NESESESENES
aprwN -

® @ 00 00

©

10

11

11.

11.

12

12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

JYACC FORMAKER Configuration Guide
Contents
Summary of Configuration Utilities

Features and Options Common Anpong Utilities
| nput and Qutput Files
Fil e Names and Extensions . . .
Configuring File Extensions and Rules
Ordering of Cptlons and O her Argunents
Not at i on

bi n2c .
bi n2hex .
f2struct
f2r4
formib .

Key translation file
1 Key Translation File Fornat
2 Key Menonics and Logical Val ues
3 ASCI|I Character Menonics .

key2bin

| stform

Message file . . .

1 Modifying and Addlng Nbssages . .

2 Enbedding Attributes and Key Nanes in Nbssages
nmodkey . .

1 Introduction .

1.1 Key Translation

2 Executing the Utility .

3 Control Keys and Data Keys

4 \\l come Screen . S

5 Main Menu

6 Exiting the Ut|||ty

7 Help Screen . . e e e

8 Defining Cursor Cbntrol and Editing Keys

8.1 Assigning a Key to a Function .

8.2 Assigning a Sequence of Keys to a Functlon

9 Defining Function Keys .

10 Defining Shifted Function Keys

11 Defining Application Function Keys

AP WWNPRELPE

10

13
14
15
15

16

18

21
22
23

24
25
25
25
26
27
27
28
28
29
29
30
31
31
32

12.
12.
12.
12.
12.

13

14

14.
14.
14.
14.
14.
14.

15

16

17

18

19

19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.

12 Defining Mscell aneous Keys
12. Entering the Logical Value . .
12. Logi cal Value Display and Entry Nbdes
12.3 Returning to the Main Menu .
13 Test Keyboard Translation File

msg2bi n

Setup file .
1 The Two Setup Flles
2 lnput File Line Fornmat
3 Setup Variabl es
3.1 Configuration File Setups
3.2 Setups for Library Routines .
3.3 Setups for Default File Extensions
ternRvid .

txt2form .

var 2bi n

Vi d2bi n

Video file . . .

I ntroduction to Vldeo Cbnflguratlon

1 How to Use this Manua

2 \Wy Video Files Exist

3 Text File Format . .

4 M ninml Set of Capabllltles

5 A Sanple Video File . .

6 An MS-DOS Video File

Vi deo Fil e Fornmat
.1 General Informtion
.2 Keyword Sunmmary

©Co~NOoOUh~,WNE

N~NoooaoaabwNE

Par anet eri zed Character Sequences

Summary of Percent Commands
Aut omati ¢ Paraneter Sequencing .

Stack Mani pul ation and Arithnetic Connands

Par anet er Sequenci ng Conmands
Qut put Conmands

Par anet er Changi ng Cbnnands
Control Fl ow Conmands

The List Command .

Paddi ng

Constructing a Vldeo F|Ie Entry by Entry

Basic Capabilities .

Screen Erasure

Cur sor Position

Cur sor Appearance

Di splay Attributes

.1 Attribute Types . .
.2 Specifying Latch Attrlbutes
.3 Specifying Area Attributes
.4 Color e e

Message Line

Function Key Labels

32
34
34
35
35

36

37
38
38
39
39
39
41

42

43

44

45

47
48
48
48
49
49
50
50
51
51
52
53
54
55
55
56
56
56
57
58
58
59
59
60
61
62
62
63
64
66
67
68
69

19.
19.
19.
19.
19.
19.

4.8 G aphics and Foreign Character Support
4.9 Graphics Characters Ce e

4.10
4.11
4.12
4.13

Borders . . .

Shifting Fi eld Indl cators and BeII
xform Status Text Coe e
Cursor Position Display .

Appendi x A Error Messages .

20 Run-tinme Messages

21 Screen Editor Messages .

22 Uility Messages .

69
70
71
72
73
73

.75

75

80

83

1 Summary of Configuration Utilities

Thi

r ef

s manual

or mat ,

nodkey

Key file
key2bin
Video file

vi d2bi n
ternmRvi d

Message file

nsg2bi n
Setup file

var 2bi n
f2r4
bi n2c
bi n2hex
formib

| stform
txt2form

descri bes a number
configuring JYACC FORMAKER itself or
creating and nmodifying files that tel
conmputers and term nals;

A specialized full-screen editor for

anot her
and ot herwi se mani pul ate screens.

of utility progranms that fall under the rubric of
applications that use it. One group is for
JYACC FORMAKER how to run on particul ar
group of prograns enables you to |ist,

Har dwar e Confi guration

i nspecting, creating,

and nmodi fying key translation files.

Not actually a utility;
key translation files by hand.

f or mat
Converts
Not

actually a utility;

this section describes howto

key translation files to binary formt.
this section describes howto

create video configuration files for termnals and

di spl ays.

Converts

On UNI X and rel ated systens,
froma terminfo or

Not

autility;
of nessages for

video files to binary format.
creates a prinmtive video file
terncap entry.

Sof tware Configuration

this section describes how to prepare files
use with the nsg2bin utility and the JYACC

FORMAKER | i brary.

Converts

Not actually a utility;

message text files to binary format.
this section describes the setup or

envi ronnent vari abl es supported by JYACC FORMAKER, and
tells how to prepare setup files.

Converts
Converts

Converts
t hey may
Converts
exchange
Col | ects

t he managenent of

setup variable files to binary format.

Rel ease 3 screen files to Release 4 formt.
binary files to and from C source code, so that
be made menory-resident.

binary files to and from an ASCl
wi th ot her conputers.

screen files in a single library file,
| arge nunbers of screens.

format for

to sinplify

Creates a listing telling everything about a screen

Creates a read-only screen froma text file,

for quick

construction of help screens and such

2 Features and Options Common Anmong Utilities

The follow ng section describes command-1ine options and file-handling

procedures shared by nost or
When a utility deviates fromthis standard,
that utility will

Conmand-1line options are identified by a | eading hyphen

all of the JYACC FORMAKER configuration utilities.

as a few do, the section describing

make it clear.

You can always obtain a

usage summary from any JYACC FORMAKER utility by invoking it with the -h option

for

The utility in question wll
including the input files and al
can process nmultiple input files wll
to print the name of each input file as it

par

i nst ance

formib -h

anmet ers,

its command |ine
Uilities that
It causes them

print a brief description of
comand options.
al so support a -v option.
is processed.

2.1 Input and Qutput Files

Wth a few exceptions, utilities accept multiple input files. Sone then conbine
information fromthe inputs to create a listing; others perform sone
transformation on each input individually. No utility will ever overwite an
input file with an identically nanmed output file; if your conmand calls for such
an action, an error nessage will be the only result. Mdst utilities will also
refuse to overwite an existing output file; you may force the overwite with
the -f option.

Uilities that create a listing, such as |Istform support a -o option, which
directs the output to a naned file. For exanple:

Istform-onylist *.frm

lists all the screens in the current directory, and places the listing in a file
named mylist. A special formof this option, -o0-, sends the program s output to
the standard output file rather than to a disk file.

Uilities that generate one output file for each input will, by default, give
output files the sanme nane as the corresponding input, but with a different
extension. Each utility has a different default extension (see the next section
for a table); in addition, each one supports a -e option that enables you to
specify the output file extension. For exanple:

forn2r4 -enew nytop. mu nyscreen.w n

converts the Rel ease 3 screens nmytop. mMmu and nyscreen.win to Rel ease 4 fornmat,
and puts the new screens in nytop.new and nmyscreen.new. The form -e- makes the
output file extension null

Certain utilities that normally generate nultiple output files also support the
-0 option; it causes themto place all the output in the file named in the
option. For instance,

f2struct -oscreenrecs.h screenl.jam screen2.jam

generates C data structures for screenl and screen2, and places themboth in
screenrecs. h. Wthout the -o option, it would have created two output files,
screenl. h and screen2. h.

By default, if an input filename contains a path conmponent, a utility will strip
it off in generating the output filename; this usually means that output files
will be placed in your default directory. You may supply a -p option to have the
path left on, that is, to create the output file in the sane directory as the

i nput .

2.2 File Nanmes and Extensions
JYACC FORMAKER runs on several different operating systens, which deal in rather

different ways with file nam ng. W must therefore define a few ternms for use in
the foll owi ng sections:

full name Everything you and the operating systemneed to know in
order to identify a file uniquely.

name The only truly arbitrary part of the full name, identifying
anything at all. May not be omitted.

pat h A prefix to the nane that tells where (on what device,

directory, or user ID) a file resides. If onitted, defaults
to a location known to the operating system such as a
wor ki ng directory.

ext ensi on A prefix or suffix to the name that tells what sort of
information is in the file. May be onitted.

JYACC FORMAKER does not attenpt to understand or alter paths; it just uses them
as you supply them It knows about a class of path separator characters, and
assumes that the path ends at the rightnost such character in the full nane.

JYACC FORMAKER, I|ike many other software systems, uses extensions to identify
the contents of a file. (Were proper identification is crucial, it puts "magic
nunmbers” in the files themsel ves.) W have tried to make our conventions
flexible: extensions are not required, but are supplied by default, and the
default can always be overridden. There are three distinct operations involving
file extensions:

1. Finding and nmodifying files. xformand the JYACC FORMAKER run-time
system assunme that screen files have a commpn extension, such as jam
They will add that extension to any filename that does not already
contain one before attenpting to open it. This rule does not operate if
extensions are ignored.

2. Creating new files. Uilities other than xformtransformfiles of one
type to another, and nust name the output file differently fromthe
input. They do it by replacing the input file's extension, or adding
one if there was none. This rule operates even if extensions are
i gnored, in which case the new extension is always added.

3. Creating data structures. The utilities f2struct and bin2c create data
structures fromscreen files. They name the structures by renmpving the
path and extension fromthe input filenane. If extensions are ignored,
only the path is renoved.

2.3 Configuring File Extensions and Rul es
There are three paraneters that control how JYACC FORMAKER uses fil e extensions:

1. A flag telling whether JYACC FORMAKER shoul d recogni ze and repl ace
extensions, or ignore them

2. Another flag telling whether the extension should go at the beginning
or the end of the fil enane.

3. The character that separates the extension fromthe name (zero means no
separator).

The default values for these paraneters are recogni ze, end, and period
respectively. You may alter them using the SMJUSEEXT setup variable; but be aware
that people working on the sane project should use the same rules, or confusion
is likely to result.

Here is a list of the default extensions used by utility prograns.

Uility Ext ensi on
bi n2c | anguage- dependent bi n2hex
none f2r4

no change f2struct
| anguage- dependent formib
none key2bin

bin Istform

| st nodkey

keys nsg2bin

bin ternRvid

vid txt2form

none var 2bin

bin vid2bin

bi n

2.4 Odering of Options and O her Argunents

Most utilities take as argunents an output file, a list of input files, and some
options. If present, the output file precedes the input file list. Options my
be placed anywhere after the utility name; they may be supplied separately (each
with its own hyphen), or together (all followi ng a single hyphen); the two
conmands

Istform-fti myscreen
Istform-f -t -i nyscreen

are equivalent. Option letters may be either upper- or |ower-case. On certain
systens such as VM5 and MsS-DOS, where the prevalent "switch character" is /
rather than - , both are supported.

2.5 Notation

The rest of this chapter describes each configuration utility individually.
There are also a few sections that tell how to prepare input files for some of
the utilities. Each section contains the follow ng infornation:

The nane and purpose of the utility.

A synopsis of its usage, that is, what you type on the command line to

run it. Here, literal input appears in bol dface, and paraneters that
you supply appear in normal type. Optional parameters are enclosed in
square brackets []. An ellipsis ... indicates that the previous

paraneter may be repeated. Command options are sinply listed after a
hyphen, as -abcdefg; you may sel ect any conbination of them

A conpl ete description of the utility's inputs, outputs, and
processi ng.

Where applicable, a list of error conditions that nay prevent the
utility fromdoi ng what you tell it.

bi n2c - convert any binary file to C source code
SYNOPSI S

bin2c [-flv] textfile binfile [binfile ...]
DESCRI PTI ON

This programreads binary files created by other JYACC FORMAKER utilities, and
turns each one into C code for a character array initialized to the contents of
the file. Such arrays may then be conpiled, |linked with your application, and
used as menory-resident files. This utility conbines the arrays fromall the
input files in a single output file; each array is given a nane corresponding to
the nane of the input file, with the path and extension stripped off.

Files that can be nade nmenory-resident include the follow ng types:

screens (created by xform

key translation files (key2bin)
setup variable files (var2bin)

vi deo configuration files (vid2bin)
message files (nsg2bin)

SAER N

The conmmand options are interpreted as follows:

-f Overwite an existing output file.

-1 Force the array nanes derived fromthe input file nanes to
| ower-case characters.

-V Print the name of each input file on the terminal as it is
processed.

ERROR CONDI TI ONS

I nsufficient menory avail able. Cause: The utility could not allocate enough
menory for its needs. Corrective action:
None.

File "%" already exists; use '-f' to overwrite. Cause: You have specified an
output file that already exists.
Corrective action: Use the -f flag to
overwite the file, or use another nane.

Cannot open "%" for witing. Cause: An output file could not be created, due to
| ack of permi ssion or perhaps di sk space.
Corrective action: Correct the file system
probl em and retry the operation.

Cannot open "%" for reading. Cause: An input file was mi ssing or unreadable.
Corrective action: Check the spelling,
presence, and permissions of the file in
questi on.

Error reading file "%" Cause: The utility incurred an I/O error while
processing the file named in the nessage.
Corrective action: Retry the operation.

Error witing file "%" Cause: The utility incurred an I/O error while
processing the file named in the nmessage.
Corrective action: Retry the operation.

bi n2hex - convert binary to and from hex ASCI|, for transport
SYNOPSI S

bi n2hex -cx [-flv] hexfile binary [binary ...]
DESCRI PTI ON
The bin2hex utility translates binary files of any description to and froma
hexadeci mal ASCI| representation. It is useful for transmtting files between
conmputers. The utility is very straightforward; no translation of any sort is

at t enpt ed.

Either the -c or the -x switch is required; the others are optional. Here is a
summary:

-C Create a text file fromone or nmore binary files; the text file's
name is the first file argunment, and the rest are binaries.

- f Overwite any existing output files.

-1 Force the filename argunents to | ower case

-V Print the name of each binary on the ternminal as it is processed.

- X Extract all the binary files contained in an ASCI| source. Selective

extraction is not supported.
ERROR CONDI TI ONS

Error reading % Error witing % Cause: The utility incurred an I/O error while
processing an input or output file. This message will usually be acconpani ed by
a nore specific, system dependent message. Corrective action: Correct the

syst em dependent problem if possible, and retry the operation

% already exists % already exists, it is skipped Cause: The conmand you have
i ssued would overwrite an existing output file. Corrective action: If you are
sure you want to destroy the old file, reissue the command with the -f option

f2struct - create programdata structures from screens
SYNOPSI S

f2struct [-fp] [-ooutfile] [-glanguage] screen
[screen ...]

DESCRI PTI ON

Thi s program creates program source files containing data structure definitions
mat ching the input files. The output file will contain a single structure
beari ng the name of the screen

The | anguage in which the structures are created, and the extension attached to
output file nanmes, are both selected by the -g option. The name of the desired
| anguage follows the g, and nust be in a table conpiled into the utility. This
option may be placed between file names in the conmand line to enable files to
be created in different |anguages. |ndeed, the same input file can be named
twice to create, say, both C and Pascal structures:

f2struct -gc address.jam -gpascal address.jam
You can nmodify the conversions or wite code to handl e nore | anguages, as

described in the utility source code; see below. The other command options are
interpreted as foll ows:

- f Directs the utility to overwite an existing output file.

-p Directs the utility to create each output file in the same directory
as the corresponding input file.

-0 Causes all output to be placed in outfile.

VWhen a screen nane is given to a structure, the screen file's extention is
stripped off. Each field of the structure will be named after a field of the
screen. If a screen field has no nane fldmis used, where mis the field nunber.
The types of the structure fields are derived fromthe input field data type and
character edits, according to the follow ng rules.

1. If a field has one of the followi ng data type edits, it is used.
C data type menoni ¢
omt from struct
FT.OMT
i nt eger FT_INT
unsi gned i nt eger
FT_UNSI GNED
short integer FT_SHORT
| ong integer FT_LONG
floating point FT_FLOAT
long floating FT_DOUBLE
character string
FT_CHAR
2. If afield has no data type edit but has a digits-only or nunmeric
character edit, its type is unsigned int or double respectively.
3. Al other fields are of type character string.

Onit fromstruct is a special type that prevents the field from being included
in any structure.

If a field has multiple occurrences, the corresponding structure nenber will be
declared as an array.

ERROR CONDI Tl ONS

Language % undefi ned. Cause: The | anguage you have given with the -g option has
not been defined in the utility's tables.
Corrective action: Check the spelling of the
option, or define the |anguage ito the utility.

% al ready exists. Cause: You have specified an existing output file. Corrective
action: Use the -f option to overwite the file,
or use a different nane.

% has an invalid file format. Cause: An input file is not of the expected type.
Corrective action: Check the spelling and type of
the offending file.

'"9%' has no data to convert. Cause: An input file is enpty, or does not have the
names you specified. Corrective action: Check the
names.

Not enough menmory to process '%'. Unable to allocate nenory. Cause: The utility
could not allocate enough nenory for its needs.
Corrective action: None.

At | east one formname is required. Cause: You have not given any screen files
as input. Corrective action: Supply one or nore
screen file names.

f2r4 - convert Rel ease 3 screens to Rel ease 4 fornat

SYNOPSI S
f2r4 [-jaludvxfp] [-eext] screen [screen ...]
DESCRI PTI ON

F2r4 converts Rel ease 3 screens to Release 4 fornmat. It gives each new screen
the sane nane as the old one. It is strongly recommended that you run this
utility in a different directory fromwhere your original Release 3 forns
reside.

There are a few nontrivial changes involved in this conversion. One is that
JYACC FORMAKER control fields nmay be converted to control strings that do not
occupy space on the screen. Another is that jamfirst fields, and jampfl fields
on read-only screens, have been replaced by screen entry functions and AUTO
control strings, respectively. The followi ng options are provided to control the
conversi on of JYACC FORMAKER control fields to control strings:

- Do not convert control fields to control strings.

-a Do not convert jampfl fields to AUTO control strings.

-1 Do not convert the jamfirst attached function to a screen entry
function. This is a one, not an ell

-u Convert all unprotected fields to nmenu fields. This is useful for

Rel ease 3 item sel ection screens; in Release 4, item sel ection
fields must have the MENU bit set.

-d Do not delete jamd_ dflt and jamf_dflt fields fromthe screen.
These fields were used in earlier releases of JYACC FORMAKER t o
denote default field and di splay characteristics.

-V Print the name of each screen as it is processed.

- X Del ete the input extension

- f Overwite existing output files. Use cautiously: if you do this in
the directory where your Release 3 screens reside, the Rel ease 4
screens will be created successfully but your original screens wll
di sappear.

-e Foll owed by a character string, makes that string the extension for
output files.

-p Create each output file in the sane directory as the correspondi ng

input file. This option is not recomended.
For further information regarding control strings see the Author's Guide.
ERROR CONDI TI ONS

% is not a release 3 form Cause: An input file is not of the correct type (this
i sedeterm ned by a sort of mmgic nunber
check.) Corrective action: Mike sure you
haven't already convertedethe file, and that
it is a screen in the first place.

Unable to allocate nenory. Cause: The utility couldn't get enough nmemory for its
needs. Corrective action: None.

File % already exists. Use '-f' to overwrite or '-e' to append an extension to
the output file. Cause: The output file you
have naned al ready exists. Corrective action
Be cautious in your use of -f. JYACC
suggestsethat you create the Rel ease 4 screens
in an enpty directory, notein the directory
where the Rel ease 3 screens reside.

formib - screen librarian
SYNOPSI S

formib -crdxt [-flv] library [screen ...]
DESCRI PTI ON

Formib is a screen librarian. It creates libraries of screens that have been
created with the JYACC FORMAKER authoring utility. The representation of the
screen in the library is the original binary version. This utility enabl es one
to store many screens in a single file and not clutter a directory with many
smal | screen files.

Exactly one of the unbracketed command options nust be given; it controls the
action of the utility, as foll ows.

-C Create a new library, placing in it all the screens named.

-r Add the screens to the naned |ibrary, replacing any that are already
t here.

-d Del ete the screens naned fromthe library.

- X extract the screens fromthe named library, placing themin the

current directory. If no screens are named, everything in the
library will be extracted.

-t List the current contents of the library.
There is also a -1 option which may be used in conjunction with any of the
options listed above, and will force the |ist of screen names to | ower case; a
-f option that will cause an existing library to be overwitten; and a -v option

that will cause the utility to print the nane of each screen as it is processed.
To create a new |library, use the -c option. For exanple:
formib forms -c forml forn

This creates a new file called forns containing the sane binary representations
of formL and fornR as are in their respective files.

To see what screens are catalogued in the library file, the -t option is used.
For exanple, on the above file forns:

formib forns -t
woul d |ist:

FORMLI B-- Li brarian for fornms created by JYACC FORMAKER
Copyright (C) 1988 JYACC, Inc.

LI BRARY 'forns' contains:

forml
fornk

If you wish to add a new screen to the library, or replace one already in the
library with a new version, use the -r option. For exanple, to add the screen
form3 to the library forns:

formib forms -r fornB

Now i f you list the contents of forms using the -t option, you get:

FORMLI B-- Li brarian for fornms created by JYACC FORVAKER
Copyright (C) 1988 JYACC, Inc.

LI BRARY 'forns' contains:
forml
forne
fornmB

If you need to obtain one or nore of the fornms for use by an application or for
nmodi fication by the JYACC FORMAKER utility, you can extract it fromthe library
file with the -x option. For exanple:

formib forms -x fornR

will create a file called forn2 whose contents are the binary representation of
that formjust as it was created with xform

If a formis no |onger needed and you wish to delete it fromthe library, the -d
option is used. For exanple:

formib fornms -d forml

woul d delete fornl fromthe library file forms. Nowif you list the contents of
forms using the -t option, you get:

FORM.I B- - Li brarian for forns created by JYACC FORMAKER
Copyright (C) 1988 JYACC, Inc.

LI BRARY 'forns' contains:
fornmR
fornmB

ERROR CONDI TI ONS

Library " %' already exists; use -f' to overwite. Cause: You have specified an
exi sting output file.
Corrective action:
Use the -f option to
overwite the file,
or use a different
nane.

Cannot open "%'. Cause: An input file was m ssing or unreadable. Corrective
action: Check the
spel ling, presence,
and permn ssions of
the file in question.

Unabl e to allocate nenory. Insufficient nmenory avail able. Cause: The utility
could not allocate
enough nmenory for its
needs. Corrective
action: None.

File "%' is not a library. Cause: The named file is not a formlibrary
(incorrect magic
nunber). Corrective
action: Check the
spel ling and
exi stence of your
library.

%' not in library. No fornms in library. Cause: A screen you have nanmed i s not
in the library.

Corrective action:
List the library to
see what's init,
then retry the
operation.

Tenporary file “%' not renmoved. Cause: The internediate output file was not
removed, probably
because of an error
renanming it to the
real output file.
Corrective action:
Check the pernmni ssions
and condition of the
files, then retry the
operation.

Key file - keyboard translation table source
DESCRI PTI ON

JYACC FORMAKER uses a key translation table to map keys you type into a
keyboar d-i ndependent set of codes, thus relieving applications of the need to
know about different term nals. This section tells howto format a text file
containing a key translation table.

You can al so construct a key translation table using the nodkey utility, an

i nteractive program which is docunented el sewhere in this chapter. Mdkey is
recommended if you are defining a key translation file fromscratch, or if you
are new to JYACC FORMAKER. After creating a key file, either by hand or with
nodkey, you will need to translate it to binary with the key2bin utility
(docunent ed separately) and assign the binary file to the SMKEY setup variabl e
for use by the run-tine system

8.1 Key Translation File Format

The key translation file contains one line for each key. Each l|ine has the
foll owi ng conponents:

| ogi cal -val ue(l abel) = character-sequence

Logi cal -val ue can either be one of the mmenonics defined in the file snkeys.h
or a hexadeci mal value. See Section 8.2 for a table. Only nodkey differentiates
between the two nmethods; they operate identically in the run-tine system In
nmodkey, entries specified with hexadecimal values will all appear on the

m scel | aneous key definition screen, while entries specified with menonics wll
be shown on one of the four screens devoted to specific types of keys. At nost
24 entries may be specified in hexadeci mal

The | abel, which nust be enclosed in parentheses, should be a short string that
appears on top of the key on your keyboard. It will be stored in the key
translation file and can be accessed at run-time through various library
functions and the % escape in status-line nmessages (see d_msg_line). Key

| abel s, or keytops as they are sonetinmes called, can be invaluable in user help
messages and pronpts. The | abel and parentheses are optional; the follow ng
equal sign, however, is required.

The character-sequence is up to six characters that JYACC FORMAKER wi | |
translate to the logical value on the left. ASCII control characters may be
represented by mmenpnics, listed in Section 8.3, or as hex nunbers. Displayable
characters such as letters can just be typed in. Blanks between characters are
ignored; if a space occurs in the sequence, it should be entered as SP.

