerror. h"

kkhkhkkhkhkkkhkkkhkkkhkkkhkkkk*k kkhkhkkhkhkkhkhkkhkhkhkdhkkrkhkkkhhkhkkkk*k
/ Exanple 1

* These calls are issued by sminitcrt() to | oad
* standard nessages and one set of user messages. */

sm nsgread ("SM', SM MSGS, MSG DEFAULT, (char *)0);
sm nsgread ("", 0, MSG _DEFAULT, (char *)0);

/***************** Exarrpl e 2 khkkkkhhkxkdkrkkhkhkxkdxkkhkxk*k

* This code fragment duplicates the Release 3 routine
* smmsginit(). */

int smneginit (menfile)
char nmenfile[];

{

int smneginit (msg_file)
char * nsg_file;

{

int mode = (nmsg_file ? MSG_MEMORY : MSG DEFAULT | MSG_NOREPLACE)
| MSG_INT;

if (smnmegread ("SM', SM MSGS, node, msg_file) < 0 |
sm nsgread ("JM', JM MSGS, node, msg file) < 0 ||
sm nsgread ("FM', FM MSGS, nmode, nsg file) < 0 |
sm nsgread ("JX", JX _MSGS, node, msg _file) < 0)

{
exit (RET_FATAL);

}

sm nsgread ((char *)0, O, node & ~MSG_INIT | MSG QUIET, nsg_file);
return (0);

sm mv ndow - display a status nessage in a w ndow
SYNOPSI S

int smmv ndow (text, l|ine, columm)
char *text;

int |line;

int col um;

DESCRI PTI ON

This function displays text in a pop-up w ndow, whose upper |eft-hand corner
appears at line and columm. The line and columm are counted from zero: if line
is 1, the top of the window will be on the second line of the display. The

wi ndow itself is constructed on the fly by the run-tine systenmi no data entry is
possible init, nor is data entry possible in underlying screens as long as it
is displayed. Make sure that smclose windowis called after this function.

Al'l the percent escapes for status nessages, except %M are effective; refer to
smd nsg line for a list and full description. If either line or colum is
negati ve, the window will be displayed according to the rules given at
smr_at_cur.

RETURNS

-1 if there was a malloc failure. 1 if the text had to be truncated to fit
in a wi ndow O ot herw se

VARI ANTS AND RELATED FUNCTI ONS
smd_nsg line (text, attribute);
EXAMPLE

/* By judicious use of WN's, it is possible to get your
messages centered on the screen when you call
sm_mav ndow() .

*/

voi d poem ()

sm mn ndow ("The world is too much with us. Late and soon, %\
CGetting and spending, we |lay waste our powers. %\
Little we see in Nature that is ours; %\
We have given our hearts away, a sordi d boon! %\%\
The sea that bares her bosomto the Mon, %\
The winds that will be raging at all hours, %\
And are up-gathered now |ike sleeping flowers, %\
For this, for everything, we are out of tune; %\

It noves us not. Great Cod! |'d rather be%wW
A pagan, suckled in a creed outworn; %\\
So might |, standing on this pleasant |ea, %\

Have glinpses that would nake me | ess forlorn: %\
Catch sight of Proteus rising fromthe sea, %\
O hear old Triton blow his wreathed horn.",
6, 16);
}

smn_1cl ear _array clear all data froma single scrolling array
sm n_1protect
selectively protect a field sm.n_2lunprotect
selectively unprotect a field smn_ant _format
format data and wite to a field sm.n_aprotect
protect an entire array or scroll smn_aunprotect
unprotect an entire array or scroll smn_bitop
mani pul ate field edit bits smn_chg attr
change the display attribute(s) of a field
sm n_cl ear_array
clear all data froma scrolling array and parall el
arrays smn_dbl val
get the deciml value of a field smn_dl ength
get the length of data stored in a field smn_dtofield
wite decimal value to a field smn_edit_ptr
get special edit smn_fldno
* see next page * smn_fptr
get copy of data in field smn_fva
force validation of a field smn_getfield
copy data fromfield into buffer smn_gofield
position cursor to a field smn_intva
get integer value of data in field smn_is_yes
test field for yes smn_itofield
wite integer value to field smn_length
get length of field smn_I ngva
get long integer value of data in field smn_Itofield
wite long integer value to field smn_nax_occur
get maxi mum occurrence of field smn_ndt_cl ear
reset field s MDT bit smn_npd_test
test field s MDT bit smn_noval bit
reset field' s validated bit smn num.itens
get nunmber of items entered in scrollable field or
array smn_off_gofield
move cursor to specified offset in a field
sm n_pr ot ect
protect field fromdata entry smn_putfield
write data string to field smn_size_of _array
get number of elements in an array sm.n_unprotect
allow data entry into field smn_wsel ect
sel ect a hidden w ndow by nane

DESCRI PTI ON

Each or the above functions accesses a field by neans of the field nane. For a
description of smn_fldno, see the next page. For a description of any other
function listed above, | ook under the related function without n_in its nane.
For exanmple, smn_ant _format is described under smant _format. |f the naned
field is not on the screen, these functions will attenpt to access a sinilarly
named entry in the | ocal data bl ock

smn_fldno - get the field nunmber of a naned field
SYNOPSI S

int smn_fldno (field_nane)
char *field_nane;

DESCRI PTI ON

Returns the field nunber of a field specified by name, or the base field nunber
of an array specified by nane.

RETURNS

An integer ranging from1l to the maxi mum nunber of fields on the current
form O if the field name is not found.

VARI ANTS AND RELATED FUNCTI ONS
sme_fldno (field_nane, elenment)
EXAMPLE

#i ncl ude "sndefs. h"

/* Wite a list of real numbers to the screen. The first
* and last fields in the list are tagged with speci al nanes.
* Actually, smdtofield () would be nmore convenient.
*/
int k, first, last;
char buf[256];
doubl e val ues[];
/* set up el sewhere... */

last = smn_fldno ("last");

first = smn_fldno ("first");

for (k = first; k & k <= last; ++k)

{
sprintf (buf, "94f", values[k - first]);
smant_format (k, buf);

smnl - tab to the first unprotected field beyond the current |ine
SYNOPSI S

void smnl ();
DESCRI PTI ON
This function noves the cursor to the next itemof a scrolling field or array,
scrolling if necessary. Unlike the down-arrow, it will open up a blank scrolling

itemif there are no nore bel ow (but the maxi mum has not yet been exceeded).

If the current field is not scrolling, the cursor is positioned to the first
unprotected field, if any, following the current line of the form If there are
no unprotected fields beyond there, the cursor is positioned to the first
unprotected field of the form

If the formhas no unprotected fields at all, the cursor is positioned to the
first colum of the Iine following the current line; if the cursor is on the
last line of the form it goes to the top left-hand corner of the form

This function is ordinarily bound to the RETURN key.
VARI ANTS AND RELATED FUNCTI ONS

smtab ();

sm hone ();

smlast ();

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Scuttle down a scrolling array until we come
* to a nonblank item or run out of array. */

char buf[256];

while (smt_scroll (smfldnunmber + 1) &&
smgetfield (buf, smfldnunber + 1) == 0)

{

}

smnl ();

smnoval bit - forcibly invalidate a field
SYNOPSI S

int smnoval bit (field_numnber)
int field_number;

DESCRI PTI ON

Resets the VALIDED bit of the specified field, so that the field will again be
subject to validation when it is next exited, or when the screen is validated as
a whol e.

JAM sets a field' s VALIDED bit automatically when the field passes all its
validations. The bit is initially clear, and is cleared whenever the field is
altered by keyboard input or by a library function such as sm putfield.

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sme_noval bit (field_name, element)
sm.i_noval bit (field_nane, occurrence)
smn_noval bit (field_nane)

smo_noval bit (field_nunber, occurrence)
smfieldval ();

sms_val ();

EXAMPLE

#i ncl ude "sndefs. h"

/* Here is a validation function for a "last_nane"
* field. When it is changed, it marks the

* "first_name" field, which depends on it, invalid. */

int validate (field, data, occur, bits)
char *data

if (bits & VALIDED) /* Not really changed */
return O;

smn_noval bit ("first_nane");
return O;

sm num occurs - count the occurrences in a scrollable field or array
SYNOPSI S

int smnumoccurs (field_numnber)
int field_number;

DESCRI PTI ON

Returns the nunmber of itens actually entered so far into the scrollable field or
array identified by field_nunber. They may have been entered either through the
keyboard, or through calls to smputfield or simlar functions.

This count is different fromthe maxi num capacity of a scroll, which you can
retrieve by calling smmax_occur

RETURNS

-1 if the field is not found; otherw se, the nunber of itens entered,
possi bly 0.

VARI ANTS AND RELATED FUNCTI ONS

sm n_num occurs (field_name);
sm max_occur (field_nunber);

EXAMPLE

#i ncl ude "sndefs. h"

/* Compute the number of unused itens in this scroll. */
i nt unused;

unused = sm n_max_occur ("hatpins") -
sm n_num occurs ("hatpins");

sm o_achg change the display attribute of a scrolling item
sm o_am _for mat
format a currency value and wite to occurrence
smo_bitop
mani pul ate an occurrence's edit bits smo_chg_attr
change the display attribute of a field smo_dblva
get deci mal val ue of occurrence smo_dl ength
get length of data in occurrence smo_doccur
del ete an occurrence froman array or scrol
smo_dtofield
write decimal value to occurrence smo_fptr
get copy of occurrence's data smo_fva
force validation of an occurrence smo_getfield
copy data from occurrence into buffer smo_gofield
position cursor to occurrence smo_intva
get integer value of occurrence sm o_ioccur
insert a blank occurrence into an array or scrol
smo_itofield
write integer value to occurrence smo_Il ngva
get long integer value of occurrence smo_ltofield
write long integer value to occurrence smo_ndt_cl ear
reset MDT bit of an occurrence smo_nod_test
test MDT bit of an occurrence sm o_noval bit
reset validated bit of an occurrence smo_off_gofield
pl ace the cursor in the mddle of an occurrence
smo_putfield
wite data string to occurrence

DESCRI PTI ON

Each of the above functions refers to data by field nunber and occurrence
number. As used in the above functions, occurrence neans

1. item if the field or array is scroll able;
2. element, if the specified field is part of a non-scrollable array; or
3. the specified field, if neither scrollable nor an array.

If the occurrence is zero, the reference is always to the current contents of
the specified field.

For the description of a particular function, |ook under the related function
without o_in its nanme. For exanple, smo_am format is described under
smant _formt.

smoccur_no - get the occurrence number of data in the current field
SYNOPSI S
int smoccur_no ();
DESCRI PTI ON
Returns the occurrence nunber of the data itemin the current field. If the
current field is scrollable, the occurrence nunber is the itemID, that is, the
items index in the whole scroll. If the field is an elenment of a non-scrollable
array, the occurrence nunber is the field s el enent nunmber. O herw se, the
occurrence nunber is 1
RETURNS
Oif the cursor is not ina field; 1 if the cursor is in a field that is
neither scrollable nor an array elenent; The el ement nunber if the
cursor is in a non-scrollable array; The itemid if the cursor is in a
scrollable field or array.
VARI ANTS AND RELATED FUNCTI ONS
sm getcurno ();
EXAMPLE
#i ncl ude "sndefs. h"

/* Find the nunber of the scrolling itemunder the cursor
* and scroll down to the next higher multiple of 5. */

int thisn;

thisn = smoccur_no ();
smrscroll (smgetcurno (), 5 - (thisn %5));

smoff_gofield - nove the cursor into a field, offset fromthe |eft
SYNOPSI S

int smoff_gofield (field_nunber, offset)
int field_nunmber, offset;

DESCRI PTI ON

Moves the cursor into field_number, at position offset within the field's
contents, regardless of the field' s justification. The field' s contents will be
shifted if necessary to bring the appropriate piece onscreen

If offset is larger than the field length (or the maximumlength if the field is
shiftable), the cursor will be placed in the rightnost position

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sme_off_gofield (field_nane, elenment, offset);
smn_off_gofield (field_nanme, offset);

smi_off _gofield (field_nane, item.id, offset);
smo_off _gofield (field nunber, item.id, offset);
smgofield (field _nunber);

smdisp_off ();

smsh_off ();

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude <ctype. h>

/* Place the cursor over the first enbedded bl ank in the
* "nanes" field. */

char buf[256], *p;
int |ength;

I ength smn_getfield (buf, "nanmes");
for (p buf; p < length; ++p)
if (isspace (*p))
br eak;
smn_off _gofield ("nanmes", p - buf);

sm ok_options - set openkeybd options
SYNOPSI S
#i ncl ude "sndefs. h"

int smok_options (block, wap, fld_ reset,
vert _arrow, horiz_arrow, val _opt)

int block, wap, fld_ reset;

int vert_arrow, horiz_arrow, val _opt;

DESCRI PTI ON

The six options set by this function control how the function sm openkeybd
responds to cursor notion keys and other keyboard input.

The first defines the appearance of the cursor. The second detern nes whet her
wr appi ng occurs on arrow keys. The third determ nes whether the arrow keys can
be used to enter a field in the nmddle. The next two options define cursor
movenent in response to the arrow keys. The | ast determ nes when field
val i dation is perfornmed.

Si x argunments nust be passed, even if you want default values for sone of them
Use the special value OK_NOCHANGE to | eave a setting unaltered.

Mhenoni cs for setting the options are given in sndefs.h and are |isted bel ow
These mmenonics are al so used for smnp_options.

bl ock:

OK_NOBLOCK Default. The cursor occupies one character position

OK_BLOCK The cursor fills the field. (Actually, the cursor is
turned off and the current field nade reverse video.)

wr ap:

OK_NOWRAP Default. No wapping. The term nal beeps if an attenmpt is
made to arrow past the edge of the current form (or
wi ndow) .

OK_WRAP The arrow keys wap. Vertical arrows wap straight from
bottomto top and vice versa; right arrow waps to the
begi nning of the next (or first) line, left arrowto the
end of the previous (or last) I|ine.

fld reset:

OK_NORESET Default. The arrow keys can be used to enter the middle
of a field.

OK_RESET Wen a field is entered, the cursor always goes to the

first data position (allowing for justification, and
punctuation in digits-only fields).

OK_ENDCHAR Default off. When a character is typed at the | ast
position of a no-autotab field, beep the term nal instead
of overwiting the last character

vert _arrow (up and down arrow keys):

OK_FREE Default. Free cursor novenent.

OK_RESTRI CT The arrow keys will not take the cursor out of the
current field.

OK_COLM The cursor will be positioned to the closest field
(observing wapping, if set) that overlaps the current
col um.

OK_SWATH The cursor will be positioned to the closest field

(observing wapping, if set) that overlaps the "swath"
containing the current field.

OK_NXTLI NE The cursor will be positioned to the closest of those
fields (observing wapping, if set) whose line is closest
to the current |ine.

OK_NXTFLD The cursor will be positioned to the field closest to the
current line and colum. The cal cul ation uses the
di agonal distance, assuming that the terminal has a 5 to
2 aspect ratio.

OK_TAB The arrows behave |ike TAB and BACKTAB, except that the
up-arrow goes to the end of the field instead of the
begi nni ng.

horiz_arrow (left and right arrow keys):

OK_FREE Default. Free cursor novenent.

OK_RESTRI CT The arrow keys will not take the cursor out of the
current field.

OK_COLM The cursor will be positioned to the closest field on the
current line.

OK_SWATH Sanme as OK_COM

OK_NXTLI NE The cursor will be positioned to the closest field

(observing wapping, if set) whose colum is closest to
the current col um.

OK_NXTFLD The cursor will be positioned to the field closest to the
current line and colum. The cal cul ation uses the
di agonal distance, assuming that the terminal has a 5 to
2 aspect ratio.

OK_TAB The arrows behave |ike TAB and BACKTAB, except that the
left-arrow goes to the end of the field instead of the
begi nni ng.

val _opt:

OK_NOVALI D Default. Field validations are performed only on TAB and
RETURN keys.

OK_VALI D Val i dati ons are perfornmed whenever the field is exited

(by arrows, backtab, etc.)

If you define the SMOKOPTI ONS variable in your setup file, this function wll
automatically be called with the parameters you provide there.

RETURNS

Ois returned if all the argunments are valid; -1 is returned if they are
not. In this case, no options are affected.

VARI ANTS AND RELATED FUNCTI ONS
sm openkeybd ();
EXAMPLE
#i ncl ude "sndefs. h"
/* Restore the default sm openkeybd options. */

sm ok _opti ons(OK_NOBLOCK, OK NOWRAP, OK_NORESET,
OK_FREE, OK_NOVALI D);

sm openkeybd - open the keyboard for data entry
SYNOPSI S

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

int sm openkeybd ();
DESCRI PTI ON

This routine calls smgetkey to read the keyboard and translate function keys to
| ogi cal values. Ordinary keys, such as letters, nunmbers, and punctuation, are
entered into fields on the screen, subject to restrictions and edits defined
during screen authoring. Cursor notion keys, such as TAB, PAGE UP, and arrows,
move the cursor between data itenms; exiting a field causes its contents to be
val i dat ed agai nst conditions defined during authoring. Data editing keys, such
as ERASE, | NSERT, and BACKSPACE, make it easier to alter existing data. The
Author's CGuide, in the section on "data entry," lists all the function keys and
descri bes their actions.

The processing of TRANSM T, EXIT, HELP, and the cursor positioning keys is
determ ned by a routing table. For each key, if the EXECUTE bit is set, the
appropriate action is perfornmed (tab, field erase, etc.) If the RETURN bit is
set, sm.openkeybd returns the key to its caller. Since the bits are exani ned

i ndependently, four combinations of actions are possible. The default setting is
EXECUTE only (al though normal execution may cause the key to be returned, as in
the case of the EXIT key).

You may change key actions "on the fly". For exanple, to disable the BACKTAB
key, the application program woul d execute the follow ng:

sm route_tabl e[BACK] = O0;

while to make the ERASE key return to the application programw thout erasing
the field s contents:

smroute_tabl e[FERA] = RETURN,

The mmenonics are defined in snkeys.h . The PF, SPF, and APP function keys are
not in the routing table; they behave as though their entries were RETURN only.
A few keys, including RESCREEN and LOCAL PRI NT, are processed locally in

sm getkey and not returned to sm openkeybd, unless their RETURN bits are set
Not e that data keys may be nade returnabl e too.

sm openkeybd returns to its caller either when you press a returnable key, or
when you exit a return entry field (by conpleting or tabbing out). In the forner
case, it returns a code for the function key. When you exit a return entry
field, it returns the field s return code, if one has been defined. If one has
not, it returns the last key struck in the field (if the field is autotab) or
the rightnost data character in the field (if it is no-autotab).

Anot her function, sm ok _options, defines the specific behavior of certain keys
under sm openkeyhd.

Application progranmers should be aware that JAM control strings are not
executed within this function, but at a higher level within the JAMrun-tine
system |If you call this function, do not expect function key control strings to
wor k.

RETURNS
See above.
EXAMPLE

#i ncl ude "snkeys. h"

/* Beep at unwanted function keys.

int key;

switch (key = sm openkeybd ())
{
case PF1:
save_sonething ();
br eak;
case PF2:
di scard_sonething ();
br eak;
defaul t:
sm bel ();
br eak;

VARI ANTS AND RELATED FUNCTI ONS

sm ok_options (block, wrap,

*/

field reset,

varr ow,

harrow, val _opt);

smoshift - shift a field by a given amount
SYNOPSI S

int smoshift (field_nunber, offset)

int field_number;

int offset;
DESCRI PTI ON
Shifts the contents of field_number by offset positions. If offset is negative,
the contents are shifted right (data past the |left-hand edge of the field becone
visible); otherwi se, the contents are shifted left. Shifting indicators, if
di spl ayed, are adjusted accordingly.

The field may be shifted by fewer than offset positions if the maxi mum shifting
width is reached thereby.

RETURNS
The nunber of positions actually shifted, or O if the field is not found or
is not shifting.
VARI ANTS AND RELATED FUNCTI ONS

smn_oshift (field_nanme, offset);

EXAMPLE

#i ncl ude "sndefs. h"

/* Shift the Republicans gently toward the left,
* and the Denocrats toward the right.

* For extra credit, speculate on which shift is positive. */

smn_oshift ("GOP', 1);
smn_oshift ("DEM', -1);

smplcall - execute a JPL procedure
SYNOPSI S

int smplcall (procedure_name)
char *procedure_nane;

DESCRI PTI ON

Executes the JPL procedure contained in the file procedure_nanme. The file will
be sought in all the directories listed in SMPATH

Al t hough JPL procedures can return values through this function, their usual use
is to modify naned fields on the screen and in the LDB.

JPL, the JYACC Procedural Language, is the subject of a separate chapter
RETURNS

-1 if the procedure could not be | oaded; otherw se, the value returned by
the JPL procedure.

EXAMPLE
#i ncl ude "sndefs. h"

/* I magi ne that you want to validate a field using a JPL

* procedure, but only on certain conditions that are awkward
* to test in JPL. You could use the following field exit

* function: */

int validate (field, data, occur, bits)
char *data;

{

char *procnane;

if (bits & VALI DED)
return,
if (field_needs_validating (field, data) &&
(procnane = smedit_ptr (field, JPLTEXT)))
{

}

return smplcall (procname + 2);

smprotect - protect a field conpletely
SYNOPSI S
#i ncl ude "sndefs. h"

int smprotect (field_nunber)
int field_nunber;

DESCRI PTI ON

Protects the specified field fromall of the foll ow ng.

