I ntroduction to JAM

Contents

1 About This Manual1

2 Wirking with JAM Two Scenari os . 1
2.1 Application Design . 1
2.2 Function Keys and Appllcatlon Executlon . 3
3 JAM Concepts 3
3.1 Screens . . 3
3.2 Control Links . 4
3.3 Data links 5
3.4 Prograns 5
4 JAM Mechani smns 5
4.1 Screens 5
4.2 Control links . 5
4.3 Data links 6
4.4 Prograns 6
5 JAM Tool s . 6
6 What do | do now? . G 7
6.1 Setting Up Your Environnent 7
6.2 JAM Function Keys . . . 8
6.3 Organizing JAM Appllcatlons . 9
7 AJAMAossary e e
Appendi x A Sanple Key Assignnents .. .14

Appendi x B List of Supported Term nals and Enulators15

1 About Thi s Manual

Congratul ati ons on your purchase of JAM the JYACC Application Manager. Your
docunent ati on includes the follow ng chapters:

The Introduction to JAM (this chapter) describes the rest of the
docunent ati on, and expl ains the basic concepts and nechani sms of JAM

The JAM Aut hor's Gui de describes in detail how to create the screens
and links that constitute JAM prototypes.

The JAM Progranmer's Cui de explains some of JAMs internal operation
shows how to code application routines in the |anguage of your choice,
and describes in detail the support functions supplied with JAM

The JAM JPL Programmer's Guide describes the JYACC Procedura
Language, a specialized interpreted progranm ng | anguage.

The JAM Configuration and Uilities Guide explains howto create and
alter configuration files for term nals and displays, and how to use
nunmerous utility prograns.

Those who are famliar with JYACC FORMAKER may find that Section 6 of this
chapter and the section on JAM control links in the JAM Author's Gui de are
sufficient to get them started.

Even those whose notto is "when all else fails, read the manual" nmay find the
fol |l owi ng nuggets useful

Section 6 of this chapter

The sections on JAM control fields and data entry keys in the JAM
Aut hor' s Gui de

The keyboard maps and d ossary appended to this chapter

Finally, for those who choose to read it through, this Introduction will provide
a framework of understanding for designing applications with JAM how t he design
process flows, what facilities JAM provi des and how they work, and how to use
the individual tools in the JAM package.

Words printed in italics are defined in the Gossary followi ng this chapter
2 Working with JAM Two Scenari os

This section presents a quick |ook at two aspects of JAM designing an
application and using it.

2.1 Application Design

The first step in designing an interactive application is to break it down into
screens and groups of screens. Very often, things will fall into a sinple tree
structure like the one in Figure 1. At other tines, the structure of the
application is nore conplicated, as in Figure 2: here two screens share the
sub-screen marked Application #5, and there are links up as well as down the
menu tree. It is often a good idea, if your application is at all large, to draw
such a picture; it will help to visualize the way your application is organized

Wth a basic idea of what you want, you are ready to start up JAM and begin
creating screens. Wth JAMs free cursor notion and draw ng features, your ideas
for screen layout quickly appear; just as quickly, you can test and revise them
It is easy to create several variations on the sane idea and conpare them You

Figure 1. Tree Structure of Screens

Figure 2: Conplex Structures of Screens

can al so add pronpts and hel p displays, to show others (or to rem nd yourself)
what is to happen next.

Next, you create |inks between screens to direct the flow of control and data in
the application. You can group screens under menus, call up sub-w ndows, have
data entered in wi ndows appear automatically in their parent screens, and cal

up existing programs. In fact, you can create a prototype application that | ooks
exactly like the real one. We call this prototype the application shell, because
it shows what the application will look |ike on the outside.

Now t he process of refining the application shell can begin. This may involve
denmonstrating it to a nunber of people; you can solicit suggestions, and make
and revoke changes on the spot. Since it is just as easy to rearrange the |inks
bet ween screens as to alter the layout of an individual screen, you can try out
different organizations. In this way, the user interface to an application can
be thrashed out quickly and thoroughly before coding begins.

At this point, the application shell enbodies the structure of your application.
Now, you sinmply add processing routines to the application shell, within the
control structure it provides, and your application is finished!

There is a particular class of application, called "transacti on-based
applications", for which JAMis particularly suited, and we sonetinmes refer to
transactions in this manual. The term connotes a group of related data itenms and
screens, but is difficult to define precisely. If it is unfamliar to you

sinmply think of a screen or a group of related screens.