Li nes beginning with a pound sign # will be treated as comrents, i.e. ignored,
by key2bin. Some representative key translation file entries follow

EXI T(F1) = SOH @CR
XM T(Enter) = SOH O CR

TAB = HT
BACK = NUL SI
BKSP = BS

RARR = ESC[C
LARR = ESC [D
UARR = ESC [A
DARR = ESC [B
0x108 = DEL

PF2(F2) = SOH A CR

If the same mmenoni c appears nore than once in the file,
If duplicate right-hand sides appear with

the | ast

occurrence

val ues, unpredictable results will occur. Incorrectly

will appear in the nodkey utility.
di fferent |ogical
formatted lines will cause key2bin to abort.

8.2 Key Mienonics and Logi cal Val ues

The following table Iists JYACC FORMAKER s | ogi ca
are required for
are strongly recomended.

and their
properly;

EXIT
XMT
HELP
FHLP
BKSP
TAB
NL
BACK
HOVE
DELE
I NS
LP
FERA
CLR
SPGU
SPGD
LARR
RARR
DARR
UARR
REFR
EMCH
CAPS
I NSL
DELL

actions.

those foll owed by "*"

0x103**
0x104**
0x105*
0x106
0x108*
0x109*
Ox10a*
0x10b*
0x10c*
Ox10e*
Ox10f *
0x110
Ox111*
0x112*
0x113
0x114
0x118*
0x119*
Ox1lla*
Ox11b*
Ox1lle*
Ox11f
0x110
0x120
0x121

ZOOM 0x122

PF1
PF2
PF3
PF4
PF5
PF6
PF7
PF8
PF9
PF10
PF11
PF12
PF13
PF14
PF15
PF16
PF17
PF18
PF19
PF20
PF21
PF22
PF23
PF24

0x6101
0x6201*
0x6301*
0x6401*
0x6501
0x6601*
0x6701*
0x6801*
0x6901*
Ox6a01
0x6b01
0x6¢01
0x6d01
0x6e01
0x6f 01
0x7001
0x7101
0x7201
0x7301
0x7401
0x7501
0x7601
0x7701
0x7801

Entries followed by "**"

exit

transnit

hel p

screen-wi de help
backspace

tab

new | i ne

backt ab

hone

del ete character
insert character

| ocal print

field erase

cl ear unprotected
scroll up a page
scroll down a page
left arrow

right arrow

down arrow

up arrow

refresh screen

go to last field
change shift ind.
insert occurrence
del ete occurrence
zoomon field

SPF1
SPF2
SPF3
SPF4
SPF5
SPF6
SPF7
SPF8
SPF9
SPF10
SPF11
SPF12
SPF13
SPF14
SPF15
SPF16
SPF17
SPF18
SPF19
SPF20
SPF21
SPF22
SPF23
SPF24

APP1
APP2
APP3
APP4
APP5
APP6
APP7
APP8
APP9
APP10
APP11
APP12
APP13
APP14
APP15
APP16
APP17
APP18
APP19
APP20
APP21
APP22
APP23
APP24

key val ues,

0x4101*
0x4201*
0x4301*
0x4401~
0x4501*
0x4601*
0x4701
0x4801
0x4901
Ox4a01
0x4b01
0X4c01
0x4d01
0x4e01
0x4f 01
0x5001
0x5101
0x5201
0x5301
0x5401
0x5501
0x5601
0x5701
0x5801

0x6102
0x6202
0x6302
0x6402
0x6502
0x6602
0x6702
0x6802
0x6902
0x6a02
0x6b02
0x6¢c02
0x6d02
0x6e02
0Ox6f 02
0x7002
0x7102
0x7202
0x7302
0x7402
0x7502
0x7602
0x7702
0x7802

their

menoni cs,

xformto work

8.3 ASClI

This table |ists two-

Char act er

control characters.

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
NL
VT
FF
CR
SO
S

SP

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0a
0x0b
0x0c
0xod
0Ox0e
OxOf

0x20

Mhenoni cs

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS

RS
us

DEL

0x10
Ox11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Oxla
0x1b
Ox1c
0Ox1d
Ox1le
Ox1f

Ox7f

and three-letter

I ND
NEL
SSA
ESA
HTS
HTJ
VTS
PLD
PLU
R

SS2
SS3

ASCI |

0x84
0x85
0x86
0x87
0x88
0x89
Ox8a
0x8b
0x8c
0x8d
Ox8e
0x8f

menoni cs for

DSC
PUL
PU2
STS
CCH
MV

SPA
EPA

CSl
ST

PM
APC

0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97

0x9b
0x9c
0x9d
0x9e
0x9f

control

and extended

key2bin - convert key translation files to binary
SYNOPSI S

key2bin [-pv] [-eextension] keyfile [keyfile ...]
DESCRI PTI ON

The key2bin utility converts key translation files into a binary format for use
by applications using the JYACC FORMAKER | i brary. The key translation files
thensel ves may be generated by JYACC nodkey, which is docunented el sewhere in
this chapter, or created with a text editor according to the rules described in
the section on key files in this chapter

Keyfile is the name of an ASCI| key translation file. By convention it is an
abbreviation of the terminal's name, plus a tag identifying it as a key
translation file; for instance, the key translation file for the Wse 85 is
cal | ed WB5keys. The utility first tries to open its input file with the exact
nanme you put on the command line; if that fails, it appends keys to the nanme and
tries again. The output file will be given the nanme of the successfully opened
input file, with a default extension of bin.

The conmmand options are interpreted as follows:

-p Place the binary files in the same directories as the input files.
-V Li st the name of each input file as it is processed.
-e Use the output file extension that follows the option letter in

pl ace of the default bin.

To meke a key translation file nenory-resident, first run the binary file
produced by this utility through the bin2c utility to produce a program source
file; then conpile that file and link it with your program

ERROR CONDI TI ONS

File "%' not found Neither '%' nor '%' found. Cause: An input file was
m ssi ng or unreadabl e.
Corrective action: Check
the spelling, presence,
and perm ssions of the
file in question.

Unknown mmenonic in line: '%' Cause: The line printed in the nmessage does not
begin with a | ogical key
mmenoni c. Corrective
action: Refer to
snkeys.h for a list of
mmenoni cs, and correct
t he input.

No key definitions in file '%"' Cause: Warning only. The input file was enpty or
cont ai ned only comments.
Corrective action: None.

Mal | oc error Cause: The utility could not allocate enough nenory for its needs.
Corrective action: None.

Cannot create '9%' Error witing '%' Cause: An output file could not be
created, due to |ack of
perm ssion or perhaps
di sk space. Corrective
action: Correct the file

system problem and retry
the operation.

Istform- list selected portions of screens
SYNOPSI S
I stform[-adijmpstv] [-eext] [-ooutfile] screen
[screen ...]
DESCRI PTI ON

This programlists selected portions of screen files. By default, all the data
about each field in each screen is included. Using command opti ons, however, you
can direct that only some of the display be generated. The command options are
interpreted as follows:

-a Li st default field characteristics for the screen
-d Li st display data.
-e CGenerate one output file, with the extension followi ng the option

letter, for each input file.
- List initial field data, including offscreen data.

- Li st JYACC FORMAKER control strings

-m Li st data relevant to the screen as a whole: border, screen entry
function, etc.

-n I ncl ude a snapshot of the screen showi ng underscores in place of
fields.

-0 Send the output to a single file whose nane follows the option
letter.

-p Pl ace output files in the same directory as the correspondi ng
i nputs.

-s I ncl ude a snapshot of screen showi ng display data and initial
onscreen contents of fields.

-t List all field edits.

-V Print the name of each screen on the ternminal as it is processed.

ERROR CONDI TI ONS

Error opening input file. Cause: An input file was m ssing or unreadable.
Corrective action: Check the spelling,
presence, and pernissions of the file in
guesti on.

Error opening output file. Cause: An output file could not be created, due to
| ack of perm ssion or perhaps di sk space.
Corrective action: Correct the file system
probl em and retry the operation.

Unable to allocate nenory. Can't allocate nenory. Cause: The utility could not
al l ocate enough nmenory for its needs.
Corrective action: None.

Error reading formfile. Error witing list file. Cause: The utility incurred an
I/O error while processing the file named in
the nessage. Corrective action: Retry the
operation.

EXAMPLE

The followi ng is an annotated exanple of the output of this
program when run on the summary (PF5) w ndow of xform
Ellipses ... indicate abridgenents.

FORM ' fm summ wi '

form size 12 lines; 78 colums

Border style O REVERSE VI DEO HI GHLI GHTED BLUE
Background color WH TE

Form hel p screen ' fmsunDhl p'

Snapshot with initial data

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678

Field Data Summary

Nanme Char Edits unfilter

Lengt h (Max) Onscreen Elens O f set (Max Itemns)
Di splay Att:

Field Edits:

Ot her Edits:

Snapshot with underscores

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678

Field Data Summary

Name Char Edits _
Length __~ (Max ___) Onscreen Elems __ Ofset __ _ (Max ltens ___)
Di splay Att:
Field Edits:

O her Edits:

FI ELD DATA:

Fi el d nunmber 1 (line 4, colum 8, length = 31)

Di splay attribute UNDERLI NED HI GHLI GHTED YELLOW

Field edits MENU- FI ELD; RETURN- ENTRY;

Hel p fm_namtihl p

Fi el d number 2 (line 4, colum 52, length = 8)

Scrolling values max itens = 7; increment = 1; circular;

Di splay attribute UNDERLI NED HI GHLI GHTED YELLOW

Field edits PROTECTED FROM ENTRY OF DATA; CLEARING VALI DATI ON;
Hel p fmchrlhlp

initial data:
item 1: unfilter

item 7: reg exp

Fi el d nunmber 4 (line 5, colum 10, length = 3)
Di splay attribute UNDERLI NED HI GHLI GHTED YELLOW
Character edits DI G TS- ONLY

Field edits Rl GHT- JUSTI FI ED; DATA- REQUI RED;

Range 1 TO 255

Hel p fmlenlhlp

Field nunmber 15 (line 9, colum 17, length = 60)
Vertical array 2 elenments; offset between elements = 1

Array field nunbers : 15 16
Di splay attribute H GHLI GATED YELLOW

Field edits WORD- WRAP; PROTECTED FROM ENTRY OF DATA; TABBI NG | NTQ

CLEARI NG~ VALI DATI ON;

DI SPLAY DATA:

Di spl ay text Field Data Summary

Position line = 2; colum = 31; length = 18
Di splay attribute CYAN

Di spl ay text Name
Posi tion line = 4; colum = 3; length = 4
Di splay attribute CYAN

Message file - JYACC FORMAKER error nmessage file fornat
DESCRI PTI ON

During initialization, the binary nessage file identified by the environnment
variable SMVMS5GS is read into menory. It contains error nmessages and ot her text
used by the JYACC FORMAKER Ili brary, such as the 3-letter abbreviations used for
mont h and day of week nanes; it can also contain user nessages. The binary
message file is created by nmsg2bin, g.v., froma text file. This section
describes the text file.

Each line of the nessage file should have the form
tag = nessage

The tag is a single word; system nessage tags have standard prefixes, listed

bel ow, and matching identifiers defined in snerrors.h . You may use any tag for
your nessages that does not begin with a system prefix. The equal sign is
required, and the nmessage to its right is conpletely arbitrary, except that it
may not contain newines (carriage returns). |If you have a | ong nmessage, you may
end the first line or lines with a backslash \ and continue it on the next. A
pound sign # at the beginning of a line makes it a conment; msg2bin ignores
comment s.

System nmessages are identified by one of the followi ng reserved tag prefixes,
and have identifiers defined in the systeminclude file snmerror.h

SM Denot es nessages and strings used by the JYACC FORMAKER run-time
library.
FM Identifies messages issued by the screen editor

Appendi x A contains a list of all the system nessages as distributed by JYACC
pl us expl anati ons and acti ons reconmended for recovery.

The nmsg2bin utility uses tags only to distinguish user nessages from system
messages; all user entries are assigned consecutive nunbers starting from?O
regardl ess of their tags. It is the responsibility of the application progranmer
to maintain the ordering of nmessages and the assignnment of identifiers (manifest
constants) for them Some typical entries are shown bel ow.

SM RENTRY = Entry is required. SM MJSTFILL = Must fill field. SMCKDIAT =

Check digit error. SM NOHELP = No help text available. US_INSUF =
I nsufficient funds. RESERVED = US _SUPV = See supervi sor

11.1 Modifying and Addi ng Messages

The ASCII version of the nessage file can be nodified using a text editor. For
exanple, if the file was nodified as follows:

SMCKDIG T = Invalid check digit

the above nessage woul d appear in the case of a check digit error, instead of
Check digit error. |If an application programwere to be conpiled with the
foll owing definitions:

#define US_I| NSUF 0
#def i ne RESERVED 1
#defi ne US_SUPV 2

it could issue the calls:

smquiet_err (smnsg_get (US_|INSUF));

smerr_reset (smnsg_get (US_SUPV));

If a decision were nade |later to change the nessage text, the change could be
made by nodifying the message file only, wi thout any need to nodify and
recompil e the application code.

If any message is missing fromthe nessage file, and a call is made to display
the nessage, only the nessage nunber will be shown. Thus, if the file had no
entry for SM RENTRY, and an operator failed to enter data in a field in which an
entry was required, the status line would sinply display the nunber
corresponding to SM RENTRY in snerror.h .

User nessages may al so be placed in separate nmessage files, loaded with calls to
msgread, and accessed in the same way as above.

11.2 Enbedding Attributes and Key Names in Messages

Several percent escapes provide control over the content and presentation of
status nessages. They are interpreted by smd_nsg_line, which is eventually
call ed by everything that puts text on the status line (including field status
text). The character followi ng the percent sign nust be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%N for instance; see below) nust appear at the

begi nning of the nmessage, i.e. before anything except perhaps another percent
escape.

If a string of the form %Annnn appears anywhere in the nmessage, the
hexadeci mal number nnnn is interpreted as a display attribute to be
applied to the remai nder of the message. The table bel ow gives the
nuneric values of the logical display attributes you will need to
construct enbedded attributes. If you want a digit to appear

i medi ately after the attribute change, pad the attribute to 4 digits
with leading zeroes; if the followi ng character is not a |legal hex
digit, | eading zeroes are unnecessary.

If a string of the form %KEYNAVE appears anywhere in the nessage,
KEYNAME is interpreted as a |ogical key mmenonic, and the whol e
expression is replaced with the key label string defined for that key
in the key translation file. If there is no label, the "% is stripped
out and the menonic remai ns. Key mmenoni cs are defined in snkeys. h
it is of course the nanme, not the nunber, that you want here. The
menoni ¢ nmust be in upper-case.

I f 9N\ appears anywhere in the message, the latter will be presented in
a pop-up w ndow rather than on the status line, and all occurrences of
%N will be replaced by new ines.

If the nmessage begins with a 98, JYACC FORMAKER wi || beep the term na
(using smbel) before issuing the nessage.

If the message begins with %N it will be presented in a pop-up w ndow
i nstead of on the status line. The wi ndow will appear near the bottom
center of the screen, unless it would obscure the current field by so
doing; in that case, it will appear near the top. |If the nmessage
begins with %vJ or %D, and is passed to one of the error nmessage

di splay functions, JYACC FORMAKER wi Il ignore the default error nessage
acknowl edgement flag and process (for 9%WJ) or discard (for %D) the
next character typed.

Note that, if a message containing percent escapes - that is, %A B, % %N or
%N - is displayed before sminitcrt or after %Vis called, the percent escapes
will showup init.
Attribute Hex val ue

BLACK BLUE
GREEN
CYAN
RED
MAGENTA

YELLOW
VH TE

~N~NOoO OOk~ WNELO

B_BLACK 0 B _BLUE
100 B_GREEN
200 B_CYAN
300 B_RED
400 B_MAGENTA
500 B_YELLOW
600 B_WHI TE
700

BLANK 8 REVERSE
10 UNDERLN
20 BLI NK
40 HI LI GHT
80 DIM
1000

If the cursor position display has been turned on (see smc_vis), the end of the
status line will contain the cursor's current row and colum. If the nmessage
text would overlap that area of the status line, it will be displayed in a

wi ndow i nst ead.

Note that the processing of percent escapes in nmessages is done only when the
message is displayed on the status line; they will not be expanded sinply by
virtue of having been retrieved fromthe nessage file. Also, at present, nsg2bin
does no syntax checking.

nmodkey - key translation file editor
SYNOPSI S

modkey [keyfil e]
DESCRI PTI ON
12.1 Introduction

The nodkey utility provides a conveni ent nmechani smfor specifying how keys on a
particul ar keyboard shoul d operate in the JYACC FORMAKER environment. It

provi des for defining the function, editing, and cursor control keys used by
JYACC FORMAKER, as well as keys that produce foreign or graphics characters.
Finally, nmodkey can store |abel text corresponding to your keys, for use in
pronmpts and hel p nmessages.

The out put of nodkey is a text file called the key translation file. After being
converted into a binary table by the key2bin utility, it is used to translate
physi cal characters generated by the keyboard into |ogical values used by the
JYACC FORMAKER library. By dealing with |ogical keys, programs can work
transparently with a multitude of keyboards.

Refer to the Author's CGuide for a table explaining the functions of the cursor
control and editing keys. The format of the key translation file generated by
nmodkey is explained in the section of this chapter on key files.

12.1.1 Key Transl ation

The ASCII character set is conprised of eight-bit characters in the range 0 to
256 (hex FF). It defines characters in the ranges hex 20 to hex 7E and hex A0 to
hex FE as data characters, and the rest as control characters. Contro

characters have mmenoni ¢ nanmes; the character hex 1B, for instance, is usually
cal l ed ESC or escape. See section 8.3 for a list. Note that certain conputers,
such as PRIME, "flip" the high bit of ASCI| characters; on such conputers, ESC
woul d be hex 9B and the letter A would be hex Cl. In this docunment, standard
ASCI | values will be used.

When you press a key, the keyboard generates either a single ASCI| data
character, or a sequence of characters beginning with an ASCI| control code.
JYACC FORMAKER converts these characters into |ogical keys before processing
them Logical keys are nunbers between zero and 65535. Logical val ues between 1
and hex FF represent displayable data; val ues between hex 100 and hex 1FF are
cursor control and editing keys; values greater than hex 1FF are function keys.
Zero is never used. For a list of |ogical values, see Section 8.2.

Data characters received fromthe keyboard are not translated. Sequences
begi nning with a control character are translated to a |ogical val ue,
representing a data character or function key, according to the foll ow ng
al gorithm

When a control character is received, we search the key translation table for a
sequence beginning with that character. If there is one, we read additiona
characters until a match with an entire sequence in the table is found, and
return the logical value fromthe table. If the initial character is in the
tabl e but the whole sequence is not, the whole is discarded, on the assunption
that it represents a function key that is mssing fromthe table. Finally, if a
control character does not begin any sequence in the table, it is returned
unchanged; this is useful for machines such as IBM PCs that use control codes
for displayable characters. The Programmer's Gui de contains a detailed

di scussi on of key translation.

Elrrrrrrrrrerrrrrerrrererrrrrrrrrrrrirrrrnd Il
0 VELCOVE TO JYACC MODKEY UT TY 0

[0} [0}
[0} [0}
°Using this utility you can edit a previously created KEY TRANSLATION file °
°or create a new one. ©
o o)
°Enter the name of the file you would like to create or nodify in the field 0
°pel ow and then press the "+" key. File nanes should be in the form"tttkeys" °
°where ttt is a memonic for the type of term nal you are using. For exanple °
°"vt 100keys" m ght be used for a vt100 termnal. 0
[0} [0}
°To exit the MODKEY utility w thout proceeding further, press the "-" key. °
o o
o o)
0 Fil e Nare: (Enter '<' to BACKSPACE 0
° Enter "+" to ENTER °
° Enter "-" to EXIT) °
[0} [0}
[0} [0}
°Note: Control keys are not active in this utility. Instead, data keys are °
o used for control purposes. . °
ELCTLEErrrrrer et et r et e et et e et et e et ettt e ettt et rrrirnlva

Fi gure 1: Wl come Screen

12.2 Executing the Utility

You execute nmodkey by typing its name on the conmand |ine, optionally followed
by the name of the key file you want to exam ne or change. If you supply a key
file name, the main nmenu (Figure 2) appears at once. If you do not give a
filenane, the wel come screen (Figure 1) appears, and you may enter one there.

12.3 Control Keys and Data Keys

Since modkey is used to define the cursor control, editing, and function keys,
these keys do not operate in the utility. |Instead, displayable data keys are
used for these purposes. For exanple, the TAB key is usually used to nove the
cursor fromone field to the next. But since TAB is one of the keys being
defined with this utility, it cannot first be recognized; the data key t is used
i nst ead.

Usi ng data keys for control purposes poses no problemsince, in this utility,
data keys may not begin a control sequence. This will beconme cl earer when the
screens in subsequent sections are described. The control functions that are
supported in the nodkey utility and the keys that are used to provide themare
given in the follow ng table:

Control function Key
TRANSM T + EXIT
HELP

REDRAW SCREEN
BACKSPACE

BACKTAB

FI ELD ERASE

ENTER KEYTOP

TAB

ERASE ALL UNPROTECTED

N~XOTA — !

Elrrrrrrrrrrrrrrrererererererrrrrrerererererererererrrr bt bttt rrrrrrrrn »

[0} [0}
[0} [0}
° JYACC MODKEY UTILITY MAIN MENU °
o o
o o)
o o)
° 0. Exit °
° 1. Help °
0 2. Define Cursor Control and Editing Keys 0
0 3. Define Function Keys 0
° 4. Define Shifted Function Keys °
° 5. Define Application Function Keys °
° 6. Define Mscellaneous Keys 0
° 7. Test Key Translation File 0
o o
o o)
° Enter the desired option (0 - 7): °
[0} [0}
[0} [0}
[0} [0}
[0} [0}
B T T T i i i i i i i i riririiiiiiiiiiiiiiva

Fi gure 2: Main Menu

The k key, or ENTER KEYTOP, causes a small w ndow to appear under the cursor in
whi ch you may enter the label found on the key in question on your keyboard.
This label will be stored in the key translation file; it can be accessed by
library functions and in status |ine nmessages, and is very useful in help
messages telling an operator which key to press. It operates in all the screens
bel ow the main nenu that are actually used for defining keys.

12.4 \Wel cone Screen

When you i nvoke nodkey without supplying a key file nane, the wel cone screen
(Figure 1) is displayed. Here you specify the key translation file to be created
or nodified, by entering it in the field |abeled File Name. If you nmake a

nm st ake, backspace over it using the < key. Wen finished, conplete the screen
by pressing the + key.

Key translation file names should begin with a menonic for the type of terninal
you are using, and end with keys. For exanple vt100keys m ght be used for a

vt 100 term nal. This convention, while not mandatory, helps avoid confusion with
video files and with other key translation files; all files distributed by JYACC
adhere to it.

If the file already exists, it is read into nenory and may be nodifi ed;

ot herwi se, you start fromscratch. Al nodifications are made in menory, and
file updates are performed only at the conclusion of the program and at your
explicit request.

To exit the nodkey utility while the wel come screen is displayed, press the "-"
key (EXIT).

12.5 Main Menu

The main menu shown in Figure 2 is displayed at entry to the utility, and
whenever you return froma |lower-1evel screen. You select an option by typing

t he correspondi ng nunber. For exanple, to test the key translation file, press
"7". 1If you make an invalid selection, an error message will appear; acknow edge
it by pressing the space bar. The functions on the main nenu are described in

Elrrrrrrrrrrrrrrrererererererrrrrrerererererererererrrr bt bttt rrrrrrrrn »

[0} [0}
° JYACC MODKEY UTILITY EXIT SCREEN °
[0} [0}
o o
o o)
o o)
o o
° Enter: _ 'S to save data in a file °
0 "E' to exit the utility without saving data 0
° '-'" to return to the main nmenu °
[0} [0}
[0} [0}
o o
© File Name: ©
o o
o o)
° Speci al Keys: + ENTER (save changes in file) °
0 - EXIT (return to nain menu) 0
° < BACKSPACE °
[0} [0}
[0} [0}
B T T T i i i i i i i i riririiiiiiiiiiiiiiva

Figure 3: Exit Screen

subsequent sections.
12.6 Exiting the Utility

To exit nodkey, press 0 on the main nmenu. This causes the exit screen (Figure 3)
to be invoked. This screen initially contains a single field into which you
enter s, e, or -. To save the key translation file on disk, enter "S" or "s"
When this is done, the file nane entered in the Wel come Screen appears; you may
change it if you wish, and press + to wite it to disk. To exit the utility

wi t hout saving the file, enter e. If you press -, the nain menu will reappear
and you may make additional changes to the key translation file.

12.7 Help Screen

The hel p screen may be selected fromthe main nmenu by pressing "1"; it appears
in Figure 4. In addition to displaying useful information, this screen my be
used to test out the kinds of keystroke entry that will be required on

subsequent screens in this utility. There are two types of keys: those that
generate a single ASCII character, and those that generate a sequence of
characters. \Wen a sequence is generated, the first character is always an ASCI
control character. To see the characters generated by a particul ar key, type
that key twice while the help screen is displayed. (Different keys generate

di fferent numbers of characters; when you press the key tw ce, the program can
sense the pattern.)

When the key is pressed the first tinme, the characters produced will be shown
fol |l owi ng CHARACTERS GENERATED. When the key is pressed the second tinme and
recogni zed, the sequence representing the key will appear follow ng KEY STRCKE

It is sonetinmes desirable to designate a sequence of keystrokes to serve a
particul ar purpose. For exanmple, on a systemwi th a small nunmber of function
keys, one may choose to inmplement the function keys F1 through F9 with the
sequence control-F n where n is a single digit. This sequence of keystrokes can
be interpreted by JYACC FORMAKER as a single key.