Mhenoni ¢ Meani ng

EPROTECT protect fromdata entry

TPROTECT protect fromtabbing into (or from
entering via any other key)

CPROTECT protect fromclearing

VPROTECT protect fromvalidation routines

To protect a field selectively, use smlprotect; to protect an entire array,
sm apr ot ect .

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sme_protect (field_nane, elenent)
smn_protect (field_name)

sm unprotect (field_nunber);

sm lprotect (field_nunber);

sm aprotect (field_nunber);

EXAMPLE
#i ncl ude "sndefs. h"

/* If the executive has a PC, unprotect a field to
* hold its nmake; otherw se, protect that field. */

if (smn_is_yes ("owns_pc"))
sm n_unprotect ("pc_nake");
el se smn_protect ("pc_make");

use

smputfield - put a string into a field
SYNOPSI S

int smputfield (field_nunber, data)
int field_number;
char *dat a;

DESCRI PTI ON

The string data is moved into the field specified by field nunmber. If the string
is too long, it is truncated without warning. If it is shorter than the
destination field, it is blank filled (to the left if the field is right
justified, otherwise to the right). If data is enpty or zero the field's
contents are erased; if the field is a date or tine field taking system val ues,
the date or tine is refreshed.

This function sets the field's MDT bit to indicate that it has been nodifi ed,
and clears its VALIDED bit to indicate that the field nmust be revalidated upon

exit. smn_putfield and smi_putfield will store data in the LDB if the naned
field is not present in the screen. However, if the LDB item has a scope of 1
(constant), its contents will be unaltered and the function will return -1

Notice that the order of argunments to this function is different fromthat of
argunments to the related function smgetfield.

RETURNS
-1 if the field is not found, O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

sme putfield (field_nane, elenment, data)
smi _putfield (field_nane, occurrence, data)
smn_putfield (field_nanme, data)
smo_putfield (field_nunmber, occurence)
smgetfield (buffer, field_nunber);

EXAMPLE

#i ncl ude "sndefs. h"

/* Performsmputfield specifying a field and a string the size
of the field. Verify that the field matches the string

* and that 0 is returned. */

smputfield (1, "This string has 29 characters");

smputjctrl - associate a control string with a key
SYNOPSI S

int smputjctrl (key, control _string, default)
int key;

char *control _string;

int default;

DESCRI PTI ON

Each JAM screen contains a table of control strings associated with function
keys. JAM al so nmintains a default table of keys and control strings, which take
ef fect when the current screen has no control string for a function key you
press. This table enables you to define systemw de actions for keys. It is
initialized fromIN CTRL setup vari abl es; see the section on setup in the
Configration Guide.

This function associates control _string with key in one of the tables, replacing
the control string previously associated with key (if there was one). If the
flag default is zero, the control string will be installed in the current

screen, and will disppear when you exit the screen; otherwise, it will go into
the systemw de default table.

If you install a default control string for a key that is defined in the current
screen, the definition in the screen will be used. Note also that JAMw || not
search back up the formor w ndow stack for function key definitions; only the
current screen and the default table are consulted.

Mhenoni ¢ values for key are in snkeys.h . The syntax for control strings is
defined in the Author's Cuide.

RETURNS

-5 if insufficient nenory is available; 0 otherw se.
EXAMPLE
#i ncl ude "snkeys. h"

/* These three calls duplicate the default associations for
* the JAMrun-time system */

smputjctrl (SPF1, "”jmgotop");
smputjctrl (SPF2, ""jmsystem');
smoputjctrl (SPF3, "~jmgoform);

sm query_nsg - display a question, and return a yes or no answer

SYNOPSI S

int smquery_nsg (nmessage)
char *nmessage;

DESCRI PTI ON

The nessage is displayed on the status line, until you type a yes or a no key. A
yes key is the first letter of the SM YES entry in the nessage file, and a no
key is the first letter of the SMNO entry; case is ignored. At that point, this
function returns a lower case 'y' or 'n' (English!) to its caller. Al keys

ot her than yes and no keys are ignored.

The initial attribute for the nessage defaults to highlighted reverse video; you
may alter it by calling smch_gnsgatt. Refer to smd nsg |ine for an expl anation
of how to enbed changed attributes and function key names in your nessage. The
old status line is redisplayed as soon as you answer the question

RETURNS

Lower - case ASCI | or 'n', according to the response.

y

VARI ANTS AND RELATED FUNCTI ONS

smd _nsg _|line (nmessage, attribute);
sm.is_yes (field_nunber);

EXAMPLE
#i ncl ude "sndefs. h"

/* Ask a couple of straightforward questions. Be careful of
* the dangling else, which has ruined many rel ationships. */

if (smquery_nsg("Are you single?") =="y")
if (smaquery_nsg("WII you go out with me?") == "y")
if (smquery_nsg("Do you like Clint Eastwood nmovies?") == "'n")

sm qui _nsg - display a nessage preceded by a constant tag, and reset
the nessage |ine

SYNOPSI S

void sm qui _nsg (nmessage)
char *nmessage;

DESCRI PTI ON

This function prepends a tag (nornmally "ERROR: ") to nessage, and displays the
whol e on the status line (or in awindowif it is too long). The tag may be
altered by changing the SM ERROR entry in the nmessage file. The nessage remains
visible until the operator presses a key; refer to smer_options for an exact
description of error message acknow edgement. If the nessage is |onger than the
status line, it will be displayed in a w ndow i nstead.

This function is identical to smquiet_err, except that it does not turn the
cursor on. It is simlar to smensg, which does not prepend a tag.

Several percent escapes provide control over the content and presentation of
status nessages. They are interpreted by smd_nsg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character follow ng the percent sign nust be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (9 for instance; see below) mnmust appear at the

begi nni ng of the nessage, i.e. before anything except perhaps another percent
escape.

If a string of the form %Annnn appears anywhere in the nmessage, the
hexadeci mal nunmber nnnn is interpreted as a display attribute to be
applied to the remni nder of the nessage. The tabl e bel ow gives the
nurmeric val ues of the |ogical display attributes you will need to
construct enbedded attributes. If you want a digit to appear

i medi ately after the attribute change, pad the attribute to 4 digits
with leading zeroes; if the follow ng character is not a | egal hex
digit, | eading zeroes are unnecessary.

If a string of the form %KEYNAME appears anywhere in the nessage,
KEYNAME is interpreted as a | ogical key mmenonic, and the whole
expression is replaced with the key | abel string defined for that key
in the key translation file. If there is no label, the % is stripped
out and the menonic renmains. Key menoni cs are defined in snkeys. h
it is of course the name, not the nunber, that you want here. The
menoni ¢ nust be in upper-case.

I f 9N appears anywhere in the nmessage, the latter will be presented in
a pop-up w ndow rather than on the status line, and all occurrences of
%N will be replaced by new ines.

If the message begins with a ¥B, JAMw || beep the term nal (using
sm bel) before issuing the nessage.

If the message begins with %N it will be presented in a pop-up w ndow
i nstead of on the status line. The wi ndow will appear near the bottom
center of the screen, unless it would obscure the current field by so
doing; in that case, it will appear near the top. |If the nmessage
begins with %vJ or %D, and is passed to one of the error nessage

di splay functions, JAMw Il ignore the default error nessage

acknow edgenment flag and process (for 9%W) or discard (for %D) the
next character typed.

Note that, if a message containing percent escapes - that is, %A B, % %N or
%N - is displayed before sminitcrt or after %Vis called, the percent escapes
will showup init.
Attribute Hex val ue

BLACK BLUE
GREEN
CYAN
RED
MAGENTA

YELLOW
VH TE

~N~NOoO OOk~ WNELO

B_BLACK 0 B _BLUE
100 B_GREEN
200 B_CYAN
300 B_RED
400 B_MAGENTA
500 B_YELLOW
600 B_WHI TE
700

BLANK 8 REVERSE
10 UNDERLN
20 BLI NK
40 HI LI GHT
80 DIM
1000

If the cursor position display has been turned on (see smc_vis), the end of the
status line will contain the cursor's current row and colum. If the nmessage
text would overlap that area of the status line, it will be displayed in a

wi ndow i nst ead.

VARI ANTS AND RELATED FUNCTI ONS
sm er_options (key, discard);
sm enmsg (nessage);
smerr_reset (message);
sm qui et _err (message);
sm awai t _space (nessage);
EXAMPLE
#i ncl ude "sndefs. h"

sm qui _nsg ("Be %Al7veewwwwy%A7 quiet. |'m hunting wabbits.");

sm quiet_err - display error nmessage preceded by a constant tag, and
reset the status line

SYNOPSI S

void sm quiet_err (nmessage)
char *nmessage;

DESCRI PTI ON

This function prepends a tag (nornmally "ERROR') to nmessage, turns the cursor on
and di splays the whole nessage on the status line (or in a windowif it is too
long). The tag may be altered by changing the SM ERROR entry in the nmessage
file. The nessage remmins visible until the operator presses a key; refer to

sm er_options for an exact description of error nmessage acknow edgenent. If the
message is longer than the status line, it will be displayed in a w ndow

i nst ead.

This function is identical to smqui_nsg, except that it turns the cursor on. It
is simlar to smerr_reset, which does not prepend a tag. Refer to smd_nsg_|ine
for an explanation of how to change display attributes and insert function key
nanes w thin a nessage.

VARI ANTS AND RELATED FUNCTI ONS

sm er_options (key, discard);
sm enmsg (nessage);
smerr_reset (message);

sm qui _nsg (nmessage);

sm awai t _space (nessage);

EXAMPLE

/* Display an error message that is surely |ong
* enough to be put into a w ndow. */

char *buf;
if ((buf = malloc (8192)) == 0)
{
smquiet_err ("Sorry, guy, |I'm %A0017all %A7 out of menmory. Here's \
500 bucks, why don't you just run down to the corner dealer and \

pick me up a neg?");
sm cancel ();
}

smr_at_cur - display a window at the current cursor position
SYNOPSI S

int smr_at_cur (screen_nane)
char *screen_nane;

DESCRI PTI ON

Di spl ays a wi ndow at the current cursor position, offset by one line to avoid
hiding that line's current display.

The naned screen is sought first in the nenmory-resident formlist, and if found
there is displayed using smd_w ndow. It is next sought in all the open screen
libraries, and if found is displayed using sm|_w ndow. Next it is sought on
disk in the current directory; then under the path supplied to sminitcrt; then
in all the paths in the setup variable SMPATH. If any path exceeds 80
characters, it is skipped. If the entire search fails, this function displays an
error message and returns.

VWhat ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nost window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the top nost,
or current, w ndow. (See smwselect for a way to shuffle w ndows.)

If the windowwill not fit on the display at the location you request, JAM wi ||
adjust its starting position. If the wi ndow woul d hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow is sinply nmoved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the windowis placed there. Sinilar
adj ustments are made in the horizontal direction.

If, after adjustment, the w ndow contains display data that won't fit on the
display, it is brought up anyway, wi thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

JAM provides the control string mechani smfor opening, closing, and keeping
track of windows. |If your code calls this function instead of executing a wi ndow
control string, certain features of the JAMrun-time systemw |l not work as
expected, particularly the EXIT key.

RETURNS

O if no error occurred during display of the window, -1 if the w ndow
cannot be successfully displayed because the format is incorrect; -2
if the formcannot be found; -3 if the systemran out of nenory but
the screen was restored to its former state.

VARI ANTS AND RELATED FUNCTI ONS
smr_form nane);

smr_w ndow (nanme, line, colum);
sm cl ose_w ndow ();

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* In a validation routine, if the field contains a
* special value, open up a window to pronpt for a
* second value and save it in another field. */

int validate (field, data, occur, bits)
char *dat a;

{
char buf[256];

if (bits & VALI DED)
return O;

if (strcnp(data, "other") == 0)

smr_at_cur ("getsecval");

if (sm.openkeybd () !'= EXIT)
smgetfield (buf, 1);

el se buf[0] = O;

sm cl ose_wi ndow ();

smn_putfield ("secval”, buf);

}

return O;

smr_form- display a screen as a form
SYNOPSI S

int smr_form (screen_nane)
char *screen_nane;

DESCRI PTI ON
This function displays the naned screen as a base form

Bringing up a screen as a form causes the previously displayed form and w ndows
to be discarded, and their nenory freed. The new screen is displayed with its
upper left-hand corner at the extreme upper left of the display (position (O,
0)). Any error in this function | eaves the display and JAMinternals in an
undefi ned state.

If the formcontains display data that are too big for the physical display,
they are truncated wi thout warning. However, if there are fields that won't fit
within the physical display, this function returns an error w thout displaying
the form

The naned screen is sought first in the nenmory-resident formlist, and if found
there is displayed using smd_w ndow. It is next sought in all the open screen
libraries, and if found is displayed using smIl_w ndow. Next it is sought on
disk in the current directory; then under the path supplied to sminitcrt; then
in all the paths in the setup variable SMPATH. |If any path exceeds 80
characters, it is skipped. If the entire search fails, this function displays an
error message and returns.

In the case of a return of -1 or -2, the previously displayed formis stil

di spl ayed and nmay be used. Ot her negative return code indicate that the display
is undefined; the caller should display another form before using screen manager
functions. The return code -2 typically nmeans that the nanmed screen does not

exi st; however, it may occur because the nmaxi num al |l owabl e nunber of files is

al ready open.

This function should be called by JAM applications only under unusua
circunstances, as it does not update the control stack. You should execute a
control string to display the forminstead.

RETURNS

Oif no error occurred; -1 if the screen file's format is incorrect; -2 if
the formcannot be found; -4 if, after the screen has been cl eared,
the form cannot be successfully displayed because of a read error; -5
if, after the screen was cl eared, the systemran out of menory; -7 if
the screen was |arger than the physical display, and there were fields
that woul d have fallen outside the display.

VARI ANTS AND RELATED FUNCTI ONS

smr_at_cur (name);
smr_w ndow (nanme, line, colum);

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude <setjnp. h>

/* 1f an abort condition exists, read in a special
* formto handle that condition, discarding all open
* wi ndows. */

extern jnmp_buf re_init;

if (sm.isabort (ABT_OFF) > 0)
{
smr_form ("badstuff");
if (smquery_nsg ("Do you want to continue?") == "'y")
longjnmp (re_init);
el se sm cancel ();

smr_w ndow - display a window at a given position
SYNOPSI S

int smr_w ndow (screen_nane, start_Iline,
start_col um)

char *screen_nane;

int start_line, start_colum;

DESCRI PTI ON
Di spl ays screen_name with its upper left-hand corner at the specified line and

colum. The line and colum are counted fromzero: if start_line is 1, the form
is displayed starting at the second Iine of the screen.)

What ever part of the display the new wi ndow does not occupy will remain visible.
However, only the top nbst window and its fields are accessible to keyboard
entry and library routines. JAMw Il not allow the cursor outside the top nost,

or current, wi ndow. (See smwselect for a way to shuffle w ndows.)

If the window will not fit on the display at the location you request, JAM wi ||
adjust its starting position. If the wi ndow woul d hang bel ow the screen and you
have placed its upper left-hand corner in the top half of the display, the

wi ndow i s sinply noved up; but if your starting position is in the bottom half
of the screen, the lower left hand corner of the window is placed there. Simlar
adj ustments are made in the horizontal direction.

If, after adjustnment, the wi ndow contains display data that won't fit on the
display, it is brought up anyway, w thout the extra. But if any field won't fit,
di splay of the window is aborted and an error code returned.

JAM provi des the control string nmechani smfor opening, closing, and keeping
track of windows. If your code calls this function instead of executing a w ndow
control string, certain features of the JAMrun-tinme systemw |l not work as
expected, particularly the EXIT key.

RETURNS

O if no error occurred during display of the screen; -1 if the screen
file's format is incorrect; -2 if the formcannot be found; -3 if the
systemran out of menory but the previous screen was restored; -7 if
the screen was |larger than the physical display, and there were fields
that woul d have fallen outside the display.

VARI ANTS AND RELATED FUNCTI ONS
smr_at_cur (name);

smr_form (name);
sm cl ose_wi ndow ();

EXAMPLE
#i ncl ude "sndefs. h"

/* The following is a horribly inefficient (but sinmple) hack
* to bring a window up centered on the display. It reads
* the thing in once to find out how big it is (with display
* turned off), then reads it in again in the right place.

int center_win (w ndow)
char *wi ndow;

{

int start_line, start_colum;

sm do_not _display = 1;
if (smr_at_cur (w ndow))

return -1,
/* Conmpute offsets. */
start _line = (smnlines - (smeline - smstline)) / 2;
start _colum = (smncolnms - (smecolm- smstcolm) / 2;
sm cl ose_w ndow ();

sm do_not _di splay = O;
return smr_w ndow (w ndow, start_line, start_colum);

smrd_part - read part of a data structure to the screen
SYNOPSI S
#i ncl ude "sndefs. h"

void smrd _part (screen_struct, first _field, last_field, |anguage)
char *screen_struct;
int first field, last_field, |anguage;

DESCRI PTI ON

This function copies a data structure in nenory to the screen, for all fields
between first_field and last_field. An array and its scrolling items will be
copied only if the first elenent falls between first_field and | ast_field.

The address of the structure is in screen_struct; note that this is a structure
for the whole screen, not just the part of interest. There is a utility, JYACC
f2struct, that will automatically generate such a structure fromthe screen
file.

The argunent | anguage stands for the programm ng | anguage in which the structure
is defined; it controls the conversion of string and nuneric data. Zero stands
for Cwith null-term nated strings, one for Cwith blank-filled strings.

The structure being read may have been filled in previously by a call to
smwtstruct or smwt_part, using the sane val ues of screen_structure and

| anguage; or your application can fill it in. Using an uninitialized structure,
usi ng an inconsistent value for |anguage, or not termnating strings properly
can cause smrdstruct to lie or crash

If your screen is so designed that (for instance) the input and output fields
are grouped together, this function can be much faster than smrdstruct, which
copies every field.

VARI ANTS AND RELATED FUNCTI ONS

smwt_part (screen_structure, first field, last_field, |anguage);
smrdstruct (screen_structure, byte_count, |anguage);

EXAMPLE
Refer to smwt_part for a rather |engthy exanple.

smrdstruct - copy data froma structure to the screen
SYNOPSI S
#i ncl ude "sndefs. h"

void smrdstruct (screen_struct, byte_count,
| anguage)

char *screen_struct;

i nt *byte_count;

i nt | anguage;

DESCRI PTI ON

This function copies a data structure in menory to the screen, converting
i ndividual itenms as appropriate.

The address of the structure is in screen_struct. There is a utility, JYACC
f2struct, that will automatically generate such a structure fromthe screen
file.

The argunent byte_count is the address of an integer variable. smrdstruct wll
store there the nunber of bytes copied fromthe structure.

The argunent | anguage stands for the programm ng | anguage in which the structure
is defined; it controls the conversion of string and nuneric data. Zero stands
for Cwith null-term nated strings, one for Cwith blank-filled strings.

The structure being read may have been filled in previously by a call to
smwtstruct, using the same val ues of screen_structure and | anguage; or your
application can fill it in. Using a partially uninitialized structure, using an
i nconsi stent value for |anguage, or not term nating strings properly can cause
smrdstruct to lie or crash

VARI ANTS AND RELATED FUNCTI ONS

smwtstruct (screen_structure, byte_count, |anguage);
smrd_part (screen_structure, first _field, last_field, |anguage);

EXAMPLE
Pl ease refer to smwtstruct for an extended exanple.

smrescreen - refresh the data displayed on the screen
SYNOPSI S
void smrescreen ();

DESCRI PTI ON

Repaints the entire display fromJAMs internal screen and attribute buffers.
Anything witten to the screen by nmeans other than JAMlibrary functions wil be
erased. This function is normally bound to the RESCREEN key and executed
automatically within sm getkey.

You may need to use this function after doing screen [/Owth the flag

sm do_not _di splay turned on, or after escaping froman JAM application to
anot her program (see smleave). If all you want is to force wites to the
di spl ay, use smflush

VARI ANTS AND RELATED FUNCTI ONS

smflush ();
smreturn ();

EXAMPLE

/* Mess the screen up good and proper, then restore it
* with a call to smrescreen. */

for (i=1; i<30; i++)
{

printf("***"
)

printf("***\n");

}

smrescreen();
smerr_reset("Verify that the screen has been restored.");

smresetcrt - reset the termnal to operating systemdefault state
SYNOPSI S

void smresetcrt ();
DESCRI PTI ON

This function resets ternmnal characteristics to the operating systenlis normal
state. This function should be called when | eaving the screen manager
environnment, as before programexit.

