
 JYACC FORMAKER Configuration Guide

 Contents

1 Summary of Configuration Utilities . 1

2 Features and Options Common Among Utilities 1
2.1 Input and Output Files . 1
2.2 File Names and Extensions . 2
2.3 Configuring File Extensions and Rules 3
2.4 Ordering of Options and Other Arguments 3
2.5 Notation . 4

3 bin2c . 4

4 bin2hex . 5

5 f2struct . 6

6 f2r4 . 8

7 formlib . 10

8 Key translation file . 13
8.1 Key Translation File Format . 14
8.2 Key Mnemonics and Logical Values 15
8.3 ASCII Character Mnemonics . 15

9 key2bin . 16

10 lstform . 18

11 Message file . 21
11.1 Modifying and Adding Messages . 22
11.2 Embedding Attributes and Key Names in Messages 23

12 modkey . 24
12.1 Introduction . 25
12.1.1 Key Translation . 25
12.2 Executing the Utility . 25
12.3 Control Keys and Data Keys . 26
12.4 Welcome Screen . 27
12.5 Main Menu . 27
12.6 Exiting the Utility . 28
12.7 Help Screen . 28
12.8 Defining Cursor Control and Editing Keys 29
12.8.1 Assigning a Key to a Function 29
12.8.2 Assigning a Sequence of Keys to a Function 30
12.9 Defining Function Keys . 31
12.10 Defining Shifted Function Keys 31
12.11 Defining Application Function Keys 32

12.12 Defining Miscellaneous Keys . 32
12.12.1 Entering the Logical Value . 34
12.12.2 Logical Value Display and Entry Modes 34
12.12.3 Returning to the Main Menu . 35
12.13 Test Keyboard Translation File 35

13 msg2bin . 36

14 Setup file . 37
14.1 The Two Setup Files . 38
14.2 Input File Line Format . 38
14.3 Setup Variables . 39
14.3.1 Configuration File Setups . 39
14.3.2 Setups for Library Routines . 39
14.3.3 Setups for Default File Extensions 41

15 term2vid . 42

16 txt2form . 43

17 var2bin . 44

18 vid2bin . 45

19 Video file . 47
19.1 Introduction to Video Configuration 48
19.1.1 How to Use this Manual . 48
19.1.2 Why Video Files Exist . 48
19.1.3 Text File Format . 49
19.1.4 Minimal Set of Capabilities . 49
19.1.5 A Sample Video File . 50
19.1.6 An MS-DOS Video File . 50
19.2 Video File Format . 51
19.2.1 General Information . 51
19.2.2 Keyword Summary . 52
19.3 Parameterized Character Sequences 53
19.3.1 Summary of Percent Commands . 54
19.3.2 Automatic Parameter Sequencing 55
19.3.3 Stack Manipulation and Arithmetic Commands 55
19.3.4 Parameter Sequencing Commands 56
19.3.5 Output Commands . 56
19.3.6 Parameter Changing Commands . 56
19.3.7 Control Flow Commands . 57
19.3.8 The List Command . 58
19.3.9 Padding . 58
19.4 Constructing a Video File, Entry by Entry 59
19.4.1 Basic Capabilities . 59
19.4.2 Screen Erasure . 60
19.4.3 Cursor Position . 61
19.4.4 Cursor Appearance . 62
19.4.5 Display Attributes . 62
19.4.5.1 Attribute Types . 63
19.4.5.2 Specifying Latch Attributes 64
19.4.5.3 Specifying Area Attributes . 66
19.4.5.4 Color . 67
19.4.6 Message Line . 68
19.4.7 Function Key Labels . 69

19.4.8 Graphics and Foreign Character Support 69
19.4.9 Graphics Characters . 70
19.4.10 Borders . 71
19.4.11 Shifting Field Indicators and Bell 72
19.4.12 xform Status Text . 73
19.4.13 Cursor Position Display . 73

Appendix A Error Messages .75

20 Run-time Messages . 75

21 Screen Editor Messages . 80

22 Utility Messages . 83

1 Summary of Configuration Utilities

This manual describes a number of utility programs that fall under the rubric of
configuring JYACC FORMAKER itself or applications that use it. One group is for
creating and modifying files that tell JYACC FORMAKER how to run on particular
computers and terminals; another group of programs enables you to list,
reformat, and otherwise manipulate screens.

 Hardware Configuration

 modkey A specialized full-screen editor for inspecting, creating,
 and modifying key translation files.
 Key file Not actually a utility; this section describes how to
 format key translation files by hand.
 key2bin Converts key translation files to binary format.
 Video file Not actually a utility; this section describes how to
 create video configuration files for terminals and
 displays.
 vid2bin Converts video files to binary format.
 term2vid On UNIX and related systems, creates a primitive video file
 from a terminfo or termcap entry.

 Software Configuration

 Message file Not a utility; this section describes how to prepare files
 of messages for use with the msg2bin utility and the JYACC
 FORMAKER library.
 msg2bin Converts message text files to binary format.
 Setup file Not actually a utility; this section describes the setup or
 environment variables supported by JYACC FORMAKER, and
 tells how to prepare setup files.
 var2bin Converts setup variable files to binary format.
 f2r4 Converts Release 3 screen files to Release 4 format.
 bin2c
 Converts binary files to and from C source code, so that
 they may be made memory-resident.
 bin2hex Converts binary files to and from an ASCII format for
 exchange with other computers.
 formlib Collects screen files in a single library file, to simplify
 the management of large numbers of screens.
 lstform Creates a listing telling everything about a screen.
 txt2form Creates a read-only screen from a text file, for quick
 construction of help screens and such.

2 Features and Options Common Among Utilities

The following section describes command-line options and file-handling
procedures shared by most or all of the JYACC FORMAKER configuration utilities.
When a utility deviates from this standard, as a few do, the section describing
that utility will make it clear.

Command-line options are identified by a leading hyphen. You can always obtain a
usage summary from any JYACC FORMAKER utility by invoking it with the -h option,
for instance

 formlib -h

The utility in question will print a brief description of its command line
parameters, including the input files and all command options. Utilities that
can process multiple input files will also support a -v option. It causes them
to print the name of each input file as it is processed.

2.1 Input and Output Files

With a few exceptions, utilities accept multiple input files. Some then combine
information from the inputs to create a listing; others perform some
transformation on each input individually. No utility will ever overwrite an
input file with an identically named output file; if your command calls for such
an action, an error message will be the only result. Most utilities will also
refuse to overwrite an existing output file; you may force the overwrite with
the -f option.

Utilities that create a listing, such as lstform, support a -o option, which
directs the output to a named file. For example:

 lstform -omylist *.frm

lists all the screens in the current directory, and places the listing in a file
named mylist. A special form of this option, -o-, sends the program's output to
the standard output file rather than to a disk file.

Utilities that generate one output file for each input will, by default, give
output files the same name as the corresponding input, but with a different
extension. Each utility has a different default extension (see the next section
for a table); in addition, each one supports a -e option that enables you to
specify the output file extension. For example:

 form2r4 -enew mytop.mnu myscreen.win

converts the Release 3 screens mytop.mnu and myscreen.win to Release 4 format,
and puts the new screens in mytop.new and myscreen.new. The form -e- makes the
output file extension null.

Certain utilities that normally generate multiple output files also support the
-o option; it causes them to place all the output in the file named in the
option. For instance,

 f2struct -oscreenrecs.h screen1.jam screen2.jam

generates C data structures for screen1 and screen2, and places them both in
screenrecs.h. Without the -o option, it would have created two output files,
screen1.h and screen2.h.

By default, if an input filename contains a path component, a utility will strip
it off in generating the output filename; this usually means that output files
will be placed in your default directory. You may supply a -p option to have the
path left on, that is, to create the output file in the same directory as the
input.

2.2 File Names and Extensions

JYACC FORMAKER runs on several different operating systems, which deal in rather
different ways with file naming. We must therefore define a few terms for use in
the following sections:

 full name Everything you and the operating system need to know in
 order to identify a file uniquely.
 name The only truly arbitrary part of the full name, identifying
 anything at all. May not be omitted.
 path A prefix to the name that tells where (on what device,
 directory, or user ID) a file resides. If omitted, defaults
 to a location known to the operating system, such as a
 working directory.
 extension A prefix or suffix to the name that tells what sort of
 information is in the file. May be omitted.

JYACC FORMAKER does not attempt to understand or alter paths; it just uses them
as you supply them. It knows about a class of path separator characters, and
assumes that the path ends at the rightmost such character in the full name.

JYACC FORMAKER, like many other software systems, uses extensions to identify
the contents of a file. (Where proper identification is crucial, it puts "magic
numbers" in the files themselves.) We have tried to make our conventions
flexible: extensions are not required, but are supplied by default, and the
default can always be overridden. There are three distinct operations involving
file extensions:

 1. Finding and modifying files. xform and the JYACC FORMAKER run-time
 system assume that screen files have a common extension, such as jam.
 They will add that extension to any filename that does not already
 contain one before attempting to open it. This rule does not operate if
 extensions are ignored.
 2. Creating new files. Utilities other than xform transform files of one
 type to another, and must name the output file differently from the
 input. They do it by replacing the input file's extension, or adding
 one if there was none. This rule operates even if extensions are
 ignored, in which case the new extension is always added.
 3. Creating data structures. The utilities f2struct and bin2c create data
 structures from screen files. They name the structures by removing the
 path and extension from the input filename. If extensions are ignored,
 only the path is removed.

2.3 Configuring File Extensions and Rules

There are three parameters that control how JYACC FORMAKER uses file extensions:

 1. A flag telling whether JYACC FORMAKER should recognize and replace
 extensions, or ignore them.
 2. Another flag telling whether the extension should go at the beginning
 or the end of the filename.
 3. The character that separates the extension from the name (zero means no
 separator).

The default values for these parameters are recognize, end, and period
respectively. You may alter them using the SMUSEEXT setup variable; but be aware
that people working on the same project should use the same rules, or confusion
is likely to result.

Here is a list of the default extensions used by utility programs.

 Utility Extension

 bin2c language-dependent bin2hex
 none f2r4
 no change f2struct
 language-dependent formlib
 none key2bin
 bin lstform
 lst modkey
 keys msg2bin
 bin term2vid
 vid txt2form
 none var2bin
 bin vid2bin
 bin

2.4 Ordering of Options and Other Arguments

Most utilities take as arguments an output file, a list of input files, and some
options. If present, the output file precedes the input file list. Options may
be placed anywhere after the utility name; they may be supplied separately (each
with its own hyphen), or together (all following a single hyphen); the two
commands

 lstform -fti myscreen
 lstform -f -t -i myscreen

are equivalent. Option letters may be either upper- or lower-case. On certain
systems such as VMS and MS-DOS, where the prevalent "switch character" is /
rather than - , both are supported.

2.5 Notation

The rest of this chapter describes each configuration utility individually.
There are also a few sections that tell how to prepare input files for some of
the utilities. Each section contains the following information:

 .
 The name and purpose of the utility.
 .
 A synopsis of its usage, that is, what you type on the command line to
 run it. Here, literal input appears in boldface, and parameters that
 you supply appear in normal type. Optional parameters are enclosed in
 square brackets []. An ellipsis ... indicates that the previous
 parameter may be repeated. Command options are simply listed after a
 hyphen, as -abcdefg; you may select any combination of them.
 .
 A complete description of the utility's inputs, outputs, and
 processing.
 .
 Where applicable, a list of error conditions that may prevent the
 utility from doing what you tell it.

NAME

 bin2c - convert any binary file to C source code

SYNOPSIS

 bin2c [-flv] textfile binfile [binfile ...]

DESCRIPTION

This program reads binary files created by other JYACC FORMAKER utilities, and
turns each one into C code for a character array initialized to the contents of
the file. Such arrays may then be compiled, linked with your application, and
used as memory-resident files. This utility combines the arrays from all the
input files in a single output file; each array is given a name corresponding to
the name of the input file, with the path and extension stripped off.

Files that can be made memory-resident include the following types:

 1. screens (created by xform)
 2. key translation files (key2bin)
 3. setup variable files (var2bin)
 4. video configuration files (vid2bin)
 5. message files (msg2bin)

The command options are interpreted as follows:

 -f Overwrite an existing output file.
 -l Force the array names derived from the input file names to
 lower-case characters.
 -v Print the name of each input file on the terminal as it is
 processed.

ERROR CONDITIONS

Insufficient memory available. Cause: The utility could not allocate enough
 memory for its needs. Corrective action:
 None.

File "%s" already exists; use '-f' to overwrite. Cause: You have specified an
 output file that already exists.
 Corrective action: Use the -f flag to
 overwrite the file, or use another name.

Cannot open "%s" for writing. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Cannot open "%s" for reading. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error reading file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Error writing file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

NAME

 bin2hex - convert binary to and from hex ASCII, for transport

SYNOPSIS

 bin2hex -cx [-flv] hexfile binary [binary ...]

DESCRIPTION

The bin2hex utility translates binary files of any description to and from a
hexadecimal ASCII representation. It is useful for transmitting files between
computers. The utility is very straightforward; no translation of any sort is
attempted.

Either the -c or the -x switch is required; the others are optional. Here is a
summary:

 -c Create a text file from one or more binary files; the text file's
 name is the first file argument, and the rest are binaries.
 -f Overwrite any existing output files.
 -l Force the filename arguments to lower case.
 -v Print the name of each binary on the terminal as it is processed.
 -x Extract all the binary files contained in an ASCII source. Selective
 extraction is not supported.

ERROR CONDITIONS

Error reading %s Error writing %s Cause: The utility incurred an I/O error while
processing an input or output file. This message will usually be accompanied by
a more specific, system-dependent message. Corrective action: Correct the
system-dependent problem, if possible, and retry the operation.

%s already exists %s already exists, it is skipped Cause: The command you have
issued would overwrite an existing output file. Corrective action: If you are
sure you want to destroy the old file, reissue the command with the -f option.

NAME

 f2struct - create program data structures from screens

SYNOPSIS

 f2struct [-fp] [-ooutfile] [-glanguage] screen
 [screen ...]

DESCRIPTION

This program creates program source files containing data structure definitions
matching the input files. The output file will contain a single structure
bearing the name of the screen.

The language in which the structures are created, and the extension attached to
output file names, are both selected by the -g option. The name of the desired
language follows the g, and must be in a table compiled into the utility. This
option may be placed between file names in the command line to enable files to
be created in different languages. Indeed, the same input file can be named
twice to create, say, both C and Pascal structures:

 f2struct -gc address.jam -gpascal address.jam

You can modify the conversions or write code to handle more languages, as
described in the utility source code; see below. The other command options are
interpreted as follows:

 -f Directs the utility to overwrite an existing output file.
 -p Directs the utility to create each output file in the same directory
 as the corresponding input file.
 -o Causes all output to be placed in outfile.

When a screen name is given to a structure, the screen file's extention is
stripped off. Each field of the structure will be named after a field of the
screen. If a screen field has no name fldm is used, where m is the field number.
The types of the structure fields are derived from the input field data type and
character edits, according to the following rules.

 1. If a field has one of the following data type edits, it is used.
 C data type mnemonic
 omit from struct
 FT_OMIT
 integer FT_INT
 unsigned integer
 FT_UNSIGNED
 short integer FT_SHORT
 long integer FT_LONG
 floating point FT_FLOAT
 long floating FT_DOUBLE
 character string
 FT_CHAR
 2. If a field has no data type edit but has a digits-only or numeric
 character edit, its type is unsigned int or double respectively.
 3. All other fields are of type character string.

Omit from struct is a special type that prevents the field from being included
in any structure.

If a field has multiple occurrences, the corresponding structure member will be
declared as an array.

ERROR CONDITIONS

Language %s undefined. Cause: The language you have given with the -g option has
 not been defined in the utility's tables.
 Corrective action: Check the spelling of the
 option, or define the language ito the utility.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file,
 or use a different name.

%s has an invalid file format. Cause: An input file is not of the expected type.
 Corrective action: Check the spelling and type of
 the offending file.

'%s' has no data to convert. Cause: An input file is empty, or does not have the
 names you specified. Corrective action: Check the
 names.

Not enough memory to process '%s'. Unable to allocate memory. Cause: The utility
 could not allocate enough memory for its needs.
 Corrective action: None.

At least one form name is required. Cause: You have not given any screen files
 as input. Corrective action: Supply one or more
 screen file names.

NAME

 f2r4 - convert Release 3 screens to Release 4 format

SYNOPSIS

 f2r4 [-ja1udvxfp] [-eext] screen [screen ...]

DESCRIPTION

F2r4 converts Release 3 screens to Release 4 format. It gives each new screen
the same name as the old one. It is strongly recommended that you run this
utility in a different directory from where your original Release 3 forms
reside.

There are a few nontrivial changes involved in this conversion. One is that
JYACC FORMAKER control fields may be converted to control strings that do not
occupy space on the screen. Another is that jam_first fields, and jam_pf1 fields
on read-only screens, have been replaced by screen entry functions and AUTO
control strings, respectively. The following options are provided to control the
conversion of JYACC FORMAKER control fields to control strings:

 -j Do not convert control fields to control strings.
 -a Do not convert jam_pf1 fields to AUTO control strings.
 -1 Do not convert the jam_first attached function to a screen entry
 function. This is a one, not an ell.
 -u Convert all unprotected fields to menu fields. This is useful for
 Release 3 item selection screens; in Release 4, item selection
 fields must have the MENU bit set.
 -d Do not delete jam_d_dflt and jam_f_dflt fields from the screen.
 These fields were used in earlier releases of JYACC FORMAKER to
 denote default field and display characteristics.
 -v Print the name of each screen as it is processed.
 -x Delete the input extension.
 -f Overwrite existing output files. Use cautiously: if you do this in
 the directory where your Release 3 screens reside, the Release 4
 screens will be created successfully but your original screens will
 disappear.
 -e Followed by a character string, makes that string the extension for
 output files.
 -p Create each output file in the same directory as the corresponding
 input file. This option is not recommended.

For further information regarding control strings see the Author's Guide.

ERROR CONDITIONS

%s is not a release 3 form Cause: An input file is not of the correct type (this
 is•determined by a sort of magic number
 check.) Corrective action: Make sure you
 haven't already converted•the file, and that
 it is a screen in the first place.

Unable to allocate memory. Cause: The utility couldn't get enough memory for its
 needs. Corrective action: None.

File %s already exists. Use '-f' to overwrite or '-e' to append an extension to
 the output file. Cause: The output file you
 have named already exists. Corrective action:
 Be cautious in your use of -f. JYACC
 suggests•that you create the Release 4 screens
 in an empty directory, not•in the directory
 where the Release 3 screens reside.

)

NAME

 formlib - screen librarian

SYNOPSIS

 formlib -crdxt [-flv] library [screen ...]

DESCRIPTION

Formlib is a screen librarian. It creates libraries of screens that have been
created with the JYACC FORMAKER authoring utility. The representation of the
screen in the library is the original binary version. This utility enables one
to store many screens in a single file and not clutter a directory with many
small screen files.

Exactly one of the unbracketed command options must be given; it controls the
action of the utility, as follows.

 -c Create a new library, placing in it all the screens named.
 -r Add the screens to the named library, replacing any that are already
 there.
 -d Delete the screens named from the library.
 -x extract the screens from the named library, placing them in the
 current directory. If no screens are named, everything in the
 library will be extracted.
 -t List the current contents of the library.

There is also a -l option which may be used in conjunction with any of the
options listed above, and will force the list of screen names to lower case; a
-f option that will cause an existing library to be overwritten; and a -v option
that will cause the utility to print the name of each screen as it is processed.

To create a new library, use the -c option. For example:

 formlib forms -c form1 form2

This creates a new file called forms containing the same binary representations
of form1 and form2 as are in their respective files.

To see what screens are catalogued in the library file, the -t option is used.
For example, on the above file forms:

 formlib forms -t

would list:

 FORMLIB--Librarian for forms created by JYACC FORMAKER.
 Copyright (C) 1988 JYACC, Inc.

 LIBRARY 'forms' contains:
 form1
 form2

If you wish to add a new screen to the library, or replace one already in the
library with a new version, use the -r option. For example, to add the screen
form3 to the library forms:

 formlib forms -r form3

Now if you list the contents of forms using the -t option, you get:

 FORMLIB--Librarian for forms created by JYACC FORMAKER.
 Copyright (C) 1988 JYACC, Inc.

 LIBRARY 'forms' contains:
 form1
 form2
 form3

If you need to obtain one or more of the forms for use by an application or for
modification by the JYACC FORMAKER utility, you can extract it from the library
file with the -x option. For example:

 formlib forms -x form2

will create a file called form2 whose contents are the binary representation of
that form just as it was created with xform.

If a form is no longer needed and you wish to delete it from the library, the -d
option is used. For example:

 formlib forms -d form1

would delete form1 from the library file forms. Now if you list the contents of
forms using the -t option, you get:

 FORMLIB--Librarian for forms created by JYACC FORMAKER.
 Copyright (C) 1988 JYACC, Inc.

 LIBRARY 'forms' contains:
 form2
 form3

ERROR CONDITIONS

Library `%s' already exists; use `-f' to overwrite. Cause: You have specified an
 existing output file.
 Corrective action:
 Use the -f option to
 overwrite the file,
 or use a different
 name.

Cannot open `%s'. Cause: An input file was missing or unreadable. Corrective
 action: Check the
 spelling, presence,
 and permissions of
 the file in question.

Unable to allocate memory. Insufficient memory available. Cause: The utility
 could not allocate
 enough memory for its
 needs. Corrective
 action: None.

File `%s' is not a library. Cause: The named file is not a form library
 (incorrect magic
 number). Corrective
 action: Check the
 spelling and
 existence of your
 library.

`%s' not in library. No forms in library. Cause: A screen you have named is not
 in the library.

 Corrective action:
 List the library to
 see what's in it,
 then retry the
 operation.

Temporary file `%s' not removed. Cause: The intermediate output file was not
 removed, probably
 because of an error
 renaming it to the
 real output file.
 Corrective action:
 Check the permissions
 and condition of the
 files, then retry the
 operation.

NAME

 Key file - keyboard translation table source

DESCRIPTION

JYACC FORMAKER uses a key translation table to map keys you type into a
keyboard-independent set of codes, thus relieving applications of the need to
know about different terminals. This section tells how to format a text file
containing a key translation table.

You can also construct a key translation table using the modkey utility, an
interactive program which is documented elsewhere in this chapter. Modkey is
recommended if you are defining a key translation file from scratch, or if you
are new to JYACC FORMAKER. After creating a key file, either by hand or with
modkey, you will need to translate it to binary with the key2bin utility
(documented separately) and assign the binary file to the SMKEY setup variable
for use by the run-time system.

8.1 Key Translation File Format

The key translation file contains one line for each key. Each line has the
following components:

 logical-value(label) = character-sequence

Logical-value can either be one of the mnemonics defined in the file smkeys.h ,
or a hexadecimal value. See Section 8.2 for a table. Only modkey differentiates
between the two methods; they operate identically in the run-time system. In
modkey, entries specified with hexadecimal values will all appear on the
miscellaneous key definition screen, while entries specified with mnemonics will
be shown on one of the four screens devoted to specific types of keys. At most
24 entries may be specified in hexadecimal.

The label, which must be enclosed in parentheses, should be a short string that
appears on top of the key on your keyboard. It will be stored in the key
translation file and can be accessed at run-time through various library
functions and the %k escape in status-line messages (see d_msg_line). Key
labels, or keytops as they are sometimes called, can be invaluable in user help
messages and prompts. The label and parentheses are optional; the following
equal sign, however, is required.

The character-sequence is up to six characters that JYACC FORMAKER will
translate to the logical value on the left. ASCII control characters may be
represented by mnemonics, listed in Section 8.3, or as hex numbers. Displayable
characters such as letters can just be typed in. Blanks between characters are
ignored; if a space occurs in the sequence, it should be entered as SP.

Lines beginning with a pound sign # will be treated as comments, i.e. ignored,
by key2bin. Some representative key translation file entries follow.

 EXIT(F1) = SOH @ CR
 XMIT(Enter) = SOH O CR
 TAB = HT
 BACK = NUL SI
 BKSP = BS
 RARR = ESC [C
 LARR = ESC [D
 UARR = ESC [A
 DARR = ESC [B
 0x108 = DEL
 PF2(F2) = SOH A CR

If the same mnemonic appears more than once in the file, the last occurrence
will appear in the modkey utility. If duplicate right-hand sides appear with
different logical values, unpredictable results will occur. Incorrectly
formatted lines will cause key2bin to abort.