ELTTTITTITETTETETTIETT T 1 IJYACC MODKEY - HELP SCREENIITTITITTETETTET TR irrntl
(o]

»
(o]

°There are two types of keys on your keyboard--Data keys and Control keys. Data®

°keys will generate a single printable character when pressed. Control keys
°will generate a sequence of one or nore characters, the first of which is non-
°printabl e.

o

°ln subsequent screens, you will be asked to designate the control keys that
°shoul d be used for various functions. For exanple, one control key will be
°desi gnated as EXIT, another as PFl1l. To assign a key to a function, the key

°nmust be pressed twice in succession. Try this in the field bel ow
[0}

° Press key twice:

° CHARACTERS GENERATED .~~~

0 KEY STRCOKE e

o

° Use the "+" or "-" keys to exit to the main nenu

o

°\When done correctly, the characters generated by the key will be shown in

°the KEY STROKE field. As each key is typed, its characters are shown in the
© CHARACTERS GENERATED fi el d.

(o]

Figure 4. Hel p Screen

To denponstrate this, type control-F 1 into the help screen, by pressing the F
key while holding the CTRL key down, releasing both, and then pressing the 1
key. The sequence ACK 1 will appear followi ng CHARACTERS GENERATED. Repeati ng
the sequence will duplicate the ACK 1 after CHARACTERS GENERATED col umm, and
al so display ACK 1 follow ng KEY STROKE.

If a printable ASCII character is pressed as the first key in a sequence, npdkey
i medi ately displays it in the KEY STROKE colum. |f a non-printable character
is pressed and then a second, different character is pressed, nmodkey will assune
that a sequence is being tried and will continue displaying these characters in
t he CHARACTERS GENERATED fi el d. However, if the sequence gets to be | onger than
six characters without starting to repeat, nodkey will display Sequence too

I ong. You must acknow edge this nessage by pressing the space bar. If you
realize you have nmade a m stake in entering a key or key sequence and do not
wish to duplicate it, press any key repeatedly until you see Sequence too |ong.
After acknow edgi ng the nmessage, you can start over

To exit fromthe help screen and return to the main nenu, press the "-"
(EXIT) as the first character in a sequence.

key

12.8 Defining Cursor Control and Editing Keys

This function allows the operator to specify the keys that should be used for
the various cursor control and editing operations. Wien 2 is selected fromthe
mai n menu, the screen shown in Figure 5 appears. This screen has a field for
each of the cursor control and editing functions supported by JYACC FORVAKER.
Each function has a |ogical value defined in the file snkeys.h . The purpose of
this screen is to allow the operator to specify a sequence of characters for
each function key.

12.8.1 Assigning a Key to a Function

To designate a key for a particular cursor control or editing function, position
the cursor after that function's nane and press the key twi ce. For exanple, to
designate a key as the EXIT key, press it twice in succession while the cursor
isinthe EXIT field. When nodkey recogni zes the second keystroke, the sequence

(o]
[0}
[0}
[0}
[0}
o
(o]
(o]
(o]
(o]
[0}
[0}
[0}
[0}
[0}
(o]
(o]
(o]
(o]

° JYACC MODKEY - CURSOR CONTROL AND EDI TI NG ON °
[0} [0}
°EXIT - LEFT ARROW __ _ _~~ _~ ~ ___~ _ _°
°TRANSM T e RRGHT ARROW . ©
°HELP e UP ARROW 0
°FORM HELP bpow ARROW . 0°
°LcCAL PRRNT CHAR DELETE __ ~ ~~ _ 0©
°NEW LI NE e INSERT MOOE __ _ __ ___°
°TAB e FIELDERASE __ _~ _~ _ ___ __ _°
°BACK TAB e ERASE ALL -
° HOVE - INSERT LINE __ _ _~ ~~__ _ _°
°BACK SPACE DELETE LINE __ _ _ _ ~ __~~ ___©°
°_AST FIELD ZOoM 0
°scROLL UP REFRESH 0
°scCRo. L bowmw °
o o)
° Each key or sequence of keys nust be pressed twi ce in succession. °
[0} [0}
° Special Keys: + ENTER t TAB z ERASE ALL °
° - EXIT b BACKTAB I REDRAW SCREEN °
° ? HELP d DELETE ENTRY k SET KEYTOPS °
SN RN R RN RN R R RN R RN R AR R RN RRRRNRNRE

Fi gure 5: Cursor Key Screen

of characters generated by the key wll and the cursor will nove

to the next field.

be di spl ayed,

It is not pernmissible to define a printable ASCI| character as a cursor contro
or editing key. This means that the sequence of characters generated by the key
must start with an ASCI| control character. If this is not the case, an error
will be displayed. An error will also be displayed if the sequence of characters
mat ches a sequence assi gned to anot her function.

VWen a field is left enmpty, its corresponding function wll
prograns using the Keyboard Translation file being defined. |If your program has
no use for a particular key (such as GO TO LAST FIELD), you may | eave that entry
bl ank on this screen. However, certain keys are required for the proper
operation of xform and should be specified if you are creating a table for
with it. Alist of the required keys is given in Section 8.2.

not operate in

use

Situations may arise in which you do not press the same key twi ce in succession.
This will be evident because nodkey will not display the characters that were
generated. To recover, press the space bar repeatedly until the nessage Sequence
too | ong appears. Then, after acknow edgi ng the nmessage with the space bar, you
may enter the correct keystrokes.

To define a key |abel or keytop for

any key on this screen, press k with the

cursor at the beginning of the key sequence. A small, borderless w ndow wil|
appear, bearing the word KEYTOP:.. In the following field, you should type

what ever appears on top of the key on your keyboard, using the < key to rub out
m st akes. When done, press + to save the label, or - to discard it.

12.8.2 Assigning a Sequence of Keys to a Function

It is sonetinmes desirable to designate a sequence of keystrokes to serve a
particul ar purpose. For example, on a keyboard with few function keys, one ni ght
i npl enent the function keys PF1 through F9 with the sequences control-F 1

t hrough control -F 9.

EITTTITTITTITTIYACC MODKEY - PROGRAM FUNCTI ON KEY DEFI NI TION SCREENITITTITTITITTT »

(o]

[0}

° PF1 e PF13 e °
° PF2 e PF14 e °
° PF3 e PF15 e °
° PF4 e PF16 e °
° PF5 e PF17 e °
° PF6 e PF18 e °
° PF7 e PF19 e °
° PF8 e PF20 e °
° PF9 e PF21 e °
° PF10 e PF22 e °
° PF11 e PF23 e °
° PF12 e PF24 e °
o o)
o o
° Each key or sequence of keys nust be pressed twi ce in succession °
o o
°Speci al keys: + ENTER ? HELP k SET KEYTOPS 0
° - EXIT d DELETE ENTRY ! REDRAW SCREEN °
° t TAB z ERASE ALL °
° b BACKTAB °
SRR NN RN RN R RN RN R RN R RN R AR RN R AR RN RO RERRRRE

Fi gure 6: Function Key Screen

One assigns a sequence of keystrokes to a function in much the sane way as one
assigns individual keys. The sequence is entered once in its entirety and is
then repeated. Upon successful conpletion, the characters generated on behal f of
t he sequence are displ ayed.

If you do not press the sanme key sequence tw ce, nodkey will not display the
generated characters. To recover, press the space bar repeatedly until the
message Sequence too | ong appears. At this point, you may enter the correct
keystrokes.

12.9 Defining Function Keys

This function allows the operator to specify the keys that should be used as the
function keys (PF1 - PF24). Wen 3 is selected fromthe main nenu, the screen of
Figure 6 appears. This function works exactly like its counterpart for defining
the cursor control and editing keys described in Section 12.8. You desighate a
key or key sequence as a function key by pressing it twice, with the cursor in
the field to which the sequence applies. For exanple, to define control-F as the
PF2 key, position the cursor to the PF2 field using t and b, and type control-F
twice in succession.

To save the changes made in this screen and return to the main nmenu, press the +
key. To return to the main nmenu w thout saving changes, use the "-" key.

To define a key | abel or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless w ndow wil|
appear, bearing the word KEYTOP:. In the following field, you should type

what ever appears on top of the key on your keyboard, using the < key to rub out
nm st akes. When done, press + to save the label, or - to discard it.

12.10 Defining Shifted Function Keys
This function allows the operator to specify the keys that should be used as the

shifted function keys (SPFl - SPF24). Wen 4 is selected fromthe main nenu, the
screen depicted in Figure 7 appears.

EITTTITTTTIYACC MODKEY - SHI FTED PROGRAM FUNCTI ON KEY DEFI NI TION SCREENITITTT11»

(o]

[0}

° SPF1 e SPF13 e °
° SPF2 e SPF14 e °
° SPF3 e SPF15 e °
° SPF4 e SPF16 e °
° SPF5 e SPF17 e °
° SPF6 e SPF18 e °
° SPF7 e SPF19 e °
° SPF8 e SPF20 e °
° SPF9 e SPF21 e °
° SPF10 e SPF22 e °
° SPF11 e SPF23 e °
° SPF12 e SPF24 e °
o o)
o o
° Each key or sequence of keys nust be pressed twi ce in succession °
o o
°Speci al keys: + ENTER ? HELP k SET KEYTOPS 0
° - EXIT d DELETE ENTRY ! REDRAW SCREEN °
° t TAB z ERASE ALL °
° b BACKTAB °
SRR NN RN RN R RN RN R RN R RN R AR RN R AR RN RO RERRRRE

Figure 7: Shifted Function Key Screen

This function works exactly like its counterpart for defining the function keys
described in Section 12.9. You designate a key (or key sequence) as a shifted
function key by pressing it twice with the cursor in the field to which the
sequence applies. For exanple, to define the sequence of keys control-B 2 as the
shifted PF2 key, position the cursor to the SPF2 field, using t and b, and type
control-B 2 tw ce

To save changes made in this screen and return to the main menu, press the + key
as the first character in a sequence. To return to the nain menu w thout saving
the changes, use the "-" key.

To define a key | abel or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless w ndow wil|
appear, bearing the word KEYTOP:. In the following field, you should type

what ever appears on top of the key on your keyboard, using the < key to rub out
m st akes. \When done, press + to save the label, or - to discard it.

12.11 Defining Application Function Keys

This function allows the operator to specify the keys that should be used as the
application function keys (APPl - APP24). When 5 is selected fromthe main nmenu,
the screen of Figure 8 appears. This function works exactly like its
counterpart for defining the function keys described in Section 12.9.

To define a key | abel or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless w ndow wil|
appear, bearing the word KEYTOP:. In the following field, you should type

what ever appears on top of the key on your keyboard, using the < key to rub out
nm st akes. When done, press + to save the label, or - to discard it.

12.12 Defining M scellaneous Keys

On this screen, you can specify |ogical keys not present on the other screens,
and define alternate control sequences for keys defined el sewhere. Wen 6 is
selected fromthe main nenu, the screen of Figure 9 displayed. This function
works in a simlar manner to its counterpart for defining the cursor control and

EITTTITTITITTITTIYACC MODKEY - APPLI CATION KEY DEFINITION SCREENITTTITTITITTITITTT »

[0} [0}
° APP1 e APP13 e 0
° APP2 e APP14 e °
° APP3 e APP15 e °
° APP4 e APP16 e o
° APPS5 e APP17 e o
° APP6 e APP18 e o
° APP7 - APP19 - o
° APP8 e APP20 e 0
° APP9 e APP21 e 0
° APP10 e APP22 e 0
° APP11 e APP23 e °
° APP12 e APP24 e °
o o)
o o
° Each key or sequence of keys nust be pressed twi ce in succession °
o o
°Speci al keys: + ENTER ? HELP k SET KEYTOPS °
0 - EXIT d DELETE ENTRY ! REDRAW SCREEN 0
0 t TAB z ERASE ALL 0
° b BACKTAB °
SRR NN RN RN R RN RN R RN R RN R AR RN R AR RN RO RERRRRE
Figure 8: Application Key Screen
EITTTITITI11111TIYACC MODKEY - M SCELLANEOUS KEY DEFI NI TI ON SCREENI [{1 TiTi1iiiil»
[0} [0}
° KEY STROKE LOd CAL VALUE KEY STROKE LOd CAL VALUE °
o o
0___ - - 0 - - - - (o)
0___ - - 0 - - - - o)
0___ - - - - - - - - - o
0___ - - - - - -/ o
0___ - - - - - - - - [0}
0___ - - - - - - - -/ [0}
0___ - - - - - - - [0}
O___ - - - - - - - - - T/ [0}
O___ - - /0 - - - - o
0___ - - 0 - - - - (o)
0___ - - 0 - - - - o)
0___ - - - - - - - - - o
0 LOG CAL VALUE DI SPLAY MODE IS: 0
[0} [0}
°Speci al keys: + ENTER ? HELP v TAB TO VALUE FI ELD 0
0 - EXIT I REDRAW SCREEN k SET KEYTOPS 0
° t TAB d DELETE ENTRY < BACKSPACE IN VALUE FIELD °
o b BACKTAB z ERASE ALL ¢ CHANGE MODE 0
SRR RN R RN RN RN RN R R RN R R RN RN R RN RN RRRONRNRE

Figure 9: M scell aneous Keys Screen

editing keys described in Section 12.8. However, on this screen you nust define
the |l ogical values as well as the sequences that produce them (On all other
screens, the logical value was inplicitly deternmined by the field with which the
sequence was associ ated.)

The m scel | aneous key definition screen has two colums for each key being
defined, |abeled KEY STROKE and LOG CAL VALUE. You enter a key or key sequence
into these fields twice in succession, and nodkey di splays the generated

characters; then the cursor noves to the LOG CAL VALUE colum for that key.
Here, you nust enter the logical value to be returned when JYACC FORMAKER
recogni zes the sequence of characters you have just entered. You nay get to the
| ogical value field directly by pressing v in the correspondi ng KEY STROKE
field.

12.12.1 Entering the Logical Value

Logi cal values are nunbers, so you will be entering printable ASCII data into
this field. This is unlike npst other fields, where data characters are not

al l owed or are given special meaning (such as "b" representi ng BACKTAB). When
entering | ogical values, three keys are allowed in addition to the data keys
necessary to enter the val ue:

The + key (TRANSM T) signifies that the logical value just typed is
correct and should be used. When it is pressed, nmodkey will first check
the logical value for errors. If no errors are detected, the cursor
will tab to the next field; otherwi se, an error nessage wll appear

The - key (EXIT) means that the logical value just typed is incorrect
and shoul d be ignored. The cursor will go to the next field and the

| ogi cal value will be reset to what existed before the field was
entered. If the logical value field was previously enmpty, it will be
set to zero.

The < key (BACKSPACE) backs up the cursor one position at a tine, so
that corrections to the |ogical value can be made. It erases previously
entered data as it noves.

12.12.2 Logical Value Display and Entry Modes

Logi cal values are displayed, and may be entered, in any of four nodes. The
current mode is displayed on the screen followi ng the | abel LOG CAL VALUE

DI SPLAY MODE. It may be changed by typing ¢ as the first character of a sequence
while the cursor is in any of the KEY STROKE fields on the screen. Wen the

m scel | aneous keys screen is first invoked, the node is hexadecimal. It cycles
through all four mpbdes when you press the ¢ key. The four nodes are:

deci mal In deci mal nmode, you enter |ogical values as decimal nunbers.
If a non-digit is entered or the logical value is zero, an
error will be displayed.

oct al In octal node, you enter |ogical values as octal nunbers (base
8). If a non-octal digit is entered or the logical value is
zero, an error wll be displayed.

hexadeci mal | n hexadeci mal node, you enter |ogical values as hexadeci na
(base 16) nunbers. If a non-hex digit is entered or the

| ogical value is zero, an error will be displayed. The error
must be acknow edged by pressing the space bar
mmenoni ¢ In menoni ¢ node, you enter the mmenonic associated with any

of the logical values stored in the file snkeys.h . For
exanple, if EXIT is entered into the Logical Value field, the
| ogi cal value of the EXIT key, hex 103, will be used. If an
incorrect menonic is entered, an error will be displayed

whi ch nust be acknow edged by pressing the space bar. For a
list of valid menonics, press the "?" key while the cursor is
in a logical value field.

Entering the |logical value as a menonic is preferable, as you are less likely
to mistake the value you want. Using the numeric nodes, it is possible to define
| ogi cal key values other than those present in snkeys.h , but this should be
done cautiously. You should avoid the range 100 hex through 1FF hex, which is
reserved for future use by JYACC. Also, for portability's sake, the val ues

EITTITTTTTTTIITTTITITTTIYACC MODKEY - TEST KEY TRANSLATION FILEITTTTTIITTIITTTTITTTTT»
[0}

This screen is used to test out the Key Translation file being defined.

To do this, press any key in the field below. The characters generated by the

key will be displayed along with its |ogical value.

KEY STROKE LOG CAL VALUE KEYTOP

0O 0O 0O O O oo oo o o o

LOd CAL VALUE DI SPLAY MODE | S:

O O 0O 0o 0O 0O o o o o o o

o]

°If a nultiple key sequence has been defined, the entire sequence nust be entered®
°for the |ogical value to be displayed. Once the sequence is started, the cursor?®

°will be turned off until it is conpleted. 0
o o
°lf you get out of sync. press the space bar repeatedly until a nessage appears. °
[0} [0}
° Speci al Keys: + ENTER °
° - EXIT °
o ¢ CHANGE MODE °
ELLTErrrrrrrererrerrrr et et ettt et et e et ettt et ettt et rrrirrrnlva

Figure 10: Test Screen

shoul d be small enough to fit in a two-byte integer, i.e. |less than 65536 (10000
hex) .

To define a key | abel or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless w ndow wil|
appear, bearing the word KEYTOP:.. In the following field, you should type

what ever appears on top of the key on your keyboard, using the < key to rub out
m st akes. When done, press + to save the label, or - to discard it.

12.12.3 Returning to the Main Menu

To save changes made in this screen and return to the main nenu, press the + key
as the first character in a sequence while the cursor is in a KEY STRCKE fi el d.
To discard the changes and return to the main menu, use the - key.

12. 13 Test Keyboard Translation File

This function allows you to test out your new key translation file. When 7 is
selected fromthe main nmenu, the screen of figure 10 is displayed. This screen
has two fields | abel ed KEY STROKE and LOG CAL VALUE. You enter a keystroke (or
sequence of keystrokes) that has been defined in another screen, and nodkey wil|
di splay the |ogical value of that key. The key or keys need only be pressed
once, since the table is being tested for howit will behave when used in a rea
application. |If a key sequence forns only part of a previously specified
sequence, modkey will wait for another key until a sequence is matched, or unti
it determnes that no match is possible. In the latter case, the nessage Key not
defined will appear

The | ogi cal value can be displayed in any of the four nobdes (deciml, octal
hexadeci mal, or menonic). To change nodes, press ¢ as the first character in a
sequence. To exit the screen and return to the main nmenu, use -. Help text can
be obtained by pressing "?"

ERROR CONDI Tl ONS

Invalid entry. Cause: You have typed a key that is not on the menu. Corrective
action: Check the instructions on the screen and try
agai n.

Key sequence is too |long. Cause: You have typed nore than six keys w hout
repeating any. Corrective action: Key sequences for
translati on may be at nobst six characters |ong. Choose a
shorter sequence.

Invalid first character. Cause: A nmulti-key sequence must begin with a contro
character. Corrective action: Begin again, using a contro
character.

I nvalid menonic - press space for |ist Cause: In the mscellaneous keys screen
you have typed a character string for |ogical value that
is not a logical key menonic. Corrective action: Peruse
the list, then correct the input.

Invalid number - enter <decimal>, O<octal > or Ox<hex> Cause: In the
m scel | aneous keys screen, you have typed a nmal f or med
nuneric key code. Corrective action: Correct the number,
or use a mmenonic.

Cannot create output file. Cause: An output file could not be created, due to
| ack of perm ssion or perhaps disk space. Corrective
action: Correct the file systemproblemand retry the
operation.

Key sequence does not repeat. Cause: You have typed a key sequence that failed
to repeat a string of six characters or less. Corrective
action: Retry the sequence, or use a shorter one.

Cannot accept NUL as a key. Cause: The ASCI1 NUL character (binary 0) cannot be
used in a key transl ation sequence, because it is used
internally to mark the end of a sequence. Corrective
action: Use another key.

Key previously defined as % Key conflicts with % Cause: You have typed a key
sequence that has already been assigned to another key, or
that is a substring of a previously assigned sequence.
Corrective action: Use a different key or sequence, or
reassi gn the other.

nmsg2bin - convert message files to binary
SYNOPSI S

msg2bin [-pv] [-eextension] [-ooutfile]
nmessages [nmessages ...]

DESCRI PTI ON

The nsg2bin utility converts ASCI|I nessage files to a binary format for use by
JYACC FORMAKER | i brary routines. The conmand options are interpreted as foll ows:

-e G ve the output files the extension that follows the option letter
rat her than the default bin.

-0 Place all the output in a single file, whose nanme follows the option
letter.

-p Pl ace each output file in the same directory as the correspondi ng
i nput file.

-V Print the name of each nessage file as it is processed.

The input to this utility files are text files containing named nessages, either
distributed by JYACC for use with the JYACC FORMAKER | i brary or defined by
application programrers. For information about the format of ASCI| nessage
files, see the section on nmessage files in this chapter

The nessage file and msg2bin utility provide three different services to
application designers. First, the error nmessages displayed by JYACC FORMAKER
library functions may be translated from English to another |anguage, made nore
verbose, or altered to suit the taste of the application designer. Second, error
messages for use by application routines may be collected in a nessage file and
retrieved with the nmsg_get library function; this provides a centralized

| ocation for application nmessages and saves space. Finally, the standard library
messages (and user nessages) may be made nmenory-resident, to sinplify and speed
up the initialization procedure (at some added cost in nenory). The bin2c
utility converts the output of this utility to a source file suitable for
inclusion in the application program

ERROR CONDI Tl ONS

File '%' not found. Cause: An input file was m ssing or unreadable. Corrective
action: Check the spelling, presence, and
perm ssions of the file in question.

Unable to allocate nenory. Cause: The utility could not allocate enough nmenory
for its needs. Corrective action: None.

Bad tag in line: % Cause: The input file contained a system message tag unknown
to the utility. Corrective action: Refer to
snmerror.h for a list of tags, and correct the
i nput .

M ssi ng inline: % Cause: The line in the nessage had no equal sign
following the tag. Corrective action: Correct the

i nput and re-run the utility.

Setup file - JYACC FORMAKER confi guration vari abl es
DESCRI PTI ON

JYACC FORMAKER supports a number of configuration or setup variables, which
provi de a convenient way for you to control many operating paranmeters of the
JYACC FORMAKER run-tinme systemand utilities. They include all the environnent
vari abl es supported in Release 3. The library function snsetup, which is
automatically called frominitcrt, reads in binary setup files and sets up the
run-time environment to correspond.

You can use configuration variables by creating a text file of name-value pairs
as described in this section, and then running the var2bin utility to convert it
to a binary format.

14.1 The Two Setup Files

There are two files in which you nay place setup variables. The first is naned
by the system environnment variable SWARS. |f your operating system does not
support an environnent, this file will be in a hard-coded | ocation; SM/ARS
itself may not be put in a setup file. The second file is naned by the SMSETUP
configuration variable, which my be defined in the SMARS file or in the system
envi ronnment .

Any setup variable may occur in either file. If a variable occurs in both, the
one in SMSETUP t akes precedence. Certain variables nay al so be specified in the
system environnment, which takes precedence over any values found in the files;
they are noted in the table of Section 14.3. It is possible to specify all the
vari abl es necessary to run JYACC FORMAKER in the environnment, w thout
constructing a setup file.

Typically, the SMWARS file will contain installation-w de paranmeters, while the
SMSETUP file will contain paranmeters belonging to an individual or project.

14.2 Input File Line Format
Each line of the input file has the form
nane = val ue

where nane is one of the keywords listed below, the equal sign is required, and
val ue depends on the nane. If a line gets too long, it may be continued onto the
next by placing a backslash \ at the end. Lines beginning with a pound sign #
are treated as comments, i.e. ignored.

Certain variables, notably the JYACC FORMAKER hardware configuration files, have
val ues that depend on the type of ternminal you are using. For those variabl es,
there may be many entries in the input file, of the form

nane = (terml:ternmR:...:ternmN)val ue

This signifies that name has value for termnals of type terml, tern, etc. It
is not necessary to give termnal nanes if you are only interested in one file.
You may al so provide, along with a nunber of termnal-qualified entries, one
entry that is not termnal-qualified; this will serve as the default. It nust
come last. Variables that are term nal -dependent are noted bel ow.

Certain variables, particularly those that provide paraneters for library
functions, have keywords to the right of the equal sign. Wen these keywords are
all distinct, they may be separated by bl anks, commas, or sem col ons, just as
you pl ease. But when a certain keyword nay appear nore than once, so that
paraneter position is inportant, then blanks or commas separate the |ist of

keywords constituting one paraneter, while sem col ons separate paraneters. The
sem col on has hi gher precedence than bl ank or comma.

14.3 Setup Vari abl es

Broadl y speaking, setup variables fall into three classes: those that specify
other configuration files; those that are essentially parameters to library
routi nes; and those that specify default file extensions.