It frees all the nenory associated with the display and open screens. However
the buffers holding the message file, key translation file, etc. are not

rel eased; a subsequent call to sminitcrt will find themin place. It then
clears the screen and turns on the cursor, transmts the RESET sequence defined
in the video file, and resets the operating system channel

This function is called automatically during JAM exit, and should not be called
by application prograns except in case of abnormal term nation

VARI ANTS AND RELATED FUNCTI ONS

sm | eave ();
sm cancel ();

EXAMPLE

/[* If an effort to read the first formresults in
* failure, clean up the screen and | eave. */

if (smr_form("first") < 0)
{

smresetcrt ();

exit (1);

smresize - dynam cally change the size of the display
SYNOPSI S

int smresize (rows, columms)
int rows;
i nt col unms;

DESCRI PTI ON

This function enables you to change the size of the display used by JAMfromthe
default defined by the LINES and COLMS entries in the video file. It makes it
possible to use a single video file in a wi ndowi ng environment, w th FORMAKER
applications being run in different sized w ndows; each application can set its
display size at run time. It can also be used for sw tching between nornmal and
conpressed nodes (e.g. 80 and 132 colums on VT100-conpatible termnals).

Al'l screens brought up following a call to smresize nmust fit within the display
rectangle it defines; if that rectangle is larger than the physical display, the
results will be unpredictable. You may specify at nmpost 255 rows or col umms.

This function clears the physical and |ogical screens; any displayed forms or
wi ndows, together with data entered on them are |ost.

RETURNS
-1 if a paranmeter was less than O or greater than 255; 0 if successful
Program exit on menory allocation failure. -2 if the current form or
wi ndow exceeds the size specified for it.

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"
#i ncl ude "snvi deo. h"
#define WDTH _TOGGLE PF9

/* Somewhat irregular code to switch a VT-100 between
* 80- and 132-colum nmode by pressing PF9. */

switch (sm.openkeybd ())

{
case W DTH TOGGLE:
if (sm.yvideo[V_COLMS] == 80)
{
printf ("\033[?3h");
smresize (smyvideo[V_LINES], 132);
}
el se
{
printf ("\033[?31");
smresize (smyvideo[V_LINES], 80);
}
br eak;

smrestore_data - restore previously saved data to the screen
SYNOPSI S

int smrestore_data (buffer)
char *buffer;

DESCRI PTI ON

Restores all data itens, both onscreen and offscreen, to the current screen from
an area initialized by smsave_data. Buffer is the address of the area. Passing
an address not returned by sm save_data, or attenpting to restore to a screen

ot her than the one saved, can produce unpredictable results.

Data itens are stored in the save-data buffer as null-term nated character
strings. The contents of a scrollable field or array is preceded by 2 bytes
giving the total nunber of itens saved (high order byte first); each itemis
preceded by two bytes of display attribute, and followed by a null. There is an
additional null following all the scrolling data. The whole area is preceded by
an unsigned integer giving its size. If you are programming in C, you can access
it by

length = ((unsigned int *)buffer)[-1];
RETURNS

-1 if an error occurred, usually menmory allocation failure; O otherw se.

smreturn - prepare for return to JAM application
SYNOPSI S

void smreturn ();
DESCRI PTI ON

This routine should be called upon returning to a JAM application after a
tenporary exit.

It sets up the operating system channel and initializes the display using the
SETUP string fromthe video file. It does not restore the screen to the state it
was in before smleave was called; use smrescreen to acconplish that, if
desired.

VARI ANTS AND RELATED FUNCTI ONS
#i ncl ude "sndefs. h"

sm | eave ();
smresetcrt ();

EXAMPLE
#i ncl ude "sndefs. h"
/* Escape to the UNI X shell for a directory listing */

sm | eave ();

system ("Is -1");

smreturn ();

smc_off ();

smd_nmsg _line ("Ht any key to continue", BLINK | WH TE)
sm getkey ();

smd nsg line ("", WH TE);

smrescreen ();

smrmformist - enpty out the nmenory-resident formli st
SYNOPSI S
void smrnformist ();
DESCRI PTI ON
This function erases the nmenory-resident formlist established by smformist,
and rel eases the nmenory used to hold it. It does not rel ease any of the
menory-resident screens thenselves. Calling this function will prevent
smr_w ndow and related functions from finding nmenory-resident screens.
VARI ANTS AND RELATED FUNCTI ONS
smformist (ptr_to formlist);

EXAVPLE

/* Hide all the nenory-resident forms, perhaps
* because the disk versions are being nodified. */

smrnformist ();

smrrecord - read data froma structure to the screen or |ocal data
bl ock

SYNOPSI S
#i ncl ude "sndefs. h"

void smrrecord (structure_ptr, record_nanme, byte count, |ang);
char *structure_ptr;

char * record_nane;

int *byte_count;

int |ang;

DESCRI PTI ON

When a data dictionary containing records is run through the dd2struct utility,
structure definitions based on the fields of each record in the data dictionary
are saved in a file with the record name plus a | anguage-specific extension.
Including this file in an application allows declarations of objects of these
structure types. Such objects nust be declared for smrrecord and smwecord to
be used.

The argument structure_ptr is the address of one such declared structure. The
argunment record_nane is the nane of the data dictionary record, needed for
|l ooking up its attri butes.

The argunent byte_count is a pointer to an integer. Upon return fromsmrrecord,
the value contained in the integer will be the nunber of bytes or characters
read fromor witten to the structure. It will be O if an error occured.

The argument lang is the | anguage nunber, as defined in sndefs.h . Zero stands
for Cwith null-term nated strings, one for Cwith blank-filled strings.

smrrecord reads a structure into fields on the screen, or, if the field is not
on the screen, of the |local data block. The fields involved are those contai ned
in the corresponding data dictionary record. If a structure elenent is of a
numeric type, such as integer or floating point, it is first converted into a
character array. Because the field names are available in the data dictionary
record definition, they may be selected arbitrarily; with smrdstruct, on the
ot her hand, the structure nust contain the entire screen

The structure being read should have been filled in previously by a call to
smwrecord, using the sane val ues of structure_ptr, record _ptr, and lang. O,
the application can access the elenents of the structure directly, and fill in
data prior to a call of smrrecord. Failure to use the sane val ues of
structure_ptr and lang, or not terminating strings properly when accessing the
structure directly, may cause smrrecord to lie or crash

VARI ANTS AND RELATED FUNCTI ONS

smw ecord (structure_ptr. record_nanme, byte count, |ang);

smrs_data - restore saved data to sone of the screen
SYNOPSI S

void smrs_data (first_field, last_field, buffer);
int first_field,;

int last _field;

char *buffer;

DESCRI PTI ON

Restores all data itens, both onscreen and offscreen, to the fields between
first field and last _field froman area initialized by smsv_data. The address
of the area is in buffer

See smsv_data to create a buffer for subsequent retrieval by this function. If
the range of fields passed to this function does not match that passed to
smsv_data, or buffer is not a value returned by that function, grievous errors
wi |l probably occur.

The format of the data area is explained briefly under smrestore_data.

RETURNS

-1 if an error occurred, usually menmory allocation failure; O otherw se.

EXAVPLE

smrscroll - scroll an array or parallel arrays
SYNOPSI S
int smrscroll (field_nunber, reqg_scroll)

int field_number;
int reg_scroll

DESCRI PTI ON
This function scrolls an array or set of parallel arrays by req_scroll itens. If
reg_scroll is positive, the array scrolls down (towards the bottom of the data);

otherwise, it scrolls up. It supersedes the Release 3 function smscroll
The function returns the actual anpunt scrolled. This could be the amunt
requested; a smaller value, if the requested anount would bring the array past
its beginning or end; or zero, if the array was at its beginning or end, or an
error occurred. It is never negative.
RETURNS

See above.
VARI ANTS AND RELATED FUNCTI ONS

smn_rscroll (field _nane, req_scroll);

smt_scroll (field_nunber);

sm ascroll (field_nunber, occurrence);
EXAMPLE
#i ncl ude "sndefs. h"

/* Find the nunber of the scrolling item under the cursor
* and scroll down to the next higher nultiple of 5. */

int thisn;

thisn = smoccur_no ();
smrscroll (smgetcurno (), 5 - (thisn %5));

sms_val - validate the current screen
SYNOPSI S

int sms_val ();
DESCRI PTI ON

This function | oops through the screen validating each field and data item
whet her on or offscreen, that is not protected fromvalidation (VPROTECT). It is
called automatically from sm openkeybd when you press the TRANSM T key.

Validations are perforned as follows. If there are no scrolling arrays or
fields, the order is left to right, then top to bottom If a scrolling array or
field is encountered, and it contains the first onscreen itemfor that array (or
field), earlier offscreen itens are validated first. If it contains the |ast
onscreen item any later offscreen itens are validated i mediately after that
field.

If parallel scrolling arrays (or fields) exist, there are nore conplications.
When an offscreen itemis validated, the corresponding itens from parall el
arrays are validated as well, fromleft to right. The offscreen itenms preceding
the parallel arrays are validated before the first onscreen item of the |eftnost
of the parallel arrays; simlarly, the offscreen items follow ng the arrays are
validated i mmedi ately after the | ast onscreen item of the rightnost.

I ndi vidual field validations are perfornmed in the followi ng order. The table
al so notes conditions under which validations are skipped.

Val i dati on Skip if valid Skip if enpty

required

must fill

regul ar expression
range
check-di git

date or tine
tabl e | ookup
currency format
mat h expresssion
exit function

j pl function

SO oK KKK KKK
5 30305 KKKKKKKKKK->S

*

The currency format edit contains a skip-if-enmpty flag; see the Author's Guide.

If you need to force a skip-if-enmpty validation, nmake the field required. A
digits-only field nmust contain at |east one digit in order to be considered
nonenpty; for other character edits, any nonblank character nakes the field
nonenmpty. The currency format edit contains a skip-if-enpty flag; see the
Aut hor' s Cui de.

If an itemfails validation, the cursor is positioned to it and an error nessage
di splayed. (If the itemwas offscreen, its array or field is first scrolled to
bring it onscreen.) This routine returns at the first error; fields past that
will not be validated.

RETURNS

-1 if any field fails validation, 0 otherw se.

VARI ANTS AND RELATED FUNCTI ONS
smfval (field_nunber);
EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"

/* Treat the SPFl key as transmt, for a change. */
int key;

smd_nsg_line ("Press %WKSPF1 when done.", WH TE | REVERSE)

while ((key = smopenkeybd ()) != EXIT)
if (key == SPF1)
{
if (sms_val ())
smerr_reset ("Please correct the mstake(s).");
el se break;
}

sm save_data - save screen contents
SYNCPSI S

char *sm save_data ();
DESCRI PTI ON

The current screen's data is saved for external access or subsequent retrieval
and the address of the save area returned.

To restore the saved data, use smrestore_data; refer to that function for a
bri ef explanation of the save format. Use smsv_free to discard a save area

RETURNS

O if insufficient nenory was avail abl e, otherwi se the address of a nenory
area containing the screen's data.

VARI ANTS AND RELATED FUNCTI ONS
smrestore_data (buffer);
smsv_data (first_field, last_field);

smsv_free (buffer);

EXAMPLE

smsc_max - alter the naxi num nunber of itens allowed in a scrollable
field or array

SYNOPSI S

int smsc_max (field_number, new_max)
int field_nunber, new_nmax;

DESCRI PTI ON

Changes the maxi mum nunber of items allowed in field _nunber, and in all fields
(or arrays) parallel to it. The original maximmis set when the formis
created. If the desired new maximumis | ess than the nunmber of itens already
entered into the field or array, the old maximumw || remain. The maxi num can
decrease only if new_max is between the nunber of itenms already entered and the
previ ous maxi mum

RETURNS

The actual new maxi mum (see above); or 0 if the desired maxi mumis invalid,
or if the field is not scrollable.

VARI ANTS AND RELATED FUNCTI ONS

smn_sc_max (field_name, new_nmax);
smnmax_item (field_nunber);
smnum.items (field _nunber);

EXAVMPLE

#i ncl ude "sndefs. h"
#defi ne SCROLLNUM 7

[* When the nunber of itens entered in a scroll exceeds
* ten |l ess than the maxi num increase the maxi mum by 100. */

i nt maxnow
maxnow = sm max_item (SCROLLNUM ;

if (maxnow - smnum.itens (SCROLLNUM < 10)
sm sc_max (SCROLLNUM maxnow + 100)

sm sdate - get formatted system date
SYNOPSI S
#i ncl ude "sndefs. h"

char *sm sdate (format)
char *format;

DESCRI PTI ON

Cbtains the current date fromthe operating system and formats it according to
format, and returns the resulting string.

You may retrieve the date format froma field, using smedit_ptr, or construct
it by other means. Refer to the Author's CGuide for a description of date
formats. Refer to smcalc for a way of getting an arbitrary date into a
formatted date field.
This function shares a single static buffer with other date and tine formatting
functions. The formatted date returned by this function should therefore be
processed quickly, or copied to a local string.
RETURNS

The current date in the specified format. Enpty if the format is invalid.
EXAMPLE
#defi ne FORMATL " MM DD/ YY"

/* Display the date and the string used to format it. */

smn_putfield ("format", FORMAT1);
smn_putfield ("date", smsdate (FORMATL1));

sm set bkstat - set background text for status line
SYNOPSI S
#i ncl ude "sndefs. h"

voi d sm set bkstat (nmessage, attr)
char *message;
int attr;

DESCRI PTI ON

The nmessage is saved, to be shown on the status |ine whenever there is no higher
priority nmessage to be displayed. The highest priority messages are those passed
to smd nsg line, smerr_reset, smaquiet_err, or smquery_nsg; the next highest
are those attached to a field by nmeans of the status text option (see the JAM
Aut hor's Guide). Background status text has |owest priority.

Attr is the initial display attribute for the message, and is a conbination of
the foll ow ng val ues.

Col ors Hi ghlights
BLACK BLUE BLANK REVERSE
GREEN CYAN UNDERLN BLI NK
RED MAGENTA HI LI GHT
YELLOW VWH TE DI M

The background colors defined in sndefs.h (B_BLACK and so forth) are al so
avail abl e.

sm setstatus sets the background status to an alternating ready/wait flag; you
should turn that feature off before using this function.

Refer to smd _nmsg_line for an explanation of how to embed attri bute changes and
function key names into your nessage.

VARI ANTS AND RELATED FUNCTI ONS

sm setstatus (flag);
smd_nsg_line (message, attribute);

EXAMPLE

#i ncl ude "sndefs. h"
#defi ne PAUSE sl eep (3)

/* The hierarchy of status nessages. Assunme the field
* "mamp" has status text reading "Mama bear™, and that
* the hone field has none. */

smd nsg line ("", WH TE);
smsetstatus (0);
sm set bkstat ("Baby bear", MAGENTA);

PAUSE;

smn_gofield ("mam");

PAUSE;

smd_msg_line ("Papa bear", BLUE | HILIGHT);
PAUSE;

sm _honme ();
PAUSE;

smsetstatus - turn alternating background status nmessage on or off
SYNOPSI S

void sm setstatus (node)
i nt node;

DESCRI PTI ON

If nmode is non-zero, alternating status flags are turned on. After this call
one nmessage (normally Ready) is displayed on the status line while the keyboard
is open for input, and another (normally Wait) when it is not. If node is zero,
the nessages are turned off.

The status flags will be replaced tenporarily by messages passed to smerr_reset
or a related function. They will overwite nmessages posted with smd_nmsg |ine or
sm set bkst at .

The alternating nessages are stored in the nessage file as SM READY and SM WAI T,
and can be changed there. Attribute changes and function key names can be
enbedded in the nessages; refer to smd_nsg_line for instructions.
VARI ANTS AND RELATED FUNCTI ONS
sm set bkstat (nessage, attr);
EXAMPLE
#i ncl ude "sndefs. h"
#i ncl ude "smerror. h"
#defi ne PAUSE sl eep (3)
char buf[100];

/* Tell people what you're gonna tell '"em */

sprintf (buf, "You will soon see % alternating with % bel ow. ",
sm nsg_get (SM READY), smnsg_get (SMWAIT));

smdo_region (3, 0, 80, WH TE, buf);

/* Now tell "em */

smsetstatus (1);

PAUSE; /* Shows WAIT */

sm openkeybd (); /* Shows READY */

/* Finally, tell "emwhat you told 'em */

sprintf (buf, "That was % alternating with % on the status line."
sm nsg_get (SM READY), sm nsg_get (SMWAIT));
smerr_reset (buf);

smsh_off - determine the cursor location relative to the start of a
shifting field

SYNOPSI S
int smsh_off ();
DESCRI PTI ON
Returns the difference between the start of data in a shiftable field and the
current cursor location. If the current field is not shiftable, it returns the
di fference between the |leftnobst columm of the field and the current cursor
| ocation, like smdisp_off.
RETURNS
The difference between the current cursor position and the start of
shiftable data in the current field. -1 if the cursor is not in a
field.
VARI ANTS AND RELATED FUNCTI ONS
smdisp_off ();
EXAMPLE
#i ncl ude "sndefs. h"
/* Fancy test to see whether a field is shifted to the left. */

if (smsh_off () !'= smdisp_off ())
smerr_reset ("Ha! You shifted!");

smsize_of _array - get the number of elenments in an array
SYNOPSI S

int smsize_of _array (field_nunber)
int field_number;

DESCRI PTI ON

Returns the nunmber of elenents in the array containing field_number. A non-array
field is considered to have one el enent.

RETURNS

Oif the field designation is invalid; 1 if the field is not an array; The
number of elenments in the array otherw se.

VARI ANTS AND RELATED FUNCTI ONS
smn_size_of _array (field_nane);
smnum.items (field_nunber);
sm max_occur (field_nunber);

EXAMPLE

#defi ne THEFI ELD 6

/* Comput e the nunber of pages of data in a scrolling
* array, where a page is one onscreen-array-full. */

i nt pages, elenents;

el ements = smsize_of _array (THEFIELD);
pages = (smnum.itens (THEFIELD) + elenments - 1) / el enents;

smsnmsetup - initalize table of setup variables, and execute sone
SYNOPSI S

int smsnmsetup (nmenfile)
char menfile[];

DESCRI PTI ON

This function loads a file or files of setup variables into nenory, and uses
some of themto set various screen manager options. It is called automatically
at screen manager start-up, by sminitcrt. The file can be either disk- or
menory-resident. A conplete |list of setup variables can be found in the section
on the setup file, in the Configuration Guide. You may find using a setup file
to be nore flexible and conveni ent than calling many of the option-setting
routines in the library.

If the argument nmenfile is nonzero, this function uses it alone, in place of the
system SMWARS file. If there is an SMSETUP in the nmenory-resident file or the
system environnent, it will be used too. If nmenfile is zero, the two files
pointed to by SWARS and SMSETUP are read in.

There is another function, smunsetup, that restores all the options affected by
this routine to their default val ues.

RETURNS

VARI ANTS AND RELATED FUNCTI ONS
sm unsetup ();

EXAMPLE

/* Install a nmenmory-resident setup file. */
extern char memsetup[];

if (smsnsetup (nmemsetup) < 0)
sm cancel ();

smstime - get formatted systemtine
SYNOPSI S
#i ncl ude "sndefs. h"

char *smstime (format)
char *format;

DESCRI PTI ON
Obtains the current tine fromthe operating system formats it according to
format, and returns the resulting string. The format can be obtained froma tine
field by calling smedit_ptr, or you can construct it by other neans.
See the Author's Guide for a description of recognized tinme formats.
This function shares a single static buffer with other date and tine formatting
functions. The formatted tine returned by this function should therefore be
processed quickly, or copied to a local string.
RETURNS

The tine of day in the specified format.
EXAMPLE
#defi ne FORMATL " HH: MM SS"
/* Print the time, and why it |ooks the way it does. */

smn_putfield ("format" , FORVAT1);
smn_putfield ("time", smstinm (FORMAT1));

smstrip_am _ptr - strip anpunt editing characters froma string
SYNOPSI S

#i ncl ude "sndefs. h"

char *smstrip_am _ptr (field_nunber, inbuf)

int field_nunber;

char *inbuf;

DESCRI PTI ON

Strips all non-digit characters fromthe string, except for an optional |eading
m nus sign and decinmal point. If inbuf is nonzero, field_nunber is ignored and
the passed string is processed in place.

If inbuf is zero, the contents of field nunber are used. This function shares
with several others a pool of buffers where it stores returned data. The val ue
returned by any of them should therefore be processed quickly or copied.

RETURNS

A pointer to a buffer containing the stripped text, or O if inbuf is O and
the field nunber is invalid.

VARI ANTS AND RELATED FUNCTI ONS

sm dbl val (field_nunber);
smam _format (field_number, string);

EXAMPLE

#i ncl ude "sndefs. h"

char *strip_text;

strip_text = smstrip_ant _ptr (0, "$1,123,456");

if (strcnmp (strip_text, "1123456") != 0)
punt ("Bug in strip_ant_ptr");

#COMVENT(NOT PYRCOB) sm sv_data - save partial screen contents
SYNOPSI S

#i ncl ude "sndefs. h"

char *smsv_data (first_field, last_field)

int first field,;

int last_field;
DESCRI PTI ON
The current forms data, fromall fields numbered fromfirst field to
last_field, is saved for external access or subsequent retrieval, and the
address of the save area returned. Use smrs_data to restore it.
See smrestore_data for the save format.

RETURNS

The address of an area containing the saved data. 0 if the current screen
has no fields, or sufficient free nenory is not avail able.