8.2 Key Mnemonics and Logical Values

The following table lists JYACC FORMAKER's logical key values, their mnemonics,
and their actions. Entries followed by "**" are required for xform to work
properly; those followed by "*" are strongly recommended.

 EXIT 0x103** exit SPF1 0x4101*
 XMIT 0x104** transmit SPF2 0x4201*
 HELP 0x105* help SPF3 0x4301*
 FHLP 0x106 screen-wide help SPF4 0x4401*
 BKSP 0x108* backspace SPF5 0x4501*
 TAB 0x109* tab SPF6 0x4601*
 NL 0x10a* new line SPF7 0x4701
 BACK 0x10b* backtab SPF8 0x4801
 HOME 0x10c* home SPF9 0x4901
 DELE 0x10e* delete character SPF10 0x4a01
 INS 0x10f* insert character SPF11 0x4b01
 LP 0x110 local print SPF12 0X4c01
 FERA 0x111* field erase SPF13 0x4d01
 CLR 0x112* clear unprotected SPF14 0x4e01
 SPGU 0x113 scroll up a page SPF15 0x4f01
 SPGD 0x114 scroll down a page SPF16 0x5001
 LARR 0x118* left arrow SPF17 0x5101
 RARR 0x119* right arrow SPF18 0x5201
 DARR 0x11a* down arrow SPF19 0x5301
 UARR 0x11b* up arrow SPF20 0x5401
 REFR 0x11e* refresh screen SPF21 0x5501
 EMOH 0x11f go to last field SPF22 0x5601
 CAPS 0x110 change shift ind. SPF23 0x5701
 INSL 0x120 insert occurrence SPF24 0x5801
 DELL 0x121 delete occurrence
 ZOOM 0x122 zoom on field APP1 0x6102
 APP2 0x6202
 PF1 0x6101 APP3 0x6302
 PF2 0x6201* APP4 0x6402
 PF3 0x6301* APP5 0x6502
 PF4 0x6401* APP6 0x6602
 PF5 0x6501 APP7 0x6702
 PF6 0x6601* APP8 0x6802
 PF7 0x6701* APP9 0x6902
 PF8 0x6801* APP10 0x6a02
 PF9 0x6901* APP11 0x6b02
 PF10 0x6a01 APP12 0x6c02
 PF11 0x6b01 APP13 0x6d02
 PF12 0x6c01 APP14 0x6e02
 PF13 0x6d01 APP15 0x6f02
 PF14 0x6e01 APP16 0x7002
 PF15 0x6f01 APP17 0x7102
 PF16 0x7001 APP18 0x7202
 PF17 0x7101 APP19 0x7302
 PF18 0x7201 APP20 0x7402
 PF19 0x7301 APP21 0x7502
 PF20 0x7401 APP22 0x7602
 PF21 0x7501 APP23 0x7702
 PF22 0x7601 APP24 0x7802
 PF23 0x7701
 PF24 0x7801

8.3 ASCII Character Mnemonics

This table lists two- and three-letter ASCII mnemonics for control and extended
control characters.

 DLE 0x10 DSC 0x90
 SOH 0x01 DC1 0x11 PU1 0x91
 STX 0x02 DC2 0x12 PU2 0x92
 ETX 0x03 DC3 0x13 STS 0x93
 EOT 0x04 DC4 0x14 IND 0x84 CCH 0x94
 ENQ 0x05 NAK 0x15 NEL 0x85 MW 0x95
 ACK 0x06 SYN 0x16 SSA 0x86 SPA 0x96
 BEL 0x07 ETB 0x17 ESA 0x87 EPA 0x97
 BS 0x08 CAN 0x18 HTS 0x88
 HT 0x09 EM 0x19 HTJ 0x89
 NL 0x0a SUB 0x1a VTS 0x8a
 VT 0x0b ESC 0x1b PLD 0x8b CSI 0x9b
 FF 0x0c FS 0x1c PLU 0x8c ST 0x9c
 CR 0x0d GS 0x1d RI 0x8d OCS 0x9d
 SO 0x0e RS 0x1e SS2 0x8e PM 0x9e
 SI 0x0f US 0x1f SS3 0x8f APC 0x9f

 SP 0x20 DEL 0x7f

NAME

 key2bin - convert key translation files to binary

SYNOPSIS

 key2bin [-pv] [-eextension] keyfile [keyfile ...]

DESCRIPTION

The key2bin utility converts key translation files into a binary format for use
by applications using the JYACC FORMAKER library. The key translation files
themselves may be generated by JYACC modkey, which is documented elsewhere in
this chapter, or created with a text editor according to the rules described in
the section on key files in this chapter.

Keyfile is the name of an ASCII key translation file. By convention it is an
abbreviation of the terminal's name, plus a tag identifying it as a key
translation file; for instance, the key translation file for the Wyse 85 is
called W85keys. The utility first tries to open its input file with the exact
name you put on the command line; if that fails, it appends keys to the name and
tries again. The output file will be given the name of the successfully opened
input file, with a default extension of bin.

The command options are interpreted as follows:

 -p Place the binary files in the same directories as the input files.
 -v List the name of each input file as it is processed.
 -e Use the output file extension that follows the option letter in
 place of the default bin.

To make a key translation file memory-resident, first run the binary file
produced by this utility through the bin2c utility to produce a program source
file; then compile that file and link it with your program.

ERROR CONDITIONS

File '%s' not found Neither '%s' nor '%s' found. Cause: An input file was
 missing or unreadable.
 Corrective action: Check
 the spelling, presence,
 and permissions of the
 file in question.

Unknown mnemonic in line: '%s' Cause: The line printed in the message does not
 begin with a logical key
 mnemonic. Corrective
 action: Refer to
 smkeys.h for a list of
 mnemonics, and correct
 the input.

No key definitions in file '%s' Cause: Warning only. The input file was empty or
 contained only comments.
 Corrective action: None.

Malloc error Cause: The utility could not allocate enough memory for its needs.
 Corrective action: None.

Cannot create '%s' Error writing '%s' Cause: An output file could not be
 created, due to lack of
 permission or perhaps
 disk space. Corrective
 action: Correct the file

 system problem and retry
 the operation.

NAME

 lstform - list selected portions of screens

SYNOPSIS

 lstform [-adijmnpstv] [-eext] [-ooutfile] screen
 [screen ...]

DESCRIPTION

This program lists selected portions of screen files. By default, all the data
about each field in each screen is included. Using command options, however, you
can direct that only some of the display be generated. The command options are
interpreted as follows:

 -a List default field characteristics for the screen.
 -d List display data.
 -e Generate one output file, with the extension following the option
 letter, for each input file.
 -i List initial field data, including offscreen data.
 -j List JYACC FORMAKER control strings.
 -m List data relevant to the screen as a whole: border, screen entry
 function, etc.
 -n Include a snapshot of the screen showing underscores in place of
 fields.
 -o Send the output to a single file whose name follows the option
 letter.
 -p Place output files in the same directory as the corresponding
 inputs.
 -s Include a snapshot of screen showing display data and initial
 onscreen contents of fields.
 -t List all field edits.
 -v Print the name of each screen on the terminal as it is processed.

ERROR CONDITIONS

Error opening input file. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error opening output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Unable to allocate memory. Can't allocate memory. Cause: The utility could not
 allocate enough memory for its needs.
 Corrective action: None.

Error reading form file. Error writing list file. Cause: The utility incurred an
 I/O error while processing the file named in
 the message. Corrective action: Retry the
 operation.

EXAMPLE

The following is an annotated example of the output of this
program when run on the summary (PF5) window of xform.
Ellipses ... indicate abridgements.

FORM 'fm_summ_wi'

FORM DATA:

form size 12 lines; 78 columns
Border style 0 REVERSE VIDEO HIGHLIGHTED BLUE
Background color WHITE
Form help screen 'fm_sum0hlp'

Snapshot with initial data

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
--

Field Data Summary

Name Char Edits unfilter
Length (Max) Onscreen Elems Offset (Max Items)

Display Att:
Field Edits:
Other Edits:

Snapshot with underscores

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345678
--

Field Data Summary

Name _______________________________ Char Edits ________ _
Length ___ (Max ___) Onscreen Elems ___ Offset ___ _ (Max Items ____)

Display Att: ___
Field Edits: ___
Other Edits: ___

--

FIELD DATA:

Field number 1 (line 4, column 8, length = 31)
Display attribute UNDERLINED HIGHLIGHTED YELLOW
Field edits MENU-FIELD; RETURN-ENTRY;
Help fm_nam1hlp

Field number 2 (line 4, column 52, length = 8)
Scrolling values max items = 7; increment = 1; circular;
Display attribute UNDERLINED HIGHLIGHTED YELLOW
Field edits PROTECTED FROM: ENTRY OF DATA; CLEARING; VALIDATION;
Help fm_chr1hlp

initial data:
item 1: unfilter
...
item 7: reg exp

...

Field number 4 (line 5, column 10, length = 3)
Display attribute UNDERLINED HIGHLIGHTED YELLOW
Character edits DIGITS-ONLY
Field edits RIGHT-JUSTIFIED; DATA-REQUIRED;
Range 1 TO 255
Help fm_len1hlp

...

Field number 15 (line 9, column 17, length = 60)
Vertical array 2 elements; offset between elements = 1
Array field numbers : 15 16
Display attribute HIGHLIGHTED YELLOW
Field edits WORD-WRAP; PROTECTED FROM: ENTRY OF DATA; TABBING INTO;
CLEARING; VALIDATION;

DISPLAY DATA:

Display text Field Data Summary
Position line = 2; column = 31; length = 18
Display attribute CYAN

Display text Name
Position line = 4; column = 3; length = 4
Display attribute CYAN

...

NAME

 Message file - JYACC FORMAKER error message file format

DESCRIPTION

During initialization, the binary message file identified by the environment
variable SMMSGS is read into memory. It contains error messages and other text
used by the JYACC FORMAKER library, such as the 3-letter abbreviations used for
month and day of week names; it can also contain user messages. The binary
message file is created by msg2bin, q.v., from a text file. This section
describes the text file.

Each line of the message file should have the form

 tag = message

The tag is a single word; system message tags have standard prefixes, listed
below, and matching identifiers defined in smerrors.h . You may use any tag for
your messages that does not begin with a system prefix. The equal sign is
required, and the message to its right is completely arbitrary, except that it
may not contain newlines (carriage returns). If you have a long message, you may
end the first line or lines with a backslash \ and continue it on the next. A
pound sign # at the beginning of a line makes it a comment; msg2bin ignores
comments.

System messages are identified by one of the following reserved tag prefixes,
and have identifiers defined in the system include file smerror.h :

 SM Denotes messages and strings used by the JYACC FORMAKER run-time
 library.
 FM Identifies messages issued by the screen editor.

Appendix A contains a list of all the system messages as distributed by JYACC,
plus explanations and actions recommended for recovery.

The msg2bin utility uses tags only to distinguish user messages from system
messages; all user entries are assigned consecutive numbers starting from 0,
regardless of their tags. It is the responsibility of the application programmer
to maintain the ordering of messages and the assignment of identifiers (manifest
constants) for them. Some typical entries are shown below.

 SM_RENTRY = Entry is required. SM_MUSTFILL = Must fill field. SM_CKDIGIT =
 Check digit error. SM_NOHELP = No help text available. US_INSUF =
 Insufficient funds. RESERVED = US_SUPV = See supervisor.

11.1 Modifying and Adding Messages

The ASCII version of the message file can be modified using a text editor. For
example, if the file was modified as follows:

 SM_CKDIGIT = Invalid check digit.

the above message would appear in the case of a check digit error, instead of
Check digit error. If an application program were to be compiled with the
following definitions:

#define US_INSUF 0
#define RESERVED 1
#define US_SUPV 2

it could issue the calls:

 sm_quiet_err (sm_msg_get (US_INSUF));

 sm_err_reset (sm_msg_get (US_SUPV));

If a decision were made later to change the message text, the change could be
made by modifying the message file only, without any need to modify and
recompile the application code.

If any message is missing from the message file, and a call is made to display
the message, only the message number will be shown. Thus, if the file had no
entry for SM_RENTRY, and an operator failed to enter data in a field in which an
entry was required, the status line would simply display the number
corresponding to SM_RENTRY in smerror.h .

User messages may also be placed in separate message files, loaded with calls to
msgread, and accessed in the same way as above.

11.2 Embedding Attributes and Key Names in Messages

Several percent escapes provide control over the content and presentation of
status messages. They are interpreted by sm_d_msg_line, which is eventually
called by everything that puts text on the status line (including field status
text). The character following the percent sign must be in upper-case; this is
to avoid conflict with the percent escapes used by printf and its variants.
Certain percent escapes (%W, for instance; see below) must appear at the
beginning of the message, i.e. before anything except perhaps another percent
escape.

 .
 If a string of the form %Annnn appears anywhere in the message, the
 hexadecimal number nnnn is interpreted as a display attribute to be
 applied to the remainder of the message. The table below gives the
 numeric values of the logical display attributes you will need to
 construct embedded attributes. If you want a digit to appear
 immediately after the attribute change, pad the attribute to 4 digits
 with leading zeroes; if the following character is not a legal hex
 digit, leading zeroes are unnecessary.
 .
 If a string of the form %KKEYNAME appears anywhere in the message,
 KEYNAME is interpreted as a logical key mnemonic, and the whole
 expression is replaced with the key label string defined for that key
 in the key translation file. If there is no label, the %K is stripped
 out and the mnemonic remains. Key mnemonics are defined in smkeys.h ;
 it is of course the name, not the number, that you want here. The
 mnemonic must be in upper-case.
 .
 If %N appears anywhere in the message, the latter will be presented in
 a pop-up window rather than on the status line, and all occurrences of
 %N will be replaced by newlines.
 .
 If the message begins with a %B, JYACC FORMAKER will beep the terminal
 (using sm_bel) before issuing the message.
 .
 If the message begins with %W, it will be presented in a pop-up window
 instead of on the status line. The window will appear near the bottom
 center of the screen, unless it would obscure the current field by so
 doing; in that case, it will appear near the top. If the message
 begins with %MU or %MD, and is passed to one of the error message
 display functions, JYACC FORMAKER will ignore the default error message
 acknowledgement flag and process (for %MU) or discard (for %MD) the
 next character typed.

Note that, if a message containing percent escapes - that is, %A, %B, %K, %N or
%W - is displayed before sm_initcrt or after %W is called, the percent escapes
will show up in it.

 Attribute Hex value

 BLACK 0 BLUE
 1 GREEN
 2 CYAN
 3 RED
 4 MAGENTA
 5 YELLOW
 6 WHITE
 7

 B_BLACK 0 B_BLUE
 100 B_GREEN
 200 B_CYAN
 300 B_RED
 400 B_MAGENTA
 500 B_YELLOW
 600 B_WHITE
 700

 BLANK 8 REVERSE
 10 UNDERLN
 20 BLINK
 40 HILIGHT
 80 DIM
 1000

If the cursor position display has been turned on (see sm_c_vis), the end of the
status line will contain the cursor's current row and column. If the message
text would overlap that area of the status line, it will be displayed in a
window instead.

Note that the processing of percent escapes in messages is done only when the
message is displayed on the status line; they will not be expanded simply by
virtue of having been retrieved from the message file. Also, at present, msg2bin
does no syntax checking.

NAME

 modkey - key translation file editor

SYNOPSIS

 modkey [keyfile]

DESCRIPTION

12.1 Introduction

The modkey utility provides a convenient mechanism for specifying how keys on a
particular keyboard should operate in the JYACC FORMAKER environment. It
provides for defining the function, editing, and cursor control keys used by
JYACC FORMAKER, as well as keys that produce foreign or graphics characters.
Finally, modkey can store label text corresponding to your keys, for use in
prompts and help messages.

The output of modkey is a text file called the key translation file. After being
converted into a binary table by the key2bin utility, it is used to translate
physical characters generated by the keyboard into logical values used by the
JYACC FORMAKER library. By dealing with logical keys, programs can work
transparently with a multitude of keyboards.

Refer to the Author's Guide for a table explaining the functions of the cursor
control and editing keys. The format of the key translation file generated by
modkey is explained in the section of this chapter on key files.

12.1.1 Key Translation

The ASCII character set is comprised of eight-bit characters in the range 0 to
256 (hex FF). It defines characters in the ranges hex 20 to hex 7E and hex A0 to
hex FE as data characters, and the rest as control characters. Control
characters have mnemonic names; the character hex 1B, for instance, is usually
called ESC or escape. See section 8.3 for a list. Note that certain computers,
such as PRIME, "flip" the high bit of ASCII characters; on such computers, ESC
would be hex 9B and the letter A would be hex C1. In this document, standard
ASCII values will be used.

When you press a key, the keyboard generates either a single ASCII data
character, or a sequence of characters beginning with an ASCII control code.
JYACC FORMAKER converts these characters into logical keys before processing
them. Logical keys are numbers between zero and 65535. Logical values between 1
and hex FF represent displayable data; values between hex 100 and hex 1FF are
cursor control and editing keys; values greater than hex 1FF are function keys.
Zero is never used. For a list of logical values, see Section 8.2.

Data characters received from the keyboard are not translated. Sequences
beginning with a control character are translated to a logical value,
representing a data character or function key, according to the following
algorithm.

When a control character is received, we search the key translation table for a
sequence beginning with that character. If there is one, we read additional
characters until a match with an entire sequence in the table is found, and
return the logical value from the table. If the initial character is in the
table but the whole sequence is not, the whole is discarded, on the assumption
that it represents a function key that is missing from the table. Finally, if a
control character does not begin any sequence in the table, it is returned
unchanged; this is useful for machines such as IBM PCs that use control codes
for displayable characters. The Programmer's Guide contains a detailed
discussion of key translation.

ÉÍÍ»
º WELCOME TO JYACC MODKEY UTILITY º
º º
º º
ºUsing this utility you can edit a previously created KEY TRANSLATION file º
ºor create a new one. º
º º
ºEnter the name of the file you would like to create or modify in the field º
ºbelow and then press the "+" key. File names should be in the form "tttkeys" º
ºwhere ttt is a mnemonic for the type of terminal you are using. For example º
º"vt100keys" might be used for a vt100 terminal. º
º º
ºTo exit the MODKEY utility without proceeding further, press the "-" key. º
º º
º º
º File Name: ____________________ (Enter '<' to BACKSPACE º
º Enter "+" to ENTER º
º Enter "-" to EXIT) º
º º
º º
ºNote: Control keys are not active in this utility. Instead, data keys are º
º used for control purposes. º
ÈÍÍ¼

 Figure 1: Welcome Screen

12.2 Executing the Utility

You execute modkey by typing its name on the command line, optionally followed
by the name of the key file you want to examine or change. If you supply a key
file name, the main menu (Figure 2) appears at once. If you do not give a
filename, the welcome screen (Figure 1) appears, and you may enter one there.

12.3 Control Keys and Data Keys

Since modkey is used to define the cursor control, editing, and function keys,
these keys do not operate in the utility. Instead, displayable data keys are
used for these purposes. For example, the TAB key is usually used to move the
cursor from one field to the next. But since TAB is one of the keys being
defined with this utility, it cannot first be recognized; the data key t is used
instead.

Using data keys for control purposes poses no problem since, in this utility,
data keys may not begin a control sequence. This will become clearer when the
screens in subsequent sections are described. The control functions that are
supported in the modkey utility and the keys that are used to provide them are
given in the following table:

 Control function Key

 TRANSMIT + EXIT
 - HELP
 ? REDRAW SCREEN
 ! BACKSPACE
 < BACKTAB
 b FIELD ERASE
 d ENTER KEYTOP
 k TAB
 t ERASE ALL UNPROTECTED
 z

ÉÍÍ»
º º
º º
º JYACC MODKEY UTILITY MAIN MENU º
º º
º º
º º
º 0. Exit º
º 1. Help º
º 2. Define Cursor Control and Editing Keys º
º 3. Define Function Keys º
º 4. Define Shifted Function Keys º
º 5. Define Application Function Keys º
º 6. Define Miscellaneous Keys º
º 7. Test Key Translation File º
º º
º º
º Enter the desired option (0 - 7): _ º
º º
º º
º º
º º
ÈÍÍ¼

 Figure 2: Main Menu

The k key, or ENTER KEYTOP, causes a small window to appear under the cursor in
which you may enter the label found on the key in question on your keyboard.
This label will be stored in the key translation file; it can be accessed by
library functions and in status line messages, and is very useful in help
messages telling an operator which key to press. It operates in all the screens
below the main menu that are actually used for defining keys.

12.4 Welcome Screen

When you invoke modkey without supplying a key file name, the welcome screen
(Figure 1) is displayed. Here you specify the key translation file to be created
or modified, by entering it in the field labeled File Name. If you make a
mistake, backspace over it using the < key. When finished, complete the screen
by pressing the + key.

Key translation file names should begin with a mnemonic for the type of terminal
you are using, and end with keys. For example vt100keys might be used for a
vt100 terminal. This convention, while not mandatory, helps avoid confusion with
video files and with other key translation files; all files distributed by JYACC
adhere to it.

If the file already exists, it is read into memory and may be modified;
otherwise, you start from scratch. All modifications are made in memory, and
file updates are performed only at the conclusion of the program and at your
explicit request.

To exit the modkey utility while the welcome screen is displayed, press the "-"
key (EXIT).

12.5 Main Menu

The main menu shown in Figure 2 is displayed at entry to the utility, and
whenever you return from a lower-level screen. You select an option by typing
the corresponding number. For example, to test the key translation file, press
"7". If you make an invalid selection, an error message will appear; acknowledge
it by pressing the space bar. The functions on the main menu are described in

ÉÍÍ»
º º
º JYACC MODKEY UTILITY EXIT SCREEN º
º º
º º
º º
º º
º º
º Enter: _ 'S' to save data in a file º
º 'E' to exit the utility without saving data º
º '-' to return to the main menu º
º º
º º
º º
º File Name: ____________________ º
º º
º º
º Special Keys: + ENTER (save changes in file) º
º - EXIT (return to main menu) º
º < BACKSPACE º
º º
º º
ÈÍÍ¼

 Figure 3: Exit Screen

subsequent sections.

12.6 Exiting the Utility

To exit modkey, press 0 on the main menu. This causes the exit screen (Figure 3)
to be invoked. This screen initially contains a single field into which you
enter s, e, or -. To save the key translation file on disk, enter "S" or "s".
When this is done, the file name entered in the Welcome Screen appears; you may
change it if you wish, and press + to write it to disk. To exit the utility
without saving the file, enter e. If you press -, the main menu will reappear,
and you may make additional changes to the key translation file.

12.7 Help Screen

The help screen may be selected from the main menu by pressing "1"; it appears
in Figure 4. In addition to displaying useful information, this screen may be
used to test out the kinds of keystroke entry that will be required on
subsequent screens in this utility. There are two types of keys: those that
generate a single ASCII character, and those that generate a sequence of
characters. When a sequence is generated, the first character is always an ASCII
control character. To see the characters generated by a particular key, type
that key twice while the help screen is displayed. (Different keys generate
different numbers of characters; when you press the key twice, the program can
sense the pattern.)

When the key is pressed the first time, the characters produced will be shown
following CHARACTERS GENERATED. When the key is pressed the second time and
recognized, the sequence representing the key will appear following KEY STROKE.

It is sometimes desirable to designate a sequence of keystrokes to serve a
particular purpose. For example, on a system with a small number of function
keys, one may choose to implement the function keys F1 through F9 with the
sequence control-F n where n is a single digit. This sequence of keystrokes can
be interpreted by JYACC FORMAKER as a single key.

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - HELP SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
ºThere are two types of keys on your keyboard--Data keys and Control keys. Dataº
ºkeys will generate a single printable character when pressed. Control keys º
ºwill generate a sequence of one or more characters, the first of which is non- º
ºprintable. º
º º
ºIn subsequent screens, you will be asked to designate the control keys that º
ºshould be used for various functions. For example, one control key will be º
ºdesignated as EXIT, another as PF1. To assign a key to a function, the key º
ºmust be pressed twice in succession. Try this in the field below. º
º º
º Press key twice: º
º CHARACTERS GENERATED ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ º
º KEY STROKE ___ ___ ___ ___ ___ ___ º
º º
º Use the "+" or "-" keys to exit to the main menu º
º º
ºWhen done correctly, the characters generated by the key will be shown in º
ºthe KEY STROKE field. As each key is typed, its characters are shown in the º
ºCHARACTERS GENERATED field. º
º º
ºIf you get out of sync. press the space bar repeatedly until a message appears.º
ÈÍÍÍ¼

 Figure 4: Help Screen

To demonstrate this, type control-F 1 into the help screen, by pressing the F
key while holding the CTRL key down, releasing both, and then pressing the 1
key. The sequence ACK 1 will appear following CHARACTERS GENERATED. Repeating
the sequence will duplicate the ACK 1 after CHARACTERS GENERATED column, and
also display ACK 1 following KEY STROKE.