2.2 Function Keys and Application Execution

JAM nmakes heavy use of function keys to control the execution of applications.
Function keys are special keys on a conputer or termnal's keyboard, distinct
fromthose used to enter data. Because the nanes and positions of keys vary from
one terminal to another, JAM has a notion of |ogical keys: we speak of "the EXIT
key" or "the TRANSM T key", even though there is probably no key on your

term nal | abeled "EXIT' or "TRANSM T". JAM has configuration files that tell it
what real keys correspond to its |ogical keys.

At any rate, function keys tell JAM how to behave. In a nenu screen, for

i nstance, striking arrow or tab keys makes the cursor nove from one nenu
selection to another. Pressing the Transmit key tells JAMthat the item under
the cursor is the right one, and it proceeds to bring up a new screen
corresponding to the menu sel ection

In data entry screens there are function keys for noving between fields,
clearing fields, and altering data in fields, as well as the normal keys for
entering data in fields. Again, the Transmt key is often used to tell JAMthat
the data on the screen is conplete and correct. There are also help keys that
cause explanatory text to be presented. Along with these and other predefined
keys, JAM defines a number of function keys that an application may interpret in
any way it chooses.

3 JAM Concept s

This section defines the major conponents of a JAM application: screens, contro
links, data links, and prograns. Here, we sinply describe what they do; in
Section 4, sonme details of how they do it appear

3.1 Screens

Screens, arrangenents of data on the conputer's display, are the basis of an
application designed with JAM There are a few different types of screens,
descri bed bel ow, but they share the sanme basic conponents. Display data are
text, graphics, and borders that do not change. They serve to identify the
screen and its constituent fields, as well as to tell the user what to do. Data

entry and presentation take place in fields, the variable part of a screen
Fields are often highlighted visually in some way, such as by underlining.

Wth JAM you can define many of the characteristics and actions associated with
a field within the screen itself, without resort to programr ng. Here are sone
of the nost frequently used:

The field s nane

Its data type (dollar anpbunt, character string, etc.)

The field' s display attributes (color, highlighting, etc.)

A pronpt or help screen explaining the field

Whet her data entry in the field is all owed

Whether data in the field should be left- or right-justified

A routine to be called when the field is tabbed through

A calculation to conmpute the field s val ue

Itens associated with a field are variously called attachments, edits, and
val i dations. See the d ossary for an explanation of these categories

Menus are a special kind of screen that guide users to a particular place in an
application. A nmenu presents a |list of choices. Wen the user picks one, another
screen corresponding to the choice conmes up. It may be a sub-nmenu with further
choices, or it may be a data entry screen for some transaction

Both data entry screens and nmenus may be di splayed either as base forns or as

wi ndows. A base formcovers the entire display; a window typically (but not

al ways) occupies part of the display, leaving a formpartially visible "beneath"
it. Wndows are nornmally subservient in some way to the forms (or other w ndows)
they overlay, while forms are not.

3.2 Control Links
In the broadest ternms, a control |ink associates sonmething the user of a JAM
application does with the application's response. A commn exanple is that the
user makes a nenu sel ection and JAM responds by bringing up a new screen. More
generally, JAM recognizes two types of action that trigger control I|inks:

Menu sel ecti ons

Function keys

and two types of response:

Bring up a new screen
I nvoke a program or function

The first response | eaves control of the application with JAM In the second
case, however, control is transferred to the application code, and JAM contro
links have no effect until that code returns.

Finally, there are a few specific function keys whose action |links are
restricted to one type. There is a GOTO key, which when struck pronmpts for the
name of a screen and brings it up; this provides know edgeabl e users with

shortcuts through a nenu-based system There is a SYSTEM key, which will pronpt
for and execute an operating system comand (possibly an escape to the operating
systenls command interpreter). And there is an EXIT key, which nornally causes
JAM to erase the screen that is currently displayed and return to the previous
one.

3.3 Data links

Data |links are nost easily described by explaining how they work, which is done
in Section 4.3. Here we shall sinply say that inportant data items can be given
nanmes and shared ampbng various JAM screens and transactions, thereby |linking the
data bel onging to those transactions. This nakes it possible, anong other
things, for an itementered in a window to be displayed automatically in the

wi ndow s parent form or even in an unrelated form and for application code to
refer to data entered in screens that are no |onger displayed.

The JAM Dat abase Interface, or JAMDBi, is an optional subsystem provided with
JAM It extends data links to a relational database manager

3.4 Prograns

JAM supplies much of the logic for controlling the flow of data and execution in
an application. Nevertheless there renmains, of course, a need for
application-specific code. JAM provi des several types of hooks on which
application code can be hung. Among these are the control |inks just discussed,
attached function field edits, which specify routines to be called when the
cursor enters or |eaves a field; and hooks where you can insert special
processing into a number of generic operations, such as keyboard input. These
and ot her hooks are fully discussed in the Programer's Cuide.