VARI ANTS AND RELATED FUNCTI ONS
smrs_data (first _field, last_field, buffer);

sm save_data ();
smsv_free (buffer);

smsv_free - free a save-data buffer
SYNOPSI S

void smsv_free (buffer)
char *buffer;

DESCRI PTI ON

The save area at buffer, which nust have been created by sm save_data or
smsv_data, is released and is no | onger accessible.

sm save_data and related functions record the addresses of save areas, and after
ten have been accunul ated the ol dest are released automatically; calls to this
function are therefore not strictly necessary.

smt_scroll - test whether field can scrol
SYNOPSI S

int smt_scroll (field_number)
int field_number;

DESCRI PTI ON

Returns 1 if the field in question is scrollable, and O if not or if there is no
such field.

RETURNS

1if field exists and scrolls; O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

smt_shift (field_nunber);
EXAMPLE

/* 1f the current field is scrolling, set it back to
* the beginning. */

if (smt_scroll (smgetcurno ())
sm ascroll (smbase fldno (smgetcurno ()), 1);

smt_shift - test whether field can shift
SYNOPSI S

int smt_shift (field_nunber)
int field_number;

DESCRI PTI ON

Returns 1 if the field in question is shiftable, and O if not or if there is no
such field.

RETURNS
1if fieldis shifting. O if not shifting or no such field
VARI ANTS AND RELATED FUNCTI ONS
smt_scroll (field_nunber);
EXAMPLE
#i ncl ude "sndefs. h"

/* Turn on shifting indicators if the screen contains any
* shifting fields. */

int f;

for (f =1, f <= smnunflds; ++f)

{
if (smt_shift (f))
{
sm.ind_set (IND_SH FT);
smrescreen ();
br eak;
}

smtab - nove the cursor to the next unprotected field
SYNOPSI S

void smtab ();
DESCRI PTI ON
If the cursor is in a field with a next-field edit and one of the fields
specified by the edit is unprotected, the cursor is mved to the first enterable
position of that field. Otherwi se, the cursor is advanced to the first enterable
position of the next unprotected field on the form
The first enterable position is the leftnost in a left-justified field and the
rightnost in a right-justified field; furthernore, in a digits-only field,

punctuation characters are skipped.

Unli ke the TAB key, this function does not cause field exit processing to be
performed. To simulate a TAB keystroke, see bel ow.

EXAMPLE
#i ncl ude "snkeys. h"

/* This npves the cursor to the next field. */
smtab ();

/* This noves the cursor to the next field, validating
* the current one first. */
sm unget key (TAB);

smtst_all_mdts - find first modified item
SYNOPSI S

int smtst_all_ndts (occurrence)
i nt *occurrence;

DESCRI PTI ON

This routine tests the MDT bits of all occurrences of all fields on the current
screen, and returns the field and occurrence nunbers of the first itemwth its
MDT set, if there is one. The MDT bit indicates that an item has been nodified,
either fromthe keyboard or by the application program since the screen was

di spl ayed (or since its MDT was | ast cleared by smop_ndt).

This function returns zero if no itens have been nodified. |If one has been
nodi fied, it returns the field nunber, and stores the occurrence nunber in the
vari abl e addressed by occurrence.

RETURNS

Oif no MDT bit is set anywhere on the screen; The nunmber of the first
field on the current screen for which sonme occurrence has its MDT bit
set. In this case, the nunber of the first occurrence with MDT set is
returned in the reference paranmeter occurrence.

VARI ANTS AND RELATED FUNCTI ONS
smop_mdt (field_nunmber, operation);
EXAMPLE
#i ncl ude "sndefs. h"
/* Clear MDT for all fields on the form then wite
data to the last field, and check that its MDT is
* the first one set. */
i nt occurrence;
smcl _all _mts();
smputfield (smnunflds, "Hello");

if (smtst_all_ndts (&occurrence) != sm nunflds)
smerr_reset ("Something is rotten in the state of Denmark.");

sm u_async - asynchronous keyboard input hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *sm u_async;

int my_async (interval)
int interval;

DESCRI PTI ON

The function is called only when the keyboard is being read, and only if a
keystroke does not arrive within the time limt given at installation. That
timeout is in tenths of a second, although its real val ue depends on the
granularity of your system s clock; it is placed in the intrn_use nenber of the
fnc_data structure. See sminstall for nore about installation.

The asynchronous function is called fromsmgtchar, one | evel bel ow sm getkey.
If it returns zero, everything proceeds as before. If it returns -1, smgtchar
goes directly to the keyboard for a character, and does not call the
asynchronous function again until it gets one (and is asked for another). Any
ot her value is passed back to sm getkey.

The authoring utility uses an asynchronous function to update its cursor
position display. Another typical use mght be to inplenent a real-tinme clock
di spl ay.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the

name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

RETURNS
See above.
VARI ANTS AND RELATED FUNCTI ONS

sminstall (which_hook, what_ funcs, howrany);

EXAMPLE

/* A typical use of the wi ndow selection routines is to

*

* OF X X X F F

update information to a wi ndow that nay (or may not) be
covered. For exanple, suppose that the current tinme

shoul d be maintained on the underlying form Assune

that a field named "curtinme" exists on that form

The followi ng code fragnments can be used

to maintain that field i ndependent of the nunmber of w ndows
currently open above the form
/

#i ncl ude "sndefs. h"

updat eti me()

}
/

*

smwselect (0); /* quietly select the bottomform*/
smn_putfield ("curtime", ""); /* update systemtine display */
sm wdesel ect ();/* restore visible wi ndow */

smflush ();

return (0);

In initialization code: called every second. */

static struct fnc_data afunc = { 0, updatetime, 0O, 10, 0, 0 };
sminstall (ASYNC FUNC, &afunc, (int *)O0);

smu_avail - playback character availability hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *smu_avail;

int my_avail (interval)
int interval;

DESCRI PTI ON

This hook is called fromsmkeyhit, g.v. That function's mssionis to find if
there's a key waiting to be read; before | ooking at the physical keyboard, it
checks for avavil abl e playback characters by calling this function. The latter
should return a positive value if there are characters avail able for playback
(by smu_play), and zero if there is nothing to play back. If the playback
systemis inactive, it should return -1, and smkeyhit will go on to poll the
keyboard. This hook is also called fromsmgetkey; if it returns a positive
value, the latter then calls smu_play to retrieve a key.

The argurment interval is the length of time, in tenths of a second, that
sm keyhit is supposed to wait for a key. You can use this to sinulate a
realistic rate of typing, by pausing in this function.

Along with smu_play and smu_record, this function forns part of a keystroke
recordi ng and playback package. Such a package can be quite useful in regression
testing and performance anal ysis of JAM applications, because it enables you to
reproduce a series of inputs exactly and with little effort.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

RETURNS
1 (or other positive value) if there are characters to be played back; 0 if
t he playback systemis active but there are no characters avail abl e;
-1 if the playback systemis inactive.
VARI ANTS AND RELATED FUNCTI ONS
sm keyfilter (flag);
smu_play ();
smu_record (key);

EXAMPLE

See smu_play for a detailed exanple of a keystroke recordi ng package.

smu_ckdigit - check digit validation hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *smu_ckdigit;

int myckdigit (field, data, item nodulus, digits);
int field, item nodulus, digits;
char *data

DESCRI PTI ON

This hook is called by field validation. It verifies that data contains the
requi red m ni nrum nunber of digits, term nated by the proper check digit. If not,
it positions the cursor to the indicated occurrence and posts an error nessage
before returning. It also be used to check any character string, or any field.
If data is null, the string to check is obtained fromthe field and occurrence
nunber, and the error nmessage is displayed if that string is bad. If
field_nunber is zero, no nessage will be posted, but the function's return code
will indicate whether the string passed its check

The source code to smckdigit is included with JAM refer to it for descriptions
of our check digit algorithnms and how to i npl enent your own. Note that the
paranmeter digits specifies the mnimum number of digits, not the check digit. If
you decide to nodify that nodule without renanming it, you do not need to cal
sminstall; JAM already does that.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the

name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

RETURNS
0 if the number contains the m ni mum nunber of digits and the proper check
digit; -1 for a present but invalid string; -2 if no string is
supplied and the field or occurrence nunber is out of range.

VARI ANTS AND RELATED FUNCTI ONS

smckdigit (field, data, item nodulus, digits);
sm.install (which_hook, what_func, howrany);

EXAMPLE

#i ncl ude "sndefs. h"

/* Validate a check digit in field 1 directly. The

* routine itself will display an error nessage if the

* validation fails. */

if (smckdigit(l, (char *)0, 0, 10, 2))
smgofield (1);

smu_inscrsr - insert/overstrike mde switch hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *sm.u_inscrsr

int myinscrsr (insert_node)
i nt insert_node;

DESCRI PTI ON

The JAM library calls a user-defined function while switching frominsert to
overstri ke node (or vice versa). The intention is to allow for a visible

i ndi cation of the mode. Insert_node is 1 if JAMis entering insert node, and O
if it is entering overstrike node.

Your function nmust be installed via a call to sminstall, g.v. It will be called
by sm getkey when the latter reads the | NSERT key fromthe keyboard. If the

I NSON and | NSOFF entries are present in the video file, JAMw Il send themin
addition to calling this function; if all you want is a change of cursor style,
you can get away with that.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.
VARI ANTS AND RELATED FUNCTI ONS

sm.install (which_hook, what_function, howrany);
EXAMPLE
#i ncl ude "sndefs. h"

/* The following function is installed on the "change

* insert node" hook. It nodifies an area at the |ower right-
hand corner of the screen to show whether the current

* mode is insert or overstrike. */

int insf (insert_on)
int insert_on;

{
if (insert_on)
smdo_region (smnlines - 1, smncolns - 4, 3,
REVERSE | WHI TE, "INS");
el se
smdo_region (smnlines - 1, smncolnms - 4, 3,
REVERSE | WHI TE, "OVR");
return O;
}

/* Installation code for the above. */

struct fnc_data insf = {
"mycurs", mycurs, 0, 0, 0, O
b

sm.install (INSCRSR FUNC, & nsf, (int *)O0);

sm u_keychg - logical key translation hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *smu_keychg;

i nt mykeychg (input_key)
i nt input_key;

DESCRI PTI ON

This is a user-installable function called fromsm getkey. You can install your
own by calling sminstall wth KEYCHG FUNC.

The argunent to this function is a logical key read by sm getkey; you may put
speci al key processing here. |If your function returns zero, the key is renmoved
fromthe input stream and smgetkey reads in the next one without returning to
its caller. If your function returns any other value, smgetkey returns that
directly to its caller

See smu_play for an additional exanple of a keychange function
Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.
RETURNS

as descri bed above

VARI ANTS AND RELATED FUNCTI ONS

sm.install (which_hook, what_func, howrany);
sm get key ();

EXAMPLE

~

* F X Xk F X *

~

What follows is an extrenmely sinple-m nded keyboard

macro i npl enentation, using a keychange function.

Any character followi ng a backslash \ is | ooked up in a
har d- coded table, and the string corresponding to

that character (if any) substituted. If the character isn't
there, it beeps. The expansion string is pushed back

onto the input using smungetkey.

#i ncl ude "sndefs. h"

int macro ();
void try_expand ();

/* Macro expansion table. WIIl expand \j to "JYACC, Inc."
* and so forth. The zero tag marks the end of the table. */

static struct macrotab {
char tag;
char *expansi on;

} macrotab[] = {
"j', "JYACC, Inc.",

v', "Version 4.0"
"a', "116 John St., New York, NY, 10038"
0, "

b

This is the keychange function. It |ooks out for a
backsl ash, and when it gets one sets a flag to try
expandi ng the next character it gets. Both the backsl ash
and the follow ng character are deleted fromthe input
stream The actual expansion is done in a subroutine.
/

* F F X X X

nt macro (key)
nt key;

~——

#define ESCAPE "\\'
static int saw escape_l ast_ti ne;

if (saw_escape_l ast_tinme)

{
try_expand (key);
saw_escape_last _tinme = 0;
return O;

}

else if (key == ESCAPE)

{
saw_escape_l ast _tine = 1;
return O;

}

el se return key;

}

/* This function | ooks up 'key' in the table, and if it
* finds it there, pushes the expansion onto the input.
* Note that the expansion must be pushed backwards.

*/

void try_expand (key)
int key;
{

struct macrotab *m
char *p;

for (m= macrotab; m>tag !'= 0; ++m
{
if (m>tag == key)
{
p = m>expansion + strlen (m >expansion) - 1;
while (p >= m >expansi on)
sm unget key (*p--);
return;

}

sm bel (); /* Could not expand */
}

/* Finally, here is code to install 'macro' as a
* keychange function, using sminstall. */

static struct fnc_data keychg = {
"macro", macro, 0, 0, 0, O

1
sm.install (KEYCHG FUNC, &keychg, (int *)O0);

NAME

smu_play - keystroke playback hook
SYNOPSI S
#i ncl ude "sndefs. h"

extern struct fnc_data *sm.u_pl ay;

int nyplay ();
DESCRI PTI ON

This hook is called fromsmgetkey. If it returns a nonzero val ue, sm getkey
treats it as an already translated | ogical key, which is returned to its caller
The key may be a standard di spl ayable ASCI| character, or one of the val ues
defined in snkeys.h . Normally, the returned key will have been stored in sone
fashion by a previous call to smu_record; the recording algorithmis entirely
up to you. Refer to smgetkey for details about just when this and other input
processi ng hooks are invoked.

Along with smu_avail and smu_record, this function forns part of a keystroke
recordi ng and pl ayback package. Such a package can be quite useful in regression
testing and performance anal ysis of JAM applications, because it enables you to
reproduce a series of inputs exactly and with little effort.

When sm get key obtains a key fromthis function, it does not update the display
first, as it does when reading a key fromthe keyboard. You nmay want to cal
smflush fromthis function or fromsmu_avail in order to keep the display in
sync with the input, e.g. to have data characters echoed.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

RETURNS

Any ASCI| character or JAM | ogical key code; zero if there is nothing to
pl ay back.

VARI ANTS AND RELATED FUNCTI ONS

smkeyfilter (flag);
smu_record (key);
smu_avail (interval);

EXAMPLE

#i ncl ude "sndefs. h"
#i ncl ude "snerror.h"
#i ncl ude "snkeys. h"
/* The code below forms a sinple keystroke recordi ng and pl ayback
package, using the three hooks provided for that purpose.
Pressing PF2 causes foll ow ng keystrokes to be saved in nenory;
pressing PF3 stops recordi ng keystrokes; and pressing PF4 causes
the list of saved keystrokes to be played back, with a one-second
pause between them These transitions are done in a keychange
function, which is another sm getkey hook

L . T

* \Wile either recording or playback is in progress, a snal

* display area in the upper |left-hand corner tells what is going on
* and how nany keys have been processed so far

*/

/* Assign names for the control keys. */
#define START_RECORDI NG PF2
#defi ne STOP_RECORDI NG PF3
#def i ne START_PLAYI NG PF4

int play(), record(), avail(), playchange();
void status();

int *keylist, /* Buffer for saved keys */
keycount, /* Number of keys saved up */
keysi ze, /* Size of save buffer */
pl aykey, /* Index of next key to play back */
recordi ng, /* Nonzero while recording */
pl ayi ng; /* Nonzero while playing back */

/* This function is installed on the playback hook.
* |t just steps through the list of recorded keys, and
* turns itself off when it reaches the end. */

int play ()
{
if (! playing)
return O;
else if (playkey == keycount)
{
pl ayi ng = 0;
status (0, 0);
return O;
}
el se
{
status (' P, playkey + 1);
return keylist[playkey++];
}

/* This function is installed on the record hook
* It save the key it is passed in a dynam c array,
* expanding the array when it's full. */

int record (key)

{
if (recording)
i f (keycount == keysize)
keylist = (int *)realloc(keylist,
sizeof (int) * (keysize *= 2));
keyli st[keycount ++] = key;
status ('R, keycount);
}
return O;
}

/* This function tells sm getkey whether there's anything | eft
* to play back. It also flushes the display and pauses for
* a second, so you can see the replayed characters going by. */

int avail (interval)

{

i f (playing)
{

smflush ();

sleep (1);
return 1;
}
return O;

}

/* This function controls all of the above, triggering on
* the PF2, PF3, and PF4 keys. */

i nt playchange (key)
{
switch (key)
{
case START_PLAYI NG
if (recording)
smquiet_err ("You're recording.");
else if (keycount <= 0)
smquiet_err ("Nothing to play.");
el se
{
pl ayi ng 1;
pl aykey 0;
status ('P, 0);

}

return O;

case START_RECORDI NG
i f (playing)
smaquiet_err ("You're playing.");
el se if (recording)
smaquiet_err ("You're already recording.");
el se
{
keylist = (int *)malloc(sizeof(int) * (keysize = 50));
keycount = 0;
recording = 1;
status ('R, 0);
}

return O;

case STOP_RECORDI NG
recording = O;
status (0, 0);
return O;

defaul t:
return key;
}

}

/* This routine places the current operation and count in the
* upper left-hand corner of the screen. The calculation is
* to avoid borders. */

void status (flag, count)

{
#defi ne SW DTH 4

int corner;
char buf[10];

corner = smcform>formbord _char ? 1 : O0;

if (flag == 0)

buf[0] = O;
sm do_region (corner, corner, SWDTH, WH TE, buf);
}
el se
{
sprintf (buf, "%% 3d", flag, count);
sm do_region (corner, corner, SWDIH, REVERSE | WHI TE, buf);
}

}
/* Finally, here is code to initialize the necessary hooks. */

static struct fnc_data playf = {
"play", play, CFUNC 0, 0, O

b

static struct fnc_data recordf = {
"record", record, CFUNC, 0, 0, O

b

static struct fnc_data availf = {
"avail", avail, CFUNC, 0, 0, O

1

static struct fnc_data changef = {
"pl aychange", playchange, C_FUNC, 0, 0, O
b

sm.install (PLAY_FUNC, &playf, (int *)O0);
sm.install (RECORD_FUNC, &recordf, (int *)O0);
sminstall (AVAIL_FUNC, &availf, (int *)O0);
sm.install (KEYCHG FUNC, &changef, (int *)0);

smu_record - keystroke recordi ng hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *smu_record;

void myrecord (key);
int key;

DESCRI PTI ON

This hook is called fromsmgetkey. When it has a translated key val ue in hand,
whet her read fromthe keyboard or obtained from anot her source, sm getkey passes
it tothis function so that it nmay be recorded, and perhaps played back by a
future call to smu_play. Values stored by smungetkey are not passed to this
hook, but are returned directly to the caller of smgetkey; refer to that
function's description for details about just when this and other input
processi ng hooks are invoked.

Along with smu_play and smu_avail, this function forns part of a keystroke
recordi ng and playback package. Such a package can be quite useful in regression
testing and performance anal ysis of JAM applications, because it enables you to
reproduce a series of inputs exactly and with little effort.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

VARI ANTS AND RELATED FUNCTI ONS
sm keyfilter (flag);
smu_play ();
smu_avail (interval);

EXAMPLE

See smu_play for a detailed exanple of a keystroke recordi ng package.

smu_statfnc - status |ine display hook
SYNOPSI S
#i ncl ude "sndefs. h"
extern struct fnc_data *smu_statfnc;
int mystatfnc ();
DESCRI PTI ON

This function is called before the generic code JAM uses to display stuff on the
status line. It is intended for use on termnals with really weird status |ines
i ndeci pherable to the generic code (see the video manual in the Configuration
Gui de), but nore inmaginative uses are possible.

This function takes no argunents. The text to be displayed on the status line is
al ways stored in the last line of the global screen data buffer, smscreen. You
can exam ne that |ine as:

sm screen[smnl i nes]

and have your way with it. |If your function returns 0, smd _nsg_|ine continues
with its processing. Gtherwise, smd nsg line returns i mediately, assum ng that
you have updated the status line.

jxformuses this hook to redisplay the cursor position on the screen whenever

the status line is changed; see smc_vis. Your function nust be installed by a
call to sm.install, using STAT_FUNC.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.
RETURNS

See above.

VARI ANTS AND RELATED FUNCTI ONS

smd _nsg _|line (nmessage, attribtue);
smc_vis (flag);
sm.install (which_hook, what_func, howrany);

EXAMPLE

smu_uinit - do application-specific things at screen manager
initialization tine

SYNOPSI S
#i ncl ude "sndefs. h"
extern struct fnc_data *smu_uinit;

int myuinit (termnal _type)
char termnal _type[];

DESCRI PTI ON

This function is a hook for application code at screen manager initialization
time. It is called inmediately on entry to sminitcrt, which treats it as if its
job were to deternine the termnal type; however, it need not do that, and it
may do anything else. It receives, in termnal _type, the address of a buffer
where JAM stores its termnal type string; if it wites a null-termnated string
there, sminitcrt will use that instead of checking the environment.

On operating systens w thout an environnent, this function can be used to obtain
the termnal type in some systemspecific way. It can be used to do
initializations, but those are better done before the call to sminitcrt.