If a printable ASCII character is pressed as the first key in a sequence, modkey
immediately displays it in the KEY STROKE column. If a non-printable character
is pressed and then a second, different character is pressed, modkey will assume
that a sequence is being tried and will continue displaying these characters in
the CHARACTERS GENERATED field. However, if the sequence gets to be longer than
six characters without starting to repeat, modkey will display Sequence too
long. You must acknowledge this message by pressing the space bar. If you
realize you have made a mistake in entering a key or key sequence and do not
wish to duplicate it, press any key repeatedly until you see Sequence too long.
After acknowledging the message, you can start over.

To exit from the help screen and return to the main menu, press the "-" key
(EXIT) as the first character in a sequence.

12.8 Defining Cursor Control and Editing Keys

This function allows the operator to specify the keys that should be used for
the various cursor control and editing operations. When 2 is selected from the
main menu, the screen shown in Figure 5 appears. This screen has a field for
each of the cursor control and editing functions supported by JYACC FORMAKER.
Each function has a logical value defined in the file smkeys.h . The purpose of
this screen is to allow the operator to specify a sequence of characters for
each function key.
12.8.1 Assigning a Key to a Function

To designate a key for a particular cursor control or editing function, position
the cursor after that function's name and press the key twice. For example, to
designate a key as the EXIT key, press it twice in succession while the cursor
is in the EXIT field. When modkey recognizes the second keystroke, the sequence

ÉÍÍÍ»
º JYACC MODKEY - CURSOR CONTROL AND EDITING KEY DEFINITION SCREEN º
º º
ºEXIT ___ ___ ___ ___ ___ ___ LEFT ARROW ___ ___ ___ ___ ___ ___ º
ºTRANSMIT ___ ___ ___ ___ ___ ___ RIGHT ARROW ___ ___ ___ ___ ___ ___ º
ºHELP ___ ___ ___ ___ ___ ___ UP ARROW ___ ___ ___ ___ ___ ___ º
ºFORM HELP ___ ___ ___ ___ ___ ___ DOWN ARROW ___ ___ ___ ___ ___ ___ º
ºLOCAL PRINT ___ ___ ___ ___ ___ ___ CHAR DELETE ___ ___ ___ ___ ___ ___ º
ºNEW LINE ___ ___ ___ ___ ___ ___ INSERT MODE ___ ___ ___ ___ ___ ___ º
ºTAB ___ ___ ___ ___ ___ ___ FIELD ERASE ___ ___ ___ ___ ___ ___ º
ºBACK TAB ___ ___ ___ ___ ___ ___ ERASE ALL ___ ___ ___ ___ ___ ___ º
ºHOME ___ ___ ___ ___ ___ ___ INSERT LINE ___ ___ ___ ___ ___ ___ º
ºBACK SPACE ___ ___ ___ ___ ___ ___ DELETE LINE ___ ___ ___ ___ ___ ___ º
ºLAST FIELD ___ ___ ___ ___ ___ ___ ZOOM ___ ___ ___ ___ ___ ___ º
ºSCROLL UP ___ ___ ___ ___ ___ ___ REFRESH ___ ___ ___ ___ ___ ___ º
ºSCROLL DOWN ___ ___ ___ ___ ___ ___ º
º º
º Each key or sequence of keys must be pressed twice in succession. º
º º
º Special Keys: + ENTER t TAB z ERASE ALL º
º - EXIT b BACKTAB ! REDRAW SCREEN º
º ? HELP d DELETE ENTRY k SET KEYTOPS º
ÈÍÍÍ¼

 Figure 5: Cursor Key Screen

of characters generated by the key will be displayed, and the cursor will move
to the next field.

It is not permissible to define a printable ASCII character as a cursor control
or editing key. This means that the sequence of characters generated by the key
must start with an ASCII control character. If this is not the case, an error
will be displayed. An error will also be displayed if the sequence of characters
matches a sequence assigned to another function.

When a field is left empty, its corresponding function will not operate in
programs using the Keyboard Translation file being defined. If your program has
no use for a particular key (such as GO TO LAST FIELD), you may leave that entry
blank on this screen. However, certain keys are required for the proper
operation of xform, and should be specified if you are creating a table for use
with it. A list of the required keys is given in Section 8.2.

Situations may arise in which you do not press the same key twice in succession.
This will be evident because modkey will not display the characters that were
generated. To recover, press the space bar repeatedly until the message Sequence
too long appears. Then, after acknowledging the message with the space bar, you
may enter the correct keystrokes.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

12.8.2 Assigning a Sequence of Keys to a Function

It is sometimes desirable to designate a sequence of keystrokes to serve a
particular purpose. For example, on a keyboard with few function keys, one might
implement the function keys PF1 through F9 with the sequences control-F 1
through control-F 9.

ÉÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - PROGRAM FUNCTION KEY DEFINITION SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º PF1 ___ ___ ___ ___ ___ ___ PF13 ___ ___ ___ ___ ___ ___ º
º PF2 ___ ___ ___ ___ ___ ___ PF14 ___ ___ ___ ___ ___ ___ º
º PF3 ___ ___ ___ ___ ___ ___ PF15 ___ ___ ___ ___ ___ ___ º
º PF4 ___ ___ ___ ___ ___ ___ PF16 ___ ___ ___ ___ ___ ___ º
º PF5 ___ ___ ___ ___ ___ ___ PF17 ___ ___ ___ ___ ___ ___ º
º PF6 ___ ___ ___ ___ ___ ___ PF18 ___ ___ ___ ___ ___ ___ º
º PF7 ___ ___ ___ ___ ___ ___ PF19 ___ ___ ___ ___ ___ ___ º
º PF8 ___ ___ ___ ___ ___ ___ PF20 ___ ___ ___ ___ ___ ___ º
º PF9 ___ ___ ___ ___ ___ ___ PF21 ___ ___ ___ ___ ___ ___ º
º PF10 ___ ___ ___ ___ ___ ___ PF22 ___ ___ ___ ___ ___ ___ º
º PF11 ___ ___ ___ ___ ___ ___ PF23 ___ ___ ___ ___ ___ ___ º
º PF12 ___ ___ ___ ___ ___ ___ PF24 ___ ___ ___ ___ ___ ___ º
º º
º º
º Each key or sequence of keys must be pressed twice in succession º
º º
ºSpecial keys: + ENTER ? HELP k SET KEYTOPS º
º - EXIT d DELETE ENTRY ! REDRAW SCREEN º
º t TAB z ERASE ALL º
º b BACKTAB º
ÈÍÍ¼

 Figure 6: Function Key Screen

One assigns a sequence of keystrokes to a function in much the same way as one
assigns individual keys. The sequence is entered once in its entirety and is
then repeated. Upon successful completion, the characters generated on behalf of
the sequence are displayed.

If you do not press the same key sequence twice, modkey will not display the
generated characters. To recover, press the space bar repeatedly until the
message Sequence too long appears. At this point, you may enter the correct
keystrokes.

12.9 Defining Function Keys

This function allows the operator to specify the keys that should be used as the
function keys (PF1 - PF24). When 3 is selected from the main menu, the screen of
Figure 6 appears. This function works exactly like its counterpart for defining
the cursor control and editing keys described in Section 12.8. You designate a
key or key sequence as a function key by pressing it twice, with the cursor in
the field to which the sequence applies. For example, to define control-F as the
PF2 key, position the cursor to the PF2 field using t and b, and type control-F
twice in succession.

To save the changes made in this screen and return to the main menu, press the +
key. To return to the main menu without saving changes, use the "-" key.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

12.10 Defining Shifted Function Keys

This function allows the operator to specify the keys that should be used as the
shifted function keys (SPF1 - SPF24). When 4 is selected from the main menu, the
screen depicted in Figure 7 appears.

ÉÍÍÍÍÍÍÍÍÍJYACC MODKEY - SHIFTED PROGRAM FUNCTION KEY DEFINITION SCREENÍÍÍÍÍÍÍÍ»
º º
º SPF1 ___ ___ ___ ___ ___ ___ SPF13 ___ ___ ___ ___ ___ ___ º
º SPF2 ___ ___ ___ ___ ___ ___ SPF14 ___ ___ ___ ___ ___ ___ º
º SPF3 ___ ___ ___ ___ ___ ___ SPF15 ___ ___ ___ ___ ___ ___ º
º SPF4 ___ ___ ___ ___ ___ ___ SPF16 ___ ___ ___ ___ ___ ___ º
º SPF5 ___ ___ ___ ___ ___ ___ SPF17 ___ ___ ___ ___ ___ ___ º
º SPF6 ___ ___ ___ ___ ___ ___ SPF18 ___ ___ ___ ___ ___ ___ º
º SPF7 ___ ___ ___ ___ ___ ___ SPF19 ___ ___ ___ ___ ___ ___ º
º SPF8 ___ ___ ___ ___ ___ ___ SPF20 ___ ___ ___ ___ ___ ___ º
º SPF9 ___ ___ ___ ___ ___ ___ SPF21 ___ ___ ___ ___ ___ ___ º
º SPF10 ___ ___ ___ ___ ___ ___ SPF22 ___ ___ ___ ___ ___ ___ º
º SPF11 ___ ___ ___ ___ ___ ___ SPF23 ___ ___ ___ ___ ___ ___ º
º SPF12 ___ ___ ___ ___ ___ ___ SPF24 ___ ___ ___ ___ ___ ___ º
º º
º º
º Each key or sequence of keys must be pressed twice in succession º
º º
ºSpecial keys: + ENTER ? HELP k SET KEYTOPS º
º - EXIT d DELETE ENTRY ! REDRAW SCREEN º
º t TAB z ERASE ALL º
º b BACKTAB º
ÈÍÍ¼

 Figure 7: Shifted Function Key Screen

This function works exactly like its counterpart for defining the function keys
described in Section 12.9. You designate a key (or key sequence) as a shifted
function key by pressing it twice with the cursor in the field to which the
sequence applies. For example, to define the sequence of keys control-B 2 as the
shifted PF2 key, position the cursor to the SPF2 field, using t and b, and type
control-B 2 twice.

To save changes made in this screen and return to the main menu, press the + key
as the first character in a sequence. To return to the main menu without saving
the changes, use the "-" key.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

12.11 Defining Application Function Keys

This function allows the operator to specify the keys that should be used as the
application function keys (APP1 - APP24). When 5 is selected from the main menu,
the screen of Figure 8 appears. This function works exactly like its
counterpart for defining the function keys described in Section 12.9.

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

12.12 Defining Miscellaneous Keys

On this screen, you can specify logical keys not present on the other screens,
and define alternate control sequences for keys defined elsewhere. When 6 is
selected from the main menu, the screen of Figure 9 displayed. This function
works in a similar manner to its counterpart for defining the cursor control and

ÉÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - APPLICATION KEY DEFINITION SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º APP1 ___ ___ ___ ___ ___ ___ APP13 ___ ___ ___ ___ ___ ___ º
º APP2 ___ ___ ___ ___ ___ ___ APP14 ___ ___ ___ ___ ___ ___ º
º APP3 ___ ___ ___ ___ ___ ___ APP15 ___ ___ ___ ___ ___ ___ º
º APP4 ___ ___ ___ ___ ___ ___ APP16 ___ ___ ___ ___ ___ ___ º
º APP5 ___ ___ ___ ___ ___ ___ APP17 ___ ___ ___ ___ ___ ___ º
º APP6 ___ ___ ___ ___ ___ ___ APP18 ___ ___ ___ ___ ___ ___ º
º APP7 ___ ___ ___ ___ ___ ___ APP19 ___ ___ ___ ___ ___ ___ º
º APP8 ___ ___ ___ ___ ___ ___ APP20 ___ ___ ___ ___ ___ ___ º
º APP9 ___ ___ ___ ___ ___ ___ APP21 ___ ___ ___ ___ ___ ___ º
º APP10 ___ ___ ___ ___ ___ ___ APP22 ___ ___ ___ ___ ___ ___ º
º APP11 ___ ___ ___ ___ ___ ___ APP23 ___ ___ ___ ___ ___ ___ º
º APP12 ___ ___ ___ ___ ___ ___ APP24 ___ ___ ___ ___ ___ ___ º
º º
º º
º Each key or sequence of keys must be pressed twice in succession º
º º
ºSpecial keys: + ENTER ? HELP k SET KEYTOPS º
º - EXIT d DELETE ENTRY ! REDRAW SCREEN º
º t TAB z ERASE ALL º
º b BACKTAB º
ÈÍÍ¼

 Figure 8: Application Key Screen

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - MISCELLANEOUS KEY DEFINITION SCREENÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º KEY STROKE LOGICAL VALUE KEY STROKE LOGICAL VALUE º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º___ ___ ___ ___ ___ ___ ___________ ___ ___ ___ ___ ___ ___ ___________º
º º
º LOGICAL VALUE DISPLAY MODE IS:________ º
º º
ºSpecial keys: + ENTER ? HELP v TAB TO VALUE FIELD º
º - EXIT ! REDRAW SCREEN k SET KEYTOPS º
º t TAB d DELETE ENTRY < BACKSPACE IN VALUE FIELD º
º b BACKTAB z ERASE ALL c CHANGE MODE º
ÈÍÍÍ¼

 Figure 9: Miscellaneous Keys Screen

editing keys described in Section 12.8. However, on this screen you must define
the logical values as well as the sequences that produce them. (On all other
screens, the logical value was implicitly determined by the field with which the
sequence was associated.)

The miscellaneous key definition screen has two columns for each key being
defined, labeled KEY STROKE and LOGICAL VALUE. You enter a key or key sequence
into these fields twice in succession, and modkey displays the generated

characters; then the cursor moves to the LOGICAL VALUE column for that key.
Here, you must enter the logical value to be returned when JYACC FORMAKER
recognizes the sequence of characters you have just entered. You may get to the
logical value field directly by pressing v in the corresponding KEY STROKE
field.

12.12.1 Entering the Logical Value

Logical values are numbers, so you will be entering printable ASCII data into
this field. This is unlike most other fields, where data characters are not
allowed or are given special meaning (such as "b" representing BACKTAB). When
entering logical values, three keys are allowed in addition to the data keys
necessary to enter the value:

 .
 The + key (TRANSMIT) signifies that the logical value just typed is
 correct and should be used. When it is pressed, modkey will first check
 the logical value for errors. If no errors are detected, the cursor
 will tab to the next field; otherwise, an error message will appear.
 .
 The - key (EXIT) means that the logical value just typed is incorrect
 and should be ignored. The cursor will go to the next field and the
 logical value will be reset to what existed before the field was
 entered. If the logical value field was previously empty, it will be
 set to zero.
 .
 The < key (BACKSPACE) backs up the cursor one position at a time, so
 that corrections to the logical value can be made. It erases previously
 entered data as it moves.

12.12.2 Logical Value Display and Entry Modes

Logical values are displayed, and may be entered, in any of four modes. The
current mode is displayed on the screen following the label LOGICAL VALUE
DISPLAY MODE. It may be changed by typing c as the first character of a sequence
while the cursor is in any of the KEY STROKE fields on the screen. When the
miscellaneous keys screen is first invoked, the mode is hexadecimal. It cycles
through all four modes when you press the c key. The four modes are:

 decimal In decimal mode, you enter logical values as decimal numbers.
 If a non-digit is entered or the logical value is zero, an
 error will be displayed.
 octal In octal mode, you enter logical values as octal numbers (base
 8). If a non-octal digit is entered or the logical value is
 zero, an error will be displayed.
 hexadecimal In hexadecimal mode, you enter logical values as hexadecimal
 (base 16) numbers. If a non-hex digit is entered or the
 logical value is zero, an error will be displayed. The error
 must be acknowledged by pressing the space bar.
 mnemonic In mnemonic mode, you enter the mnemonic associated with any
 of the logical values stored in the file smkeys.h . For
 example, if EXIT is entered into the Logical Value field, the
 logical value of the EXIT key, hex 103, will be used. If an
 incorrect mnemonic is entered, an error will be displayed
 which must be acknowledged by pressing the space bar. For a
 list of valid mnemonics, press the "?" key while the cursor is
 in a logical value field.

Entering the logical value as a mnemonic is preferable, as you are less likely
to mistake the value you want. Using the numeric modes, it is possible to define
logical key values other than those present in smkeys.h , but this should be
done cautiously. You should avoid the range 100 hex through 1FF hex, which is
reserved for future use by JYACC. Also, for portability's sake, the values

ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍJYACC MODKEY - TEST KEY TRANSLATION FILEÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º º
º This screen is used to test out the Key Translation file being defined. º
º º
º To do this, press any key in the field below. The characters generated by the º
º key will be displayed along with its logical value. º
º º
º º
º KEY STROKE LOGICAL VALUE KEYTOP º
º º
º ___ ___ ___ ___ ___ ___ _____________ ________________ º
º º
º LOGICAL VALUE DISPLAY MODE IS: ________ º
º º
ºIf a multiple key sequence has been defined, the entire sequence must be enteredº
ºfor the logical value to be displayed. Once the sequence is started, the cursorº
ºwill be turned off until it is completed. º
º º
ºIf you get out of sync. press the space bar repeatedly until a message appears. º
º º
º Special Keys: + ENTER º
º - EXIT º
º c CHANGE MODE º
ÈÍÍ¼

 Figure 10: Test Screen

should be small enough to fit in a two-byte integer, i.e. less than 65536 (10000
hex).

To define a key label or keytop for any key on this screen, press k with the
cursor at the beginning of the key sequence. A small, borderless window will
appear, bearing the word KEYTOP:. In the following field, you should type
whatever appears on top of the key on your keyboard, using the < key to rub out
mistakes. When done, press + to save the label, or - to discard it.

12.12.3 Returning to the Main Menu

To save changes made in this screen and return to the main menu, press the + key
as the first character in a sequence while the cursor is in a KEY STROKE field.
To discard the changes and return to the main menu, use the - key.

12.13 Test Keyboard Translation File

This function allows you to test out your new key translation file. When 7 is
selected from the main menu, the screen of figure 10 is displayed. This screen
has two fields labeled KEY STROKE and LOGICAL VALUE. You enter a keystroke (or
sequence of keystrokes) that has been defined in another screen, and modkey will
display the logical value of that key. The key or keys need only be pressed
once, since the table is being tested for how it will behave when used in a real
application. If a key sequence forms only part of a previously specified
sequence, modkey will wait for another key until a sequence is matched, or until
it determines that no match is possible. In the latter case, the message Key not
defined will appear.

The logical value can be displayed in any of the four modes (decimal, octal,
hexadecimal, or mnemonic). To change modes, press c as the first character in a
sequence. To exit the screen and return to the main menu, use -. Help text can
be obtained by pressing "?".

ERROR CONDITIONS

Invalid entry. Cause: You have typed a key that is not on the menu. Corrective
 action: Check the instructions on the screen and try
 again.

Key sequence is too long. Cause: You have typed more than six keys wihout
 repeating any. Corrective action: Key sequences for
 translation may be at most six characters long. Choose a
 shorter sequence.

Invalid first character. Cause: A multi-key sequence must begin with a control
 character. Corrective action: Begin again, using a control
 character.

Invalid mnemonic - press space for list Cause: In the miscellaneous keys screen,
 you have typed a character string for logical value that
 is not a logical key mnemonic. Corrective action: Peruse
 the list, then correct the input.

Invalid number - enter <decimal>, 0<octal> or 0x<hex> Cause: In the
 miscellaneous keys screen, you have typed a malformed
 numeric key code. Corrective action: Correct the number,
 or use a mnemonic.

Cannot create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry the
 operation.

Key sequence does not repeat. Cause: You have typed a key sequence that failed
 to repeat a string of six characters or less. Corrective
 action: Retry the sequence, or use a shorter one.

Cannot accept NUL as a key. Cause: The ASCII NUL character (binary 0) cannot be
 used in a key translation sequence, because it is used
 internally to mark the end of a sequence. Corrective
 action: Use another key.

Key previously defined as %s Key conflicts with %s Cause: You have typed a key
 sequence that has already been assigned to another key, or
 that is a substring of a previously assigned sequence.
 Corrective action: Use a different key or sequence, or
 reassign the other.

NAME

 msg2bin - convert message files to binary

SYNOPSIS

 msg2bin [-pv] [-eextension] [-ooutfile]
 messages [messages ...]

DESCRIPTION

The msg2bin utility converts ASCII message files to a binary format for use by
JYACC FORMAKER library routines. The command options are interpreted as follows:

 -e Give the output files the extension that follows the option letter,
 rather than the default bin.
 -o Place all the output in a single file, whose name follows the option
 letter.
 -p Place each output file in the same directory as the corresponding
 input file.
 -v Print the name of each message file as it is processed.

The input to this utility files are text files containing named messages, either
distributed by JYACC for use with the JYACC FORMAKER library or defined by
application programmers. For information about the format of ASCII message
files, see the section on message files in this chapter.

The message file and msg2bin utility provide three different services to
application designers. First, the error messages displayed by JYACC FORMAKER
library functions may be translated from English to another language, made more
verbose, or altered to suit the taste of the application designer. Second, error
messages for use by application routines may be collected in a message file and
retrieved with the msg_get library function; this provides a centralized
location for application messages and saves space. Finally, the standard library
messages (and user messages) may be made memory-resident, to simplify and speed
up the initialization procedure (at some added cost in memory). The bin2c
utility converts the output of this utility to a source file suitable for
inclusion in the application program.

ERROR CONDITIONS

File '%s' not found. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and
 permissions of the file in question.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Bad tag in line: %s Cause: The input file contained a system message tag unknown
 to the utility. Corrective action: Refer to
 smerror.h for a list of tags, and correct the
 input.

Missing '=' in line: %s Cause: The line in the message had no equal sign
 following the tag. Corrective action: Correct the
 input and re-run the utility.

NAME

 Setup file - JYACC FORMAKER configuration variables

DESCRIPTION

JYACC FORMAKER supports a number of configuration or setup variables, which
provide a convenient way for you to control many operating parameters of the
JYACC FORMAKER run-time system and utilities. They include all the environment
variables supported in Release 3. The library function smsetup, which is
automatically called from initcrt, reads in binary setup files and sets up the
run-time environment to correspond.

You can use configuration variables by creating a text file of name-value pairs
as described in this section, and then running the var2bin utility to convert it
to a binary format.

14.1 The Two Setup Files

There are two files in which you may place setup variables. The first is named
by the system environment variable SMVARS. If your operating system does not
support an environment, this file will be in a hard-coded location; SMVARS
itself may not be put in a setup file. The second file is named by the SMSETUP
configuration variable, which may be defined in the SMVARS file or in the system
environment.

Any setup variable may occur in either file. If a variable occurs in both, the
one in SMSETUP takes precedence. Certain variables may also be specified in the
system environment, which takes precedence over any values found in the files;
they are noted in the table of Section 14.3. It is possible to specify all the
variables necessary to run JYACC FORMAKER in the environment, without
constructing a setup file.

Typically, the SMVARS file will contain installation-wide parameters, while the
SMSETUP file will contain parameters belonging to an individual or project.

14.2 Input File Line Format

Each line of the input file has the form

 name = value

where name is one of the keywords listed below, the equal sign is required, and
value depends on the name. If a line gets too long, it may be continued onto the
next by placing a backslash \ at the end. Lines beginning with a pound sign #
are treated as comments, i.e. ignored.

Certain variables, notably the JYACC FORMAKER hardware configuration files, have
values that depend on the type of terminal you are using. For those variables,
there may be many entries in the input file, of the form

 name = (term1:term2:...:termN)value

This signifies that name has value for terminals of type term1, term2, etc. It
is not necessary to give terminal names if you are only interested in one file.
You may also provide, along with a number of terminal-qualified entries, one
entry that is not terminal-qualified; this will serve as the default. It must
come last. Variables that are terminal-dependent are noted below.

Certain variables, particularly those that provide parameters for library
functions, have keywords to the right of the equal sign. When these keywords are
all distinct, they may be separated by blanks, commas, or semicolons, just as
you please. But when a certain keyword may appear more than once, so that
parameter position is important, then blanks or commas separate the list of

keywords constituting one parameter, while semicolons separate parameters. The
semicolon has higher precedence than blank or comma.