As for the application code itself, it nay either be part of the currently
runni ng JAM application, or it nmay be a separate program (possibly one witten
wel |l before the JAM application). The main difference fromJAM s point of view
is that code within an application can share control and data l|inks, but code in
separate prograns cannot.

In addition to standard programi ng | anguages, JAM contains a specialized
programm ng | anguage called JPL, for JYACC Procedural Language. Since JPL is
interpreted, it speeds up prototyping by elinmnating the edit-conmpile-link
cycle; and it contains special features for manipulating JAM data itens.

4 JAM Mechani sns

In this section we explain a bit about how JAM works, with a view toward gi ving
application designers a firmer conception of how to use its features.

4,1 Screens

Screens are stored as files and are referenced by name, although they nmay reside
either on disk or in menory. Al information about a screen's display data,
fields, and edits are stored in this file. Also in the screen file are the
control and data links active when that screen is displayed; they reside and are
changed with the screen, not in sonme central |ocation. Wien JAM di spl ays a nenu,
form or window, it reads the file with the correspondi ng nane and buil ds
structures in nmenory to represent the fields and |inks.

Menu screens are distinguished fromdata entry screens by the presence of a
field naned jam nenu.

4.2 Control links
Control links are inplenmented through control strings stored in the screen. On a

menu, the control strings appear in special fields follow ng the nenu
sel ections; the control strings associated with function keys are stored

offscreen. In either case, the first character of the string identifies the type
of action, as follows:

A call an application routine
! execut e anot her program
& bring up a w ndow

anyt hing el se
bring up a base form

Following that is the nane of the screen, program or application routine. (For
a base form the first character is included in the nane.)

JAM traces an application's flow of control. Every tinme a JAM application brings
up a new screen, JAM stores the nane of the screen. This nakes it possible to
return up the path to a previously visited screen by using the EXIT key.

4.3 Data |links

Each JAM application has a data dictionary file which holds a list of named data
itenms, with all their characteristics. These data itens are linked to screens by
nanme; that is, a field whose nane is the same as that of a data dictionary entry
will share its value with that entry. \Wen the screen is brought up, the field
will be initialized to the shared val ue.

If new information is subsequently entered into such a field, the resulting
value will be stored under the shared nane. It will be stored not in the data
dictionary itself, but in a nmenory-resident structure called the |ocal data
bl ock or LDB, which provides a dynam c copy of the data dictionary. When you
nmove between screens, the LDB preserves the newly entered values of all data
itenms listed in the data dictionary.

The exact behavior of a named data itemis governed by the scope of the data
item one of its permanent characteristics stored in the data dictionary. |tens
havi ng the sane scope can be erased and reinitialized as a group

The JAM Dat abase Interface uses a query and data managenent | anguage, such as
SQ., to link database fields to the LDB and screen. Here the database field or
col um nanes correspond to data dictionary nanes.

4.4 Prograns

We defer detailed discussion of JAM programs to the Progranmer's Guide, and make

only a couple of general points. Prograns, |like other items in JAM are referred
to by name, and the names and addresses of application routines referenced by
control links nmust be installed in a special list called the function Iist.

Prograns can access naned data and screen itens through function calls supplied
in the JAMIibrary.

JPL procedures, on the other hand, can access naned data and screen itens
directly, treating themlike gl obal variables. If you have JAM DBi, your SQ. or
ot her database | anguage statenments are incorporated into JPL procedures. Refer
to the JPL Programrer's Guide, and the JAM Dat abase Interface Guide.

5 JAM Tool s

This section summarizes the authoring and programrng tools supplied with JAM
and how they support the features described in Sections 3 and 4.

JAM i ncl udes two distinct environments, called the authoring environment and the
application environment. All prior discussion has referred to the application
environnent. The authoring environnment is identical, with two significant

addi tions: someone running in the authoring environment can call up the JAM
screen editor and the data dictionary editor

The authoring utility, JXFORM is a tool for defining screens and control I|inks
it includes a screen editor, which you use to create display data, fields and
their edits, and the control fields that specify control links. JXFORM al so
contains a syntax-checking data dictionary editor. There are special functions
in the screen editor for automatically creating fields |inked by name to data
dictionary items. Both the screen editor and data dictionary editor are fully
docunented in the JAM Aut hor's Gui de.