This function nust be installed via a call to sminstall, q.v., using
Ul NI T_FUNC.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

VARI ANTS AND RELATED FUNCTI ONS

sminitcrt (path);
sm.install (which_hook, what_func, howrany);

smu_ureset - screen manager cleanup hook
SYNOPSI S

#i ncl ude "sndefs. h"

extern struct fnc_data *sm.u_ureset;

voi d myureset ();
DESCRI PTI ON

smresetcrt calls this function just before returning; it provides a hook for
application-specific cleanup code. It receives no paranmeters, and any return
value is ignored. You should use sminstall to install it.

smresetcrt is normally called when the program catches an interrupt signal, or
exits normally; this is therefore a good place to attach processing that needs
to be done in the case of (abnormal) exit.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.

VARI ANTS AND RELATED FUNCTI ONS
smresetcrt ();

sm.install (which_hook, what_func, howrany);
sm cancel ();

smu_vproc - video processing hook

SYNOPSI S

#| ncl ude

"sndefs. h"

extern struct fnc_data *sm.u_vproc;

i nt

myvproc (operation, parameters)

i nt operation;

i nt

DESCRI PTI ON

*paraneters;

This function is a hook for video output. JAM defines generic video operations,

and uses a configuration file to support
function to display output,

themon a given display. It calls this
passing it a video operation code, and a vector of

paranmeters containing zero or nore integers. The operation codes are defined in
and are |listed bel ow.

smvi deo. h

<<
mmmaa—
— O

2

Thi s hook enables you to add speci al

SISIS

Code

NI T
RESET

| NSON

Operation # Paraneters

initialization string
reset string

erase entire display & home cursor

erase fromcursor to end of I|ine
erase wi ndow to given background
5

repeat character sequence 2
turn cursor on

turn cursor off

set insert cursor style

set overstrike cursor style
save cursor position

restore cursor position
absol ute cursor position
cursor up

cursor down

cursor forward

cursor back

set latch graphics rendition
set area graphics rendition
renove area attribute

open nessage |ine

cl ose nmessage |ine

write to softkey | abel 2
set graphics node O

(l'i kewi se V_MODE1l, 2, 3)

si ngl e-character graphics node
(I'i kewi se V_MODE5, 6)

vi si bl e al arm sequence

PR RRRRN

L

processing for

standard vi deo operations,

shoul d you wish to replace or extend them If you have severe nenory

constraints,

you can use smu_vproc to hard-code al

vi deo processing and

elimnate the device-independent video package entirely, thus saving substanti al
codes defined there will be passed to this routine, just those

space.

that actually produce out put,

Not

al l

as are shown in the table.

Your video function nust be installed with a call to sminstall, using

VPROC FUNC. If it returns a nonzero value, JAMs run-tinme systemw || process
the operation normally, so you need inplenent only those operations you are
really interested in.

Note: you may call the function you supply for this hook anything you like; it
is included in the manual under this head only for definiteness. In fact, the
name on this page is one you should not call your function, because it wll
conflict with the global variable used by JAMto store your function's address.
RETURNS

Zero if the paraneters were successfully processed, nonzero otherw se.

VARI ANTS AND RELATED FUNCTI ONS

sm.install (which_hook, what_func, howmany);

sm ch_unsgatts - change the standard error wi ndows attributes
SYNOPSI S

void smch_unsgatt (border_style, border_attribute
protected_attribute, menu_attribute)
i nt border_style;
int border_attribute;
int protected_attribute;
int menu_attr;

DESCRI PTI ON

Changes the display characteristics of the error windows that are part of the
library. Currently, there are two such wi ndows: the error w ndow, used to

di splay a nmessage too long to fit on the status line; and the hit space w ndow,
whi ch pops up if you hit any key other than the space bar to acknow edge an
error nmessage.

This function is intended to be called once, at the beginning of an application
to set the display characteristics of the library wi ndows to harnonize with the
application's own fornmns.

This function is simlar to smch formatts, which changes the attributes of the
systemcalls and "go to" wi ndows as well as those of the error w ndows. Use of
that function is therefore preferable.

If border_style is less than 0, the wi ndows are nade borderless. Oherw se, it
is taken to be the border style nunber (0 through 9), and border_attribute, if
nonzero, is made the border attribute.

If protect_attribute is nonzero, it is used for protected fields that contain
messages in the error windows. nenu_attribute is not currently used.

sm unget key - push back a translated key on the input
SYNOPSI S
#i ncl ude "snkeys. h"

i nt sm.ungetkey (key);
int key;

DESCRI PTI ON
Saves the transl ated key given by key so that it will be retrieved by the next
call to smgetkey. Miltiple calls are permtted; the key values are pushed onto
a stack (LIFO).
When sm getkey reads a key fromthe keyboard, it flushes the display first, so
that the operator sees a fully updated display before typing anything. Such is
not the case for keys pushed back by sm ungetkey; since the input is conmng from
the program it is responsible for updating the display itself.
RETURNS

The value of its argument, or -1 if nmenory for the stack is unavail abl e.
VARI ANTS AND RELATED FUNCTI ONS

sm getkey ();
EXAMPLE
#i ncl ude "snkeys. h"

/* Force tab to next field */
sm unget key (TAB);

sm unprotect - conpletely unprotect a field

SYNOPSI S

int smunprotect (field_nunber)
int field_number;

DESCRI PTI ON

Renoves all four kinds of protection (see table) fromthe field indicated by
field_nunber.

Mhenoni ¢ Meani ng

EPROTECT protect fromdata entry

TPROTECT protect fromtabbing into (or from
entering via any other key)

CPROTECT protect fromclearing

VPROTECT protect fromvalidation routines

To unprotect a field selectively, use sm lunprotect; to unprotect an array as a
unit, use sm aunprotect.

RETURNS

-1 if the field is not found; O otherwi se.
VARI ANTS AND RELATED FUNCTI ONS

sm e_unprotect (field_nane, elenent);

sm n_unprotect (field_nane);

sm protect (field_nunber);

sm lunprotect (field_nunber, mask);
sm aunprotect (field_nunber, mask);

EXAMPLE
#i ncl ude "sndefs. h"

/* 1f the executive has a PC, unprotect a field to
* hold its nmake; otherw se, protect that field. */

if (smn_is_yes ("owns_pc"))
sm n_unprotect ("pc_nake");
el se smn_protect ("pc_nake");

smunsetup - restore screen manager options to their default val ues
SYNOPSI S

void smunsetup ();
DESCRI PTI ON
This function calls all the option-setting library functions mentioned in the
setup file with their default paraneters, effectively restoring "factory
defaults" to the whole library. There is a list of the functions involved in the
section on setup files in the Configuration Guide.
The values read in by smsnmsetup are not erased from menory.
VARI ANTS AND RELATED FUNCTI ONS

smsnmsetup (rmenfile);
EXAMPLE

/* Back to defaults we go. */

sm unsetup ();

smyvinit - initialize video translation tables
SYNOPSI S

int smvinit (video_file)
char *video_file;

DESCRI PTI ON

This routine is called by sminitcrt as part of the initialization process. It
can also be called directly by an application program wth video file the
address of a menory resident video file. Such a file nust be created by the
JYACC vi d2bin and bin2c utilities, then conpiled into the application.

If video file is zero, this function will read the binary file named by the
envi ronnent variabl e SWI DEO from di sk

RETURNS
Oif initialization is successful; -1 if video_file is zero and SMVIDEO i s
undefined; programexit if an error occurs in reading fromdi sk
EXAMPLE

/* Install a nenory-resident video file */
extern char special _vid[];

smvinit (special_vid);

sm wdesel ect - restore the fornerly active w ndow
SYNOPSI S

int smwlesel ect ();
DESCRI PTI ON

This function restores a windowto its original position in the form stack
after it has been noved to the top by a call to smwselect. Information
necessary to performthis feat is saved during each call to smwselect, but is
not stacked; therefore a call to this routine nust follow a call to smwsel ect,
and sel ect/desel ect pairs cannot be nested.

RETURNS
-1 if there is no window to restore. O otherw se.
VARI ANTS AND RELATED FUNCTI ONS

smwsel ect (w ndow);

sm n_wsel ect (w ndow_narne);
EXAMPLE
/* A typical use of the wi ndow selection routines is to
update information to a wi ndow that nay (or may not) be
covered. For exanple, suppose that the current tinme
shoul d be maintained on the underlying form Assume
that a field named "curtinme" exists on that form
The followi ng code fragments can be used
to maintain that field i ndependent of the nunmber of w ndows
currently open above the form

*
*
*
*
*
*
*
*

*/
#i ncl ude "sndefs. h"
updat eti me()

smwselect (0); /* quietly select the bottomform */
smn_putfield ("curtime", ""); /* update systemtinme display */
sm wdesel ect ();/* restore visible wi ndow */

smflush ();

return (0);

}

/* Ininitialization code: called every second. */

static struct fnc_data afunc = { 0, updatetime, 0O, 10, 0, 0 };
sm.install (ASYNC FUNC, &afunc, (int *)O0);

fnc(wecord) - copy data fromthe screen or LDB to a structure

SYNOPSI S
#i ncl ude "sndefs. h"

void smwecord (structure_ptr, record_nanme, byte count, |ang);
char *structure_ptr;

char * record_nane;

i nt *byte_count;

int |ang;

DESCRI PTI ON

When a data dictionary containing records is run through the dd2struct utility,
structure definitions based on the fields of each record in the data dictionary
are saved in a file with the dictionary nane plus a | anguage-specific extension.
Including this file (or specific structures of the file) in an application
al l ows decl arations of objects of these structure types. Such objects nust be
declared for smrrecord and smwecord to be used.

The argument structure_ptr is the address of one such declared structure. The
argunment record_nane is the nane of the data dictionary record, needed for
| ooking up its attributes.

The argunent byte_count is a pointer to an integer. Upon return fromsmwecord,
the value contained in the integer will be the nunber of bytes or characters
read fromor witten to the structure. It will be O if an error occured.

The argurment lang is the | anguage nunber, as defined in snmsndefs.h . Zero stands
for Cwith null-term nated strings, one for Cwith blank-filled strings.

smwecord reads field data fromthe screen if possible, or fromthe |ocal data
bl ock, and fills in the appropriate elements of the structure. If a structure
elenent is of a nuneric type, the data is first converted into the appropriate
representation for the machi ne

VARI ANTS AND RELATED FUNCTI ONS

smrrecord (structure_ptr, record_name, byte_count, |ang);

smwt_part - wite part of the screen to a structure
SYNOPSI S
#i ncl ude "sndefs. h"
void smwt _part (formstruct, first_field,
| ast _field, |anguage)
char *form struct;
int first field, last_field, |anguage;

DESCRI PTI ON

This function copies the contents of all fields between first_field and
last_field to a data structure in nmenory. An array and its scrolling items will
be copied only if the first elenent falls between first _field and last_field.

The address of the structure is in screen_struct; it is a structure for the
whol e screen, not just the part of interest. There is a utility, JYACC f2struct,
that will automatically generate such a structure fromthe screen file.

Language stands for the programm ng | anguage in which the structure is defined;
it controls the conversion of string and nuneric data. Zero stands for Cwth
null-term nated strings, one for Cwth blank-filled strings.

If your screen is so designed that (for instance) the input and output fields
are grouped together, this function can be nuch faster than smwtstruct, which
copies every field.

VARI ANTS AND RELATED FUNCTI ONS

smrd_part (screen_structure, first_field, last_field, |anguage);
smwtstruct (screen_structure, byte_count, |anguage);

EXAMPLE

The code exanpl e bel ow uses the same screen as the smrdstruct exanple; refer to
that exanple for the screen's picture and listing.

Here is a header file produced by f2struct fromthe screen:

struct strex

{
| ong dat e;
char nanme[26] ;
char address[3][76];
char t el ephone[14];
b

Finally, here is a programthat processes the screen using smrd_part and
smwtpart.

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"
#i ncl ude "strex.h"

#define C_LANG 0

int main ();
void punt ();

char *program nane;

mai n (argc, argv)
char *argv[];

{

struct strex

exanpl e;
i nt key;
char ebuf [80];

/* Initialize all structure menbers to nulls. This is
* inmportant because we are going to do an smrd_part
* first. */

exanpl e. date = OL;

exanpl e. nanme[0] = O;

exanpl e. address[0] [O]

exanpl e. addr ess[2] [0]

exanpl e. t el ephone[0] = O;

exanpl e. address[1][0] = O;
0;

/* Copy command |ine argunments, if any, into the structure. */

switch (argc)
{
case 6:
defaul t:
/* lgnore extras */
strcpy (exampl e.tel ephone, argv[5]);
case 5:
strcpy (exanmpl e. address[2], argv[4]);
case 4:
strcpy (exanpl e.address[1], argv[3]);
case 3:
strcpy (exanpl e.address[0], argv[2]);
case 2:
strcpy (exanple.name, argv[1]);
program name = argv[O0];
br eak;

}

/* Initialize the screen and copy the structure to it,
* excluding the date field. */
sminitcrt ("");
if (smr _form("strex") < 0)

punt ("Cannot read form?");
smrd_part (&exanple, 2, smnunflds, C_LANG;
smn_putfield ("date", "");

/* Open the keyboard to accept new data to the form and
* copy it to the structure when done. Break out when user
* hits EXIT key. */

smd _nsg line ("Enter data; press %EXIT to quit.",

VHI TE | HI LI GHT);
do {
key = sm openkeybd ();
smwtstruct (&exanmple, 2, smnunflds, C_LANG;
sprintf (ebuf, "Acknow edged: byte count = % l.",
count);
smerr_reset (ebuf);
} while (key !'= EXIT);

/* Clear the screen and display the final structure contents.
smresetcrt ();
printf ("%\n", exanple.nane);
for (count = 0; count < 3; ++count)
i f (exanple.address[count][0])
printf ("9%\n", exanple.address[count]);
printf ("%\n", exanple.tel ephone);

*/

exit (0);

voi d
punt (message)
char *message;

smresetcrt ();
fprintf (stderr, "%:. %\n", program nane, nmessage);
exit (1);

smwtstruct - copy data fromthe screen to a nmenmory structure
SYNOPSI S

#i ncl ude "sndefs. h"

void smwtstruct (formstruct, count, | anguage)

char *form struct;

int *count, |anguage;

DESCRI PTI ON

This function copies a data structure in nmenory to the screen, converting
i ndi vidual itenms as appropriate. The address of the structure is in
screen_struct. There is a utility, JYACC f2struct, that will automatically
generate such a structure fromthe screen file.

The argunent count is the address of an integer variable. smwtstruct wll
store there the nunber of bytes copied to the structure.

The argunent | anguage stands for the programm ng |anguage in which the structure
is defined; it controls the conversion of string and nuneric data. Zero stands
for Cwith null-term nated strings, one for Cwith blank-filled strings.

VARI ANTS AND RELATED FUNCTI ONS

smwt_part (screen_structure, first field, last_field, |anguage);
smrdstruct (screen_structure, byte_count, |anguage);

EXAMPLE

The code exanpl e bel ow uses this screen, whose picture and listing follow

ELTTTETEETET IR e et ettt et errnn»
[0} [0}
° Nane: °
° Address: °
[0} [0}
o o
° Telephone: (__) - o
o) o)
=R RN RN RN R RN AR AR AR R RREY
FORM ' strex

FI ELD DATA:

Fi el d nunmber o1 (litne 1, colum 32, length = 8)

Field name . date

Display attribute : UNDERLI NED HI GHLI GHTED WHI TE

Field edits : PROTECTED FROM ENTRY OF DATA; TABBI NG | NTO, CLEARI NG

VALI DATI ON

Date field data : SYSTEM DATE; FORMAT = MM DD. YY

Data type : LONG | NT

Fi el d nunmber 2 (line 3, colum 15, length = 25)

Field name . nane

Display attribute : UNDERLI NED HI GHLI GHTED WHI TE

Fi el d nunber
Fiel d nanme
Vertical array

Array field nunbers

Shifting val ues
Di splay attribute

Fi el d nunber

Fi el d nanme
Display attribute
Character edits
Data type

3 (line 4, colum 15, length
addr ess

3 elenments; distance between
elenments = 1

3 4 5

maxi mum | ength = 75; increnent
UNDERLI NED HI GHLI GHTED WHI TE

6 (line 7, colum 15, length
t el ephone

UNDERLI NED HI GHLI GHTED WHI TE
DI G TS- ONLY

CHAR STRI NG

25)

13)

Here is a header file produced by f2struct fromthe screen above.

struct strex

{
| ong dat e;
char name[26] ;
char address[3][76];
char t el ephone[14];
1

Finally, here is a programthat processes the screen using smrdstruct and
smwtstruct.

#i ncl ude "sndefs. h"
#i ncl ude "snkeys. h"
#i ncl ude "strex. h"
#define C LANG O

int min ();
void punt ();

char *program namne;

mai n (argc, argv)
char *argv[];

{
struct strex exanpl e;
i nt count,
key;
char ebuf [80];

/* Initialize all structure menbers to nulls. This is
* important because we are going to do an smrdstruct
* first. */

exanpl e. date = OL;

exanpl e. nanme[0] = O;

exanpl e. address[0] [O] exanpl e. address[1][0] = O;

exanpl e. addr ess[2] [0] 0;

exanpl e. t el ephone[0] = O;

/* Copy conmand |ine argunments, if any, into the structure. */
swi tch (argc)
{
case 6:
defaul t:
/* lgnore extras */

strcpy (exanpl e.tel ephone, argv[5]);
case b5:

strcpy (exanpl e. address[2], argv[4]);
case 4:

strcpy (exanmpl e. address[1], argv[3]);
case 3:

strcpy (exanpl e. address[0], argv[2]);
case 2:

strcpy (exanpl e.nane, argv[1]);

program name = argv[O0];

br eak;

}

/* Initialize the screen and copy the structure to it. */
sminitcrt ("");
if (smr _form("strex") < 0)

punt ("Cannot read form");

smrdstruct (&exanple, &count, C_LANG;
smn_putfield ("date", "");

/* Open the keyboard to accept new data to the form and
* copy it to the structure when done. Break out when user
* hits EXIT key. */

smd_nsg line ("Enter data; press %EXIT to quit.",

VWHI TE | HI LI GHT);
do {
key = sm openkeybd ();
smwtstruct (&exanple, &count, C _LANG;
sprintf (ebuf, "Acknow edged: byte count = %l.",
count);
smerr_reset (ebuf);
} while (key !'= EXIT);

/* Clear the screen and display the final structure contents. */
smresetcrt ();
printf ("% d\n", exanple.date);
printf ("%\n", exanple.nane);
for (count = 0; count < 3; ++count)

i f (exanpl e.address[count][0])

printf ("%\n", exanple.address[count]);

printf ("%\n", exanple.tel ephone);

exit (0);

voi d
punt (nmessage)
char *message;

smresetcrt ();
fprintf (stderr, "%: %\n", programname, message);
exit (1);

smwsel ect - shuffle w ndows
SYNOPSI S

int smwselect (w ndow)
i nt wi ndow,

DESCRI PTI ON

This routine brings a hidden window (or form to the active position, where it
will be referenced by screen manager library calls such as smputfield and
smgetfield. You identify the wi ndow you want by its sequence nunber in the
stack of windows: the formunderlying all the wi ndows is w ndow O; w ndow = 1
gets the first w ndow opened, wi ndow = 2 the second, and so forth.

Here are two different ways of using wi ndow selection. One is to select a hidden
screen nonentarily, to update sonething in it, and replace it by calling

sm wdesel ect wi thout opening the keyboard. This sequence will have no i medi ate
visible effect, unless smflush is called. The other is to select a hidden
screen and open the keyboard; in this case, the selected screen becones visible,
and may hide part or all of the screen that was previously active. In this way
you can inplement nultipage forns, or switch anbng several w ndows that tile the
screen (do not overlap).

After this routine is called the order of the wi ndows on the stack, and thus the
nunberi ng of the wi ndows, is changed. Subsequent calls to this function nmust be

aware of the current ordering of wi ndows. The JAM screen stack is unaffected by

this function.

A related function smn_wsel ect, takes the nane of a w ndow as argunment and
|l ooks for it in the window stack. It will not find wi ndows displayed with
sm d_w ndow or related functions, because they do not record the w ndow nane.

JAM applications should only use this routine in paired calls with sm wdesel ect,
or the control stack will beconme incorrect and unexpected results nay occur

RETURNS
The nunber of the wi ndow that was nmade active (either the nunber passed, or
the maximumif that was out of range). -1 if the systemran out of
menory.

VARI ANTS AND RELATED FUNCTI ONS

sm wdesel ect ();
sm n_wsel ect (w ndow_narne);

EXAMPLE

/* A typical use of the wi ndow selection routines is to

*

* OF X X X F F

update information to a wi ndow that nay (or may not) be
covered. For exanple, suppose that the current tinme

shoul d be maintained on the underlying form Assune

that a field named "curtinme" exists on that form

The followi ng code fragnments can be used

to maintain that field i ndependent of the nunmber of w ndows
currently open above the form
/

#i ncl ude "sndefs. h"

updat eti me()

}
/

*

smwselect (0); /* quietly select the bottomform*/
smn_putfield ("curtime", ""); /* update systemtine display */
sm wdesel ect ();/* restore visible wi ndow */

smflush ();

return (0);

In initialization code: called every second. */

static struct fnc_data afunc = { 0, updatetime, 0O, 10, 0, 0 };
sminstall (ASYNC FUNC, &afunc, (int *)O0);

smzmoptions - set zoom ng options
SYNOPSI S
#i ncl ude "sndefs. h"

int smzmoptions (flag)
int flag;

DESCRI PTI ON
Control s the behavior of the zoom ng function, norrmally bound to the ZOOM key.