Three variables are required: SMMSGS, SWI DEO, and SMKEY. They specify,
respectively, the error nmessage, video configuration, and keyboard transl ation
files that the JYACC FORMAKER run-tinme systemrequires in order to function. In
the following Iist, an explanation and exanple is given for each vari abl e.

14.3.1 Configuration File Setups

SWKEY Pat hname of the binary file containing a key translation table
for your termnal, used by the JYACC FORMAKER run-time system
Refer also to the key2bhin and nmodkey utilities, and the library
functions keyinit and getkey.
This variable is term nal -dependent, and nay be overridden by the
system environnment. It may not be omtted.
SMKEY=(vt 100: x100) / usr/jyacc/ confi g/ vt 100keys. bi n

SMLPRI NT Operating system command used to print the file generated by the
| ocal print key (LP). It nmust contain the string % at the place
where the fil ename shoul d go.
This variable may be overridden by the system environment. It is

opti onal
SMLPRINT = print %
SMMSGS Pat hnane of the binary file containing error nessages and ot her

printable strings used by the JYACC FORMAKER run-tinme system and
utilities. Refer also to the msg2bin utility and the library
functions nsg_read and nsg_get.
This variable is term nal -dependent, and may be overridden by the
systemenvironnent. It may not be onmitted.
SMVBGS =/usr/jyacc/config/nsgfile.bin

SMPATH Li st of directories in which the JYACC FORMAKER run-time system
shoul d search for screens and JPL procedures. Place a vertica
bar | between directory paths. Refer to the library procedure
r_w ndow.
This variable is term nal -dependent, and nmay be overridden by the
systemenvironnent. It is optional.
SMPATH=/ usr/ app/ forms|/usr/ me/testfornms

SMSETUP G ves the pathname of an additional binary file of setup
vari abl es.
This variable is term nal -dependent, and nay be overridden by the
systemenvironnment. It is optional.
SMSETUP = nysetup. bin

SwWI DEO Pat hnane of the binary file containing video control sequences
and paraneters used by the JYACC FORMAKER run-time system Refer
also to the vid2bin utility, the Video section of this chapter
and the library function vinit.
This variable is terninal -dependent, and nay be overridden by the
systemenvironnent. It nmay not be omtted.
SWI DEO=(vt 100: x100) / usr/jyacc/ confi g/ vt 100vi d. bin

14.3.2 Setups for Library Routines

Many of the variables in this class have display attributes as paraneters. Here
is a table of display attribute keywords:

RED BLUE HI LI GHT BLI NK

YELLOW GREEN UNDERLN Dl M
MAGENTA CYAN BLANK
BLACK VH TE REVERSE

For a single display attribute, you may select fromthis table one color and any
nunmber of other attributes. If a variable has nore than one display attribute
paranmeter, separate the paraneters with sem col ons, but separate the ored
attributes for each paranmeter with blanks or comms. See SMCHEMSGATT, bel ow, for
an exanpl e.

The expl anations of keywords in this section are terse; full details are

avail abl e on the page in the Programrer's CGui de dedicated to the function in
question. Menpnics are the sanme in both places, except that prefixes may have
been del eted for the setup keywords. All these variables are optional, and nost
cannot be overridden in the system environnment.

SMCHEMSGATT Supplies two display attributes for error nmessages; see
ch_enmsgatt. Two paraneters, each consisting of one col or
and any number of other attributes, fromthe table above.
SMCHEMSGATT = RED; RED, REVERSE

SMCHQVSGATT Supplies a default display attribute for query nessages;
see ch_qgmsgatt. One paraneter consisting of one color and
any number of other attributes, fromthe table above.
SMCHQVSGATT = CYAN, HILIGHT

SMCHSTEXTATT Supplies a default display attribute for field status text;
see ch_stextatt. A single display attri bute.
SMCHSTEXTATT=WHI TE REVERSE

SMCHUMSGATT Supplies a border style and three default display
attributes for certain JYACC FORMAKER wi ndows. The border
style, first, is a nunmber between 1 and 9; the next three
are display attributes. See ch_unsgatt.

SMCHUMSGATT = 2; BLUE; BLUE REVERSE; YELLOW

SVDI CNAME G ves the pathnanme of the application's data dictionary.
See the library function dicname. May be overridden in the
system envi ronment .

SMDI CNAMVE=/ usr / app/ di cti onary. dat

SVDWOPTI ONS Turns delayed wite on or off; passed to the library
function dw options, gq.v. Value is either ON or OFF.
SVDWOPTI ONS=0OFF

SMEROPTI ONS Error nessage acknow edgenent options, as docunented at
er_options. First cones an acknow edgement character, which
you may put in single quotes or as an ASCIl menoni c. Next
is the discard keyboard i nput flag, either DI SCARD or
USE_KEY. Finally conmes the rem nder wi ndow flag, either
YES W ND or NO_W ND.

SMEROPTI ONS=' '; DI SCARD; YES W ND

SMFCASE Controls the case-sensitivity of filenane conpari sons when
the run-tine system searches for files named in JYACC
FORMAKER control strings. The keyword | NSENS neans case
wi |l be ignored, and SENS neans the search is
case-sensitive. The default is SENS. See fcase.

SMFCASE=I NSENS

SMFLI BS A list of pathnanes of screen libraries that are to remin
open while JYACC FORMAKER is active. The nanes are
separated by bl anks, commmas, or semnicolons. See r_w ndow
and | _open.

SMFLI BS=/ usr/ app/genlib /usr/me/nylib

SM NDSET Scrolling and shifting indicator options, as for the
library function smind_set. The first paranmeter tells
whi ch indicators should be displayed: NONE, SHI FT, SCROLL,
or BOTH. The second controls the style of scrolling
i ndi cators: FLDENTRY, FLDLEFT, FLDRI GHT, or FLDCENTER
SM NDSET = BOTH FLDCENTER

SM NI CTRL

SM NI NAMES

SMVPOPTI ONS

SMWPSTRI NG

SMOKOPTI ONS

SMZMOPTI ONS

14.3.3 Setups for

May occur many tinmes. Each occurrence binds a function key
to a control string, which the JYACC FORMAKER run-tinme
systemw || use in the absence of a control string in the
screen. To disable a JYACC supplied default function key,
bind it to a caret function that does nothing.

SM NI CTRL= PF2 = ~toggl e_node

SM NI CTRL PF3 = &popw n(3, 28)

SM NI CTRL XMT = ~conmit al

Supplies a list of local data block initialization file
names for use by Idb_init, like the library function

i ni nanmes. The names are separated by commas, blanks, or
sem colons; there may be up to ten of them

SM NI NAMES=t abl es. i ni, zi ps.ini,config.ini

Supplies parameters for the library function np_options,
g.v. These paranmeters control the behavior of the cursor
wi thin menu_proc. Here they are:

Arrow key wappi ng: WRAP or NOWRAP

Up- and down-arrow control: UD TAB, UD FREE, UD RESTRI CT,
UD_COLM UD_SWATH, UD_NEXTLI NE, UD_NEXTFLD

Left- and right-arrow control: LR TAB, LR _FREE,
LR_RESTRICT, LR COLM LR SWATH, LR _NEXTLINE, LR _NEXTFLD
SMWPOPTI ONS = WRAP; UD_RESRI CT, \

UD_NXTLI NE; LR RESTRICT, LR _NXTFLD;

Controls the menu item matching actions of nenu_proc, by
suppl yi ng paraneters for np_string; refer to those
functions. The single parameter is either STRI NG or
NOSTRI NG.

SMVPSTRI NG = NOSTRI NG

The right-hand side has six paraneters, corresponding to
those of the library function ok_options, (qg.v.). They are,
in turn:

Cursor style: BLOCK or NOBLOCK

Arrow key wrappi ng: WRAP or NOWRAP

Field reset flag: RESET or NORESET

Up- and down-arrow control: UD _TAB, UD FREE, UD RESTRI CT,
UD COLM UD_SWATH, UD_NEXTLI NE, UD_NEXTFLD

Left- and right-arrow control: LR TAB, LR FREE,

LR RESTRICT, LR COLM LR SWATH, LR _NEXTLINE, LR _NEXTFLD
Al ways-validate flag: VALID, NOVALID

Beep on overstriking | ast character of no-autotab field:
ENDCHAR

SMOKOPTI ONS = BLOCK; WRAP; RESET; \

UD_RESRI CT, UD_NXTLI NE; LR _RESTRI CT,\

LR _NXTFLD; VALID; ENDCHAR

Zoom key options, as docunented nunder the library function
zmoptions. The first paraneter controls the first step of
zooni ng, and may be either NOSHI FT, SCREEN, ELEMENT, or

| TEM The second controls the subsequent step, and may be
NOSCROLL, SCROLL, PARALLEL, or 1STEP.

SMZMOPTI ONS = | TEM PARALLEL

Default File Extensions

These variables control the default file extensions used by utilities, which are

li sted bel ow

SMFEXTENSI ON

SMUSEEXT

Screen file extension, used by the JYACC FORMAKER run-time
system and various utilities. The default in Release 4.0 is
none; the default in Release 3 was jam May be overridden
in the systemenvironnment. See fextension

SMFEXTENSI ON=f

This variable controls the file extension rules described
in Section 2.2. The first paraneter is the extension
separator character, which may be a quoted character

nunber, or ASCII mmenonic. The second controls whether
JYACC FORMAKER attenmptes to recogni ze and repl ace
extensions, and is either RECOGNI ZE or | GNORE. The | ast
deternm nes whet her extensions are placed before or after
the filenane, and is either FRONT or BACK.

SMUSEEXT = '-'; RECOGN ZE; FRONT

term2vid - create a video file froma terninfo or terncap entry.
SYNOPSI S

termvid [-f] term nal-menonic
DESCRI PTI ON

TernRvid creates a rudi nentary screen manager video file frominformation in the
termi nfo or terncap database. Terninal-mmenmonic is the name of the ternina

type, the value of the system environnent variable TERM which is used by the C
library function tgetent to access that database.

The output file will be named after the mmenonic. The -f option tells the
utility it's OK to overwrite an existing output file.

ERROR CONDI Tl ONS

No cursor position (cm cup) for % Cause: An absolute cursor positioning
sequence is required for JYACC
FORMAKER to work, and the terncap or
terminfo entry you are using does not
contain one. Corrective action:
Construct the video file by hand, or
update the entry and retry.

Cannot find entry for % Cause: The term nal mmenonic you have given is not in
the terncap or ternm nfo database.
Corrective action: Check the spelling
of the mmenonic.

File % already exists; use '-f' to overwite. Cause: You have specified an
exi sting output file. Corrective
action: Use the -f option to
overwite the file, or use a
di fferent nane.

txt2form - Converts text files to JYACC FORMAKER screens
SYNOPSI S

txt2form [-fv] textfile screen [height w dth]
DESCRI PTI ON

Thi s program converts textfile to a read-only JYACC FORMAKER screen, named
screen. It creates display data sections fromthe input text. It preserves bl ank
space, and expands tabs to eight-character stops; other control characters are
just copied to the output. Text that extends beyond the designated maxi mum

out put height or width is discarded; if the last two paraneters are nissing, a
23-line by 80-columm screen is assumed.

Txt 2f orm puts no borders, fields, or display attributes in the output screen.
However, underscores (or other, user-designated field definition characters) in
the input are copied to the screen file; if you subsequently bring the screen up
in xformand conpile it, those characters will be converted to fields.

The -f option directs the utility to overwite an existing output file. The -v
prints the nane of each screen as it is processed.

ERROR CONDI TI ONS

Warning: lines greater than % will be truncated VWarning: columms greater than

%l will be truncated Cause: Your input text file has data that reaches beyond
the limts you have given (default 23 lines by 80
colums) for the screen. Corrective action: Shrink
the input, or enlarge the screen

Unable to create output file. Cause: An output file could not be created, due to
| ack of perm ssion or perhaps disk space. Corrective
action: Correct the file system problemand retry
the operation.

var2bin - convert files of setup variables to binary
SYNOPSI S

var2bin [-pv] [-eext] setupfile [setupfile ...]
DESCRI PTI ON

This utility converts files of setup variables to binary format for use by the
run-time system See pages 5-38ff for a full description of how to prepare the
ASCII file.

The -v prints the name of each screen as it is processed. The -p option causes
the output file to be created in the sane directory as the input file, and the
-e option supplies a file extension different fromthe default of bin.

ERROR CONDI Tl ONS

Error opening %. Cause: An input file was mssing or unreadable. Corrective
action: Check the spelling, presence, and pernissions
of the file in question.

M ssing '='. Cause: The input line indicated did not contain an equal sign after
the setup variable name. Corrective action: Insert the

equal sign and run var2bin again.

% is an invalid nane. Cause: The indicated line did not begin with a setup
vari abl e nane. Corrective action: Refer to the
Configuration Guide for a list of variable nanes,
correct the input, and re-run the utility.

% may not be qualified by term nal type. Cause: You have attached a terni na
type list to a variable which does not support one.
Corrective action: Renove the list. You can achieve the
desired effect by creating different setup files, and
attaching a terminal list to the SMSETUP vari abl e.

Unabl e to set given values. % conflicts with a previous paraneter. % is an
invalid paranmeter. Cause: A keyword in the input is
m sspell ed or msplaced, or conflicts with an earlier
keyword. Corrective action: Check the keywords |isted
in the manual, correct the input, and run the utility
agai n.

Error reading snmvars or setup file. Cause: The utility incurred an I/O error
whil e processing the file named in the nessage.
Corrective action: Retry the operation.

Unable to allocate nmenory. Cause: The utility could not allocate enough nenory
for its needs. Corrective action: None.

At least one file name is required. Cause: You have failed to give an input file
nanme. Corrective action: Retype the command, supplying
the file nane.

Entry size %d is too large. String size % is too |arge. Cause: The indicated
right-hand side is too long. Corrective action: Reduce
the size of the entry.

vi d2bin - convert video files to binary
SYNOPSI S

vid2bin [-vp] [-eext] term nal-menonic
DESCRI PTI ON

The vid2bin utility converts an ASCI| video file to binarysformat for use by
applications with the JYACC FORMAKER |ibrary eroutines. The video files
thenmsel ves nmust be created with a texteeditor, according to the rules listed in
the video manual *(qg.v.).

Term nal -mMmenonic is an abbreviation for the name of the term nal <for which the
ASCI| video file has been constructed. That file,swhose nane is conventionally
the menonic followed by the suffixevid, is the input to vid2bin. (Wen opening
its input,evid2bin first tries them menonic, then the menonic foll owedsby
vid.)

To make a video file menmory-resident, run the bin2c utilityeon the output of
vi d2bin, conpile the resulting programsource file, link it with your
application, and call the libraryeroutine vinit.

The -v option prints the nane of each screen as it is processed. -p creates each
output file in the same directory as the corresponding input file. The use of
the -p option is not recomended.

For informati on about the format of the ASCI| video file, refereto the video
manual and the Programmer's GCui de.

ERROR CONDI TI ONS

Nei t her % nor % exists. Cause: An input file was nissing or unreadable.
Corrective action: Check the spelling,
presence, and pernissions of the file in
questi on.

A cursor positioning sequence is required. An erase display sequence is
requi red. Cause: These two entries are required
in all video files. Corrective action
Det erm ne what your term nal uses to perform
these two operations, and enter themin the
video file; then run the utility again.

Unabl e to allocate nenory. Cause: The utility could not allocate enough nmenory
for its needs. Corrective action: None.

Error witing to file '%'. Cause: The utility incurred an I/O error while
processing the file named in the nessage.
Corrective action: Retry the operation.

Invalid entry: '"%'. Entry missing '=': '%'. Cause: The input line in the
message does not begin with a video keyword and
an equal sign. Corrective action: Correct the
i nput and re-run the utility. You nmay have
forgotten to place a backslash at the end of a
line that continutes onto the next one.

Invalid attribute list : "%'. Invalid color specification : "%'. Invalid
graphi cs character specification (%):' %'.
Invalid border information (%s):'%'. Invalid

graphics type : '"%'. Invalid | abel paraneter

"%'.% lInvalid cursor flags specification :
"U%'. Cause: You have misspelled or msplaced
keywords in the input line in the nessage.
Corrective action: Correct the input, referring
to the Configuration Guide, and run vid2bin
agai n.

Video file - video configuration nmanual
DESCRI PTI ON
19.1 Introduction to Video Configuration

JYACC FORMAKER i s designed to run on many displays with widely differing
characteristics. These characteristics greatly affect JYACC FORMAKER s di spl ay
of screens and nessages. For exanple, sone displays are 80 colums wi de, while
ot hers have 132; again, the control sequences used to position the cursor and
hi ghli ght data on the display are hardly the sane for any two nodels. JYACC
FORMAKER obt ai ns di splay characteristics froma video file.

19.1.1 How to Use this Manua

This manual has two purposes. The first is to explain the entries in the JYACC
FORMAKER vi deo file, and the concepts used in interpreting them Although you
may well never need to nodify or construct a video file, you nmay wi sh to know
what it does. The second purpose is to provide instructions for nodifying

exi sting video files, or constructing new ones, to handl e new termn na
characteristics.

Creating a video file is not trivial; neither is it a major effort. The easiest
way is to use one of the many supplied with JYACC FORMAKER. There are fifty or
so as of this witing; you may find a list in an appendix to Chapter One of this
manual . It is not rmuch harder to begin with one of the files supplied and nodify
it, if you can determ ne that your termnal is simlar; this is very often
possi bl e because so many term nals enulate others. If your systemhas a terninfo
or terncap database, you can use the ternRvid utility (g.v.) to nake a
functional video file fromthat information. Finally, if you rmust start from
scratch, you should start with the m niml subset defined in Section 19.1.4, and
add entries one at a tine.

Most of this manual should be used for reference only. The sanpl e video
file in Section 19.1.5 is suitable for a | arge nunber of termnals, and
may be all that you need.

Section 19.1.2 describes the concept of the video file.
Section 19.1.3 describes the text file format.

Section 19.1.6 is a nust for users on a PC using M5-DOS. It contains a
listing of an appropriate video file and special caveats.

Section 19.2.2 sumarizes the keywords. Sections 19.3ff explain
paraneterized control sequences, which support cursor positioning,
attribute setting, etc.

A separate section of this chapter describes the vid2bin utility, which
transl ates your video file into a binary format the JYACC FORMAKER
library can understand.

Details and exanples are in Sections 19.4.1ff; the first four are plenty to get
you started. Next | ook at Sections 19.4.5 and 19.4.5.1 for a general description
of attributes. Section 19.4.5.2 discusses latch attributes, the npst comon
kind, and Section 19.4.5.3 area attributes. Using color is described in Section
19.4.5.4. The remaining sections discuss |ess essential topics, such as borders,
graphics, help text, etc. The vid2bin utility supplies reasonable defaults for
these entries, so worry about themlast of all

19.1.2 Wiy Video Files Exist

Di fferences anpng termi nal characteristics do not affect prograns that are |line
oriented. They nmerely use the screen as a typewiter. Full-screen editors, like
emacs or vi, use the screen non-sequentially; they need termninal-specific ways
to nove the cursor, clear the screen, insert lines, etc. For this purpose the
terncap data base, and its close relative ternm nfo, were devel oped. Although
closely associated with UNI X, terncap and terminfo are al so used on ot her
operating systems. They list the idiosyncrasies of many types of term nals.

Text editors use visual attributes sparingly, if at all. Thus terncap contains
m ni mal i nformation about handling them Usually there are entries to start and
end "stand-out" and sonetines entries to start and end underline. Notably

m ssing are entries explaining howto conbine attributes (i.e. reverse video and
bl i nki ng sinmul taneously). Term nfo can conbine attributes; in practice,
unfortunately, the appropriate entries are usually m ssing.

JYACC FORMAKER makes extensive use of attributes in all conbinations, and
supports color. Rather than extending terncap with additional codes, which m ght
conflict with other extensions, JYACC decided to use an independent file to
describe the term nal specific information.

Terncap uses a limted set of commands; notably m ssing are conditionals.

Term nfo uses an extensive set of commands, however the resulting sequences are
excessi vely verbose (103 characters for the ANSI attribute setting sequence

wi t hout color). Therefore, JYACC devel oped a set of commands that extend both
terncap and term nfo. Both syntaxes are supported with only m nor exceptions.
Al'l the conmands needed in the video file can be witten using term nfo syntax;
many can be witten using the sinpler terncap syntax; and a few can benefit by
usi ng the extended conmands.

A summary of the commands used to process paranmeters is in Section 19.3; details
and exanples follow. Refer to those sections if you have troubl e understandi ng
the exanpl es el sewhere in the manual .

19.1.3 Text File Format

The video file is a text file that can be created using any text editor. It
consists of many instructions, one per |line. Each line begins with a keyword,
and then has an equal sign (=). On the right of the equal sign is variable data
dependi ng on the keyword. The data may be a nunber, a |list of characters, a
sequence of characters, or a list of further instructions.

Conmments can be entered into the file by typing a hash # as the first character
of the line; that line will be ignored by vid2bin. Al the video files
distributed by JYACC are docurmented with coments; we recomend that you do

i kewi se, as nany of the entries are necessarily cryptic.

It is essential that the instruction formats listed in this guide be foll owed
closely. In order to make run-time interpretation as efficient as possible, no
error checking at all is done then. The vid2bin utility checks for things |ike
m ssing, msspelled, and superfluous keywords, but not for things like
duplicated or conflicting entries.

19.1.4 Mninmal Set of Capabilities

The only required entries in the video file are for positioning the cursor (CUP)
and erasing the display (ED).

In the absence of other entries, JYACC FORMAKER wi Il assume a 24-1ine by
80-colum screen. The 24th line will be used for status text and error nmessages,
and the remaining 23 will be available for forms. It will assune that no
attributes are supported by the term nal. Since non-display is supported by
software, that attribute will be available. The underline attribute will be

faked by witing an underscore wherever a blank appears in an underlined field.
Clearing a line will be done by witing spaces. Borders will be available, and
will consist of printable characters only.

Al t hough JYACC FORMAKER wi Il function with those two entries, it will have
limted features. The nmost glaring shortcoming will be the lack of visua
attributes. Speed nmay al so be a problem the sole purpose of many entries in the
video file is to decrease the nunmber of characters transmtted to the term nal

19.1.5 A Sanple Video File

The following video file is for a basic ANSI termnal, |ike a DEC VT-100.
Display size (these are actually the default val ues)
LI NES = 24
COLMS = 80
Erase whol e screen and single line
ED =ESC[23
EL = ESC[K

Position cursor
CUP = ESC[% % ; % H

Standard ANSI attributes, four avail able
LATCHATT = REVERSE = 7 UNDERLN = 4 BLINK = 5 HLIGHT =1
SGR =ESC[O (% % ; % % % m

This file contains the basic capabilities, plus control sequences to erase a
line and to apply the reverse video, underlined, blinking, and highlighted
visual attributes. The entries for CUP and SGR are nore conplicated because they
require additional paraneters at run-tinme. The percent conmands they contain are
expl ai ned nmeticulously in Section 19. 3.

19.1.6 An MS-DCS Video File

By default, JYACC FORMAKER di spl ays data on the console by directly accessing
the PC s video RAM On machines that are not 100% | BM conpatible, it will use
BICS calls instead; use the entry INNT = BIOS to effect that. Under no

ci rcumst ances does JYACC FORMAKER use DOS calls or the ANSI.SYS driver. Video
files for both monochrone and col or displays are included with JYACC FORMAKER

Because JYACC FORMAKER cont ai ns speci al code for the PC display, nmost of the
entries that contain control sequences are irrelevant, and are given a val ue of
PCin the video files distributed by JYACC. You should | eave these entries

al one, since their presence is required but their values are irrelevant. Entries
that don't contain control sequences, such as LINES, GRAPH, and BORDER, can be
changed as usual. The PC video file, as distributed, follows.

LI NES = 25
COLMS = 80
ED = PC
EL = PC
EW= PC
CUP = PC
CUU = PC
CUD = PC
CuB = PC
CUF = PC
CON = PC
COF = PC
SCP = PC
RCP = PC

REPT = PC

Next 2 lines give display attributes for nonochrome only
The INIT line specifies a blinking block cursor

LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
INNT = CO0 13 2

Next 3 lines give display attributes for color only
The INIT line specifies a blinking block cursor
LATCHATT = HILIGHT = 1 BLINK = 5

COLOR = RED = 1 BLUE = 4 GREEN = 2 BACKGRND

INNT =CO0 7 2

SCGR = PC
CURPCS = 1
GRTYPE = PC

ARROWNS = 0Ox1b Oxla 0Ox1d

BORDER = SP SP SP SP SP SP SP SP
Oxda 0xc4 Oxbf 0xb3 0xb3 0xcO Oxc4 0xd9
0xc9 Oxcd Oxbb Oxba Oxba 0xc8 Oxcd Oxbc
0xd5 Oxcd 0xb8 0xb3 0xb3 0xd4 Oxcd Oxbe
0xd6 0xc4 Oxb7 Oxba Oxba 0xd3 0Oxc4 Oxbd
Oxdc Oxdc Oxdc Oxdd Oxde Oxdf Oxdf Oxdf

bxbO bxbO bxbO bxbO bxbO bxbO bxbO bxbO
0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2
Oxdb Oxdb Oxdb Oxdb Oxdb Oxdb Oxdb Oxdb

— - -

Here the INIT specifies the cursor style; refer to the section on INT.
19.2 Video File Fornat
19.2.1 General Information

Al'l white space (spaces and tabs) is skipped, except where noted bel ow. A

| ogical line my be continued to the next physical line by ending the first |ine
with a backslash. (Do not | eave a space between the backslash and the new ine.)
To enter a backslash as the last character of the |line, use two backsl ashes

(wi thout spaces). Thus

text \ means a continuation |line
text \\ ends with a backsl ash
text \\\ has a backsl ash and a continuation

A doubl e quote starts a string. The quote itself is skipped; text between it
and the next double quote (or the end of the line) is taken literally, including
spaces. To include a double quote in a quoted string, use backslash quote \"
with no space between. For exanpl e,

"stty tabs" has an enbedded space
stty tabs does not.