14.3 Setup Variables

Broadly speaking, setup variables fall into three classes: those that specify
other configuration files; those that are essentially parameters to library
routines; and those that specify default file extensions.

Three variables are required: SMMSGS, SMVIDEO, and SMKEY. They specify,
respectively, the error message, video configuration, and keyboard translation
files that the JYACC FORMAKER run-time system requires in order to function. In
the following list, an explanation and example is given for each variable.

14.3.1 Configuration File Setups

SMKEY Pathname of the binary file containing a key translation table
 for your terminal, used by the JYACC FORMAKER run-time system.
 Refer also to the key2bin and modkey utilities, and the library
 functions keyinit and getkey.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It may not be omitted.
 SMKEY=(vt100:x100)/usr/jyacc/config/vt100keys.bin
SMLPRINT Operating system command used to print the file generated by the
 local print key (LP). It must contain the string %s at the place
 where the filename should go.
 This variable may be overridden by the system environment. It is
 optional.
 SMLPRINT = print %s
SMMSGS Pathname of the binary file containing error messages and other
 printable strings used by the JYACC FORMAKER run-time system and
 utilities. Refer also to the msg2bin utility and the library
 functions msg_read and msg_get.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It may not be omitted.
 SMMSGS =/usr/jyacc/config/msgfile.bin
SMPATH List of directories in which the JYACC FORMAKER run-time system
 should search for screens and JPL procedures. Place a vertical
 bar | between directory paths. Refer to the library procedure
 r_window.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It is optional.
 SMPATH=/usr/app/forms|/usr/me/testforms
SMSETUP Gives the pathname of an additional binary file of setup
 variables.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It is optional.
 SMSETUP = mysetup.bin
SMVIDEO Pathname of the binary file containing video control sequences
 and parameters used by the JYACC FORMAKER run-time system. Refer
 also to the vid2bin utility, the Video section of this chapter,
 and the library function vinit.
 This variable is terminal-dependent, and may be overridden by the
 system environment. It may not be omitted.
 SMVIDEO=(vt100:x100)/usr/jyacc/config/vt100vid.bin

14.3.2 Setups for Library Routines

Many of the variables in this class have display attributes as parameters. Here
is a table of display attribute keywords:

 RED BLUE HILIGHT BLINK
 YELLOW GREEN UNDERLN DIM
 MAGENTA CYAN BLANK
 BLACK WHITE REVERSE

For a single display attribute, you may select from this table one color and any
number of other attributes. If a variable has more than one display attribute
parameter, separate the parameters with semicolons, but separate the ored
attributes for each parameter with blanks or commas. See SMCHEMSGATT, below, for
an example.

The explanations of keywords in this section are terse; full details are
available on the page in the Programmer's Guide dedicated to the function in
question. Mnemonics are the same in both places, except that prefixes may have
been deleted for the setup keywords. All these variables are optional, and most
cannot be overridden in the system environment.

 SMCHEMSGATT Supplies two display attributes for error messages; see
 ch_emsgatt. Two parameters, each consisting of one color
 and any number of other attributes, from the table above.
 SMCHEMSGATT = RED; RED, REVERSE
 SMCHQMSGATT Supplies a default display attribute for query messages;
 see ch_qmsgatt. One parameter consisting of one color and
 any number of other attributes, from the table above.
 SMCHQMSGATT = CYAN, HILIGHT
 SMCHSTEXTATT Supplies a default display attribute for field status text;
 see ch_stextatt. A single display attribute.
 SMCHSTEXTATT=WHITE REVERSE
 SMCHUMSGATT Supplies a border style and three default display
 attributes for certain JYACC FORMAKER windows. The border
 style, first, is a number between 1 and 9; the next three
 are display attributes. See ch_umsgatt.
 SMCHUMSGATT = 2; BLUE; BLUE REVERSE; YELLOW
 SMDICNAME Gives the pathname of the application's data dictionary.
 See the library function dicname. May be overridden in the
 system environment.
 SMDICNAME=/usr/app/dictionary.dat
 SMDWOPTIONS Turns delayed write on or off; passed to the library
 function dw_options, q.v. Value is either ON or OFF.
 SMDWOPTIONS=OFF
 SMEROPTIONS Error message acknowledgement options, as documented at
 er_options. First comes an acknowledgement character, which
 you may put in single quotes or as an ASCII mnemonic. Next
 is the discard keyboard input flag, either DISCARD or
 USE_KEY. Finally comes the reminder window flag, either
 YES_WIND or NO_WIND.
 SMEROPTIONS=' '; DISCARD; YES_WIND
 SMFCASE Controls the case-sensitivity of filename comparisons when
 the run-time system searches for files named in JYACC
 FORMAKER control strings. The keyword INSENS means case
 will be ignored, and SENS means the search is
 case-sensitive. The default is SENS. See fcase.
 SMFCASE=INSENS
 SMFLIBS A list of pathnames of screen libraries that are to remain
 open while JYACC FORMAKER is active. The names are
 separated by blanks, commas, or semicolons. See r_window
 and l_open.
 SMFLIBS=/usr/app/genlib /usr/me/mylib
 SMINDSET Scrolling and shifting indicator options, as for the
 library function sm_ind_set. The first parameter tells
 which indicators should be displayed: NONE, SHIFT, SCROLL,
 or BOTH. The second controls the style of scrolling
 indicators: FLDENTRY, FLDLEFT, FLDRIGHT, or FLDCENTER.
 SMINDSET = BOTH FLDCENTER

 SMINICTRL May occur many times. Each occurrence binds a function key
 to a control string, which the JYACC FORMAKER run-time
 system will use in the absence of a control string in the
 screen. To disable a JYACC-supplied default function key,
 bind it to a caret function that does nothing.
 SMINICTRL= PF2 = ^toggle_mode
 SMINICTRL = PF3 = &popwin(3,28)
 SMINICTRL = XMIT = ^commit all
 SMININAMES Supplies a list of local data block initialization file
 names for use by ldb_init, like the library function
 ininames. The names are separated by commas, blanks, or
 semicolons; there may be up to ten of them.
 SMININAMES=tables.ini,zips.ini,config.ini
 SMMPOPTIONS Supplies parameters for the library function mp_options,
 q.v. These parameters control the behavior of the cursor
 within menu_proc. Here they are:
 Arrow key wrapping: WRAP or NOWRAP
 Up- and down-arrow control: UD_TAB, UD_FREE, UD_RESTRICT,
 UD_COLM, UD_SWATH, UD_NEXTLINE, UD_NEXTFLD
 Left- and right-arrow control: LR_TAB, LR_FREE,
 LR_RESTRICT, LR_COLM, LR_SWATH, LR_NEXTLINE, LR_NEXTFLD
 SMMPOPTIONS = WRAP; UD_RESRICT,\
 UD_NXTLINE; LR_RESTRICT, LR_NXTFLD;
 SMMPSTRING Controls the menu item matching actions of menu_proc, by
 supplying parameters for mp_string; refer to those
 functions. The single parameter is either STRING or
 NOSTRING.
 SMMPSTRING = NOSTRING
 SMOKOPTIONS The right-hand side has six parameters, corresponding to
 those of the library function ok_options, (q.v.). They are,
 in turn:
 Cursor style: BLOCK or NOBLOCK
 Arrow key wrapping: WRAP or NOWRAP
 Field reset flag: RESET or NORESET
 Up- and down-arrow control: UD_TAB, UD_FREE, UD_RESTRICT,
 UD_COLM, UD_SWATH, UD_NEXTLINE, UD_NEXTFLD
 Left- and right-arrow control: LR_TAB, LR_FREE,
 LR_RESTRICT, LR_COLM, LR_SWATH, LR_NEXTLINE, LR_NEXTFLD
 Always-validate flag: VALID, NOVALID
 Beep on overstriking last character of no-autotab field:
 ENDCHAR
 SMOKOPTIONS = BLOCK; WRAP; RESET;\
 UD_RESRICT, UD_NXTLINE; LR_RESTRICT,\
 LR_NXTFLD; VALID; ENDCHAR
 SMZMOPTIONS Zoom key options, as documented nunder the library function
 zm_options. The first parameter controls the first step of
 zooming, and may be either NOSHIFT, SCREEN, ELEMENT, or
 ITEM. The second controls the subsequent step, and may be
 NOSCROLL, SCROLL, PARALLEL, or 1STEP.
 SMZMOPTIONS = ITEM PARALLEL

14.3.3 Setups for Default File Extensions

These variables control the default file extensions used by utilities, which are
listed below.

 SMFEXTENSION Screen file extension, used by the JYACC FORMAKER run-time
 system and various utilities. The default in Release 4.0 is
 none; the default in Release 3 was jam. May be overridden
 in the system environment. See fextension.
 SMFEXTENSION=f
 SMUSEEXT This variable controls the file extension rules described
 in Section 2.2. The first parameter is the extension
 separator character, which may be a quoted character,

 number, or ASCII mnemonic. The second controls whether
 JYACC FORMAKER attemptes to recognize and replace
 extensions, and is either RECOGNIZE or IGNORE. The last
 determines whether extensions are placed before or after
 the filename, and is either FRONT or BACK.
 SMUSEEXT = '-'; RECOGNIZE; FRONT

NAME

 term2vid - create a video file from a terminfo or termcap entry.

SYNOPSIS

 term2vid [-f] terminal-mnemonic

DESCRIPTION

Term2vid creates a rudimentary screen manager video file from information in the
terminfo or termcap database. Terminal-mnemonic is the name of the terminal
type, the value of the system environment variable TERM, which is used by the C
library function tgetent to access that database.

The output file will be named after the mnemonic. The -f option tells the
utility it's OK to overwrite an existing output file.

ERROR CONDITIONS

No cursor position (cm, cup) for %s Cause: An absolute cursor positioning
 sequence is required for JYACC
 FORMAKER to work, and the termcap or
 terminfo entry you are using does not
 contain one. Corrective action:
 Construct the video file by hand, or
 update the entry and retry.

Cannot find entry for %s Cause: The terminal mnemonic you have given is not in
 the termcap or terminfo database.
 Corrective action: Check the spelling
 of the mnemonic.

File %s already exists; use '-f' to overwrite. Cause: You have specified an
 existing output file. Corrective
 action: Use the -f option to
 overwrite the file, or use a
 different name.

)

NAME

 txt2form - Converts text files to JYACC FORMAKER screens

SYNOPSIS

 txt2form [-fv] textfile screen [height width]

DESCRIPTION

This program converts textfile to a read-only JYACC FORMAKER screen, named
screen. It creates display data sections from the input text. It preserves blank
space, and expands tabs to eight-character stops; other control characters are
just copied to the output. Text that extends beyond the designated maximum
output height or width is discarded; if the last two parameters are missing, a
23-line by 80-column screen is assumed.

Txt2form puts no borders, fields, or display attributes in the output screen.
However, underscores (or other, user-designated field definition characters) in
the input are copied to the screen file; if you subsequently bring the screen up
in xform and compile it, those characters will be converted to fields.

The -f option directs the utility to overwrite an existing output file. The -v
prints the name of each screen as it is processed.

ERROR CONDITIONS

Warning: lines greater than %d will be truncated Warning: columns greater than
%d will be truncated Cause: Your input text file has data that reaches beyond
 the limits you have given (default 23 lines by 80
 columns) for the screen. Corrective action: Shrink
 the input, or enlarge the screen.

Unable to create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry
 the operation.

NAME

 var2bin - convert files of setup variables to binary

SYNOPSIS

 var2bin [-pv] [-eext] setupfile [setupfile ...]

DESCRIPTION

This utility converts files of setup variables to binary format for use by the
run-time system. See pages 5-38ff for a full description of how to prepare the
ASCII file.

The -v prints the name of each screen as it is processed. The -p option causes
the output file to be created in the same directory as the input file, and the
-e option supplies a file extension different from the default of bin.

ERROR CONDITIONS

Error opening %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions
 of the file in question.

Missing '='. Cause: The input line indicated did not contain an equal sign after
 the setup variable name. Corrective action: Insert the
 equal sign and run var2bin again.

%s is an invalid name. Cause: The indicated line did not begin with a setup
 variable name. Corrective action: Refer to the
 Configuration Guide for a list of variable names,
 correct the input, and re-run the utility.

%s may not be qualified by terminal type. Cause: You have attached a terminal
 type list to a variable which does not support one.
 Corrective action: Remove the list. You can achieve the
 desired effect by creating different setup files, and
 attaching a terminal list to the SMSETUP variable.

Unable to set given values. %s conflicts with a previous parameter. %s is an
 invalid parameter. Cause: A keyword in the input is
 misspelled or misplaced, or conflicts with an earlier
 keyword. Corrective action: Check the keywords listed
 in the manual, correct the input, and run the utility
 again.

Error reading smvars or setup file. Cause: The utility incurred an I/O error
 while processing the file named in the message.
 Corrective action: Retry the operation.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

At least one file name is required. Cause: You have failed to give an input file
 name. Corrective action: Retype the command, supplying
 the file name.

Entry size %d is too large. String size %d is too large. Cause: The indicated
 right-hand side is too long. Corrective action: Reduce
 the size of the entry.

NAME

 vid2bin - convert video files to binary

SYNOPSIS

 vid2bin [-vp] [-eext] terminal-mnemonic

DESCRIPTION

The vid2bin utility converts an ASCII video file to binary•format for use by
applications with the JYACC FORMAKER library •routines. The video files
themselves must be created with a text•editor, according to the rules listed in
the video manual•(q.v.).

Terminal-mnemonic is an abbreviation for the name of the terminal •for which the
ASCII video file has been constructed. That file,•whose name is conventionally
the mnemonic followed by the suffix•vid, is the input to vid2bin. (When opening
its input,•vid2bin first tries them mnemonic, then the mnemonic followed•by
vid.)

To make a video file memory-resident, run the bin2c utility•on the output of
vid2bin, compile the resulting program•source file, link it with your
application, and call the library•routine vinit.

The -v option prints the name of each screen as it is processed. -p creates each
output file in the same directory as the corresponding input file. The use of
the -p option is not recommended.

For information about the format of the ASCII video file, refer•to the video
manual and the Programmer's Guide.

ERROR CONDITIONS

Neither %s nor %s exists. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

A cursor positioning sequence is required. An erase display sequence is
 required. Cause: These two entries are required
 in all video files. Corrective action:
 Determine what your terminal uses to perform
 these two operations, and enter them in the
 video file; then run the utility again.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Error writing to file '%s'. Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Invalid entry: '%s'. Entry missing '=': '%s'. Cause: The input line in the
 message does not begin with a video keyword and
 an equal sign. Corrective action: Correct the
 input and re-run the utility. You may have
 forgotten to place a backslash at the end of a
 line that continutes onto the next one.

Invalid attribute list : '%s'. Invalid color specification : '%s'. Invalid
 graphics character specification (%s):'%s'.
 Invalid border information (%s):'%s'. Invalid
 graphics type : '%s'. Invalid label parameter :

 '%s'.%s Invalid cursor flags specification :
 '%s'. Cause: You have misspelled or misplaced
 keywords in the input line in the message.
 Corrective action: Correct the input, referring
 to the Configuration Guide, and run vid2bin
 again.

NAME

 Video file - video configuration manual

DESCRIPTION

19.1 Introduction to Video Configuration

JYACC FORMAKER is designed to run on many displays with widely differing
characteristics. These characteristics greatly affect JYACC FORMAKER's display
of screens and messages. For example, some displays are 80 columns wide, while
others have 132; again, the control sequences used to position the cursor and
highlight data on the display are hardly the same for any two models. JYACC
FORMAKER obtains display characteristics from a video file.

19.1.1 How to Use this Manual

This manual has two purposes. The first is to explain the entries in the JYACC
FORMAKER video file, and the concepts used in interpreting them. Although you
may well never need to modify or construct a video file, you may wish to know
what it does. The second purpose is to provide instructions for modifying
existing video files, or constructing new ones, to handle new terminal
characteristics.

Creating a video file is not trivial; neither is it a major effort. The easiest
way is to use one of the many supplied with JYACC FORMAKER. There are fifty or
so as of this writing; you may find a list in an appendix to Chapter One of this
manual. It is not much harder to begin with one of the files supplied and modify
it, if you can determine that your terminal is similar; this is very often
possible because so many terminals emulate others. If your system has a terminfo
or termcap database, you can use the term2vid utility (q.v.) to make a
functional video file from that information. Finally, if you must start from
scratch, you should start with the minimal subset defined in Section 19.1.4, and
add entries one at a time.

 .
 Most of this manual should be used for reference only. The sample video
 file in Section 19.1.5 is suitable for a large number of terminals, and
 may be all that you need.
 .
 Section 19.1.2 describes the concept of the video file.
 .
 Section 19.1.3 describes the text file format.
 .
 Section 19.1.6 is a must for users on a PC using MS-DOS. It contains a
 listing of an appropriate video file and special caveats.
 .
 Section 19.2.2 summarizes the keywords. Sections 19.3ff explain
 parameterized control sequences, which support cursor positioning,
 attribute setting, etc.
 .
 A separate section of this chapter describes the vid2bin utility, which
 translates your video file into a binary format the JYACC FORMAKER
 library can understand.

Details and examples are in Sections 19.4.1ff; the first four are plenty to get
you started. Next look at Sections 19.4.5 and 19.4.5.1 for a general description
of attributes. Section 19.4.5.2 discusses latch attributes, the most common
kind, and Section 19.4.5.3 area attributes. Using color is described in Section
19.4.5.4. The remaining sections discuss less essential topics, such as borders,
graphics, help text, etc. The vid2bin utility supplies reasonable defaults for
these entries, so worry about them last of all.

19.1.2 Why Video Files Exist

Differences among terminal characteristics do not affect programs that are line
oriented. They merely use the screen as a typewriter. Full-screen editors, like
emacs or vi, use the screen non-sequentially; they need terminal-specific ways
to move the cursor, clear the screen, insert lines, etc. For this purpose the
termcap data base, and its close relative terminfo, were developed. Although
closely associated with UNIX, termcap and terminfo are also used on other
operating systems. They list the idiosyncrasies of many types of terminals.

Text editors use visual attributes sparingly, if at all. Thus termcap contains
minimal information about handling them. Usually there are entries to start and
end "stand-out" and sometimes entries to start and end underline. Notably
missing are entries explaining how to combine attributes (i.e. reverse video and
blinking simultaneously). Terminfo can combine attributes; in practice,
unfortunately, the appropriate entries are usually missing.

JYACC FORMAKER makes extensive use of attributes in all combinations, and
supports color. Rather than extending termcap with additional codes, which might
conflict with other extensions, JYACC decided to use an independent file to
describe the terminal specific information.

Termcap uses a limited set of commands; notably missing are conditionals.
Terminfo uses an extensive set of commands, however the resulting sequences are
excessively verbose (103 characters for the ANSI attribute setting sequence
without color). Therefore, JYACC developed a set of commands that extend both
termcap and terminfo. Both syntaxes are supported with only minor exceptions.
All the commands needed in the video file can be written using terminfo syntax;
many can be written using the simpler termcap syntax; and a few can benefit by
using the extended commands.

A summary of the commands used to process parameters is in Section 19.3; details
and examples follow. Refer to those sections if you have trouble understanding
the examples elsewhere in the manual.

19.1.3 Text File Format

The video file is a text file that can be created using any text editor. It
consists of many instructions, one per line. Each line begins with a keyword,
and then has an equal sign (=). On the right of the equal sign is variable data
depending on the keyword. The data may be a number, a list of characters, a
sequence of characters, or a list of further instructions.

Comments can be entered into the file by typing a hash # as the first character
of the line; that line will be ignored by vid2bin. All the video files
distributed by JYACC are documented with comments; we recommend that you do
likewise, as many of the entries are necessarily cryptic.

It is essential that the instruction formats listed in this guide be followed
closely. In order to make run-time interpretation as efficient as possible, no
error checking at all is done then. The vid2bin utility checks for things like
missing, misspelled, and superfluous keywords, but not for things like
duplicated or conflicting entries.

19.1.4 Minimal Set of Capabilities

The only required entries in the video file are for positioning the cursor (CUP)
and erasing the display (ED).

In the absence of other entries, JYACC FORMAKER will assume a 24-line by
80-column screen. The 24th line will be used for status text and error messages,
and the remaining 23 will be available for forms. It will assume that no
attributes are supported by the terminal. Since non-display is supported by
software, that attribute will be available. The underline attribute will be

faked by writing an underscore wherever a blank appears in an underlined field.
Clearing a line will be done by writing spaces. Borders will be available, and
will consist of printable characters only.

Although JYACC FORMAKER will function with those two entries, it will have
limited features. The most glaring shortcoming will be the lack of visual
attributes. Speed may also be a problem; the sole purpose of many entries in the
video file is to decrease the number of characters transmitted to the terminal.

19.1.5 A Sample Video File

The following video file is for a basic ANSI terminal, like a DEC VT-100.

 # Display size (these are actually the default values)
 LINES = 24
 COLMS = 80

 # Erase whole screen and single line
 ED = ESC [2 J
 EL = ESC [K

 # Position cursor
 CUP = ESC [%i %d ; %d H

 # Standard ANSI attributes, four available
 LATCHATT = REVERSE = 7 UNDERLN = 4 BLINK = 5 HILIGHT = 1
 SGR = ESC [0 %9(%? %t ; %c %; %) m

This file contains the basic capabilities, plus control sequences to erase a
line and to apply the reverse video, underlined, blinking, and highlighted
visual attributes. The entries for CUP and SGR are more complicated because they
require additional parameters at run-time. The percent commands they contain are
explained meticulously in Section 19.3.

19.1.6 An MS-DOS Video File

By default, JYACC FORMAKER displays data on the console by directly accessing
the PC's video RAM. On machines that are not 100% IBM-compatible, it will use
BIOS calls instead; use the entry INIT = BIOS to effect that. Under no
circumstances does JYACC FORMAKER use DOS calls or the ANSI.SYS driver. Video
files for both monochrome and color displays are included with JYACC FORMAKER.

Because JYACC FORMAKER contains special code for the PC display, most of the
entries that contain control sequences are irrelevant, and are given a value of
PC in the video files distributed by JYACC. You should leave these entries
alone, since their presence is required but their values are irrelevant. Entries
that don't contain control sequences, such as LINES, GRAPH, and BORDER, can be
changed as usual. The PC video file, as distributed, follows.

 LINES = 25
 COLMS = 80
 ED = PC
 EL = PC
 EW = PC
 CUP = PC
 CUU = PC
 CUD = PC
 CUB = PC
 CUF = PC
 CON = PC
 COF = PC
 SCP = PC
 RCP = PC
 REPT = PC

 # Next 2 lines give display attributes for monochrome only
 # The INIT line specifies a blinking block cursor
 LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
 INIT = C 0 13 2

 # Next 3 lines give display attributes for color only
 # The INIT line specifies a blinking block cursor
 LATCHATT = HILIGHT = 1 BLINK = 5
 COLOR = RED = 1 BLUE = 4 GREEN = 2 BACKGRND
 INIT = C 0 7 2

 SGR = PC
 CURPOS = 1
 GRTYPE = PC
 ARROWS = 0x1b 0x1a 0x1d
 BORDER = SP SP SP SP SP SP SP SP \
 0xda 0xc4 0xbf 0xb3 0xb3 0xc0 0xc4 0xd9 \
 0xc9 0xcd 0xbb 0xba 0xba 0xc8 0xcd 0xbc \
 0xd5 0xcd 0xb8 0xb3 0xb3 0xd4 0xcd 0xbe \
 0xd6 0xc4 0xb7 0xba 0xba 0xd3 0xc4 0xbd \
 0xdc 0xdc 0xdc 0xdd 0xde 0xdf 0xdf 0xdf \
 \
 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 \
 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 \
 0xdb 0xdb 0xdb 0xdb 0xdb 0xdb 0xdb 0xdb

Here the INIT specifies the cursor style; refer to the section on INIT.

19.2 Video File Format

19.2.1 General Information

All white space (spaces and tabs) is skipped, except where noted below. A
logical line may be continued to the next physical line by ending the first line
with a backslash. (Do not leave a space between the backslash and the newline.)
To enter a backslash as the last character of the line, use two backslashes
(without spaces). Thus

 text \ means a continuation line
 text \\ ends with a backslash
 text \\\ has a backslash and a continuation

A double quote " starts a string. The quote itself is skipped; text between it
and the next double quote (or the end of the line) is taken literally, including
spaces. To include a double quote in a quoted string, use backslash quote \"
with no space between. For example,

 "stty tabs" has an embedded space
 stty tabs does not.