The JAM Ilibrary is an extensive collection of functions for reading and witing
data contained in fornms and in the Local Data Block. There are functions for

di spl ayi ng screens and getting keyboard input, for applications where standard
JAM control is not appropriate. Mich nore information, and a description of each
entry point, are available in the Programer's GCuide.

The following utility programs, and nore, are described in the Configuration
Gui de; the introduction to that chapter contains a summry of all utilities.

All configuration files are supplied as text files you can nmodify with an
editor; each also has a binary format that JAM uses at run-tinme. Msg2bin,
key2bi n, vid2bin, and var2bin convert ASCI| nessage, key, video, and setup files
(respectively) to binary. Mdkey is a specialized editor for keyboard
configuration files, and ternR2vid can create a primtive video file froma

term nfo or terncap database. There are also several utilities for managing the
configuration of JAM applications. One called jammp creates a cross-reference
listing of all the JAM screens in a application, with their control strings.

Anot her, bin2c, converts binary configuration files to C |anguage source files;
f2struct and dd2struct create progranmm ng | anguage data objects from screens and
data dictionary records. Dd2asc and ddnerge can be used to list, edit, transport
and combine data dictionary files. Finally, f2r4 and dd2r4 convert JAMrel ease 3
screens and data dictionaries to Release 4.0 format.

6 What do | do now?
If JAM has not yet been installed on your conputer, please refer to the
Installation Notes for guidance, and return to this section when you are ready

to try out the newy installed software.

Sit down at your conputer or termi nal and i nvoke the JAM authoring utility by
typi ng

j xform
at the systempronpt. If all is well, the screen will clear, and you may see
sone nessages at the top referring to mssing data dictionary files; you are
ready to begin. Turn to the JAM Author's Guide and follow the instructions
there. If, on the other hand, the conputer prints only a single error nessage,
there are sone things to set up in your environnent.
6.1 Setting Up Your Environnent
Execution Path

If the message you see resenbles one of the follow ng:

Bad conmand or fil ename(MSDOS)

j xform not found (UNI X/ XENI X)
Not found. JXFORM (st d$cp)
(PRI MOS)

then the directory where JAMresides is not in your execution path, and you mnust
add it. Here are sonme exanples of how to do this:

PATH=$PATH: / usr/jam export PATH (UN X, Shell)
set path=($path /usr/jam (UNI X, C shell)

PATH c:\bin;c:\usr\bin;c:\jam (MSDQS)

MS- DOS note: You nust type in the old value of the path by hand; it can be
obtained by typing 'path' with no argunent.

PRI MOS note: There is no environment; you nust either install the screen editor
in CMDNCO, or define an abbreviation to run it fromthe installation directory.

JAM Configuration Vari abl es
If the message you see is
SMMVSGS not found

then you need to define JAM configuration variables. (If it is SWIDEO not found
or SMKEY not found, you probably just need to set SMIERM but bear with us for a
nonent.) Here are the variables and their neanings:

SMMBGS pathnanme of a file containing error nessage text SMKEY
pat hnane of a keyboard configuration file SwI DEO
pat hname of a display configuration file SWARS
pat hname of an abbreviation file containing all three
SMTERM
abbrevi ates your term nal's nake and nodel

The first three are the ones you really need. They tell JAM where to find its
configuration files: one with error nessage text, another that maps your
terminal's keys to JAMs |logical keys, and a third that tells JAM how to contro
your termnal's display.

These files are normally installed in a subdirectory named config of the
directory where JAM was installed. The default nessage file is called
megfile.bin. The video and keyboard files cone in pairs; their nanes consist of
a prefix corresponding to the term nal type followed by vid.bin and keys. bin
respectively, as in

vt 100keys. bin vt 100vi d. bi n

for the DEC VT-100. The config subdirectory contains a file named snvars, with
pat hnames of all the configuration files qualified by the ternminals to which
t hey bel ong.

Anyway, once you've found the files you need, the nost straightforward thing to
do is to assign their full pathnames to the SMMSGS, SMKEY, and SMVI DEO
variables. An alternative is to set the SWARS variable to the pathname of the
smvars.bin file in the JAM config directory, and your SMIERMto your ternina
abbreviation. Then, JAMwill find the files flagged with your termnal type in
the smvars file.

PRI MOS note: The configuration files are in a top-level directory named
FORMAKER*, and there is no environment; JAMw ||l pronpt for your terminal type.

MS- DOS/ XENI X not e: For consoles, the key file is | BWeys.bin; the video file is
bwi d. bin for nonochronme nonitors, and colvid.bin for col or nonitors.