The percent sign is a control character; to enter a literal percent sign, you
nmust double it (i.e. 989.

There are three ways to put non-printing characters, such as control characters,
in the video file:

1. Any character at all can be entered as 0Ox followed by two hexadeci mal
digits. For exanmple, 0x41 can be used for A, 0x01 for control-A etc.
This method is particularly useful for entering codes in the range 0x80
to Oxff.

2. Control characters in the range 0x01 to Ox1f can be represented by a
caret ~ followed by a letter or symbol. Either "A or “a can represent
SOH (0x01). The synbols are ~[for ESC, ~\ for FS, ~] for GS, " for RS
and ~_ for US

3. More control

ASCI

I m

control
sequences usi ng mMmenoni cs.

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
NL
VT
FF
CR
SO
S

SP

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0a
0x0b
0x0c
0xod
0Ox0e
OxOf

0x20

characters can be represented by two- or three-character

enonics. This method is particularly useful for entering

sequences to the terninal

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

DEL

0x10
Ox11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Oxla
0x1b
Ox1c
0Ox1d
Ox1le
Ox1f

Ox7f

Here is a list:

I ND
NEL
SSA
ESA
HTS
HTJ
VTS
PLD
PLU
R

SS2
SS3

0x84
0x85
0x86
0x87
0x88
0x89
Ox8a
0x8b
0x8c
0x8d
Ox8e
0x8f

The rightnost two columms are extended ASCI| co

transmitted only if the communication line and term na

this is not po
first code is ESC (0x1b),

character.

For

ssible, the 8-bit

exanpl e, CSI
video file contains extended ASCI

they can be used; it wll

Not e: PRI ME conputers,

char act er;

given in this docunment

DSC
PUL
PU2
STS
CCH
MV

SPA
EPA

CSl
ST

PM
APC

since the manuals often list such

0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97

0x9b
0x9c
0x9d
0x9e
0x9f

ntrol codes, which can be

use eight data bits. If

code may be replaced by two 7-bit codes: the
the second 0x40 | ess than the desired 8-bit contro

and sonme ot hers,

(0x9b) woul d be replaced by ESC 0x5b, or ESC[. If a
control code

s, JYACC FORMAKER wi || assune
not transmt the two-character sequence autonmatically.

internally toggle the high bit of a

ESC on a PRIME is 0x9b and CSI is 0x

19. 2.2 Keyword Summary

Al'l the video file entry keywords are |listed here,

Subsequent sections explain each one in detail

LI NES
COLMS
INI'T
RESET
REPT
REPMAX
BOTTRT

BUFSI Z

ED
EL
EW

CON
COF
SCP
RCP
I NSON
I NSOFF

CUP
Cuu

basic capabilities
I ines on screen

number
number

maxi mum numnber
| ast

of

1b, not vice versa. The nunbers

are al ways standard ASCI |

of columms on screen
initialization sequence
undoes initialization sequence
repeat follow ng character

of

scrolling the display

number

erasure comrands

arranged by function.

repeated characters
position of screen may be witten w thout

of characters to accunul ate before flushing

erase entire display

erase to end of current
erase w ndow
cur sor

save cursor

appear ance
turn cursor on
turn cursor off

restore cursor
i nsert-node cursor

overstri ke-nmode cursor
cur sor
absol ute cursor
cur sor

PO

up

sition

position

l'ine

position and attribute
postion and attribute

CuD cursor down

CUF cursor forward
CuB cursor backward
CMFLGS al | owed cursor-notion shortcuts
di splay attributes
COLOR list of colors
LATCHATT list of available latch attributes
SGR set graphics rendition (latch)
AREAATT list of available area attributes
ASGR set graphics rendition (area)
ARGR renove are attribute
message |ine
OVsG open nessage |ine
CMVSG cl ose nmessage |ine
MSGATT message line attributes
sof tkey | abels
KPAR function key | abels description
KSET | oad function key | abel
gr aphi cs
MODEO normal character set sequence
MODE1 | ocking shift to alternate character set 1
MODE2 | ocking shift to alternate character set 2
MODE3 | ocking shift to alternate character set 3
MODE4 non-|ocking shift to alternate character set 1
MODES non-|ocking shift to alternate character set 2
MODEG non-| ocking shift to alternate character set 3
GRAPH graphi cs character equival ences
GRTYPE shortcut for defining graphics characters
ARROWS shift indicator graphics characters
BELL "visible bell" al arm sequence
bor ders
BORDER characters that nmake up the 10 border styles
BRDATT avai |l abl e border attributes
xform hel p
FIVKRDS draw screen node function keys
FVKRTM test-screen node function keys
FMKRCP copy-field function key
FMKRW nmove-field function key
CURPOS status line cursor position display

19.3 Paraneterized Character Sequences

Certain control sequences cannot be completely specified in advance. An exanple
is the cursor position sequence, which requires the |line and colum to nove to.
The commands usi ng these sequences nust be passed extra paraneters. The

foll owi ng keywords take the indicated number of paraneters:

REPT repeat sequence (2)
character and nunber of tines to repeat
EW erase wi ndow (5)
start line, start columm, nunber of |ines, nunber of colums,
background col or
CUP cursor position (2)
line and columm (relative to 0)
CUU cursor up (1)
line increnment
CUD cursor down (1)
line increment
CUF cursor forward (1)
col um i ncr enent
CUB cursor backward (1)
col um i ncrenment
SGR set latch graphics rendition (11)
see section 19.4.5

ASGR set area graphics rendition (11)
see section 19.4.5.1

19.3.1 Sumary of Percent Commands

Paraneters are encoded in sequences by percent commands, sequences starting with
the % synbol. This is superficially simlar to the way the C library function
printf handl es paranmeters. Some percent conmands cause data to be output; others
are used for control purposes. Every paraneter that is to be output requires a
percent command. JYACC FORMAKER uses a stack mechani sm as does termnfo; it is
described in the next secion. Percent commands are sumarized in the |ist that
foll ows. Exanples and nore conplete descriptions are in subsequent sections.

Since all sequences go through the sane processing, even those that do not use
run-time argunents, percent signs nust be used with care. In particular, to
enter a percent sign as a literal, you nust use %%

In the following list, each command is tagged with C, I, or E to indicate
whether it is a terncap, term nfo, or JYACC extended comuand.

Qut put conmands

%80 out put a percent sign (C and 1|)

% out put a character (C)

% out put a character (1)

% output a decimal (C and I)

%td output a #-digit decimal, blank filled (1)

%0#d output a #-digit decimal, zero filled, |ike the terntap
%2 which is not supported (I)

%o add and output a character (O

%tz output # (decimal nunber) binary zeroes (E)

%tw wait (sleep) # seconds (E)

Stack mani pul ati on and arithnetic conmands

Yp# push parameter # (1 - 11 allowed) (I)

% c' push the character constant c (I)

o #} push the integer constant # (1)

% % % 9% %n add, subtract, multiply, divide, nodulus (I)
% Y 9%k bit-wi se or, exclusive or, and (I)

% % U< | ogi cal conditionals (I)

% % | ogi cal not, one's complement (1)

Par amet er sequenci ng and changi ng conmands

%tu di scard # paranmeters (E)

%tb back up # parameters (E)

% i ncrenent the next two paranmeters (C and |)
% reverse the next two paranmeters (C)

Control flow commands

%® expr % then-part % el se-part %
conditionally execute one of two command sequences (I)
expr % then-part % else-part %
same effect as previous (E)
%t ... 9N repeat the sequence # times (E)
¢ ... % sel ect operations froma list (E)

Term nfo commands not supported
%s strings

wP, % | etter variables
$<#> paddi ng (use %#z instead)

19.3.2 Autommtic Parameter Sequencing

A stack holds all the paranmeters being processed. It is four |levels deep
anyt hi ng pushed off the end is lost. There are commands that push a paraneter or
constant onto the stack, but no explicit pop conmands. Qutput comrands transmit
the value on top of the stack, then renmove it. Arithmetic and | ogical operations
take one or two operands fromthe top of the stack, and replace themw th one
result; thus they performan inplicit pop

Arithnmetic and | ogical operations all use postfix notation: first the operands
are pushed, then the operation takes place. Thus %l %2 %3 % % |eaves X * (y
+ z) on the stack, where x, y, and z are paraneters 1, 2 and 3. This mechani sm
is identical to that used by terminfo, so its commnds can be used freely.

The sinpler terncap commands do not use a stack mechanism To support them
JYACC FORMAKER uses an automatic paraneter sequencing schene. A current index
into the paraneter list is maintained. Whenever a paraneter is needed on the
stack, the current paraneter is pushed and the index is incremented. In
particular, if an output command is encountered and there is nothing on the
stack to output, an automatic push is performed using the current index. The
comands % % output two decinmals; the sequence %l % %2 % does the same
t hi ng.

The effect of this scheme is that terncap style comrands are automatically
translated into termnfo style. Mdst of the exanples in this docunment give both
styles. Although it is possible to use automatic sequencing and explicit
paraneter pushes in the same sequence, this practice is strongly discouraged.
Explicit pushes of constants with automatic paraneter sequencing, however, is a
useful conbination, as will be seen

19.3.3 Stack Manipulation and Arithnetic Conmands
Commands are available to push paranmeters and constants. Only four |evels of

stack are supported, and anything pushed off the end is discarded w thout
war ni ng.

%2 push the second paraneter
%11 push paraneter 11

% X' push the character x

% 12} push the nunber 12

% 0} push binary 0O

% 0 push ASCI| O

Various arithmetic and | ogi cal operations are supported. They require one or two
operands on the stack. |If necessary an automatic push will be generated, using
the next paraneter.

WA U U YU % or three paranmeters with @ then
output the result.
WA Y%l A W2 % YPp3 U % sane as above
The automati c paraneter sequenci ng nechani smworks well in the above exanple.

Since or requires two paraneters and there is only one on the stack, a push is
performed. Note that no push is required to process % as an entry already

exi sts on the stack. Thus only three paraneters are consuned and the result of
the bitwi se or is output.

% SP' %+ % out put the paranmeter added to the value of a
space. See the next section for an alternate.
%l % SP' % % sane as above

The exanpl e above first pushes the first paranmeter, then pushes a space
character (0x20). The % command adds these val ues and puts the answer on the
stack. % then pops this value and transnmits it to the term nal

19. 3.4 Paraneter Sequenci ng Conmands

Wth automatic sequenci ng of paraneters, it is occasionally necessary to skip a
paranmeter. The % comrand uses up one paraneter, by increnenting the paraneter

i ndex. The % command backs up, by decrenenting the paranmeter index. Both can be
given with counts, as %u.

% % % out put the same paraneter tw ce
%pl % %l % sane as above

%2 % Y%l % output in reverse order

%u % %@2b Y% sane as above

19.3.5 OQutput Conmands

Because the percent sign is a special character, it nust be doubled to output a

percent sign. % and % output a character, like printf; the latter is supplied
for terncap conpatibility. % outputs a decimal. It has variations that allow
for specifying the nunber of digits, and whether blank or zero fill is to be
used.

%tz outputs the specified nunber of NUL characters (binary zero). It is usually
used for padding, to insert a tine delay for commands such as erase screen

%80 out put a percent sign

%l out put a decimal, any number of digits, no fil
%3d output at nmost 3 digits with blank fill

%©3d output at nmost 3 digits with zero fill

%00z 100 pad bytes of 0 are sent to the ternina

%(string % issues a systemcommand; the string following %6 is passed to the
command interpreter fpr execution. Since vid2bin strips spaces, this text should
usual Iy be enclosed in quotes.

US("stty tabs"% Systemcall: stty tabs
US(stty SP tabs% Systemcall: stty tabs
%5(stty tabs % M st aken versi on of above
o%S(" keyset \"\""% Systemcal |l : keyset ""
o%S(" keyset """ % M st aken versi on of above.

%tw waits (sleeps) the specified # of seconds. It is not supported on systens
where the sleep library routine is unavailable. It is often used as a tinme del ay
for INNT and RESET sequences.

%Rw sl eep 2 seconds

Because terncap and ternminfo are inconsistent, % is inplemented in two ways. As
described in the section above, % can be used to add two operands on the stack
and | eave the sumon the stack. If the stack has only one entry, an automatic
push is generated. However, a special case occurs if the stack is enmpty: the
character following %+ is added to the next parameter, the sumis output as a
character, and the parameter index is increnented. This usage occurs often in
terncap cursor positioning sequences.

%+SP out put paraneter added to the value of space
% SP' % % sane as above
% SP' %1 % % same as above

19.3.6 Paraneter Changi ng Commands

% increments the next two paraneters. It is used alnost exclusively in terncap
cursor positioning sequences. The paranmeters passed are line and colum, with
the upper left being (0, 0). Many term nals expect the line and columm to be
relative to (1, 1); % is used to increment the paraneters. Note that no output
is perfornmed, and no paranmeters are consumed.

% reverses the next two parameters. It is unnecessary if explicit paraneter
pushes are used; in fact, it should be avoided in that case since the nunbering
of the parameters will be reversed. This conmmand is often used in cursor

posi tioni ng sequences, where the terminal requires that colum be given first
and then the line (the default being the other way around).

ESC[% % ; %l H Add 1 to each paraneter and send out as
deci mal s

FS G % % % out put colum first, then line

FS G %2 % %1 % same as above

19.3.7 Control Flow Conmands

The general if-then-else clause is % expr % then-part % else-part % . It can
be abbreviated by omtting the if, thus: expr % then-part % else-part % . The
expressi on expr is any sequence, including the enpty sequence. % pops a val ue
fromthe stack and tests it, executing then-part if it is true (non-zero) and

el se-part otherwi se. Then-part and el se-part may be any sequence, including the
enpty sequence. If else-part is empty, % may be omitted as well; but % is

al ways required, even if then-part is enpty.

If % finds that the stack is enpty, it will generate an automatic push of the
next paraneter as usual. % consumes one paraneter; however, the increnmenting of
the paraneter index is delayed until after the entire conditional has been
executed. A conditional always consumes exactly one paraneter, regardless of

whi ch branch is taken or of the content of then-part or else-part. If either of
t hose use automatic paraneter sequencing, they use a local index; thus even if
they consune, say, two paraneters, at the end of the conditional the paraneter
index is reset. \When the next conmand is reached, only one paraneter has been
consuned.

In each of the foll owi ng exanples, one paranmeter is consumed, even in the |ast
one where no parameter is output.

% ; % % output ; and a character if the paraneter is
non-zero, otherw se skip the paraneter.

Y%l % ;, Y%l % % same

o %pl % ; Wl % % sane

o %pl % ; % % sane

% ; 5% output ; and 5 if the paraneter is non-zero.

In the following two exanples, the constant (binary) 1 is pushed, the paraneter
is conpared with 1, and the boolean value is left on the stack. If the value is
true, nothing is done; otherw se the paraneter is output as a decinmal.

W W1} YWl % % % %l Y %
W1} % % % Y% %

The followi ng sequence exhibits a sinple "either-or" condition that is sonetines
used to toggle an attribute on or off. It outputs ESC (if the parameter is
non-zero, and ESC) otherw se.

ESC% (%) %

The then-part and el se-part may thensel ves contain conditionals, so else-if can
be i mpl enented. This practice is not recomended as it can produce

undeci pher abl e sequences. Al so, because of the way autonmatic paraneter
sequencing is done, the results nmight be unexpected. It is provided only for
termi nfo conpatibility. The list conmand, described below, is an alternative.

The repeat command is used to performthe same action for several parameters. It
is designed to be used with automatic parameter sequencing, and is al nost
useless if explicit parameter pushes are used. The count is specified after the
percent sign. Al the commands between %#(and % are executed # tines.

93(% % out put 3 deci mals

%1 % %2 % %3 % same as previous

93(% Y%d % 9% out put whi chever of the first three
parameters are non-zero.

%1l % %l %d % %2 % % % %3 % %P3 % %
same as previous

ESCO 9O(% ; %€ % % m usual ANSI sequence for SGR

ESCO % %l % ; 7 % 9% %2 % ; 2 ..
sane as above, assuning that paraneter
1is 7 and paraneter 2 is 2

19.3.8 The List Conmand

The list command is needed very rarely, but is available as an alternate to a
conplicated if-then-elseif construct. It inplements a sinple "select” or "case"
conditional. The general format is % (valuel: exprl % value2: expr2 % ... 9

The val ues are single character constants representing the various cases. The
expression is executed if the value matches the top of stack. At npbst one
expression is executed, i.e. each case contains a "break". If the value is

m ssing the expression is evaluated as a default. For correct operation, the
default case must occur last in the list. Note that the colons do not have a
| eadi ng percent sign, so no selector may be a colon. The % after the |ast

el ement of the list is not required.

The paraneter on the stack (automatically pushed, if necessary) is popped and
tested agai nst the various cases. The paraneter index is increnmented by 1 after
the entire list is processed, even if the expressions use paraneters. The

foll owi ng exanples are a bit contrived; see the section on color for a live
exanpl e.

W(0:% 1.ESC% :FS % out put nothing if the parameter is
'0'; ESCif it is "1'; FS otherwi se.
%0 % % % W1l 9% % ESC % FS % %
sane result, using "else-if"

W(1:2% 2:1% 9% output "1'" if the paranmeter is '2',
'2" if the parameter is '1'; otherw se
do not hi ng

19.3.9 Paddi ng

Certain terminals (or tty drivers) require extra tine to execute instructions.
Sonetimes the term nal manual specifies the delay required for each command, but
more often than not it is silent on the subject. If random characters appear on
the screen, particularly characters that are part of command sequences, tine

del ays may be required.

Del ays can be introduced in two ways. %fw will cause a wait (sleep) for the
speci fied number of seconds; %z will output the specified nunber of zeros. The
wait command is usually only required in terminal initialization or reset
sequences. A "hard reset"” of a terminal sonetines requires a sleep of 1 or 2
seconds. The zero conmand is occasionally needed on the erase display or erase
line conmands. Very rarely the cursor positioning sequence requires padding. The
nunber of zeros to send range from about 5, for very short delays, to severa

t housand for |onger delays. Usually 100 or so is enough for any term nal

terncap indi cates paddi ng by using a nunber at the beginning of a sequence,
which is the nunber of nilliseconds of pad required. term nfo uses the syntax
$<#>. In either case it is easy to convert to the %z notation, using the fact
that, at 9600 baud, one character takes one millisecond to output.

ESC ¢ Rw sl eep 2 seconds after term nal reset
ESC [J 900z 100 pad zeros after clear screen
ESC [H %1000z | ong del ay of 1000 pad zeros

19.4 Constructing a Video File, Entry by Entry
19.4.1 Basic Capabilities

LI NES i ndicates the nunmber of lines on the display. The default value is 24. In
general one line will be reserved for status and error messages so the maxinmm
formsize will usually be one |less than the nunber specified here. (See OMSG
bel ow, for exceptions.) COLMS gives the nunber of colums on the display. The
default value is 80.

LI NES = 25 24 lines for the form 1 for messages
COLMs = 132 wi de screen
LINES = 31 SUN wor kst ati on

INNT is atermnal initialization sequence, output by the library function
initcrt. There is no default; this keyword may be onmitted. It is typically used
to change the node of the terminal, to map function keys, select attribute
styles, etc. Padding is sonetinmes required, either with %z or %s.

RESET is a reset-term nal sequence, output by the library function resetcrt.
There is no default. If given, this keyword should undo the effects of INIT. For
many termnals a "hard reset" that resets the ternminal to the state stored in
non-vol atile nenory is appropriate.

map 2 function keys, then wait 2 seconds
INIT = %6("/etc/keyset f1 ~a P *m' % \
95("/etc/keyset f2 "a Q~Ani % \

W
load alternate character sets
INIT = ESC) F ESC*| ESC+}

hard reset, delay, then set tabs
RESET = ESC ¢ %1000z ¥5("stty tabs"%

On MS-DOS systems only, the INIT and RESET sequences (which are normally not
used) may be given a special value to specify the cursor style. Wth ASCI

term nals, escape sequences for setting the cursor style may be included in the
INIT and RESET strings in the normal fashion. The format is

INIT = Cnl n2 n3
RESET = C nl n2 n3
The first two nunmbers, nl and n2, specify the top and bottom scan |lines for the
cursor block; line 0 is at the top. The optional n3 gives the blink rate, as
fol | ows:
1 no cursor
2 fast blink (the default)
3 sl ow blink
0 fast blink (Not always valid on non-|BM systens)

The standard sequences, for a blinking block cursor, are INT = CO0 13 0 for a
monochronme nonitor, and INNIT = C0 7 0 for a CGA nonitor (with | ower
resolution). If RESET is not specified, JYACC FORMAKER saves and restores the
original cursor style.

A scan line is the smallest vertical unit on your display (it is one pixe
wi de) .

Two additional special keywords may be used with INIT on MS-DOS systens. BICS
specifies that JYACC FORMAKER shoul d use BIOS calls to do display output rather
than witing the video RAM directly. XKEY actually controls keyboard input; it

directs JYACC FORMAKER to use a different BIOS interrupt for keyboard input, one
that recognizes the F11 and F12 keys on an extended keyboard.

REPT is a repeat-character sequence. There is no default, since nost termnals
do not support character repeat. If it is available, it should be given as it
can substantially speed up clearing of wi ndows, painting of borders, etc. This
sequence i s passed two paraneters; the character to be repeated and the nunber
of times to display it. The repeat sequence will be used whenever possible,
usual ly for borders and for clearing areas of the screen. If borders do not
appear correctly, this sequence may be wrong. A repeat sequence is never used to
repeat a control character, and will never extend to nore than one I|ine.

REPMAX gi ves the maxi mum nunber of characters REPT can repeat. To check the
proper value of REPMAX, first onmit it; then, in xform draw a field that extends
the entire width of the screen, and hit the TRANSMT key. If the whole field
changes to the underline attribute, REPMAX is not needed. If it doesn't,
experiment by gradually shortening the field to determne the | argest possible
val ue of REPMAX

REPT = % ESC F %+? out put character, then ESC F
and the count with 0x3f (the
ASCI | value of '?') added
REPMAX = 64 maxi mum count for above.
Anyt hing over this count wll
be split into nore sequences
REPT = %1 % ESC F % ?' %2 % % sanme as previous

BOTTRT is a sinmple flag, indicating that the bottomright-hand corner of the
display may be witten to without causing the display to scroll. If this flag is
not present, JYACC FORMAKER wi |l never wite to that position

BUFSI Z sets the size of the output buffer used by JYACC FORMAKER. If it is
omtted, JYACC FORMAKER cal cul ates a reasonabl e default size, so you should
include it only if special circumstances warrant. If you nmake extensive use of a
screen-ori ented debugger, you may want to set BUFSIZ to a | arge val ue; that
effectively disables the delayed-wite feature, which may prove troubl esone
during debuggi ng.

19.4.2 Screen Erasure

ED gives the control sequence that erases the display. It is required, and nust
clear all available display attributes, including background color. The correct
command can be found in the term nal manual, or in terncap as "cl". Sone

term nals require padding after this command.

ED = ESC [J common for ANSI termnals
ED = Csl J ANSI terminals, 8 bit node
ED = ESC[HESC|[J "honme" may be required too
ED=ESC[2 J anot her vari ation

ED = ESC [2 J %00z wi t h paddi ng

ED = AL vi deotex term nals

ED = FF sanme as above

EL gives a sequence that erases characters and attributes fromthe cursor to the
end of the line. If it is not given, JYACC FORVAKER erases the line by witing
bl anks. The sequence can be found in terncap as "ce". Padding may be required.
EL = ESC[Kis common for ANSI terminals; to include padding, use EL = ESC[O
K 9400z

EW gi ves a sequence that erases a rectangul ar region on the screen, to a given
background color if available. The only known term nal where this is available
is a PC using M>-DCOS. Five paraneters are passsed: start line, start columm,
nunber of lines, nunber of colums, and background color. (If color is not

avail abl e, the |last paraneter can be ignored.) On a PC using Ms-DCS, EW shoul d
be specified as ESC|[% %; %; %, %, % w

19.4.3 Cursor Position

CUP, absolute cursor position, is required to run JYACC FORMAKER. Thi s sequence
appears in terncap as "cnf. It takes two paraneters: the target line and the
target colum, in that order and relative to 0. % (increnment) can be used to
convert themto be relative to 1. ANSI termnals need the line and colum as
decimals. Other ternminals add a fixed value to the line and colum to nake them
printable characters; %t is used to inmplement this. Sonme typical descriptions
follow, all are ANSI standard.