The percent sign is a control character; to enter a literal percent sign, you
must double it (i.e. %%).

There are three ways to put non-printing characters, such as control characters,
in the video file:

 1. Any character at all can be entered as 0x followed by two hexadecimal
 digits. For example, 0x41 can be used for A, 0x01 for control-A, etc.
 This method is particularly useful for entering codes in the range 0x80
 to 0xff.
 2. Control characters in the range 0x01 to 0x1f can be represented by a
 caret ^ followed by a letter or symbol. Either ^A or ^a can represent
 SOH (0x01). The symbols are ^[for ESC, ^\ for FS, ^] for GS, ^^ for RS
 and ^_ for US.

 3. More control characters can be represented by two- or three-character
 ASCII mnemonics. This method is particularly useful for entering
 control sequences to the terminal, since the manuals often list such
 sequences using mnemonics. Here is a list:

 DLE 0x10 DSC 0x90
 SOH 0x01 DC1 0x11 PU1 0x91
 STX 0x02 DC2 0x12 PU2 0x92
 ETX 0x03 DC3 0x13 STS 0x93
 EOT 0x04 DC4 0x14 IND 0x84 CCH 0x94
 ENQ 0x05 NAK 0x15 NEL 0x85 MW 0x95
 ACK 0x06 SYN 0x16 SSA 0x86 SPA 0x96
 BEL 0x07 ETB 0x17 ESA 0x87 EPA 0x97
 BS 0x08 CAN 0x18 HTS 0x88
 HT 0x09 EM 0x19 HTJ 0x89
 NL 0x0a SUB 0x1a VTS 0x8a
 VT 0x0b ESC 0x1b PLD 0x8b CSI 0x9b
 FF 0x0c FS 0x1c PLU 0x8c ST 0x9c
 CR 0x0d GS 0x1d RI 0x8d OCS 0x9d
 SO 0x0e RS 0x1e SS2 0x8e PM 0x9e
 SI 0x0f US 0x1f SS3 0x8f APC 0x9f

 SP 0x20 DEL 0x7f

The rightmost two columns are extended ASCII control codes, which can be
transmitted only if the communication line and terminal use eight data bits. If
this is not possible, the 8-bit code may be replaced by two 7-bit codes: the
first code is ESC (0x1b), the second 0x40 less than the desired 8-bit control
character. For example, CSI (0x9b) would be replaced by ESC 0x5b, or ESC [. If a
video file contains extended ASCII control codes, JYACC FORMAKER will assume
they can be used; it will not transmit the two-character sequence automatically.

Note: PRIME computers, and some others, internally toggle the high bit of a
character; ESC on a PRIME is 0x9b and CSI is 0x1b, not vice versa. The numbers
given in this document are always standard ASCII.
19.2.2 Keyword Summary

All the video file entry keywords are listed here, arranged by function.
Subsequent sections explain each one in detail.

 basic capabilities
 LINES number of lines on screen
 COLMS number of columns on screen
 INIT initialization sequence
 RESET undoes initialization sequence
 REPT repeat following character
 REPMAX maximum number of repeated characters
 BOTTRT last position of screen may be written without
 scrolling the display
 BUFSIZ number of characters to accumulate before flushing
 erasure commands
 ED erase entire display
 EL erase to end of current line
 EW erase window
 cursor appearance
 CON turn cursor on
 COF turn cursor off
 SCP save cursor position and attribute
 RCP restore cursor postion and attribute
 INSON insert-mode cursor
 INSOFF overstrike-mode cursor
 cursor position
 CUP absolute cursor position
 CUU cursor up

 CUD cursor down
 CUF cursor forward
 CUB cursor backward
 CMFLGS allowed cursor-motion shortcuts
 display attributes
 COLOR list of colors
 LATCHATT list of available latch attributes
 SGR set graphics rendition (latch)
 AREAATT list of available area attributes
 ASGR set graphics rendition (area)
 ARGR remove are attribute
 message line
 OMSG open message line
 CMSG close message line
 MSGATT message line attributes
 softkey labels
 KPAR function key labels description
 KSET load function key label
 graphics
 MODE0 normal character set sequence
 MODE1 locking shift to alternate character set 1
 MODE2 locking shift to alternate character set 2
 MODE3 locking shift to alternate character set 3
 MODE4 non-locking shift to alternate character set 1
 MODE5 non-locking shift to alternate character set 2
 MODE6 non-locking shift to alternate character set 3
 GRAPH graphics character equivalences
 GRTYPE shortcut for defining graphics characters
 ARROWS shift indicator graphics characters
 BELL "visible bell" alarm sequence
 borders
 BORDER characters that make up the 10 border styles
 BRDATT available border attributes
 xform help
 FMKRDS draw-screen mode function keys
 FMKRTM test-screen mode function keys
 FMKRCP copy-field function key
 FMKRMV move-field function key
 CURPOS status line cursor position display

19.3 Parameterized Character Sequences

Certain control sequences cannot be completely specified in advance. An example
is the cursor position sequence, which requires the line and column to move to.
The commands using these sequences must be passed extra parameters. The
following keywords take the indicated number of parameters:

 REPT repeat sequence (2)
 character and number of times to repeat
 EW erase window (5)
 start line, start column, number of lines, number of columns,
 background color
 CUP cursor position (2)
 line and column (relative to 0)
 CUU cursor up (1)
 line increment
 CUD cursor down (1)
 line increment
 CUF cursor forward (1)
 column increment
 CUB cursor backward (1)
 column increment
 SGR set latch graphics rendition (11)
 see section 19.4.5

 ASGR set area graphics rendition (11)
 see section 19.4.5.1

19.3.1 Summary of Percent Commands

Parameters are encoded in sequences by percent commands, sequences starting with
the % symbol. This is superficially similar to the way the C library function
printf handles parameters. Some percent commands cause data to be output; others
are used for control purposes. Every parameter that is to be output requires a
percent command. JYACC FORMAKER uses a stack mechanism as does terminfo; it is
described in the next secion. Percent commands are summarized in the list that
follows. Examples and more complete descriptions are in subsequent sections.

Since all sequences go through the same processing, even those that do not use
run-time arguments, percent signs must be used with care. In particular, to
enter a percent sign as a literal, you must use %%.

In the following list, each command is tagged with C, I, or E to indicate
whether it is a termcap, terminfo, or JYACC extended command.

Output commands

 %% output a percent sign (C and I)
 %. output a character (C)
 %c output a character (I)
 %d output a decimal (C and I)
 %#d output a #-digit decimal, blank filled (I)
 %0#d output a #-digit decimal, zero filled, like the termcap
 %2 which is not supported (I)
 %+ add and output a character (C)
 %#z output # (decimal number) binary zeroes (E)
 %#w wait (sleep) # seconds (E)

Stack manipulation and arithmetic commands

 %p# push parameter # (1 - 11 allowed) (I)
 %'c' push the character constant c (I)
 %{#} push the integer constant # (I)
 %+ %- %* %/ %m add, subtract, multiply, divide, modulus (I)
 %| %^ %& bit-wise or, exclusive or, and (I)
 %= %> %< logical conditionals (I)
 %! %~ logical not, one's complement (I)

Parameter sequencing and changing commands

 %#u discard # parameters (E)
 %#b back up # parameters (E)
 %i increment the next two parameters (C and I)
 %r reverse the next two parameters (C)

Control flow commands

 %? expr %t then-part %e else-part %;
 conditionally execute one of two command sequences (I)
 expr %t then-part %e else-part %;
 same effect as previous (E)
 %#(... %) repeat the sequence # times (E)
 l(... %) select operations from a list (E)

Terminfo commands not supported

 %s strings
 %P, %g letter variables
 $<#> padding (use %#z instead)

19.3.2 Automatic Parameter Sequencing

A stack holds all the parameters being processed. It is four levels deep;
anything pushed off the end is lost. There are commands that push a parameter or
constant onto the stack, but no explicit pop commands. Output commands transmit
the value on top of the stack, then remove it. Arithmetic and logical operations
take one or two operands from the top of the stack, and replace them with one
result; thus they perform an implicit pop.

Arithmetic and logical operations all use postfix notation: first the operands
are pushed, then the operation takes place. Thus %p1 %p2 %p3 %+ %* leaves x * (y
+ z) on the stack, where x, y, and z are parameters 1, 2 and 3. This mechanism
is identical to that used by terminfo, so its commands can be used freely.

The simpler termcap commands do not use a stack mechanism. To support them,
JYACC FORMAKER uses an automatic parameter sequencing scheme. A current index
into the parameter list is maintained. Whenever a parameter is needed on the
stack, the current parameter is pushed and the index is incremented. In
particular, if an output command is encountered and there is nothing on the
stack to output, an automatic push is performed using the current index. The
commands %d %d output two decimals; the sequence %p1 %d %p2 %d does the same
thing.

The effect of this scheme is that termcap style commands are automatically
translated into terminfo style. Most of the examples in this document give both
styles. Although it is possible to use automatic sequencing and explicit
parameter pushes in the same sequence, this practice is strongly discouraged.
Explicit pushes of constants with automatic parameter sequencing, however, is a
useful combination, as will be seen.

19.3.3 Stack Manipulation and Arithmetic Commands

Commands are available to push parameters and constants. Only four levels of
stack are supported, and anything pushed off the end is discarded without
warning.

 %p2 push the second parameter
 %p11 push parameter 11
 %'x' push the character x
 %{12} push the number 12
 %{0} push binary 0
 %'0' push ASCII 0

Various arithmetic and logical operations are supported. They require one or two
operands on the stack. If necessary an automatic push will be generated, using
the next parameter.

 %'@' %| %| %| %c or three parameters with @, then
 output the result.
 %'@' %p1 %| %p2 %| %p3 %| %c same as above

The automatic parameter sequencing mechanism works well in the above example.
Since or requires two parameters and there is only one on the stack, a push is
performed. Note that no push is required to process %c as an entry already
exists on the stack. Thus only three parameters are consumed and the result of
the bitwise or is output.

 %'SP' %+ %c output the parameter added to the value of a
 space. See the next section for an alternate.
 %p1 %'SP' %+ %c same as above

The example above first pushes the first parameter, then pushes a space
character (0x20). The %+ command adds these values and puts the answer on the
stack. %c then pops this value and transmits it to the terminal.

19.3.4 Parameter Sequencing Commands

With automatic sequencing of parameters, it is occasionally necessary to skip a
parameter. The %u command uses up one parameter, by incrementing the parameter
index. The %b command backs up, by decrementing the parameter index. Both can be
given with counts, as %2u.

 %d %b %d output the same parameter twice
 %p1 %d %p1 %d same as above
 %p2 %d %p1 %d output in reverse order
 %u %d %2b %d same as above

19.3.5 Output Commands

Because the percent sign is a special character, it must be doubled to output a
percent sign. %c and %. output a character, like printf; the latter is supplied
for termcap compatibility. %d outputs a decimal. It has variations that allow
for specifying the number of digits, and whether blank or zero fill is to be
used.

%#z outputs the specified number of NUL characters (binary zero). It is usually
used for padding, to insert a time delay for commands such as erase screen.

 %% output a percent sign
 %d output a decimal, any number of digits, no fill
 %3d output at most 3 digits with blank fill
 %03d output at most 3 digits with zero fill
 %100z 100 pad bytes of 0 are sent to the terminal

%S(string %) issues a system command; the string following %S is passed to the
command interpreter fpr execution. Since vid2bin strips spaces, this text should
usually be enclosed in quotes.

 %S("stty tabs"%) System call: stty tabs
 %S(stty SP tabs%) System call: stty tabs
 %S(stty tabs %) Mistaken version of above
 %S("keyset \"\""%) System call: keyset ""
 %S("keyset """%) Mistaken version of above.

%#w waits (sleeps) the specified # of seconds. It is not supported on systems
where the sleep library routine is unavailable. It is often used as a time delay
for INIT and RESET sequences.

 %2w sleep 2 seconds

Because termcap and terminfo are inconsistent, %+ is implemented in two ways. As
described in the section above, %+ can be used to add two operands on the stack
and leave the sum on the stack. If the stack has only one entry, an automatic
push is generated. However, a special case occurs if the stack is empty: the
character following %+ is added to the next parameter, the sum is output as a
character, and the parameter index is incremented. This usage occurs often in
termcap cursor positioning sequences.

 %+SP output parameter added to the value of space
 %'SP' %+ %c same as above
 %'SP' %p1 %+ %c same as above

19.3.6 Parameter Changing Commands

%i increments the next two parameters. It is used almost exclusively in termcap
cursor positioning sequences. The parameters passed are line and column, with
the upper left being (0, 0). Many terminals expect the line and column to be
relative to (1, 1); %i is used to increment the parameters. Note that no output
is performed, and no parameters are consumed.

%r reverses the next two parameters. It is unnecessary if explicit parameter
pushes are used; in fact, it should be avoided in that case since the numbering
of the parameters will be reversed. This command is often used in cursor
positioning sequences, where the terminal requires that column be given first
and then the line (the default being the other way around).

 ESC [%i %d ; %d H Add 1 to each parameter and send out as
 decimals
 FS G %r %c %c output column first, then line
 FS G %p2 %c %p1 %c same as above

19.3.7 Control Flow Commands

The general if-then-else clause is %? expr %t then-part %e else-part %; . It can
be abbreviated by omitting the if, thus: expr %t then-part %e else-part %; . The
expression expr is any sequence, including the empty sequence. %t pops a value
from the stack and tests it, executing then-part if it is true (non-zero) and
else-part otherwise. Then-part and else-part may be any sequence, including the
empty sequence. If else-part is empty, %e may be omitted as well; but %t is
always required, even if then-part is empty.

If %t finds that the stack is empty, it will generate an automatic push of the
next parameter as usual. %t consumes one parameter; however, the incrementing of
the parameter index is delayed until after the entire conditional has been
executed. A conditional always consumes exactly one parameter, regardless of
which branch is taken or of the content of then-part or else-part. If either of
those use automatic parameter sequencing, they use a local index; thus even if
they consume, say, two parameters, at the end of the conditional the parameter
index is reset. When the next command is reached, only one parameter has been
consumed.

In each of the following examples, one parameter is consumed, even in the last
one where no parameter is output.

 %t ; %c %; output ; and a character if the parameter is
 non-zero, otherwise skip the parameter.
 %p1 %t ; %p1 %c %; same
 %? %p1 %t ; %p1 %c %; same
 %? %p1 %t ; %c %; same
 %t ; 5 %; output ; and 5 if the parameter is non-zero.

In the following two examples, the constant (binary) 1 is pushed, the parameter
is compared with 1, and the boolean value is left on the stack. If the value is
true, nothing is done; otherwise the parameter is output as a decimal.

 %? %{1} %p1 %= %t %e %p1 %d %;
 %{1} %= %t %e %d %;

The following sequence exhibits a simple "either-or" condition that is sometimes
used to toggle an attribute on or off. It outputs ESC (if the parameter is
non-zero, and ESC) otherwise.

 ESC %t (%e) %;

The then-part and else-part may themselves contain conditionals, so else-if can
be implemented. This practice is not recommended as it can produce
undecipherable sequences. Also, because of the way automatic parameter
sequencing is done, the results might be unexpected. It is provided only for
terminfo compatibility. The list command, described below, is an alternative.

The repeat command is used to perform the same action for several parameters. It
is designed to be used with automatic parameter sequencing, and is almost
useless if explicit parameter pushes are used. The count is specified after the
percent sign. All the commands between %#(and %) are executed # times.

 %3(%d %) output 3 decimals
 %p1 %d %p2 %d %p3 %d same as previous
 %3(%t %d %; %) output whichever of the first three
 parameters are non-zero.
 %p1 %t %p1 %d %; %p2 %t %d %; %p3 %t %p3 %d %;
 same as previous
 ESC 0 %9(%t ; %c %; %) m usual ANSI sequence for SGR.
 ESC 0 %? %p1 %t ; 7 %; %? %p2 %t ; 2 ...
 same as above, assuming that parameter
 1 is 7 and parameter 2 is 2

19.3.8 The List Command

The list command is needed very rarely, but is available as an alternate to a
complicated if-then-elseif construct. It implements a simple "select" or "case"
conditional. The general format is %l(value1: expr1 %; value2: expr2 %; ... %)

The values are single character constants representing the various cases. The
expression is executed if the value matches the top of stack. At most one
expression is executed, i.e. each case contains a "break". If the value is
missing the expression is evaluated as a default. For correct operation, the
default case must occur last in the list. Note that the colons do not have a
leading percent sign, so no selector may be a colon. The %; after the last
element of the list is not required.

The parameter on the stack (automatically pushed, if necessary) is popped and
tested against the various cases. The parameter index is incremented by 1 after
the entire list is processed, even if the expressions use parameters. The
following examples are a bit contrived; see the section on color for a live
example.

 %l(0:%; 1:ESC%; :FS %) output nothing if the parameter is
 '0'; ESC if it is '1'; FS otherwise.
 %'0' %= %t %e %'1' %= %t ESC %e FS %; %;
 same result, using "else-if"
 %l(1:2%; 2:1%; %) output '1' if the parameter is '2',
 '2' if the parameter is '1'; otherwise
 do nothing

19.3.9 Padding

Certain terminals (or tty drivers) require extra time to execute instructions.
Sometimes the terminal manual specifies the delay required for each command, but
more often than not it is silent on the subject. If random characters appear on
the screen, particularly characters that are part of command sequences, time
delays may be required.

Delays can be introduced in two ways. %#w will cause a wait (sleep) for the
specified number of seconds; %#z will output the specified number of zeros. The
wait command is usually only required in terminal initialization or reset
sequences. A "hard reset" of a terminal sometimes requires a sleep of 1 or 2
seconds. The zero command is occasionally needed on the erase display or erase
line commands. Very rarely the cursor positioning sequence requires padding. The
number of zeros to send range from about 5, for very short delays, to several
thousand for longer delays. Usually 100 or so is enough for any terminal.

termcap indicates padding by using a number at the beginning of a sequence,
which is the number of milliseconds of pad required. terminfo uses the syntax
$<#>. In either case it is easy to convert to the %#z notation, using the fact
that, at 9600 baud, one character takes one millisecond to output.

 ESC c %2w sleep 2 seconds after terminal reset
 ESC [J %100z 100 pad zeros after clear screen
 ESC [H %1000z long delay of 1000 pad zeros

19.4 Constructing a Video File, Entry by Entry

19.4.1 Basic Capabilities

LINES indicates the number of lines on the display. The default value is 24. In
general one line will be reserved for status and error messages so the maximum
form size will usually be one less than the number specified here. (See OMSG,
below, for exceptions.) COLMS gives the number of columns on the display. The
default value is 80.

 LINES = 25 24 lines for the form, 1 for messages
 COLMS = 132 wide screen
 LINES = 31 SUN workstation

INIT is a terminal initialization sequence, output by the library function
initcrt. There is no default; this keyword may be omitted. It is typically used
to change the mode of the terminal, to map function keys, select attribute
styles, etc. Padding is sometimes required, either with %#z or %#s.

RESET is a reset-terminal sequence, output by the library function resetcrt.
There is no default. If given, this keyword should undo the effects of INIT. For
many terminals a "hard reset" that resets the terminal to the state stored in
non-volatile memory is appropriate.

 # map 2 function keys, then wait 2 seconds
 INIT = %S("/etc/keyset f1 ^a P ^m" %) \
 %S("/etc/keyset f2 ^a Q ^m" %) \
 %2w

 # load alternate character sets
 INIT = ESC)F ESC*| ESC+}

 # hard reset, delay, then set tabs
 RESET = ESC c %1000z %S("stty tabs"%)

On MS-DOS systems only, the INIT and RESET sequences (which are normally not
used) may be given a special value to specify the cursor style. With ASCII
terminals, escape sequences for setting the cursor style may be included in the
INIT and RESET strings in the normal fashion. The format is

 INIT = C n1 n2 n3
 RESET = C n1 n2 n3

The first two numbers, n1 and n2, specify the top and bottom scan lines for the
cursor block; line 0 is at the top. The optional n3 gives the blink rate, as
follows:

 1 no cursor
 2 fast blink (the default)
 3 slow blink
 0 fast blink (Not always valid on non-IBM systems)

The standard sequences, for a blinking block cursor, are INIT = C 0 13 0 for a
monochrome monitor, and INIT = C 0 7 0 for a CGA monitor (with lower
resolution). If RESET is not specified, JYACC FORMAKER saves and restores the
original cursor style.

A scan line is the smallest vertical unit on your display (it is one pixel
wide).

Two additional special keywords may be used with INIT on MS-DOS systems. BIOS
specifies that JYACC FORMAKER should use BIOS calls to do display output rather
than writing the video RAM directly. XKEY actually controls keyboard input; it

directs JYACC FORMAKER to use a different BIOS interrupt for keyboard input, one
that recognizes the F11 and F12 keys on an extended keyboard.

REPT is a repeat-character sequence. There is no default, since most terminals
do not support character repeat. If it is available, it should be given as it
can substantially speed up clearing of windows, painting of borders, etc. This
sequence is passed two parameters; the character to be repeated and the number
of times to display it. The repeat sequence will be used whenever possible,
usually for borders and for clearing areas of the screen. If borders do not
appear correctly, this sequence may be wrong. A repeat sequence is never used to
repeat a control character, and will never extend to more than one line.

REPMAX gives the maximum number of characters REPT can repeat. To check the
proper value of REPMAX, first omit it; then, in xform, draw a field that extends
the entire width of the screen, and hit the TRANSMIT key. If the whole field
changes to the underline attribute, REPMAX is not needed. If it doesn't,
experiment by gradually shortening the field to determine the largest possible
value of REPMAX.

 REPT = %c ESC F %+? output character, then ESC F
 and the count with 0x3f (the
 ASCII value of '?') added
 REPMAX = 64 maximum count for above.
 Anything over this count will
 be split into more sequences
 REPT = %p1 %c ESC F %'?' %p2 %+ %c same as previous

BOTTRT is a simple flag, indicating that the bottom right-hand corner of the
display may be written to without causing the display to scroll. If this flag is
not present, JYACC FORMAKER will never write to that position.

BUFSIZ sets the size of the output buffer used by JYACC FORMAKER. If it is
omitted, JYACC FORMAKER calculates a reasonable default size, so you should
include it only if special circumstances warrant. If you make extensive use of a
screen-oriented debugger, you may want to set BUFSIZ to a large value; that
effectively disables the delayed-write feature, which may prove troublesome
during debugging.

19.4.2 Screen Erasure

ED gives the control sequence that erases the display. It is required, and must
clear all available display attributes, including background color. The correct
command can be found in the terminal manual, or in termcap as "cl". Some
terminals require padding after this command.

 ED = ESC [J common for ANSI terminals
 ED = CSI J ANSI terminals, 8 bit mode
 ED = ESC [H ESC [J "home" may be required too
 ED = ESC [2 J another variation
 ED = ESC [2 J %100z with padding
 ED = ^L videotex terminals
 ED = FF same as above

EL gives a sequence that erases characters and attributes from the cursor to the
end of the line. If it is not given, JYACC FORMAKER erases the line by writing
blanks. The sequence can be found in termcap as "ce". Padding may be required.
EL = ESC [K is common for ANSI terminals; to include padding, use EL = ESC [0
K %100z .

EW gives a sequence that erases a rectangular region on the screen, to a given
background color if available. The only known terminal where this is available
is a PC using MS-DOS. Five parameters are passsed: start line, start column,
number of lines, number of columns, and background color. (If color is not

available, the last parameter can be ignored.) On a PC using MS-DOS, EW should
be specified as ESC [%i %d; %d; %d; %d; %c w .

19.4.3 Cursor Position

CUP, absolute cursor position, is required to run JYACC FORMAKER. This sequence
appears in termcap as "cm". It takes two parameters: the target line and the
target column, in that order and relative to 0. %i (increment) can be used to
convert them to be relative to 1. ANSI terminals need the line and column as
decimals. Other terminals add a fixed value to the line and column to make them
printable characters; %+ is used to implement this. Some typical descriptions
follow; all are ANSI standard.

 CUP = ESC [%i %d;%d H
 CUP = ESC [%i %d;%d f
 CUP = ESC [%i %p1 %d ; %p2 %d f
 CUP = CSI %i %d; %d H

Another common scheme is to output the line and column as characters, after
adding SP. Terminal manuals tend to obscure this method, as the following
excerpt shows:

 Address or load the cursor by transmitting ESC = r c where r is an
 ASCII character from the table for the row (line) and c is an ASCII
 character from the table for the column:

 row/column ASCII code

 1 Space
 2 !
 3 "

Examples of coding in the video file follow.