Flag is a mmenonic defined in sndefs.h , or a pair of mmenobnics ored together,
that select the operations desired.

Zoom ng makes nore of scrolling and shifting fields visible than is ordinarily
the case. It expands the current field either horizontally or vertically, as far

as the physical display will allow, and places it in a window atop the currently
di spl ayed screen. If a field is both scrolling and shifting, zoom ng wll
ordinarily take place in two steps: scrolling expansion will be done first, and

shifting expansion next. If a scrolling field has parallel scrolls, they will be
di spl ayed too.

The following menonics control scroll expansion:

ZM NOSCROLL Scrolling arrays will not be expanded; the process
goes immediately to shift expansion

ZM SCROLL Scrolling arrays will be expanded to display as many
itenms as possible.

ZM PARALLEL Scrolling arrays will be expanded to display as many
items as possible, along with their parallel arrays.

ZM 1STEP Scrolling arrays will be expanded to display as many
items as possible; shifting arrays will be expanded at
the same tinme. This option overides the shift node
flag.

The foll owi ng nmenonics control array/scrolling expansion when shifting fields
are being expanded in step two:

ZM NOSHI FT Shifting fields will not be expanded; they will remain
shifting, and no second step takes place.

ZM SCREEN Shifting arrays will have as many on-screen el enents
as the previous formhad. This will be the origina

form ONLY if ZM NOSCROLL is used; otherw se, ZM SCREEN
means the scroll-expansi on screen, or show as nany
itens as possible.

ZM ELEMENT Show 1 el ement on-screen, but allow scrolling (via
arrow keys) to the rest of the array. If a scroll node
was sel ected, the shift w ndow can be zooned again,
showi ng all el ements.

ZM | TEM Show only 1 element. There is no way of seeing nore
items in the "I TEM' scroll w ndow.

Here are some useful conbinations whose senmantics are perhaps not crystal clear
fromthe above descriptions:

ZM PARALLEL| ZM_SCREEN This is the default, and zooms in two steps. The
first step will expand the scrolling arrays; the
second step will add expansion of shifting
fields, but |ose the parallel arrays.

ZM PARALLEL| ZM_ELEMENT This will zoomin three steps, adding a
single-line shift expansion as step two. This

will save screen update tinme when |looking at a
single record.

ZM NOSCROLL| ZM_SCREEN This will disable scroll expansion, but the
shift expansion wi ndow will still show the itens
that were on-screen in the original screen

ZM NOSCROLL| ZM_ELEMENT This will mnimze screen output when all that

is wanted is shift-expansion of an oversize
description field.

ZM NOSCROLL| ZM | TEM This will restrict zoomto shift expansion of
only the current item

ZM 1STEP This will always give the maxi mumdata in the
first step. However, no parallel arrays are
di spl ayed.

If you define the SMZMOPTI ONS variable in your setup file, it will cause this
function to be called automatically during start-up with the paranmeters you
specify there.
RETURNS

-1 if the paraneter is invalid, otherwi se the previous options.
EXAMPLE
#i ncl ude "sndefs. h"

/* Restore zooning options to their defaults. */

smzm options (ZM PARALLEL | ZM SCREEN) ;

4 Built-in Invoked Functions

Thi s section describes invoked (caret) functions supplied with JAM The fornat
of each page is sinmlar to that of the preceding section, with a few exceptions.
The synopsis is for a JAMcontrol string, not a progranm ng | anguage source
statenment; bol df ace indicates keywords to be entered as shown, while normal type
i ndi cates paranmeters to be replaced by a string you choose. The return val ue of
a caret function can only be used in a target list; see Section 1.2.1.

You may use these functions only in caret control strings. If you call them
directly fromyour own code a wide variety of results, ranging from perfect
success through obscure run-tine problens to |inker errors, is possible.

NAMVE

jmexit - end processing and | eave the current screen
SYNOPSI S

Ajmexi t
DESCRI PTI ON
Erases the current formor wi ndow and returns to the previous one. If the
current formis the |last one on the control path (the application's top-Ievel
form, will cause JAMto pronpt and exit to the operating system
The effect is Iike the default action of the run-tinme system s EXIT key.
EXAMPLE
The follow ng control string invokes a function naned process. If it returns O,
anot her function is invoked to reinitialize the screen; but if it returns -1,
the screen is exited. See jm.gotop for another exanple.

A(-1="jmexit; O0="reinit)process

The exanpl e bel ow shows how a formor a wi ndow can be swapped wi th another form
or a w ndow:

AN(O=&W2) | m exit

NAMVE
jmgotop - return to application's top-level form
SYNOPSI S
Aj m_got op
DESCRI PTI ON
Returns to the application's top-level screen, ordinarily the first screen to
appear when the application was run. Al fornms and wi ndows on the control path

are di scarded.

The run-tine systenmls SPF1 key perforns the same action, unless you change it
usi ng SM NI CTRL.

EXAMPLE

The followi ng nenu makes use of both jmexit and j m gotop.

Elrrrrerrrrrrrrrr ettt ettt ettt
(o] (o]
°© Query custoner database__ custquery.jam _ °
° Update customer database_ custupdate.jam_ °
° Free-formquery___ lsgl °
© Return to previous menu__ Nimexit_ °
° Return to main nmenu___ Ajmgotop °
o o

Etrrrrrrrrrrrrrerrrrrrrrrrrrrr ettt et rrrrnrn a

NAME

jmgoform- pronpt for and display an arbitrary form
SYNOPSI S

Ajm_goform
DESCRI PTI ON
This function pops up a window in which you may enter the nane of a form it
will then close the window and attenpt to display the form as if that forms
name had appeared in a control string. It is useful for providing a shortcut
around a nenu system for experienced users.
The result is the same as the default action of the run-tine system s SPF3 key.

EXAMPLE

The following line, if placed in your setup file, will make the PF10 key act
i ke SPF3 nornally does:

SM NI CTRL= PF10="j m _gof or m

NAME
j mkeys - simulate keyboard input
SYNOPSI S
Njm keys keynane-or-string [keynane-or-string ...]
DESCRI PTI ON
Queues characters and function keys that appear after the function name for
input to the run-tinme system using smungetkey. The run-tine systemthen

behaves as though you had typed the keys.

Function keys should be witten using the |ogical key mmenonics listed in

snkeys. h . Data characters should be encl osed between apostrophes , backquot es
7, or double quotes "". This function passes its arguments to smungetkey in
reverse order, so you supply themin the natural order

EXAMPLE

Enter the name of your favorite bar, followed by a tab and the nane of its
owner :

Ajmkeys ' Steinway Brauhall' TAB "James O Shaughnessy”
Return to the precedi ng nenu and choose the second option:

Ajmkeys EXIT HOVE TAB XM T

NANME

jmmutogl - switch between nenu and data entry node on a dual - pur pose
screen

SYNOPSI S
Aj m_mmut ogl
DESCRI PTI ON

JAM supports the use of a single screen for both nmenu selection and data entry;
one popul ar exanple is a data entry screen with a "nenu bar". The screen mnust,
however, be either one or the other at any given nonent. This function sw tches
the run-tine systenls treatnent of the screen to the other node. \When the screen
is a nenu, the run-tinme systemuses sm nmenu_proc for keyboard input; otherw se,
it uses sm openkeybd.

Screens with a jamnenu field will be treated initially as nmenus; others will be
treated initially as data entry screens. A screen cannot be used as a nenu
unless it has fields with the MENU bit set.

EXAMPLE

Below is a screen with four menu options on the left and data entry fields on
the right. Selecting a nmenu option first causes a function to be invoked, which
will store the choice; when that function returns zero, jmnmnutogl is invoked to
begin data entry. \When data entry is conpleted by the TRANSM T key, a function
attached to that key can use the stored nmenu option to performthe desired
transaction.

Etrrrrerrrrerrrrrrrrrrrrer et ettt et et et e et »
° ° Nane: °
° L OOKUP ° Address: °
o A(0=Ajm.mutogl)l ook ° °
o ADD___ o o
° A(O0="jm.mmutogl)add_ ° Phone (.Y - °
° MODI FY ° Not es: °
° A(O0=Ajm.mmutogl)nod_ ° °
° DELETE ° °
(o] (o] (o]

NAME

jmsystem - pronpt for and execute an operating system conmand
SYNOPSI S

Ajm_system
DESCRI PTI ON
This function pops up a small w ndow, in which you nay enter an operating system
command. When you press TRANSM T, it closes the wi ndow and executes the conmmand.
Wil e the conmand is executing, your termnal is returned to the operating
systenl s default 1/O node.
The run-tinme systenls SPF2 key invokes this function by default.

EXAMPLE

The followi ng |ine, when placed in your setup file, will cause the PF10 key to
act as SPF2 normally does:

SM NI CTRL= PF10 = ~j m system

NANME

jpl - invoke a JPL procedure stored in a file
SYNOPSI S

Ajpl filename [argument ...]
DESCRI PTI ON

This function invokes a procedure witten in the JYACC Procedural Language and
stored in a file. Filenane should be the nane of the file containing your
procedure; anything following that will be passed to the procedure as argunents.
The val ue returned by your procedure will be passed along by jpl for use in a
target list.

This function is simlar to the JPL jpl command, but does not do col on
expansi on.

EXAMPLE

The control string below invokes a JPL function, passing it the nane of a field
in which its command is stored.

Njpl execute command

5 Environnment and Configuration Files

This section describes only an essential few of the many configuration variabl es
supported by JAM refer to the section on setup files in the Configuration Cuide
for nore. The following list summarizes JAM s nost conmmonly used environment
vari abl es:

SMVBGS file name for nessage text SWI DEO
file name for video informati on SMKEY
file name for keyboard translati on SMARS
single variable for consolidati on TERM
term nal mMmenoni ¢ SMITERM
substitute for TERM

The first three are required: they nane configuration files used by JAMto
describe its operating environnent. It finds them by |ooking either in the
system environment, or in a binary file named by SMWARS. If it fails to find
either the variables or the configuration files thenmselves, it will post a
message and exit.

The system variable TERM and the JAM vari abl e SMITERM are used i n conjunction
with SMWARS. You nmay replace the three environnent variables with SWARS. This
vari abl e gives the name of a binary file containing the other screen nanager
vari ables. A typical SWARS source file might |ook Iike the foll ow ng:

SMKEY = (TV: TV950)/sm confi g/ TVkeys. bin SMKEY =
(vt 100: d0: d1:d2)/sm confi g/ vt 100keys. bin SWI DEO = /sm confi g/vt100vi d. bin
SMMSGS = /usr/local /nmsgfile.bin SMPATH = /appl / masks

The lists enclosed in parentheses are ternmnal types; JAMuses themto find the
right files for your term nal. The SMARS source file nmust be converted to

bi nary using var2bin; the system environment then needs only the nanme of the
binary file (and perhaps your term nal), as

SIMWARS=/ usr/ | ocal / smvars. bin
TERMEVt 100

The termnal type, used to match against the lists in parentheses, is taken from
the variable SMIERM or from TERMif that is not present. (If you want JAMto
recogni ze a ternminal menmonic different from TERM put it in SMIERM For

exanple, the text editor mght work fine with the termnal in vt100 emul ation
but JAM coul d want the features of vt220 enul ation; you could set TERMto vt 100
and SMIERM to vt 220.)

Application prograns initialize JAMby calling sminitcrt. This call nust
precede calls to just about any other library routine, except those that instal
menory resident nmessage, key and/or video files, or set options; see Section
12.2. sminitcrt first calls an optional user-supplied initialization routine,
smu_uinit, which may (anong other things) initialize the character string
smterm

sminitcrt then | ooks for SMARS and SMSETUP in the system environnent, and uses
themto read in setup files. Subsequently, setup variables are sought first in
the system environnent and then in the setup files.

Next the terminal type is deternmned and placed in a character array called
smterm which is declared in snmdefs.h . An application programcan force a
terminal type by setting smtermbefore sminitcrt is called. If the array is
enpty, SMIERM is sought first, then TERM I|f neither is found, initialization is
attenpted wi thout a term nal type.

SMMSGS conmes next. If this variable is not found, or the file it names is found
by sm nsginit not to be useable, JAMw || abort initialization. Initialization
errors in file I/O are reported using the C library function perror; these

messages are system dependent. Other errors encountered before the nessage file
i s | oaded provoke hard-coded nessages; afterward, all error nessages are taken
fromthe nessage file.

Vi deo and keyboard initialization are next attenpted, in that order, using
smkeyinit and smvinit respectively. If after all this JAMstill can't
determ ne which configuration files to use, it will pronpt you for a term na
type and retry the entire sequence. Finally, JAMinitializes the termnal and
its operating system channel

After ensuring that the environnent is set up, sminitcrt initializes the
operating system s ternminal channel. It is set to "no echo" and non-buffered
input. If other changes are desired (e.g. from7 to 8 data bits), they can be
made in the user initialization routine.

Next the initialization string found in the video file is transnmitted to the
term nal. The Video Manual gives details; here we sinply note that systemcalls
can be enbedded in the string. Oten this feature can be used in |lieu of a user
initialization routine.

6 Keyboard | nput

Keystrokes are processed in three steps. First, the sequence of characters
generated by one key is identified. Next the sequence is translated to an
internal value, or logical character. Finally, the internal value is either
acted upon or returned to the application ("key routing”). Al three steps are
t abl e-driven. Hooks are provided at several points for application processing;
they are described in Section 8.

6.1 Logical Characters or Keys

JAM processes characters internally as |ogical values, which frequently (but not
al ways) correspond to the physical ASCII codes used by term nal keyboards and

di spl ays. Specific keys or sequences of keys are mapped to |ogical values by the
key translation table, and | ogical characters are mapped to video output by the
MODE and GRAPH commands in the video file. For npbst keys, such as the normal

di spl ayabl e characters, no explicit mapping is necessary. Certain ranges of

| ogi cal characters are interpreted specially by JAM they are

0x0100 to OxO01ff: operations such as tab, scrolling, cursor notion
0x6101 to O0x7801: function keys PFl1 - PF24
0x4101 to 0x5801: shifted function keys SPFl - SPF24
0x6102 to 0x7802: application keys APP1 - APP24
6.2 Key Transl ation

The first two steps together are controlled by the key translation table, which
is |loaded during initialization. The name of the table is found in the
environment (see Section 5 for details). The table itself is derived from an
ASCI| file which can be nodified by any editor; a screen-oriented program
nmodkey, is also supplied for creating and nodi fying key translation tables (see
the Configuration Guide).

After the table is read into nenory, it has the formof an array of structures:

struct

{
char key[6];

i nt val ue;

b

The first field is an array of up to 6 characters; it holds the sequence of
characters sent to the computer when the key is pressed. The second nenber is
the | ogical value of the key.

JAM assunes that the first character of a multi-character key sequence is a
control character in the ASCII chart (0x00 to Ox1f, Ox7f, Ox80 to Ox9f, or
Oxff). Al characters not in this range are assunmed to be displayable characters
and are not translated. The routine that performs the translation is called

sm _get key.

Upon recei pt of a control character, smgetkey searches the translation table.
If no match is found on the first character, the key is accepted w thout
translation. If a match is found on the first character and the next character
in the table's sequence is 0, an exact match has been found, and sm getkey
returns the value indicated in the table. The search continues through
subsequent characters until either

1. an exact match on n characters is found and the n+1'th character in the
table is zero, or nis 6. In this case the value in the table is
returned.

2. an exact match is found on n-1 characters but not on n. In this case
sm getkey attenpts to flush the sequence of characters returned by the
key.

This last step is of sone inportance: if the operator presses a function key
that is not in the table, the screen manager nust know "where the key ends."

The algorithmused is as follows. The table is searched for all entries that
match the first n-1 characters and are of the same type in the n'th character
where the types are digit, control character, letter, and punctuation. The
snmal l est of the total |engths of these entries is assumed to be the | ength of
the sequence produced by the key. (If no entry matches by type at the n'th
character, the shortest sequence that matches on n-1 characters is used.) This
met hod all ows sm getkey to distinguish, for exanple, between the sequences ESC O
x, ESC[A and ESC[1 0 ~.

6.3 Key Routing

The main routine for keyboard processing is smopenkeybd. This routine calls
sm getkey to obtain the translated value of the key. It then decides what to do
based on the follow ng rules.

If the value is greater than Ox1ff, sm openkeybd returns to the caller with this
val ue as the return code.

If the value is between 0x01 and Ox1ff, the processing is determ ned by a
routing table. This is an array whose address is stored in smroute_table. The
val ue returned by smgetkey is used to index into the table, where two bits
deternmine the action. The bits are exam ned i ndependently, so four different
actions are possible:

If neither bit is set, the key is ignored.

If the EXECUTE bit is set and the value is in the range 0x01 to Oxff,
it is witten to the screen (as interpreted by the GRAPH entry in the
video file, if one exists). If the value is in the range 0x100 to

Ox1ff, the appropriate action (tab, field erase, etc.) is taken

If the RETURN bit is set, smopenkeybd returns the |ogical value to the
caller; otherwi se, smgetkey is called for another val ue.

If both bits are set, the key is executed and then returned.

The default settings are ignore for ASCI|I and extended ASCI| control characters
(0x01 - Ox1f, Ox7f, 0x80 - O0x9f, Oxff), and EXECUTE only for all others. The
application function keys (PF1-24, SPF1l-24, APPl-24, and ABORT) are not handl ed
through the routing table. Their routing is always RETURN, and cannot be

al tered

Applications can change key actions on the fly by nodifying the routing table.
For exanple, to disable the backtab key the application program woul d execute

smroute_tabl e[BACK] = O;
To make the field erase key return to the application program use
smroute_tabl e[FERA] = RETURN,

Key mmenonics can be found in the file snkeys.h .

7 Screen CQut put

JAM uses a sophisticated del ayed-write output schene, to mnimze unnecessary
and redundant output to the display. No output at all is done until the display
must be updated, either because keyboard input is being solicited or the library
function smflush has been called. Instead, the run-tine system does screen
updates in menory, and keeps track of the display positions thus "dirtied"

Fl ushi ng begi ns when the keyboard is opened; but if you type a character while
flushing is inconplete, the run-time systemw |l process it before sendi ng any
nore output to the display. This nmakes it possible to type ahead on slow |ines.
You may force the display to be updated by calling smflush.

JAM t akes pains to avoid code specific to particular displays or ternmnals. To
achieve this it defines a set of |ogical screen operations (such as "position
the cursor"), and stores the character sequences for perform ng these operations
on each type of display in a file specific to the display. Logical display
operations and the codi ng of sequences are described in excruciating detail in
the Video Manual ; the follow ng sections, along with Sections 11.2, and 12. 4,
describe additional ways in which applications nay use the informati on encoded
in the video file.

7.1 Graphics Characters and Alternate Character Sets

Many term nals support the display of graphics or special characters through
alternate character sets. Control sequences switch the termnal anong the
vari ous sets, and characters in the standard ASCI| range are displayed
differently in different sets. JAM supports alternate character sets via the
MODEx and GRAPH commands in the video file.

The seven MODEx sequences (where X is 0 to 6) switch the termnal into a
particul ar character set. MODEO nust be the normal character set. The GRAPH
command maps | ogical characters to the node and physical character necessary to
display them It consists of a number of entries whose formis

| ogi cal val ue = node physi cal - charact er

When JAM needs to output logical value it will first transnmt the sequence that
switches to node, then transmt physical-character. It keeps track of the
current mode, to avoid redundant nmode switches when a string of characters in
one nmode (such as a graphics border) is being witten. MODE4 t hrough MODE6
switch the node for a single character only.

7.2 The Status Line

JAM reserves one line on the display for error and other status nmessages. Mny
termnals have a special status line (not addressable with normal cursor
positioning); if such is not the case, JAMwi Il use the bottomline of the

di splay for nessages. There are several sorts of nessages that use the status
line; they appear below in priority order

Transi ent nmessages issued by smerr_reset or a related function
Ready/ wait status

Messages installed with smd nsg |ine or smnsg

Field status text

Background status text

SAERC .

There are several routines that display a nmessage on the status line, wait for
acknowl edgement fromthe operator, and then reset the status line to its
previous state: smquery_nsg, smerr_reset, smensg, smaquiet_err, and

sm qui _nmsg. smquery_mnmsg waits for a yes/no response, which it returns to the
calling program the others wait for you to acknow edge the message. These
messages have hi ghest precedence.

sm setstatus provides an alternating pair of background nessages, which have
next hi ghest precedence. Whenever the keyboard is open for input the status |ine
di spl ays Ready; it displays Wait when your programis processing and the
keyboard is not open. The strings nay be altered by changi ng the SM READY and
SMWAIT entries in the nmessage file.

If you call smd nsg |line, the display attribute and nmessage text you pass
remain on the status line until erased by another call or overridden by a
message of higher precedence.