If Your Term nal Isn't Configured

There is a list of terminals for which JYACC distributes configuration files in
an Appendix to this chapter. If you cannot find distributed configuration files
for your specific nodel, check for enulations. Many popular termnals, for

i nstance, enul ate the DEC VT-100; others may support the ANSI standard escape
sequences. If that doesn't work, you will need to create your own; the JAM
Configuration Guide will help you through that process.

6.2 JAM Function Keys

JAM interprets a number of keys specially. Here is a list of their nanes and
functions. To find out how these |ogical functions are assigned to your

term nal's keys, examine the key translation file, or run the nodkey utility on
it. Modkey, described in the Configuration CGuide, contains a key translation
test screen that you can use to check your key mappings. To find the key file,
see the previous section; listings for the IBM PC and Wse 85 are appended as
exanpl es. There is a much nore detailed summary of special keys in the Author's
Guide, in the section on data entry.

JAM Navi gati on Functions

TRANSM T Menu selection or end of data entry EXIT
Abort data entry, return to previous screen SPF1l
Return to top-1evel screen SPF2
Escape tenporarily to the operating system SPF3
Go directly to a named screen

JAM Aut hori ng Functions

SPF5 I nvoke the screen editor SPF6
I nvoke the data dictionary editor

Cursor Mbtion

Up Arrow Cursor up one line or field Down Arrow
Cursor down one line or field Left Arrow
Cursor left one colum or field Right Arrow
Cursor right one colum or field Tab
Next field Backtab
Previous field Return
Next field on followi ng |line Page Up
Scroll data up in scrolling field Page Down
Scroll data down in scrolling field

Data Editing

I nsert Toggl es insert/overwite node Delete
Del et es character under cursor Backspace
Del etes character to left of cursor Field Erase
Erase fromcursor to end of field Clear Screen
Erase all unprotected fields

Application Functions

PF1- PF24 These are conmonly assigned to the otherw se APP1- APP24
unnanmed function keys on a term nal. SPF7-SPF24

6.3 Organi zing JAM Applications

It is a good idea to keep all the screens belonging to a JAM application in one
directory. Limted sharing of screens anong applications can be acconplished by
use of the SMPATH environment variable, which is explained in the Programrer's
Gui de. Application code can be maintained in subdirectories of the application
directory. This is generally nmore conveni ent than placing screens and code in
subdirectori es of a conmon parent.

7 A JAM d ossary

application environment
See run-tinme environnent.

application shell The structure of JAM screens and |inks that defines the
| ook and control flow of an application; everything but
t he code.
array Several fields grouped together in one place, that can be

treated as a unit. The elenents of an array share al
characteristics, such as scrolling, and can be referred
to as occurrences of the first field in the array.

attached function An application routine associated with a field that is
called with certain paranmeters whenever the cursor enters
or exits the field. Also, an application routine
associated with a screen and call ed upon screen entry or
exit.

aut hor A person whose task is to create a JAM application shel
or prototype; connotes an application designher w thout
training in programmi ng.

aut horing environnent The tools used to create and test JAM screens and |inks,
conprising the screen editor, data dictionary editor, and
run-time environment.

bor der Text or highlighting used to mark the outline of a
screen.
character edits A field' s character edit defines what type of character

may be entered in a field, such as digits, letters, or a
yes-or-no answer.

control field In a JAMnenu, a field following a menu sel ection that
contains a control string to be executed when that
sel ection is chosen.

control |ink An associ ation between sonething a JAM user does (nenu
selection or function key) and JAM s response (bring up a
new screen or call an application program.

control path A list (actually a stack) of the names of all the screens
entered via JAM control links, and not yet exited.

control string A special string, usually not displayed, used to inplenent
control links. The name or location of a control string

identifies the event that triggers the link, while its
contents define the action to be taken

cursor A special marker on the display, commonly a blinking bl ock

or underline, that shows where the text you type will go.
data dictionary A list of naned data itens and all their characteristics.
data |ink The sharing of values anmpbng data itens in different

screens that share a name with a data dictionary entry.

di spl ay A physical screen, such as a terminal on a nulti-user
conputer or the nonitor on a personal conputer.

display attribute Vi sible characteristics of data on the screen, such as
color, highlighting, underlining, or blinking.

di splay data

el enent

el enent nunber

field

field attachment

field edits

field nunber

field validation

form

function key

function |i st

hel p screen

hook

i nvoked function

The fixed part of a screen: text, borders, and graphics
that do not change. Distinct fromfields, which my be
altered by the programor by data entry.