 CUP = FS C %+SP %+SP
 CUP = FS C %'SP' %p1 %+ %c %'SP' %p2 %+ %c
 CUP = ESC = %+SP %+SP

CUU, CUD, CUF and CUB perform relative cursor movement. CUU moves the cursor up
in the same column; CUD moves it down. CUF moves the cursor forward in the same
row and CUB moves it back. All take as a parameter the number of lines or
columns to move. If sequences exist to move the cursor by one line or column but
not more, do not specify them.

 CUU = ESC [%d A ANSI cursor up
 CUD = ESC [%d B cursor down
 CUF = ESC [%d C cursor forward
 CUB = ESC [%d D cursor back
 CUU = CSI %d A using 8 bit codes
 CUU = ESC [%{1} %= %t %e %d %; A
 omit the parameter if it is 1

The CMFLGS keyword lists several shortcuts JYACC FORMAKER can use for cursor
positioning. They are as follows:

 CR Carriage return (0x0d, or ^M) moves the cursor to the first
 column of the current line.
 LF Linefeed (0x0a, or ^J) moves the cursor down one line, in the
 same column.
 BS Backspace (0x08, or ^H) moves the cursor one position to the
 left, without erasing anything.
 AM Automatic margin: the cursor automatically wraps to column 1
 when it reaches the right-hand edge of the display.

Most terminals are capable of the first three. The fourth can frequently be
found in termcap, as am.

19.4.4 Cursor Appearance

CON turns the cursor on in the style desired. Since an underline cursor is
difficult to see in an underlined field, we recommend a blinking block cursor.
Note that the INIT and RESET sequences can be used to switch between the cursor
style used in JYACC FORMAKER applications and that used on the command line.

COF turns the cursor off. If possible this sequence and CON should be given.
Menus (using a block cursor) look better with the regular cursor off. Also JYACC
FORMAKER often must move the cursor around the screen to put text in fields, to
scroll arrays, etc.; if the cursor is off during these operations, the user is
not disturbed by its flickering all over the screen.

Many terminals have no ability to turn the cursor on and off. Although JYACC
FORMAKER attempts to minimize cursor movement, some flickering is unavoidable.

CON and COF can sometimes be found in the terminal manual as "cursor attributes"
and in termcap as CO and CF. Here are some examples.

 CON = ESC [cursor on for videotex terminal
 COF = ESC] cursor off for videotex
 CON = ESC [>5l cursor on for some ANSI terminals
 COF = ESC [>5h and off
 CON = ESC [?25h another possibility for ANSI terminals
 COF = ESC [?25l
 CON = ESC [3 ; 0 z
 COF = ESC [3 ; 4 z

SCP and RCP save and restore the cursor position, respectively. JYACC FORMAKER
must often move the cursor temporarily, as to update the status line.
Beforehand, it saves the current cursor position and attribute, and restores
them afterwards. Some terminals offer a pair of sequences that perform these two
actions, producing less output than the cursor position and attribute setting
sequences together. Thus, if they are available, JYACC FORMAKER can run faster.
Terminal manuals refer to these sequences in many ways, the most obscure being
"cursor description." Here is an example, commonly found in ANSI terminals.

 SCP = ESC 7
 RCP = ESC 8

The INSON and INSOFF sequences are issued to the terminal when you toggle JYACC
FORMAKER's data entry mode between insert and overstrike, using the INSERT key.
They should change the cursor style, so that you can easily see which mode you
are in. On many terminals, changing the cursor style also turns it on; in this
case, INSOFF should be the same as COF, or you can omit it altogether. If the
cursor style can be changed without turning it on or off, you should give both
INSON and INSOFF.

19.4.5 Display Attributes

JYACC FORMAKER supports highlight, blink, underline and reverse video
attributes. If either highlight or blink is not available, low intensity is
supported in its place. The keywords LATCHATT and AREAATT in the video file list
the attributes available in each style and associate a character with each
attribute.

The set graphics rendition sequences (SGR and ASGR) are each passed eleven
parameters. The first nine are the same as used by terminfo; only five of them
are actually used by JYACC FORMAKER. The last two specify foreground and
background color, and are omitted if color is not available. The parameters, in
order, represent:

 1. standout not supported, always 0
 2. underline
 3. reverse video
 4. blink
 5. dim (low intensity)
 6. highlight (bold)
 7. blank supported by software, always 0
 8. protect supported by software, always 0
 9. alternate charsupported in other sequences, 0
 10. foreground color
 (if available)
 11. background color
 (if available)

If an attribute is desired, the parameter passed is the character associated
with the attribute, as explained below. If the attribute is not desired, the
parameter passed is (binary) 0. If the video file contains LATCHATT = REVERSE =
7 HILIGHT = 1 BLINK = 5 UNDERLN = 4 , and a field is to be highlighted and
underlined, the SGR sequence will be passed (0, '4', 0, 0, 0, '1', 0, 0, 0) .
The second and sixth parameters respresent underline and highlight; they are set
to the corresponding values from LATCHATT. The rest are zero. To make the field
reverse video and blinking, SGR would be passed (0, 0, '7', '5', 0, 0, 0, 0, 0)
.

If no attributes are specified in the video file, JYACC FORMAKER will support
just two attributes: non-display (done in software anyway) and underline (using
the underscore character).

19.4.5.1 Attribute Types

JYACC FORMAKER supports three different kinds of attribute handling. The first
is called latch attributes, and is the most common today. The position of the
cursor is irrelevant when the attribute setting sequence is sent. Any characters
written thereafter take on that attribute. Attributes require no space on the
screen. ANSI terminals use this method.

The second is called area attributes. The cursor position is very important at
the time the sequence to set the attribute is sent to the terminal. Indeed, all
characters from the cursor position to the next attribute (or end of line or end
of screen) immediately take on that attribute. Attributes do not occupy a screen
position (they are "non-embedded" or "no space"). In this style, JYACC FORMAKER
will position the cursor to the end of the area to be changed, set the ending
attribute, then position the cursor to the beginning of the area and set its
attribute.

The third is called onscreen attributes. They act like area attributes, but
occupy a screen position. (They are "embedded" or "spacing".) This style of
attribute handling imposes the condition on the screen designer that fields
and/or display areas cannot be adjacent, since a space must be reserved for the
attribute. Display of windows may be hampered by lack of space for attributes.

A terminal may have several user-settable modes. It is quite common for a
terminal to support both area and onscreen attributes. If so, you should select
area ("non-embedded" or "no space") over onscreen ("embedded" or "spacing").
Some terminals support one latch attribute and several area attributes
simultaneously.

If a terminal has only one attribute style available, it is often user
selectable. We recommend that reverse video be selected, since it is attractive
in borders. JYACC FORMAKER supports non-display in software, so that attribute
need not be available. Underlines will be faked (by writing an underscore
character) if that attribute is not available.

Usually attribute information is available only in the terminal manual. However
some clues can be found in the termcap data base. The codes "so", "ul" and "bl"
specify standout (usually reverse video), underline and bold respectively. The
codes "se", "ue" and "be" give the sequence to end the attributes. The standard
ANSI sequences are

 so=\E[7m:se=\E[0m:ul=\E[4m:ue=\E[0m:bl=\E[1m:be=\E[0m

If you find something like these you can be quite sure that ANSI latch
attributes are available. If you find entries ug#1:sg#1 you can be sure that
onscreen attributes are in use.

19.4.5.2 Specifying Latch Attributes

The LATCHATT keyword is followed by a list of attributes equated to their
associated character. The possible attributes are:

 REVERSE reverse (or inverse) video
 BLINK blink or other standout
 UNDERLN underline
 HILIGHT highlight (bold)
 DIM dim (low intensity)

The format is LATCHATT = attribute = value attribute = value etc. If the equal
sign and value are missing, the attribute is given the value (binary) 1.

Most ANSI terminals use latch attributes and the codes are fairly standardized.
The only question is which attributes are supported and how attributes can be
combined, if at all. Some ANSI terminals support color, either foreground only
or foreground and background. The sequences for color are far less standard.

Terminal manuals often describe the sequence as "set graphics rendition." A
common description reads:

 ESC [p1 ; p2 ; ... m
 where pn = 0 for normal
 1 for bold
 5 for blink
 ...

Thus ESC [0 m is normal, ESC [1 m is bold, ESC[1 ; 5 m is bold and blinking.
Often setting an attribute does not "erase" others, so it is best to reset to
normal first, using ESC[0; 1 m for bold, ESC[0;1;5m for blinking bold, etc. The
coding in the video file is as follows:

 LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
 SGR = ESC [0 %9(%t ; %c %; %) m

The meaning of the above SGR sequence is as follows. The sequence is passed 11
parameters, each 0 (if the attribute is not to be set) or the character in the
LATCHATT list. First, ESC [0 is output. The %t test, repeated 9 times, causes
the zero parameters to be skipped. A non-zero parameter causes a semicolon and
the parameter to be output. Finally, the character m is output. If normal
attribute is wanted, all parameters will be 0, and the output sequence will be
ESC [0 m. If only underline is wanted, it will be ESC [0 ; 4 m. If
highlighted, blinking, and reverse video are desired, the output will be ESC [
0; 7 ; 5 ; 1 m.

Some terminals (or emulators) will not accept the method of combining
attributes used above. In that case, one sequence followed by the next might
work, e.g. ESC [1 m ESC [7 m. Some terminals cannot combine attributes at all.
Here are some more ANSI and near-ANSI examples:

 LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7

 "standard" ANSI terminal

 LATCHATT = DIM = 2 REVERSE = 7 UNDERLN = 4 BLINK = 5
 ANSI with low intensity but no highlight

 LATCHATT = REVERSE = 7
 only one attribute available

 SGR = ESC [0 %9(%t ; %c %; %) m
 repeat of previous example

 SGR = ESC [0 m %9(%t ESC [%c m %; %)
 attributes not combinable

 SGR = %u ESC [0 %5(%t ; %c %; %) m
 skip parameters that are always 0

In the next LATCHATT/SGR example we will use explicit pushes to select the
appropriate parameter. The second pair is the same as the first, but the
attribute is treated as a boolean. The first uses the optional %?, the second
omits it.

 LATCHATT = DIM = 2
 SGR = ESC [m %? %p5 %t ESC [2 m %;

 LATCHATT = DIM
 SGR = ESC [m %t ESC [2 m %;

The following is suitable for terminals that support all attributes but cannot
combine them. It selects one attribute giving preference to REVERSE, UNDERLN,
BLINK and HILIGHT in that order. It uses a complicated
"if-then-elseif-elseif-elseif" structure. Automatic parameter sequencing cannot
be relied on, so explicit parameter pushes are used.

 LATCHATT = HILIGHT BLINK UNDERLN REVERSE
 SGR = ESC [%p3 %t 7 %e %p2 %t 4 %e %p4 %t 5 %e\
 %p6 %t 1 %; %; %; %; m

Some terminals use bit-mapped attributes. Terminal manuals are not usually
explicit on this. Often they use tables like the following:

 n Visual attribute

 0 normal
 1 invisible
 2 blink
 3 invisible blink
 4 reverse video
 5 invisible reverse
 6 reverse and blink
 7 invisible reverse and blink
 8 underline
 9 invisible underline
 : underline and blink
 ; invisible underline and blink
 < reverse and underline
 = invisible reverse and underline
 > reverse, underline and blink
 ? invisible reverse, underline and blink

After poring over the ASCII table for a while, it becomes clear that this is
bit-mapped, with the four high-order bits constant (0x30) and the four low-order
bits varying, like this:

 x x x x x x x x
 0 0 1 1 | | | |___ invisible
 | | |_____ blink
 | |_______ reverse
 |_________ underline

This can be coded in the video file as follows. The attributes are ored with a
starting value of '0' (0x30).

 LATCHATT = BLINK = 2 REVERSE = 4 UNDERLN = 8
 SGR = ESC G %'0' %9(%| %) %c

The following gives an example for use with a videotex terminal. All are
equivalent: the bits are ored together with a starting value of 0x40, or @, and
the result is output as a character.

 LATCHATT = UNDERLN = DLE BLINK = STX REVERSE = EOT HILIGHT=SP
 LATCHATT = UNDERLN = ^P BLINK = ^B REVERSE = ^D HILIGHT = SP
 LATCHATT = UNDERLN = 0x10 BLINK = 0x02 REVERSE = 0x04 \
 HILIGHT = 0x20
 SGR = FS G %u %'%5(%| %) %c

 LATCHATT = UNDERLN = P BLINK = B REVERSE = D HILIGHT = `
 SGR = FS G %'%9(%| %) %c

Some terminals that use area attributes will support a single latch attribute.
It is often called "protected" and is used to indicate protected areas when the
terminal is operated in block mode. The following example switches between
protected and unprotected modes in order to use low intensity. (Be aware that a
terminal might become very slow when using the protect feature.) The SGR
sequence depends only on the attribute being non-zero, so no value is necessary:

 LATCHATT = DIM
 SGR = ESC %?%t) %e (%;

19.4.5.3 Specifying Area Attributes

Area or onscreen attributes are specified like latch attributes. The AREAATT
keyword lists the area or onscreen attributes that are available and associates
a character with each. As for latch attributes, REVERSE, BLINK, UNDERLN, HILIGHT
and DIM are available. In addition, several flags are available to specify how
the attributes are implemented by the terminal. The flags are:

 ONSCREEN the attribute uses a screen position
 LINEWRAP the attribute wraps from line to line
 SCREENWRAP the attribute wraps from bottom of screen to top
 REWRITE must rewrite attribute when writing character
 MAX = # maximum number of attributes per line

Area and onscreen attributes modify all characters from the start attribute to
the next attribute or to an end, which ever is closer. If there is no end, use
SCREENWRAP. If the end is the end of screen, use LINEWRAP. If end is the end of
the line, omit both wrap flags. Some terminals allow the user to select the
style. For onscreen attributes, screen wrap is best and line wrap a good second
best; for area attributes the choices are about the same. If the attribute takes
up a screen position, use the ONSCREEN flag.

 AREAATT = REVERSE = i UNDERLN = _ BLINK = b DIM = l
 ASGR = ESC s r %u %5(ESC s %c %)

 AREAATT = BLINK = 2 DIM = p REVERSE = 4 UNDERLN = 8 \
 ONSCREEN LINEWRAP
 ASGR = ESC G %u %'0' %5(%| %) %c

Some terminals have the following misfeature: writing a character at the
position where an attribute was set can remove the attribute. Immediately after
placing the attribute the character may be written with no problems; however,
the next time a character is written there, the attribute will disappear. In
this case, use the REWRITE flag to tell JYACC FORMAKER to reset the attribute
before writing to that position. The following example is for the Televideo 925:

 AREAATT = REVERSE = 4 UNDERLN = 8 BLINK = 2 REWRITE
 ASGR = ESC G %'0' %9(%| %) %c

Yet other terminals restrict the number of attributes that are available on a
given line. If so, include MAX = #, where # represents the maximum. If possible,
also give a "remove attribute" sequence, ARGR. Changing an attribute to normal
is not the same as removing it: a normal attribute will stop the propogation of
a previous attribute, but a removed attribute will not. If the maximum number of
attributes is small, JYACC FORMAKER's performance may be limited.

If there is a remove attribute sequence, JYACC FORMAKER will use it to remove
repeated attributes, to avoid exceeding the maximum number of attributes on a
line. If there is no maximum, the remove attribute sequence can be omitted.
Indeed it often makes the screen "wiggle," which is very unpleasant for the
viewer.

 AREATT = REVERSE = Q UNDERLN = ` MAX = 16
 ASGR = ESC d %u %'%5(%| %) %c
 ARGR = ESC e

19.4.5.4 Color

JYACC FORMAKER supports eight foreground and background colors. The COLOR
keyword is used to associate a character with each color, just as LATCHATT
associates a character with each attribute. The CTYPE entry has flags that tell
JYACC FORMAKER that background color is available. Only the three primary colors
need be specified in the video file. If the other colors are not there, they
will be generated according to the following rule:

 BLACK = BLUE & GREEN & RED
 BLUE must be specified
 GREEN must be specified
 CYAN = BLUE | GREEN
 RED must be specified
 MAGENTA = RED | BLUE
 YELLOW = RED | GREEN
 WHITE = RED | GREEN | BLUE

The tenth parameter to SGR or ASGR is the character representing the foreground
color; the eleventh is that representing the background color (it is 0 if
background color is not available). Many ANSI terminals set foreground color
with the sequence ESC [3x m, where x ranges from 0 for black to 7 for white.
Background color is often set with ESC [4x m. The order of the colors varies
from terminal to terminal.

On color terminals, REVERSE often means black on white. If background color is
available, JYACC FORMAKER can do better if REVERSE is not specified in the video
file: it will use the specified color as the background, and either black or
white as the foreground. The following is often suitable for a color ANSI
terminal:

 LATCHATT = HILIGHT = 1 BLINK = 5
 COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND
 SGR = %3u ESC [0 %3(%?%t ; %c %; %) ; %3u 3%c ; 4%c m
 or
 SGR = %3u ESC [0 %5(%?%t ; %c %; %) m ESC [3%c;4%c m
 or

 LATCHATT = HILIGHT BLINK
 SGR = ESC [0 %?%p4%t ;5 %; %?%p6%t ;1 %; m \
 ESC [3%p10%c; 4%p11%c m

If the terminal has a unique sequence for each color, a list command works well.
In the following example, the ANSI attribute sequence (ESC [0 ; p1 ; p2 ; ...
m) is used and the values for the colors are:

 cyan >1
 magenta 5
 blue 5 ; > 1
 yellow 4
 green 4 ; > 1
 red 4 ; 5
 black 4 ; 5 ; > 1

 LATCHATT = REVERSE = 7 HILIGHT = 2
 COLOR = CYAN = 0 MAGENTA = 1 BLUE = 2 YELLOW = 3 GREEN = 4\
 RED = 5 BLACK = 6 WHITE = 7
 SGR = ESC [0 %p3%t;7%; %p6%t;2%; \
 %l(0:;>1%; 1:;5%; 2:;5;>1%; 3:;4%; \
 4:;4;>1%; 5:;4;5%; 6:;4;5;>1 %) m

Some terminals use ESC [2 ; x ; y m to set color and other attributes. Here x
is the foreground color and y is the background color; both numbers range from 0
to 7. If highlight is desired in the foreground, 8 should be added to x. If
blink is desired, 8 should be added to y. The following video entries satisfy
these requirements:

 LATCHATT = HILIGHT = 8 BLINK = 8
 COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND
 SGR = ESC [2 ; %p10 %p6 %+ %d ; %p11 %p4 %+ %d m

19.4.6 Message Line

JYACC FORMAKER usually steals a line from the screen to display status text and
error messages. Thus a 25-line screen (as specified in the LINES keyword) will
have 24 lines for the form itself, and one for messages. This use of a normal
screen line for messages is the default.

Some terminals have a special message line that cannot be addressed by normal
cursor positioning. In that case, the OMSG sequence is used to "open" the
message line, and CMSG to close it. All text between these sequences appears on
the message line. No assumption is made about clearing the line; JYACC FORMAKER
always writes blanks to the end of the line.

 OMSG = ESC f
 CMSG = CR ESC g

If the OMSG line keyword is present, JYACC FORMAKER uses all the lines specified
in the LINES keyword for forms.

Terminals that use a separate message line may use different attributes on the
status line than on the screen itself. JYACC FORMAKER provides some support for
this circumstance; for very complicated status lines, the programmer must write
a special routine and install it with the statfnc call. (See the Programmer's
Guide for details.) The keyword MSGATT lists the attributes available on the
message line. This keyword takes a list of flags:

 REVERSE reverse video available
 BLINK blink available
 UNDERLN underline available
 HILIGHT highlight (bold) available
 DIM dim (low intensity) available

 LATCHATT all latch attributes can be used
 AREAATT all area attributes can be used
 NONE no attributes on message line
 ONSCREEN area attributes take a screen position

The attribute for the message line must have been specified as either a latch or
area attribute, and the sequence to set it must be given in the SGR or ASGR
keyword. For example, if REVERSE is listed in MSGATT and REVERSE is a latch
attribute, then SGR is used to set it. Attributes that appear in MSGATT and
don't appear in either LATCHATT or AREAATT are ignored.

JYACC FORMAKER must determine the correct count of the length of the line. Thus
it is important to know whether area attributes are onscreen or not. It is not
uncommon for area attributes to be non-embedded on the screen but embedded on
the status line. The keyword ONSCREEN may be included in MSGATT to inform JYACC
FORMAKER of this condition.

 LATCHATT = DIM
 AREAATT = REVERSE UNDERLN BLINK
 MSGATT = REVERSE UNDERLN BLINK ONSCREEN
 MSGATT = AREAATT ONSCREEN

The two MSGATT entries are equivalent. They show a case where only area
attributes are available on the message line and they take a screen position.
The area attributes in the normal screen area do not.

19.4.7 Function Key Labels

Certain terminals set aside areas on the screen, typically two lines high and
several characters wide, into which descriptive labels for the terminal's
function keys may be written. The KPAR entry gives the number and width of the
function key label areas, and looks like KPAR = NUMBER = number of labels LENGTH
= width of area The KSET entry gives the character sequence for writing text
into a label area. It is passed three parameters:

 1. The number of the area to be written.
 2. Twice the width of the area (LENGTH parameter of KPAR).
 3. The label text, as a null-terminated string.

Here is an example, for the HP-2392A:

 KPAR = NUMBER = 8 LENGTH = 8
 KSET = ESC & f 0 a %d k %d d 0 L %s ESC & j B

19.4.8 Graphics and Foreign Character Support

JYACC FORMAKER has support for eight-bit ASCII codes as well as any graphics
that the terminal can support in text mode. Bit-mapped graphics are not
supported. Just as the key translation tables give a mapping from character
sequences to internal numbers, the GRAPH table in the video file maps internal
numbers to output sequences. The only character value that may not be sent is 0.

Some terminals have a special "compose" key, active in eight-bit mode.
Generally, you would press the compose key followed by one or two more keys,
generating a character in the range 0xa0 to 0xff. JYACC FORMAKER can process
such characters as normal display characters, with no special treatment in the
video file.

Other terminals have special keys that produce sequences representing special
characters. The modkey utility can be used to map such sequences to single
values in the range 0xa0 to 0xfe. (See the Programmer's Guide for a way to use
values outside that range.) The video file would then specify how these values
are output to the terminal.

Often, to display graphics characters, a terminal must be told to "shift" to an
alternate character set (in reality, to address a different character ROM). The
video file's GRAPH table tells which alternate set to use for each graphics
character, and how to shift to it. Whenever JYACC FORMAKER is required to
display a character, it looks in the GRAPH table for that character. If it is
not there, the character is sent to the terminal unchanged. The following
section describes what happens if it is in the table.

19.4.9 Graphics Characters

JYACC FORMAKER supports up to three alternate character sets. The sequences that
switch among character sets are listed below. Modes 0 through 3 are locking
shifts: all characters following will be shifted, until a different shift
sequence is sent. Modes 4 through 6 are non-locking or single shifts, which
apply only to the next character. You may need to use the INIT entry to load the
character sets you want for access by the mode changes.

 MODE0 switch to standard character set
 MODE1 alternate set 1
 MODE2 alternate set 2
 MODE3 alternate set 3
 MODE4 ...
 MODE5
 MODE6

Different modes can be used to support foreign characters, currency symbols,
graphics, etc. JYACC FORMAKER makes no assumption as to whether the mode
changing sequences latch to the alternate character set or not. To output a
character in alternate set 2, JYACC FORMAKER first outputs the sequence defined
by MODE2, then a character, and finally the sequence defined by MODE0 (which may
be empty, if the others are all non-locking). Here are three examples; the
second one is ANSI standard.

 MODE0 = SI
 MODE1 = SO
 MODE2 = ESC n
 MODE3 = ESC o

 MODE0 = ESC [10 m
 MODE1 = ESC [11 m
 MODE2 = ESC [12 m
 MODE3 = ESC [13 m

 MODE0 =
 MODE1 = SS1
 MODE2 = SS2

Any character in the range 0x01 to 0xff can be mapped to an alternate character
set by use of the keyword GRAPH. The value of GRAPH is a list of equations. The
left side of each equation is the character to be mapped; the right side is the
number of the character set (0, 1, 2, 3), followed by the character to be
output. Any character not so mapped is output as itself. For example, suppose
that 0x90 = 1 d appears in the GRAPH list. First the sequence listed for MODE1
will be sent, then the letter d, and then the sequence listed for MODE0.