CUP = ESC[% 9%i; % H
CUP = ESC [% %l %l f
CUP = ESC[% %1 % ; %2 %l f
CUP = CSI % %; % H

Anot her common scheme is to output the Iine and colum as characters, after
addi ng SP. Term nal nmanuals tend to obscure this nethod, as the follow ng
excer pt shows:

Address or |load the cursor by transmitting ESC = r ¢ where r is an
ASCI| character fromthe table for the row (line) and c¢c is an ASCl
character fromthe table for the col um:
row col um ASCI | code
1 Space
2 !
3

Exanpl es of coding in the video file foll ow

CUP = FS C %SP %*-SP
CUP = FS C % SP' %1 % % % SP' %2 % %
CUP = ESC = 9%*+SP %:*-SP

CUU, CUD, CUF and CUB performrelative cursor noverment. CUU noves the cursor up
in the same colum; CUD noves it down. CUF nmoves the cursor forward in the sane
row and CUB noves it back. Al take as a paraneter the nunber of lines or
colums to nove. If sequences exist to nmove the cursor by one line or colum but
not nore, do not specify them

CUU=ESC[% A ANSI cursor up
CUD = ESC[% B cursor down

CUF = ESC[%d C cursor forward
CUB =ESC[% D cursor back

CUU = Csl %d A using 8 bit codes
CUWU =ESC|[H1} % % % % % A

omt the parameter if it is 1

The CMFLGS keyword lists several shortcuts JYACC FORMAKER can use for cursor
positioning. They are as foll ows:

CR Carriage return (0x0d, or "M nopves the cursor to the first
colum of the current |ine.

LF Li nefeed (0x0a, or ~J) nmoves the cursor down one line, in the
same col um.

BS Backspace (0x08, or ~H) noves the cursor one position to the
left, w thout erasing anything.

AM Automatic margin: the cursor automatically waps to colum 1

when it reaches the right-hand edge of the display.

Most terminals are capable of the first three. The fourth can frequently be
found in terncap, as am

19. 4.4 Cursor Appearance

CON turns the cursor on in the style desired. Since an underline cursor is
difficult to see in an underlined field, we recomend a blinking block cursor
Note that the INIT and RESET sequences can be used to switch between the cursor
style used in JYACC FORMAKER applications and that used on the conmmand |i ne.

COF turns the cursor off. If possible this sequence and CON shoul d be given
Menus (using a block cursor) | ook better with the regular cursor off. Also JYACC
FORMAKER often nmust nove the cursor around the screen to put text in fields, to
scroll arrays, etc.; if the cursor is off during these operations, the user is
not disturbed by its flickering all over the screen

Many term nals have no ability to turn the cursor on and off. Although JYACC
FORMAKER attenmpts to minimze cursor novenent, sone flickering is unavoi dabl e.

CON and COF can sonetinmes be found in the term nal manual as "cursor attri butes"
and in terncap as CO and CF. Here are sonme exanpl es.

CON = ESC | cursor on for videotex ternina

COF = ESC] cursor off for videotex

CON = ESC [>5l cursor on for sone ANSI termnals

COF = ESC [>5h and of f

CON = ESC [?25h anot her possibility for ANSI termnals
COF = ESC [725l

CON=ESC[3; 0z

CO-F =ESC[3; 4z

SCP and RCP save and restore the cursor position, respectively. JYACC FORMAKER
must often nove the cursor tenmporarily, as to update the status line.

Bef orehand, it saves the current cursor position and attribute, and restores
them afterwards. Sonme term nals offer a pair of sequences that performthese two
actions, producing |l ess output than the cursor position and attribute setting
sequences together. Thus, if they are available, JYACC FORMAKER can run faster
Termi nal manuals refer to these sequences in many ways, the nost obscure being
"cursor description." Here is an exanple, commonly found in ANSI terninals.

SCP
RCP

ESC 7
ESC 8

The I NSON and | NSOFF sequences are issued to the term nal when you toggle JYACC
FORMAKER s data entry node between insert and overstri ke, using the | NSERT key.
They shoul d change the cursor style, so that you can easily see which npde you
are in. On many termnals, changing the cursor style also turns it on; in this
case, | NSOFF should be the same as COF, or you can omt it altogether. |If the
cursor style can be changed without turning it on or off, you should give both

I NSON and | NSOFF.

19.4.5 Display Attributes

JYACC FORMAKER supports highlight, blink, underline and reverse video
attributes. If either highlight or blink is not available, lowintensity is
supported in its place. The keywords LATCHATT and AREAATT in the video file I|ist
the attributes available in each style and associate a character with each
attribute.

The set graphics rendition sequences (SGR and ASGR) are each passed el even
paranmeters. The first nine are the same as used by terminfo; only five of them
are actually used by JYACC FORMAKER. The | ast two specify foreground and
background color, and are omtted if color is not available. The paraneters, in
order, represent:

1. standout not supported, always O
2. underline
3. reverse video
4. Dblink
5. dim(lowintensity)
6. highlight (bold)
7. bl ank supported by software, always O
8. protect supported by software, always O
9. alternate charsupported in other sequences, O
10. foreground col or
(i f avail able)
11. background col or

(i f avail able)

If an attribute is desired, the paranmeter passed is the character associated
with the attribute, as explained below If the attribute is not desired, the
parameter passed is (binary) 0. If the video file contains LATCHATT = REVERSE =
7 HLIGHT = 1 BLINK = 5 UNDERLN = 4 , and a field is to be highlighted and
underl i ned, the SGR sequence will be passed (O, "4', 0, 0, 0, "1', 0, 0, 0)

The second and sixth paraneters respresent underline and highlight; they are set
to the correspondi ng values from LATCHATT. The rest are zero. To make the field
reverse video and blinking, SGR would be passed (0, O, '7', '5', 0, 0, 0, 0, 0)

If no attributes are specified in the video file, JYACC FORMAKER wi || support
just two attributes: non-display (done in software anyway) and underline (using
t he underscore character).

19.4.5.1 Attribute Types

JYACC FORMAKER supports three different kinds of attribute handling. The first
is called latch attributes, and is the nbst comopn today. The position of the
cursor is irrelevant when the attribute setting sequence is sent. Any characters
witten thereafter take on that attribute. Attributes require no space on the
screen. ANSI term nals use this nethod.

The second is called area attributes. The cursor position is very inportant at
the tinme the sequence to set the attribute is sent to the termnal. |ndeed, al
characters fromthe cursor position to the next attribute (or end of line or end
of screen) imrediately take on that attribute. Attributes do not occupy a screen
position (they are "non-enbedded" or "no space"). In this style, JYACC FORMAKER
will position the cursor to the end of the area to be changed, set the ending
attribute, then position the cursor to the beginning of the area and set its
attribute.

The third is called onscreen attributes. They act |ike area attributes, but
occupy a screen position. (They are "enbedded" or "spacing".) This style of
attribute handling i nposes the condition on the screen designer that fields
and/ or display areas cannot be adjacent, since a space nust be reserved for the
attribute. Display of windows nay be hanpered by |ack of space for attributes.

A terminal may have several user-settable nodes. It is quite comon for a

term nal to support both area and onscreen attributes. If so, you should sel ect
area ("non-enbedded"” or "no space") over onscreen ("enbedded" or "spacing").
Sonme term nals support one latch attribute and several area attributes

si mul t aneousl y.

If a terminal has only one attribute style available, it is often user

sel ectable. W recommend that reverse video be selected, since it is attractive
in borders. JYACC FORMAKER supports non-display in software, so that attribute
need not be available. Underlines will be faked (by witing an underscore
character) if that attribute is not avail able.

Usual ly attribute information is available only in the term nal manual. However

some clues can be found in the terncap data base. The codes "so", "ul" and "bl"
speci fy standout (usually reverse video), underline and bold respectively. The
codes "se", "ue" and "be" give the sequence to end the attributes. The standard

ANSI sequences are

so=\E[7m se=\ E[O ul =\ E[4m ue=\ E[Om bl =\ E[1m be=\ E[Om
If you find something |like these you can be quite sure that ANSI |atch
attributes are available. If you find entries ug#l:sg#l you can be sure that
onscreen attributes are in use.

19.4.5.2 Specifying Latch Attributes

The LATCHATT keyword is followed by a list of attributes equated to their
associ ated character. The possible attributes are:

REVERSE reverse (or inverse) video
BLI NK bl i nk or other standout
UNDERLN underl i ne

HI LI GHT hi ghl i ght (bol d)

DI M dim (low intensity)

The format is LATCHATT = attribute = value attribute = value etc. If the equa
sign and value are mssing, the attribute is given the value (binary) 1

Most ANSI termnals use latch attributes and the codes are fairly standardi zed.
The only question is which attributes are supported and how attri butes can be
conmbined, if at all. Some ANSI terminals support color, either foreground only
or foreground and background. The sequences for color are far |ess standard.

Termi nal manual s often describe the sequence as "set graphics rendition." A
comon description reads:

ESC[pl1; p2; ... m

where pn = 0 for normal
1 for bold
5 for blink

Thus ESC[O mis normal, ESC[1 mis bold, ESC[] 1 ; 5 mis bold and blinking.
Often setting an attribute does not "erase" others, so it is best to reset to
normal first, using ESC[O0; 1 mfor bold, ESC/O;1;5mfor blinking bold, etc. The
coding in the video file is as follows:

LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
SGR=ESC[0 %O(% ; % % % m

The neani ng of the above SGR sequence is as follows. The sequence is passed 11
paranmeters, each O (if the attribute is not to be set) or the character in the
LATCHATT list. First, ESC[O is output. The % test, repeated 9 tines, causes
the zero paraneters to be skipped. A non-zero paraneter causes a sem col on and
the paraneter to be output. Finally, the character mis output. |If normal
attribute is wanted, all parameters will be 0, and the output sequence will be
ESC[Om If only underline is wanted, it will be ESC[0 ; 4 m If

hi ghl i ghted, blinking, and reverse video are desired, the output will be ESC |
0O; 7; 5; 1m

Some termnals (or enulators) will not accept the method of combining
attributes used above. In that case, one sequence followed by the next m ght
work, e.g. ESC[1 mESC[7 m Some term nals cannot conbine attributes at all.
Here are some nore ANSI and near- ANSI exanpl es:

LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7

"standard" ANSI tern nal

LATCHATT DIM = 2 REVERSE = 7 UNDERLN = 4 BLINK = 5

ANSI with low intensity but no highlight

LATCHATT = REVERSE = 7
only one attribute avail able

SCR=ESC[0 %®(% ; % % % m
repeat of previous exanple
SCR=ESC[O m%(% ESC[% m% %
attri butes not combi nable
SGR =% ESC[0 %(% ; % % % m

skip paraneters that are always O

In the next LATCHATT/ SGR exanmple we will use explicit pushes to select the
appropriate paraneter. The second pair is the sane as the first, but the
attribute is treated as a boolean. The first uses the optional %, the second
omts it.

LATCHATT = DIM = 2
SGR=ESC[m% %5 % ESC[2 m %

LATCHATT = DI'M
SGR = ESC[m% ESC[2 m%

The following is suitable for ternminals that support all attributes but cannot
combine them It selects one attribute giving preference to REVERSE, UNDERLN
BLINK and HILIGHT in that order. It uses a conplicated
"if-then-elseif-elseif-elseif" structure. Autommtic parameter sequenci ng cannot
be relied on, so explicit paraneter pushes are used.

LATCHATT = HI LI GHT BLI NK UNDERLN REVERSE
SGR=ESC|[%3 % 7 % %2 % 4 % %4 % 5 %)\
%6 % 1 % % % % m

Sorme term nals use bit-mapped attributes. Terninal manuals are not usually
explicit on this. Oten they use tables like the follow ng:

Visual attribute

>

nor mal

i nvisible

bl i nk

i nvisible blink

reverse video

invisible reverse

reverse and blink

invisible reverse and blink
underl i ne

i nvi sible underline

underline and blink

i nvi si bl e underline and blink
reverse and underli ne

invisible reverse and underline
reverse, underline and blink
invisible reverse, underline and blink

O©CoO~NOOUTA,WNEO

NV AT

After poring over the ASCII table for a while, it becomes clear that this is
bi t - mapped, with the four high-order bits constant (0x30) and the four |ow order
bits varying, like this:

i nvisible
| bl i nk

| reverse

|\ underl i ne
This can be coded in the video file as follows. The attributes are ored with a
starting value of '0" (0x30).

LATCHATT = BLINK = 2 REVERSE = 4 UNDERLN = 8
SGR = ESC G % 0 98(% % %

The follow ng gives an exanple for use with a videotex ternminal. Al are
equivalent: the bits are ored together with a starting value of 0x40, or @ and
the result is output as a character

LATCHATT = UNDERLN = DLE BLINK = STX REVERSE = EOT HI LI GHT=SP
LATCHATT = UNDERLN = ~P BLINK = "B REVERSE = ~D HI LI GHT = SP
LATCHATT = UNDERLN = 0x10 BLINK = 0x02 REVERSE = 0x04 \

HI LI GHT = 0x20

SGR=FS G % %9%(% %N %

LATCHATT = UNDERLN = P BLINK = B REVERSE = D HI LI GHT = °
SGCR=FSG®BW(% %N %

Sonme terminals that use area attributes will support a single latch attribute.
It is often called "protected” and is used to indicate protected areas when the
terminal is operated in block node. The follow ng exanple sw tches between
protected and unprotected nodes in order to use lowintensity. (Be aware that a
term nal mght become very sl ow when using the protect feature.) The SGR
sequence depends only on the attribute being non-zero, so no value is necessary:

LATCHATT = DI M
SGR = ESC W%) % (%

19.4.5.3 Specifying Area Attributes

Area or onscreen attributes are specified like latch attributes. The AREAATT
keyword lists the area or onscreen attributes that are avail able and associ ates
a character with each. As for latch attributes, REVERSE, BLINK, UNDERLN, HI LI GHT
and DIM are available. In addition, several flags are available to specify how
the attributes are inplemented by the terminal. The flags are:

ONSCREEN the attribute uses a screen position

LI NEVWRAP the attribute waps fromline to |line

SCREENVWRAP the attribute waps from bottom of screen to top
REVRI TE must rewrite attribute when witing character
MAX = # maxi mum nunber of attributes per line

Area and onscreen attributes nodify all characters fromthe start attribute to
the next attribute or to an end, which ever is closer. If there is no end, use
SCREENVWRAP. |f the end is the end of screen, use LINEWRAP. If end is the end of
the line, onmt both wap flags. Sonme terminals allow the user to select the
style. For onscreen attributes, screen wap is best and line wap a good second
best; for area attributes the choices are about the same. If the attribute takes
up a screen position, use the ONSCREEN fl ag.

AREAATT = REVERSE = i UNDERLN = BLINK = b DIM

ASGR = ESC s r % 9(ESC s % %

AREAATT = BLINK = 2 DIM = p REVERSE = 4 UNDERLN
ONSCREEN LI NEWRAP
ASGR = ESC G % %0 9%(% % %

8\

Sonme termnals have the following msfeature: witing a character at the
position where an attribute was set can renove the attribute. Inmediately after
placing the attribute the character nay be witten with no probl ens; however
the next time a character is witten there, the attribute will disappear. In
this case, use the REWRITE flag to tell JYACC FORMAKER to reset the attribute
before witing to that position. The follow ng exanple is for the Tel evideo 925:

AREAATT = REVERSE = 4 UNDERLN = 8 BLINK = 2 REWRI TE
ASGR = ESC G % 0" %(%Y % %

Yet other terminals restrict the nunber of attributes that are avail able on a
given line. If so, include MAX = #, where # represents the maxi mum |f possible,
al so give a "renmpve attribute" sequence, ARGR. Changing an attribute to normal
is not the sane as renoving it: a normal attribute will stop the propogation of
a previous attribute, but a renoved attribute will not. If the maxi mum nunmber of
attributes is small, JYACC FORMAKER s performance may be linmited.

If there is a renmove attribute sequence, JYACC FORMAKER will use it to renove
repeated attributes, to avoid exceeding the maxi mum nunber of attributes on a
line. If there is no maxi mum the renpve attribute sequence can be omtted.

I ndeed it often nmakes the screen "wiggle," which is very unpl easant for the
Vi ewer .

AREATT = REVERSE = Q UNDERLN = ° MAX = 16
ASGR = ESC d % % 9%B(% % %
ARGR = ESC e

19.4.5.4 Col or

JYACC FORMAKER supports eight foreground and background colors. The COLOR
keyword is used to associate a character with each color, just as LATCHATT
associ ates a character with each attribute. The CTYPE entry has flags that tel
JYACC FORMAKER t hat background color is available. Only the three primry colors
need be specified in the video file. If the other colors are not there, they

will be generated according to the follow ng rule:
BLACK = BLUE & GREEN & RED
BLUE nmust be specified
GREEN must be specified
CYAN = BLUE | GREEN
RED must be specified
MAGENTA = RED | BLUE
YELLOW = RED | GREEN
VHI TE = RED | GREEN | BLUE

The tenth paraneter to SGR or ASGR is the character representing the foreground
color; the eleventh is that representing the background color (it is O if
background color is not available). Many ANSI term nals set foreground col or
with the sequence ESC [3x m where x ranges fromO for black to 7 for white.
Background color is often set with ESC[4x m The order of the colors varies
fromterminal to termnal.

On color term nals, REVERSE often means bl ack on white. If background color is
avail abl e, JYACC FORMAKER can do better if REVERSE is not specified in the video
file: it will use the specified color as the background, and either black or
white as the foreground. The following is often suitable for a col or ANSI

term nal

LATCHATT = HILIGHT = 1 BLINK = 5

COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND

SCR = %Bu ESC[0 B(W% ; % % % ; %Bu 3% ; 4% m
or

SGR = %u ESC[0 %(%% ; %€ % %9 mESC|[3%;4% m
or

LATCHATT = HI LI GHT BLI NK
SGR=ESC[0 %®%4% ;5 % %%6% ;1 % m\
ESC [3%10%; 4%pll% m

If the ternminal has a uni que sequence for each color, a list command works well.
In the foll owing exanple, the ANSI attribute sequence (ESC[O ; pl ; p2
m is used and the values for the colors are:

cyan 1
magent a
bl ue
yel | ow
green
red
bl ack

D> 1

;o > 1
)
5.

A bhooyv

LATCHATT = REVERSE = 7 HILIGHT = 2
COLOR = CYAN = 0 MAGENTA = 1 BLUE = 2 YELLOW = 3 GREEN = 4\
RED = 5 BLACK = 6 WHITE = 7
SGR = ESC [0 Y%p3% ;7% %Y%p6% ;2% \
W(0:;>1% 1:;5% 2:;5;,>1% 3:;4% \
4:,4;,>1% 5:;4;5% 6:;4;5;>1 %9 m

Some termnals use ESC[2 ; x ; y mto set color and other attributes. Here x
is the foreground color and y is the background col or; both nunbers range fromO
to 7. If highlight is desired in the foreground, 8 should be added to x. If
blink is desired, 8 should be added to y. The follow ng video entries satisfy
these requirenents:

LATCHATT = HILIGHT = 8 BLINK = 8
COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND
SR = ESC[2 ; %10 %6 % % ; %1l %4 % % m

19.4.6 Message Line

JYACC FORMAKER usually steals a line fromthe screen to display status text and
error messages. Thus a 25-line screen (as specified in the LINES keyword) will
have 24 lines for the formitself, and one for messages. This use of a normal
screen line for nessages is the default.

Some term nals have a special nessage |line that cannot be addressed by norna
cursor positioning. In that case, the OMSG sequence is used to "open" the
message line, and CMSG to close it. All text between these sequences appears on
the nmessage |ine. No assunption is made about clearing the Iine; JYACC FORMAKER
al ways writes blanks to the end of the line.

OVBG = ESC f
CMSG = CR ESC g

If the OMSG line keyword is present, JYACC FORMAKER uses all the lines specified
in the LINES keyword for forms.

Termi nal s that use a separate nessage line may use different attributes on the
status line than on the screen itself. JYACC FORMAKER provi des sone support for
this circunstance; for very conplicated status |lines, the progranmer nmust wite
a special routine and install it with the statfnc call. (See the Programrer's
Guide for details.) The keyword MSGATT |ists the attributes available on the
message line. This keyword takes a list of flags:

REVERSE reverse video avail able
BLI NK bl i nk avail abl e

UNDERLN underl i ne avail abl e

HI LI GHT hi ghl i ght (bol d) avail able

DI M dim(lowintensity) available

LATCHATT all latch attributes can be used

AREAATT all area attributes can be used
NONE no attributes on nessage |line
ONSCREEN area attributes take a screen position

The attribute for the nmessage |line nust have been specified as either a latch or
area attribute, and the sequence to set it nust be given in the SGR or ASGR
keyword. For exanple, if REVERSE is |listed in MSGATT and REVERSE is a | atch
attribute, then SGRis used to set it. Attributes that appear in MSGATT and
don't appear in either LATCHATT or AREAATT are ignored.

JYACC FORMAKER rust determ ne the correct count of the length of the line. Thus
it is inportant to know whether area attributes are onscreen or not. It is not
uncommon for area attributes to be non-enbedded on the screen but enmbedded on
the status line. The keyword ONSCREEN may be included in MSGATT to inform JYACC
FORMAKER of this condition

LATCHATT = DIM

AREAATT = REVERSE UNDERLN BLI NK
MSGATT = REVERSE UNDERLN BLI NK ONSCREEN

MSGATT = AREAATT ONSCREEN

The two MSGATT entries are equivalent. They show a case where only area
attributes are available on the nmessage line and they take a screen position
The area attributes in the normal screen area do not.

19. 4.7 Function Key Labels

Certain termnals set aside areas on the screen, typically two lines high and
several characters wi de, into which descriptive labels for the termnal's
function keys nay be witten. The KPAR entry gives the nunmber and wi dth of the
function key | abel areas, and | ooks |ike KPAR = NUMBER = nunber of |abels LENGTH
= width of area The KSET entry gives the character sequence for writing text
into a | abel area. It is passed three paraneters:

1. The nunber of the area to be witten.
2. Twice the width of the area (LENGTH paraneter of KPAR)
3. The label text, as a null-term nated string.

Here is an exanmple, for the HP-2392A:

KPAR
KSET

NUMBER = 8 LENGIH = 8
ESC &f Oa % k %0 d O L % ESC &) B

19.4.8 G aphics and Foreign Character Support

JYACC FORMAKER has support for eight-bit ASCII codes as well as any graphics
that the ternminal can support in text nmode. Bit-nmapped graphics are not
supported. Just as the key translation tables give a mappi ng from character
sequences to internal numbers, the GRAPH table in the video file maps interna
nunmbers to out put sequences. The only character value that nay not be sent is O.

Sone term nals have a special "conpose" key, active in eight-bit node.
CGenerally, you would press the conmpose key followed by one or two nore keys,
generating a character in the range 0xa0 to Oxff. JYACC FORMAKER can process
such characters as nornal display characters, with no special treatnment in the
video file.

O her terminals have special keys that produce sequences representing speci al
characters. The nodkey utility can be used to map such sequences to single
values in the range Oxa0 to Oxfe. (See the Programmer's Guide for a way to use
val ues outside that range.) The video file would then specify how these val ues
are output to the term nal

Often, to display graphics characters, a termnal nust be told to "shift" to an
alternate character set (in reality, to address a different character ROM. The
video file's GRAPH table tells which alternate set to use for each graphics
character, and how to shift to it. \Wenever JYACC FORMAKER is required to

di splay a character, it looks in the GRAPH table for that character. If it is
not there, the character is sent to the term nal unchanged. The foll ow ng
section describes what happens if it is in the table.

19. 4.9 G aphics Characters

JYACC FORMAKER supports up to three alternate character sets. The sequences that
switch amobng character sets are |listed below. Mdes 0 through 3 are | ocking
shifts: all characters following will be shifted, until a different shift
sequence is sent. Modes 4 through 6 are non-1locking or single shifts, which
apply only to the next character. You may need to use the INIT entry to | oad the
character sets you want for access by the npde changes.

MODEO switch to standard character set
MODE1 alternate set 1

MODE2 alternate set 2

MODE3 alternate set 3

MODE4

MODES

MODEG6

Di fferent nodes can be used to support foreign characters, currency synbols,
graphics, etc. JYACC FORMAKER makes no assunption as to whether the node
changi ng sequences latch to the alternate character set or not. To output a
character in alternate set 2, JYACC FORMAKER first outputs the sequence defined
by MODE2, then a character, and finally the sequence defined by MODEO (which may
be empty, if the others are all non-locking). Here are three exanples; the
second one is ANSI standard.

MODEO = Sl
MODE1 = SO

MODE2 = ESC n
MODE3 = ESC o
MODEO = ESC [10 m
MODE1 = ESC [11 m
MODE2 = ESC [12 m
MODE3 = ESC [13 m
MODEQ =

MODE1 = SS1

MODE2 = SS2

Any character in the range 0x01 to Oxff can be mapped to an alternate character
set by use of the keyword GRAPH. The value of GRAPH is a |list of equations. The
|l eft side of each equation is the character to be mapped; the right side is the
nunmber of the character set (0, 1, 2, 3), followed by the character to be
output. Any character not so mapped is output as itself. For exanple, suppose
that Ox90 = 1 d appears in the GRAPH list. First the sequence |isted for MODEL
will be sent, then the letter d, and then the sequence listed for MODEO.