Afield that is part of an array. An array el enent may be
referred to either by its own field nunber, or by the nane
of the array plus its element nunmber. A non-array field is
considered to have a single el enment.

A field s element nunber is its position within the array
it belongs to. The el ement nunber of a sinple fieldis 1

A variable area of a screen, used for the exchange of
data between an application and its user. A single field
occupies part or all of one line. It my be extended
hori zontal Iy through shifting, and vertically through
scrolling. Fields may have many characteristics and
actions associated with them known variously as edits,
attachments, and validations.

An item associated with but distinct froma field.
Exanpl es include a hel p screen, a pronpt, an attached
function, a calculation, or a menu of possible itens for
data entry.

Field edits either restrict the data that can be entered
into a field, or alter its appearance. Exanples include a
range of perm ssible values, right justification,
conversion to upper case, and dollar amunt fornat.

JAM nunbers fields according to their positions within a
screen, fromleft to right then top to bottom beginning
at 1. When a field is spoken of as "next" or "foll ow ng"
another field, this is the ordering that applies.

An action associated with a field that checks data entered
there for correctness.

A screen that occupies the entire display and does not
overlay another screen, as opposed to a wi ndow. Often used
| oosely as synonynous with screen

A key that has some special function other than data
entry, for instance cursor nmotion. JAMtreats such keys as
| ogi cal keys, referring to what they do rather than to
their | abels on the keyboard, since the |abels are
different for the many keyboards it supports.

A list of pairs of function nanmes and addresses, conpiled
into JAM applications to provide necessary |inkage.

A screen containing any information helpful to the user of
a JAM application. Help screens may be attached to JAM
screens and fields; they appear when the HELP or FORVHELP
function keys are struck.

A software device by which an application routine is nmade
known to JAM specifying its name, address, and | anguage
The two nost inportant kinds of hooks are attached
functions and invoked functions.

An application routine that is triggered by a contro
link. Also called a caret function

item

i tem nunber

justification

LDB

library

I'ink

| ocal data bl ock

| ogi cal key

menu

occurrence

occurrence nunber

parall el array

pr onpt

pr ot ot ype

protected field

run-ti me environment

scope

Data entered into a scrolling field, or into one field of
a scrolling array.

The position of an itemwithin its scroll list. The item
nunber does not depend on the item s position on the
screen.

Data in JAMfields may be either right- or left-justified,
that is, pushed all the way to the right- or |eft-hand end
of the field.

See | ocal data bl ock

The JAM function library, which contains routines
application programrers can use to access data in screens
and the | ocal data bl ock.

See control link and data I|ink.

A dynam c copy of the data dictionary, which holds the
val ues of itens that have been changed by data entry or
program acti on.

JAM s interpretation of a function key, as opposed to the
physi cal key on a term nal. Physical keys are mapped to
| ogi cal keys by a configuration file.

A screen containing a list of choices, fromwhich the user
may sel ect one.

A general termcovering sinmple fields, array elenments, and
items of scroll lists. In a scrolling field or array,
occurrence is equivalent to item in a non-scrolling
array, it is equivalent to el enent.

A data item s el ement number or item nunmber, whichever
applies. If the field is neither scrolling nor part of an
array, the occurrence nunber is 1

Scrolling arrays placed next to one another will scroll in
parallel, i.e. whenever one array is scrolled with the
cursor or page keys the associated arrays scrol

si mul t aneousl y.

Text associated with a field that appears on the
termnal's status |ine whenever the cursor enters the
field. Also called status text.

A col lection of JAM screens and control |inks used for
testing the user interface to a new application; sinlar
to the application shell, but used in different

ci rcunst ances.

A field into which no data nay be entered fromthe
keyboar d.

The JAM code that processes control |inks, displays
screens, controls data entry, and handles the calling of
application routines.

Data dictionary entries all have a scope, which is a
number between one and nine. Entries having the same scope
can be erased and reinitialized as a group

screen

screen editor

scrolling
scroll Iist
shifting

status line

status text

system dat e

systemtinme

transacti on

user date

user tine

wi hdow

word wrap

Zzoom

Data to be displayed on a conmputer's term nal or display,
such as menus and data entry fornms. When the hardware
display itself is neant, the terns physical screen or

di splay are used.

A JAMtool used to create and alter screens and contro
i nks.

JAM screens may contain data lists that are too long to
fit in available space; such lists nay be scrolled, either
in asingle field or in an array of fields. The cursor
nmoti on keys cause different parts of the list to appear on
t he screen.

A data list displayed through a scrolling field or array.