In the following example, 0x81 is output as SO / SI, 0xb2 as SO 2 SI, and 0x82
as ESC o a SI. LF, BEL and CR are output as a space, and all other characters
are output without change. This output processing applies to all data coming
from JYACC FORMAKER. No translation is made for direct calls to printf, putchar,
etc. Thus \n and \r will still work correctly in printf, and putchar (BEL) still
makes a noise on the terminal.

 MODE0 = SI
 MODE1 = SO

 MODE2 = ESC n
 MODE3 = ESC o
 GRAPH = 0x81 = 1 / 0xb2 = 1 2 0x82 = 3 a LF = 0 SP\
 BEL = 0 SP CR = 0 SP

For efficiency, we suggest that you use single shifts to obtain accented
letters, currency symbols, and other characters that appear mixed in with
unshifted characters; graphics characters, especially for borders, are good
candidates for a locking shift.

It is possible, though not recommended, to map the usual display characters to
alternates. For example, GRAPH = y = 0z will cause the y key to display as z.
Graphics characters are non-portable across different displays, unless care is
taken to insure that the same characters are used on the left-hand side for
similar graphics, and only for a common subset of the different graphics
available.

The GRTYPE keyword provides a convenient shortcut for certain common graphics
sets, each denoted by another keyword. The format is GRTYPE = type. An entry in
the GRAPH table is made for each character in the indicated range, with mode 0.
If the mode is not 0, you must construct the GRAPH table by hand. The GRTYPE
keywords are:

 ALL 0xa0 through 0xfe
 EXTENDED same as ALL.
 PC 0x01 through 0x1f and 0x80 through 0xff
 CONTROL 0x01 through 0x1f, and 0x7f
 C0 same as CONTROL
 C1 0x80 through 0x9f, plus 0xff

The GRTYPE keywords may be combined.

19.4.10 Borders

Ten different border styles may be selected when a form is designed. They are
numbered 0 to 9, with style 0 being the default (and the one all the JYACC
FORMAKER internal forms use). It is usually reverse video spaces, but is
replaced by I's if reverse video is not available. Border styles may be
specified in the video file. Otherwise the following defaults are used:

 0. IIIII 1. ___
 I I | |
 IIIII |___|

 2. +++++ 3. ===
 + + | |
 +++++ ===

 4. %%%%% 5.
 % % : :
 %%%%% :...:

 6. ***** 7. \\\\\
 * * \ \
 ***** \\\\\

 8. ///// 9. #####
 / / # #
 ///// #####

The keyword BORDER specifies alternate borders. If fewer than 9 are given, the
default borders are used to complete the set. The data for BORDER is a list of 8
characters per border, in the order: upper left corner, top, upper right corner,

left side, right side, lower left corner, bottom, lower right corner. The
default border set is:

 BORDER = SP SP SP SP SP SP SP SP \
 SP _ SP | | | _ | \
 + + + + + + + + \
 SP = SP | | SP = SP \
 % % % % % % % % \
 . . . : : : . : \
 * * * * * * * * \
 \ \ \ \ \ \ \ \ \
 / / / / / / / / \
 # # # # # # # #

Another example, using the PC graphics character set:

 BORDER = SP SP SP SP SP SP SP SP \
 0xda 0xc4 0xbf 0xb3 0xb3 0xc0 0xc4 0xd9 \
 0xc9 0xcd 0xbb 0xba 0xba 0xc8 0xcd 0xbc \
 0xd5 0xcd 0xb8 0xb3 0xb3 0xd4 0xcd 0xbe \
 0xd6 0xc4 0xb7 0xba 0xba 0xd3 0xc4 0xbd \
 0xdc 0xdc 0xdc 0xdd 0xde 0xdf 0xdf 0xdf \
 . . . : : : . . \
 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 \
 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 \
 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd

If there is a GRAPH entry in the video file, you can use the graphics character
set of the terminal for borders. Choose some numbers to represent the various
border parts. The GRAPH option can be used to map these numbers to a graphics
character set. The numbers chosen are arbitrary, except that they should not
conflict with ordinary display characters. Even if the extended 8 bit character
set is used, there are unused values in the ranges 0x01 to 0x1f and 0x80 to
0x9f.

The keyword BRDATT can be used to limit the attributes available in the border.
Normally HILIGHT (or DIM) and REVERSE are used; however, if the terminal uses
onscreen attributes or can hold only a few attributes per line, it may be better
to prohibit attributes in borders. This is accomplished by BRDATT = NONE.

The flags used in MSGATT can also be used with BRDATT; however, the only
attributes available are HILIGHT, DIM, and REVERSE.

19.4.11 Shifting Field Indicators and Bell

Shift indicators (ARROWS keyword) are used to indicate the presence of
off-screen data in shifting fields. The default characters for this purpose are
<, > and X. (The last character is used when two shifting fields are next to
each other; it represents a combination of both < and >.) The shift indicators
can be changed to any three characters desired.

 ARROWS = . . .

 GRAPH = 0x1b = 0 0x1b 0x1a = 0 0x1a 0x1d = 0 0x1d
 ARROWS = 0x1b 0x1a 0x1d

 MODE0 = SI
 MODE1 = SO
 GRAPH = 0x80 = 1a 0x81 = 1x 0x82 = 1&
 ARROWS = 0x80 0x81 0x82

The BELL sequence, if present, will be transmitted by the library function bel
to give a visible alarm. Normally, that routine rings the terminal's bell. Such
a sequence can sometimes be found in the termcap file under vb.

19.4.12 xform Status Text

The JYACC FORMAKER authoring utility will display help text on the status line
if so desired. There are several different "states" in the utility, each with
its own status text; the text to be displayed in each state is listed in the
video file. (Logically it belongs in the message file; however, the text
mentions keys to use and uses visual attributes. Since the keys and attributes
are terminal-dependent, we store the text in the video file.)

Since vid2bin strips spaces, embedded spaces should be entered with the SP
mnemonic, or the whole text enclosed in quotes. Attributes can be embedded in
the text by using %a as a lead-in; up to four hex digits following define the
attribute, using the codes defined in smdefs.h . See d_msg_line in the library
manual for a fuller explanation of embedded attributes.

The following is a sample without embedded attributes. Function keys 2 to 9 are
used.

 FMKRDS = "2: DRAW/test 3: form 4: field 5: tmplt "\
 "6: del 7: move 8: copy 9: rept"
 FMKRTM = "2: TEST/draw 3: form 4: field 5: tmplt "\
 "6: del 7: move 8: copy 9: rept"
 FMKRMV = "MOVE: use arrow keys to position, F7 to release"
 FMKRCP = "COPY: use arrow keys to position, F8 to release"

The next group is similar except that the numbers are given the reverse video
blue attribute. The text is given the normal (i.e. white) attribute. (The color
is ignored on monochrome terminals.) The text listed here is the default.

 FMKRDS = %a11 2: %a07 SP DRAW/test SP \
 %a11 3: %a07 SP form SP \
 %a11 4: %a07 SP field SP \
 %a11 5: %a07 SP tmplt SP \
 %a11 6: %a07 SP del SP \
 %a11 7: %a07 SP move SP \
 %a11 8: %a07 SP copy SP \
 %a11 9: %a07 SP rept

 FMKRTM = %a11 2: %a07 SP TEST/draw SP \
 %a11 3: %a07 SP form SP \
 %a11 4: %a07 SP field SP \
 %a11 5: %a07 SP tmplt SP \
 %a11 6: %a07 SP del SP \
 %a11 7: %a07 SP move SP \
 %a11 8: %a07 SP copy SP \
 %a11 9: %a07 SP rept
 FMKRMV = %a11 7: %a07 \
 " MOVE: use arrow keys to position, F7 to release"
 FMKRCP = %a11 8: %a07 \
 " COPY: use arrow keys to position, F8 to release"

19.4.13 Cursor Position Display

The utility will display the current cursor position on the status line if
desired. When possible, JYACC FORMAKER uses nonblocking keyboard reads. If no
key is obtained within a specified time, the cursor position display is updated.
This allows fast typists to type at full speed; when the typist pauses, the
cursor position display is updated. The keyword CURPOS specifies the timeout
delay, in tenths of a second. If the keyword is omitted, or is 0, there will be
no cursor position display. Many terminals display the cursor position
themselves.

The delay depends on the baud rate and the terminal itself; it should be chosen
so that typing is not slowed down. If the terminal has its own display, CURPOS
should be omitted.

If there is no non-blocking read, a non-zero value of CURPOS enables the
display and zero disables it.

 CURPOS = 1 - update display every .1 sec
 (use on fast systems)
 CURPOS = 3 - every .3 sec (reasonable for most)
 CURPOS = 7 - at low baud rates
 CURPOS = 0 - no display, same as omitting keyword

Appendix A Error Messages

In this Appendix, all the error messages issued by the JYACC FORMAKER run-time
system and utilities appear. Each message is listed, with its tag, as it appears
in the message file distributed by JYACC; even if you change the wording of
these messages, the tag will remain the same. If you modify the message file
extensively, you may want to keep the original around for correlation with this
list. Some messages have slots for information determined at run-time; these
appear as printf percent escapes, commonly %s for character strings and %d for
numbers.

Each message is followed by a less terse description of the error condition and
the contexts in which it can arise. If recovery is necessary and possible, you
will also find recommendations on how to recover from the error.

The run-time and screen editor messages are currently in message file order,
which is perhaps not the most useful. Utility messages are alphabetical by
utility.

20 Run-time Messages

SM_BADTERM = Unknown terminal type. SM_ENTERTERM = Please enter terminal type or
%KNL to exit. Cause: The library function sm_initcrt cannot find the
 configuration files it needs to talk to your terminal.
 Corrective action: Check your SMVIDEO, SMKEY, SMTERM, and
 SMVARS setup variables. You can proceed by typing the name
 of your terminal in response to this message, but that's
 tedious.

SM_MALLOC = Insufficient memory available. Cause: The screen manager uses the C
 library function malloc() to get memory when needed. It has
 exhausted the area reserved for dynamic allocation, or
 perhaps the area has been corrupted. Corrective action:
 Exit the program.

SM_KEYENV = SMKEY not found. Cause: The file named in the SMKEY setup variable
 cannot be opened. This will cause initialization to be
 aborted. Corrective action: Correct the environment
 variable. Perhaps you need to re-run the key2bin utility.

SM_VIDENV = SMVIDEO not found. Cause: The file named in the SMVIDEO setup
 variable cannot be opened. This will cause initialization
 to be aborted. Corrective action: Correct the environment
 variable. Perhaps you need to re-run the vid2bin utility.

SM_FNUM = Bad field # or subscript. Cause: A field number (following #) or
 occurrence number (in []'s following a field name or
 number) is out of range. Corrective action: Correct the
 math edit or JPL program that contains the errant number.

SM_DZERO = Divide by zero. Cause: Your math expression has caused division by
 zero. Corrective action: Find the zero. You may need to
 make a field data-required, as blank fields have a numeric
 value of zero.

SM_EXPONENT = Exponentiation invalid. Cause: Your math expression has attempted
 to raise zero to a negative power, or to raise a negative
 number to a fractional power. Corrective action: Fix the
 exponential expression.

SM_DATE = Invalid date. Cause: The date in a date field is not formatted
 according to the field's date edit string. Corrective
 action: Re-enter the date.

SM_MATHERR = Math error - Cause: Used as a prefix to other math error messages.
 Corrective action: None.

SM_FORMAT = Invalid format. Cause: The precision expression that precedes a math
 expression is malformed. Corrective action: It should be
 %m.n, where m is the total width of the result and n is the
 number of decimal places.

SM_DESTINATION = Invalid destination. Cause: The destination field expression
 that begins a math expression is not followed by an equal
 sign. Corrective action: Supply the equal sign.

SM_INCOMPLETE = Expression incomplete. SM_ORAND = Operand expected. SM_ORATOR =
 Operator expected. SM_EXTRAPARENS = Right parenthesis
 unexpected. SM_MISSPARENS = Right parenthesis expected.
 Cause: The right-hand side of a math expression is missing
 or malformed. Corrective action: Correct the expression.

SM_DEEP = Formula too complicated. Cause: The internal stack used to store
 intermediate results in math expression evaluation has
 overflowed. Corrective action: Simplify the expression, or
 use an intermediate.

SM_FUNCTION = Invalid function. Cause: The name following the @ in a math
 expression is not "date", "sum", or "abort". Corrective
 action: Use one of the built-in functions.

SM_ARGUMENT = Invalid argument. Cause: The argument to @abort in a math
 expression is not a number. Corrective action: The
 meaningful arguments to @abort are -2, -1, 0, and 1. Use
 one of those.

SM_MISMATCH = Type mismatch. Cause: A comparison between numeric and string
 variables has been attempted in a math expression.
 Corrective action: Check the types or character edits of
 the data elements involved.

SM_NOTMATH = Not a math expression. Cause: JAM couldn't get to first base trying
 to evaluate a math expression edit. Corrective action:
 Check the Author's Guide for a description of math
 expression syntax.

SM_QUOTE = Missing quote character. Cause: A math or string expression contains
 an unclosed quote. Corrective action: Supply the missing
 quote.

SM_SYNTAX = Syntax error. Cause: Extra characters at the end of a math
 expression, or a malformed relational operator. Corrective
 action: Correct the indicated problem.

SM_FRMDATA = Bad data in form. Cause: A file you have attempted to open as a JAM
 screen is not a screen file, or was created with a
 different release version of JAM, or has been corrupted.
 Corrective action: Check the screen name, then try to bring
 it up in the screen editor.

SM_NOFORM = Cannot find form. Cause: JAM cannot open the form file you have
 requested. Corrective action: Check that the file exists,
 and/or that proper entries have been made in the SMPATH
 directory list, the memory-resident form list, and the
 SMFLIBS library list.

SM_FRMERR = Error while reading form. Cause: This refers to I/O errors in
 reading a form file from disk. Corrective action: Retry the
 operation.

SM_BIGFORM = Form has fields that extend beyond screen size. Cause: You have
 tried to display a form that won't fit on your terminal.
 Corrective action: Reduce the screen's size, using the
 screen editor.

SM_SP1 = Please hit the space bar SM_SP2 = after reading this message. Cause:
 These two lines appear in a prompt window when an error
 message has been displayed and you have not acknowledged it
 by pressing the space bar, but by pressing some other key.
 Corrective action: Press the space bar. If you don't want
 to acknowledge the message, set the SMEROPTIONS setup
 variable.

SM_RENTRY = Entry is required. Cause: You have failed to enter data in a
 required field. Corrective action: Enter something. In
 digits-only fields, you must enter at least one digit.

SM_MUSTFILL = Must fill field. Cause: You have failed to fill a must-fill field.
 No blanks whatever are allowed there. Corrective action:
 Fill out the field.

SM_AFOVRFLW = Amount field overflow. Cause: You have typed a number that is too
 big for the field's currency format to accommodate.
 Corrective action: Reduce the number or increase the
 precision.

SM_TOO_FEW_DIGITS = Too few digits. SM_CKDIGIT = Check digit error. Cause: A
 number has failed check-digit validation. Corrective
 action: Re-enter the number.

SM_FMEM = Insufficient memory for data entry field. Cause: In trying to
 construct a field for data entry in a help screen,
 available memory was exhausted. Corrective action: Exit the
 program.

SM_NOHELP = No help text available. Cause: You have pressed the HELP key in a
 field where no help was available. Corrective action:
 Define a help screen for the field or screen.

SM_MAXHELP = Five help levels maximum. Cause: You have nested help windows too
 deeply. Corrective action: Restructure the help windows.

SM_FRMHELP = No form-level help text available. Cause: You have pressed the FORM
 HELP key in a screen with no form-wide help. Corrective
 action: Define a help screen for the form.

SM_OUTRANGE = Out of range. Cause: The string or number you have entered
 violates a range edit. Corrective action: Enter a correct
 value, or relax the range restrictions.

SM_SYSDATE = Use clear for system date or enter in format: Cause: The date in a
 system date field is not formatted according to the field's
 date edit string. Corrective action: Re-enter the date, or
 clear the field to get the current date.

SM_DATFRM = Invalid format; enter date in format: Cause: The date in a date
 field is not formatted according to the field's date edit
 string. Corrective action: Re-enter the date.

SM_DATCLR = Invalid date; clear gets system date. Cause: The date in a system
 date field is not formatted according to the field's date
 edit string. Corrective action: Re-enter the date, or clear
 the field to get the current date.

SM_DATINV = Invalid date; enter a valid date. Cause: The date in a date field is
 not formatted according to the field's date edit string.
 Corrective action: Re-enter the date.

SM_SYSTIME = Use clear for system time or enter in format: Cause: The time in a
 system time field is not formatted according to the field's
 time edit string. Corrective action: Re-enter the time, or
 clear the field to get the current time.

SM_TIMFRM = Invalid format; enter time in format: Cause: The time in a time
 field is not formatted according to the field's time edit
 string. Corrective action: Re-enter the time.

SM_TIMCLR = Invalid time; clear gets system time. Cause: The time in a system
 time field is not formatted according to the field's time
 edit string. Corrective action: Re-enter the time, or clear
 the field to get the current time.

SM_TIMINV = Invalid time; enter a valid time. Cause: The time in a time field is
 not formatted according to the field's time edit string.
 Corrective action: Re-enter the time.

SM_MOREDATA = No more data. Cause: You have attempted to scroll past the
 beginning or end of a non-circular scrolling field.
 Corrective action: Warning only.

SM_SCRLMEM = Insufficient memory for scrolling. Cause: Ran out of memory for
 scroll buffers. Corrective action: Exit the program.

SM_NOTEMP = Cannot open temporary file. Cause: The local print function failed
 to open its scratch file. Corrective action: Check write
 permissions in your directory.

SM_NOFILE = '"%s" not found' Cause: A file needed by the screen manager was
 missing. Corrective action: Supply the file, or correct the
 environment variable that points to it.

SM_NOENV = "'%s' missing" SM_NOSECTOR = section '%2.2s' not found SM_FFORMAT =
 bad file format in "%s" SM_FREAD = file read error in "%s"
 Cause: There was a problem initializing one of the
 configuration files (the key file, video file, msgfile,
 smvars or setup). Corrective action: Check the contents of
 the text file, compile it again (with key2bin, vid2bin,
 msg2bin or var2bin), and try again.

SM_RX1 = Invalid character. Cause: The character you have typed is not allowed
 by the field's regular expression. Corrective action: Type
 an allowed character, or relax the expression.

SM_RX2 = Incomplete entry. Cause: The field's regular expression demands more
 data than you have entered. Corrective action: Supply the
 missing characters.

SM_RX3 = No more input allowed. Cause: The opposite problem: the field's
 regular expression demands fewer characters than you have
 entered. Corrective action: Shorten your input.

SM_TABLOOK = Invalid entry. Cause: The contents of a field have failed the
 table-lookup validation. Corrective action: Correct the

 input (perhaps through item selection), or add the missing
 item to the table-lookup screen.

SM_ILLELSE = Illegal Else Cause: In a JPL program, an else has appeared without
 a preceding if. Corrective action: Correct the program's
 syntax.

SM_EOT = unexpected End Of File Cause: At the end of JPL program text, there are
 unclosed blocks. Corrective action: Supp;ly the missing
 right curly braces.

SM_BREAK = BREAK not within loop Cause: A JPL program contains a break command
 that is not inside a for or while loop. Corrective action:
 Remove the break.

SM_NOARGS = Verb needs arguments Cause: A JPL command that requires arguments
 has been given none. Corrective action: Supply the
 arguments; see the JPL Programmer's Guide.

SM_HASARGS = Illegal arguments Cause: A JPL command has excess arguments.
 Corrective action: Remove the excess.

SM_EOL = Source line too long Cause: A JPL program contains a logical line that
 is too long (currently, a couple of thousand characters).
 Corrective action: Figure out how to do it in multiple
 lines.

SM_EXCESS = Extra data at end of line Cause: In certain JPL commands, there is
 superfluous stuff following the command. Corrective action:
 Get rid of it.

SM_FILEIO = System File I/O error Cause: An I/O error has occurred while reading
 a JPL program file. Corrective action: Exit the program.

SM_FOR = USAGE: FOR varname = Value WHILE (expression) STEP [+-]value Cause: A
 JPL for command has a syntax error. Corrective action:
 Recast the command according to the given format.

SM_LINE_2_LONG = Line too long after expansion Cause: A line of a JPL program is
 too long after colon expansion (more than about 2000
 characters). Corrective action: Check for missing
 subscripts: a name with multiple occurrences but no
 subscript in the expression is replaced by all the
 occurrences.

SM_NOFILE = Could not open file Cause: A JPL program source file was missing or
 unreadable. Corrective action: Create the file, correct its
 spelling in the program, or add its directory to your
 SMPATH.

SM_NONAME = Expected variable name Cause: An entry in a JPL vars command does
 not begin with a letter, $, ., or _. Corrective action: Fix
 the name.

SM_NOTARGET = Target does not exist Cause: The field to be assigned to in a JPL
 math or cat command is not in the screen or LDB. Corrective
 action: Create the field or change the command.

SM_NUMBER = Illegal Number Cause: The argument to a JPL return statement was
 invalid. Corrective action: It must be an integer constant,
 variable name, or LDB name - no expressions.

SM_RCURLY = Ended block not begun Cause: A JPL program has too many right
 curlies. Corrective action: Remove some.

21 Screen Editor Messages

FM_BADENTRY = Bad entry. Cause: In the field size window, you have specified a
 vertical array without giving an offset.
 Corrective action: Supply the offset.

FM_MXSCRN = Maximum number of %s on the screen is %d. Cause: You have tried to
 make your screen bigger than the display, using
 the PF3 window; the maximum possible values are
 in the message. Corrective action: Specify a
 smaller screen.

FM_MNBRDR = Minimum number of %s to hold form data and a border is %d. Cause: In
 the PF3 window, you have tried to make the
 screen smaller than the existing data plus
 border. Corrective action: Make the screen
 larger, or move or delete some of the contents.

FM_MNFORM = Minimum number of %s to hold form data is %d. Cause: In the PF3
 window, you have tried to make the screen
 smaller than the existing data. Corrective
 action: Make the screen larger, or move or
 delete some of the contents.

FM_NOOPEN = Cannot create form %s. Cause: The editor was unable to create the
 file whose name is in the message, probably for
 lack of permission or space. Corrective action:
 Write the screen to a different file, or escape
 to the command interpreter and correct the
 problem.

FM_WRFORM = Error writing form '%s'. Cause: The editor incurred an I/O error
 while writing out the screen file. Corrective
 action: Try writing to a different file.

FM_NOFROOM = Insufficient memory for new fields. Cause: No fields can be added
 because the editor has run out of memory.
 Corrective action: Write the screen out at once,
 exit the editor, and re-edit the screen.

FM_ARHROOM = No room for horizontal array. Cause: In the field size window, you
 have specified a horizontal array that will fall
 outside the screen. Corrective action: Make the
 screen bigger, or the array smaller.

FM_ARVROOM = No room for vertical array. Cause: In the field size window, you
 have specified a vertical array that will fall
 outside the screen. Corrective action: Make the
 screen bigger, or the array smaller.

FM_ARHVSEL = Enter v or h. Cause: I'm not sure this error message is correct.
 Corrective action:

FM_AROVERLAP = Overlaps existing field. Cause: You have specified an array that
 would overlay part of an existing field.
 Corrective action: Change the array size or move
 the field.

FM_UCSET = Set upper or lower case. Cause: You have specified both upper- and
 lower-case in the field edits window. Corrective
 action: Type 'n' for one or the other.

FM_SHRNG = The shifting increment must be at least 1, but no more than %d.
 Cause: You have specified a shifting increment
 of zero, or greater than the onscreen width of
 the field. Corrective action: Change the shift
 increment to a value in the proper range,
 indicated in the message.

FM_FLDLEN = Length must be non-zero and no greater than %d. Cause: In the field
 size or summary window, you have tried to make a
 field so long that it reaches out of the screen.
 Corrective action: Make the field shorter or
 move its origin to the left.

FM_GRNONE = Graphics not available on this terminal. Cause: You have pressed the
 graphics key (PF10 or SPF5), but your display's
 video file contains no definitions for graphics
 characters. Corrective action: Put the
 appropriate entries (GRAPH, GRTYPE, MODE1-6) in
 your video file.