When the status [ine has no higher priority text, the screen manager checks the
current field for text to be displayed on the status line. If the cursor is not
inafield, or if it isin a field with no status text, JAM | ooks for background
status text, the |l owest priority. Background status text can be set by calling
sm set bkstat, passing it the nessage text and display attribute.

In addition to nessages, the rightnmost part of the status line can display the
cursor's current screen position, as, for exanple, C 2,18. This display is
controlled by calls to smc_vis.

During debugging, calls to smerr_reset or smaquiet_err can be used to provide
status information to the programrer wi thout disturbing the main screen display.
Keep in mnd that these calls will work properly only after screen handling has
been initialized by a call to sminitcrt. smerr_reset and smquiet_err can be
called with a nessage text that is defined locally, as in the follow ng

exanpl es:

1. smerr_reset ("Zip code invalid for this state.");
2. int i, j;

char bugbuf[81];

sprintf (bugbuf, "i =9%; j =%.", i, j);

sm qui et _err (bugbuf);

However, the JAMIibrary functions use a set of nessages defined in an interna
message table. This is accessed by the function smnsg _get, using a set of
defines in the header file snerror.h . For exanple:

smquiet_err (smnsg_get (SM MALLOC));

The nessage table is initialized fromthe nmessage file identified by the
environnment variable SMMSGS. Application nessages can al so be placed in the
message file. See the section on nessage files in the Configuration CGuide.
8 User-definabl e Functions
The JAM i brary contains nunerous hooks where you can install routines to be
called from soneplace within the run-tine system This is occasionally necessary
when you have exotic hardware, but nore often it is sinmply convenient to do sonme
application-specific function in the context of a run-tinme system operation. The
keyboard i nput functions, for instance, contain several hooks.
A hook tells JAM everything it needs to know in order to call your routine. This
generally includes the routine's nane, its address, and the progranm ng | anguage
it was witten in. JAM knows how to interpret the routine's arguments and return
val ue by which hook it is installed on.
The following list itemzes all the different hooks and tells where to go for
i nformati on about each; the bol dface references are to Section 3 of this
chapter. Many hooks hold a single application routine, but the first three in
the list can hold any nunmber. In this case JAM uses the routine nane, such as
the one you specify in the screen for an attached function, to find the
information it needs.

Screen entry and exit functions, Section 1.4

Attached functions, including field entry, field exit (or validation),
and attached JPL procedure, Section 1.3

I nvoked functions, Section 1.2
Meno edits, Section 8.2

Keystroke processi ng hooks:

Key transl ation function, smu_keychange
Key recordi ng hook, smu_record

Key pl ayback hook, smu_pl ay

Key | ookahead hook, sm u_avai

Asynchronous function, smu_async

Di spl ay processi ng hooks:

Vi deo processi ng hook, smu_vproc

I nsert mode transition function, smu_inscrsr

Status line display function, smu_statfnc
Screen manager initialization and reset hooks, smu_uinit and
sm u_ureset

Check digit validation, smu_ckdigit

The hooks for which library function nanes are given are all docunented under
those nanes in the library section of this chapter, and should be installed
using sminstall; the next section discusses installation. Attached, invoked
(caret), and screen entry functions are discussed in Sections 1.3, 1.2, and 1.4,
respectively. Meno edits are discussed bel ow.

8.1 |Installation

In general, there are two ways of getting JAMto call an application routine.
One istowite aroutine in Cwith the sane nane and calling sequence as one
provided in the library, and link it with the application; the linker will then
ignore the library routine and load the application routine in its place. You
can use this technique for the smu_uinit, smu_ureset, video, and check digit
functions. This nechanismw Il not work on many systenms. It is supported for
backward conpatibility only, and may be phased out in the future.

The other technique is to call sminstall, g.v.; this is portable, supported,
and strongly to be preferred. You pass this function a data structure containing
the nane, address, and source |anguage of your function. Every function or type
of function listed in the previous section (with the exception of nenp edits)
can be installed with sminstall

8.2 Menmo Text Edits

Menp text edits are not function hooks; rather, they are special edits you can
use to attach arbitrary information to a field. The JAMrun-tine systemignores
meno edits, but application routines nay access them wusing smedit_ptr. An
exanple of meno edit use follows.

Suppose a screen contains fields whose contents are interdependent, such as
state abbreviation and zip code. The zip code field m ght have an attached
function that perfornms a validation based on the state abbreviation. However, if
the zip code was validated and the operator subsequently changed the state
abbreviation, the zip code m ght becone invalid. A sinmple solution would be to
attach the followi ng function to the state abbreviation field:

int state_change (field _num data, occurrence, val _ndt)

{
if (val _nmdt & MDT)
/* current field changed */
smn_noval bit ("zip"); /* reset zip VALIDED bit*/
return O;
}

Now suppose a screen contains several groups of interdependent fields. One could
use MEMOL to hold a list of dependent fields (say by nunber, separated by
commmas), and the followi ng function to process them

field _change (field num data, occurrence, val_ndt)
int field_num

char *data;

i nt occurrence;

int val _ndt;

{

char *ptr;

if (val _mdt & MDT) /* current field changed */

{
ptr = smedit_ptr (field_nunber, MEMO1);
if (ptr) /* find MEMOL edit, if any */
{
ptr += 2;
/* skip length, conmand code*/
while (*ptr)
{
sm noval bit (atoi (ptr));
while (*ptr && *ptr !'="',")
++ptr;
if (*ptr) ++ptr;
}
}
}
return (0);

9 The Local Data Bl ock

The LDB is a table of name-val ue pairs nmaintained by the run-time system As you
enter data in naned fields, the values are copied to the LDB; when you bring up
a new screen with naned fields, values are copied in fromthe LDB. This
procedure inplenents data |links, and goes by the name of LDB write-through. The
list of nanes is taken fromthe data dictionary; certain other field
characteristics needed for the proper formatting of data, such as field size and
currency formats, are also taken fromthe data dictionary.

During screen display, i.e. during execution of smr_w ndow or a variant,
smallget is called to load naned fields with values fromthe LDB (w thout
setting their MDT bits). Wenever a screen is removed fromthe display or is
covered by a window, smlstore is first called to update the LDB with screen

values. In between, i.e. while the screen is being processed, certain library
functions requiring data val ues seek themfirst in the screen, and search the
LDB if they are not there. This preserves the illusion that nanmed fields in the

LDB are al ways accessi ble and al ways have the | atest values in them Screens
brought up by the run-tinme system share this feature with those brought up by
your control fields and code, since the run-tine system uses smr_w ndow too.

The library functions that use the LDB are n_ and i _ variants, plus a few that
reference the LDB explicitly, such as smlreset and smallget. Functions that
refer to a field by nunmber, nanely the o_ variant and the basic function

obvi ously cannot access data outside the screen. The e_ functions do refer to
fields by nane; however, they are designed specifically for accessing el enents
of onscreen arrays, and so do not go to the LDB. Field cal cul ati on expressions
and JPL procedures that contain nanmed fields will reference the LDB in the same
way.

If the scope of an LDB entry is 1, or constant, its value cannot be changed by
write-through; only smlreset can change the values of constants.

LDB write-through is normally on; you can turn it off (and back on) by calling
sm dd_able. Care is necessary, though; even the explicit LDB access functions,
such as smallget, do not work when wite-through is off. As an exanple, you

could make the LDB read-only in a single screen by putting the follow ng code
fragnent in a screen entry function:

smallget (1);
sm dd_able (0);

You woul d then have to call smdd_able (1) to re-enable LDB wite-through in a
screen exit function, which is called after the smlstore; calling it before
then, as in an EXIT control string, would cause the LDB to be updated. If you
want to di sable LDB processing for an entire application, sinply onmt the cal
to smldb_init before starting up the run-time system see Section 1.6.

10 Witing Portable Applications

The followi ng section is an attenpt to identify features of hardware and
operating system software that can cause JAMto behave in a non-uniform fashion
An application designer wishing to create prograns that run across a variety of
systens will need to be aware of these factors.

10.1 Term nal Dependencies

JAM can run on screens of any size. On screens wi thout a separately addressabl e

status line, JAMwi |l steal the bottomline of the display (often the 24th) for

a status line, and status nessages will overlay whatever is on that |ine. A good
| owest comon denomi nator for screen sizes is 23 lines by 80 columms, including

t he border (if any).

Different term nals support different sets of attributes. JAM nmakes sensible
conprom ses based on the attributes available; but progranms that rely
extensively on attribute manipulation to highlight data may be confusing to
users of terminals with an insufficient nunber of attributes.

Attribute handling can also affect the spacing of fields and text. In
particul ar, anyone designing screens to run on termnals with onscreen
attributes nust remenber to | eave space between fields, highlighted text, and
reverse video borders for the attributes. Some terminals with area attributes
also Iimt the nunber of attribute changes pernmitted per Iine (or per screen).

The key translation table nmechani sm supports the assignment of any key or key
sequence to a particular logical character. However, the nunber and | abelling of
function keys on particul ar keyboards can constrain the application designer who
makes heavy use of function keys for programcontrol. The standard VT100, for

i nstance, has only four function keys properly speaking. For sinple choices
anmong alternatives, the library routines smnenu_proc and sm choice are probably
better than switching on function keys.

Usi ng function key | abels, or keytops, instead of hard-coded key names is also

i mportant to naking an application run snoothly on a variety of termnals. Field
status text and other status |line nmessages can have keytops inserted
automatically, using the % escape. No such translation is done for strings
written to fields; in such cases, you may want to place the strings in a nessage
file, since your setup file can now specify term nal -dependent nmessage fil es.

10.2 Itens in snach. h

The header file smmach.h , which is supplied with the JAM library, contains
information that library routines need to deal wth certain nmachine, operating
system and conpil er dependenci es. These incl ude:

The presence of certain C header files and library functions.

Byte ordering in integers and support for the unsigned character type.

Pat h name and command |ine argunent separator characters.
Poi nter alignment and structure padding.

The header file is thoroughly commented, and application designers are
encouraged to make use of the information there.

11 Witing International Applications
11.1 Messages

Al'l nmessages displayed by the JAMIlibrary routines are in the ASCI| nessage
file; this file may be edited to translate the nmessages into any | anguage.
Further, the screens used by JAMutilities are supplied in libraries; they may
be edited there and their pronpts transl ated.

11.2 Characters Qutside the U S. ASCI| Set

Terminals that are capabl e of displaying characters outside the 7-bit U S. ASCl
set may do it two ways: either they display 8-bit characters (those in the range
0x80 to Oxff), or they have control sequences for sw tching anong severa
character sets. On input, again, the foreign keys may generate either 8-bit
codes or a multi-character sequence.

If the terminal's keyboard generates 8-bit codes and its display can display
them there is little the application needs to do except set the GRTYPE entry
in the video file. However, sone caution is necessary, because JAM reserves the
range 0x100 to Ox1ff for its |logical operations (tab, field erase, scroll

etc.). Applications should avoid mapping keys into this range. Alternate
character sets require nmore work. First a |logical value for the character in
question nmust be selected; the range 0Oxa0 to Oxfe is good. Next, the contro
sequences for switching character sets must be defined in the video file as
MODEx. MODEO is the normal character set; JAM supports up to 6 alternate
character sets (MODEL to MODE6). Finally, the GRAPH entry in the video file mnust
be set up. It consists of any number of sub-entries whose format is

| ogi cal -val ue = mode physi cal - charact er

where node is 1 to 3 and logical-value is the value that gives the desired
output in the appropriate node. (See Section 6.1 for nore details on alternate
character sets, and the Video Manual for how to create and use video files.)

12 Witing Efficient Applications
12.1 Menory-resident Screens

Menory-resi dent screens are nmuch quicker to display than disk-resident screens,
since no disk access is necessary to obtain the screen data. There are two ways
of using the JAMIlibrary functions with menory-resident screens; but in either
case, the screens nust first be converted to source |anguage nodul es with bin2c
or arelated utility (see the Configuration Guide), then compiled and Iinked
with the application program

smd formand related |ibrary functions can be used to display nenory-resident
screens; each takes as one of its paraneters the address of the global array
containing the screen data, which will generally have the same nanme as the file
the original screen was originally stored in.

A nore flexible way of achieving the sane object is to use a nmenory-resident
screen list. Bear in mnd that the JAMutility can only operate on disk files,
so that altering nenory-resident screens during program devel opnment requires a
tedi ous cycle of test - edit - reinsert with bin2c - reconpile. The JAMIibrary
mai ntains an internal |ist of nenory-resident screens that smr_w ndow and

rel ated functions exanm ne. Any screen found in the list will be displayed from
menory, while screens not in the list will be sought on disk. This neans that
the application can be coded to use one set of calls, the r-version, and screens
can be configured as disk- or nenory-resident sinply by altering the list.

The screen list is pointer to an array of structures:

struct formli st

{

char *form nane;
char *formptr;
} *sm nmenf or ns;

To initialize it, an application would use code |like the follow ng:
#i ncl ude "sndefs. h"
extern char mainforni], popupl[];

extern char popup2[], helpwin[];

struct formlist mforns[] =

{
"mai nform jam', mai nf orm
"popupl.jam', popupl
"popup2.jam', popup2,
"hel pwi n.janm', hel pwin,
" (char *)O0
b

éﬁjorMist(meHm);

Note the last entry in the screen list: an enpty string for the name and a nul
pointer for the screen data. This marks the end of the list, and is required.
The call to smformist adds the screrens in your list to JAMs internal Ilist.

Usi ng nenory-resident screens (and configuration files, see the next section)
is, of course, a space-tinme tradeoff: increased nenory usage for better speed.

The naming of screens in the screen list presents a few problens. First of all,
the nane of the character array for a screen nmust not conflict with the name of
any other global data itemor function; for instance, a menory-resident screen
with the name of a function could not be installed with a program Secondly, the
filename extension nust be renmpved fromthe array name, which means that screens
with the sane nane but different extensions will conflict. If your application
code structure permts, you can nmninze the foregoing problens by nmeking the
screens in question local in scope to a particular source file.

JAM wi | | append the extension found in the setup variable SMFEXTENSI ON to screen
names (e.g. in control fields) that do not already contain an extension; you
nmust take this into account when creating the screen list. JAM may al so convert
the nane to uppercase before searching the screen list; this is governed by the
SMFCASE vari abl e.

12.2 Menory-resident Configuration Files

Any or all of the three configuration files required by JAM can be nade nenory
resident. First a C source file nmust be created fromthe text version of the
file, using the bin2c utility; see the Configuration Guide. The source files
created are not intended to be nodifiable, or even understandable, any nmore than
the binary files are; each defines sone data objects which are of no concern to
us. Each file contains one data object that is globally known. The foll ow ng
fragnment nmakes all three files nenory-resident:

/* Menory-resident message, key, and video files */
extern char meg_file[];

extern char key file[];

extern char video_ file[];

[* ...nmpore declarations... */

smnsginit (nmsg_file);
sm keyinit (key file);
smyvinit (video file);
sminitcrt ("");

/* ...possibly initialize function and formlists */

/* ...application code */

If afile is made nenory-resi dent, the correspondi ng environnent variable or
SWARS entry can be di spensed with.

12.3 Message File Options

If you need to conserve nmenory and have a | arge nunber of messages in nmessage
files, you can make use of the MSG DSK option to sm nsgread. This option avoids
| oadi ng the nmessage files into menory; instead, they are left open, and the
messages are fetched from di sk when needed. Bear in mind that this uses up
additional file descriptors, and that buffering the open file consunmes a certain
anount of system nenory; you will gain little unless your nessage files are
quite large.

12.4 Avoiding Unnecessary Screen Qut put

Several of the entries in the JAMvideo file are not logically necessary, but
are there solely to decrease the nunber of characters transmitted to paint a

gi ven screen. This can have a great inpact on the response tinme of applications,
especially on time-shared systenms with low data rates; but it is noticeable even
at 9600 baud. To take an exanple: JAM can do all its cursor positioning using
the CUP (absol ute cursor position) conmand. However, it will use the relative
cursor position commnds (CUU, CUD, CUF, CUB) if they are defined; they al ways
require fewer characters to do the sanme job. Simlarly, if the terminal is
capabl e of saving and restoring the cursor position itself (SCP, RCP), JAM will
use those sequences instead of the nore verbose CUP

The gl obal flag sm do_not _display may al so be used to decrease screen output.
VWhile this flag is set, calls into the JAMIibrary will cause the interna
screen imge to be updated, but nothing will be witten to the actual display;
the latter can be brought up to date by resetting the flag and calling
smrescreen. Wth the inplenmentation of delayed wite in JAM Rel ease 4, this
sort of trick is necessary much less often than it was under Rel ease 3.

12.5 Stub Functions

Certain screen manager facilities can be omtted froman application if they are
not used, by defining certain literals in the application. This can result in
substantial menory savings; however, it requires that the screen nmamnager
libraries not be pre-linked or pre-bound, i.e. is not supported on all systens.
The following facilities my be stubbed out:

subsystem #define

the mat h package NOCALC scrol ling functions
NOSCROLL tine and date functions
NOTI MEDATE hel p screens
NCHELP shifting fields
NOSHI FT range checki ng functions
NORANGE word wr ap
NOWRAP field zoom expansi on
NOZOOM r egul ar expressi ons
NOREGEXP form libraries
NOFORM.I B JYACC procedural | anguage
NQIPL read/wite data structure
NOSTRUCT save/restore screen data
NOSRD | ocal print
NCOLPR area attributes
NOAREA wi ndow sel ecti on
NOWSEL keytop transl ation
NOLKEYLAB setup paraneter file
NOSETUP shift/scroll indicators
NOI NDI CATORS

To omit any one or conbination of the above, first #define the appropriate
literal in your application, then #include the stubs file. This need only be
done once, for instance in the application's main routine. For exanple, if the
application is not going to use scrolling fields, the scrolling functions could
be omtted, and the application source mght |ook |like the follow ng:

#defi ne NOSCROLL
#i ncl ude "sndefs. h"
#i ncl ude "sm stubs. c"

main ()
{

/* ...the application code... */
}

The effect of defining the literal and including smstubs.c is to declare stub
routines in the application; this causes the linker not to add the real routines
fromthe screen manager library to the application. The bul k of the savings wll
be in code space. The stubbing techni que does not work on systens where the
library is itself a linked entity, such as a shareable library.

If range, math, and JPL support are all stubbed out, you can also omt |inking
the Cmath library (-Imflag on UNI X systems, math library on MS-DOS systens).

I ndex

In this Index, library functions are displayed in

bol df ace, wi t hout the
| anguage interface. Video

prefi xes specific to t he
and setup file entries

appear in ELITE CAPS, while utility programs and JPL
conmands are in elite | ower-case. Function key nanes

are in ROVAN CAPS.