A data itemtoo wide to fit in a field may be shifted
hori zontally; the cursor notion keys will cause different
parts of the itemto appear in the field.

JAM sets aside one |line of the physical screen, usually
the bottomone, for error and status nessages; it is
called the status |ine.

See pronpt.

The current date, as stored in the conmputer. JAM date
fields can be automatically initialized to the system
dat e.

The current tine, as stored in the conputer. JAMtine
fields can be automatically initialized to the system
tinme.

A related group of screens and data itens.

A date entered into a JAMdate field by the user of an
appl ci ation.

Atime entered into a JAMtinme field by the user of an
application.

A screen that normally does not cover the whol e physica
screen, and overlays sone other screen or screens.

Fields and scrolling arrays may have a word wap edit,
which will cause whole words to be kept together on the
same line of text. (JAMs default is to fill the field
with characters, without regard to word spacing.)

Shifting and scrolling fields may be viewed and edited as
a whole, in a pop-up w ndow, using a special zoom key.

Appendi x A Sanpl e Key Assignnents

You will find explanations of the key names used here in the section of the
Aut hor's Guide entitled Data Entry.

JAM key assignnents for the IBMPC fanm |y

EXIT Esc TRANSM T

End HELP

control -F1 FORM HELP
alt-F1 LOCAL PRI NT
control - P RETURN
Enter TAB

Tab BACKTAB

shi ft - Tab BACKSPACE
cont rol - H HOVE

Home PAGE UP

Pg Up PAGE DOWN

Pg Dn | NSERT MODE

I ns | NSERT LI NE
control - K DELETE CHAR
Del ERASE

control -Pg Up CLEAR ALL
control -Pg Dn ZOOM
control -Z PF1

F1 ... PF10

F10 SPF1

shift-F1 ... SPF10
shift-F10

JAM key assignnents for the Wse 85:
EXIT F11 TRANSM T

Do HELP

Hel p TAB

Tab or control -1
BACKTAB

F12 HOMVE

F14 BACKSPACE
control -H DELETE CHAR
Renmove | NSERT MODE

I nsert Here ERASE

Sel ect CLEAR ALL
control -Z PAGE DOWN
Next Scrn PAGE UP
Prev Scrn RESCREEN

= Find ZOOM

= control -E PF2
= F6 ... PF6

= F10 PF7

= F17 ... PF10

= F20 SPF1

= PF4 1 ... SPF9

PF4 9

Appendi x B List of Supported Terninals and Enul ators

The follow ng Iist
things added to it.

is subject to constant revision, usually by having nore
The menonics |isted can be found as prefixes to key and

video files in the config subdirectory of your JAMdistribution. As distribu
by JYACC, nanes of video files end in vid and nanmes of key files end in keys.
You may find that you need to shorten or otherw se alter sone of the nanes,
suit your operating system or your own nam ng conventions.

Ter mi nal
5425t
7900

FT

TV9220

TVO

W85

a219
ansi
avt
bw
c108
col

cpt 200

d214
f 100
ho
hds
host

host pc

hp

i8, j8c

jterm jternt

Descri ption

AT&T 4425 term nal

NCR 7900 ML+ terni nal

Fortune Systens terninal

Tel eVi deo 9220 termnal. Also found as NTV9220,
WI'v9220 for 80- and 132-col umm npdes
respectively.

Tel eVideo 955 termnal with onscreen attributes.

Wse 85 terminal. Also found as NWB5, WAB5 for
80- and 132-col um nodes respectively.

Ampex 219 termnal (in native node).
Col or PC consol e for SCO XENI X.

HDS AVT term nal

Monochr onme nonitor on MS-DOS system
Concept 108 term nal

Col or monitor on Ms-DOS system

Color PC with PCLINK enul ating a PRI ME PT200
term nal

Dat a CGeneral Dasher 214 terminal (in DG node).
Freedom 100 term nal

Honeywel I VI P 7300 terninal

HDS nodel 200 term nal

Basic ANSI term nal or enulator, with color
Stratus PCTERM emul ator, nonochrome or col or
Hewl ett - Packard 2392a term nal

Tel eVideo 955 terminal, with onscreen attri butes
and col or.

ted

to

Monochrone and col or PC, respectively, with JYACC

jtermenul ator and 8-bit control sequences.