In the foll owing exanple, 0x81 is output as SO/ SI, 0xb2 as SO 2 SI, and 0x82
as ESC o a SI. LF, BEL and CR are output as a space, and all other characters
are output w thout change. This output processing applies to all data com ng
from JYACC FORMAKER. No translation is made for direct calls to printf, putchar
etc. Thus \n and \r will still work correctly in printf, and putchar (BEL) stil
makes a noise on the term nal

MODEO
MODE1

SI
SO

MODE2 = ESC n
MODE3 = ESC o
GRAPH = 0x81 = 1 / O0xb2 2 0x82 = 3 a LF = 0 SP\

=1
BEL = 0 SP CR = 0 SP
For efficiency, we suggest that you use single shifts to obtain accented
letters, currency synbols, and other characters that appear nmixed in with
unshifted characters; graphics characters, especially for borders, are good
candi dates for a | ocking shift.

It is possible, though not reconmrended, to map the usual display characters to
alternates. For exanple, GRAPH =y = 0z will cause the y key to display as z.
Graphi cs characters are non-portabl e across different displays, unless care is
taken to insure that the sane characters are used on the left-hand side for
sim lar graphics, and only for a comon subset of the different graphics
avai | abl e.

The GRTYPE keyword provides a conveni ent shortcut for certain common graphics
sets, each denoted by another keyword. The format is GRTYPE = type. An entry in
the GRAPH table is made for each character in the indicated range, with node O.
If the mbde is not 0, you nmust construct the GRAPH tabl e by hand. The GRTYPE
keywor ds are:

ALL Oxa0 t hrough Oxfe

EXTENDED same as ALL.

PC 0x01 through Ox1f and 0x80 through Oxff
CONTROL 0x01 t hrough Ox1f, and Ox7f

C0 same as CONTROL

Cl 0x80 t hrough 0x9f, plus Oxff

The GRTYPE keywords may be conbi ned.
19.4.10 Borders

Ten different border styles may be selected when a formis designed. They are
numbered 0 to 9, with style 0 being the default (and the one all the JYACC
FORMAKER internal forns use). It is usually reverse video spaces, but is
replaced by |I's if reverse video is not avail able. Border styles nmay be
specified in the video file. Otherwi se the follow ng defaults are used:

0. NN 1. -
| | | |
RERN | ___|

2 +++++ 3 ===
v |
+++++ ===

4 %9888 5 ...
% %
wees L

6. *xk ok x 7. IRRRR
* * \ \
* k k k k \\\\\

8. 11111 9. HitH#
/ / # #
1111 HHt###

The keyword BORDER specifies alternate borders. If fewer than 9 are given, the
default borders are used to conplete the set. The data for BORDER is a |ist of 8
characters per border, in the order: upper left corner, top, upper right corner

|l eft side, right side, |ower left corner, bottom |ower right corner. The
default border set is:

BORDER = SP SP SP SP SP SP SP SP\
SP SP | | | _ | \
+ + + + + + + + 0\
SP = SP | | SP = SP \
% % % % % % % % \
. : : : . o\
* * * * * * * * \
\ \ \ \ \ \ \ o\
/ / / / / / / [\
#

Anot her exanpl e, using the PC graphics character set:

BORDER = SP SP SP SP SP SP SP SP
Oxda 0xc4 Oxbf 0Oxb3 0xb3 0OxcO 0Oxc4 0xd9
0xc9 Oxcd Oxbb Oxba Oxba 0xc8 Oxcd Oxbc
0xd5 Oxcd 0xb8 0xb3 0xb3 0xd4 Oxcd Oxbe
0xd6 0xc4 Oxb7 Oxba Oxba 0xd3 Oxc4 Oxbd
Oxdc Oxdc Oxdc Oxdd Oxde Oxdf Oxdf Oxdf

bxbO bxbO bxbO bxbO bxbO bxbO bxbO bxbO
0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2
Oxbd Oxbd Oxbd Oxbd Oxbd Oxbd Oxbd Oxbd

— - - —

If there is a GRAPH entry in the video file, you can use the graphics character
set of the term nal for borders. Choose sonme nunbers to represent the various
border parts. The GRAPH option can be used to map these nunbers to a graphics
character set. The nunbers chosen are arbitrary, except that they should not
conflict with ordinary display characters. Even if the extended 8 bit character
set is used, there are unused values in the ranges 0x01 to Ox1f and 0x80 to
Ox9f .

The keyword BRDATT can be used to linmt the attributes available in the border
Norrmally HILIGHT (or DIM and REVERSE are used; however, if the term nal uses
onscreen attributes or can hold only a few attributes per line, it may be better
to prohibit attributes in borders. This is acconplished by BRDATT = NONE.

The flags used in MSGATT can al so be used with BRDATT; however, the only
attributes available are H LIGHT, DIM and REVERSE

19.4.11 Shifting Field Indicators and Bel

Shift indicators (ARROAS keyword) are used to indicate the presence of

of f-screen data in shifting fields. The default characters for this purpose are
<, > and X. (The last character is used when two shifting fields are next to
each other; it represents a conbination of both < and >.) The shift indicators
can be changed to any three characters desired.

ARROWS =

GRAPH = Ox1b = 0 0Ox1b Oxla = 0 Oxla 0x1ld = 0 Ox1d
ARROWNS = Ox1lb Oxla Ox1d

MODEO = Sl

MODE1 = SO

GRAPH = 0x80 = l1la 0x81 = 1x 0x82 = 1&

ARROWS = 0x80 0x81 0x82
The BELL sequence, if present, will be transnmitted by the library function be
to give a visible alarm Normally, that routine rings the termnal's bell. Such

a sequence can sonetinmes be found in the terncap file under vb.

19.4.12 xform Status Text

The JYACC FORMAKER authoring utility will display help text on the status |ine
if so desired. There are several different "states" in the utility, each with
its own status text; the text to be displayed in each state is listed in the
video file. (Logically it belongs in the message file; however, the text
mentions keys to use and uses visual attributes. Since the keys and attributes
are term nal -dependent, we store the text in the video file.)

Since vid2bin strips spaces, enbedded spaces should be entered with the SP
menoni ¢, or the whole text enclosed in quotes. Attributes can be enbedded in
the text by using % as a lead-in; up to four hex digits follow ng define the
attribute, using the codes defined in sndefs.h . See d_nmsg_line in the library
manual for a fuller explanation of enbedded attri butes.

The following is a sanple wthout enbedded attributes. Function keys 2 to 9 are
used.

FMKRDS = "2: DRAWtest 3: form4: field 5: tnplt "\
"6: del 7: nove 8: copy 9: rept"
FMKRTM = "2: TEST/draw 3: form4: field 5: tnplt "\
"6: del 7: nove 8: copy 9: rept"
FMKRW = "MOVE: use arrow keys to position, F7 to rel ease”
FMKRCP = "COPY: use arrow keys to position, F8 to rel ease”

The next group is simlar except that the nunbers are given the reverse video
blue attribute. The text is given the normal (i.e. white) attribute. (The col or
is ignored on nmonochrome termnals.) The text listed here is the default.

FMKRDS = %all 2: %07 SP DRAWtest SP \
%all 3: %07 SP form SP \
%ll 4: %07 SP field SP \
%11 5: %07 SP tmplt SP \
%all 6: %07 SP del SP \
%1l 7: %07 SP nobve SP \
%ll 8. %07 SP copy SP \
%1l 9: %07 SP rept

FMKRTM = %all 2: %07 SP TEST/draw SP \
%all 3: %07 SP form SP \
%1l 4: %07 SP field SP \
%11 5: %07 SP tmplt SP \
%all 6: %07 SP del SP \
%1l 7: %07 SP nove SP \
%1l 8: %07 SP copy SP \
%1l 9: %07 SP rept

FMKRW = %ll 7: %07 \

" MOVE: use arrow keys to position, F7 to rel ease"
FMKRCP = %ll 8: %07 \
" COPY: use arrow keys to position, F8 to rel ease"

19.4.13 Cursor Position Display

The utility will display the current cursor position on the status line if
desired. When possi ble, JYACC FORMAKER uses nonbl ocki ng keyboard reads. If no
key is obtained within a specified time, the cursor position display is updated.
This allows fast typists to type at full speed; when the typist pauses, the
cursor position display is updated. The keyword CURPOS specifies the timeout
delay, in tenths of a second. If the keyword is onmitted, or is O, there will be
no cursor position display. Many termi nals display the cursor position

t hensel ves.

The del ay depends on the baud rate and the termnal itself; it should be chosen

so that typing is not slowed down. If the ternminal has its own display, CURPCS
shoul d be omitted.

If there is no non-blocking read, a non-zero value of CURPOS enables the
di splay and zero disables it.

CURPCS =1 - update display every .1 sec
(use on fast systens)
CURPCS = 3 - every .3 sec (reasonable for nost)
CURPCS = 7 - at |ow baud rates
CURPCS = 0 - no display, sane as omtting keyword

Appendi x A Error Messages

In this Appendix, all the error messages issued by the JYACC FORMAKER run-time
systemand utilities appear. Each nessage is listed, with its tag, as it appears
in the nessage file distributed by JYACC, even if you change the wordi ng of

t hese nessages, the tag will remain the sane. If you nodify the message file
extensively, you may want to keep the original around for correlation with this
list. Some messages have slots for information determi ned at run-tine; these
appear as printf percent escapes, commonly % for character strings and % for
nunbers.

Each nmessage is followed by a less terse description of the error condition and
the contexts in which it can arise. |If recovery is necessary and possible, you
will also find reconmendati ons on how to recover fromthe error.

The run-tinme and screen editor nessages are currently in message file order
whi ch is perhaps not the nmost useful. Utility messages are al phabetical by
utility.

20 Run-tinme Messages

SM BADTERM = Unknown terninal type. SM ENTERTERM = Pl ease enter termnal type or
UKNL to exit. Cause: The library function sminitcrt cannot find the
configuration files it needs to talk to your term nal
Corrective action: Check your SWI DEO, SMKEY, SMIERM and
SWARS setup vari abl es. You can proceed by typing the nane
of your terminal in response to this message, but that's
t edi ous.

SM_MALLOC

I nsufficient menory avail abl e. Cause: The screen manager uses the C
library function malloc() to get nmenmory when needed. It has
exhausted the area reserved for dynamic allocation, or
perhaps the area has been corrupted. Corrective action
Exit the program

SM KEYENV = SMKEY not found. Cause: The file naned in the SMKEY setup variable
cannot be opened. This will cause initialization to be
aborted. Corrective action: Correct the environment
vari abl e. Perhaps you need to re-run the key2bin utility.

SM VI DENV = SMWVI DEO not found. Cause: The file naned in the SWI DEO set up
vari abl e cannot be opened. This will cause initialization
to be aborted. Corrective action: Correct the environment
vari abl e. Perhaps you need to re-run the vid2bin utility.

SM FNUM = Bad field # or subscript. Cause: A field nunber (follow ng #) or
occurrence nunber (in []J's following a field nane or
nunber) is out of range. Corrective action: Correct the
math edit or JPL programthat contains the errant numnber.

SM DZERO = Divide by zero. Cause: Your math expression has caused division by
zero. Corrective action: Find the zero. You may need to
make a field data-required, as blank fields have a nuneric
val ue of zero

SM_EXPONENT = Exponentiation invalid. Cause: Your math expression has attenpted
to raise zero to a negative power, or to raise a negative
nunber to a fractional power. Corrective action: Fix the
exponential expression

SM DATE = Invalid date. Cause: The date in a date field is not formatted
according to the field's date edit string. Corrective
action: Re-enter the date.

SM MATHERR = Math error - Cause: Used as a prefix to other math error nessages.
Corrective action: None.

SM FORMAT = Invalid format. Cause: The precision expression that precedes a math
expression is mal forned. Corrective action: It should be
%nn, where mis the total width of the result and n is the
nunber of decimal pl aces.

SM DESTI NATION = Invalid destination. Cause: The destination field expression
that begins a math expression is not followed by an equa
sign. Corrective action: Supply the equal sign.

SM_| NCOWPLETE = Expression inconmplete. SM ORAND = Operand expected. SM ORATOR =
Oper at or expected. SM EXTRAPARENS = Ri ght parenthesis
unexpected. SM M SSPARENS = Ri ght parent hesis expected.
Cause: The right-hand side of a math expression is m ssing
or mal forned. Corrective action: Correct the expression.

SM DEEP = Formnul a too conplicated. Cause: The internal stack used to store
internediate results in math expression eval uati on has
overflowed. Corrective action: Sinplify the expression, or
use an internediate.

SM_FUNCTI ON

Invalid function. Cause: The name following the @in a math
expression is not "date", "sum', or "abort". Corrective
action: Use one of the built-in functions.

SM ARGUMENT = Invalid argunent. Cause: The argunent to @bort in a math
expression is not a nunber. Corrective action: The
meani ngf ul argunents to @bort are -2, -1, 0, and 1. Use
one of those.

SM_M SMATCH

Type mi smatch. Cause: A conparison between numeric and string
vari abl es has been attenpted in a math expression
Corrective action: Check the types or character edits of
the data el enents invol ved.

SM _NOTMATH = Not a math expression. Cause: JAMcouldn't get to first base trying
to evaluate a math expression edit. Corrective action
Check the Author's CGuide for a description of math
expressi on syntax.

SM QUOTE = M ssing quote character. Cause: A math or string expression contains
an uncl osed quote. Corrective action: Supply the m ssing
quot e.

SM SYNTAX = Syntax error. Cause: Extra characters at the end of a math
expression, or a malformed relational operator. Corrective
action: Correct the indicated problem

SM FRVDATA = Bad data in form Cause: A file you have attenpted to open as a JAM
screen is not a screen file, or was created with a
different rel ease version of JAM or has been corrupted.
Corrective action: Check the screen name, then try to bring
it up in the screen editor

SM NOFORM = Cannot find form Cause: JAM cannot open the formfile you have
requested. Corrective action: Check that the file exists,
and/ or that proper entries have been nade in the SMPATH
directory list, the nenory-resident formlist, and the
SMFLIBS library list.

SM FRVMERR = Error while reading form Cause: This refers to I/Oerrors in
reading a formfile fromdisk. Corrective action: Retry the
operation.

SM BI GFORM = Form has fields that extend beyond screen size. Cause: You have
tried to display a formthat won't fit on your term nal
Corrective action: Reduce the screen's size, using the
screen editor.

SM SP1 = Pl ease hit the space bar SM SP2 = after reading this nessage. Cause:
These two |ines appear in a pronpt wi ndow when an error
message has been di splayed and you have not acknow edged it
by pressing the space bar, but by pressing some other key.
Corrective action: Press the space bar. If you don't want
to acknow edge the nmessage, set the SMEROPTI ONS setup
vari abl e.

SM RENTRY = Entry is required. Cause: You have failed to enter data in a
required field. Corrective action: Enter sonething. In
digits-only fields, you nust enter at |east one digit.

SM MUSTFILL = Must fill field. Cause: You have failed to fill a nust-fill field.
No bl anks whatever are allowed there. Corrective action:
Fill out the field.

SM_AFOVRFLW = Ampunt field overflow. Cause: You have typed a number that is too
big for the field s currency format to acconmopdat e.
Corrective action: Reduce the nunber or increase the
preci sion.

SM TOO FEWDIG TS = Too few digits. SMCKDIGA T = Check digit error. Cause: A
nunber has failed check-digit validation. Corrective
action: Re-enter the number.

SM FMEM = I nsufficient nmenory for data entry field. Cause: In trying to
construct a field for data entry in a help screen,
avail abl e menory was exhausted. Corrective action: Exit the
program

SM NOHELP = No hel p text avail able. Cause: You have pressed the HELP key in a
field where no help was available. Corrective action
Define a help screen for the field or screen

SM MAXHELP = Five help | evels maxi mum Cause: You have nested hel p wi ndows too
deeply. Corrective action: Restructure the hel p w ndows.

SM FRVHELP = No formlevel help text avail able. Cause: You have pressed the FORM
HELP key in a screen with no formw de help. Corrective
action: Define a help screen for the form

SM OUTRANGE = Qut of range. Cause: The string or nunber you have entered
violates a range edit. Corrective action: Enter a correct
value, or relax the range restrictions.

SM SYSDATE = Use clear for systemdate or enter in format: Cause: The date in a
systemdate field is not fornatted according to the field's
date edit string. Corrective action: Re-enter the date, or
clear the field to get the current date.

SM DATFRM = Invalid format; enter date in format: Cause: The date in a date
field is not formatted according to the field' s date edit
string. Corrective action: Re-enter the date.

SM DATCLR = Invalid date; clear gets systemdate. Cause: The date in a system
date field is not formatted according to the field' s date
edit string. Corrective action: Re-enter the date, or clear
the field to get the current date.

SM DATINV = Invalid date; enter a valid date. Cause: The date in a date field is
not formatted according to the field s date edit string.
Corrective action: Re-enter the date.

SM SYSTIME = Use clear for systemtinme or enter in format: Cause: The tine in a
systemtine field is not fornatted according to the field's
time edit string. Corrective action: Re-enter the tine, or
clear the field to get the current tine.

SMTIMRM = Invalid format; enter time in format: Cause: The time in a tinme
field is not formatted according to the field' s tinme edit
string. Corrective action: Re-enter the tinme.

SMTIMCLR = Invalid tinme; clear gets systemtine. Cause: The tinme in a system
time field is not formatted according to the field's tinme
edit string. Corrective action: Re-enter the tine, or clear
the field to get the current tine.

SMTIMNV = Invalid tine; enter a valid time. Cause: The time in a time field is

not formatted according to the field' s tine edit string.
Corrective action: Re-enter the tine.

SM MOREDATA = No nore data. Cause: You have attenpted to scroll past the
begi nning or end of a non-circular scrolling field.
Corrective action: Warning only.

SM SCRLMEM = | nsufficient menory for scrolling. Cause: Ran out of menory for
scroll buffers. Corrective action: Exit the program

SM NOTEMP = Cannot open tenporary file. Cause: The local print function failed
to open its scratch file. Corrective action: Check wite
perm ssions in your directory.

SM NOFI LE = '"%" not found' Cause: A file needed by the screen manager was
m ssing. Corrective action: Supply the file, or correct the
environnent variable that points to it.

SM NCENV = "' 9s' mi ssing” SM NOSECTOR = section '9%.2s' not found SM FFORMAT =
bad file format in "%" SM FREAD = file read error in "%"
Cause: There was a probleminitializing one of the
configuration files (the key file, video file, nsgfile,
snmvars or setup). Corrective action: Check the contents of
the text file, conmpile it again (with key2bin, vid2bin,
nmsg2bin or var2bin), and try again.

SM RX1 = Invalid character. Cause: The character you have typed is not allowed
by the field s regular expression. Corrective action: Type
an all owed character, or relax the expression.

SM RX2 = Inconplete entry. Cause: The field's regular expression demands nore
data than you have entered. Corrective action: Supply the
m ssi ng characters.

SM RX3 = No nmore input allowed. Cause: The opposite problem the field's

regul ar expression demands fewer characters than you have
entered. Corrective action: Shorten your input.

SM TABLOOK = Invalid entry. Cause: The contents of a field have failed the
t abl e-1 ookup validation. Corrective action: Correct the

i nput (perhaps through item selection), or add the m ssing
itemto the tabl e-1ookup screen.

SMILLELSE = Illegal Else Cause: In a JPL program an el se has appeared wi thout
a preceding if. Corrective action: Correct the programs
synt ax.

SM EOT = unexpected End Of File Cause: At the end of JPL programtext, there are
uncl osed bl ocks. Corrective action: Supp;ly the m ssing
right curly braces.

SM BREAK = BREAK not within | oop Cause: A JPL program contains a break command
that is not inside a for or while loop. Corrective action
Rermove the break.

SM _NOARGS = Verb needs argunents Cause: A JPL command that requires argunments
has been given none. Corrective action: Supply the
argunments; see the JPL Progranmer's Cuide.

SM HASARGS = Il 1l egal arguments Cause: A JPL command has excess arguments.
Corrective action: Renpve the excess.

SM EOL = Source line too long Cause: A JPL program contains a |logical |ine that
is too long (currently, a couple of thousand characters).
Corrective action: Figure out howto do it in nultiple
l'ines.

SM EXCESS = Extra data at end of line Cause: In certain JPL commands, there is
superfluous stuff followi ng the command. Corrective action
Get rid of it.

SM FI LEI O

System File 1/O error Cause: An I/O error has occurred while reading
a JPL programfile. Corrective action: Exit the program

SM FOR = USAGE: FOR varnanme = Value WHILE (expression) STEP [+-]val ue Cause: A
JPL for command has a syntax error. Corrective action:
Recast the command according to the given formt.

SMLINE 2 LONG = Line too long after expansion Cause: A line of a JPL programis
too long after colon expansion (nore than about 2000
characters). Corrective action: Check for mssing
subscripts: a nanme with nultiple occurrences but no
subscript in the expression is replaced by all the
occurrences.

SM NOFI LE = Coul d not open file Cause: A JPL program source file was m ssing or
unr eadabl e. Corrective action: Create the file, correct its
spelling in the program or add its directory to your
SMPATH

SM_NONAME = Expected variable name Cause: An entry in a JPL vars command does
not begin with a letter, $, ., or _. Corrective action: FiXx
t he nane.

SM NOTARGET = Target does not exist Cause: The field to be assigned to in a JPL
mat h or cat command is not in the screen or LDB. Corrective
action: Create the field or change the conmand.

SM NUMBER = |11 egal Nunmber Cause: The argument to a JPL return statement was
invalid. Corrective action: It must be an integer constant,

vari abl e name, or LDB name - no expressions.

SM RCURLY = Ended bl ock not begun Cause: A JPL program has too many right
curlies. Corrective action: Renpve sone.

21 Screen Editor Messages

FM BADENTRY = Bad entry. Cause: In the field size window, you have specified a
vertical array w thout giving an offset.
Corrective action: Supply the offset.

FM_MXSCRN Maxi mum nunber of % on the screen is %. Cause: You have tried to
make your screen bigger than the display, using
the PF3 wi ndow, the maxi mum possi bl e values are
in the nessage. Corrective action: Specify a

smal | er screen.

FM_MNBRDR = M ni mum nunber of % to hold formdata and a border is %d. Cause: In
the PF3 wi ndow, you have tried to make the
screen smaller than the existing data plus
border. Corrective action: Make the screen
| arger, or nmove or delete sone of the contents.

FM_MNFORM = M ni mum nunber of % to hold formdata is %. Cause: In the PF3
wi ndow, you have tried to make the screen
smal l er than the existing data. Corrective
action: Make the screen |arger, or nove or
del ete sone of the contents.

FM_NOOPEN = Cannot create form %. Cause: The editor was unable to create the
file whose nane is in the nessage, probably for
| ack of perm ssion or space. Corrective action:
Wite the screen to a different file, or escape
to the command interpreter and correct the
probl em

FM WRFORM = Error witing form'%'. Cause: The editor incurred an |I/O error
while witing out the screen file. Corrective
action: Try witing to a different file.

FM NOFROOM = I nsufficient nmenory for new fields. Cause: No fields can be added
because the editor has run out of nenory.
Corrective action: Wite the screen out at once,
exit the editor, and re-edit the screen.

FM_ARHROOM = No room for horizontal array. Cause: In the field size w ndow, you
have specified a horizontal array that will fall
outside the screen. Corrective action: Mke the
screen bigger, or the array smaller

FM_ARVROOM = No room for vertical array. Cause: In the field size w ndow, you
have specified a vertical array that will fall
out side the screen. Corrective action: Mke the
screen bigger, or the array smaller

FM ARHVSEL = Enter v or h. Cause: I'mnot sure this error nessage is correct.
Corrective action:

FM AROVERLAP = Overl aps existing field. Cause: You have specified an array that
woul d overlay part of an existing field.
Corrective action: Change the array size or nove
the field.

FM UCSET = Set upper or |ower case. Cause: You have specified both upper- and
| ower-case in the field edits window. Corrective
action: Type 'n' for one or the other.

FM SHRNG = The shifting i ncrenent nust be at least 1, but no nore than %.
Cause: You have specified a shifting increnment
of zero, or greater than the onscreen w dth of
the field. Corrective action: Change the shift
increnment to a value in the proper range,

i ndicated in the nessage.

FM FLDLEN = Length nust be non-zero and no greater than %l. Cause: In the field
size or summary w ndow, you have tried to make a
field so long that it reaches out of the screen.
Corrective action: Make the field shorter or

nmove its origin to the left.

FM_GRNONE = Graphics not available on this terminal. Cause: You have pressed the
graphi cs key (PF10 or SPF5), but your display's
video file contains no definitions for graphics
characters. Corrective action: Put the
appropriate entries (GRAPH, GRTYPE, MODEl-6) in
your video file.

FM OVERLAP = Overl aps field or border. Cause: In creating a JAMcontrol field or
movi ng an ordinary field, you have placed it so
that it would overlap another field or the
screen's border. Corrective action: Reposition
the new field.

FM_NAMEI NUSE = Name al ready assigned to another field. Cause: You have tried to
give a field a nane that already belongs to
another field. Corrective action: Renane one of
the fields.

FM FLDNO = Invalid field nunber. Cause: In specifying a next-field edit, you
have given a target field nunber (using #) that
is out of range for the screen. Corrective
action: Change the field nunmber to refer to an
existing field.

FMINCR = Invalid increnent. Cause: In specifying a next-field edit, you have
given a field increnment (using + or -) that
results in an occurrence nunmber out of range for
the field. Corrective action: Reduce the
i ncrenment.

FM FNUMB = Field number nust start with #. Cause: In specifying a next-field
edit, you have typed # for field nunber but have
not put a nunber after it. Corrective action
Supply the field nunber.