FM_OVERLAP = Overlaps field or border. Cause: In creating a JAM control field or
 moving an ordinary field, you have placed it so
 that it would overlap another field or the
 screen's border. Corrective action: Reposition
 the new field.

FM_NAMEINUSE = Name already assigned to another field. Cause: You have tried to
 give a field a name that already belongs to
 another field. Corrective action: Rename one of
 the fields.

FM_FLDNO = Invalid field number. Cause: In specifying a next-field edit, you
 have given a target field number (using #) that
 is out of range for the screen. Corrective
 action: Change the field number to refer to an
 existing field.

FM_INCR = Invalid increment. Cause: In specifying a next-field edit, you have
 given a field increment (using + or -) that
 results in an occurrence number out of range for
 the field. Corrective action: Reduce the
 increment.

FM_FNUMB = Field number must start with #. Cause: In specifying a next-field
 edit, you have typed # for field number but have
 not put a number after it. Corrective action:
 Supply the field number.

FM_ELEMENT = Invalid element. Cause: In a next-field edit, your element
 specification contains a syntax error.
 Corrective action: The proper syntax is
 field-id[element].

FM_1FMT = Enter one format only. Cause: You have entered both a date and a time
 format string. Corrective action: Remove one of
 them; a field can be either date or time, but
 not both.

FM_CLCMIN = Minimum digits should not exceed length of field, which is %d.
 Cause: In the math/check digit window, you have
 specified a minimum number of digits for the
 check-digit that is too large. Corrective
 action: Reduce the minimum below the number in
 the message, or make the field longer.

FM_AZNAME = Name must start with letter. Cause: You have typed a field name that
 does not begin with a letter. Corrective action:
 Change the field name.

FM_A9NAME = Must be alpha, number or '_'. Cause: You have typed a character
 elsewhere in a field name that is neither
 alphanumeric nor an underscore. Corrective
 action: Remove the offending character from the
 name.

FM_INBORDER = Bad entry -- field in prospective border. Cause: You have
 requested a border on a screen that has fields
 at the very edge of the screen, where the border
 should go. Corrective action: Move the offending
 field or fields.

FM_DUPDRAW = Duplicate draw character. Cause: In the draw-field/field defaults
 window, you have specified a draw-field
 character twice. Corrective action: Pick another
 character.

FM_IFORMAT = Invalid format. Cause: In specifying a window name and coordinates
 for a help screen, sub-menu, or other edit, you
 have deviated from the prescribed format
 screen-name (line, column) Perhaps you have left
 out a parenthesis, or omitted the comma.
 Corrective action: Correct the format.

FM_INVRC = Invalid menu return code. Cause: You have specified a menu return
 code that does not evaluate to an integer.
 Corrective action: Allowable return codes are:
 decimal numbers; hexadecimal numbers; quoted
 printable ASCII characters, as 'q'; ASCII
 control character mnemonics, as ESC; and JAM
 logical key mnemonics from smkeys.h.

FM_WRMSK = A word wrap field may not have a regular expression edit. Cause: You
 have attempted to create a field with both word
 wrapping and a regular expression edit. Because
 word wrap interprets certain characters
 specially, this is not allowed. Corrective
 action: Choose one. As word-wrapped fields are
 generally used for large quantities of text,
 they are best left unfiltered.

FM_RX1 = Regular expression too long. Cause: When compiled, the regular
 expression you have typed is to long to be
 stored as a special edit. Corrective action: Try
 to simplify the expression.

FM_RX2 = Unbalanced '[' bracket. Cause: A left bracket that begins a character
 class has no matching right bracket. Corrective
 action: If you want a literal left bracket,
 quote it: \[. If you really wanted a character
 class, insert the corresponding right bracket.

FM_RX3 = Too many '(' brackets. FM_RX4 = Too many ')' brackets. FM_RX8 = Closing
 '}' brace expected. FM_RX11 = Previous '('
 bracket not yet closed. Cause: Various cases of
 bracket imbalance. Corrective action: As above,
 the usual cause is forgetting to quote a
 bracketing character when you want it literally.

FM_RX5 = Expecting number between 0-9 or '\}'. Cause: You have put something
 other than a number inside a subexpression
 repeat count. Corrective action: Remove it.

FM_RX6 = Range may not exceed 255. Cause: You have specified a repeat count
 greater than what will fit in a field (fields
 are limited to 255 characters in width).
 Corrective action: Reduce the count.

FM_RX7 = Too many commas in specifying range. Cause: You have put two
 consecutive commas in a range expression.
 Corrective action: Remove one.

FM_RX8 = Closing '}' brace expected. Cause: You have followed a comma in a range
 expression with a closing curly brace.
 Corrective action: Remove the comma, or put
 another number after it.

FM_RX9 = First number exceeds second in specifying range. Cause: You have got
 the range of a range backwards. Corrective
 action: Reverse or correct the range limits.

FM_RX10 = \digit out of range. Cause: You have entered a backslash followed by a
 number to re-match a subexpression, but the
 number exceeds the number of parenthesized
 subexpressions. Corrective action: Reduce the
 number or parenthesize the correct
 subexpressions.

FM_RX12 = Unexpected end of regular expression. Cause: Your regular expression
 ends with a backslash. Corrective action: If you
 want a literal backslash, double it.

22 Utility Messages

These messages are also listed in the Configuration Guide with their utilities;
they are repeated here for convenience.

bin2c Messages

Insufficient memory available. Cause: The utility could not allocate enough
 memory for its needs. Corrective action:
 None.

File "%s" already exists; use '-f' to overwrite. Cause: You have specified an
 output file that already exists.
 Corrective action: Use the -f flag to
 overwrite the file, or use another name.

Cannot open "%s" for writing. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Cannot open "%s" for reading. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error reading file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Error writing file "%s" Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

b2hex Messages

Error reading %s Error writing %s Cause: The utility incurred an I/O error while
processing an input or output file. This message will usually be accompanied by
a more specific, system-dependent message. Corrective action: Correct the
system-dependent problem, if possible, and retry the operation.

%s already exists %s already exists, it is skipped Cause: The command you have
issued would overwrite an existing output file. Corrective action: If you are
sure you want to destroy the old file, reissue the command with the -f option.

f2struct Messages

Language %s undefined. Cause: The language you have given with the -g option has
 not been defined in the utility's tables.
 Corrective action: Check the spelling of the
 option, or define the language ito the utility.

%s already exists. Cause: You have specified an existing output file. Corrective
 action: Use the -f option to overwrite the file,
 or use a different name.

%s has an invalid file format. Cause: An input file is not of the expected type.
 Corrective action: Check the spelling and type of
 the offending file.

'%s' has no data to convert. Cause: An input file is empty, or does not have the
 names you specified. Corrective action: Check the
 names.

Not enough memory to process '%s'. Unable to allocate memory. Cause: The utility
 could not allocate enough memory for its needs.
 Corrective action: None.

At least one form name is required. Cause: You have not given any screen files
 as input. Corrective action: Supply one or more
 screen file names.

formlib Messages

Library `%s' already exists; use `-f' to overwrite. Cause: You have specified an
 existing output file.
 Corrective action:
 Use the -f option to
 overwrite the file,
 or use a different
 name.

Cannot open `%s'. Cause: An input file was missing or unreadable. Corrective
 action: Check the
 spelling, presence,
 and permissions of
 the file in question.

Unable to allocate memory. Insufficient memory available. Cause: The utility
 could not allocate
 enough memory for its

 needs. Corrective
 action: None.

File `%s' is not a library. Cause: The named file is not a form library
 (incorrect magic
 number). Corrective
 action: Check the
 spelling and
 existence of your
 library.

`%s' not in library. No forms in library. Cause: A screen you have named is not
 in the library.
 Corrective action:
 List the library to
 see what's in it,
 then retry the
 operation.

Temporary file `%s' not removed. Cause: The intermediate output file was not
 removed, probably
 because of an error
 renaming it to the
 real output file.
 Corrective action:
 Check the permissions
 and condition of the
 files, then retry the
 operation.

key2bin Messages

File '%s' not found Neither '%s' nor '%s' found. Cause: An input file was
 missing or unreadable.
 Corrective action: Check
 the spelling, presence,
 and permissions of the
 file in question.

Unknown mnemonic in line: '%s' Cause: The line printed in the message does not
 begin with a logical key
 mnemonic. Corrective
 action: Refer to
 smkeys.h for a list of
 mnemonics, and correct
 the input.

No key definitions in file '%s' Cause: Warning only. The input file was empty or
 contained only comments.
 Corrective action: None.

Malloc error Cause: The utility could not allocate enough memory for its needs.
 Corrective action: None.

Cannot create '%s' Error writing '%s' Cause: An output file could not be
 created, due to lack of
 permission or perhaps
 disk space. Corrective
 action: Correct the file
 system problem and retry
 the operation.

lstform Messages

Error opening input file. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

Error opening output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space.
 Corrective action: Correct the file system
 problem and retry the operation.

Unable to allocate memory. Can't allocate memory. Cause: The utility could not
 allocate enough memory for its needs.
 Corrective action: None.

Error reading form file. Error writing list file. Cause: The utility incurred an
 I/O error while processing the file named in
 the message. Corrective action: Retry the
 operation.

modkey Messages

Invalid entry. Cause: You have typed a key that is not on the menu. Corrective
 action: Check the instructions on the screen and try
 again.

Key sequence is too long. Cause: You have typed more than six keys wihout
 repeating any. Corrective action: Key sequences for
 translation may be at most six characters long. Choose a
 shorter sequence.

Invalid first character. Cause: A multi-key sequence must begin with a control
 character. Corrective action: Begin again, using a control
 character.

Invalid mnemonic - press space for list Cause: In the miscellaneous keys screen,
 you have typed a character string for logical value that
 is not a logical key mnemonic. Corrective action: Peruse
 the list, then correct the input.

Invalid number - enter <decimal>, 0<octal> or 0x<hex> Cause: In the
 miscellaneous keys screen, you have typed a malformed
 numeric key code. Corrective action: Correct the number,
 or use a mnemonic.

Cannot create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry the
 operation.

Key sequence does not repeat. Cause: You have typed a key sequence that failed
 to repeat a string of six characters or less. Corrective
 action: Retry the sequence, or use a shorter one.

Cannot accept NUL as a key. Cause: The ASCII NUL character (binary 0) cannot be
 used in a key translation sequence, because it is used
 internally to mark the end of a sequence. Corrective
 action: Use another key.

Key previously defined as %s Key conflicts with %s Cause: You have typed a key
 sequence that has already been assigned to another key, or
 that is a substring of a previously assigned sequence.

 Corrective action: Use a different key or sequence, or
 reassign the other.

msg2bin Messages

File '%s' not found. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and
 permissions of the file in question.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Bad tag in line: %s Cause: The input file contained a system message tag unknown
 to the utility. Corrective action: Refer to
 smerror.h for a list of tags, and correct the
 input.

Missing '=' in line: %s Cause: The line in the message had no equal sign
 following the tag. Corrective action: Correct the
 input and re-run the utility.

term2vid Messages

No cursor position (cm, cup) for %s Cause: An absolute cursor positioning
 sequence is required for JYACC
 FORMAKER to work, and the termcap or
 terminfo entry you are using does not
 contain one. Corrective action:
 Construct the video file by hand, or
 update the entry and retry.

Cannot find entry for %s Cause: The terminal mnemonic you have given is not in
 the termcap or terminfo database.
 Corrective action: Check the spelling
 of the mnemonic.

File %s already exists; use '-f' to overwrite. Cause: You have specified an
 existing output file. Corrective
 action: Use the -f option to
 overwrite the file, or use a
 different name.

txt2form Messages

Warning: lines greater than %d will be truncated Warning: columns greater than
%d will be truncated Cause: Your input text file has data that reaches beyond
 the limits you have given (default 23 lines by 80
 columns) for the screen. Corrective action: Shrink
 the input, or enlarge the screen.

Unable to create output file. Cause: An output file could not be created, due to
 lack of permission or perhaps disk space. Corrective
 action: Correct the file system problem and retry
 the operation.

var2bin Messages

Error opening %s. Cause: An input file was missing or unreadable. Corrective
 action: Check the spelling, presence, and permissions
 of the file in question.

Missing '='. Cause: The input line indicated did not contain an equal sign after
 the setup variable name. Corrective action: Insert the
 equal sign and run var2bin again.

%s is an invalid name. Cause: The indicated line did not begin with a setup
 variable name. Corrective action: Refer to the
 Configuration Guide for a list of variable names,
 correct the input, and re-run the utility.

%s may not be qualified by terminal type. Cause: You have attached a terminal
 type list to a variable which does not support one.
 Corrective action: Remove the list. You can achieve the
 desired effect by creating different setup files, and
 attaching a terminal list to the SMSETUP variable.

Unable to set given values. %s conflicts with a previous parameter. %s is an
 invalid parameter. Cause: A keyword in the input is
 misspelled or misplaced, or conflicts with an earlier
 keyword. Corrective action: Check the keywords listed
 in the manual, correct the input, and run the utility
 again.

Error reading smvars or setup file. Cause: The utility incurred an I/O error
 while processing the file named in the message.
 Corrective action: Retry the operation.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

At least one file name is required. Cause: You have failed to give an input file
 name. Corrective action: Retype the command, supplying
 the file name.

Entry size %d is too large. String size %d is too large. Cause: The indicated
 right-hand side is too long. Corrective action: Reduce
 the size of the entry.

vid2bin Messages

Neither %s nor %s exists. Cause: An input file was missing or unreadable.
 Corrective action: Check the spelling,
 presence, and permissions of the file in
 question.

A cursor positioning sequence is required. An erase display sequence is
 required. Cause: These two entries are required
 in all video files. Corrective action:
 Determine what your terminal uses to perform
 these two operations, and enter them in the
 video file; then run the utility again.

Unable to allocate memory. Cause: The utility could not allocate enough memory
 for its needs. Corrective action: None.

Error writing to file '%s'. Cause: The utility incurred an I/O error while
 processing the file named in the message.
 Corrective action: Retry the operation.

Invalid entry: '%s'. Entry missing '=': '%s'. Cause: The input line in the
 message does not begin with a video keyword and
 an equal sign. Corrective action: Correct the
 input and re-run the utility. You may have

 forgotten to place a backslash at the end of a
 line that continutes onto the next one.

Invalid attribute list : '%s'. Invalid color specification : '%s'. Invalid
 graphics character specification (%s):'%s'.
 Invalid border information (%s):'%s'. Invalid
 graphics type : '%s'. Invalid label parameter :
 '%s'.%s Invalid cursor flags specification :
 '%s'. Cause: You have misspelled or misplaced
 keywords in the input line in the message.
 Corrective action: Correct the input, referring
 to the Configuration Guide, and run vid2bin
 again.

skipsomething

 Index

 In this Index, library functions are
 displayed in boldface, without the
 prefixes specific to the language
 interface. Video and setup file
 entries appear in ELITE CAPS, while
 utility programs and JPL commands
 are in elite lower-case. Function
 key names are in ROMAN CAPS.

 BIOS video
 A parameter
 ALL video 5-59
 parameter BLINK video
 5-71 parameter
 AM video parameter 5-64, 5-68
 5-61 border
 area attributes implementation
 5-63, 5-66 5-71
 AREAATT video BORDER video
 parameter parameter
 5-53, 5-62, 5-50, 5-53,
 5-66, 5-69 5-71
 ARGR video BOTTRT video
 parameter parameter
 5-53, 5-67 5-52, 5-60
 ARROWS video BRDATT video
 parameter parameter
 5-53, 5-72 5-53, 5-72
 ASGR video BS video parameter
 parameter 5-61
 5-53, 5-54, BUFSIZ video
 5-62, 5-67, parameter
 5-69 5-52, 5-60

 B C
 b2hex utility 5-84 C0 video parameter
 beep 5-23 5-71
 bel 5-23, 5-72 C1 video parameter
 BELL video 5-71
 parameter c_vis 5-24
 5-53, 5-72 ch_emsgatt 5-40
 bin2c ch_qmsgatt 5-40
 utility 5-1, 5-3, ch_stextatt 5-40
 5-5, 5-17, ch_umsgatt 5-40
 5-37, 5-83 CMFLGS video
 bin2hex utility parameter
 5-1, 5-6 5-53, 5-61

 CMSG video turning off
 parameter 5-62
 5-53, 5-68 turning on 5-62
 COF video cursor positioning
 parameter absolute 5-61
 5-52, 5-62 relative 5-61
 COLMS video cursor style
 parameter PC 5-59
 5-52, 5-59 CUU video
 color parameter
 background 5-67 5-52, 5-53,
 implementation 5-61
 5-67
 COLOR video D
 parameter d_msg_line 5-14,
 5-53, 5-67 5-23, 5-73
 comments dicname 5-40
 in key file DIM video
 5-14 parameter
 in message file 5-64, 5-68
 5-22 display attribute
 in setup file area 5-63
 5-38 bit-mapped 5-65
 in video file embedded in
 5-49 status line
 CON video 5-23
 parameter implementation
 5-52, 5-62 5-62
 configuration latch 5-63
 files 5-14, onscreen 5-63
 5-22, 5-38, parameters 5-62
 5-48 dw_options 5-40
 configuration
 utilities E
 summary 5-1 ED video parameter
 CONTROL video 5-49, 5-52,
 parameter 5-60
 5-71 8-bit ASCII 5-52
 CR video parameter EL video parameter
 5-61 5-52, 5-60
 CTYPE video er_options 5-40
 parameter error message
 5-67 to change 5-22
 CUB video EW video parameter
 parameter 5-52, 5-53,
 5-53, 5-61 5-60
 CUD video EXIT key 5-29,
 parameter 5-34
 5-53, 5-61 EXTENDED video
 CUF video parameter
 parameter 5-71
 5-53, 5-61
 CUP video F
 parameter f2r4 utility 5-1,
 5-49, 5-52, 5-9
 5-53, 5-61 f2struct utility
 CURPOS video 5-3, 5-7,
 parameter 5-84
 5-53, 5-73, F9 key 5-30
 5-74 fcase 5-40
 cursor fextension 5-41
 position
 display 5-73

 FMKRCP video INSERT key 5-62
 parameter INSOFF video
 5-53 parameter
 FMKRDS video 5-52, 5-62
 parameter INSON video
 5-53 parameter
 FMKRMV video 5-52, 5-62
 parameter
 5-53 K
 FMKRTM video key file 5-17
 parameter comments 5-14
 5-53 format 5-14
 foreign language testing 5-35
 support 5-69 key mnemonics 5-15
 formlib 5-11 key translation
 formlib utility algorithm 5-25
 5-1, 5-11, creating table
 5-84 5-25
 function key key translation
 EXIT 5-29, 5-34 file 5-14,
 F9 5-30 5-23
 INSERT 5-62 key2bin utility
 LP 5-39 5-1, 5-5,
 PF1 5-30 5-14, 5-15,
 PF2 5-31 5-17, 5-25,
 TAB 5-26 5-39, 5-85
 TRANSMIT 5-60 keyinit 5-39
 function key keytops 5-23,
 labels 5-23, 5-27, 5-30,
 5-27, 5-30, 5-31, 5-32,
 5-31, 5-32, 5-35
 5-35 KPAR video
 function keys parameter
 defining 5-25 5-53, 5-69
 labeling 5-69 KSET video
 parameter
 G 5-53, 5-69
 getkey 5-39
 GRAPH video L
 parameter l_open 5-40
 5-50, 5-53, latch attributes
 5-69, 5-70, 5-63
 5-71, 5-72 LATCHATT video
 graphics parameter
 characters 5-53, 5-62,
 5-70 5-63, 5-64,
 mapping 5-70 5-65, 5-67,
 GRTYPE video 5-69
 parameter ldb_init 5-41
 5-53, 5-71 LENGTH video
 parameter
 H 5-69
 HILIGHT video LF video parameter
 parameter 5-61
 5-64, 5-68 LINES video
 parameter
 I 5-50, 5-52,
 ininames 5-41 5-59, 5-68
 INIT video LINEWRAP video
 parameter parameter
 5-51, 5-52, 5-66
 5-56, 5-59, logical keys 5-25
 5-62, 5-70 mnemonics 5-15
 initcrt 5-38, 5-59 LP key 5-39

 lstform utility
 5-1, 5-2, N
 5-19, 5-85 NONE video
 parameter
 M 5-69
 MAX video
 parameter O
 5-66 ok_options 5-41
 MENU bit 5-9 OMSG video
 menu_proc 5-41 parameter
 message file 5-22, 5-53, 5-59,
 5-37 5-68
 MODE0 video onscreen
 parameter attributes
 5-53, 5-70 5-63, 5-66
 MODE1 video ONSCREEN video
 parameter parameter
 5-53, 5-70 5-66, 5-69
 MODE2 video
 parameter P
 5-53, 5-70 PC video parameter
 MODE3 video 5-71
 parameter PF1 key 5-30
 5-53, 5-70 PF2 key 5-31
 MODE4 video PRIMOS 5-52
 parameter prompt 5-23
 5-53, 5-70
 MODE5 video R
 parameter r_window 5-39,
 5-53, 5-70 5-40
 MODE6 video RCP video
 parameter parameter
 5-53, 5-70 5-52, 5-62
 modkey utility REPMAX video
 5-1, 5-14, parameter
 5-15, 5-17, 5-52, 5-60
 5-25, 5-26, REPT video
 5-27, 5-28, parameter
 5-29, 5-34, 5-52, 5-53,
 5-39, 5-69, 5-60
 5-86 RESET video
 control keys parameter
 5-26 5-52, 5-56,
 display modes 5-59, 5-62
 5-34 resetcrt 5-59
 invoking 5-26 REVERSE video
 mp_options 5-41 parameter
 mp_string 5-41 5-64, 5-68
 MS-DOS 5-59 REWRITE video
 video file 5-50 parameter
 msg2bin utility 5-66, 5-67
 5-1, 5-5,
 5-22, 5-24, S
 5-37, 5-39, SCP video
 5-87 parameter
 msg_get 5-37, 5-39 5-52, 5-62
 msg_read 5-39 screen library
 MSGATT video 5-11
 parameter SCREENWRAP video
 5-53, 5-68, parameter
 5-69, 5-72 5-66
 msgread 5-23 setup file 5-38

 SGR video SMVIDEO setup
 parameter variable 5-39
 5-53, 5-62, SMZMOPTIONS setup
 5-63, 5-64, variable 5-41
 5-65, 5-66, statfnc 5-68
 5-67, 5-69 status line 5-68
 shifting indicator embedded
 5-72 attribute
 sm_ind_set 5-40 5-23
 SMCHEMSGATT setup status text 5-23
 variable 5-40 status window 5-23
 SMCHQMSGATT setup
 variable 5-40 T
 SMCHSTEXTATT setup TAB key 5-26
 variable 5-40 term2vid utility
 SMCHUMSGATT setup 5-1, 5-43,
 variable 5-40 5-48, 5-87
 SMDICNAME setup TRANSMIT key 5-60
 variable 5-40 txt2form utility
 SMDWOPTIONS setup 5-1, 5-44,
 variable 5-40 5-87
 SMEROPTIONS setup
 variable 5-40 U
 SMFCASE setup UNDERLN video
 variable 5-40 parameter
 SMFEXTENSION setup 5-64, 5-68
 variable 5-41
 SMFLIBS setup V
 variable 5-40 var2bin utility
 SMINDSET setup 5-1, 5-5,
 variable 5-40 5-38, 5-45,
 SMINICTRL setup 5-87, 5-88
 variable 5-41 vid2bin utility
 SMININAMES setup 5-1, 5-5,
 variable 5-41 5-39, 5-46,
 SMKEY setup 5-47, 5-48,
 variable 5-49, 5-56,
 5-14, 5-39 5-73, 5-88,
 SMLPRINT setup 5-89
 variable 5-39 video control
 SMMPOPTIONS setup sequences
 variable 5-41 5-53
 SMMPSTRING setup video file 5-46,
 variable 5-41 5-48
 SMMSGS setup comments 5-49
 variable format 5-49,
 5-22, 5-39 5-51
 SMOKOPTIONS setup keywords 5-52
 variable 5-41 minimal 5-50
 SMPATH setup rationale 5-49
 variable 5-39 sample 5-50
 smsetup 5-38 vinit 5-39, 5-46
 SMSETUP setup
 variable X
 5-38, 5-39 XKEY video
 SMUSEEXT setup parameter
 variable 5-3, 5-59
 5-41
 SMVARS setup Z
 variable 5-38 zm_options 5-41