1cl ear_array 3-11, 3-18

lprotect 3-15, 3-19, 3-20,
3-25, 3-27, 3-83, 3-158

lunprotect 3-15, 3-19, 3-20,
3-220

A
a_bitop 3-31
ABORT key 3-87, 3-104, 3-247
achg 3-11, 3-21, 3-42
all get 3-13, 3-23, 3-251
anmount field 3-193
ant _format 3-11, 3-24, 3-66,
3-68, 3-93, 3-144,
3- 149
APP1 key 3-247
application
efficiency 3-253
i nternational 3-253
mai n routine 3-7
space savi ng 3-255
application Portability
3-252
aprotect 3-15, 3-19, 3-20,
3-25, 3-27, 3-158
array
size of 3-190
ascroll 3-14, 3-26
asynchronous function 3-200
attached function 3-3
paranmeters 3-3
return value 3-4
aunprotect 3-15, 3-25, 3-27,
3-220

B

background status 3-248

BACKSPACE key 3-154

backtab 3-12, 3-28

BACKTAB key 3-3, 3-4, 3-135,
3-153, 3-154

base fldno 3-15, 3-29

beep 3-30, 3-55, 3-72, 3-76,

3-162
bel 3-15, 3-30, 3-55, 3-72,
3-76, 3-162

BELL vi deo paraneter 3-30

bi n2c utility 3-51, 3-53,
3-57, 3-113, 3-222,
3-253, 3-254

bitop 3-4, 3-5, 3-15, 3-31

BUFSI Z vi deo paraneter 3-67

C

c_off 3-12, 3-33

c_on 3-12, 3-34

c_vis 3-12, 3-35, 3-56,
3-73, 3-77, 3-138,
3-163, 3-213, 3-248

calc 3-11, 3-36, 3-186

cancel 3-10, 3-37

case sensitivity 3-78, 3-134

ch_enmsgatt 3-14, 3-38, 3-76

ch_formatts 3-14, 3-39

ch_gmsgatt 3-14, 3-40, 3-161

ch_stextatt 3-14, 3-41

ch_umsgatt 3-14

ch_unsgatts 3-218

chg_attr 3-11, 3-21, 3-42

choice 3-12, 3-16, 3-43,
3-104, 3-252

ckdigit 3-203

cl _all _mdts 3-15, 3-45

cl _everyfield 3-11, 3-46

cl _unprot 3-11, 3-47

CLEAR ALL key 3-47

clear_array 3-11, 3-14,
3-18, 3-48

cl ose_wi ndow 3-5, 3-6, 3-9,
3-11, 3-49

COF vi deo paraneter 3-33,
3-34

CON vi deo paraneter 3-33,
3-34

configuration
determ nation at runtine
3-244
configuration files 3-244
menory-resi dent 3-254
control path 3-237, 3-238,
3-239
control string 3-1
target list 3-1
control strings 3-1
CURPCS vi deo paraneter 3-35
cursor
| ocating 3-189
position 3-85
position display 3-35
turn off 3-33
turn on 3-34
cursor notion 3-90, 3-92,
3-123, 3-146, 3-198
control 3-152
cursor style 3-204

D
d_ 3-10, 3-16
d at_cur 3-11, 3-51
d form3-5, 3-11, 3-53,
3-253
d nmsg_line 3-13, 3-55, 3-72,
3-76, 3-132, 3-138,
3-143, 3-161, 3-162,
3-164, 3-187, 3-188,
3-213, 3-248
d_wi ndow 3-6, 3-11, 3-57,
3-165, 3-167, 3-232
data dictionary
and LDB 3-251
data length 3-63
data links 3-251
data structure access 3-171
3-172, 3-225, 3-228
dbl val 3-13, 3-59
dd2struct utility 3-179,
3-224
dd_abl e 3-14, 3-23, 3-60,
3-251
del ayed wite 3-67, 3-247
DELETE CHAR key 3-87
DELETE LI NE key 3-65
di cnane 3-14, 3-61, 3-125
di sp_of f 3-12, 3-62, 3-189
di splay attribute
enbedded in status line
3-55, 3-72, 3-76, 3-162
of field 3-42
of inquiries 3-40
of nessages 3-38
of prompts 3-41
of wi ndows 3-39
dl ength 3-13, 3-63, 3-127
do_region 3-15, 3-64
doccur 3-11, 3-65, 3-102
dtofield 3-11, 3-66
dw options 3-14, 3-67

E
e_ 3-9, 3-14
e _lprotect 3-67
e_lunprotect 3-67
e amt _format 3-67, 3-68
e_bitop 3-67
e _chg_attr 3-67
e_dbl val 3-67
e _dlength 3-67
e dtofield 3-67
e _fldno 3-68, 3-69
e fptr 3-68
e _fval 3-68
e getfield 3-68
e gofield 3-68
e_intval 3-68
e is_yes 3-68
e itofield 3-68
e_ I ngval 3-68
e Itofield 3-68
e_mdt _cl ear 3-68
e_nmod_test 3-68
e_noval bit 3-68
e _off _gofield 3-68
e_protect 3-68
e putfield 3-68
e_unprotect 3-68
edit_ptr 3-12, 3-70, 3-186,

3-192, 3-250
8-bit ASCII 3-253
el ement nunber 3-68
emsg 3-13, 3-72, 3-74, 3-76,

3-162, 3-248
envi r onnment

system 3-244
use at startup 3-244

envi ronnent vari abl es 3-255

environnment vari abl es: see SMKEY,

SWARS, etc.

er_options 3-14, 3-72, 3-74,
3-76, 3-162, 3-164

ERASE key 3-154

err_reset 3-9, 3-13, 3-14,
3-38, 3-55, 3-72, 3-74,
3-76, 3-164, 3-187,
3-188, 3-248

error nessage 3-76, 3-161
3-164, 3-245

transl ati on 3-253

EXIT key 3-1, 3-2, 3-43,
3-49, 3-51, 3-57, 3-87,
3-91, 3-115, 3-120,
3-134, 3-154, 3-165,
3-169, 3-237, 3-252

exit processing 3-174

F

f2struct utility 3-171,
3-172, 3-225, 3-228,
3-230

fcase 3-78

f extensi on 3-10, 3-79

field
changi ng di spl ay
attri bute 3-42
current 3-85
date 3-186
time 3-192
field I ength 3-127
field name 3-144, 3-145
field nunber 3-85, 3-145
field validation 3-147,
3-182
order of 3-182
flush 3-15, 3-80, 3-132,
3-173, 3-208, 3-232,
3-247
forei gn | anguage support
3- 253
formlist 3-254
formib utility 3-115,
3-118, 3-119, 3-120
formist 3-10, 3-51, 3-53,
3-57, 3-81, 3-178,
3-254
fptr 3-12, 3-16, 3-43, 3-82,
3-103
function key
ABORT 3-87, 3-104, 3-247
APP1 3-247
BACKSPACE 3- 154
BACKTAB 3-3, 3-4, 3-135,
3-153, 3-154
CLEAR ALL 3-47
DELETE CHAR 3-87
DELETE LI NE 3-65
ERASE 3- 154
EXIT 3-1, 3-2, 3-43,
3-49, 3-51, 3-57, 3-87,
3-91, 3-115, 3-120,
3-134, 3-154, 3-165,
3-169, 3-237, 3-252
HELP 3-87, 3-91, 3-154
HOVE 3-4
| NSERT 3-87, 3-154, 3-204
I NSERT LI NE 3-102
LOCAL PRI NT 3-87, 3-91
3-154
PAGE DOMNN 3-16
PAGE UP 3-16, 3-154
PF1 3-1, 3-87, 3-247
PF10 3-239, 3-242
PF24 3-87
RESCREEN 3-87, 3-91,
3-154, 3-173
RETURN 3-3, 3-146, 3-153
SPF1 3-87, 3-238, 3-247
SPF2 3-39, 3-242
SPF24 3-87
SPF3 3-39, 3-239
TAB 3-3, 3-135, 3-153,
3-154, 3-198
TRANSM T 3-2, 3-3, 3-4,
3-43, 3-87, 3-134,
3-154, 3-182, 3-241,
3-242

TRANSM T, 3-91

TRANSM T. 3-91

XMT 3-1

ZOOM 3- 234
function key | abels 3-55,

3-72, 3-76, 3-162

function keys

| abel i ng 3-122

routing of 3-247

undefined 3-246
function list 3-1, 3-7
fval 3-3, 3-4, 3-15, 3-83

G

getcurno 3-12, 3-85

getfield 3-12, 3-16, 3-63,
3-82, 3-86, 3-159,
3-232

getkey 3-10, 3-11, 3-12,
3-17, 3-87, 3-89,
3-104, 3-111, 3-154,
3-173, 3-200, 3-202,
3-204, 3-205, 3-208,
3-212, 3-219, 3-246

gofield 3-9, 3-12, 3-90

graphi cs characters 3-247,
3-253

graphi cs nodes 3-247

CRTYPE vi deo paranmeter 3-253

gtchar 3-200

H
HELP key 3-87, 3-91, 3-154
hel p screen 3-91
hl p_by name 3-11, 3-15, 3-91
honme 3-12, 3-92, 3-123
HOMVE key 3-4
hook
field attachment 3-3
i nvoked function 3-1

|

i 3-9

i achg 3-21, 3-93
i _am _format 3-93
i _bitop 3-31, 3-93
i _dblval 3-93

i _dlength 3-93
i _doccur 3-93

i _dtofield 3-93
i _fptr 3-93

i _fval 3-93

i _getfield 3-93
i _gofield 3-90, 3-93

i intval 3-93

i _ioccur 3-93, 3-102

i itofield 3-93

i _Ingval 3-93

i _ltofield 3-93

i _mdt _clear 3-93

i _mod _test 3-93

i _noval bit 3-93

i _off_gofield 3-93

i _putfield 3-93, 3-159

i nbusi ness 3-94
i nd_set 3-15, 3-95
inictrl 3-10
I NI CTRL setup variable 3-160
i ni nanes 3-96, 3-125, 3-129
initcrt 3-9, 3-10, 3-37,
3-81, 3-94, 3-97,
3-113, 3-119, 3-141,
3-165, 3-167, 3-174,
3-191, 3-214, 3-222,
3-244, 3-245, 3-248
| NSERT key 3-87, 3-154,
3-204
I NSERT LI NE key 3-102
| NSOFF vi deo paraneter 3-204
I NSON vi deo parameter 3-204
install 3-7, 3-10, 3-87,
3-97, 3-98, 3-99,
3-200, 3-203, 3-204,
3-205, 3-213, 3-214,
3-215, 3-216, 3-250
i nternational applications
3- 253
intval 3-13, 3-101
i nvoked function 3-1
chaining 3-1
paranmeters 3-1
return value 3-1
target list 3-1
i occur 3-11, 3-65, 3-102
is_yes 3-13, 3-103
i sabort 3-12, 3-87, 3-104
itemid 3-14
itofield 3-11, 3-105

J

jamauto 3-5

jam nmenu 3-241
jclose 3-106

j form 3-107
Ajmexit 3-237, 3-238
~Ajm_gof orm 3-239
Ajm_gotop 3-238
Njim keys 3-240
Ajm_mut ogl 3-241
Ajm.system 3-242
Ajpl 3-243

j Wi ndow 3-109

K
key processing 3-245
key routing 3-154
al gorithm 3-246
to change 3-247
key transl ation
al gorithm 3-245
initialization 3-113
key translation file 3-55,
3-72, 3-76, 3-162
key2bin utility 3-113
keyboard input 3-87, 3-112,
3-152, 3-154
keyboard mappi ng: see key
transl ation

keyfilter 3-14, 3-111
keyhit 3-12, 3-112, 3-202
keyinit 3-10, 3-113, 3-245
keyl abel 3-15, 3-114
keys

cursor notion 3-135
keytops 3-55, 3-72, 3-76,

3-162

KPAR vi deo paraneter 3-122
KSET vi deo paraneter 3-122

L
I _ 3-10, 3-16
| _at_cur 3-11, 3-115
| close 3-11, 3-117
| _form 3-11, 3-118
| _open 3-11, 3-115, 3-117,
3-118, 3-119, 3-120
| _window 3-11, 3-119, 3-120,
3- 165, 3-167
| abel _key 3-15, 3-122
| ast 3-12, 3-123
I clear 3-11, 3-124, 3-125
LDB 3-23, 3-251
write-through 3-60, 3-251
LDB nerge 3-23
ldb_init 3-11, 3-61, 3-96,
3-125, 3-252
| eave 3-10, 3-94, 3-126,
3-173, 3-177
l ength 3-15, 3-127
library functions
categories 3-10
nam ng conventions 3-9
st ubs 3-255
typi cal use 3-9
| ngval 3-13, 3-128
LOCAL PRI NT key 3-87, 3-91
3-154
| ogi cal keys 3-245, 3-246
I reset 3-11, 3-96, 3-125,
3-129, 3-251
| store 3-13, 3-49, 3-130,
3-251, 3-252
Itofield 3-11, 3-131

M
m flush 3-15, 3-132
math edit 3-36
max_occur 3-15, 3-133, 3-148
MDT bit 3-3, 3-4, 3-5, 3-23,
3-45, 3-159, 3-199,
3-251
menmo edits 3-70, 3-250
menory-resi dent
configuration files 3-254
screen 3-51
screens 3-253
menu 3-43
cursor notion contro
3-135
MENU bit 3-43, 3-91, 3-241
menu_proc 3-10, 3-12, 3-14,
3-16, 3-17, 3-43,

3-134, 3-135, 3-137,
3-241, 3-252

message file 3-248

modkey utility 3-245

np_options 3-14, 3-43,
3-134, 3-135, 3-152

mp_string 3-14, 3-16, 3-43,
3-134, 3-137

Ms- DOS 3- 256

nmsg 3-13, 3-138, 3-248

nmsg2bin utility 3-139

msg_get 3-13, 3-139, 3-140,
3-141, 3-142, 3-248

nsgfind 3-13, 3-140, 3-141,
3-142

nmegi nit 3-244

msgread 3-10, 3-139, 3-141,
3- 255

mv ndow 3- 13, 3-143

N

n_ 3-9

n_1cl ear_array 3-144
n_1lprotect 3-144
n_lunprotect 3-144
n_ant _format 3-144
n_aprotect 3-144
n_aunprotect 3-144
n_bitop 3-144
n_chg_attr 3-144
n_clear_array 3-144
n_dbl val 3-144

n_dl ength 3-144
n_dtofield 3-144
n_edit_ptr 3-144
n_fldno 3-15, 3-144, 3-145
n_fptr 3-144

n_fval 3-144
n_getfield 3-144
n_gofield 3-144
n_intval 3-144
n_is_yes 3-144
n_itofield 3-144
n_length 3-144

n_| ngval 3-144
n_ltofield 3-144
n_max_occur 3-144
n_ndt _cl ear 3-144
n_nmod_test 3-144
n_noval bit 3-144
n_num.itens 3-144
n_off_gofield 3-144
n_protect 3-144
n_putfield 3-144, 3-159
n_size of array 3-144
n_unprotect 3-144
n_wsel ect 3-144, 3-232
nl 3-12, 3-146

noval bit 3-15, 3-147
num.itens 3-14

num occurs 3-12, 3-148

O
o_ 3-9

0o_achg 3-21, 3-149

o_ant _format 3-149

o_bitop 3-31, 3-149

o_chg_attr 3-149

o_dbl val 3-149

o_dlength 3-149

o_doccur 3-149

o _dtofield 3-149

o fptr 3-149

o_fval 3-149

o _getfield 3-149

o_gofield 3-90, 3-149

o_intval 3-149

o_ioccur 3-102, 3-149

o itofield 3-149

o_Il ngval 3-149

o ltofield 3-149

o_ndt _cl ear 3-149

o_nmod_test 3-149

o_noval bit 3-149

o_off_gofield 3-149

o_putfield 3-149

occur_no 3-15, 3-150

occurrence 3-149

occurrence numnber

obt ai ni ng 3- 150

of f _gofield 3-12, 3-90,
3-151

of fscreen data 3-18

ok_options 3-3, 3-14, 3-97,
3-135, 3-152, 3-154

op_ndt 3-199

openkeybd 3-3, 3-5, 3-9,
3-10, 3-12, 3-14, 3-17,
3-83, 3-104, 3-152,
3-154, 3-182, 3-241,
3- 246

oshift 3-14, 3-156

P

PAGE DOWN key 3-16

PAGE UP key 3-16, 3-154

PF1 key 3-1, 3-87, 3-247

PF10 key 3-239, 3-242

PF24 key 3-87

pkptr 3-12, 3-16

plcall 3-15, 3-157

portability 3-252

programinitialization 3-244

prompt 3-55, 3-72, 3-76,
3-162

protect 3-15, 3-19, 3-20,
3-25, 3-27, 3-158

PROTECT bits 3-158, 3-220

protected field 3-158, 3-220

putfield 3-3, 3-5, 3-9,
3-11, 3-24, 3-45, 3-86,
3-147, 3-148, 3-159,
3-232

putjctrl 3-15, 3-160

Q

query_nsg 3-12, 3-13, 3-14,
3-40, 3-161, 3-187,
3-248

qui _msg 3-13, 3-72, 3-74,
3-162, 3-164, 3-248

qui et _err 3-13, 3-14, 3-38,
3-74, 3-76, 3-162,
3-164, 3-187, 3-248

R

r_3-9, 3-16

r_at_cur 3-11, 3-51, 3-53,
3-57, 3-81, 3-143,
3- 165

r form3-5, 3-9, 3-11, 3-81,
3-167

r_w ndow 3-5, 3-9, 3-11,
3-78, 3-79, 3-81, 3-97,
3-115, 3-118, 3-119,
3-120, 3-169, 3-178,
3-251, 3-253

rd_part 3-13, 3-171, 3-225

rdstruct 3-13, 3-171, 3-172,
3-179, 3-225

rescreen 3-11, 3-15, 3-173,
3-177, 3-255

RESCREEN key 3-87, 3-91
3-154, 3-173

RESET vi deo paraneter 3-126,
3-174

resetcrt 3-9, 3-10, 3-37,
3-94, 3-174, 3-215

resize 3-15, 3-175

restore_data 3-13, 3-176,
3-180, 3-184, 3-194

return 3-10, 3-94, 3-177

RETURN key 3-3, 3-146, 3-153

rnmformist 3-10, 3-178

routing table 3-154

rrecord 3-13, 3-179, 3-224

rs_data 3-13, 3-180, 3-194

rscroll 3-14, 3-181

S
s_val 3-3, 3-4, 3-15, 3-182
sanpl e prograns 3-8
save_data 3-13, 3-176,
3-184, 3-195
sc_max 3-14, 3-102, 3-133,
3-185
screen
menory-resi dent 3-253
di splay 3-51, 3-53,
3-57
screen display 3-165, 3-167,
3-169
screen entry function 3-5
screen initialization 3-97
screen library 3-115, 3-117,
3-118, 3-119, 3-120
screen out put
optim zation 3-255

screen validation 3-182
scroll 3-181
scrolling array 3-48
maxi mum i t em count 3-133,
3-185
scrolling field
nunber of itens in 3-148
sdate 3-15, 3-186
set bkstat 3-13, 3-187,
3-188, 3-248
setstatus 3-14, 3-55, 3-187,
3-188, 3-248
SETUP vi deo paraneter 3-177
sh_off 3-15, 3-62, 3-189
size_of _array 3-15, 3-190
sm do_not _di splay 3-170,

3-173

SMCHEMSGATT setup vari abl e
3-38

SMCHFORMATTS setup vari abl e
3-39

SMCHQVSGATT setup vari abl e
3-40

SMCHSTEXTATT setup vari able
3-41

SMDI CNAME setup vari abl e
3-61

SVMDWOPTI ONS setup vari abl e
3-67

SMEROPTI ONS setup vari abl e
3-74

SMFCASE setup vari abl e 3-254

SMFEXTENSI ON setup vari abl e
3-79, 3-254

SMFLI BS setup vari abl e 3-16,
3-119

SM NDSET setup vari able 3-95

SM NI CTRL setup vari abl e

3-238

SM NI NAMES setup vari abl e
3-96

SMKEY setup variable 3-113,
3-244

SMVPOPTI ONS set up vari abl e
3-135

SMVWPSTRI NG setup vari abl e
3-137

SMMSGS setup vari abl e 3-141,
3-244

SMOKOPTI ONS setup vari abl e
3-153

SMPATH setup variable 3-61
3-97, 3-119, 3-129,
3-157, 3-165, 3-167

smsetup 3-10, 3-191, 3-221

SMSETUP setup vari abl e 3-97,
3-191, 3-244

SMTERM set up vari able 3-97,
3-244

SMUSEEXT setup variable 3-79

SWAGS setup variable 3-97

SMWARS setup variable 3-191
3-244, 3-255

SWI DEO setup vari abl e
3-222, 3-244

SMZMOPTI ONS setup vari abl e
3-235

special edits 3-70

check digit 3-203

SPF1 key 3-87, 3-238, 3-247

SPF2 key 3-39, 3-242

SPF24 key 3-87

SPF3 key 3-39, 3-239

status line 3-55, 3-76,
3-138, 3-161, 3-164,
3-187, 3-213, 3-248

enbedded attribute 3-55,

3-72, 3-76, 3-162

status text 3-55, 3-72,
3-76, 3-162

status w ndow 3-55, 3-72,
3-76, 3-162

stinme 3-15, 3-192

strip_ant_ptr 3-12, 3-59
3-193

stub functions 3-255

sv_data 3-13, 3-180, 3-194,
3-195

sv_free 3-184, 3-195

T

t _bitop 3-31

t_scroll 3-14, 3-196

t_shift 3-14, 3-197

tab 3-12, 3-83, 3-198

TAB key 3-3, 3-135, 3-153,
3-154, 3-198

target list 3-1

TERM 3- 244

term nal dependenci es 3-252

term nal setup 3-245

TRANSM T key 3-2, 3-3, 3-4,
3-43, 3-87, 3-134,
3-154, 3-182, 3-241,
3-242

TRANSM T, key 3-91

TRANSM T. key 3-91

tst_all_ndts 3-15, 3-199

U

u_async 3-98, 3-200, 3-249

u_avail 3-98, 3-202, 3-208,
3-212, 3-249

u_ckdigit 3-98, 3-203, 3-249

u_inscrsr 3-98, 3-204, 3-249

u_keychange 3-87, 3-249

u_keychg 3-98, 3-205

u_play 3-87, 3-98, 3-202,
3-205, 3-208, 3-212,
3-249

u_record 3-87, 3-98, 3-202,
3-208, 3-212, 3-249

u_statfnc 3-98, 3-213, 3-249

u uinit 3-97, 3-98, 3-214,
3-244, 3-249, 3-250

u_ureset 3-98, 3-215, 3-249,
3-250

u_vproc 3-98, 3-216, 3-249

unget key 3-12, 3-87, 3-212,
3-219, 3-240

UNI X 3-256

unprotect 3-220

unsetup 3-10, 3-191, 3-221

\Y

VALI DED bit 3-3, 3-4, 3-147,
3-159

var2bin utility 3-244

vid2bin utility 3-222

vinit 3-10, 3-97, 3-222,
3-245

w
wdesel ect 3-11, 3-223, 3-232
wi ndow 3-49, 3-57
di splay 3-165, 3-169
wrecord 3-13, 3-179, 3-224
wt _part 3-13, 3-171, 3-225
wrtpart 3-225
wtstruct 3-13, 3-171,
3-172, 3-225, 3-228
wsel ect 3-11, 3-51, 3-57,
3-109, 3-115, 3-120,
3-165, 3-169, 3-223,
3-232

X
XM T key 3-1

z
zmoptions 3-14, 3-234
ZOOM key 3-234