Monochronme and col or PC, respectively, with JYACC

jterm enul at or.

opus220 Opus 220 term nal.

pc Ei t her monochrone or color PC with generic VT-100
emul at or.

pt 200, pt132 PRI ME pt200 terminal, in 80- or 132-columm node;
al so monochrome PC with PCLINK enul at or.

pt 200w PRI VE pt 200 in 48-1ine node.

svt 200 Sperry SVT1220 term nal .

ti 931 Texas Instruments 931 termnal.

tvi 921 Tel eVideo 921 terminal with onscreen attributes.

tvi 950 Tel eVideo 950 terminal with area attributes.

tvi 955 Tel eVideo 955 ternminal with area attributes.

v101 Stratus V101 termi nal.

v102 Stratus V102 term nal.

vt 100 DEC VT-100 term nal or enul ator.

vt 200 DEC VT-200 term nal or enul ator.

vt 220 DEC vt 220 ternminal or emul ator.

wy 30 Wse 30 terminal, or HP 700/41 emul ating the
sane.

wy 50 Wse 50 term nal.

wy75 Wse 75 ternmninal.

x100, x100c Monochronme or color PC with Crosstalk emulating a

VT-100.

In this Index,
bol df ace, wi t hout
| anguage interface.
appear in ELITE CAPS, while utility prograns
commands are in elite |lower-case. Function key names
are in ROVAN CAPS.

A

application
design 1-1
prototype 1-2

application environnment

definition 1-10

application shell 1-2

definition 1-10
array
definition 1-10

attached function 1-5

definition 1-10
aut hor
definition 1-10

aut horing environnment

definition 1-10

authoring utility 1-7

B
bi n2c utility 1-7
bor der

definition 1-10

()
character edits
definition 1-10
configuration 1-7
control field
definition 1-10
control link 1-4
definition 1-10
control path 1-6
definition 1-10
control string 1-6
definition 1-10
cur sor
definition 1-10

D

data dictionary 1-6
definition 1-10
editor 1-7

I ndex

library functions are displayed
prefixes specific to

and setup file entries
and JPL

data link 1-5, 1-6

definition 1-10
Dd2asc utility 1-7
dd2r4 utility 1-7

dd2struct utility 1-7

ddnerge utility 1-7
di spl ay
definition 1-10
display attribute
definition 1-10
di splay data 1-4
definition 1-11

E
el enent
definition 1-11
el enent nunber
definition 1-11
EXIT key 1-9

F
f2r4 utility 1-7
f2struct utility 1-7
field 1-4
definition 1-11
field attachment
definition 1-11
field edits
definition 1-11
field nunber
definition 1-11
field validation
definition 1-11
form1l-4
definition 1-11
function key 1-4
definition 1-11
EXIT 1-9
SPF1
SPF2
SPF3
SPF5
SPF6

el
© © © © ©

TRANSM T 1-9
function keys 1-3

function library 1-7

function list 1-6
definition 1-11

H

hel p screen
definition 1-11

hook 1-5
definition 1-11

i nvoked function 1-4

definition 1-11
item

definition 1-11
i tem nunber

definition 1-12

J
JAM

basi ¢ concepts 1-
getting started with 1-7

internals 1-5

overview of 1-1
jammap utility 1-7
justification

definition 1-12

K
key2bin utility 1-7

L
LDB 1-6

definition 1-12
library

definition 1-12
i nk

definition 1-12
| ocal data bl ock

definition 1-12
| ogi cal key

definition 1-12
| ogi cal keys 1-3

M

menu 1-4, 1-5
definition 1-12

Modkey utility 1-7,

Msg2bin utility 1-7

O

occurrence
definition 1-12

occurrence nunber
definition 1-12

P
paral l el array
definition 1-12
pr onpt
definition 1-12
protected field

3

1-9

definition 1-12
pr ot ot ype
definition 1-12

R
run-ti me environnent
definition 1-12

S
scope 1-6

definition 1-12
screen 1-4

definition 1-12
screen editor

definition 1-13
scroll Iist

definition 1-13
scrolling

definition 1-13
shifting

definition 1-13
SMKEY setup variable 1-8
SMMSGS setup variable 1-8
SMIERM setup variable 1-8
SMWVARS setup variable 1-8
SWI DEO setup variable 1-8
SPF1 key 1-9
SPF2 key 1-9
SPF3 key 1-9
SPF5 key 1-9
SPF6 key 1-9
status line

definition 1-13
status text

definition 1-13
system dat e

definition 1-13
systemtine

definition 1-13

T
termRvid utility 1-7
transaction 1-3
definition 1-13
TRANSM T key 1-9

U

user date
definition 1-13

user tine
definition 1-13

Vv
var2bin utility 1-7
vid2bin utility 1-7

w

wi ndow 1-4
definition 1-13

word wrap
definition 1-13

Zzoom

definition 1-13