FM ELEMENT = Invalid elenment. Cause: In a next-field edit, your el enent
specification contains a syntax error
Corrective action: The proper syntax is
field-id[element].

FM 1FMI = Enter one format only. Cause: You have entered both a date and a tinme
format string. Corrective action: Renove one of
them a field can be either date or tine, but
not bot h.

FM CLCM N = Mninum digits should not exceed I ength of field, which is %.
Cause: In the math/check digit w ndow, you have
specified a m ni mum nunber of digits for the
check-digit that is too large. Corrective
action: Reduce the m ni mum bel ow t he nunber in
the nessage, or nmke the field | onger

FM AZNAME = Name nust start with letter. Cause: You have typed a field nane that
does not begin with a letter. Corrective action
Change the field nane.

FM_AONAME = Must be al pha, nunber or '_'. Cause: You have typed a character
el sewhere in a field name that is neither
al phanuneric nor an underscore. Corrective
action: Renmpbve the offending character fromthe
nane.

FM | NBORDER = Bad entry -- field in prospective border. Cause: You have
requested a border on a screen that has fields
at the very edge of the screen, where the border
shoul d go. Corrective action: Mve the of fending
field or fields.

FM_DUPDRAW = Duplicate draw character. Cause: In the drawfield/field defaults
wi ndow, you have specified a drawfield
character twice. Corrective action: Pick another
character.

FM | FORVAT = Invalid format. Cause: In specifying a wi ndow name and coordi nat es
for a help screen, sub-nmenu, or other edit, you
have deviated fromthe prescribed format
screen-nane (line, columm) Perhaps you have left
out a parenthesis, or omtted the comm.
Corrective action: Correct the format.

FM_ | NVRC

Invalid nmenu return code. Cause: You have specified a nenu return
code that does not evaluate to an integer
Corrective action: Allowable return codes are:
deci mal nunbers; hexadeci mal nunmbers; quoted
printable ASCI| characters, as 'q'; ASCl
control character menonics, as ESC, and JAM
| ogi cal key mmenpni cs from snkeys. h.

FM_VRVBK

A word wap field may not have a regul ar expression edit. Cause: You
have attenpted to create a field with both word
wrapping and a regul ar expression edit. Because
word wrap interprets certain characters
specially, this is not allowed. Corrective
action: Choose one. As word-wrapped fields are
general ly used for |large quantities of text,
they are best left unfiltered.

FM RX1 = Regul ar expression too |long. Cause: When conpil ed, the regular
expressi on you have typed is to long to be
stored as a special edit. Corrective action: Try
to sinmplify the expression.

FM RX2 = Unbal anced '[' bracket. Cause: A left bracket that begins a character
cl ass has no matching right bracket. Corrective
action: If you want a literal left bracket,
quote it: \[. If you really wanted a character
class, insert the corresponding right bracket.

FM RX3 = Too many '(' brackets. FM RX4 = Too many ')' brackets. FM RX8 = Cl osing
'"}'" brace expected. FM RX11 = Previous ' /('
bracket not yet closed. Cause: Various cases of
bracket inbal ance. Corrective action: As above,
the usual cause is forgetting to quote a
bracketi ng character when you want it literally.

FM_RX5 Expecting nunber between 0-9 or '\}'. Cause: You have put sonething
ot her than a nunber inside a subexpression

repeat count. Corrective action: Renove it.

FM_RX6

Range may not exceed 255. Cause: You have specified a repeat count
greater than what will fit in a field (fields
are limted to 255 characters in wdth).
Corrective action: Reduce the count.

FM_RX7

Too many commmas in specifying range. Cause: You have put two
consecutive comms in a range expression.
Corrective action: Renpve one.

FM_RX8 Closing '}' brace expected. Cause: You have followed a conmma in a range
expression with a closing curly brace.
Corrective action: Renove the comma, or put

anot her number after it.

FM_RX9 First nunber exceeds second in specifying range. Cause: You have got
the range of a range backwards. Corrective

action: Reverse or correct the range limts.

FM RX10 = \digit out of range. Cause: You have entered a backslash followed by a
nunmber to re-match a subexpression, but the
nunber exceeds the nunber of parenthesized
subexpressions. Corrective action: Reduce the
number or parenthesize the correct
subexpressi ons.

FM RX12

Unexpected end of regul ar expression. Cause: Your regular expression
ends with a backslash. Corrective action: |If you
want a literal backslash, double it.

22 Utility Messages

These nessages are also listed in the Configuration Guide with their utilities;
they are repeated here for convenience.

bi n2c Messages

I nsufficient menory avail able. Cause: The utility could not allocate enough
menmory for its needs. Corrective action
None.

File "%" already exists; use '-f' to overwite. Cause: You have specified an
output file that already exists.
Corrective action: Use the -f flag to
overwrite the file, or use another nane.

Cannot open "%" for witing. Cause: An output file could not be created, due to
| ack of perm ssion or perhaps disk space.
Corrective action: Correct the file system
probl em and retry the operation.

Cannot open "%" for reading. Cause: An input file was nissing or unreadabl e.
Corrective action: Check the spelling,
presence, and pernissions of the file in
guesti on.

Error reading file "%" Cause: The utility incurred an I/O error while
processing the file naned in the nmessage.
Corrective action: Retry the operation.

Error witing file "%" Cause: The utility incurred an I/O error while
processing the file named in the nessage.
Corrective action: Retry the operation.

b2hex Messages

Error reading % Error witing % Cause: The utility incurred an I/O error while
processing an input or output file. This message will usually be acconpani ed by
a nmore specific, system dependent message. Corrective action: Correct the

syst em dependent problem if possible, and retry the operation

% already exists % already exists, it is skipped Cause: The conmand you have
i ssued woul d overwrite an existing output file. Corrective action: If you are
sure you want to destroy the old file, reissue the conmand with the -f option

f2struct Messages

Language % undefi ned. Cause: The | anguage you have given with the -g option has
not been defined in the utility's tables.
Corrective action: Check the spelling of the
option, or define the |anguage ito the utility.

% al ready exists. Cause: You have specified an existing output file. Corrective
action: Use the -f option to overwite the file,
or use a different nane.

% has an invalid file format. Cause: An input file is not of the expected type.
Corrective action: Check the spelling and type of
the offending file.

'"9%' has no data to convert. Cause: An input file is enpty, or does not have the
names you specified. Corrective action: Check the
names.

Not enough menmory to process '%'. Unable to allocate nenory. Cause: The utility
could not allocate enough nenory for its needs.
Corrective action: None.

At | east one formname is required. Cause: You have not given any screen files
as input. Corrective action: Supply one or nore
screen file names.

formib Messages

Library " %' already exists; use -f' to overwite. Cause: You have specified an
exi sting output file.
Corrective action:
Use the -f option to
overwite the file,
or use a different
nane.

Cannot open "% '. Cause: An input file was missing or unreadable. Corrective
action: Check the
spel ling, presence,
and perni ssions of
the file in question.

Unable to allocate nenory. Insufficient nenory avail able. Cause: The utility
could not allocate
enough nmenory for its

needs. Corrective
action: None.

File "%' is not a library. Cause: The named file is not a formlibrary
(incorrect magic
nunber). Corrective
action: Check the
spel l'ing and
exi stence of your
library.

%' not in library. No fornms in library. Cause: A screen you have nanmed is not
in the library.
Corrective action:
List the library to
see what's init,
then retry the
operati on.

Tenporary file “%' not renmpved. Cause: The internmedi ate output file was not
removed, probably
because of an error
renaming it to the
real output file.
Corrective action:
Check the perni ssions
and condition of the
files, then retry the
operation.

key2bi n Messages

File "%' not found Neither '%' nor '%' found. Cause: An input file was
m ssi ng or unreadabl e.
Corrective action: Check
the spelling, presence,
and pernmi ssions of the
file in question.

Unknown menonic in line: '%' Cause: The line printed in the nmessage does not
begin with a | ogical key
menoni c. Corrective
action: Refer to
snkeys.h for a list of
menoni cs, and correct
the input.

No key definitions in file '%' Cause: Warning only. The input file was enpty or
cont ai ned only coments.
Corrective action: None.

Mal | oc error Cause: The utility could not allocate enough nenory for its needs.
Corrective action: None.

Cannot create '9%' Error witing '%' Cause: An output file could not be
created, due to |lack of
perm ssi on or perhaps
di sk space. Corrective
action: Correct the file
system probl em and retry
t he operati on.

| st f orm Messages

Error opening input file. Cause: An input file was m ssing or unreadable.
Corrective action: Check the spelling,
presence, and pernissions of the file in
guesti on.

Error opening output file. Cause: An output file could not be created, due to
| ack of perm ssion or perhaps di sk space.
Corrective action: Correct the file system
probl em and retry the operation.

Unable to allocate nenory. Can't allocate nenory. Cause: The utility could not
al l ocate enough nmenory for its needs.
Corrective action: None.

Error reading formfile. Error witing list file. Cause: The utility incurred an
I/O error while processing the file named in
the nessage. Corrective action: Retry the
operation.

nmodkey Messages

Invalid entry. Cause: You have typed a key that is not on the nmenu. Corrective
action: Check the instructions on the screen and try
again.

Key sequence is too |long. Cause: You have typed nore than six keys w hout
repeating any. Corrective action: Key sequences for
translation nay be at npost six characters |ong. Choose a
shorter sequence.

Invalid first character. Cause: A multi-key sequence must begin with a contro
character. Corrective action: Begin again, using a contro
character.

Invalid menmonic - press space for list Cause: In the mscellaneous keys screen
you have typed a character string for |ogical value that
is not a logical key mmenonic. Corrective action: Peruse
the list, then correct the input.

Invalid nunber - enter <decimal >, O<octal> or Ox<hex> Cause: In the
m scel | aneous keys screen, you have typed a mal f or med
numeri c key code. Corrective action: Correct the nunber
or use a menoni c.

Cannot create output file. Cause: An output file could not be created, due to
| ack of permission or perhaps disk space. Corrective
action: Correct the file system problemand retry the
operation.

Key sequence does not repeat. Cause: You have typed a key sequence that failed
to repeat a string of six characters or less. Corrective
action: Retry the sequence, or use a shorter one.

Cannot accept NUL as a key. Cause: The ASCII NUL character (binary 0) cannot be
used in a key translation sequence, because it is used
internally to mark the end of a sequence. Corrective
action: Use another key.

Key previously defined as % Key conflicts with % Cause: You have typed a key
sequence that has already been assigned to another key, or
that is a substring of a previously assigned sequence.

Corrective action: Use a different key or sequence, or
reassi gn the other.

msg2bi n Messages

File '%' not found. Cause: An input file was m ssing or unreadable. Corrective
action: Check the spelling, presence, and
perm ssions of the file in question.

Unable to allocate nenory. Cause: The utility could not allocate enough nmenory
for its needs. Corrective action: None.

Bad tag in line: % Cause: The input file contained a system message tag unknown
to the utility. Corrective action: Refer to
smerror.h for a list of tags, and correct the
i nput .

inline: % Cause: The line in the nessage had no equal sign
following the tag. Corrective action: Correct the
i nput and re-run the utility.

M ssi ng

term2vi d Messages

No cursor position (cm cup) for % Cause: An absolute cursor positioning
sequence is required for JYACC
FORMAKER to work, and the ternctap or
terminfo entry you are using does not
contain one. Corrective action:
Construct the video file by hand, or
update the entry and retry.

Cannot find entry for % Cause: The term nal menonic you have given is not in
the terncap or term nfo database.
Corrective action: Check the spelling
of the mmenonic.

File % already exists; use '-f' to overwite. Cause: You have specified an
exi sting output file. Corrective
action: Use the -f option to
overwrite the file, or use a
di fferent nane.

t xt 2f or m Messages

Warning: lines greater than % will be truncated Warni ng: colums greater than

%l will be truncated Cause: Your input text file has data that reaches beyond
the limts you have given (default 23 lines by 80
colums) for the screen. Corrective action: Shrink
the input, or enlarge the screen

Unable to create output file. Cause: An output file could not be created, due to
| ack of perm ssion or perhaps di sk space. Corrective
action: Correct the file system problemand retry
the operation.

var 2bi n Messages
Error opening %. Cause: An input file was m ssing or unreadable. Corrective

action: Check the spelling, presence, and pernissions
of the file in question.

M ssing '='. Cause: The input line indicated did not contain an equal sign after
the setup variable name. Corrective action: Insert the
equal sign and run var2bin again.

% is an invalid name. Cause: The indicated line did not begin with a setup
vari abl e name. Corrective action: Refer to the
Configuration Guide for a list of variable nanes,
correct the input, and re-run the utility.

% may not be qualified by term nal type. Cause: You have attached a ternina
type list to a variable which does not support one.
Corrective action: Renove the list. You can achieve the
desired effect by creating different setup files, and
attaching a terminal list to the SMSETUP vari abl e.

Unabl e to set given values. % conflicts with a previous paranmeter. % is an
invalid paranmeter. Cause: A keyword in the input is
m sspell ed or msplaced, or conflicts with an earlier
keyword. Corrective action: Check the keywords |isted
in the manual, correct the input, and run the utility
agai n.

Error reading snmvars or setup file. Cause: The utility incurred an I/O error
whil e processing the file named in the nmessage.
Corrective action: Retry the operation.

Unable to allocate nenory. Cause: The utility could not allocate enough menory
for its needs. Corrective action: None.

At least one file name is required. Cause: You have failed to give an input file
name. Corrective action: Retype the command, supplying
the file nane.

Entry size %l is too large. String size %l is too |arge. Cause: The indicated
right-hand side is too long. Corrective action: Reduce
the size of the entry.

vi d2bi n Messages

Nei ther % nor % exists. Cause: An input file was m ssing or unreadable.
Corrective action: Check the spelling,
presence, and permissions of the file in
questi on.

A cursor positioning sequence is required. An erase display sequence is
requi red. Cause: These two entries are required
in all video files. Corrective action:
Det erm ne what your terminal uses to perform
these two operations, and enter themin the
video file; then run the utility again.

Unabl e to all ocate nenory. Cause: The utility could not allocate enough menory
for its needs. Corrective action: None.

Error witing to file '%'. Cause: The utility incurred an I/O error while
processing the file named in the nessage.
Corrective action: Retry the operation.

Invalid entry: "9%'. Entry missing '=': '"%'. Cause: The input line in the
message does not begin with a video keyword and
an equal sign. Corrective action: Correct the
input and re-run the utility. You may have

forgotten to place a backslash at the end of a
line that continutes onto the next one.

Invalid attribute list : "%'. Invalid color specification : "%'. Invalid
graphi cs character specification (%):'%"'.
Invalid border information (%s):'%'. Invalid
graphics type : "%'. Invalid | abel paraneter

"%’ . % Invalid cursor flags specification
"' . Cause: You have mi sspelled or msplaced
keywords in the input line in the nessage.
Corrective action: Correct the input, referring
to the Configuration Guide, and run vid2bin
agai n.

ski psomet hi ng

I ndex

In this Index, library functions are

di spl ayed in boldface, wthout the
prefixes specific to the |anguage
interface. Video and setup file
entries appear in ELITE CAPS, while
utility programs and JPL commands
are in elite |ower-case. Function
key nanmes are i n ROVAN CAPS
Bl OS vi deo
A par amet er
ALL vi deo 5-59
par anet er BLI NK vi deo
5-71 par amet er
AM vi deo par aneter 5-64, 5-68
5-61 bor der
area attributes i npl enent ati on
5-63, 5-66 5-71
AREAATT vi deo BORDER vi deo
par aret er par aret er
5-53, 5-62, 5-50, 5-53,
5-66, 5-69 5-71
ARGR vi deo BOTTRT vi deo
par amet er par amet er
5-53, 5-67 5-52, 5-60
ARROWS vi deo BRDATT vi deo
par amet er par amet er
5-53, 5-72 5-53, 5-72
ASGR vi deo BS vi deo paranet er
par anet er 5-61
5-53, 5-54, BUFSI Z vi deo
5-62, 5-67, par anet er
5-69 5-52, 5-60
B C
b2hex utility 5-84 CO vi deo paraneter
beep 5-23 5-71
bel 5-23, 5-72 Cl video paraneter
BELL vi deo 5-71
par anet er cC_Vis 5-24
5-53, 5-72 ch_enmsgatt 5-40
bi n2c ch_gmsgatt 5-40
utility 5-1, 5-3, ch_stextatt 5-40
5-5, 5-17, ch_unsgatt 5-40
5-37, 5-83 CMFLGS vi deo

bi n2hex utility
5-1, 5-6

par amet er
5-53, 5-61

CMSG vi deo
par aret er
5-53, 5-68
COF vi deo
par amet er
5-52, 5-62
COLMS vi deo
par aret er
5-52, 5-59
col or
background 5-67
i mpl enent ati on
5-67
COLCR vi deo
par amet er
5-53, 5-67
conment s
in key file
5-14
in message file
5-22
in setup file
5-38
in video file
5-49
CON vi deo
par aret er
5-52, 5-62
configuration
files 5-14,
5-22, 5-38,
5-48
configuration
utilities
summary 5-1
CONTROL vi deo
par aret er
5-71
CR vi deo paranet er
5-61
CTYPE vi deo
par amet er
5-67
CUB vi deo
par aret er
5-53, 5-61
CUD vi deo
par amet er
5-53, 5-61
CUF vi deo
par armet er
5-53, 5-61
CUP vi deo
par aret er
5-49, 5-52,
5-53, 5-61
CURPOCS vi deo
par amet er
5-53, 5-73,
5-74
cursor
posi tion
di splay 5-73

turning off
5-62
turning on 5-62
cursor positioning
absol ute 5-61
relative 5-61
cursor style
PC 5-59
CUWU vi deo
par aret er
5-52, 5-53,
5-61

D
d_nmsg_line 5-14,
5-283, 5-73
di cnane 5-40
DI M vi deo
par aret er
5-64, 5-68
display attribute
area 5-63
bi t - mapped 5-65
enbedded in
status line
5-23
i npl emrent ati on
5-62
latch 5-63
onscreen 5-63
paraneters 5-62
dw_options 5-40

E

ED vi deo paraneter
5-49, 5-52,
5- 60

8-bit ASCII 5-52
EL vi deo paraneter
5-52, 5-60
er_options 5-40
error message
to change 5-22
EW vi deo par anet er
5-52, 5-53,
5- 60
EXIT key 5-29,
5-34
EXTENDED vi deo
par amet er
5-71

F

f2r4 utility 5-1,
5-9

f2struct utility
5-3, 5-7,
5-84

F9 key 5-30

fcase 5-40

f extension 5-41

FMKRCP vi deo
par aret er
5-53
FMKRDS vi deo
par anet er
5-53
FMKRW vi deo
par aret er
5-53
FMKRTM vi deo
par aret er
5-53
foreign | anguage
support 5-69
formib 5-11
formib utility
5-1, 5-11,
5-84
function key
EXIT 5-29, 5-34
F9 5-30
| NSERT 5-62
LP 5-39
PF1 5-30
PF2 5-31
TAB 5-26
TRANSM T 5-60
function key
| abel s 5- 23,
5-27, 5-30,
5-31, 5-32
5-35
function keys
defining 5-25
| abel ing 5-69

G

get key 5-39

GRAPH vi deo
par anet er
5-50, 5-53,
5-69, 5-70,
5-71, 5-72

gr aphi cs
characters
5-70

mappi ng 5-70
GRTYPE vi deo
par anet er
5-53, 5-71

H

HI LI GHT vi deo
par anet er
5-64, 5-68

ni names 5-41
NI T video
par armet er
5-51, 5-52
5-56, 5-59,
5-62, 5-70
initcrt 5-38, 5-59

| NSERT key 5-62
| NSOFF vi deo
par amet er
5-52, 5-62
I NSON vi deo
par amet er
5-52, 5-62

K
key file 5-17
comments 5-14
format 5-14
testing 5-35
key menonics 5-15
key transl ation
al gorithm 5-25
creating table

5-25

key transl ation
file 5-14,
5-23

key2bin utility
5-1, 5-5,
5-14, 5-15,
5-17, 5-25,
5-39, 5-85

keyinit 5-39
keyt ops 5-23,
5-27, 5-30,
5-31, 5-32
5-35
KPAR vi deo
par amet er
5-53, 5-69
KSET vi deo
par aret er
5-53, 5-69

L

| _open 5-40

latch attributes
5-63

LATCHATT vi deo
par aret er
5-53, 5-62,
5-63, 5-64,
5- 65, 5-67,
5-69

ldb_init 5-41

LENGTH vi deo
par amet er
5-69

LF vi deo paraneter
5-61

LI NES vi deo
par amet er
5-50, 5-52,
5-59, 5-68

LI NEWRAP vi deo
par amet er
5- 66

| ogi cal keys 5-25

menoni cs 5-15
LP key 5-39

Istformutility

5-1, 5-2,
5-19, 5-85
M
MAX vi deo
par amet er
5-66

MENU bit 5-9
menu_proc 5-41
message file 5-22,
5-37
MODEO vi deo
par anet er
5-53, 5-70
MODE1 vi deo
par aret er
5-53, 5-70
MODE2 vi deo
par aret er
5-53, 5-70
MODE3 vi deo
par anet er
5-53, 5-70
MODE4 vi deo
par aret er
5-53, 5-70
MODE5 vi deo
par aret er
5-53, 5-70
MODE6 vi deo
par anet er
5-53, 5-70
nodkey utility
5-1, 5-14,
5-15, 5-17,
5-25, 5-26,
5-27, 5-28,
5-29, 5-34,
5-39, 5-69,
5- 86
control keys
5- 26
di spl ay nodes
5-34
i nvoki ng 5-26
np_options 5-41
nmp_string 5-41
Ms- DOS 5-59
video file 5-50
msg2bin utility
5-1, 5-5,
5-22, 5-24,
5-37, 5-39,
5-87
nmsg_get 5-37, 5-39
nmsg_read 5-39
MSGATT vi deo
par anet er
5-53, 5-68,
5-69, 5-72
nmsgread 5-23

N

NONE vi deo
par anet er
5-69

O

ok_options 5-41

OMSG vi deo
par anet er
5-53, 5-59,
5- 68

onscreen
attributes
5-63, 5-66

ONSCREEN vi deo
par amet er
5-66, 5-69

P

PC vi deo par anet er
5-71

PF1 key 5-30
PF2 key 5-31

PRI MOS 5-52
pronpt 5-23
R
r_w ndow 5-39
5-40
RCP vi deo
par amet er
5-52, 5-62
REPMAX vi deo
par anet er
5-52, 5-60
REPT vi deo
par anet er
5-52, 5-53,
5-60
RESET vi deo
par anmet er
5-52, 5-56,
5-59, 5-62

resetcrt 5-59

REVERSE vi deo
par anet er
5-64, 5-68

REWRI TE vi deo
par anmet er
5-66, 5-67

S

SCP vi deo
par aret er
5-52, 5-62

screen library
5-11

SCREENVWRAP vi deo
par anet er
5- 66

setup file 5-38

SGER vi deo
par anet er
5-53, 5-62,
5-63, 5-64,
5-65, 5-66,
5-67, 5-69
shifting indicator
5-72
sm.ind_set 5-40
SMCHEMSGATT set up
vari abl e 5-40
SMCHQVSGATT set up
vari abl e 5-40
SMCHSTEXTATT set up
vari abl e 5-40
SMCHUMSGATT set up
vari abl e 5-40
SMDI CNAME set up
vari abl e 5-40
SMDWOPTI ONS set up
vari abl e 5-40
SMEROPTI ONS set up
vari abl e 5-40
SMFCASE set up
vari abl e 5-40
SMFEXTENSI ON set up
vari abl e 5-41
SMFLI BS set up
vari abl e 5-40
SM NDSET set up
vari abl e 5-40
SM NI CTRL setup
vari able 5-41
SM NI NAMES set up
vari abl e 5-41
SMKEY set up
vari abl e
5-14, 5-39
SMLPRI NT set up
vari abl e 5-39
SMVWPOPTI ONS set up
vari able 5-41
SMWPSTRI NG set up
vari abl e 5-41
SMVBGS set up
vari abl e
5-22, 5-39
SMOKOPTI ONS set up
vari able 5-41
SMPATH set up
vari abl e 5-39
smsetup 5-38
SMSETUP set up
vari abl e
5-38, 5-39
SMUSEEXT set up
vari abl e 5-3,
5-41
SMVARS set up
vari abl e 5-38

SWI DEO set up
vari abl e 5-39
SMZMOPTI ONS set up
vari able 5-41
statfnc 5-68
status line 5-68
enbedded
attribute
5-23
status text 5-23
stat us wi ndow 5-23

T

TAB key 5-26

term2vid utility
5-1, 5-43,
5-48, 5-87

TRANSM T key 5-60

txt2formutility
5-1, 5-44,
5-87

U

UNDERLN vi deo
par amet er
5-64, 5-68

\Y
var2bin utility
5-1, 5-5,
5-38, 5-45,
5-87, 5-88
vid2bin utility
5-1, 5-5,
5-39, 5-46,
5-47, 5-48,
5-49, 5-56,
5-73, 5-88,
5-89
vi deo contr ol
sequences
5-53
video file 5-46,
5-48
comments 5-49
format 5-49,
5-51
keywords 5-52
m ni mal 5-50
rati onal e 5-49
sanmpl e 5-50
vinit 5-39, 5-46

X

XKEY vi deo
par amet er
5-59

Z

zm options 5-41

